

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.169
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2011)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3:

TTCN-3 mapping from XML data definition

Recommendation ITU-T Z.169

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.169 (03/2011) i

Recommendation ITU-T Z.169

Testing and Test Control Notation version 3: TTCN-3
mapping from XML data definition

Summary

Recommendation ITU-T Z.169 defines the mapping rules for W3C Schema to TTCN-3 to enable
testing of XML-based systems, interfaces and protocols.

This first revision of the Recommendation contains numerous amendments (conformance and
compatibility, mapping of namespaces, import and include elements and the control namespace,
support of element and type substitutions, mapping of the use, nillable, block and blockDefault, final
and finalDefault and substitutionGroup, processContents attributes, description of the encoding
instructions),clarifications (e.g., new definitions, name conversion rules, mapping of different XSD
elements and attributes), corrigenda and editorial corrections.

This Recommendation is technically aligned with ETSI ES 201 873-9 V4.2.1 (2010-07).

History

Edition Recommendation Approval Study Group

1.0 ITU-T Z.169 2008-11-29 17

2.0 ITU-T Z.169 2011-03-16 17

ii Rec. ITU-T Z.169 (03/2011)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2011

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.169 (03/2011) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

2.1 Normative references .. 1

2.2 Informative references .. 2

3 Symbols and abbreviations ... 2

3.1 Definitions .. 2

3.2 Symbols .. 2

3.3 Abbreviations ... 3

4 Introduction .. 3

4.1 Conformance and compatibility ... 4

5 Mapping XML Schemas ... 4

5.1 Namespaces and document references ... 5

5.2 Name conversion .. 8

5.3 Unsupported features .. 14

6 Built-in data types ... 14

6.1 Mapping of facets ... 14

6.2 String types ... 26

6.3 Integer types ... 28

6.4 Float types .. 30

6.5 Time types .. 31

6.6 Sequence types ... 33

6.7 Boolean type ... 34

6.8 AnyType and anySimpleType types .. 34

7 Mapping XSD components .. 34

7.1 Attributes of XSD component declarations .. 34

7.2 Schema component ... 42

7.3 Element component .. 42

7.4 Attribute and attribute group definitions .. 44

7.5 SimpleType components .. 44

7.6 ComplexType components ... 48

7.7 Any and anyAttribute ... 71

7.8 Annotation .. 74

7.9 Group components .. 74

7.10 Identity-constraint definition schema components ... 75

Annex A – TTCN-3 module XSD ... 76

iv Rec. ITU-T Z.169 (03/2011)

 Page

Annex B – Encoding instructions .. 80

B.1 General ... 80

B.2 The XML encode attribute ... 80

B.3 Encoding instructions ... 81

Annex C – Examples ... 90

C.1 Example 1 ... 90

C.2 Example 2 ... 91

C.3 Example 3 ... 92

C.4 Example 4 ... 94

Annex D (informative) – Deprecated features ... 96

D.1 Using the anyElement encoding instruction to record of fields 96

 Rec. ITU-T Z.169 (03/2011) 1

Recommendation ITU-T Z.169

Testing and Test Control Notation version 3: TTCN-3
mapping from XML data definition

1 Scope

This Recommendation defines the mapping rules for W3C Schema (as defined in
[W3C XMLSchema-0], [W3C XMLSchema-1] and [W3C XMLSchema-2]) to TTCN-3 as defined
in [ITU-T Z.161] to enable testing of XML-based systems, interfaces and protocols.

This Recommendation is technically aligned with [ETSI 201 873-9].

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published. The reference to a document within this
Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

2.1 Normative references

The following referenced documents are necessary for the application of this Recommendation.

[ITU-T X.680] Recommendation ITU-T X.680 (2008), Information technology – Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

[ITU-T X.694] Recommendation ITU-T X.694 (2008), Information technology – ASN.1
encoding rules: Mapping W3C XML schema definitions into ASN.1.

[ITU-T Z.161] Recommendation ITU-T Z.161 (2011), Testing and Test Control Notation
version 3 (TTCN-3): Core language Technically aligned with:
ETSI ES 201 873-1 V4.2.1 (2010-07), Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language.

[ITU-T Z.167] Recommendation ITU-T Z.167 (2011), Testing and Test Control Notation
version 3 (TTCN-3): TTCN-3 mapping from ASN.1Technically aligned
with: ETSI ES 201 873-7 V4.2.1 (2010-07): Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3;
Part 7: Using ASN.1 with TTCN-3.

[W3C XML] W3C Recommendation (2004), Extensible Markup Language (XML) 1.1,
World Wide Web Consortium. Available at: http://www.w3.org/TR/xml11.

[W3C N-XML] W3C Recommendation (1999), Namespaces: Namespaces in XML, World
Wide Web Consortium. Available at: http://www.w3.org/TR/1999/REC-
xml-names-19990114, http://www.w3.org/XML/Schema.

[W3C XMLSchema-0] W3C Recommendation (2004), XML Schema Part 0: Primer, World Wide
Web Consortium. Available at: http://www.w3.org/TR/xmlschema-0.

[W3C XMLSchema-1] W3C Recommendation (2004), XML Schema Part 1: Structures, World
Wide Web Consortium. Available at: http://www.w3.org/TR/xmlschema-1.

http://www.w3.org/TR/xml11
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1

2 Rec. ITU-T Z.169 (03/2011)

[W3C XMLSchema-2] W3C Recommendation (2004), XML Schema Part 2: Datatypes, World
Wide Web Consortium. Available at: http://www.w3.org/TR/xmlschema-2.

[W3C SOAP] W3C Recommendation, SOAP version 1.2, Part 1: Messaging Framework,
World Wide Web Consortium. Available at: http://www.w3.org/TR/soap12.

2.2 Informative references

The following referenced documents are not necessary for the application of this Recommendation
but they assist the user with regard to a particular subject area.

[ETSI 201 873-1] ETSI ES 201 873-1 V4.2.1 (2010-07), Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language.

[ETSI 201 873-9] ETSI ES 201 873-9 V4.2.1 (2010-07), Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 9: Using XML
schema with TTCN-3.

[ISO 8601] ISO 8601 (2004), Data elements and interchange formats – Information
interchange – Representation of dates and times.

3 Symbols and abbreviations

3.1 Definitions

For the purposes of this Recommendation, the terms and definitions given in [ITU-T Z.161],
[ITU-T X.694] and the following apply:

3.1.1 schema component: generic XSD term for the building blocks that comprise the abstract
data model of the schema

NOTE − The primary components, which may (type definitions) or obliged to (element and attribute
declarations) have names are as follows: simple type definitions, complex type definitions, attribute
declarations and element declarations. The secondary components, which are obliged to have names, are as
follows: attribute group definitions, identity-constraint definitions, model group definitions and notation
declarations. Finally, the "helper" components provide small parts of other components; they are not
independent of their context: annotations, model groups, particles, wildcards and attribute uses.

3.1.2 schema document: contains a collection of schema components, assembled in a schema
element information item

NOTE − The target namespace of the schema document may be defined (specified by the targetNamespace
attribute of the schema element) or may be absent (identified by a missing targetNamespace attribute of the
schema element). The latter case is handled in this Recommendation as a particular case of the target
namespace being defined.

3.1.3 target TTCN-3 module: TTCN-3 module, generated during the conversion, to which the
TTCN-3 definition produced by the translation of a given XSD declaration or definition is added

3.1.4 XML Schema: represented by a set of schema documents forming a complete specification
(i.e., all definitions and references are completely defined)

NOTE − The set may be composed of one or more schema documents, and in the latter case identifying one
or more target namespaces (including absence of the target namespace) and more than one schema documents
of the set may have the same target namespace (including absence of the target namespace).

3.2 Symbols

This Recommendation uses the following symbol:

– The whitespace character

http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/soap12

 Rec. ITU-T Z.169 (03/2011) 3

3.3 Abbreviations

This Recommendation uses the following abbreviations:

ASN.1 Abstract Syntax Notation One

DTD Document Type Description

SOAP Simple Object Access Protocol

TTCN-3 Testing and Test Control Notation version 3

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XML W3C eXtensible Markup Language

XSD W3C XML Schema Definition

4 Introduction

An increasing number of distributed applications use the XML format to exchange data for various
purposes, like database queries or updates or event telecommunications operations such as
provisioning. All of these data exchanges follow very precise rules for data format description in the
form of document type description (DTD) [W3C XML] and [W3C N-XML], or more recently the
proposed XML Schemas in [W3C XMLSchema-0], [W3C XMLSchema-1] and
[W3C XMLSchema-2]. There are even some XML-based communication protocols like SOAP
[W3C SOAP] that are based on XML Schemas. Like any other communication-based systems,
components and protocols, XML-based systems, components and protocols are candidates for testing
using TTCN-3 [ITU-T Z.161]. Consequently, there is a need for establishing a mapping between
XML data description techniques like DTD or Schemas to TTCN-3 standard data types.

The core language of TTCN-3 is defined in [ITU-T Z.161] and provides a full text-based syntax,
static semantics and operational semantics as well as a definition for the use of the language with
ASN.1 in [ITU-T Z.167] part 7 of this multi-part deliverable. The XML mapping provides a
definition for the use of the core language with XML Schema structures and types, enabling
integration of XML data with the language as shown in Figure 1.

Figure 1 – User's view of the core language and the various presentation formats

 TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

XSD Types

The shaded boxes are not
defined in this
Recommendation

Tabular
format

4 Rec. ITU-T Z.169 (03/2011)

For compatibility reasons, the TTCN-3 code obtained from the XML Schema using this
Recommendation for an explicit mapping shall be the same as the TTCN-3 code obtained from first
converting the XML Schema using [ITU-T Z.694] into ASN.1 [ITU-T X.680] then converting the
resulting ASN.1 into TTCN-3 code using [ITU-T Z.167]. Moreover, the XML document produced
by the TTCN-3 code with encoding extensions obtained from the XML Schema based on this
Recommendation shall be the same as the XML document produced by the ASN.1 with E-XER
encoding based on [ITU-T X.694] conversion of the same XML Schema.

4.1 Conformance and compatibility

For an implementation claiming to support the use of XSD with TTCN-3, all features specified in
this Recommendation shall be implemented consistently with the requirements given in this
Recommendation and in [ITU-T Z.161].

The language mapping presented in this Recommendation is compatible with [ETSI 201 873-1].

If later versions of those parts are available and should be used instead, the compatibility of the
language mapping presented in this Recommendation has to be checked individually.

5 Mapping XML Schemas

There are two approaches to the integration of XML Schema and TTCN-3, which will be referred to
as implicit and explicit mapping. The implicit mapping makes use of the import mechanism of
TTCN-3, denoted by the keywords language and import. It facilitates the immediate use of data
specified in other languages. Therefore, the definition of a specific data interface for each of these
languages is required. The explicit mapping translates XML Schema definitions directly into
appropriate TTCN-3 language artefacts.

In case of an implicit mapping an internal representation shall be produced from the XML Schema,
which representation shall retain all the structural and encoding information. This internal
representation is not accessible by the user.

For explicit mapping, the information present in the XML Schema shall be mapped into accessible
TTCN-3 code and – the XML structural information which does not have its correspondent in
TTCN-3 code – into accessible encoding instructions. Built-in data types, described in detail in
clause 6, in case of an implicit conversion, are internal to the tool and can be referenced directly by
the user, while in case of an explicit conversion, the user shall have to import the XSD.ttcn module
(see Annex A) in addition to the TTCN-3 modules resulted from the conversion. When importing
from an XSD Schema, the following language identifier strings shall be used:

• "XML" or "XML1.0" for W3C XML 1.0; and

• "XML1.1" for W3C XML 1.1.

All XSD definitions are public by default (see clause 8.2.3 of [ITU-T Z.161]).

The examples of this Recommendation are written in the assumption of explicit mapping, although
the difference is mainly in accessibility and visibility of generated TTCN-3 code and encoding
instruction set.

This Recommendation is structured in two distinct parts:

• Clause 6 "Built-in data types" defines the TTCN-3 mapping for all basic XSD data types like
strings (see clause 6.2), integers (see clause 6.3), floats (see clause 6.4), etc., and facets
(see clause 6.1) that allow for a simple modification of types by restriction of their properties
(e.g., restricting the length of a string or the range of an integer).

• Clause 7 "Mapping XSD components" covers the translation of more complex structures
that are formed using the components shown in Table 1 and a set of XSD attributes
(see clause 7.1) which allow for modification of constraints of the resulting types.

 Rec. ITU-T Z.169 (03/2011) 5

Table 1 – Overview of XSD constructs

Element Defines tags that can appear in a conforming XML document.
attribute Defines attributes for element tags in a conforming XML document.
simpleType Defines the simplest types. They may be a built-in type, a list or choice of

built-in types and they are not allowed to have attributes.
complexType Defines types that are allowed to be composed, e.g. have attributes and an

internal structure.
named model group Defines a named group of elements.
attribute group Defines a group of attributes that can be used as a whole in definitions of

complexTypes.
identity constraint Defines that a component has to exhibit certain properties in regard to

uniqueness and referencing.

5.1 Namespaces and document references

A single XSD Schema shall be translated to one or more TTCN-3 modules, corresponding to schema
components that have the same target namespace, including no target namespace, i.e., one TTCN-3
module shall be generated for each target namespace (including absence of the target namespace) of
the XML Schema. The names of the generated TTCN-3 modules shall be the result of applying the
name transformation rules in clause 5.2.2 to the related target namespace, if it exists, or to the
predefined name "NoTargetNamespace".

NOTE 1 – More than one schema element information items in an XML Schema may have the same target
namespace, including the case of no target namespace.

All XSD import statements (i.e., import element information items and the related xmlns attributes,
where present) shall be mapped to equivalent TTCN-3 import statements, importing all definitions
from the other TTCN-3 module. All XSD components are public by default (see clause 8.2.3 of
[ITU-T Z.161]). Multiple XSD import element information items with the same namespace attribute
(including no target namespace) shall be mapped to a single TTCN-3 import statement.

NOTE 2 – The above statement means that XSD components using imported XSD references shall be handled
as complete, i.e., it is not needed to import the schema containing the referenced XSD components to
TTCN-3, unless the referenced XSD component wanted to be used in TTCN-3 directly.

NOTE 3 – XSD permits a bare <import> information item (in schemas having a target namespace). This
allows unqualified references to foreign components with no target namespace without giving hints where to
find them. The resolution of such cases is left to tool implementations. It is allowed to import single XSD
components into TTCN-3. When the TTCN-3 import statement is importing single definitions or definitions
of the same kind from XSD (see clauses 8.2.3.2 and 8.2.3.4 of [ITU-T Z.161]), or an import all statement
contains an exception list (see clause 8.2.3.5 of [ITU-T Z.161]), this results in the import of a type definition
only, but not in the import of a group, template, testcase etc.

NOTE 4 – Please note that importing all types of a target namespace has the same effect as importing all
definitions of that namespace (i.e., "import from TargetNamespace { type all };" results in the same as
"import from TargetNamespace all;").

It is not allowed to import XSD import statements to TTCN-3 (i.e., there is no transitive import of
XSD import statements like defined for TTCN-3, see clause 8.2.3.7 of [ITU-T Z.161]).

XSD include element information items shall be ignored if the included schema element has the
same target namespace as the including one (implying the absence of the target namespace). If the
included schema element has no target namespace but the including schema has (i.e., it is not
absent), all definitions of the included schema shall be mapped twice, i.e., the resulted TTCN-3
definitions shall be inserted to the TTCN-3 module generated for the schema element(s) with no
target namespace as well as to the module generated for the schema element(s) with the target
namespace of the including schema.

6 Rec. ITU-T Z.169 (03/2011)

The information about the target namespaces and prefixes from the targetNamespace and xmlns
attributes of the corresponding schema elements, if exist, shall be preserved in the encoding
instruction "namespace as…" attached to the TTCN-3 module. If the target namespace is absent, no
"namespace as …" encoding instruction shall be attached to the TTCN-3 module. All declarations in
the module shall inherit the target namespace of the module (including absence of the target
namespace).

NOTE 5 – If different schema elements using the same target namespace associates different prefixes to that
namespace, it is a tool implementation option, which prefix is preserved in the "namespace as…" encoding
instruction.

EXAMPLE 1: Schemas with the same namespace:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ns1="http://www.example.org"
 targetNamespace=" http://www.example.org">
 <!-- makes no difference if this schema is including the next one -->
:
</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="http://www.example.org"
 targetNamespace="http://www.example.org">
 <!-- makes no difference if this schema is including the previous one -->
:
</schema>

//Will result the TTCN-3 module
module www_example_org {
: // the content of the module is coming from both schemas
}
with {
 encode "XML";
 variant "namespace as 'http://www.example.org' prefix 'ns1'"
// the prefix in the encoding instruction could also be 'ns2'
}

EXAMPLE 2: A schema with a target namespace is including a schema without a target namespace:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ns1="http://www.example.org"
 targetNamespace="http://www.example.org">
 <!-- the including schema -->
 <include schemaLocation="included.xsd"/>
:
</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- the included schema -->
:
</schema>

//Will result the TTCN-3 modules (please note, the content of the modules may come
// from more than one schemas.
module www_example_org {
: // contains definitions mapped from both schemas
}
with {
 encode "XML";
 variant "namespace as 'http://www.example.org' prefix 'ns1'"
}

module NoTargetNamespace {
: // contains definitions mapped from the schema without target namespace only
}
with {
 encode "XML"
}

 Rec. ITU-T Z.169 (03/2011) 7

If the TTCN-3 module corresponds to a (present) target namespace and the value of the
attributeFormDefault and/or elementFormDefault attributes of any schema element information
items that contribute to the given TTCN-3 module is qualified, the encoding instructions
"attributeFormQualified" and/or "elementFormQualified" shall be attached accordingly to the
given TTCN-3 module. All fields of TTCN-3 definitions in the given TTCN-3 module
corresponding to local attribute declarations or to attribute and attributeGroup references in schema
element information items with the value of its attributeFormDefault attribute being unqualified
(explicitly or implicitly via defaulting) shall be supplied with the "form as unqualified"
encoding instruction, unless a form attribute of the given declaration requires differently
(see clause 7.1.6). All fields of TTCN-3 definitions in the given TTCN-3 module corresponding to
local element declarations or element and model group references in schema element information
items with the value of its elementFormDefault attribute unqualified (explicitly or implicitly via
defaulting) shall be supplied with the "form as unqualified" encoding instruction, unless a form
attribute of the given declaration requires differently (see clause 7.1.6).

The blockDefault, finalDefault, id, version and xml:lang attributes of schema elements shall be
ignored.

EXAMPLE 3: Mapping of schema attributes:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org"
 attributeFormDefault="qualified"
 elementFormDefault="unqualified">
 <complexType name="CType1">
 <sequence>
 <element name="elem" type="integer"
 </sequence>
 <attribute name="attrib" type="integer"/>
 </complexType></schema>
</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <complexType name="CType2">
 <sequence>
 <element name="elem" type="integer"
 </sequence>
 <attribute name="attrib" type="integer"/>
 </complexType></schema>
</schema>

//Will result in the TTCN-3 modules (please note, that the content of the modules may come
//from more than one schemas.
module www_example_org {
 type record CType1 {
 XSD.Integer attrib optional,
 XSD.Integer elem
 }
 with {
 variant(attrib)"attribute";
 variant(elem)"form as unqualified"
 }

 type record CType2 {
 XSD.Integer attrib optional,
 XSD.Integer elem
 }
 with {
 variant(attrib)"attribute";
 variant(attrib)"form as unqualified"
 }
}

8 Rec. ITU-T Z.169 (03/2011)

with {
 encode "XML";
 variant "namespace as 'http://www.example.org'";
 variant "attributeFormQualified";
 variant "elementFormQualified"
}

The control namespace is the namespace of the type identification attributes (see clause 7.5.3) and to
be used for schema instances (e.g., in the special XML attribute value "xsi:nil", see mapping of
the nillable XSD attribute in clause 7.1.11). It shall be specified globally, with an encoding
instruction attached to the TTCN-3 module.

NOTE 6 – For the special XML attribute value "xsi:nil", see mapping of the nillable XSD attribute in
clause 7.1.11).

EXAMPLE 4: Identifying the control namespace of a module:

module MyModule
{
:
}
with {
 encode "XML";
 variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'"
}

5.2 Name conversion

5.2.1 General

Translation of identifiers (e.g., type or field names) has a critical impact on the usability of
conversion results: primarily, it must guarantee TTCN-3 consistency, but, in order to support
migration of conversion results from code generated with tools based on [ITU-T X.694], it must also
generate identifiers compatible with that Recommendation. It must also support portability of
conversion results (the TTCN-3 code and the encoding instruction set) between TTCN-3 tools of
different manufacturers, which is only possible if identifier conversion is standardized.

For different reasons a valid XSD identifier may not be a valid identifier in TTCN-3. For example, it
is valid to specify both an attribute and an element of the same name in XSD. When mapped in a
naïve fashion, this would result in two different types with the same name in TTCN-3.

A name conversion algorithm has to guarantee that the translated identifier name:

– is unique within the scope it is to be used;

– contains only valid characters;

– is not a TTCN-3 keyword;

– is not a reserved word (e.g., "base" or "content").

This Recommendation specifies the generation of:

a) TTCN-3 type reference names corresponding to the names of model group definitions, top-
level element declarations, top-level attribute declarations, top-level complex type definitions,
and user-defined top-level simple type definitions;

b) TTCN-3 identifiers corresponding to the names of top-level element declarations, top-level
attribute declarations, local element declarations, and local attribute declarations;

c) TTCN-3 identifiers for the mapping of certain simple type definitions with an enumeration
facet (see clause 6.1.5);

d) TTCN-3 identifiers of certain sequence components introduced by the mapping
(see clause 7).

 Rec. ITU-T Z.169 (03/2011) 9

All of these TTCN-3 names shall be generated by applying clause 5.2.2 either to the name of the
corresponding schema component, or to a member of the value of an enumeration facet, or to a
specified character string, as specified in the relevant clauses of this Recommendation.

5.2.2 Name conversion rules

Names of attribute declarations, element declarations, model group definitions, user-defined top-level
simple type definitions, and top-level complex type definitions can be identical to TTCN-3 reserved
words, can contain characters not allowed in TTCN-3 identifiers. In addition, there are cases in
which TTCN-3 names are required to be distinct where the names of the corresponding XSD schema
components (from which the TTCN-3 names are mapped) are allowed to be identical.

First:

a) the character strings to be used as names in a TTCN-3 module, shall be ordered in
accordance to clause 5.2.3 (i.e., primary ordering the character strings according to their
categories as names of elements, followed by names of attributes, followed by names of type
definitions, followed by names of model groups, and subsequently ordering in alphabetical
order);

NOTE − The above ordering of character strings is necessary to produce the same final names for the same
definitions independent of the order in which tools are processing schema elements with the same target
namespace. It does not affect the order in which the generated TTCN-3 definitions are written to the modules
by tools.

Secondly, the following character substitutions shall be applied, in order, to each character string
being mapped to a TTCN-3 name, where each substitution (except the first) shall be applied to the
result of the previous transformation:

b) the characters " " (SPACE), "." (FULL STOP) and "-" (HYPEN-MINUS) shall all be
replaced by a "_" (LOW LINE);

c) any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL
LETTER Z), "a" to "z" (LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0"
to "9" (DIGIT ZERO to DIGIT NINE), and "_" (LOW LINE) shall be removed;

d) a sequence of two or more "_" (LOW LINE) characters shall be replaced with a single "_"
(LOW LINE);

e) "_" (LOW LINE) characters occurring at the beginning or at the end of the name shall be
removed;

f) if a character string that is to be used as a name of a TTCN-3 type starts with a lower-case
letter, the first letter shall be capitalized (converted to upper-case); if it starts with a digit
(DIGIT ZERO to DIGIT NINE), it shall be prefixed with an "X" (LATIN CAPITAL
LETTER X) character;

g) if a character string that is to be used as an identifier of a structured type field or
enumeration value starts with an upper-case letter, the first letter shall be uncapitalized
(converted to lower-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it shall be
prefixed with an "x" (LATIN SMALL LETTER X) character;

h) if a character string that is to be used as a name of a TTCN-3 type definition or as a type
reference name is empty, it shall be replaced by "X" (LATIN CAPITAL LETTER X); and

i) if a character string that is to be used a name of a record or union field or enumeration value
is empty, it shall be replaced by "x" (LATIN SMALL LETTER X).

