ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

Secure applications and services – Intelligent transportation system (ITS) security

Secure software update capability for intelligent transportation system communication devices

Recommendation ITU-T X.1373

T-U-T

ITU-T X-SERIES RECOMMENDATIONS DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS	X.1-X.199
OPEN SYSTEMS INTERCONNECTION	X.200-X.299
INTERWORKING BETWEEN NETWORKS	X.300-X.399
MESSAGE HANDLING SYSTEMS	X.400-X.499
DIRECTORY	X.500-X.599
OSI NETWORKING AND SYSTEM ASPECTS	X.600-X.699
OSI MANAGEMENT	X.700-X.799
SECURITY	X.800-X.849
OSI APPLICATIONS	X.850-X.899
OPEN DISTRIBUTED PROCESSING	X.900-X.999
INFORMATION AND NETWORK SECURITY	
General security aspects	X.1000-X.1029
Network security	X.1030-X.1049
Security management	X.1050-X.1069
Telebiometrics	X.1080-X.1099
SECURE APPLICATIONS AND SERVICES	
Multicast security	X.1100-X.1109
Home network security	X.1110-X.1119
Mobile security	X.1120-X.1139
Web security	X.1140-X.1149
Security protocols	X.1150-X.1159
Peer-to-peer security	X.1160-X.1169
Networked ID security	X.1170-X.1179
IPTV security	X.1180–X.1199
CYBERSPACE SECURITY	
Cybersecurity	X.1200-X.1229
Countering spam	X.1230-X.1249
Identity management	X.1250-X.1279
SECURE APPLICATIONS AND SERVICES	
Emergency communications	X.1300-X.1309
Ubiquitous sensor network security	X.1310-X.1339
PKI related Recommendations	X.1340-X.1349
Internet of things (IoT) security	X.1360-X.1369
Intelligent transportation system (ITS) security	X.1370-X.1379
CYBERSECURITY INFORMATION EXCHANGE	
Overview of cybersecurity	X.1500-X.1519
Vulnerability/state exchange	X.1520-X.1539
Event/incident/heuristics exchange	X.1540-X.1549
Exchange of policies	X.1550-X.1559
Heuristics and information request	X.1560-X.1569
Identification and discovery	X.1570-X.1579
Assured exchange	X.1580-X.1589
CLOUD COMPUTING SECURITY	
Overview of cloud computing security	X.1600-X.1601
Cloud computing security design	X.1602-X.1639
Cloud computing security best practices and guidelines	X.1640-X.1659
Cloud computing security implementation	X.1660–X.1679
Other cloud computing security	X.1680–X.1699

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T X.1373

Secure software update capability for intelligent transportation system communication devices

Summary

As intelligent transportation system (ITS) technologies improve, it has become common for vehicles to communicate with other entities such as other vehicles, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Electric devices inside a vehicle such as electronic control units (ECUs), electronic toll collections (ETCs) and car navigation systems are becoming more sophisticated. As a result, software modules inside those electric devices need to be appropriately updated for the purpose of bug fixing, and for performance and security improvements to avoid accidents.

In order to fulfil the above requirement, Recommendation ITU-T X.1373 provides secure software update procedures between a software update server and vehicles with appropriate security controls. This Recommendation can be practically utilized by car manufacturers and ITS-related industries as a set of standard capabilities for best practices.

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T X.1373	2017-03-30	17	11.1002/1000/13197

Keywords

Communication devices, denial of service attack, DoS, embedded system, hardware security module, HSM, intelligent transportation system, ITS, malware, privacy, risk analysis, vehicle-to-vehicle, V2V, vehicle-to-infrastructure, V2I, vehicle-to-X (vehicle/infrastructure) (V2X), wireless communications.

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2017

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

Page

1	Scope		1
2	Referen	ces	1
3	Definiti	ons	1
	3.1	Terms defined elsewhere	1
	3.2	Terms defined in this Recommendation	2
4	Abbrevi	iations and acronyms	2
5	Conven	tions	3
6	Basic m	odel of remote software update	3
	6.1	Modules of ITS environment for software update	3
	6.2	Model of software update procedure	4
7	Specific	cation of secure software update procedure	6
	7.1	General message format with security functions	6
	7.2	Protocol definition and data format	7
Apper	ndix I – N	Aethodology on risk analysis	22
	I.1	Methodology on risk analysis based on [b-JASO TP15002]	22
	I.2	Data verification using MAC algorithms	29
Apper	ndix II – '	Threats, security requirements and security controls	30
	II.1	Definition of target of evaluation	30
	II.2	Identification of major threats	32
	II.3	Security Requirements in TOE	35
	II.4	Security controls	38
Biblio	graphy		40

Recommendation ITU-T X.1373

Secure software update capability for intelligent transportation system communication devices

1 Scope

In the context of updates of software modules in the electric devices of vehicles in the intelligent transportation system (ITS) communication environment, this Recommendation aims to provide a procedure of secure software updating for ITS communication devices for the application layer in order to prevent threats such as tampering of and malicious intrusion to communication devices in vehicles. This includes a basic model of software update, security controls for software update and a specification of abstract data format of update software module.