10 Rec. ITU-T Z.169 (03/2011)

Finally, depending on the kind of name being generated, one of the three following items shall
apply:

j) If the name being generated is the name of a TTCN-3 type and the character string generated
by items a) to i) above is identical to the name of another TTCN-3 type previously generated
in the same TTCN-3 module, or is one of the reserved words specified in clause 11.27 of
[ITU-T X.680], then a postfix shall be appended to the character string generated according
to the above rules. The postfix shall consist of a "_" (LOW LINE) followed by the canonical
lexical representation (see [W3C XMLSchema-2], 2.3.1) of an integer. This integer shall be
the least positive integer such that the new name is different from the type reference name of
any other TTCN-3 type assignment previously generated in any of those TTCN-3 modules.

k) If the name being generated is the identifier of a field of a record or a union type, and the
character string generated by the rules in items a) to i) above is identical to the identifier of a
previously generated field identifier of the same type, then a postfix shall be appended to the
character string generated by the above rules. The postfix shall consist of a "_" (LOW LINE)
followed by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an
integer. This integer shall be the least positive integer such that the new identifier is different
from the identifier of any previously generated component of that sequence, set, or choice
type. Field names that are one of the TTCN-3 keywords (see clause A.1.5 of [ITU-T Z.161])
or names of predefined functions (see clause 16.1.2 of [ITU-T Z.161]) after applying the
postfix to clashing field names, shall be suffixed by a single "_" (LOW LINE) character.

l) If the name being generated is the identifier of an enumeration item (see clause 6.2.4 of
[ITU-T Z.161]) of an enumerated type, and the character string generated by the rules in
items a) to i) above is identical to the identifier of another enumeration item previously
generated in the same enumerated type, then a postfix shall be appended to the character
string generated by the above rules. The postfix shall consist of a "_" (LOW LINE) followed
by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer.
This integer shall be the least positive integer such that the new identifier is different from
the identifier in any other enumeration item already present in that TTCN-3 enumerated
type. Enumeration names that are one of the TTCN-3 keywords (see clause A.1.5
of [ITU-T Z.161]) or names of predefined functions (see clause 16.1.2 of [ITU-T Z.161])
after applying the postfix to clashing enumeration names, shall be suffixed by a single "_"
(LOW LINE) character.

EXAMPLE 1: Conversion of an XML Schema composed of two schema elements with identical
target namespaces:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="www.example.org/1">
 <!— this file is: includeCircular1a.xsd -->
 <include schemaLocation="includeCircular1b.xsd"/>
 <!-- simpleType "Foobar" -->
 <simpleType name="Foobar">
 <restriction base="integer"/>
 </simpleType>
 <!-- attribute "Foo-Bar" -->
 <attribute name="Foo-Bar" type="integer"/>
 <!-- attribute "Foo_Bar" -->
 <attribute name="Foo_Bar" type="integer"/>
 <!-- attribute "Foobar" -->
 <attribute name="Foobar" type="integer"/>
 <!-- element "foobar" -->
 <element name="foobar" type="integer"/>
 <!-- element "Foobar" -->
 <element name="Foobar" type="integer"/>
 <complexType name="Akarmi">
 <sequence/>
 <!-- complexType attribute "foobar" -->
 <attribute name="foobar" type="integer"/>
 <!-- complexType attribute "Foobar" -->
 <attribute name="Foobar" type="integer"/>
 </complexType>

 Rec. ITU-T Z.169 (03/2011) 11

</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="www.example.org/1">
 <!-- this file is: includeCircular1b.xsd -->
 <include schemaLocation="includeCircular1a.xsd"/>
 <!-- simpleType "foobar" -->
 <simpleType name="foobar">
 <restriction base="integer"/>
 </simpleType>
 <!-- attribute "foobar" -->
 <attribute name="foobar" type="integer"/>
</schema>

//Will be translated to:
module www_example_org_1 {
/* this file is: includeCircular1a.xsd */
 /* simpleType "Foobar" */
 type XSD.Integer Foobar_4
 // postfixed with "_4" as types are the third category and capital letters are preceding
 // small letters in ISO 646.
 with {
 variant "name as 'Foobar'"
 }

 /* attribute "Foo-Bar" */
 type XSD.Integer Foo_Bar
 with {
 variant "name as 'Foo-Bar'"; variant "attribute"
 }

 /* attribute "Foo_Bar" */
 type XSD.Integer Foo_Bar_1
 // postfixed with "_1" as after changing dash to underscore in the name of the attribute
 // "Foo-Bar", the names of the two types are clashing with each other.
 with {
 variant "name as 'Foo_Bar'"; variant "attribute"
 }

 /* attribute "Foobar" */
 type XSD.Integer Foobar_2
 // postfixed with "_2" as attributes are the second category and capital letters are
 // preceding small letters in ISO 646.
 with {
 variant "name as 'Foobar'";
 variant "attribute"
 }

 /* element "foobar" */
 type XSD.Integer Foobar_1
 // postfixed with "_1" as elements are the first category and small letters are following
 // capital letters in ISO 646.
 with {
 variant "name as 'foobar'";
 variant "element"
 }

 /* element "Foobar" */
 type XSD.Integer Foobar
 // no postfix as elements are the first category and capital letters are preceding
 // small letters in ISO 646.
 with {
 variant "element"
 }

 type record Akarmi {
 /* complexType attribute "Foobar" */
 XSD.Integer foobar optional,
 /* complexType attribute "foobar" */
 XSD.Integer foobar_1 optional
 }
 with {
 variant (foobar) "name as capitalized";
 variant (foobar_1) "name as 'foobar'";
 variant (foobar,foobar_1) "attribute"
}

12 Rec. ITU-T Z.169 (03/2011)

 /* this file is: includeCircular1b.xsd*/
 /* simpleType "foobar" */
 type XSD.Integer Foobar_5
 // postfixed with "_5" as types are the third category and small letters are following
 // capital letters in ISO 646.
 with {
 variant "name as 'foobar'"
 }

 /* attribute "foobar" */
 type XSD.Integer Foobar_3
 // postfixed with "_3" as attributes are the second category and small letters are
 // following capital letters in ISO 646.
 with {
 variant "name as 'foobar'";
 variant "attribute"
 }
}
with {
 variant "namespace as 'www.example.org/1'"
}

For a TTCN-3 type definition name or field identifier that is generated by applying this clause to the
name of an element declaration, attribute declaration, top-level complex type definition or user-
defined top-level simple type definition, if the type definition name generated is different from the
value of the name attribute of the corresponding schema component, a final "name as…" variant attribute
shall be attached to the TTCN-3 type definition with that type definition name (or to the field with
that identifier) as specified in the items below:

a) If the only difference is the case of the first letter (which is upper case in the type definition
name and lower case in the name), then the variant attribute "name as uncapitalized"
shall be used.

b) If the only difference is the case of the first letter (which is lower case in the identifier and
upper case in the name), then the variant attribute "name as capitalized" shall be applied
to the field concerned or the "name all as capitalized" shall be applied to the related type
definition (in this case the attribute has effect on all identifiers of all fields but not on the
name of the type!).

c) Otherwise, the "name as '<name>'" variant attribute shall be used, where <name> is the

value of the corresponding name attribute.

EXAMPLE 2: Using the "name" variant attribute:

 //The top-level complex type definition:
 <xsd:complexType name="COMPONENTS">
 <xsd:sequence>
 <xsd:element name="Elem" type="xsd:boolean"/>
 <xsd:element name="elem" type="xsd:integer"/>
 <xsd:element name="Elem-1" type="xsd:boolean"/>
 <xsd:element name="elem-1" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 //is mapped to the TTCN-3 type assignment:
 type record COMPONENTS_1
 {
 boolean elem,
 integer elem_1,
 boolean elem_1_1,
 integer elem_1_2
 }
 with {
 variant "name as 'COMPONENTS'";
 variant (elem) "name as capitalized";
 variant (elem_1) "name as 'elem'";
 variant (elem_1_1) "name as 'Elem-1'";
 variant (elem_1_2) "name as 'elem-1'";
 };

 Rec. ITU-T Z.169 (03/2011) 13

For a TTCN-3 identifier that is generated by applying this clause for the mapping of a simple type
definition with an enumeration facet where the identifier of the generated TTCN-3 enumeration value
is different from the corresponding member of the value of the enumeration facet, a "text as…"
variant attribute shall be assigned to the TTCN-3 enumerated type, with qualifying information
specifying the identifier of the enumeration item of the enumerated type. One of the two following
items shall apply:

a) If the only difference is the case of the first letter (which is lower case in the identifier and
upper case in the member of the value of the enumeration facet), then the text "<TTCN-3
enumeration identifier>" as capitalized" variant attribute shall be used.

b) If all TTCN-3 enumeration values differ in the case of the first letter only (which is lower
case in the identifier and upper case in the member of the value of the enumeration facet),
then the "text all as capitalized" variant attribute shall be used.

c) Otherwise, the text "<TTCN-3 enumeration identifier>" as "<member of the value of the
enumeration facet>"" variant attribute shall be used.

EXAMPLE 3: Using the "text as…" variant attribute:

 //The XSD enumeration facet:
 <xsd:simpleType name="state">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Off"/>
 <xsd:enumeration value="off"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type assignment:
 type enumerated State { off, off_1 }
 with {
 variant "name as uncapitalized";
 variant "text 'off' as capitalized";
 variant "text 'off_1' as 'off'";
 }

5.2.3 Order of the mapping

An order shall be imposed on the top-level schema components of the source XSD Schema on which
the mapping is performed. This applies to model group definitions, top-level complex type
definitions, user-defined top-level simple type definitions, top-level attribute declarations, and
top-level element declarations.

NOTE 1 – Other top-level schema components are not mapped to TTCN-3, and XSD built-in data types are
mapped in a special way.

The order is specified in the three following items:

a) Top-level schema components shall first be ordered by their target namespace, with the
absent namespace preceding all namespace names in ascending lexicographical order.

b) Within each target namespace, top-level schema components shall be divided into four sets
ordered as follows:

1) element declarations;

2) attribute declarations;

3) complex type definitions and simple type definitions;

4) model group definitions.

c) Within each set of item b), schema components shall be ordered by name in ascending
lexicographical order.

TTCN-3 type definitions that correspond directly to the XSD schema components shall be generated
in the order of the corresponding XSD schema components.

14 Rec. ITU-T Z.169 (03/2011)

5.3 Unsupported features

XSD and TTCN-3 are very distinct languages. Therefore some features of XSD have no equivalent
in TTCN-3 or make no sense when translated to the TTCN-3 language. Whenever possible, these
features are translated into encoding instructions completing the TTCN-3 code. The following list
contains a collection of the unsupported features:

a) Numeric types are not allowed to be restricted by patterns.

b) List types are not allowed to be restricted by enumerations or patterns.

c) Specifying the number of fractional digits for float types is not supported.

d) Translation of the abstract attribute is not supported.

e) Translation of the block attribute is not supported.

f) Translation of the final attribute is not supported.

g) Translation of the substitutionGroup attribute and element substitution is not supported.

h) Translation of the identity-constraint definition schema components (uniqe, key, keyref,
selector and field elements) are not supported.

i) All time types (see clause 6.5) restrict year to 4 digits.

6 Built-in data types

XSD built-in data types may be primitive or derived types. The latter are gained from primitive types
by means of a restriction mechanism called facets. For the mapping of primitive types, a specific
TTCN-3 module XSD is provided by this Recommendation, which defines the relation of XSD
primitive types to TTCN-3 types. Whenever a new simpleType is defined, with a built-in XSD type
as its base type, it shall be mapped directly from types defined in the module XSD:

EXAMPLE:

 <simpleType name="e1">
 <restriction base="integer"/>
 </simpleType>

 //Becomes
 type XSD.Integer E1
 with {
 variant "name as uncapitalized"
 }

In the following clauses, both the principle mappings of facets and the translation of primitive types
are given. The complete content of the XSD module is given in Annex A.

6.1 Mapping of facets

Table 2 summarizes the facets for the built-in types that are supported in TTCN-3. Some of them
may be supported in XML Schema but have no counterpart in TTCN-3 and therefore no mark in
Table 2.

 Rec. ITU-T Z.169 (03/2011) 15

Table 2 – Mapping support for facets of built-in types

Facet

Type
string

length
min

Length
max

Length
pattern enum.

min
Incl.

max
Incl.

min
Excl.

max
Excl.

total
Digits

white
Space

string


(see
Note 1)


(see

Note 2)


(see

Note 2)


(see

Note 2)



 
(see

Note 3)

integer      

float      (see
Note 4)

time  

list   

boolean

NOTE 1 – With the exception of QName which does not support length restriction.
NOTE 2 – With the exception of hexBinary which does not support patterns.
NOTE 3 – With the exception of some types (see clause 6.1.6).
NOTE 4 – With the exception of decimal which does support totalDigits.

6.1.1 Length

The XSD facet length describes, how many units of length a value of the given simple type must
have. For string and data types derived from string, length is measured in units of characters. For
hexBinary and base64Binary and data types derived from them, length is measured in octets. For
data types derived by list, length is measured in number of list items. A length-restricted XSD type
shall be mapped to a corresponding length restricted TTCN-3 type.

EXAMPLE 1:

<simpleType name="e2">
 <restriction base="string">
 <length value="10"/>
 </restriction>
</simpleType>

Is translated to the following TTCN-3 type

type XSD.String E2 length(10)
with {
 variant "name as uncapitalized"
}

For built-in list types (see clause 6.6), the number of elements of the resulting structure will be
restricted.

EXAMPLE 2:

<simpleType name="e3">
 <restriction base="NMTOKENS">
 <length value="10"/>
 </restriction>
</simpleType>

//Mapped to TTCN-3:
type XSD.NMTOKENS E3 length(10)
with {
 variant "name as uncapitalized"
}

16 Rec. ITU-T Z.169 (03/2011)

6.1.2 MinLength

The XSD facet minLength describes the minimal length that a value of the given simple type shall
have. It shall be mapped to a length restriction in TTCN-3 with a set lower bound and an open upper
bound. The fixed XSD attribute (see clause 7.1.5) shall be ignored.

EXAMPLE:

<simpleType name="e4">
 <restriction base="string">
 <minLength value="3"/>
 </restriction>
</simpleType>

//Is translated to:
type XSD.String E4 length(3 .. infinity)
with {
 variant "name as uncapitalized";
}

6.1.3 MaxLength

The XSD facet maxLength describes the maximal length that a value of the given simple type shall
have. It shall be mapped to a length restriction in TTCN-3 with a set upper bound and a lower bound
zero. The fixed XSD attribute (see clause 7.1.5) shall be ignored.

EXAMPLE:

<simpleType name="e5">
 <restriction base="string">
 <maxLength value="5"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.String E5 length(0 .. 5)
with {
 variant "name as uncapitalized"
}

6.1.4 Pattern

The XSD pattern facet allows constraining the value space of XSD data types by restricting the
value notation by a regular expression. This facet is supported for XSD types derived directly or
indirectly from the XSD string type. For these types pattern facets shall directly be mapped to
TTCN-3 pattern subtyping. As the syntax of XSD regular patterns differs from the syntax of the
TTCN-3 pattern subtyping, a mapping of the pattern expression has to be applied. The symbols
"(" (LEFT PARENTHESIS), ")" (RIGHT PARENTHESIS), "|" (VERTICAL LINE), "[" (LEFT
SQUARE BRACKET), "]" (RIGHT SQUARE BRACKET) and "^" (CIRCUMFLEX ACCENT)
shall not be changed and shall be translated directly. Other meta characters shall be mapped
according to tables 3 and 4.

Table 3 – Translation of meta characters

XSD TTCN-3

. ?

\s [\q{0,0,0,20}\q{0,0,0,10}\t\r (see Note)

\S [^\q{0,0,0,20}\q{0,0,0,10}\t\r] (see Note)

\d \d

\D [^\d]

\w \w

 Rec. ITU-T Z.169 (03/2011) 17

Table 3 – Translation of meta characters

XSD TTCN-3

\W [^\w]

\i [\w\d:]

\I [^\w\d:]

\c [\w\d.\-_:]

\C [^\w\d.\-_:]

NOTE –\q{0,0,0,20} denotes the " " (SPACE) graphical character
and \q{0,0,0,10} denotes the line feed (LF) control character.

Table 4 – Translation of quantifiers

XSD TTCN-3

? #(0,1)

+ #(1,)

* #(0,)

{n,m} #(n,m)

{n} #(n)

{n,} #(n,)

Unicode characters in XSD patterns are directly translated but the syntax changes from &#xgprc; in
XSD to \q{g, p, r, c} in TTCN-3, where g, p, r, and c each represent a single character.

Escaped characters in XSD shall be mapped to the appropriate character in TTCN-3 (e.g., ".", and
"+") or, if this character has a meta-character meaning in TTCN-3 patterns, to an escaped character
in TTCN-3. The double quote character must be mapped to a pair of double quote characters in
TTCN-3. Character categories and blocks (like \p{Lu} or \p{IsBasicLatin}) are not supported.
The mapping shall result in a valid TTCN-3 pattern according to clause B.1.5 of [ITU-T Z.161].

EXAMPLE:

<simpleType name="e6">
 <restriction base="string">
 <pattern value="(aUser|anotherUser)@(i|I)nstitute"/>
 </restriction>
</simpleType>

//Will be mapped to the following TTCN-3 expresion:

type XSD.String E6 (pattern "(aUser|anotherUser)@(i|I)nstitute")
with {
 variant "name as uncapitalized"
}

6.1.5 Enumeration

The facet enumeration constraints the value space of XSD simple types to a specified set of values.

A simple type definition that is derived from an XSD string type (directly or indirectly) by restriction
using the enumeration facet, shall be mapped to a TTCN-3 enumerated type (see clause 6.2.4 of
[ITU-T Z.161]), where each XSD enumeration information item is mapped to a TTCN-3
enumeration value of a TTCN-3 enumerated type (see clause 6.2.4 of [ITU-T Z.161]) as follows:

18 Rec. ITU-T Z.169 (03/2011)

a) For each member of the XSD enumeration facet, a TTCN-3 enumeration item shall be added
to the enumerated type that is an identifier (i.e., without associated integer value), except for
members not satisfying a relevant length, minLength, maxLength, pattern facet or a
whiteSpace facet with a value of replace or collapse and the member name containing any of
the characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE RETURN, or
(in the case of collapse) contain leading, trailing, or multiple consecutive SPACE characters.

b) Each enumeration identifier shall be generated by applying the rules defined in clause 5.2.2
of this Recommendation to the corresponding value of the enumeration facet.

c) The members of the same enumeration facet (children of the sameXSD restriction element)
shall be mapped in ascending lexicographical order and any duplicate members shall be
discarded.

A simple type definition that is derived from the XSD integer type (directly or indirectly) by
restriction using the enumeration facet, shall be mapped to a TTCN-3 enumerated type (see
clause 6.2.4 of [ITU-T Z.161]), where each XSD enumeration information item is mapped a
TTCN-3 enumeration value, as specified below. In this case the enumeration names are artificial and
the encoded XML component shall contain the integer values, not the TTCN-3 enumeration names.
The encoder shall be instructed to do so with the encoding instruction "useNumber".

a) For each member of the XSD enumeration facet, a TTCN-3 enumeration item shall be added
to the enumerated type that is an enumeration identifier plus the associated integer value
shall be added to the enumeration type, except for facet values not satisfying a relevant
length, minLength, maxLength, pattern facet or a whiteSpace facet with a value of replace or
collapse and the member name contain any of the characters HORIZONTAL
TABULATION, NEWLINE or CARRIAGE RETURN, or (in the case of collapse)
containing leading, trailing, or multiple consecutive SPACE characters.

b) The identifier of each enumeration item shall be generated by concatenating the character
string "int" with the canonical lexical representation (see W3C XML Schema Part 2,
clause 2.3.1) of the corresponding member of the value of the enumeration facet. The
assigned integer value shall be the TTCN-3 integer value notation for the member.

c) The members of the same enumeration facet (children of the sameXSD restriction element)
shall be mapped in ascending numerical order and any duplicate members shall be
discarded.

Any other enumeration facet shall be mapped to value list subtyping, if this is allowed by
[ITU-T Z.161], that is either a single value or a union of single values corresponding to the members
of the enumeration facet. If a corresponding value list subtyping is not allowed by [ITU-T Z.161], the
enumeration facet shall be ignored.

NOTE – The enumeration facet applies to the value space of the base type definition. Therefore, for an
enumeration of the XSD built-in datatypes QName, the value of the uri component of the use_qname record
(see clause 6.6.4) is determined, in the XML representation of an XSD Schema, by the namespace
declarations whose scope includes the QName, and by the prefix (if any) of the QName.

EXAMPLE 1: The following represents a user-defined top-level simple type definition that is a
restriction of xsd:string with an enumeration facet:

 <xsd:simpleType name="state">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="off"/>
 <xsd:enumeration value="on"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type enumerated State {off, on }
 with {
 variant "name as uncapitalized"
 }

 Rec. ITU-T Z.169 (03/2011) 19

EXAMPLE 2: The following represents a user-defined top-level simple type definition that is a
restriction of xsd:integer with an enumeration facet:

 <xsd:simpleType name="integer-0-5-10">
 <xsd:restriction base="xsd:integer">
 <xsd:enumeration value="0"/>
 <xsd:enumeration value="5"/>
 <xsd:enumeration value="-5"/>
 <xsd:enumeration value="10"/>
 </xsd:restriction>
 </xsd:simpleType

 //Is mapped to the TTCN-3 type definition:
 type enumerated Integer_0_5_10 {int_5(-5), int0(0), int5(5), int10(10)}
 with {
 variant "name as uncapitalized";
 variant "useNumber"
 }

EXAMPLE 3: The following represents a user-defined top-level simple type definition that is a
restriction of xsd:integer with a minInclusive and a maxInclusive facet:

 <xsd:simpleType name="integer-1-10">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="10"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type integer Integer_1_10 (1..10)
 with {
 variant "name as uncapitalized"
 }

EXAMPLE 4: The following represents a user-defined top-level simple type definition that is a
restriction (with a minExclusive facet) of another simple type definition, derived by restriction from
xsd:integer with the addition of a minInclusive and a maxInclusive facet:

 <xsd:simpleType name="multiple-of-4">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:minExclusive value="5"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type integer Multiple_of_4 (1..4,6..10)
 with {
 variant "name as uncapitalized"
 }

EXAMPLE 5: The following represents a user-defined top-level simple type definition that is a
restriction (with a minLength and a maxLength facet) of another simple type definition, derived by
restriction from xsd:string with the addition of an enumeration facet:

 <xsd:simpleType name="colour">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="white"/>
 <xsd:enumeration value="black"/>
 <xsd:enumeration value="red"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:minLength value="2"/>
 <xsd:maxLength value="4"/>
 xsd:restriction>

20 Rec. ITU-T Z.169 (03/2011)

 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type enumerated Color { red }
 with {
 variant "name as uncapitalized"
 }

6.1.6 WhiteSpace

The whiteSpace facet has no corresponding feature in TTCN-3 but shall be preserved using the
whitespace encoding instruction.

EXAMPLE:

<simpleType name="e8">
 <restriction base="string">
 <whiteSpace value="replace"/>
 </restriction>
</simpleType>

This can be mapped into a charstring, sending information about the whiteSpace facet to the codec.
type XSD.String E8
with {
 variant "whiteSpace replace";
 variant "name as uncapitalized"
}

For most built-in types the value of the whiteSpace facet shall be set to "collapse" and only for the
string types normalizedString (see clause 6.2.2), token (see clause 6.2.2), language (see
clause 6.2.13), Name (see clause 6.2.4) and NCName (see clause 6.2.6) are allowed to specify this
facet.

6.1.7 MinInclusive

The minInclusive XSD facet is only applicable to the numerical types (integer, decimal, float, double
and their derivatives) and date-time types (duration, dateTime, time, gYearMonth, gYear,
gMonthDay, gDay and gMonth). It specifies the lowest bound of the type's value space, including
the bound. This facet is mapped to TTCN-3 depending on the base type of the facet's parent
restriction element and the value of the facet:

a) if the minInclusive facet is applied to a float or double type (including their derivatives) and
its value is one of the special values INF (positive infinity) or NaN (not-a-number), it shall
be translated to a list subtyping with the single TTCN-3 value infinity or not_a_number,
respectively (independent of the value of a maxInclusive or maxEclusive facet applied to the
same type, if any);

b) otherwise, if the minInclusive facet is applied to a numeric type, it shall be translated to an
inclusive lower bound of a range restriction in TTCN-3. The upper bound of the base type
range shall be:

– defined by a maxInclusive (see clause 6.1.8) or a maxEclusive (see clause 6.1.10) facet,
which is a child of the same restriction element, if any;

 or inherited from the base type; in case the base type is one of the XSD built-in types
integer, decimal, float, double, nonNegativeInteger or positiveInteger, it shall be set to
infinity if not set) (in case of other built-in numerical types the upper bounds of their
value spaces are defined in [W3C XMLSchema-2]).