The procedure related to in-vehicle communication is the out of scope of this Recommendation. For reference, the procedure used in-vehicle in this Recommendation is informative.

The procedure is intended to be applied to communication devices on ITS vehicles under vehicle-to-infrastructure (V2I) communication by means of the Internet and/or ITS dedicated networks. The procedure provides a technical guideline without compliance requirements and can be practically utilized by car manufactures and ITS-related industries as a set of secure procedures and security controls.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.509]	Recommendation ITU-T X.509 (2012) ISO/IEC 9594-8:2014, Information technology – Open Systems Interconnection – The Directory: Public-key and attribute certificate frameworks.
[ITU-T X.1521]	Recommendation ITU-T X.1521 (2011), Common vulnerability scoring system.
[ISO/IEC 15408-1]	ISO/IEC 15408:2009, Information technology – Security techniques – Evaluation criteria for IT security – Part 1: Introduction and general model.
[ISO/IEC 27000]	ISO/IEC 27000:2014, Information technology – Security techniques – Information security management systems – Overview and vocabulary.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following term defined elsewhere:

3.1.1 threat [ISO/IEC 27000]: Potential cause of an unwanted incident, which may result in harm to a system or organization.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 risk score: A score that a risk analysis method calculates for each threat.

3.2.2 vehicle mobile gateway (VMG): A module which provides communication between electronic control units (ECUs) in the controller area network (CAN) (in-vehicle buses) and exterior intelligent transportation system (ITS) entities in the external network.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

CA	Certification Authority
CAN	Controller Area Network
CD	Compact Disc
CRSS	CVSS based Risk Scoring System
CVSS	Common Vulnerability Scoring System
DoS	Denial of Service
DVD	Digital Versatile Disc
ECU	Electronic Control Unit
ETC	Electronic Toll Collection
FT	Fault Tree
GPS	Global Positioning System
GUID	Global User ID
HSM	Hardware Security Module
HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
ID	Identifier
IT	Information Technology
ITS	Intelligent Transportation System
LIN	Local Interconnect Network
MAC	Message Authentication Code
MOST	Media Oriented Systems Transport
OBD	On-board diagnostics
OEM	Original Equipment Manufacturer
PC	Personal Computer
RPM	Revolutions per Minute
RSS	Risk Scoring System
SD	Secure Digital
SHA	Secure Hash Algorithm
SSL	Secure Socket Layer

Transport Layer Security
Target of Evaluation
Trusted Platform Module
Television
User Interface
Uniform Resource Locator
Universal Serial Bus
Update server
Vehicle-to-Infrastructure
Vehicle-to-Vehicle
Vehicle-to-X (vehicle/infrastructure)
Vehicle Mobile Gateway
Wireless-Fidelity
Extended Mark-up Language

5 Conventions

None.

6 Basic model of remote software update

For considerations of a practical security architecture, this clause introduces a basic model of conventional architecture of software update, where a definition of principal modules and typical software update processes are provided.

6.1 Modules of ITS environment for software update

Figure 1 provides a view of principal modules around a vehicle for a remote software update in the ITS communication environment. The principal modules are information devices, electronic control units (ECUs), and vehicle mobile gateway (VMG) on a vehicle, update server (Usvr) and log database of car manufacturer and supplier. The procedure related to in-vehicle communication (e.g., between ECUs and vehicle mobile gateway) is out of the scope of this Recommendation. Modules used for in-vehicle communication (such as "User Interface" and "ECUs") are described below in an informative manner.

Figure 1 – Principal modules around a vehicle

6.1.1 User interface (informative)

The user interface (UI) is generally an on-board or an aftermarket information device with display and input devices on a vehicle. Such an information device is directly connected to other devices on a vehicle (e.g., VMG or ECU (see clause 6.1.2)) so that it can obtain and indicate various status information of the vehicle such as speed, revolutions per minute (RPM), fuel level, and so on. Particularly, in this Recommendation, a user interface is used to notify car drivers of the necessity for updates.