 Rec. ITU-T Z.169 (03/2011) 21

c) for the date-time types the facet shall be ignored.

NOTE – Note, that the upper bound of the value space of the XSD float type is
3.4028234663852885981170418348452E38 ((2^24-1)*2^104) and of the XSD double type is
1.8268770466636284449305100043786E47 ((2^53-1)*2^970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the generated
TTCN-3 code, the upper bound is set to infinity, if no maxInclusive or maxEclusive facet is applied.
However, users should respect the values above, otherwise the result of producing encoded XML values in
undeterministic.

EXAMPLE 1: Mapping of an integer element with a minInclusive facet:

<simpleType name="e9a">
 <restriction base="integer">
 <minInclusive value="-5"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Integer E9a (-5 .. infinity)
with {
 variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of a float element with a numeric minInclusive value:

<simpleType name="e9b">
 <restriction base="float">
 <minInclusive value="-5"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Float E9b (-5.0 .. infinity)
with {
 variant "name as uncapitalized";
}

EXAMPLE 3: Mapping of a float element with special minInclusive values:

<simpleType name="e9c">
 <restriction base="float">
 <minInclusive value="-INF"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Float E9c (-infinity .. infinity)
with {
 variant "name as uncapitalized";
}

<simpleType name="e9d">
 <restriction base="float">
 <minInclusive value="INF"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Float E9d (infinity)
with {
 variant "name as uncapitalized";
}

<simpleType name="e9e">
 <restriction base="float">
 <minInclusive value="NaN"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Float E9e (not_a_number)
with {
 variant "name as uncapitalized";
}

22 Rec. ITU-T Z.169 (03/2011)

6.1.8 MaxInclusive

The maxInclusive facet is only applicable to the numerical types (integer, decimal, float, double and
their derivatives) and date-time types (duration, dateTime, time, gYearMonth, gYear, gMonthDay,
gDay and gMonth). It specifies the upmost bound of the type's value space, including the bound.
This facet is mapped to TTCN-3 depending on the base type defined in the facet's parent restriction
element and the value of the facet:

a) if the maxInclusive facet is applied to a float or double type (including their derivatives) and
its value is one of the special values -INF (negative infinity) or NaN (not-a-number), it shall
be translated to a list subtyping with the single TTCN-3 value –infinity or not_a_number,
respectively (independent of the value of a minInclusive or minEclusive facet applied to the
same restriction element, if any);

b) otherwise, if the maxInclusive facet is applied to a numeric type, it shall be translated to an
inclusive upper bound of a range restriction in TTCN-3 The lower bound of the range shall
be:

– defined by a minInclusive (see clause 6.1.7) or a minEclusive (see clause 6.1.9) facet,
which is a child of the same restriction element, if any;

– or inherited from the base type; in case the base type is one of the XSD built-in types
integer, decimal, float, double, nonPositiveInteger or negativeInteger, it shall be set to
(-infinity if not set) (in case of other built-in numerical types the lower bounds of
their value spaces are given in [W3C XMLSchema-2]).

c) for the date-time types the facet shall be ignored.

NOTE – Note, that the lower bound of the value space of the XSD float type is
–3.4028234663852885981170418348452E38 ((2^24-1)*2^104) and of the XSD double type is
–1.8268770466636284449305100043786E47 ((2^53-1)*2^970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the generated
TTCN-3 code, the lower bound is set to –infinity, if no minInclusive or minEclusive facet is applied.
However, users should respect the values above, otherwise the result of producing encoded XML values in
undeterministic.

EXAMPLE 1: Mapping of elements of type integer with maxInclusive facet:

<simpleType name="e10a">
 <restriction base="positiveInteger">
 <maxInclusive value="100"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.PositiveInteger E10a (1 .. 100)
with {
 variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of a float type with a numeric maxInclusive facet:

<simpleType name="e10b">
 <restriction base="float">
 <maxInclusive value="-5"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Float E10b (-infinity .. -5.0)
//pls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!
with {
 variant "name as uncapitalized";
}

 Rec. ITU-T Z.169 (03/2011) 23

EXAMPLE 3: Mapping of a float type with specific-value maxInclusive facets:

<simpleType name="e10c">
 <restriction base="float">
 <maxInclusive value="INF"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Float E10c (-infinity .. infinity)
with {
 variant "name as uncapitalized";
}

<simpleType name="e10d">
 <restriction base="float">
 <maxInclusive value="NaN"/>
 </restriction>
</simpleType>

//Is mapped to:
type XSD.Float E10d (not_a_number)
with {
 variant "name as uncapitalized";
}

6.1.9 MinExclusive

The XSD facet minExclusive is similar to minInclusive but the specified bound is not part of the
range. It is also applicable to the XSD numerical and date-time types (see clause 6.1.7). This facet is
mapped to TTCN-3 depending on the base type defined in the facet's parent restriction element and
the value of the facet:

a) if the minExclusive facet is applied to a float or double type and its value is one of the
special values INF (positive infinity) or NaN (not-a-number), this type shall not be translated
to TTCN-3;

NOTE 1 – If the value of the minExclusive facet is INF or NaN, this result an empty type in XSD, but empty
types do not exist in TTCN-3.

b) otherwise, if the minExclusive facet is applied to an integer, float, double or decimal type, it
shall be translated to an exclusive lower bound of a range restriction in TTCN-3; the value
of the bound shall be the value of the minExclusive facet;

c) in case b) the upper bound of the range shall be:

– defined by a maxInclusive (see clause 6.1.8) or a maxEclusive (see clause 6.1.10) facet,
which is a child of the same restriction element, if any;

– or inherited from the base type; in case the base type is one of the XSD built-in types
integer, decimal, float, double, nonNegativeInteger or positiveInteger, it shall be set to
infinity (in case of other built-in numerical types the upper bounds of their value
spaces are defined in [W3C XMLSchema-2]).

d) for the date-time types the facet shall be ignored.

NOTE 2 – Note, that the upper bound of the value space of the XSD float type
is 3.4028234663852885981170418348452E38 ((2^24-1)*2^104) and of the XSD double type
is 1.8268770466636284449305100043786E47 ((2^53-1)*2^970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the generated
TTCN-3 code, the upper bound is set to infinity, if no maxInclusive or maxEclusive facet is applied.
However, users should respect the values above, otherwise the result of producing encoded XML values in
undeterministic.

EXAMPLE 1: Mapping of the minExclusive facet applied to an integer type:

<simpleType name="e11a">
 <restriction base="integer">
 <minExclusive value="-5"/>
 </restriction>

24 Rec. ITU-T Z.169 (03/2011)

</simpleType>

//Is mapped to TTCN-3 as:
type XSD.Integer E11a (!-5 .. infinity)
with {
 variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of a float type with minExclusive facet:

<simpleType name="e11b">
 <restriction base="float">
 <minExclusive value="-5"/>
 </restriction>
</simpleType>

//Is mapped to TTCN-3 as:
type XSD.Float E11b (!-5.0 .. infinity)
//pls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!
with {
 variant "name as uncapitalized"
}

<simpleType name="e11c">
 <restriction base="ns:e10b">
 <minExclusive value="-6"/>
 </restriction>
</simpleType>

//Is mapped to TTCN-3 as:
type XSD.Float E11c (!-6.0 .. -5.0)
with {
 variant "name as uncapitalized"
}

<simpleType name="e11d">
 <restriction base="float">
 <minExclusive value="INF"/>
 </restriction>
</simpleType>

// No corresponding TTCN-3 type is produced

6.1.10 MaxExclusive

The XSD facet maxExclusive is similar to maxInclusive but the specified bound is not part of the
range. It is also applicable to the XSD numerical and date-time types (see clause 6.1.8). This facet is
mapped to TTCN-3 depending on the base type defined in the facet's parent restriction element and
the value of the facet:

a) if the maxExclusive facet is applied to a float or double type and its value is one of the
special values -INF (negative infinity) or NaN (not-a-number), this type shall not be
translated to TTCN-3.

NOTE 1 – If the value of the maxExclusive facet is –INF or NaN, this result an empty type in XSD, but empty
types do not exist in TTCN-3.

b) otherwise, if the maxExclusive facet is applied to an integer, float, double or decimal type, it
shall be translated to an exclusive upper bound of a range restriction in TTCN-3; the value
of the bound shall be the value of the maxExclusive facet.

c) In case e) the lower bound of the range shall be:

– defined by a minInclusive (see clause 6.1.7) or a minEclusive (see clause 6.1.9) facet,
which is a child of the same restriction element, if any;

– or inherited from the base type; in case the base type is one of the XSD built-in types
integer, decimal, float, double, nonPositiveInteger or negativeInteger, it shall be set to
–infinity (in case of other built-in numerical types the lower bounds of their value
spaces are given in [W3C XMLSchema-2]).

d) for the date-time types the facet shall be ignored.

 Rec. ITU-T Z.169 (03/2011) 25

NOTE 2 – Note, that the lower bound of the value space of the XSD float type
is -3.4028234663852885981170418348452E38 ((2^24-1)*2^104) and of the XSD double type
is -1.8268770466636284449305100043786E47 ((2^53-1)*2^970). However, TTCN-3 does not place the
requirement to support these values by TTCN-3 tools. Therefore, to maintain the portability of the generated
TTCN-3 code, the lower bound is set to -infinity, if no minInclusive or minEclusive facet is applied.
However, users should respect the values above, otherwise the result of producing encoded XML values in
undeterministic.

EXAMPLE 1: Mapping of a maxExclusive facet applied to a type, which is derivative of integer:

<simpleType name="e12a">
 <restriction base="positiveInteger">
 <maxExclusive value="100"/>
 </restriction>
</simpleType>

// Is mapped in TTCN-3 to:
type XSD.PositiveInteger E12a (1 .. !100)
with {
 variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of a maxExclusive facet applied to the float type:

<simpleType name="e12b">
 <restriction base="float">
 <maxExclusive value="-5"/>
 </restriction>
</simpleType>

// Is mapped in TTCN-3 to:
type XSD.Float E12b (-infinity .. ! -5.0)
//pls. note that XSD allows an integer-like value notation for float types but TTCN-3 does not!
with {
 variant "name as uncapitalized"
}

<simpleType name="e12c">
 <restriction base="ns:e9b">
 <maxExclusive value="-4"/>
 </restriction>
</simpleType>

// Is mapped in TTCN-3 to:
type XSD.Float E12c (-5.0 .. ! -4.0)
with {
 variant "name as uncapitalized"
}

<simpleType name="e12d">
 <restriction base="float">
 <maxExclusive value="-INF"/>
 </restriction>
</simpleType>

// No corresponding TTCN-3 type is produced.

6.1.11 Total digits

This facet defines the total number of digits a numeric value is allowed to have. It shall be mapped to
TTCN-3 using ranges by converting the value of totalDigits to the proper boundaries of the numeric
type in question.

EXAMPLE:
<simpleType name="e13">
 <restriction base="negativeInteger">
 <totalDigits value="3"/>
 </restriction>
</simpleType>

26 Rec. ITU-T Z.169 (03/2011)

// Is translated to:
type XSD.NegativeInteger E13 (-999 .. -1)
with {
 variant "name as uncapitalized"
}

6.2 String types

XSD string types shall generally be converted to TTCN-3 as subtypes of universal charstring or
octetstring. For an overview of the allowed facets please refer to Table 2. Following clauses specify
the mapping of all string types of XSD.

To support mapping, the following type definitions are added to the built-in data types (utf8string is
declared as a UTF-8 encoded subtype of universal charstring in clause D.2.2.0 of [ITU-T Z.161]):

type utf8string XMLCompatibleString
 (
 char(0,0,0,9).. char(0,0,0,9),
 char(0,0,0,10)..char(0,0,0,10),
 char(0,0,0,12)..char(0,0,0,12),
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

type utf8string XMLStringWithNoWhitespace
 (
 char(0,0,0,33)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

type utf8string XMLStringWithNoCRLFHT
 (
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

6.2.1 String

The string type shall be translated to TTCN-3 as an XML compatible restriction of the universal
charstring:

type XSD.XMLCompatibleString String
with {
 variant "XSD:string"
}

6.2.2 Normalized string

The normalizedString type shall be translated to TTCN-3 using the following XML compatible
restricted subtype of the universal charstring:

type XSD.XMLStringWithNoCRLFHT NormalizedString
with {
 variant "XSD:normalizedString"
}

6.2.3 Token

The token type shall be translated to TTCN-3 using the built-in data type NormalizedString:

type XSD.NormalizedString Token
with {
 variant "XSD:token"
}

 Rec. ITU-T Z.169 (03/2011) 27

6.2.4 Name

The Name type shall be translated to TTCN-3 using the following XML compatible restricted
subtype of the universal charstring:

type XSD.XMLStringWithNoWhitespace Name
with {
 variant "XSD:Name"
}

6.2.5 NMTOKEN

The NMTOKEN type shall be translated to TTCN-3 using the following XML compatible restricted
subtype of the universal charstring:

type XSD.XMLStringWithNoWhitespace NMTOKEN
with {
 variant "XSD:NMTOKEN"
}

6.2.6 NCName

The NCName type shall be translated to TTCN-3 using the built-in data type Name:
type XSD.Name NCName
with {
 variant "XSD:NCName"
}

6.2.7 ID

The ID type shall be translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName ID
with {
 variant "XSD:ID"
}

6.2.8 IDREF

The IDREF type shall be translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName IDREF
with {
 variant "XSD:IDREF"
}

6.2.9 ENTITY

The ENTITY type shall be translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName ENTITY
with {
 variant "XSD:ENTITY"
};

6.2.10 Hexadecimal binary

The hexBinary type shall be translated to TTCN-3 using a plain octetstring:

type octetstring HexBinary
with {
 variant "XSD:hexBinary"
}

No pattern shall be specified for hexBinary types.

28 Rec. ITU-T Z.169 (03/2011)

6.2.11 Base 64 binary

The XSD base64Binary type shall be translated to an octetstring in TTCN-3. When encoding
elements of this type, the XML codec will invoke automatically an appropriate base64 encoder;
when decoding XML instance content, the base64 decoder will be called.

The base64Binary type shall be mapped to the TTCN-3 type:

type octetstring Base64Binary
with {
 variant "XSD:base64Binary"
}

EXAMPLE:

<simpleType name="E14">
<restriction base="base64Binary"/>
</simpleType>

//Is translated as:

type XSD.Base64Binary E14;

// and the template:

template E14 MyBase64BinaryTemplate := '546974616E52756C6573'O

// Is encoded as:

<E14>VGl0YW5SdWxlcw==\r\n</E14>

6.2.12 Any URI

The anyURI type shall be translated to TTCN-3 as an XML compatible restricted subtype of the
universal charstring:

type XSD.XMLStringWithNoCRLFHT AnyURI
with {
 variant "XSD:anyURI"
}

6.2.13 Language

The language type shall be translated to the TTCN-3 type:
type charstring Language (pattern "[a-zA-Z]#(1,8)(-\w#(1,8))#(0,)")
with {
 variant "XSD:language"
}

6.2.14 NOTATION

The XSD NOTATION type shall not be translated to TTCN-3.

6.3 Integer types

XSD integer types shall generally be converted to TTCN-3 as subtypes of integer-based types. For
an overview of the allowed facets please refer to Table 2. The following clauses specify the mapping
of all integer types of XSD.

6.3.1 Integer

The integer type is not range-restricted in XSD and shall be translated to TTCN-3 as a plain integer:

type integer Integer
with {
 variant "XSD:integer"
}

 Rec. ITU-T Z.169 (03/2011) 29

6.3.2 Positive integer

The positiveInteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer PositiveInteger (1 .. infinity)
 with { variant "XSD:positiveInteger"};

6.3.3 Non-positive integer

The nonPositiveInteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer NonPositiveInteger (-infinity .. 0)
with {
 variant "XSD:nonPositiveInteger"
}

6.3.4 Negative integer

The negativeInteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer NegativeInteger (-infinity .. -1) with {
 variant "XSD:negativeInteger"
};

6.3.5 Non-negative integer

The nonNegativeInteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer NonNegativeInteger (0 .. infinity)
with {
 variant "XSD:nonNegativeInteger"
}

6.3.6 Long

The long type is 64-bit based in XSD and shall be translated to TTCN-3 as a plain longlong as
defined in clause D.2.1.3 of [ITU-T Z.161]:

type longlong Long
with {
 variant "XSD:long"
}

6.3.7 Unsigned long

The unsignedLong type is 64-bit based in XSD and shall be translated to TTCN-3 as a plain
unsignedlonglong as defined in clause D.2.1.3 of [ITU-T Z.161]:

type unsignedlonglong UnsignedLong
with {
 variant "XSD:unsignedLong"
}

6.3.8 Int

The int type is 32-bit based in XSD and shall be translated to TTCN-3 as a plain long as defined in
clause D.2.1.2 of [ITU-T Z.161]:

type long Int
with {
 variant "XSD:int"
}

6.3.9 Unsigned int

The unsignedInt type is 32-bit based in XSD and shall be translated to TTCN-3 as a plain
unsignedlong as defined in clause D.2.1.2 of [ITU-T Z.161]:

type unsignedlong UnsignedInt
with {
 variant "XSD:unsignedInt"
}

30 Rec. ITU-T Z.169 (03/2011)

6.3.10 Short

The short type is 16-bit based in XSD and shall be translated to TTCN-3 as a plain short as defined
in clause D.2.1.1 of [ITU-T Z.161]:

type short Short
with {
 variant "XSD:short"
}

6.3.11 Unsigned Short

The unsignedShort type is 16-bit based in XSD and shall be translated to TTCN-3 as a plain
unsignedshort as defined in clause D.2.1.1 of [ITU-T Z.161]:

type unsignedshort UnsignedShort
with {
 variant "XSD:unsignedShort"
}

6.3.12 Byte

The byte type is 8-bit based in XSD and shall be translated to TTCN-3 as a plain byte as defined in
clause D.2.1.0 of [ITU-T Z.161]:

type byte Byte
with {
 variant "XSD:byte"
}

6.3.13 Unsigned byte

The unsignedByte type is 8-bit based in XSD and shall be translated to TTCN-3 as a plain
unsignedbyte as defined in clause D.2.1.0 of [ITU-T Z.161]:

type unsignedbyte UnsignedByte
with {
 variant "XSD:unsignedByte"
}

6.4 Float types

XSD float types are generally converted to TTCN-3 as subtypes of float. For an overview of the
allowed facets refer to Table 2 in clause 6.1. Following clauses specify the mapping of all float types
of XSD.

6.4.1 Decimal

The decimal type shall be translated to TTCN-3 as a plain float:

type float Decimal
with {
 variant "XSD:decimal"
}

6.4.2 Float

The float type shall be translated to TTCN-3 as an IEEE754float as defined in clause D.2.1.4 of
[ITU-T Z.161]:

type IEEE754float Float
 with { variant "XSD:float"};

 Rec. ITU-T Z.169 (03/2011) 31

6.4.3 Double

The double type shall be translated to TTCN-3 as an IEEE754double as defined in clause D.2.1.4 of
[ITU-T Z.161]:

type IEEE754double Double
with {
 variant "XSD:double"
}

6.5 Time types

XSD time types shall generally be converted to TTCN-3 as pattern restricted subtypes of charstring.
For an overview of the allowed facets refer to Table 2. Details on the mapping of all time types of
XSD are given in the following.

For the definition of XSD time types, the supplementary definitions below are used. These
definitions are part of the module XSD (see Annex A). As a consequence, in case of both implicit
and explicit mappings, it shall be possible to use their identifiers in other (user defined) modules but
also, it shall be possible to reference these definitions by using their qualified names
(e.g., XSD.year).

const charstring
 dash := "-",
 cln := ":",
 year := "(0(0(0[1-9]|[1-9][0-9])|[1-9][0-9][0-9])|[1-9][0-9][0-9][0-9])",
 yearExpansion := "(-([1-9][0-9]#(0,))#(,1))#(,1)",
 month := "(0[1-9]|1[0-2])",
 dayOfMonth := "(0[1-9]|[12][0-9]|3[01])",
 hour := "([01][0-9]|2[0-3])",
 minute := "([0-5][0-9])",
 second := "([0-5][0-9])",
 sFraction := "(.[0-9]#(1,))#(,1)",
 endOfDayExt := "24:00:00(.0#(1,))#(,1)",
 nums := "[0-9]#(1,)",
 ZorTimeZoneExt := "(Z|[\+\-]((0[0-9]|1[0-3]):[0-5][0-9]|14:00))#(,1)",
 durTime := "(T[0-9]#(1,)"&
 "(H([0-9]#(1,)(M([0-9]#(1,)(S|.[0-9]#(1,)S))#(,1)|.[0-9]#(1,)S|S))#(,1)|" &
 "M([0-9]#(1,)(S|.[0-9]#(1,)S)|.[0-9]#(1,)M)#(,1)|"&
 "S|"&
 ".[0-9]#(1,)S))"

NOTE 1 – The patterns below implement the syntactical restrictions of [ISO 8601] and XSD (e.g., year 0000,
month 00 or 13, day 00 or 32 are disallowed) but the semantical restrictions of XSD (e.g., 2001-02-29 is a
non-existing date as 2001 is not a leap year) are not imposed.

NOTE 2 – The patterns in the subsequent clauses, i.e., the text between the double quotes, need to be one
continuous string without whitespace when being used in a TTCN-3 code. The lines below are cut for pure
editorial reasons, to fit the text to the standard page size of this Recommendation.

6.5.1 Duration

The duration type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Duration (pattern
.."{dash}#(,1)P({nums}(Y({nums}(M({nums}D{durTime}#(,1)|{durTime}#(,1))|D{durTime}#(,1))|" &
 "{durTime}#(,1))|M({nums}D{durTime}#(,1)|{durTime}#(,1))|D{durTime}#(,1))|{durTime})"
)
with {
 variant "XSD:duration"
}

6.5.2 Date and time

The dateTime type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring DateTime (pattern
.."{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}T({hour}{cln}{minute}{cln}{second}" &
 "{sFraction}|{endOfDayExt}){ZorTimeZoneExt}"
)

32 Rec. ITU-T Z.169 (03/2011)

with {
 variant "XSD:dateTime"
}

6.5.3 Time

The time type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Time (pattern
.."({hour}{cln}{minute}{cln}{second}{sFraction}|{endOfDayExt}){ZorTimeZoneExt}"
)
with {
 variant "XSD:time"
}

6.5.4 Date

The date type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Date (pattern
.."{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"
)
with {
 variant "XSD:date"
}

6.5.5 Gregorian year and month

The gYearMonth type shall be translated to TTCN-3 using the following pattern-restricted
charstring:

type charstring GYearMonth (pattern
.."{yearExpansion}{year}{dash}{month}{ZorTimeZoneExt}"
)
with {
 variant "XSD:gYearMonth"
}

6.5.6 Gregorian year

The gYear type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GYear (pattern
 "{yearExpansion}{year}{ZorTimeZoneExt}"
)
with {
 variant "XSD:gYear"
}

6.5.7 Gregorian month and day

The gMonthDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:
type charstring GMonthDay (pattern
 "{dash}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"
)
with {
 variant "XSD:gMonthDay"
}

6.5.8 Gregorian day

The gDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GDay (pattern
 "{dash}{dash}{dash}{dayOfMonth}{ZorTimeZoneExt}"
)
with {
 variant "XSD:gDay"
}

 Rec. ITU-T Z.169 (03/2011) 33

6.5.9 Gregorian month

The gMonth type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GMonth (pattern
 "{dash}{dash}{month}{ZorTimeZoneExt}"
)
with {
 variant "XSD:gMonth"
}

6.6 Sequence types

XSD sequence types shall generally be converted to TTCN-3 as a record of their respective base
types. For an overview of the allowed facets refer to Table 2. Following clauses specify the mapping
of all sequence types of XSD.

6.6.1 NMTOKENS

The XSD NMTOKENS type shall be mapped to TTCN-3 using a record of construct of type
NMTOKEN:

type record of XSD.NMTOKEN NMTOKENS
with {
 variant "XSD:NMTOKENS"
}

6.6.2 IDREFS

The XSD IDREFS type shall be mapped to TTCN-3 using a record of construct of type IDREF:

type record of IDREF IDREFS
 with { variant "XSD:IDREFS" };

6.6.3 ENTITIES

The XSD ENTITIES type shall be mapped to TTCN-3 using a record of construct of type ENTITY:

type record of ENTITY ENTITIES
with {
 variant "XSD:ENTITIES"
}

6.6.4 QName

The XSD QName type shall be translated to the TTCN-3 type QName as given below:

type record QName {
 AnyURI uri optional,
 NCName name
}
with {
 variant "XSD:QName"
}

When encoding an element of type QName (or derived from QName), if the encoder detects the
presence of an URI and this is different from the target namespace, the following encoding shall
result (the assumed target namespace is http://www.example.org/).

EXAMPLE:

type record E14a
{
 QName name,
 integer refId
}

template E14a t_E14a:=
{
name:={
uri:="http://www.organization.org/",
name:="someName"
},

http://www.example.org/
http://www.organization.org/

34 Rec. ITU-T Z.169 (03/2011)

refId:=10
}
<?xml version="1.0" encoding="UTF-8"?>
<E14a xmlns="http://www.example.org/">
<name xmlns:ns="http://www.organization.org/">ns:someName</name>
<refId>10</refId>
</E14a>

6.7 Boolean type

The XSD boolean type shall be mapped to the TTCN-3 boolean type:

type boolean Boolean
with {
 variant "XSD:boolean"
}

During translation of XSD boolean values it is necessary to handle all four encodings that XSD
allows for Booleans ("true", "false", "0", and "1"); This shall be realized by using the "text" encoding
instruction:

type XSD.Boolean MyBooleanType
with {
 variant "text 'true' as '1'";
 variant "text 'false' as '0'"
}

6.8 AnyType and anySimpleType types

The XSD anySimpleType can be considered as the base type of all primitive data types, while the
XSD anyType is the base type of all complex definitions and the anySimpleType.

The anySimpleType shall be translated as an XML compatible restricted subtype of the universal
charstring.

EXAMPLE:

type XSD.XMLCompatibleString AnySimpleType
with {
 variant "XSD:anySimpleType"
}

//while anyType is translated into XML content opaque to the codec:

type record AnyType {
 record of XSD.String attr,
 record of XSD.String elem_list
}
with {
 variant "XSD:anyType";
 variant(attr) "anyAttributes";
 variant(elem_list) "anyElement";
}

See also clause 7.7.

7 Mapping XSD components

After mapping the basic layer of XML Schema (i.e., the built-in types) a mapping of the structures
shall follow. Every structure that may appear, globally or not, shall have a corresponding mapping to
TTCN-3.

7.1 Attributes of XSD component declarations

Tables 5 and 6 contain an overview about the major attributes that shall be encountered during
mapping is the tables are incomplete, the special attributes that are only used by a single XSD
component are described in the corresponding clauses. Tables 5 and 6 show which attributes shall be
evaluated when converting to TTCN-3, depending on the XSD component to be translated.

http://www.example.org/

 Rec. ITU-T Z.169 (03/2011) 35

Table 5 – Attributes of XSD component declaration #1

components

attributes
element attribute

simple
type

complex
type

simple
content

complex
content

group

id       

final   

name     

maxOccurs 
(see Note 1)

 

minOccurs 
(see Note 1)

 

ref   

abstract  

block  

default  

fixed  

form  

type  

mixed  

nillable 

use 

substitutionGroup 
(see Note 2)

NOTE 1 – Can be used in locally defined components only.
NOTE 2 – Can be used in globally defined components only.

Table 6 – Attributes of XSD component declaration #2

 components

attributes

all choice sequence
attribute
Group

annotation restriction list union extension

id         

name 

maxOccurs   

minOccurs   

ref 

It is also necessary to consider default values for attributes coming from the original definitions of
the XSD components (e.g., minOccurs is set to 1 for element components by default) when
translating.

7.1.1 Id

The attribute id enables a unique identification of an XSD component. They shall be mapped to
TTCN-3 as simple type references, e.g., any component mapping to a type with name typeName and
an attribute id="ID" shall result in an additional TTCN-3 type declaration:

type <Typename> ID;

36 Rec. ITU-T Z.169 (03/2011)

7.1.2 Ref

The ref attribute may reference an id or a schema component in XSD. The ref attribute is not
translated on its own but the local element, attribute, attributeGroup or group references is mapped
as specified in the appropriate clauses of this Recommendation.

7.1.3 Name

The XSD attribute name holds the specified name for an XSD component. A component without this
attribute shall either be defined anonymously or given by a reference (see clause 7.1.2). Names shall
directly be mapped to TTCN-3 identifiers; please refer to clause 5.2 on constraints and properties of
this conversion.

7.1.4 MinOccurs and maxOccurs

The minOccurs and maxOccurs XSD attributes provide the number of times an XSD component can
appear in a context. In case of mapping locally defined XSD elements, choice and sequence
compositors, this clause is invoked by clauses 7.3, 7.6.5 and 7.6.6.6 respectively. In case of the all
compositor, mapping of the minOccurs and maxOccurs attributes are specified in clause 7.6.4.

In the general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly
or by defaulting to "1"), they shall be ignored, i.e., are not mapped to TTCN-3.

When the minOccurs attribute equals to "0" and the maxOccurs attribute equals to "1" (either
explicitly or by defaulting to "1"), the TTCN-3 field resulted by mapping the respective XSD
component shall be set to optional.

In all other cases, the type of the related TTCN-3 type or field shall be set to record of, where the
replicated inner type is the TTCN-3 type that would be the type of the field in the general case
above. The record of shall be unrestricted if minOccurs equals to "0" and maxOccurs equals to
"unbounded" and shall be length restricted otherwise (where maxOccurs="unbounded" shall be
translated to the upper bound infinity). The initial name of the field shall be postfixed with "_list",
the encoding instruction "untagged" shall be attached to the outer record of and, finally, if no
"untagged" encoding instruction is attached to the inner TTCN-3 type being iterated, a "name as
'<initial name>'" encoding instruction shall be attached to the inner type, where <initial name> is
the name resulted from applying clause 5.2.2 to the name of the XSD component being translated.

NOTE 1 – The effect of the "name as …" encoding instruction is, that each repetition of the given element in
an encoded XML document will be tagged with the specified name. Thus, in this case the instruction has
effect on the elements of the TTCN-3 record of field and not on the field itself.

NOTE 2 – Please note that TTCN-3 constructs corresponding to anonymous XSD types always have the
"untagged" encoding instruction attached before this clause is invoked.

Table 7 – Summary of mapping the minOccurs and maxOccurs attributes

minOccurs maxOccurs
TTCN-3 mapping

TTCN-3 construct
preserved field
name postfix

0 0

0 1 or not present optional

1 or not present 1 or not present <the TTCN-3 element is mandatory>

0 unbounded record of <initial type> _list

<x> ≠ 0 <y> ≠ 1
record length (<x>..<y>) of

<initial type> _list

<x> ≥ 1 unbounded
record length (<x>..infinity) of

<initial type> _list

 Rec. ITU-T Z.169 (03/2011) 37

EXAMPLE 1: Mapping of an optional element:

<complexType name="e15a">
 <sequence>
 <element name="foo" type="integer" minOccurs="0"/>
 <element name="bar" type="float"/>
 </sequence>
</complexType>

// Is translated to an optional field as:

type record E15 {
 XSD.Integer foo optional,
 XSD.Float bar
}
with {
 variant "name as uncapitalized"
}

EXAMPLE 2: Mapping of elements allowing multiple recurrences:

<!-- The unrestricted case: -->
<complexType name="e15b">
 <sequence>
 <element name="foo" type="integer" minOccurs="0" maxOccurs="unbounded"/>
 <element name="bar" type="float"/>
 </sequence>
</complexType>

// Is translated to TTCN-3 as:
type record E15b {
 record of XSD.Integer foo_list,
 XSD.Float bar
}
with {
 variant "name as uncapitalized";
 variant(foo_list) "untagged"
 variant(foo_list[-]) "name as 'foo'"
}

<!-- The length restricted case: -->
<complexType name="e15c">
 <sequence>
 <element name="foo" type="integer" minOccurs="5" maxOccurs="10"/>
 <element name="bar" type="float"/>
 <sequence>
</complexType>

// Is translated to TTCN-3 as:
type record E15c {
 record length(5..10) of XSD.Integer foo_list,
 XSD.Float bar
}
with {
 variant "name as uncapitalized ";
 variant(foo_list) "untagged"
 variant(foo_list[-]) "name as 'foo'"
}

EXAMPLE 3: Mapping of a group reference:

<!-- Provided we have: -->
<group name="foobarGroup">
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
</group>

<!-- The optional case: -->
<complexType name="e15d">
 <group ref="ns:foobarGroup" minOccurs="0"/>
</complexType>

38 Rec. ITU-T Z.169 (03/2011)

// Is translated to TTCN-3 as:
type record FoobarGroup {
 XSD.String foo,
 XSD.String bar
}
with {
 variant "untagged"
 //pls. note, no "name as..." instruction is attached to the type due to the presence
 //of the untagged instruction
}

type record E15d {
 FoobarGroup foobarGroup optional
}
with {
 variant "name as uncapitalized"
}

EXAMPLE 4: Mixed case, both elements and a group reference are present:

<complexType name="e15f">
 <sequence>
 <element name="comment" minOccurs="0" maxOccurs="unbounded" type="xsd:string"/>
 <group ref="ns:foobarGroup" minOccurs="5" maxOccurs="10"/>
 <sequence>
</complexType>

// Is translated to TTCN-3 as:
type record E15f {
 record of XSD.String comment_list,
 record length (5..10) of FoobarGroup foobarGroup_list
}
with {
 variant "name as uncapitalized ";
 variant(comment_list) "untagged";
 variant(comment_list[-]) "name as 'comment'"
 variant(foobarGroup_list) "untagged"
 //pls. note, no "name as..." instruction is attached to foobarGroup[-] due to the
 //presence of the "untagged" instruction attached to the FoobarGroup type.
}

7.1.5 Default and Fixed

The XSD default attribute assigns a default value to a component in cases where it is missing in the
XML data.

The XSD fixed attribute gives a fixed constant value to a component according to the given type, so
in some XML data the value of the component may be omitted. The XSD fixed attribute can also be
applied to XSD facets, preventing a derivation of that type from modifying the value of the fixed
facets.

As default has no equivalent in TTCN-3 space, it shall be mapped to a "defaultForEmpty …"
encoding instruction. The fixed attribute applied to attribute or element elements shall be mapped to
a subtype definition with the single allowed value identical to the value of the fixed attribute plus a
"defaultForEmpty …" encoding instruction identifying the value of the fixed attribute as well. The
fixed attribute applied to XSD facets shall be ignored.

EXAMPLE:
<element name="elementDefault" type="string" default="defaultValue"/>
<element name="elementFixed" type="string" fixed="fixedValue"/>

// Is be translated to:

type XSD.String ElementDefault
with {
 variant "element";
 variant "defaultForEmpty as 'defaultValue'";
 variant "name as uncapitalized";
}

 Rec. ITU-T Z.169 (03/2011) 39

type XSD.String ElementFixed ("fixedValue")
with {
 variant "element";
 variant "defaultForEmpty as 'fixedValue'";
 variant "name as uncapitalized"
}

7.1.6 Form

The XSD form attribute controls if an attribute or element tag shall be encoded in XML by using a
qualified or unqualified name. The values of the form attributes shall be preserved in the "form as…"
encoding instructions as specified below:

a) If the value of the form attribute is qualified and the attributeFormQualified encoding
instruction is attached to the TTCN-3 module the given XSD declaration contributes to, or
the value of the form attribute is unqualified and no attributeFormQualified encoding
instruction is assigned to the corresponding TTCN-3 module, the form attribute shall be
ignored.

b) If the value of a form attribute of an XSD attribute declaration is qualified and no
attributeFormQualified encoding instruction is attached to the target TTCN-3 module, or the
value of a form attribute of an element declaration is qualified and no elementFormQualified
encoding instruction is attached to the target TTCN-3 module, a "form as qualified"
encoding instruction shall be attached to the TTCN-3 field resulted from mapping the given
XSD attribute or element declaration.

c) If the value of a form attribute of an XSD attribute declaration is unqualified and the
attributeFormQualified encoding instruction is attached to the target TTCN-3 module, or the
value of a form attribute of an element declaration is unqualified and the
elementFormQualified encoding instruction is attached to the target TTCN-3 module, a
"form as unqualified" encoding instruction shall be attached to the TTCN-3 field
resulted from mapping the given XSD attribute or element declaration.

NOTE – An XSD declaration may contribute to more than one TTCN-3 module (see clause 5.1), therefore in
case of a given XSD declaration item a) and b) or c) above may apply at the same time.

Table 8 summarizes the mapping of the attributeFormDefault, elementFormDefault (see also
clause 5.1) and form XSD attributes.

40 Rec. ITU-T Z.169 (03/2011)

Table 8 – Summary of mapping of the form XSD attribute

"namespace
as" encoding
instruction
attached to
the target

attributeFormQualified and/or
elementFormQualified

encoding instructions attached
to the target TTCN-3 module

TTCN-3
module

absent present

attributeFormDefault
and/or

elementFormDefault
in the ancestor

schema element

any value
or absent

form
attribute

any value
or absent

absent
"form as…"

absent
N/A

(see note)

unqualified
or absent

form
attribute

absent present
"form as…"

absent
"form as

unqualified"

unqualified present
"form as…"

absent
"form as

unqualified"

qualified present
"form as

qualified"
"form as…"

absent

qualified
form

attribute

absent present
N/A

(see Note)
"form as…"

absent

unqualified present
N/A

(see Note)
"form as

unqualified"

qualified present
N/A

(see Note)
"form as…"

absent

NOTE – Excluded by the mapping of attributeFormDefault and elementFormDefault in clause 5.1.

7.1.7 Type

The XSD type attribute holds the type information of the XSD component. The value is a reference
to the global definition of simpleType, complexType or built-in type. If type is not given, the
component must define either an anonymous (inner) type, or contain a reference attribute (see
clause 7.1.2), or use the XSD ur-type definition.

7.1.8 Mixed

The mixed content attribute allows inserting text between the elements of XSD complex type or
element definitions. Its translation is defined in clause 7.6.8.

7.1.9 Abstract

Mapping of the XSD abstract attribute is not supported by this Recommendation.

7.1.10 Block and final

Mapping of the XSD block and final attributes are not supported by this Recommendation.

7.1.11 Nillable

If the nillable attribute of an element declaration is set to "true", then an element may also be valid if
it carries the namespace qualified attribute with (local) name nil from the namespace
"http://www.w3.org/2001/XMLSchema-instance" and the value "true" (instead of a value
of its type).

A nillable XSD element shall be mapped to a TTCN-3 record type (in case of global elements) or
field (in case of local elements), with the name resulted by applying clause 5.2.2 to the name of the
corresponding element. The record type or field shall contain one optional field with the name
"content" and its type shall be the TTCN-3 type of the element if the value of the nillable attribute
would be "false". The record type or field shall be appended with the "useNil" encoding instruction.

 Rec. ITU-T Z.169 (03/2011) 41

EXAMPLE 1: Mapping of nillable elements:

<element name="remarkNillable" type="string" nillable="true"/>

<complexType name="e16c">
 <sequence>
 <element name="foo" type="integer"/>
 <element name="bar" type="string" nillable="true"/>
 </sequence>
</complexType>

//Are translated to TTCN-3 as:
type record RemarkNillable {
 XSD.String content optional
}
with {
 variant "name as uncapitalized";
 variant "element";
 variant "useNil"
}

type record E16c {
 XSD.Integer foo,
 record {
 XSD.String content optional
 } bar
}
with {
 variant "name as uncapitalized";
 variant(bar) "useNil"
}

// Which allows e.g. the following encoding:
template E16a t_E16a :=
{
 foo:=3,
 bar:= { content := omit }
}

<?xml version="1.0" encoding="UTF-8"?>
 <e16a>
 <foo>3</foo>
 <bar xsi:nil="true"/>
 </e16a>

EXAMPLE 2: Joint use of the nillable, minOccurs and maxOccurs attributes:

<element name="SeqNillable" nillable="true">
 <complexType>
 <sequence>
 <element name="forename" type="string" nillable="true"/>
 <element name="surname" type="string" minOccurs="0" nillable="true"/>
 <element name="bornPlace" type="string" minOccurs="0" maxOccurs="unbounded"
 nillable="true"/>
 <element ref="ns:remarkNillable"/>
 </sequence>
 </complexType>
</element>

//Is translated to TTCN-3 as:
type record SeqNillable {
 record {
 record {
 XSD.String content optional
 } forename,
 record {
 XSD.String content optional
 } surname optional,
 record of record {
 XSD.String content optional
 } bornPlace_list,
 record {
 XSD.String content optional
 } remarkNillable
 } content optional
}

42 Rec. ITU-T Z.169 (03/2011)

with {
 variant "element";
 variant "useNil";
 variant(content.bornPlace_list) "name as'bornPlace'";
 variant(content.forename, content.surname, content.bornPlace_list, content.remarkNillable)
 "useNil"
}

7.1.12 Use

XSD local attribute declarations and references may contain also the special attribute use. The use
attribute specifies the presence of the attribute in an XML value. The values of this attribute are:
optional, prohibited and required with the default value optional. If the use attribute is missing or its
value is optional in an XSD attribute declaration, the TTCN-3 field resulted by the mapping of the
corresponding attribute shall be optional. If the value of the use attribute is required, the TTCN-3
field corresponding to the XSD attribute shall be mandatory (i.e., without optional). XSD attributes
with the value of the use attribute prohibited shall not be translated to TTCN-3 (for an example see
clause 7.6.2.2).

EXAMPLE: Mapping of the use attribute:

<xsd:complexType name="e17a">
 <xsd:sequence>
 </xsd:sequence>
 <xsd:attribute name="fooLocal" type="xsd:float" use="required" />
 <xsd:attribute name="barLocal1" type="xsd:string" />
 <xsd:attribute name="barLocal2" type="xsd:string" use="optional" />
 <xsd:attribute name="dingLocal" type="xsd:integer" use="prohibited" />
</xsd:complexType>

//is translated to TTCN-3 as:
type record E17a {
 XSD.String barLocal1 optional,
 XSD.String barLocal2 optional,
 XSD.Float fooLocal,
}
with {
 variant "name as uncapitalized ";
 variant(barLocal1, barLocal2, fooLocal) "attribute"
}

7.1.13 Substitution group

Mapping of the XSD substitutionGroup attribute is not supported by this Recommendation, i.e., this
attribute shall be ignored when the element is translated to TTCN-3.

NOTE – TTCN-3 supports this XSD feature via type compatibility, unless the substitution element is derived
by extending the head element.

7.2 Schema component

The schema element information items are not directly translated to TTCN-3 but the content(s) of
schema element information item(s) with the same target namespace (including absence of the target
namespace) are mapped to definitions of a target TTCN-3 module. See more details in clause 5.1.

7.3 Element component

An XSD element component defines a new XML element. Elements may be global (as a child of
either schema or redefine), in which case they are obliged to contain a name attribute or may be
defined locally (as a child of all, choice or sequence) using a name or ref attribute.

Globally defined XSD elements shall be mapped to TTCN-3 type definitions. In the general case,
when the nillable attribute of the element is "false" (either explicitly or by defaulting to "false"), the
type of the TTCN-3 type definition shall be one of the following:

• In case of XSD datatypes, and simple types defined locally as child of the element, the type
of the XSD element mapped to TTCN-3.

 Rec. ITU-T Z.169 (03/2011) 43

• In case of referenced XSD user types, the TTCN-3 type generated for the referenced XSD
type.

• In case the child of the element is a locally defined complexType, it shall be a TTCN-3
record.

The name of the TTCN-3 type definition shall be the result of applying clause 5.2.2 to the name of
the XSD element. When nillable attribute is "true", the procedures in clause 7.1.11 shall be invoked.
The encoding instruction "element" shall be appended to the TTCN-3 type definition resulted by
mapping of a global XSD element.

EXAMPLE 1: Mapping of a globally defined element:

<element name="e16a" type="typename"/>

// is translated to:
type typename E16a
with {
 variant "element";
 ariant "name as uncapitalized "
}

Locally defined elements shall be mapped to fields of the enframing type or structured type field. In
the general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly or
by defaulting to "1") and the nillable attribute of the element is "false" (either explicitly or by
defaulting to "false"), the type of the field shall be the type resulted by mapping the type of the XSD
element and the name of the field shall be the result of applying clause 5.2.2 to the name of the XSD
element.

When a local element is defined by reference (the ref attribute is used) and the target namespace of
the XSD Schema in which the referenced element is defined differs from the target namespace of the
referencing XSD Schema (including the no target namespace case), the TTCN-3 field generated for
this element reference shall be appended with a "namespace as" encoding instruction (see
clause B.3.1.4), which shall identify the namespace and optionally the prefix of the XSD schema in
which the referenced entity is defined.

When either the minOccurs or the maxOccurs attributes or both differ from "1", the procedures in
clause 7.1.4 shall be invoked.

When the nillable attribute is "true", the procedures in clause 7.1.11 shall be invoked.

EXAMPLE 2: Mapping of locally defined elements, general case (see further examples in
clauses 7.1.4 and 7.1.11):

<complexType name="e16b">
 <sequence>
 <element name="foo" type="integer"/>
 <element name="bar" type="string"/>
 </sequence>
</complexType>

//Is translated into:
type record E16b
{
 XSD.Integer foo,
 XSD.String bar
}
with {
 variant "name as uncapitalized"
}

44 Rec. ITU-T Z.169 (03/2011)

7.4 Attribute and attribute group definitions

7.4.1 Attribute element definitions

Attribute elements define valid qualifiers for XML data and are used when defining complex types.
Just like XSD elements, attributes can be defined globally (as a child of schema or redefine) and then
be referenced from other definitions or defined locally (as a child of complexType, restriction,
extension or attributeGroup) without the possibility of being used outside of their context.

Global attributes shall be mapped in the same way as elements (see clause 7.3), except that they shall
additionally be appended with the "attribute" TTCN-3 encoding instruction (instead of the "element"
instruction attached to TTCN-3 types resulted by mapping of elements).

EXAMPLE: Mapping of a globally defined attribute:

<attribute name="e17" type="typename"/>

// is mapped to:
type typename E17
with {
 variant "attribute";
 variant "name as uncapitalized "
}

For the mapping of locally defined attributes please refer to clause 7.6.7.

7.4.2 Attribute group definitions

An XSD attributeGroup defines a group of attributes that can be included together into other
definitions by referencing the attributeGroup. As children attribute elements of attributeGroup
definitions are directly mapped to the TTCN-3 record types corresponding to the complexType
referencing the attributeGroup, attributeGroup-s are not mapped to TTCN-3. See also clauses 7.6.1
and 7.6.7.

7.5 SimpleType components

XSD simple types may be defined globally (as a child of schema and using a mandatory name
attribute) or locally (as a child of element, attribute, restriction, list or union) in a named or
anonymous fashion. The simpleType components are used to define new simple types by three
means:

• Restricting a built-in type (with the exception of anyType, anySimpleType) by applying a
facet to it.

• Building lists.

• Building unions of other simple types.

These means are quite different in their translation to TTCN-3 and are explained in the following
clauses. For the translation of attributes for simple types please refer to the general mappings defined
in clause 7.1. Please note that an XSD simpleType is not allowed to contain elements or attributes,
redefinition of these is done by using XSD complexType-s (see clause 7.6).

7.5.1 Derivation by restriction

For information about restricting built-in types, please refer to clause 6 which contains an extensive
description on the translation of restricted simpleType using facets to TTCN-3.

It is also possible in XSD to restrict an anonymous simple type. The translation follows the mapping
for built-in data types, but instead of using the base attribute to identify the type to apply the facet to,
the base attribute type shall be omitted and the type of the inner, anonymous simpleType shall be
used.

 Rec. ITU-T Z.169 (03/2011) 45

EXAMPLE: Consider the following example restricting an anonymous simpleType using a pattern
facet (the bold part marks the inner simpleType):

<simpleType name="e18">
 <restriction base="string"/>
 <pattern value="(aUser|anotherUser)@(i|I)nstitute"/>
 </restriction>
</simpleType>

// This will generate a mapping for the inner type and a restriction thereof:
type XSD.String E18 (pattern "(aUser|anotherUser)@(i|I)nstitute")
with {
 variant "name as uncapitalized "
}

7.5.2 Derivation by list

XSD list components shall be mapped to the TTCN-3 record of type. In their simplest form lists
shall be mapped by directly using the listItem attribute as the resulting type.

EXAMPLE 1:

<simpleType name="e19">
 <list itemType="float"/>
</simpleType>

// Will translate to
type record of XSD.Float E19
with {
 variant "list";
 variant "name as uncapitalized"
}

When using any of the supported XSD facets (length, maxLength, minLength) the translation shall
follow the mapping for built-in list types, with the difference that the base type shall be determined
by an anonymous inner list item type.

EXAMPLE 2: Consider this example:

<simpleType name="e20">
 <restriction>
 <simpleType>
 <list itemType="float"/>
 </simpleType>
 <length value="3"/>
 </restriction>
</simpleType>

// Will map to:
type record length(3) of XSD.Float E20
with {
 variant "list";
 variant "name as uncapitalized"
}

//For instance the template:

template E20 t_E20:={ 1.0, 2.0, 3.0 }

// will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<e20>
1.0 2.0 3.0
</e20>

The other XSD facets shall be mapped accordingly (refer to respective 6.1 clauses). If no itemType is
given, the mapping has to be implemented using the given inner type (see clause 7.5.3).

46 Rec. ITU-T Z.169 (03/2011)

7.5.3 Derivation by union

An XSD union is considered as a set of mutually exclusive alternative types for a simpleType. As
this is compatible with the union type of TTCN-3, a simpleType derived by union in XSD shall be
mapped to a union type definition in TTCN-3. The generated TTCN-3 union type shall contain one
alternative for each member type of the XSD union, preserving the textual order of the member types
in the initial XSD union type. The field names of the TTCN-3 union type shall be the result of
applying clause 5.2.2 to either to the unqualified name of the member type (in case of built-in XSD
data types and user defined named types) or to the string "alt" (in case of unnamed member types).

NOTE 1 – XSD requires (see XML Schema Part 2: Datatypes [W3C XMLSchema-2], clause 2.5.1.3) that an
element or attribute value is validated against the member types in the order in which they appear in the
definition until a match is found. A TTCN-3 tool has to use this strategy as well, when decoding an XSD
union value.

The encoding instruction "useUnion" shall be applied to the generated union type and, in addition,
the "name as ''" ("name as followed by a pair of single quote followed by a double quote) encoding
instruction shall be applied to each field generated for an unnamed member type.

NOTE 2 – Please note that alt and the names of several built-in XSD data types are TTCN-3 keywords; hence,
according to the naming rules these field identifiers will be postfixed with a single underscore character.

EXAMPLE 1: Mapping of named and unnamed simple type definitions derived by union:

<!-- Please compare the mapping of the two definitions below -->
<xsd:simpleType name="e21memberlist">
 <xsd:union memberTypes="xsd:integer xsd:boolean"/>
</xsd:simpleType>

<simpleType name="e21unnamed">
 <union>
 <simpleType>
 <restriction base="string"/>
 </simpleType>
 <simpleType>
 <restriction base="float"/>
 </simpleType>
 </union>
</simpleType>

// Results in the following mappings:
type union E21memberlist {
 XSD.Integer integer_,
 XSD.Boolean boolean_
}
with {
 variant "name as uncapitalized";
 variant "useUnion"
}

type union E21unnamed {
 XSD.String alt_,
 XSD.Float alt_1
}
with {
 variant "name as uncapitalized";
 variant "useUnion"
 variant(alt_, alt_1) "name as ''"
}

// For instance, the below structure:
type record E21a {
 E21unnamed e21unnamed,
 XSD.String foo
}
with {
 variant "name as uncapitalized";
 variant "element"
}

 Rec. ITU-T Z.169 (03/2011) 47

template E21a t_E21a:={
 e21unnamed := { alt_ := "ding" },
 foo:="foostring"
}

// will result in the following encoding:
<?xml version="1.0" encoding="UTF-8"?>
<e21a xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
<e21unnamed xsi:type="string">ding</e21unnamed>
<foo>foostring</foo>
</e21a>

EXAMPLE 2: Mixed use of named and unnamed types:

<xsd:simpleType name="Time-or-int-or-boolean-or-dateRestricted">
 <xsd:union memberTypes="xsd:time e21memberlist">
 <xsd:simpleType>
 <xsd:restriction base="xsd:date">
 <xsd:minInclusive value="2003-01-01"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

//Will be mapped to the TTCN-3 type definition:
type union Time_or_int_or_boolean_or_dateRestricted {
 XSD.Time time,
 XSD.Integer integer_,
 XSD.Boolean boolean_,
 XSD.Date alt_
}
with {
 variant "useUnion";
 variant(alt_) "name as ''"
}

The only supported facet is enumeration, allowing mixing enumerations of different kinds.

EXAMPLE 3: Mapping member type with an enumeration facet:

<xsd:element name="maxOccurs">
 <xsd:simpleType>
 <xsd:union memberTypes="xsd:nonNegativeInteger">
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration name="unbounded"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
</xsd:element>

//Will be translated to TTCN-3 as:
type union MaxOccurs {
 XSD.NonNegativeInteger nonNegativeInteger,
 enumerated {unbounded} alt_
}
with {
 variant "name as uncapitalized";
 variant "element";
 variant "useUnion";
 variant(alt_) "name as ''"
}

EXAMPLE 4: Mapping member types with enumeration facets applied to different member types:

<simpleType name="e22">
 <restriction base="e21unnamed">
 <enumeration value="20"/>
 <enumeration value="50"/>
 <enumeration value="small"/>
 </restriction>
</simpleType>

48 Rec. ITU-T Z.169 (03/2011)

// will be translated to:
type E21unnamed E22 ({alt_1:=20.0},{alt_1:=50.0},{alt_:="small"})
with {
 variant "name as uncapitalized"
}

7.6 ComplexType components

The XSD complexType is used for creating new types that contain elements and attributes. XSD
complexTypes may be defined globally as child of schema or redefine(in which case the name XSD
attribute is mandatory), or locally in an anonymous fashion (as a child of element, without the name
XSD attribute).

Globally defined XSD complexTypes shall be translated to a TTCN-3 record type. This record type
shall enframe the fields resulted by mapping the content (the children) of the XSD complexType as
specified in the next clauses. The name of the TTCN-3 record type shall be the result of applying
clause 5.2.2 to the XSD name attribute of the complexType definition.

Locally defined anonymous complexTypes shall be ignored (not translated to TTCN-3). In this case
the record type generated for the parent element of the complexType (see clause 7.3), shall enframe
the fields resulted by mapping the content (the children) of the XSD complexType.

NOTE – The mapping rules in subsequent clauses may be influenced by the attributes applied to the
component, if any. See more details in clause 7.1, especially in clause 7.1.4.

7.6.1 ComplexType containing simple content

An XSD simpleContent component may extend or restrict an XSD simple type, being the base type
of the simpleContent and expands the base type with attributes, but not elements.

7.6.1.1 Extending simple content

When extending XSD simpleContent, further XSD attributes may be added to the original type.

The base type of the extended simpleContent and the additional XSD attributes shall be mapped to
fields of the TTCN-3 record type, generated for the enclosing XSD complexType (see clause 7.6).
At first, attribute elements and attribute groups shall be translated according to clause 7.6.7, and
added to the enframing TTCN-3 record (see clause 7.6). Next, the extended type shall be mapped to
TTCN-3 and added as a field of the enframing record. The field name of the latter shall be "base"
and the variant attribute "untagged" shall be attached to it.

EXAMPLE: The example below extends a built-in type by adding an attribute:

<complexType name="e23">
 <simpleContent>
 <extension base="string">
 <attribute name="foo" type="float"/>
 <attribute name="bar" type="integer"/>
 </extension>
 </simpleContent>
</complexType>

// Will be mapped as:
type record E23
{
 XSD.Integer bar optional,
 XSD.Float foo optional,
 XSD.String base
}
with {
 variant "name as uncapitalized";
 variant(base) "untagged";
 variant(bar, foo) "attribute"
}

 Rec. ITU-T Z.169 (03/2011) 49

// and the template
template E23 t_E23 := {
 bar := 1,
 foo := 2.0,
 base := "something"
}

// shall be encoded as:
<?xml version="1.0" encoding="UTF-8"?>
<e23 bar=1 foo=2.0>something</e23>

7.6.1.2 Restricting simple content

An XSD simpleContent may restrict its base type or attributes of the base type by applying more
restrictive facets than those of the base type (if any).

Such XSD simpleContent shall be mapped to fields of the enframing TTCN-3 record (see
clause 7.6). At first, the fields corresponding to the local attribute definitions, attribute and
attributeGroup references shall be generated according to clause 7.6.7, followed by the field
generated for the base type.. The field name of the latter shall be "base". The restrictions of the given
simpleContent shall be applied to the "base" field directly (i.e., the base type shall not be referenced
but translated to a new type definition in TTCN-3).

Other base types shall be dealt with accordingly, see clause 6.

EXAMPLE: Example for restriction of a base type:

<complexType name="e24">
 <simpleContent>
 <restriction base="ns:e23">
 <length value="4"/>
 </restriction>
 </simpleContent>
</complexType>

//Is translated to:
type record E24 {
 XSD.Integer bar optional,
 XSD.Float foo optional,
 XSD.String base length(4)
}
with {
 variant(base) "untagged";
 variant(bar, foo) "attribute";
 variant "name as uncapitalized"
}

// and the template
template E24 t_E24 := {
 bar := 1,
 foo := 2.0,
 base := "some"
}

// shall be encoded as:
<?xml version="1.0" encoding="UTF-8"?>
<e23 bar=1 foo=2.0>some</e23>

7.6.2 ComplexType containing complex content

In contrast to simpleContent, complexContent is allowed to have elements. It is possible to extend a
base type by adding attributes or elements, it is also possible to restrict a base type to certain
elements or attributes.

7.6.2.1 Complex content derived by extension

By using the XSD extension for a complexContent it is possible to derive new complex types from a
base (complex) type by adding attributes, elements or groups (group, attributeGroup). The
compositor of the base type may be sequence or choice (i.e., complex types with the compositor all
shall not be extended).

50 Rec. ITU-T Z.169 (03/2011)

This shall be translated to TTCN-3 as follows (the generated TTCN-3 constructs shall be added to
the enframing TTCN-3 record, see clause 7.6, in the order of the items below):

a) At first, attributes and attribute and attribute group references of the base type and the
extending type shall be translated according to clause 7.6.7 and the resulted fields added to
the enframing TTCN-3 record directly (i.e., without nesting).

b) The choice or sequence content model of the base (extended) complexType shall be mapped
to TTCN-3 according to clauses 7.6.5 or 7.6.6 respectively, and the resulted TTCN-3
constructs shall be added to the enframing record.

c) The extending choice or sequence content model of the extending complexContent shall be
mapped to TTCN-3 according to clauses 7.6.5 or 7.6.6 respectively, and the resulted
TTCN-3 constructs shall be added to the enframing record.

EXAMPLE 1: Both the base and the extending types have the compositor sequence:

<!-- The base definitions: -->
<complexType name="e25seq">
 <sequence>
 <element name="titleElemBase" type="string"/>
 <element name="forenameElemBase" type="string"/>
 <element name="surnameElemBase" type="string"/>
 </sequence>
 <attribute name="genderAttrBase" type="integer"/>
 <attributeGroup ref="ns:g25attr2"/>
</complexType>

<group name="g25seq">
 <sequence>
 <element name="familyStatusElemInGroup" type="string"/>
 <element name="spouseElemInGroup" type="string" minOccurs="0"/>
 </sequence>
</group>

<attributeGroup name="g25attr1">
 <attribute name="birthPlaceAttrGroup" type="string"/>
 <attribute name="birthDateAttrGroup" type="string"/>
</attributeGroup>

<attributeGroup name="g25attr2">
 <attribute name="jobPositionAttrGroup" type="string"/>
</attributeGroup>

<!-- Now a type is defined that extends e25seq by adding a new element, group and attributes: -->
<complexType name="e26seq">
 <complexContent>
 <extension base="ns:e25seq">
 <sequence>
 <element name="ageElemExt" type="integer"/>
 <group ref="ns:g25seq"/>
 </sequence>
 <attribute name="unitOfAge" type="string"/>
 <attributeGroup ref="ns:g25attr1"/>
 </extension>
 </complexContent>
</complexType>

// This is translated to the TTCN-3 structure:
type record E26seq
{
 // fields corresponding to attributes of the base and the extending type
 // (in alphabetical order)
 XSD.String birthDateAttrGroup optional,
 XSD.String birthPlaceAttrGroup optional,
 XSD.Integer genderAttrBase optional,
 XSD.String jobPositionAttrGroup optional,
 XSD.String unitOfAge optional,
 // followed by fields corresponding to elements of the base type
 XSD.String titleElemBase,
 XSD.String forenameElemBase,
 XSD.String surnameElemBase,

 Rec. ITU-T Z.169 (03/2011) 51

 // finally fields corresponding to the extending element and group reference
 XSD.Integer ageElemExt,
 G25seq g25seq
}
with {
 variant "name as uncapitalized ";
 variant (birthDateAttrGroup, birthPlaceAttrGroup, genderAttrBase, jobPositionAttrGroup,
 unitOfAge) "attribute";
};
// where
type record G25seq {
 XSD.String familyStatusElemInGroup,
 XSD.String spouseElemInGroup optional
}
with {
 variant "untagged"
}

EXAMPLE 2: Both the base and the extending types have the compositor sequence and multiple
occurrences are allowed:

<!-- Additional base definition:-->

<complexType name="e25seqRecurrence">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element name="titleElemBase" type="string"/>
 <element name="forenameElemBase" type="string"/>
 <element name="surnameElemBase" type="string"/>
 </sequence>
 <attribute name="genderAttrBase" type="integer"/>
 <attributeGroup ref="ns:g25attr2"/>
</complexType>

<!-- The extending type definition: -->

<complexType name="e26seqReccurrence">
 <complexContent>
 <extension base="ns:e25seq">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <group ref="ns:g25cho"/>
 <element name="ageElemExt" type="integer"/>
 </sequence>
 <attribute name="unitOfAge" type="string"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="e26seqDoubleRecurrence">
 <complexContent>
 <extension base="ns:e25seqRecurrence">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <group ref="ns:g25cho"/>
 <element name="ageElemExt" type="integer"/>
 </sequence>
 <attribute name="unitOfAge" type="string"/>
 </extension>
 </complexContent>
</complexType>

//The extending types are translated to TTCN-3 as:

type record E26seqRecurrence {
 // fields corresponding to attributes of the base and the extending type
 // (in alphabetical order)
 XSD.Integer genderAttrBase optional,
 XSD.String jobPositionAttrGroup optional,
 XSD.String unitOfAge optional,
 // followed by a "simple" field list corresponding to elements of the base type
 XSD.String titleElemBase,
 XSD.String forenameElemBase,
 XSD.String surnameElemBase,
 // the extending sequence is recurring (see clause 7.6.6.6 for the mapping)
 record of record {
 G25seq g25seq
 XSD.Integer ageElemExt,
 } sequence_list
}

52 Rec. ITU-T Z.169 (03/2011)

with {
 variant "name as uncapitalized";
 variant(sequence_list) "untagged";
 variant (genderAttrBase, jobPositionAttrGroup, unitOfAge) "attribute"
}

type record E26seqDoubleRecurrence {
 // fields corresponding to attributes of the base and the extending type
 // (in alphabetical order)
 XSD.Integer genderAttrBase optional,
 XSD.String jobPositionAttrGroup optional,
 XSD.String unitOfAge optional,
 // followed by a record of record field containing the fields corresponding to elements of
 // the base type; the base type is a recurring sequence (see clause
 // 7.6.6.6 for the
 // mapping)
 record of record {
 XSD.String titleElemBase,
 XSD.String forenameElemBase,
 XSD.String surnameElemBase
 } sequence_list,
 // the extending sequence is recurring too(see clause
 // 7.6.6.6 for the
 // mapping)
 record of record {
 G25seq g25seq
 XSD.Integer ageElemExt,
 } sequence_list_1
}
with {
 variant "name as uncapitalized";
 variant(sequence_list, sequence_list_1) "untagged";
 variant (genderAttrBase, jobPositionAttrGroup, unitOfAge) "attribute"
}

EXAMPLE 3: Both the base and the extending types have the compositor choice:

<complexType name="e25cho">
 <choice>
 <element name="titleElemBase" type="string"/>
 <element name="forenameElemBase" type="string"/>
 <element name="surnameElemBase" type="string"/>
 </choice>
 <attribute name="genderAttrBase" type="string"/>
</complexType>

<!-- and -->
<complexType name="e26cho">
 <complexContent>
 <extension base="ns:e25cho">
 <choice>
 <element name="ageElemExt" type="integer"/>
 <element name="birthdayElemExt" type="date"/>
 </choice>
 <attribute name="unitAttrExt" type="string"/>
 </extension>
 </complexContent>
</complexType>

//Are translated to TTCN-3 as:
type record E26cho {
 XSD.String genderAttrBase optional,
 XSD.String unitAttrExt optional,
 union {
 XSD.String titleElemBase,
 XSD.String forenameElemBase,
 XSD.String surnameElemBase
 } choice,
 union {
 XSD.Integer ageElemExt
 XSD.Date birthdayElemExt
 } choice_1
}
with {
 variant "name as uncapitalized";
 variant(genderAttrBase, unitAttrExt) "attribute";
 variant(choice, choice_1) "untagged"
}

 Rec. ITU-T Z.169 (03/2011) 53

EXAMPLE 4: Extension of a sequence base type by a choice model group:

<complexType name="e27cho">
 <complexContent>
 <extension base="ns:e25seq">
 <choice>
 <element name="ageElemExt" type="integer"/>
 <element name="birthdayElemExt" type="date"/>
 </choice>
 <attribute name="unitAttrExt" type="string"/>
 </extension>
 </complexContent>
</complexType>

// is translated to TTCN-3 as:
type record E27cho
{
 XSD.Integer genderAttrBase optional,
 XSD.String jobPositionAttrGroup optional,
 XSD.String unitAttrExt optional,
 XSD.String titleElemBase,
 XSD.String forenameElemBase,
 XSD.String surnameElemBase,
 union {
 XSD.Integer ageElemExt,
 XSD.Date birthdayElemExt
 } choice
}
with {
 variant "name as uncapitalized";
 variant(genderAttrBase, jobPositionAttrGroup, unitAttrExt) "attribute";
 variant(choice) "untagged"
}

EXAMPLE 5: Extending of a base type with choice model group by a sequence model group:

<complexType name="e27seq">
 <complexContent>
 <extension base="ns:e25cho">
 <sequence>
 <element name="ageElemExt" type="integer"/>
 </sequence>
 <attribute name="unitAttrExt" type="string"/>
 </extension>
 </complexContent>
</complexType>

// Is translated to TTCN-3 as:
type record E27seq {
 XSD.String genderAttrBase optional,
 XSD.String unitAttrExt optional,
 union {
 XSD.String ElemBase,
 XSD.String forenameElemBase,
 XSD.String surnameElemBase
 } choice,
 XSD.Integer ageElemExt
}
with {
 variant "name as uncapitalized";
 variant(genderAttrBase, unitAttrExt) "attribute";
 variant(choice) "untagged";
}

EXAMPLE 6: Recursive extension of an anonymous inner type is realized using the TTCN-3 dot
notation (starts from the name of the outmost type):

<complexType name="X">
 <sequence>
 <element name="x" type="string"/>
 <element name="y" minOccurs="0">
 <complexType>
 <complexContent>
 <extension base="ns:X"/>
 <sequence>

54 Rec. ITU-T Z.169 (03/2011)

 <element name="z" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
</complexType>

// Is translated to the TTCN-3 structure
type record X {
 XSD.String x,
 record {
 XSD.String x,
 X.y y optional,
 XSD.String z
 } y optional
}

7.6.2.2 Complex content derived by restriction

The restriction uses a base complex type and restricts one or more of its components.

All components present in the restricted type shall be mapped to TTCN-3, applying the restrictions,
and the resulted fields shall be added to the enframing TTCN-3 record (see clause 7.6). Thus
neither the base type nor its components are referenced from the restricted type.

EXAMPLE 1: Restricting anyType: in the example below anyType (any possible type) is used as the
base type and it is restricted to only two elements:

<complexType name="e28">
 <complexContent>
 <restriction base="anyType">
 <sequence>
 <element name="size" type="nonPositiveInteger"/>
 <element name="unit" type="NMTOKEN"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

// Is translated to:
type record E28 {
 XSD.NonPositiveInteger size,
 XSD.NMTOKEN unit
}
with {
 variant "name as uncapitalized"
}

EXAMPLE 2: Restricting a user defined complex type (the effect of the use attribute is described in
clause 7.1.12):

<element name="comment" type="string"/>

<!-- The base type is: -->
<complexType name="PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="string"/>
 <element name="billTo" type="string"/>
 <element ref="ns:comment" minOccurs="0"/>
 <element name="items" type="ns:Items"/>
 </sequence>
 <attribute name="shipDate" type="date"/>
 <attribute name="orderDate" type="date"/>
</complexType>

<!-- The restricting type is: -->
<complexType name="RestrictedPurchaseOrderType">
 <complexContent>
 <restriction base="ns:PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="string"/>
 <element name="billTo" type="string"/>
 <element ref="ns:comment" minOccurs="1"/>

 Rec. ITU-T Z.169 (03/2011) 55

 <element name="items" type="ns:Items"/>
 </sequence>
 <attribute name="shipDate" type="date" use="required" />
 <attribute name="orderDate" type="date" use="prohibited" />
 </restriction>
 </complexContent>
</complexType>

//is translated to TTCN-3 as:

type XSD.String Comment
with {
 variant "name as uncapitalized";
 variant "element"
}

/* base type */
type record PurchaseOrderType {
 XSD.Date orderDate optional,
 XSD.Date shipDate optional,
 XSD.String shipTo,
 XSD.String billTo,
 Comment comment optional,
 Items items
}
with {
 variant (orderDate, shipDate) "attribute"
}

/* restricting type */
type record RestrictedPurchaseOrderType {
 XSD.Date orderDate, //note that this field become mandatory
 //note that the field shipDate is not added
 XSD.String shipTo,
 XSD.String billTo,
 Comment comment, //note that this field become mandatory
 Items items
}
with {
 variant (orderDate) "attribute"
}

7.6.3 Referencing group components

Referenced model group components shall be translated as follows:

• when group reference is a child of complexType, the compositor of the referenced group
definition is sequence and both the minOccurs and maxOccurs attributes of the group
reference equal to "1" (either explicitly or by defaulting to "1"), it shall be translated as if the
child elements of the referenced group definition were was present in the complexType
definition directly;

• when the referenced group has the compositor all, it has to be translated is the content of the
referenced group definition was present directly, i.e., according to clause 7.6.4;

• in all other cases the referenced group component shall be translated to a field of the
enclosing record of type (generated for the parent complexType, sequence or choice element)
referencing the TTCN-3 type generated for the referenced group definition, considering also
the attributes of the referenced group component according to clause 7.1.

NOTE – Please note, as the "untagged" attribute is applied to the TTCN-3 type generated for the referenced
model group, the name of the field corresponding to the group reference will never appear in an encoded
XML value.

When a referenced group is defined in an XSD Schema with a target namespace, different from the
target namespace of the referencing XSD schema (including the no target namespace case), all
TTCN-3 fields generated for this group reference shall be appended with a "namespace as" encoding
instruction (see clause B.3.1.4), which shall identify the namespace and optionally the prefix of the
XSD schema in which the referenced entity is defined.

56 Rec. ITU-T Z.169 (03/2011)

EXAMPLE 1: Mapping of a group reference, child of complexType, compositor <sequence>:

<!-- Referencing a group with compositor <sequence> (see group declaration in $7.9) -->
<xsd:complexType name="LonelySeqGroup">
 <xsd:group ref="ns:shipAndBill"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelySeqGroup {
 XSD.String shipTo,
 XSD.String billTo
}

<!-- The group reference is optional, compositor <sequence> (see group declaration in $7.9) -->
<xsd:complexType name="LonelySeqGroupOptional">
 <xsd:group ref="ns:shipAndBill" minOccurs="0"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelySeqGroupOptional {
 ShipAndBill shipAndBill optional
}

<!-- The group reference is iterative, compositor <sequence> (see group declaration in $7.9) -->
<xsd:complexType name="LonelySeqGroupRecurrence">
 <xsd:group ref="ns:shipAndBill" minOccurs="0" maxOccurs="unbounded"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelySeqGroupRecurrence {
 record of ShipAndBill shipAndBill_list
}
with {
 variant (shipAndBill_list) "untagged";
}

EXAMPLE 2: Mapping of a group reference, child of complexType, compositor <all>:

<!-- Referencing a group with compositor <all> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyAllGroup">
 <xsd:group ref="ns:shipAndBillAll"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelyAllGroup {
 record of enumerated { shipTo, billTo } order,
 XSD.String shipTo,
 XSD.String billTo
}
with {
 variant "useOrder"
}

<!-- The group reference is optional, compositor <all> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyAllGroupOptional">
 <xsd:group ref="ns:shipAndBillAll" minOccurs="0"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelyAllGroupOptional {
 record of enumerated { shipTo, billTo } order,
 XSD.String shipTo optional,
 XSD.String billTo optional
}
with {
 variant "useOrder"
}

EXAMPLE 3: Mapping of a group reference, child of complexType, compositor <choice>:

<!-- Referencing a group with compositor <choice> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyChoGroup">
 <xsd:group ref="ns:shipOrBill"/>
</xsd:complexType>

 Rec. ITU-T Z.169 (03/2011) 57

//Is translated to TTCN-3 as:
type record LonelyChoGroup {
 ShipOrBill shipOrBill
}

<!-- The group reference is optional, compositor <choice> (see group declaration in $7.9) -->
<xsd:complexType name="LonelyChoGroupOptional">
 <xsd:group ref="ns:shipOrBill" minOccurs="0"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelyChoGroup {
 ShipOrBill shipOrBill optional
}

<xsd:complexType name="LonelyChoGroupRecurrence">
<annotation><documentation xml:lang="EN">choice group reference</documentation></annotation>
 <xsd:group ref="ns:shipOrBill" minOccurs="0" maxOccurs="unbounded"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record LonelyChoGroup {
 record of ShipOrBill shipOrBill_list
}
with {
 variant (shipAndBill_list) "untagged";
}

EXAMPLE 4: Mapping of group references, children of <sequence> or <choice>:

<!-- Referencing a group with compositor <sequence> in <sequence>
 (see group declaration in clause 7.9) -->
<xsd:complexType name="SeqGroupAndElementsInSequence">
 <xsd:sequence id="embeddingSequence">
 <xsd:group ref="ns:shipAndBill"/>
 <xsd:element name="comment" type="xsd:string" minOccurs="0" />
 <xsd:element name="items" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

//Is translated to TTCN-3 as:
type record SeqGroupInSequence {
 ShipAndBill shipAndBill,
 XSD.String comment optional,
 XSD.String items
}

<!-- Referencing a group with compositor <sequence> in <choice>
 (see group declaration in clause 7.9) -->
<xsd:complexType name="SeqGroupAndElementsAndAttributeInChoice">
 <xsd:choice id="embeddingChoice">
 <annotation><documentation xml:lang="EN">sequence group ref.</documentation></annotation>
 <xsd:group ref="ns:shipAndBill"/>
 <xsd:element name="comment" minOccurs="0" type="xsd:string"/>
 <xsd:element name="items" type="xsd:string"/>
 </xsd:choice>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

//Is translated to TTCN-3 as:
SeqGroupAndElementsAndAttributeInChoice ::= SEQUENCE {
 XSD.Date orderDate optional,
 union {
 /* sequence group ref.*/
 ShipAndBill shipAndBill,
 record length (0..1) of XSD.String comment_list,
 XSD.String items
 } choice
}
with {
 variant (orderDate) "attribute";
 variant (choice) "untagged";
 variant (choice.comment_list) "untagged";
 variant (choice.comment_list[-]) "name as comment"
}

58 Rec. ITU-T Z.169 (03/2011)

7.6.4 All content

An XSD all compositor defines a collection of elements, which can appear in any order in an XML
value.

In the general case, when the values of both the minOccurs and maxOccurs attributes of the all
compositor equal "1" (either explicitly or by defaulting to "1"), it shall be translated to TTCN-3 by
adding the fields resulted by mapping the XSD elements to the enframing TTCN-3 record
(see clause 7.6). By setting the minOccurs XSD attribute of the all compositor to 0, all elements of
the all content model are becoming optional. In this case all record fields corresponding to the
elements of the all model group shall be set to optional too. In addition, to these fields, an extra
first field named "order" shall be inserted into the enframing record. The type of this extra field
shall be record of enumerated, where the names of the enumeration values shall be the names of
the fields resulted by mapping the elements of the all structure. Finally, a "useOrder" variant
attribute shall be attached to the enframing record.

The order field shall precede the fields resulted by the translation of the attributes and attribute and
attributeGroup references of the given complexType but shall follow the embed_values field, if
any, generated for the mixed="true" attribute value (see also clause 7.6.8).

NOTE – When encoding, the presence and order of elements in the encoded XML instance will be controlled
by the order field. This is indicated by the "useOrder" encoding instruction. When decoding, the presence
and order of elements in the XML instance will control the value of the order field that appears in the
decoded structure. See more details in Annex B. This mapping is required by the alignment to [ITU-T X.694].

EXAMPLE 1: XSD all content model with mandatory elements:

<complexType name="e29a">
 <all>
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 <element name="ding" type="string"/>
 </all>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29a {
 record of enumerated {foo,bar,ding} order,
 XSD.Integer foo,
 XSD.Float bar,
 XSD.String ding
}
with {
 variant "name as uncapitalized ";
 variant "useOrder"
}

EXAMPLE 2: XSD all content model with each element being optional:

<complexType name="e29b">
 <all minOccurs="0">
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 <element name="ding" type="string"/>
 </all>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29b {
 record of enumerated {foo,bar,ding} order,
 XSD.Integer foo optional,
 XSD.Float bar optional,
 XSD.String ding optional
}
with {
 variant "name as uncapitalized ";
 variant "useOrder"
}

 Rec. ITU-T Z.169 (03/2011) 59

EXAMPLE 3: XSD all content model, with selected optional elements:

<complexType name="e29c">
 <all>
 <element name="foo" type="integer"/>
 <element name="bar" type="float" minOccurs="0"/>
 <element name="ding" type="string"/>
 </all>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29c {
 record of enumerated {foo,bar,ding} order,
 XSD.Integer foo,
 XSD.Float bar optional,
 XSD.String ding
}
with {
 variant "name as uncapitalized ";
 variant "useOrder"
}

EXAMPLE 4: XSD complex type with attributes and all content model:
<attribute name="attrGlobal" type="token"/>

<attributeGroup name="attrGroup">
 <attribute name="attrInGroup2" type="token"/>
 <attribute name="attrInGroup1" type="token"/>
</attributeGroup>

<complexType name="e29aAndAttributes">
 <all>
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 <element name="ding" type="string"/>
 </all>
 <attribute name="attrLocal" type="integer"/>
 <attribute ref="ns:attrGlobal"/>
 <attributeGroup ref="ns:attrGroup"/>
</complexType>

//Is translated to TTCN-3 as:
type record E29aAndAttributes {
 record of enumerated { foo, bar, ding } order,
 XSD.Token attrInGroup1 optional,
 XSD.Token attrInGroup2 optional,
 XSD.Integer attrLocal optional,
 XSD.Token attrGlobal optional,
 XSD.Integer foo,
 XSD.Float bar,
 XSD.String ding
}
with {
 variant "name as uncapitalized";
 variant "useOrder";
 variant(attrInGroup1, attrInGroup2, attrLocal, attrGlobal) "attribute"
}

7.6.5 Choice content

An XSD choice content defines a collection of mutually exclusive alternatives.

In the general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly
or by defaulting to "1"), it shall be mapped to a TTCN-3 union field with the field name "choice"
and the encoding instruction "untagged" shall be attached to this field.

If the value of the minOccurs or the maxOccurs attributes or both differ from "1", the following rules
shall apply:

a) The union field shall be generated as above (including attaching the "untagged" encoding
instruction).

60 Rec. ITU-T Z.169 (03/2011)

r) The procedures in clause 7.1.4 shall be called for the union field.

NOTE – As the result of applying clause 7.1.4, the type of the field may be changed to record of union
and in parallel the name of the field may be changed to "choice_list".

s) Finally, clause 5.2.2 shall be applied to the name of the resulted field and subsequently the
field shall be added to the enframing TTCN-3 record type (see clause 7.6) or record or union
field corresponding to the parent of the mapped choice compositor.

The content for a choice component may be any combination of element, group, choice, sequence or
any. The following clauses discuss the mapping for various contents nested in a choice component.

7.6.5.1 Choice with nested elements

Nested elements shall be mapped as fields of the enframing TTCN-3 union or record of union
field (see clause 7.6.5) according to clause 7.3.

EXAMPLE:

<complexType name="e30">
 <choice>
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 </choice>
</complexType>

// Will be translated to:
type record E30 {
 union {
 XSD.Integer foo,
 XSD.Float bar
 } choice
}
with {
 variant "name as uncapitalized";
 variant(choice) "untagged"
}

7.6.5.2 Choice with nested group

Nested group components shall be mapped along with other content as a field of the enframing
TTCN-3 union or record of union field (see clause 7.6.5). The type of this field shall refer to the
TTCN-3 type generated for the corresponding group and the name of the field shall be the name of
the TTCN-3 type with the first character uncapitalized.

EXAMPLE: The following example shows this with a sequence group and an element:

<group name="e31">
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
</group>

<complexType name="e32">
 <choice>
 <group ref="ns:e31"/>
 <element name="ding" type="string"/>
 </choice>
</complexType>

//Is translated to TTCN-3 as:
type record E31 {
 XSD.String foo,
 XSD.String bar
}
with
{
 variant "name as uncapitalized "
}

 Rec. ITU-T Z.169 (03/2011) 61

type record E32 {
 union {
 E31 e31,
 XSD.String ding
 } choice
}
with {
 variant "name as uncapitalized ";
 variant(choice) "untagged"
}

7.6.5.3 Choice with nested choice

An XSD choice nested to a choice shall be translated according to clause 7.6.5:

EXAMPLE:

<complexType name="e33">
 <choice>
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
 <element name="ding" type="string"/>
 </choice>
</complexType>

// Is mapped to TTCN-3 as:
type record E33 {
union {
union {
XSD.String foo,
XSD.String bar
} choice,
 XSD.String ding
} choice
}
with {
 variant "name as uncapitalized";
 variant(choice, choice.choice) "untagged"
}

7.6.5.4 Choice with nested sequence

An XSD sequence nested to a choice shall be mapped to a TTCN-3 record field of the enframing
TTCN-3 union or record of union field (see clause 7.6.5), according to clause 7.6.6.

EXAMPLE 1: Single sequence nested to choice:

<complexType name="e34a">
 <choice>
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <element name="ding" type="string"/>
 </choice>
</complexType>

// Is translated to:
type record E34a {
 union {
 record {
 XSD.String foo,
 XSD.String bar
 } sequence,
 XSD.String ding
 } choice
}
with {
 variant "name as uncapitalized ";
 variant(choice, choice.sequence) "untagged"
}

62 Rec. ITU-T Z.169 (03/2011)

EXAMPLE 2: Multiple sequence-s nested to choice:

<complexType name="e34b">
 <choice>
 <sequence>
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <element name="ding" type="string"/>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <element name="ding" type="string"/>
 </choice>
</complexType>

// Is translated to:
type record E34b {
 union {
 record {
 record {
 XSD.String foo,
 XSD.String bar
 } sequence,
 XSD.String ding,
 XSD.String foo,
 XSD.String bar
 } sequence,
 XSD.String ding
 } choice
}
with {
 variant "name as uncapitalized ";
 variant(choice, choice.sequence, choice.sequence.sequence) "untagged"
}

7.6.5.5 Choice with nested any

An XSD any element nested to a choice shall be translated according to clause 7.7.

EXAMPLE:

<complexType name="e35">
 <choice>
 <element name="foo" type="string"/>
 <any namespace="other"/>
 </choice>
</complexType>

// Is translated to:
type record E35 {
 union {
 XSD.String foo,
 XSD.String elem
 } choice
}
with {
 variant "name as uncapitalized";
 variant(choice) "untagged"
 variant(choice.elem) "anyElement from 'other' "
}

7.6.6 Sequence content

An XSD sequence defines an ordered collection of components and its content may be of any
combination of XSD elements, group references, choice, sequence or any.

Clauses 7.6.6.1 to 7.6.6.5 discuss the mapping for various contents nested in an XSD sequence
component in the general case, when both the minOccurs and maxOccurs attribute equal to "1"
(either explicitly or by defaulting to "1").

Clause 7.6.6.6 describes the mapping when either the minOccurs or the maxOccurs attribute of the
sequence compositor or both do not equal to "1".

 Rec. ITU-T Z.169 (03/2011) 63

7.6.6.1 Sequence with nested element content

In the general case, child elements of a sequence, which is a child of a complexType, shall be
mapped to TTCN-3 as fields of the enframing record (see clause 7.6) (i.e., the sequence itself is not
producing any TTCN-3 construct).

EXAMPLE: Mapping a mandatory sequence content:

<complexType name="e36a">
 <sequence>
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 </sequence>
</complexType>

// Is mapped to
type record E36a {
 XSD.Integer foo,
 XSD.Float bar
}
with {
 variant "name as uncapitalized"
}

7.6.6.2 Sequence with nested group content

In the general case, nested group reference components shall be mapped to a field of the enframing
record type (see clause 7.6) or field. The type of the field shall be the TTCN-3 type generated for
the referenced group and the name of the field shall be the result of applying clause 5.2.2 to the name
of the referenced group.

EXAMPLE: The following example shows this translation with a choice group and an element:

<group name="e37">
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
</group>

<complexType name="e38">
 <sequence>
 <group ref="ns:e37"/>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

// Is translated to:
type union E37 {
 XSD.String foo,
 XSD.String bar
}
with {
 variant "name as uncapitalized";
 variant "untagged"
}

type record E38 {
 E37 e37,
 XSD.String ding
}
with {
 variant "name as uncapitalized"
}

7.6.6.3 Sequence with nested choice content

An XSD choice nested to a sequence shall be mapped as a field of the enframing record (see
clauses 7.6, 7.6.5.4 and 7.6.6.4), according to clause 7.6.5 (i.e., the sequence itself is not producing
any TTCN-3 construct).

64 Rec. ITU-T Z.169 (03/2011)

EXAMPLE:

<complexType name="e39">
 <sequence>
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

// Is translated to:
type record E39 {
 union {
 XSD.String foo,
 XSD.String bar
 } choice,
 XSD.String ding
}
with {
 variant "name as uncapitalized";
 variant(choice) "untagged"
}

7.6.6.4 Sequence with nested sequence content

In the general case, a sequence nested in a sequence shall be translated to TTCN-3 according to
clause 7.6.6 and the resulted constructs shall be added to the enframing record type or field (see
also clauses 7.6 and 7.6.5.4).

EXAMPLE 1: Sequence nesting a mandatory sequence:

<complexType name="e40a">
 <sequence>
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

// Is mapped as
type record E40a {
 XSD.String foo,
 XSD.String bar,
 XSD.String ding
}
with {
 variant "name as uncapitalized"
}

EXAMPLE 2: Sequence nesting another sequence, choice and an additional element:

<complexType name="e40b">
 <sequence>
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

// Is mapped as
type record E40b {
 XSD.String foo,
 XSD.String bar,
 union {
 XSD.String foo,
 XSD.String bar

 Rec. ITU-T Z.169 (03/2011) 65

 } choice,
 XSD.String ding
}
with {
 variant "name as uncapitalized";
 variant(choice) "untagged"
}

7.6.6.5 Sequence with nested any content

An XSD any element nested in a sequence shall be translated according to clause 7.7.

EXAMPLE:

<complexType name="e41">
 <sequence>
 <element name="foo" type="string"/>
 <any/>
 </sequence>
</complexType>

// Is translated to:
type record E41 {
 XSD.String foo,
 XSD.String elem
}
with {
 variant "name as uncapitalized";
 variant(elem) "anyElement"
}

7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping

When either or both the minOccurs and/or the maxOccurs attributes of the sequence compositor
specify a different value than "1", the following rules shall apply:

a) First, the sequence compositor shall be mapped to a TTCN-3 record field (as opposed to
ignoring it in the previous clauses, when both minOccurs and maxOccurs equal to 1) with
the name "sequence".

t) The encoding instruction "untagged" shall be attached to the field corresponding to
sequence.

u) The procedures in clause 7.1.4 shall be applied to this record field.

NOTE – As the result of applying clause 7.1.4, the type of the field may be changed to record of record
and in parallel the name of the field may be changed to "sequence_list".

v) Finally, clause 5.2.2 shall be applied to the name of the resulted field and the field shall be
added to the enframing TTCN-3 record (see clauses 7.6 and 7.6.6) or union field (see
clause 7.6.5).

EXAMPLE 1: Mapping an optional sequence:

<complexType name="e36b">
 <sequence minOccurs="0">
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 </sequence>
</complexType>

// Is mapped to
type record E36b {
 record {
 XSD.Integer foo,
 XSD.Float bar
 } sequence optional
}
with {
 variant "name as uncapitalized";
 variant (sequence) "untagged"
}

66 Rec. ITU-T Z.169 (03/2011)

EXAMPLE 2: Sequence nesting an optional sequence:

<complexType name="e40c">
 <sequence>
 <sequence minOccurs="0">
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

// Is mapped to
type record E40c {
 record {
 XSD.String foo,
 XSD.String bar
 } sequence optional,
 union {
 XSD.String foo,
 XSD.String bar
 } choice,
 XSD.String ding
}
with {
 variant "name as uncapitalized";
 variant(sequence, choice) "untagged"
}

EXAMPLE 3: Sequence nesting a sequence of multiple recurrence:

<complexType name="e40d">
 <sequence>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

// Is mapped to
type record E40d {
 record of record {
 XSD.String foo,
 XSD.String bar
 } sequence_list,
 XSD.String ding
}
with {
 variant "name as uncapitalized";
 variant(sequence_list) "untagged"
}

7.6.7 Attribute definitions, attribute and attributeGroup references

Locally defined attribute elements, references to global attribute elements and references to
attributeGroups shall be mapped jointly. XSD attributes, either local or referenced global (including
the content of referenced attributeGroups) shall be mapped to individual fields of the enframing
TTCN-3 record (see clause 7.6) directly (i.e., without nesting). The types of the fields shall be the
types of the corresponding attributes, mapped to TTCN-3, and the names of the fields shall be the
names resulted in applying clause 5.2.2 to the attribute names. The fields generated for local attribute
definitions, references and contents of referenced attribute groups shall be inserted in the following
order: they shall first be ordered, in an ascending alphabetical order, by the target namespaces of the
attribute declarations, with the fields without a target namespace preceding fields with a target
namespace, and then by the names of the attribute declarations within each target namespace (also in
ascending alphabetical order).

 Rec. ITU-T Z.169 (03/2011) 67

XSD local attribute declarations and references may contain also the special attribute use. The above
mapping shall be carried out jointly with the procedures specified for the use attribute in
clause 7.1.12.

TTCN-3 record fields generated for attribute element or attributeGroup references, where the
namespace of the referenced XSD entity differs from the target namespace of the referencing XSD
schema (including the no target namespace case), shall be appended with a "namespace as" encoding
instruction (see clause B.3.1.4), which shall identify the namespace and optionally the prefix of the
XSD schema in which the referenced entity is defined.

All generated TTCN-3 fields shall also be appended with the "attribute" encoding instruction.

EXAMPLE 1: Referencing an attributeGroup in a complexType:

<attributeGroup name="e42">
 <attribute name="foo" type="float"/>
 <attribute name="bar" type="float"/>
</attributeGroup>

<complexType name="e44">
 <sequence>
 <element name="ding" type="string"/>
 </sequence>
 <attributeGroup ref="ns:e42"/>
</complexType>

// Is translated to TTCN-3 as:
type record E44 {
 XSD.Float bar optional
 XSD.Float foo optional,
 XSD.String ding,
}
with {
 variant "name as uncapitalized";
 variant(bar,foo) "attribute"
}

EXAMPLE 2: Mapping of a local attributes, attribute references and attribute group references
without a target namespace:

<xsd:attribute name="fooGlobal" type="xsd:float" />
<xsd:attribute name="barGlobal" type="xsd:string" />
<xsd:attribute name="dingGlobal" type="xsd:integer" />

<xsd:attributeGroup name="Agroup">
 <xsd:attribute name="fooInAgroup" type="xsd:float" />
 <xsd:attribute name="barInAgroup" type="xsd:string " />
 <xsd:attribute name="dingInAgroup" type="xsd:integer " />
</xsd:attributeGroup>

<xsd:complexType name="e17A">
 <xsd:sequence>
 <xsd:element name="elem" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute ref="fooGlobal" />
 <xsd:attribute ref="barGlobal" />
 <xsd:attribute ref="dingGlobal" />
 <xsd:attribute name="fooLocal" type="xsd:float" />
 <xsd:attribute name="barLocal" type="xsd:string" />
 <xsd:attribute name="dingLocal" type="xsd:integer" />
 <xsd:attributeGroup ref="Agroup" />
</xsd:complexType>

//is translated to TTCN-3 as:
type XSD.Float FooGlobal
with {
 variant "name as uncapitalized ";
 variant "attribute"
}

68 Rec. ITU-T Z.169 (03/2011)

type XSD.String BarGlobal
with {
 variant "name as uncapitalized ";
 variant "attribute"
}

type XSD.Integer DingGlobal
with {
 variant "name as uncapitalized ";
 variant "attribute"
}

type record E17A {
 XSD.String barGlobal optional,
 XSD.String barInAgroup optional,
 XSD.String barLocal optional,
 XSD.Integer dingGlobal optional,
 XSD.Integer dingInAgroup optional,
 XSD.Integer dingLocal optional,
 XSD.Float fooGlobal optional,
 XSD.Float fooInAgroup optional,
 XSD.Float fooLocal optional,
 XSD.String elem
}
with {
 variant "name as uncapitalized ";
 variant(barGlobal,barInAgroup,barLocal,dingGlobal,dingInAgroup,dingLocal,fooGlobal,
 fooInAgroup,fooLocal) "attribute"
 //Please note, the order of the field names in the attribute qualifier may be arbitrary
}

EXAMPLE 3: Mapping the same local attributes, attribute references and attribute group references
as above but with a target schema namespace:

<!-- Using the same global attribute, attribute group and complex type definitions as in the previous
example -->

//e17A is translated to TTCN-3 as:
type record E17A {
 XSD.Float barInAgroup optional,
 XSD.String barLocal optional,
 XSD.Integer dingInAgroup optional,
 XSD.Integer dingLocal optional,
 XSD.Float fooInAgroup optional,
 XSD.Float fooLocal optional,
 XSD.String barGlobal optional,
 XSD.Integer dingGlobal optional,
 XSD.Float fooGlobal optional,
 XSD.String elem
}
with {
 variant "name as uncapitalized ";
 variant(barInAgroup,barLocal,dingInAgroup,dingLocal,fooInAgroup,fooLocal,barGlobal,
 dingGlobal,fooGlobal) "attribute"
 //Please note, the order of the field names in the attribute qualifier may be arbitrary
}

7.6.8 Mixed content

When mixed content is allowed for a complex type or content, (i.e., the mixed attribute is set to
"true") an additional record of XSD.String field, with the field name "embed_values" shall be
generated and inserted as the first field of the outer enframing TTCN-3 record type generated for
the all, choice or sequence content (see clauses 7.6, 7.6.4, 7.6.5 and 7.6.6). In TTCN-3 values,
elements of the embed_values field shall be used to provide the actual strings to be inserted into the
encoded XML value or extracted from it (the relation between the record of elements and the strings
in the encoded XML values is defined in clause B.3.10). In TTCN-3 values the number of
components of the embed_values field (the number of strings to be inserted) shall not exceed the
total number of components present in the enclosing enframing record, corresponding to the child
element elements of the complexType with the mixed="true" attribute, i.e., ignoring fields
corresponding to attribute elements, the embed_values field itself and the order field, if present
(see clause 7.6.4), plus 1 (i.e., all components of enclosed record of-s).

 Rec. ITU-T Z.169 (03/2011) 69

The embed_values field shall precede all other fields, resulted by the translation of the attributes
and attribute and attributeGroup references of the given complexType and the order field, if any,
generated for the all content models (see also clause 7.6.4).

EXAMPLE 1: Complex type definition with sequence constructor and mixed content type:

<element name="MySeqMixed">
 <xsd:complexType name="MyComplexType-12" mixed="true">
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
 <attribute name="attrib" type="integer"/>
 </xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MySeqMixedMyComplexType_12 {
 record of XSD.String embed_values,
 // in TTCN-3 values the embed_values field may have max. 3 record of components
 XSD.Integer attrib optional,
 XSD.String a,
 XSD.Boolean b
}
with {
 variant "element";
 variant "embedValues";
 variant(attrib) "attribute"
}

//And the template
template MySeqMixedMyComplexType_12 t_MySeqMixedMyComplexType_12 := {
 embed_values:= {"The ordered", "has arrived", "Wait for further information."},
 a:= "car",
 b:= true
}

//will be encoded as
<MySeqMixedMyComplexType-12>
 The ordered
 <a>car
 has arrived
 true
 Wait for further information.
</MySeqMixedMyComplexType-12>

EXAMPLE 2: Complex type definition with sequence constructor of multiple occurrences and mixed
content type:

<element name="MyComplexElem-16">
 <xsd:complexType name="MyComplexType-16" mixed="true">
 <xsd:sequence maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
 </xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem_16 {
 record of XSD.String embed_values,
 record of record {
 XSD.String a,
 XSD.Boolean b
 } sequence_list
}
with {
 variant "name as 'MyComplexElem-16'";
 variant "element"
 variant "embedValues"
}

//And the template
template MyComplexTypeElem_16 t_MyComplexTypeElem_16 := {
 embed_values := { "The ordered", "has arrived",
 "the ordered", "has arrived!", "Wait for further information."},

70 Rec. ITU-T Z.169 (03/2011)

 sequence_list := {
 { a:= "car", b:= false},
 { a:= "bicycle", b:= true}
 }
}
//will be encoded as
<MyComplexTypeElem-16>
 The ordered
 <a>car
 has arrived
 false
 the ordered
 <a>bicycle
 has arrived!
 true
 Wait for further information.
</MyComplexTypeElem-16>

EXAMPLE 3: Complex type definition with all constructor and mixed content type:

<element name="MyComplexElem-13">
 <xsd:complexType name="MyComplexType-13" mixed="true">
 <xsd:all>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:all>
 </xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem_13 {
 record of XSD.String embed_values,
 record of enumerated {a,b} order,
 XSD.String a,
 XSD.Boolean b
}
with {
 variant "name as 'MyComplexElem-13'";
 variant "element";
 variant "embedValues";
 variant "useOrder"
}

//And the template
template MyComplexTypeElem_13 t_MyComplexTypeElem_13 := {
 embed_values:= {"Arrival status", "product name","Wait for further information."},
 order := {b,a},
 a:= "car",
 b:= false
}
//will be encoded as
<MyComplexTypeElem-13>
 Arrival status
 false
 product name
 <a>car
 Wait for further information.
</MyComplexTypeElem-13>

EXAMPLE 4: Complex type definition with all constructor, optional elements and mixed content
type:

<xsd:complexType name="MyComplexType-15" mixed="true">
 <xsd:all minOccurs="0">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:all>
</xsd:complexType>

// Is translated to the TTCN-3 type definition
type record MyComplexType_15 {
 record of XSD.String embed_values,
 record of enumerated {a,b} order,
 XSD.String a optional,
 XSD.Boolean b optional
}

 Rec. ITU-T Z.169 (03/2011) 71

with {
 variant "embedValues";
 variant "useOrder"
}

//And the template
template MyComplexType_15 t_MyComplexType_15 := {
 embed_values:= {"Arrival status", "Wait for further information."},
 order := {b},
 a:= omit,
 b:= false
}
//will be encoded as
<MyComplexType-15>
 Arrival status
 false
 Wait for further information.
</MyComplexType-15>

EXAMPLE 5: Complex type definition with choice constructor and mixed content type:

<element name="MyComplexElem-14">
 <xsd:complexType name="MyComplexType-14" mixed="true">
 <xsd:choice>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:choice>
 </xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem_14 {
 record of XSD.String embed_values,
 union {
 XSD.String a,
 XSD.Boolean b
 } choice
}
with {
 variant "name as 'MyComplexElem-14'";
 variant "element";
 variant "embedValues"
}

//And the template
template MyComplexTypeElem_14 t_MyComplexTypeElem_14 := {
 embed_values:= {"Arrival status", "Wait for further information."},
 choice := { b:= false }
}
//will be encoded as
<MyComplexTypeElem-14>
 Arrival status
 false
 Wait for further information.
</MyComplexTypeElem-14>

7.7 Any and anyAttribute

An XSD any element can be defined in complex types, as a child of sequence or choice (i.e., locally
only) and specifies that any well-formed XML is permitted in the type's content model. The content
of this XML shall not be parsed and interpreted by the encoder and decoder. In addition to the any
element, which enables element content according to namespaces, there is an analogous XSD
anyAttribute element which enables transparent (from the codec's point of view) attributes to
appear in elements.

The any element shall be translated, like other elements, to a field of the enframing record type or
field or union field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shall be XSD.String and
the name of the field shall be the result of applying clause 5.2.2 to "elem".

NOTE – The mapping may be influenced by the attributes applied to the component, if any. See more details
in clause 7.4, especially clause 7.1.4.

72 Rec. ITU-T Z.169 (03/2011)

The anyAttribute element shall be translated, like other attributes, to a field of the enframing
record type or field or union field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shall be
record of XSD.String and the name of the field shall be the result of applying clause 5.2.2 to
"attr". In the case an XSD component contains more than one anyAttribute components (e.g., by a
complex type extending an another complex type containing already anyAttribute), only one record
of XSD.String field shall be generated (with the name resulted from applying clause 5.2.2 to "attr")
but the namespace specifications of all anyAttribute components shall be considered in the
"anyAttributes" encoding instruction (see below).

The codec shall be controlled by an "anyElement " or "anyAttributes"" encoding instructions
correspondingly, complemented with an optional "from" or "except" clause specifying the list of
namespaces which are allowed or restricted to qualify the given attribute or element. Details on
constructing and use of the "anyAttributes" and "anyElement" encoding instructions are given in
clauses B.3.3 and B.3.2, correspondingly.

EXAMPLE 1: Translating any:

<!--

 Please note, the target namespace of the complexType definitions below is
 "http://www.example.org/ttcn/wildcards"
-->

<xs:complexType name="e46">
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="e46a">
 <xs:sequence>
 <xs:any minOccurs="0" namespace="##other"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="e46b">
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
 </xs:sequence>
</xs:complexType>

//Are mapped to the following TTCN-3 code and encoding extensions:
type record E46 {
 XSD.String elem
}
with {
 variant "name as uncapitalized";
 variant(elem) "anyElement"
}

type record E46a {
 XSD.String elem optional
}
with {
 variant "name as uncapitalized";
 variant(elem) "anyElement except unqualified,'http://www.organization.org/ttcn/wildcard'"
}

type record E46b {
 record of XSD.String elem_list
}
with {
 variant "name as uncapitalized";
 variant(elem_list) "anyElement except unqualified"
}

 Rec. ITU-T Z.169 (03/2011) 73

EXAMPLE 2: Translating anyAttribute:

<!-- Please note, the target namespace of the complexType definitions below is
"http://www.example.org/ttcn/wildcards" -->
<xs:complexType name="e45">
 <xs:anyAttribute namespace="##any"/>
</xs:complexType>

<xs:complexType name="e45a">
 <xs:anyAttribute namespace="##other"/>
</xs:complexType>

<xs:complexType name="e45b">
 <xs:anyAttribute namespace="##targetNamespace"/>
</xs:complexType>

<xs:complexType name="e45c">
 <xs:anyAttribute namespace="##local http://www.example.org/ttcn/attribute"/>
</xs:complexType>

<xs:complexType name="e45d">
 <xs:complexContent>
 <xs:extension base="e45c">
 <xs:anyAttribute namespace="##targetNamespace"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

//Are mapped as follows:
type record E45 {
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant(attr) "anyAttributes"
}

type record E45a {
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant(attr) "anyAttributes except 'http://www.example.org/ttcn/wildcards'"
}

type record E45b {
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant(attr) "anyAttributes from 'http://www.example.org/ttcn/wildcards'"
}

type record E45c {

with {
 variant "name as uncapitalized";
 variant(attr) "anyAttributes from unqualified,'http://www.example.org/ttcn/attribute'"
}

type record E45d {
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant(attr) "anyAttributes from unqualified, 'http://www.example.org/ttcn/attribute',
'http://www.example.org/ttcn/wildcards'"
}

74 Rec. ITU-T Z.169 (03/2011)

7.8 Annotation

An XSD annotation is used to include additional information in the XSD data. Annotations may
appear in every component and shall be mapped to a corresponding comment in TTCN-3. The
comment shall appear in the TTCN-3 code just before the mapped structure it belongs to. This
Recommendation does not describe a format in which the comment shall be inserted into the
TTCN-3 code.

EXAMPLE:

<annotation>
 <appinfo>Note</appinfo>
 <documentation xml:lang="en">This is a helping note!</documentation>
</annotation>

//Could be translated to:
// Note: This is a helping note !

7.9 Group components

XSD group definition, defined globally, enables groups of elements to be defined and named, so that
the elements can be used to build up the content models of complex types. The child of a group shall
be one of the all, choice or sequence compositors.

They shall be mapped the same way as complexTypes with one difference: the "untagged" encoding
instruction shall be attached to the generated TTCN-3 component, corresponding to the group
element (but, of course, will always represent a subset of complex types, as only the above
compositors are allowed as child and can never have attributes).

EXAMPLE: Mapping of groups:

<xs:group name="shipAndBill">
 <xs:sequence>
 <xs:element name="shipTo" type="xs:string"/>
 <xs:element name="billTo" type="xs:string"/>
 </xs:sequence>
</xs:group>

<xs:group name="shipOrBill">
 <xs:choice>
 <xs:element name="shipTo" type="xs:string"/>
 <xs:element name="billTo" type="xs:string"/>
 </xs:choice>
</xs:group>

<xs:group name="shipAndBillAll">
 <xs:all>
 <xs:element name="shipTo" type="xs:string"/>
 <xs:element name="billTo" type="xs:string"/>
 </xs:all>
</xs:group>

//Is translated to TTCN-3 as:
type record ShipAndBill {
 XSD.String shipTo,
 XSD.String billTo
}
with {
 variant "untagged"
}

type record ShipOrBill {
 XSD.String shipTo,
 XSD.String billTo
}
with {
 variant "untagged"
}

 Rec. ITU-T Z.169 (03/2011) 75

type record ShipAndBillAll {
 record of enumerated { shipTo, billTo } order,
 XSD.String shipTo,
 XSD.String billTo
}
with {
 variant "untagged";
 variant "useOrder"
}

7.10 Identity-constraint definition schema components

The XSD unique element enables to indicate that some XSD attribute or element values shall be
unique within a certain scope. As TTCN-3 does not allow a similar relational value constraint,
mapping of the unique, key and keyref elements are not supported by this Recommendation,
i.e., these elements shall be ignored in the translation process.

NOTE 1 – It is recommended that converter tools are retain the information of the unique, key and keyref
elements in a TTCN-3 comment, to help the user in producing TTCN-3 values and templates complying with
the original XSD specification.

NOTE 2 – As the selector and field XSD elements may only appear as child elements of a unique, key or
keyref element, they are automatically ignored when their parent element is ignored.

76 Rec. ITU-T Z.169 (03/2011)

Annex A

TTCN-3 module XSD

(This annex forms an integral part of this Recommendation)

This annex defines a TTCN-3 module containing type definitions equivalent to XSD built-in types.

NOTE – The capitalized type names used in Annex A of [ITU-T X.694] have been retained for compatibility.
All translated structures are the result of two subsequent transformations applied to the XSD Schema: first,
transformations described in [ITU-T X.694], then transformations described in [ITU-T Z.167]. In addition,
specific extensions are used that allow codecs to keep track of the original XSD nature of a given TTCN-3
type.

module XSD {

//These constants are used in the XSd date/time type definitions
const charstring
 dash := "-",
 cln := ":",
 year := "(0(0(0[1-9]|[1-9][0-9])|[1-9][0-9][0-9])|[1-9][0-9][0-9][0-9])",
 yearExpansion := "(-([1-9][0-9]#(0,))#(,1))#(,1)",
 month := "(0[1-9]|1[0-2])",
 dayOfMonth := "(0[1-9]|[12][0-9]|3[01])",
 hour := "([01][0-9]|2[0-3])",
 minute := "([0-5][0-9])",
 second := "([0-5][0-9])",
 sFraction := "(.[0-9]#(1,))#(,1)",
 endOfDayExt := "24:00:00(.0#(1,))#(,1)",
 nums := "[0-9]#(1,)",
 ZorTimeZoneExt := "(Z|[\+\-]((0[0-9]|1[0-3]):[0-5][0-9]|14:00))#(,1)",
 durTime := "(T[0-9]#(1,)"&
 "(H([0-9]#(1,)(M([0-9]#(1,)(S|.[0-9]#(1,)S))#(,1)|.[0-9]#(1,)S|S))#(,1)|"&
 "M([0-9]#(1,)(S|.[0-9]#(1,)S)|.[0-9]#(1,)M)#(,1)|"&
 "S|"&
 ".[0-9]#(1,)S))"

//anySimpleType

type XMLCompatibleString AnySimpleType with {

 variant "XSD:anySimpleType"
};
//anyType;

type record AnyType
{
record of String attr,
record of String elem_list
} with {

 variant "XSD:anyType";
 variant(attr) "anyAttributes";
 variant(elem_list) "anyElement";
};

 // String types

 type XMLCompatibleString String with {
 variant "XSD:string"
 };

 type XMLStringWithNoCRLFHT NormalizedString with {
 variant "XSD:normalizedString"
 };

 type NormalizedString Token with {
 variant "XSD:token"
 };

 type XMLStringWithNoWhitespace Name with {
 variant "XSD:Name"
 };

 Rec. ITU-T Z.169 (03/2011) 77

 type XMLStringWithNoWhitespace NMTOKEN with {
 variant "XSD:NMTOKEN"
 };

 type Name NCName with {
 variant "XSD:NCName"
 };

 type NCName ID with {
 variant "XSD:ID"
 };

 type NCName IDREF with {
 variant "XSD:IDREF"
 };

 type NCName ENTITY with {
 variant "XSD:ENTITY"
 };

 type octetstring HexBinary with {
 variant "XSD:hexBinary"
 };

 type octetstring Base64Binary with {
 variant "XSD:base64Binary";

 };

 type XMLStringWithNoCRLFHT AnyURI with {
 variant "XSD:anyURI"
 };

 type charstring Language (pattern "[a-zA-Z]#(1,8)(-\w#(1,8))#(0,)") with {
 variant "XSD:language"
 };

 // Integer types

 type integer Integer with {
 variant "XSD:integer"
 };

 type integer PositiveInteger (1 .. infinity) with {
 variant "XSD:positiveInteger"
 };

 type integer NonPositiveInteger (-infinity .. 0) with {
 variant "XSD:nonPositiveInteger"
 };

 type integer NegativeInteger (-infinity .. -1) with {
 variant "XSD:negativeInteger"
 };

 type integer NonNegativeInteger (0 .. infinity) with {
 variant "XSD:nonNegativeInteger"
 };

 type longlong Long with {
 variant "XSD:long"
 };

 type unsignedlonglong UnsignedLong with {
 variant "XSD:unsignedLong"
 };

 type long Int with {
 variant "XSD:int"
 };

 type unsignedlong UnsignedInt with {
 variant "XSD:unsignedInt"
 };

 type short Short with {
 variant "XSD:short"
 };

78 Rec. ITU-T Z.169 (03/2011)

 type unsignedshort UnsignedShort with {
 variant "XSD:unsignedShort"
 };

 type byte Byte with {
 variant "XSD:byte"
 };

type unsignedbyte UnsignedByte with {
 variant "XSD:unsignedByte"
 };

 // Float types

 type float Decimal with {
 variant "XSD:decimal"
 };

 type IEEE754float Float with {
 variant "XSD:float"
 };

 type IEEE754double Double with {
 variant "XSD:double"
 };

 // Time types

type charstring Duration (pattern ") with {
 variant "XSD:duration"
 };
type charstring Duration (pattern
 "{dash}#(,1)P({nums}(Y({nums}(M({nums}D{durTime}#(,1)|{durTime}#(,1))|D{durTime}#(,1))|" &
 "{durTime}#(,1))|M({nums}D{durTime}#(,1)|{durTime}#(,1))|D{durTime}#(,1))|{durTime})"
) with {
 variant "XSD:duration"
 };

type charstring DateTime (pattern
 "{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}T({hour}{cln}{minute}{cln}{second}" &
 "{sFraction}|{endOfDayExt}){ZorTimeZoneExt}"
) with {
 variant "XSD:dateTime"
 };

type charstring Time (pattern
 "({hour}{cln}{minute}{cln}{second}{sFraction}|{endOfDayExt}){ZorTimeZoneExt}"
) with {
 variant "XSD:time"
 };

type charstring Date (pattern
 "{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"
) with {
 variant "XSD:date"
 };

 type charstring GYearMonth (pattern
 "{yearExpansion}{year}{dash}{month}{ZorTimeZoneExt}"
) with {
 variant "XSD:gYearMonth"
 };

 type charstring GYear (pattern
 "{yearExpansion}{year}{ZorTimeZoneExt}"
) with {
 variant "XSD:gYear"
 };

type charstring GMonthDay (pattern
 "{dash}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"
) with {
 variant "XSD:gMonthDay"
 };

 Rec. ITU-T Z.169 (03/2011) 79

 type charstring GDay (pattern
 "{dash}{dash}{dash}{dayOfMonth}{ZorTimeZoneExt}"
) with {
 variant "XSD:gDay"
 };

 type charstring GMonth (pattern
 "{dash}{dash}{month}{ZorTimeZoneExt}"
) with {
 variant "XSD:gMonth"
 };

 // Sequence types

 type record of NMTOKEN NMTOKENS with {
 variant "XSD:NMTOKENS"
 };

 type record of IDREF IDREFS with {
 variant "XSD:IDREFS"
 };

 type record of ENTITY ENTITIES with {
 variant "XSD:ENTITIES"
 };

type record QName
{
AnyURI uri optional,
NCName name
}with {
 variant "XSD:QName"
 };

 // Boolean type

 type boolean Boolean with {
 variant "XSD:boolean"
 };

//TTCN-3 type definitions supporting the mapping of W3C XML Schema built-in datatypes

type utf8string XMLCompatibleString
 (
 char(0,0,0,9).. char(0,0,0,9),
char(0,0,0,10)..char(0,0,0,10),
char(0,0,0,12)..char(0,0,0,12),
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
)

type utf8string XMLStringWithNoWhitespace
 (
 char(0,0,0,33)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
)

type utf8string XMLStringWithNoCRLFHT
 (
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
)

}//end module

80 Rec. ITU-T Z.169 (03/2011)

Annex B

Encoding instructions

(This annex forms an integral part of this Recommendation)

As described in clause 5 of this Recommendation, in case of explicit mapping, the information not
necessary to produce valid TTCN-3 abstract types and values but needed to produce the correct
encoded value (an XML document), shall be retained in encoding instructions. Encoding instructions
are contained in TTCN-3 encode and variant attributes associated with the TTCN-3 definition,
field or value of a definition. This annex defines the encoding instructions for the XSD to TTCN-3
mapping.

NOTE − In case of implicit mapping the information needed for correct encoding is to be retained by the
TTCN-3 tool internally and thus its form is out of scope of this Recommendation.

B.1 General

A single attribute shall contain one encoding instruction only. Therefore, if several encoding
instructions shall be attached to a TTCN-3 language element, several TTCN-3 attributes shall be
used.

The "syntactical structure" paragraph of each clause below identify the syntactical elements of the
attribute (i.e., inside the "with { }" statement. The syntactical elements shall be separated by one or
more whitespace characters. A syntactical element may precede or follow a double quote character
without a whitespace character. There shall be no whitespace between an opening single quote
character and syntactical element directly following it and between a closing single quote character
and the syntactical element directly preceding it. All characters (including whitespaces) between a
pair of single quote characters shall be part of the encoding instruction.

Typographical conventions: bold font identify TTCN-3 keywords. The syntactical elements freetext
and name are identified by italic font; they shall contain one or more characters and their contents
are specified by the textual description of the encoding instruction. Normal font identify syntactical
elements that shall occur within the TTCN-3 attribute as appear in the syntactical structure. The
following character sequences identify syntactical rules and shall not appear in the encoding
instruction itself:

(|) – identify alternatives.

[] – identify that the part of the encoding instruction within the square brackets is optional.

{ } – identify zero or more occurrences of the part between the curly brackets.

""" – identify the opening or the enclosing double quote of the encoding instruction.

B.2 The XML encode attribute

The encode attribute "XML" shall be used to identify:

Syntactical structure
 encode """ (XML | XML1.0 | XML1.1) """
Applicable to (TTCN-3)
Module, group, definition.

 Rec. ITU-T Z.169 (03/2011) 81

B.3 Encoding instructions

B.3.1 XSD data type identification

Syntactical structure(s)
 variant """ (XSD:string | XSD:normalizedString | XSD:token | XSD:Name |

XSD:NMTOKEN |
 XSD:NCName | XSD:ID | XSD:IDREF | XSD:ENTITY |
XSD:hexBinary | XSD:base64Binary |
 XSD:anyURI | XSD:language | XSD:integer | XSD:positiveInteger |
XSD:nonPositiveInteger |
 XSD:negativeInteger | XSD:nonNegativeInteger | XSD:long |
XSD:unsignedLong | XSD:int |
 XSD:unsignedInt | XSD:short | XSD:unsignedShort | XSD:byte |
XSD:unsignedByte |
 XSD:decimal | XSD:float | XSD:double | XSD:duration |
XSD:dateTime | XSD:time | XSD:date |
 XSD:gYearMonth | XSD:gYear | XSD:gMonthDay | XSD:gDay |
XSD:gMonth |
 XSD:NMTOKENS | XSD:IDREFS | XSD:ENTITIES | XSD:QName |
XSD:boolean) """

Applicable to (TTCN-3)

These encoding instructions shall not appear in a TTCN-3 module mapped from XSD. They are
attached to the TTCN-3 type definitions corresponding to XSD data types.

Description

The encoder and decoder shall handle instances of a type according to the corresponding XSD data
type definition. In particular, record of elements of instances corresponding to the XSD sequence
types NMTOKENS IDREFS and ENTITIES shall be combined into a single XML list value using a
single space as separator between the list elements. At decoding the XML list value shall be mapped
to a TTCN-3 record of value by separating the list into its itemType elements (the whitespaces
between the itemType elements shall not be part of the TTCN-3 value). The uri and name fields of a
TTCN-3 instance of an XSD:QName type shall be combined to an XSD QName value at encoding.
At decoding an XSD QName value shall be separated to the URI part and the non-qualified name
part (the double colon between the two shall be disposed) and those parts shall be assigned to the
uri and name fields of the corresponding TTCN-3 value correspondingly.

B.3.2 Any element

Syntactical structure(s)

 variant """ anyElement [except ('freetext' | unqualified) |
 from [unqualified ,] [{ 'freetext' , } 'freetext']] """

Applicable to (TTCN-3)

Fields of structured types generated for the XSD any element (see clause 7.7).

NOTE − If the any element has a maxOccurs attribute with a value more than 1 (including "unbounded"), the
element is mapped to a record of XSD.String field, in which case the anyElement instruction shall be
applied to the XSD.String type as well, like in all other cases. See for example the conversion of XSD
complex type e46b in clause 7.7.

82 Rec. ITU-T Z.169 (03/2011)

Description

One TTCN-3 attribute shall be generated for each field corresponding to an XSD any element. The
freetext part(s) shall contain the URI(s) identified by the namespace attribute of the XSD any
element. The namespace attribute may also contain wildcard. They shall be mapped as given in
Table B.1.

Table B.1 − Mapping namespace attribute wildcards

Facet

type

Value of the XSD
namespace attribute

Except or from clause in the
TTCN-3 attribute

Remark

##any
<nor except neither from clause

present>

##local from unqualified

##other except "<target namespace of the
ancestor schema element of the

given any element>"

Also disallows unqualified
elements, i.e., elements without

a target namespace

##other except unqualified In the case no target namespace
is ancestor schema element of

the given any element

##targetNamespace from "<target namespace of the
ancestor schema element of the

given any element >"

"http://www.w3.org/1999/xhtml
 ##targetNamespace"

from
"http://www.w3.org/1999/xhtml",

"<target namespace of the
ancestor schema element of the

given any element >"

B.3.3 Any attributes

Syntactical structure(s)
 variant """ anyAttributes [except 'freetext' | from [unqualified ,] { 'freetext', } 'freetext'] """

Applicable to (TTCN-3)

Fields of structured types generated for the XSD anyAttribute element (see clause 7.7).

Description

Except its applicability it shall be constructed and used the same way as the anyElement encoding
instruction (see clause B.3.2).

B.3.4 Attribute

Syntactical structure(s)
 variant """ attribute """

Applicable to (TTCN-3)

Top-level type definitions and fields of structured types generated for XSD attribute elements.

Description

This encoding instruction designates that the instances of the TTCN-3 type or field shall be encoded
and decoded as XML attributes.

http://www.w3.org/1999/xhtml

 Rec. ITU-T Z.169 (03/2011) 83

B.3.5 AttributeFormQualified

Syntactical structure(s)
 variant """ attributeFormQualified """

Applicable to (TTCN-3)

Modules.

Description

This encoding instruction designates that names of XML attributes that are instances of TTCN-3
definitions in the given module shall be encoded as qualified names and at decoding qualified names
shall be expected as valid attribute names.

B.3.6 Control Namespace identification

Syntactical structure(s)
 variant """ controlNamespace 'freetext' prefix 'freetext' """

Applicable to (TTCN-3)

Module.

Description

The control namespace is the namespace to be used for the type identification attributes and schema
instances (e.g., in the special XML attribute value "xsi:nil", see mapping of the nillable XSD
attribute in clause 7.1.11). It shall be specified globally, with an encoding instruction attached to the
TTCN-3 module.

The first freetext component identifies the namespace (normally
"http://www.w3.org/2001/XMLSchema-instance" is used), the second freetext component identifies
the namespace prefix (normally "xsi" is used).

B.3.7 Default for empty

Syntactical structure(s)
 variant """ defaultForEmpty as 'freetext' """

Applicable to (TTCN-3)

TTCN-3 components generated for XSD attribute or element elements with a fixed or default
attribute.

Description

The "freetext" component shall designate a valid value of the type to which the encoding instruction
is attached to. This encoding instruction has no effect on the encoding process and designates that
the decoder shall insert the value specified by freetext if the corresponding attribute or element is
omitted in the received XML document.

B.3.8 Element

Syntactical structure(s)
 variant """ element """

Applicable to (TTCN-3)

Top-level type definitions generated for XSD element elements that are direct children of a schema
element.

\bluedfspoolQPUBTSBRECZZ.169-2011ECompo"http:www.w3.org�1XMLSchema-instance

84 Rec. ITU-T Z.169 (03/2011)

Description

This encoding instruction designates that the instances of the TTCN-3 type shall be encoded and
decoded as XML elements.

B.3.9 ElementFormQualified

Syntactical structure(s)
 variant """ elementFormQualified """

Applicable to (TTCN-3)

Modules.

Description

This encoding instruction designates that tags of XML local elements that are instances of TTCN-3
definitions in the given module shall be encoded as qualified names and at decoding qualified names
shall be expected as valid element tags names.

B.3.10 Embed values

Syntactical structure(s)
 variant """ embedValues """

Applicable to (TTCN-3)

TTCN-3 record types generated for XSD complexType-s and complexContent-s with the value of the
mixed attribute "true".

Description

The encoder shall encode the record type to which this attribute is applied in a way, which produces
the same result as the following procedure: first a partial encoding of the record is produced,
ignoring the embed_values field. The first string of the embed_values field (the first record of
element) shall be inserted at the beginning of the partial encoding, before the start-tag of the first
XML element (if any). Each subsequent string shall be inserted between the end-tag of the XML
element and the start-tag of the next XML element (if any), until all strings are inserted. In the case
the maximum allowed number of strings is present in the TTCN-3 value (the number of the XML
elements in the partial encoding plus one) the last string will be inserted after end-tag of the last
element (to the very end of the partial encoding). The following special cases apply:

a) At decoding, strings before, in-between and following the XML elements shall be collected
as individual components of the embed_values field. If no XML elements are present, and
there is also a defaultForEmpty encoding instruction on the sequence type, and the encoding
is empty, a decoder shall interpret it as an encoding for the freetext part specified in the
defaultForEmpty encoding instruction and assign this abstract value to the first (and only)
component of the embed_values field.

b) If the type also has a useNil encoding instruction and the optional component is absent, then
the embedValues encoding instruction has no effect.

c) If the type has a useNil encoding instruction and if a decoder determines that the optional
component is present, by the absence of a nil identification attribute (or its presence with the
value false), then item a) above shall apply.

 Rec. ITU-T Z.169 (03/2011) 85

B.3.11 Form

Syntactical structure(s)
 variant """ form as (qualified | unqualified) """

Applicable to (TTCN-3)

Top-level type definitions generated for XSD attribute elements and fields of structured type
definitions generated for XSD attribute or element elements.

Description

This encoding instruction designates that names of XML attributes or tags of XML local elements
corresponding to instances of the TTCN-3 type or field of type to which the form encoding
instruction is attached, shall be encoded as qualified or unqualified names respectively and at
decoding qualified or unqualified names shall be expected respectively as valid attribute names or
element tags.

B.3.12 List

Syntactical structure(s)
 variant """ list """

Applicable to (TTCN-3)

Record of types mapped from XSD simpleType-s derived as a list type.

Description

This encoding instruction designates that the record of type shall be handled as an XSD list type,
namely, record of elements of instances shall be combined into a single XML list value using a
single SP(32) (space) character as separator between the list elements. At decoding the XML list
value shall be mapped to a TTCN-3 record of value by separating the list into its itemType elements
(the whitespaces between the itemType elements shall not be part of the TTCN-3 value).

B.3.13 Name

Syntactical structure(s)
 variant """ name (as ('freetext' | changeCase) | all as changeCase) """,

where changeCase := (capitalized | uncapitalized | lowercased | uppercased)

Applicable to (TTCN-3)

Type or field of structured type. The form when freetext is empty shall be applied to fields of union
types with the "useUnion" encoding instruction only (see clause B.3.16).

Description

The name encoding instruction identifies if the name of the TTCN-3 definition or field differs from
the value of the name attribute of the related XSD element. The name resulted from applying the
name encoding attribute shall be used as the non-qualified part of the name of the corresponding
XML attribute or element tag.

When the "name as 'freetext'" form is used, freetext shall be used as the attribute name or element
tag, instead of the name of the related TTCN-3 definition (e.g., TTCN-3 type name or field name).

The "name as ''" (i.e., freetext is empty) form designates that the TTCN-3 field corresponds to an
XSD unnamed type, thus its name shall not be used when encoding and decoding XML documents.

The "name as capitalized" and "name as uncapitalized" forms identify that only the first character of
the related TTCN-3 type or field name shall be changed to lower case or upper case respectively.

86 Rec. ITU-T Z.169 (03/2011)

The "name as lowercased " and "name as uppercased " forms identify that each character of the
related TTCN-3 type or field name shall be changed to lower case or upper case respectively.

The "name all as capitalized", "name all as uncapitalized", "name as lowercased" and "name as
uppercased" forms has effect on all direct fields of the TTCN-3 definition to which the encoding
instruction is applied (e.g., in case of a structured type definition to the names of its fields in a non-
recursive way but not to the name of the definition itself and not to the name of fields embedded to
other fields).

The name encoding instruction shall not be applied when the untagged encoding instruction is used.
However, if both instructions are applied to the same TTCN-3 component in the same or in different
TTCN-3 definitions, the untagged instruction takes precedence (i.e., no start and end tags shall be
used, see clause B.3.21).

B.3.14 Namespace identification

Syntactical structure(s)
 variant """ namespace as 'freetext' [prefix 'freetext'] """

Applicable to (TTCN-3)

Modules.

Fields of record types generated for attributes of complexTypes taken in to complexType definitions
by referencing attributeGroup(s), defined in schema elements with a different (but not absent) target
namespace and imported into the schema element which is the ancestor of the complexType.

Description

The first freetext component identifies the namespace to be used in qualified XML attribute names
and element tags at encoding, and to be expected in received XML documents. The second freetext
component is optional and identifies the namespace prefix to be used at XML encoding. If the prefix
is not specified, the encoder shall either identify the namespace as the default namespace (if all other
namespaces involved in encoding the XML document have prefixes) or shall allocate a prefix to the
namespace (if more than one namespace encoding instructions are missing the prefix part).

B.3.15 Nillable elements

Syntactical structure(s)
 variant """ useNil """

Applicable to (TTCN-3)

Top-level record types or record fields generated for nillable XSD element elements.

Description

The encoding instruction designates that the encoder, when the optional field of the record
(corresponding to the nillable element) is omitted, it shall produce the XML element with the
xsi:nil="true" attribute and no value,. When the nillable XML element is present in the received
XML document and carries the xsi:nil="true" attribute, the optional field of the record in the
corresponding TTCN-3 value shall be omitted. If the nillable XML element carries the xsi:nil="true"
attribute and has a children (either any character or element information item) at the same time, the
decoder shall initiate a test case error.

 Rec. ITU-T Z.169 (03/2011) 87

B.3.16 Use Union

Syntactical structure(s)
 variant """ useUnion """

Applicable to (TTCN-3)

Types and field of structured types generated for XSD simpleTypes derived by union (see
clause 7.5.3).

Description

The encoding instruction designates that the encoder shall not use the start-tag and the end-tag
around the encoding of the selected alternative (field of the TTCN-3 union type) and shall use the
type identification attribute, identifying the XSD base datatype of the selected alternative, except
when encoding attributes or the encoded component has a "list" encoding instruction attached. At
decoding the decoder shall place the received XML value into the corresponding alternative of the
TTCN-3 union type, based on the received value and the type identification attribute, if present.

B.3.17 Text

Syntactical structure(s)
 variant """ text ('name' as ('freetext' |) | all as changeCase) """

NOTE 1 − The definition of changeCase is given in clause B.3.13.

Applicable to (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is a string
type (see clause 6.1.5, first paragraph), and the name(s) of one or more TTCN-3 enumeration values
is(are) differs from the related XSD enumeration item. XSD.Boolean types, instances of
XSD.Boolean types (see clause 6.7).

Description

When name is used, it shall be generated for the differing enumerated values only. The name shall be
the identifier of the TTCN-3 enumerated value the given instruction relates to. If the difference is
that the first character of the XSD enumeration item value is a capital letter while the identifier of the
related TTCN-3 enumeration value starts with a small letter, the "text 'name' as capitalized" form
shall be used. Otherwise, freetext shall contain the value of the related XSD enumeration item.

NOTE 2 − The "text name' as uncapitalized", "text 'name' as lowercased" and "text 'name' as uppercased"
forms are not generated by the current version of this Recommendation but tools are encouraged to support
also these encoding instructions for consistency with the "name as … " encoding instruction.

If the first characters of all XSD enumeration items are capital letters, while the names of all related
TTCN-3 enumeration values are identical to them except the case of their first characters, the "text
all as capitalized" form shall be used.

The encoding instruction designates that the encoder shall use freetext or the capitalized name(s)
when encoding the TTCN-3 enumeration value(s) and vice versa.

When the text encoding attribute is used with XSD.Boolean types, the decoder shall accept all four
possible XSD boolean values and map the received value 1 to the TTCN-3 boolean value true and
the received value 0 to the TTCN-3 boolean value false. When the text encoding attribute is used
on the instances of the XSD.Boolean type, the encoder shall encode the TTCN-3 values according to
the encoding attribute (i.e., true as 1 and false as 0).

88 Rec. ITU-T Z.169 (03/2011)

B.3.18 Use number

Syntactical structure(s)
 variant """ useNumber """

Applicable to (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is integer (see
clause 6.1.5, second paragraph).

Description

The encoding instruction designates that the encoder shall use the integer values associated to the
TTCN-3 enumeration values to produce the value or the corresponding XML attribute or element (as
opposed to the names of the TTCN-3 enumeration values) and the decoder shall map the integer
values in the received XML attribute or element to the appropriate TTCN-3 enumeration values.

B.3.19 Use order

Syntactical structure(s)
 variant """ useOrder """

Applicable to (TTCN-3)

Record type definition, generated for XSD complexType-s with all constructor (see clause 7.6.4).

Description

The encoding instruction designates that the encoder shall encode the values of the fields
corresponding to the children elements of the all constructor according to the order identified by the
elements of the order field. At decoding, the received values of the XML elements shall be placed
in their corresponding record fields and a new record of element shall be inserted into the order
field for each XML element processed (the final order of the record of elements shall reflect the
order of the XML elements in the encoded XML document).

B.3.20 Whitespace control

Syntactical structure(s)
 variant """ whitespace (preserve | replace | collapse) """

Applicable to (TTCN-3)

Types or fields of structured types generated for XSD components with the whitespace facet.

Description

The encoding instruction designates that the value of the received XML attribute shall be normalized
before decoding as follows (see also clause 3.3.3 of XML 1.1 [W3C XML]):

• preserve: no normalization shall be done, the value is not changed (this is the behaviour
required by XML Schema Part 2 [W3C XMLSchema-2] for element content).

• replace: all occurrences of HT(9) (horizontal tabulation), LF(10) (line feed) and CR(13)
(carriage return) shall be replaced with an SP(32) (space) character.

• collapse: after the processing implied by replace, contiguous sequences of SP(32) (space)
characters are collapsed to a single SP(32) (space) character, and leading and trailing SP(32)
(space) characters are removed.

 Rec. ITU-T Z.169 (03/2011) 89

B.3.21 Untagged elements

Syntactical structure(s)
 variant """ untagged """

Applicable to (TTCN-3)

Structured type definitions and structured type fields.

Description

Without this attribute the names of the structured type fields (as possible modified by a name as
encoding instruction) or, in case of TTCN-3 type definitions corresponding to global XSD element
declarations the name of the TTCN-3 type (as possible modified by a name as encoding instruction)
are used as the local part of the start and end tags of XML elements at encoding. If the untagged
encoding instruction is applied to a TTCN-3 type or structured type field, the name of the type or
field shall not produce an XML tag when encoding the value of that type or field (in other words, the
tag that would be produced without the untagged attribute shall be suppressed during encoding and
shall not be expected during decoding). The untagged encoding instruction shall only have effect on
the TTCN-3 language element to which it is directly applied; e.g. if applied to a structured type, the
type itself shall not result a starting and end tag in the encoded XML document but the fields of the
structured type shall be encoded using starting and end tags (provided no untagged attribute is
applied to the fields). At decoding no XML starting and end tags shall be present in the encoded
XML document.

Shall not be applied to TTCN-3 components generated for XSD attribute elements (neither global
nor local).

For typical use in case of extending or restricting simple content see clauses 7.6.1.1 and 7.6.1.2 and
for typical use in case of model groups see clause 7.9.

NOTE − Please note, that using the untagged encoding instruction in other cases than specified in this
Recommendation, may result in an undecodable XML document.

90 Rec. ITU-T Z.169 (03/2011)

Annex C

Examples

(This annex does not form an integral part of this Recommendation)

The following examples show how a mapping would look like for example XML Schemas. It is only
intended to give an impression of how the different elements have to be mapped and used in
TTCN-3.

C.1 Example 1

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- This is an embedded example. An element with a sequence body and an attribute.
 The sequence body is formed of elements, two of them are also complexTypes.-->

 <xs:element name="shiporder">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="orderperson" type="xs:string"/>

 <xs:element name="shipto">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="item" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="note" type="xs:string" minOccurs="0"/>
 <xs:element name="quantity" type="xs:positiveInteger"/>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 <xs:attribute name="orderid" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

TTCN-3 Module:

module Example1 {

import from XSD language "XML" all;

type record Shiporder {
 XSD.String orderid,
 XSD.String orderperson,
 record
 {
 XSD.String name,
 XSD.String address_1,
 XSD.String city,
 XSD.String country
 } shipto,
 record
 {

 Rec. ITU-T Z.169 (03/2011) 91

 XSD.String title,
 XSD.String note optional,
 XSD.PositiveInteger quantity,
 XSD.Decimal price
 } item
} with {
 variant "name as uncapitalized";
 variant(shipto.address_1)"name as 'address'";
 variant(orderid) "attribute";
}

} with {
encode "XML";
}

 module Example1Template {

import from XSD language "XML" all;
import from Example1 all;

template Shiporder t_Shiporder:={
 orderid:="18920320_17",
 orderperson:="Dr.Watson",
 shipto:=
 {
 name:="Sherlock Holmes",
 addressField:="Baker Street 221B",
 city:="London",
 country:="England"
 },
 item:=
 {
 title:="Memoirs",
 note:= omit,
 quantity:=2,
 price:=3.5
 }
}

}//end module

<?xml version="1.0" encoding="UTF-8"?>
<shiporder orderid=18920320_17>
<orderperson>Dr.Watson</orderperson>
<shipto>
 <name>Sherlock Holmes</name>
 <address>Baker Street 221B</address>
 <city>London</city>
 <country>England</country>
</shipto>
<item>
 <title>Memoirs</title>
 <quantity>2</quantity>
 <price>3.5</price>
</item>
</shiporder>

C.2 Example 2

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="S1">
 <xs:restriction base="xs:integer">
 <xs:maxInclusive value="2"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="S2">
 <xs:restriction base="S1">
 <xs:minInclusive value="-23"/>
 <xs:maxInclusive value="1"/>
 </xs:restriction>

92 Rec. ITU-T Z.169 (03/2011)

 </xs:simpleType>

 <xs:simpleType name="S3">
 <xs:restriction base="S2">
 <xs:minInclusive value="-3"/>
 <xs:maxExclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="C1">
 <xs:simpleContent>
 <xs:extension base="S3">
 <xs:attribute name="A1" type="xs:integer"/>
 <xs:attribute name="A2" type="xs:float"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

</xs:schema>

TTCN-3 Module:

module Example2 {

 import from XSD language "XML" all;

 type XSD.Integer S1 (-infinity .. 2);

 type S1 S2 (-23 .. 1);

 type S2 S3 (-3 .. 0);

 type record C1 {
 S3 base,
 XSD.Integer a1 optional,
 XSD.Float a2 optional
 } with {
 variant(a1,a2) "name as capitalized ";
 variant(a1,a2) "attribute";
 variant(base) "untagged"
 }
} with {
encode "XML";
}

module Example2Templates {

 import from XSD language "XML" all;
 import from Example2 all;

 template C1 t_C1:= {
 base :=-1,
 a1 :=1,
 a2 :=2.0
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<C1 A1="1" A2="2.0">-1</C1>

C.3 Example 3

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="nsA" targetNamespace="nsA">

 <xs:complexType name="C1">
 <xs:simpleContent>
 <xs:extension base="xs:integer">
 <xs:attribute name="A1" type="xs:integer"/>
 <xs:attribute name="A2" type="xs:integer"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 Rec. ITU-T Z.169 (03/2011) 93

 <xs:complexType name="C2">
 <xs:simpleContent>
 <xs:restriction base="C1">
 <xs:minInclusive value="23"/>
 <xs:maxInclusive value="26"/>
 <xs:attribute name="A1" type="xs:byte" use="required"/>
 <xs:attribute name="A2" type="xs:negativeInteger"/>
 </xs:restriction>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="C3">
 <xs:simpleContent>
 <xs:restriction base="C2">
 <xs:minInclusive value="25"/>
 <xs:maxInclusive value="26"/>
 </xs:restriction>
 </xs:simpleContent>
 </xs:complexType>

</xs:schema>

TTCN-3 Module:

module Example3 {

 import from XSD language "XML" all;

 type record C1 {
 XSD.Integer base,
 XSD.Integer a1 optional,
 XSD.Integer a2 optional
 } with {
 variant(a1,a2)"name as capitalized";
 variant(a1,a2) "attribute";
 variant(base) "untagged"
 }

 type record C2 {
 XSD.Integer (23 .. 26) base,
 XSD.Byte a1,
 XSD.NegativeInteger a2 optional
 } with {
 variant(a1,a2)"name as capitalized";
 variant(a1,a2) "attribute";
 variant(base) "untagged" ;
 }

 type record C3 {
 XSD.Integer (25 .. 26) base,
 XSD.Byte a1,
 XSD.NegativeInteger a2 optional
 } with {
 variant(a1,a2)"name as capitalized";
 variant(a1,a2) "attribute";
 variant(base) "untagged"
 }
} with {
encode "XML";

variant "namespace as ‘nsA'"
}

module Example3Templates {

import from XSD language "XML" all;
import from Example3 all;

 template C1 t_C1:= {
 base :=-1000,
 a1 :=1,
 a2 :=2
 }

94 Rec. ITU-T Z.169 (03/2011)

 template C2 t_C2:= {
 base :=24,
 a1 :=1,
 a2 :=-2
 }

 template C3 t_C3:= {
 base :=25,
 a1 :=1,
 a2 :=-1000
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<C1 xmlns="nsA" A1=1 A2=2>-1000</C1>

<?xml version="1.0" encoding="UTF-8"?>
<C2 xmlns="nsA" A1=1 A2=-2>24</C2>

<?xml version="1.0" encoding="UTF-8"?>
<C3 xmlns="nsA" A1="1" A2="-1000">25</C3>

C.4 Example 4

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:NA="nsA" targetNamespace="nsA">

 <xs:include schemaLocation="Example3.xsd"/>
 <xs:import schemaLocation="Example2.xsd"/>

 <xs:complexType name="newC1">
 <xs:complexContent>
 <xs:extension base="NA:C1"/>
 </xs:complexContent>
 </xs:complexType>

 <xs:simpleType name="newS1">
 <xs:restriction base="S1"/>
 </xs:simpleType>

</xs:schema>

TTCN-3 Module:

module Example4 {

 import from XSD language "XML" all;
 import from Example2 language "XML" all;
 import from Example3 language "XML" all;

 type Example3.C1 NewC1
 with {variant "name as uncapitalized"}

 type Example2.S1 NewS1
 with {variant "name as uncapitalized"}

} with {
encode "XML";
variant "namespace as ‘nsA' prefix ‘NA'"
}

 module Example4Templates {

 import from XSD language "XML" all;
 import from Example2 language "XML" all;
 import from Example3 language "XML" all;
 import from Example4 all;

 template NewC1 t_NewC1:= {
 base :=-1000,
 a1 :=1,
 a2 :=2

 Rec. ITU-T Z.169 (03/2011) 95

 }

 template NewS1 NewS1:=1
}

<?xml version="1.0" encoding="UTF-8"?>
<NA:newC1 xmlns:NA="nsA" A1="1" A2="2">-1000</NA:newC1>

<?xml version="1.0" encoding="UTF-8"?>
<NA:newS1 xmlns:NA="nsA">1</NA:newS1>

96 Rec. ITU-T Z.169 (03/2011)

Annex D (informative)

Deprecated features

(This appendix does not form an integral part of this Recommendation)

D.1 Using the anyElement encoding instruction to record of fields

The TTCN-3 core language, defined in [ITU-T Z.161], up to and including version v3.4.1, did not
allow referencing the type replicated in a TTCN-3 record of or set of type definition. As a
consequence, when the any XSD element have had a maxOccurs attribute with the value more then 1
(including "unbounded"), and is converted to a TTCN-3 record of XSD.String field, the
anyElement encoding instruction could not be attached to the XSD.String type, as in all other cases,
but have had to be attached to the record of. As the above limitation was removed in the core
language, using the anyElement encoding instruction with other types than the XSD.String, resulted
from the conversion of an XSD any element is deprecated. TTCN-3 tools, however, are encouraged
to accept both syntaxes in TTCN-3 modules further on, but, when converting XSD Schemas to
TTCN-3, generate only the syntax according to this document.

EXAMPLE 1: The outdated syntax:

<xs:complexType name="e46b">
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
 </xs:sequence>
</xs:complexType>

//Was mapped to the following TTCN-3 code and encoding extensions according to
//elder versions of this document:
type record E46b {
 record of XSD.String elem_list
}
with {
 variant "name as uncapitalized";
 variant(elem_list) "anyElement except unqualified"
}

EXAMPLE 2: The present syntax:

<xs:complexType name="e46b">
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
 </xs:sequence>
</xs:complexType>

//Is mapped to the following TTCN-3 code and encoding extensions:
type record E46b {
 record of XSD.String elem_list
}
with {
 variant "name as uncapitalized";
 variant(elem_list[-]) "anyElement except unqualified"
// ^ ^ pls. note the dash syntax here
}

Printed in Switzerland
Geneva, 2011

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.169 (03/2011) – Testing and Test Control Notation version 3: TTCN-3 mapping from XML data definition
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Symbols and abbreviations
	3.1 Definitions
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction
	4.1 Conformance and compatibility

	5 Mapping XML Schemas
	5.1 Namespaces and document references
	5.2 Name conversion
	5.3 Unsupported features

	6 Built-in data types
	6.1 Mapping of facets
	6.2 String types
	6.3 Integer types
	6.4 Float types
	6.5 Time types
	6.6 Sequence types
	6.7 Boolean type
	6.8 AnyType and anySimpleType types

	7 Mapping XSD components
	7.1 Attributes of XSD component declarations
	7.2 Schema component
	7.3 Element component
	7.4 Attribute and attribute group definitions
	7.5 SimpleType components
	7.6 ComplexType components
	7.7 Any and anyAttribute
	7.8 Annotation
	7.9 Group components
	7.10 Identity-constraint definition schema components

	Annex A – TTCN-3 module XSD
	Annex B – Encoding instructions
	B.1 General
	B.2 The XML encode attribute
	B.3 Encoding instructions
	Annex C – Examples
	C.1 Example 1
	C.2 Example 2
	C.3 Example 3
	C.4 Example 4
	Annex D (informative) – Deprecated features
	D.1 Using the anyElement encoding instruction to record of fields