6.1.2 Electronic control unit (ECU) (informative)

ECU is a generic term for computers which control various kinds of devices in a vehicle. In the earliest years of ECU, its main functions were controls of ignition timing, injection, idling adjustment and limiter of engine in order to improve fuel efficiency and reduce gas emissions. According to the computerization of the vehicle, ECU has expanded its applications to various kinds of functions such as power management, seat belt control, driving support, parking assist, skid control, automatic transmission, etc. In recent years, the number of ECUs within a vehicle increased from 50 to 100, and the importance of ECUs for safety control and communication is especially growing. However, since the development of ECU involves sophisticated software implementations, the recent increase of ECUs in vehicles imposes a heavy burden on car manufacturers.

6.1.3 Vehicle mobile gateway

A vehicle mobile gateway is a module assigned for facing to "Update Server" (in clause 6.1.4) in order for the vehicle to conduct software update. Software update process located in vehicle is out of the scope in this Recommendation. VMG can be a conceptual entity which is practically implemented with a set of multiple components. For example, the connection management entity (a.k.a. "central gateway", "Head unit", "communication head unit" or "Vehicle Gateway (VG)") can be used for the role of VMG in this context, and any devices can also be used for the software update. A cellular network (mobile network) and a fixed network via wireless are applied as a communication path between vehicle mobile gateway and exterior ITS entities.

6.1.4 Update server and log database

An update server is located at car manufacturers or garage centres to gather status information of software modules from vehicles and to distribute software update modules to the vehicles. Likewise, in most recent networked computers such as personal computers (PCs) and smart phones, one of the important functions of the update server is to entirely manage and control software on vehicles. In order to automatically manage such software status of each vehicle, the update server should work with a log database which stores such software status information of the vehicle as evidence. Note that an update server can be deployed not only at a car manufacturer but also at a supplier or third party.

6.1.5 Supplier

A vehicle is an assembly of thousands of automotive parts that are provided by automotive suppliers. On-board communication devices and ECUs are provided by those suppliers and assembled by car manufacturers while considering dependencies among the various devices. Therefore, and in general, update modules for on-board communication devices are not produced beforehand by a car manufacturer but by a corresponding supplier. The provided update modules are distributed from a car manufacturer to vehicles after careful testing and evaluation at the car manufacturer.

6.2 Model of software update procedure

6.2.1 General update procedure

Figure 2 shows a typical model of software update procedure which is initiated by the vehicle mobile gateway by checking the existence of updates. Since in-vehicle communication is out of the scope of

this Recommendation, the steps related to in-vehicle communications in Figure 2 are just informative examples to be referred for practical implementation of secure update procedure.

Supplier		rver at car acturer	Vehicle gateway	mobile (VMG)	EC	U	User interface
	Update						1.
				Request			2.
				↓ List			3.
		■ Report	ort				4.
		Rece	ipt 🔸				5.
	Ľ	\supset					6.
		■ Requ	est				7.
		Respo	onse				8.
		\sim	Update				9.
					Notific	ation	10.
				4	Confirm	nation	11.
				Update			12.
				Result			13.
		■ Report	ort				14.
		Rece	ipt 🕨				15.
-		-					X.1373(17)_F02

Figure 2 – Model of software update process

Steps for the update procedure are described as follows, where steps 2, 3 and 10 to13 (shown in italics) are informative in nature:

- 1) At the first step of the process, an update module is provided by an automotive component supplier, which occurs asynchronously with the following steps.
- 2) As the initiation of the update procedure starts, a vehicle mobile gateway requests ECUs to submit their software list.
- 3) An ECU checks its software status, generates a list of software modules and reports it to VMG.
- 4) VMG submits the collected list to the update server to check whether any update for the vehicle exists.
- 5) The update server sends back a receipt of the submitted list to VMG.
- 6) According to the list, the update server inspects the status of the installed software of the vehicle and determines the necessary software updates for the ECUs.
- 7) Since this inspection may take a long time, VMG periodically checks the necessity of the updates for the vehicle.
- 8) If there is any update, the update server sends an access uniform resource locators (URLs) for the updates; otherwise, it sends back only an acknowledgement message.
- 9) If there is any update for the vehicle, VMG connects to the update server to download the update modules for the vehicle.
- 10) Before applying the updates to ECUs, VMG notifies the driver to confirm the application of the updates.
- 11) *The driver confirms and accepts to apply the updates.*

- 12) VMG delivers the update files to the corresponding ECUs and requests them to apply the updates (see clause 6.2.3).
- 13) Each ECU applies the update and reports the application result to the vehicle mobile gateway.
- 14) The vehicle mobile gateway submits a report of application results to the update server.
- 15) Finally, the update server sends back a receipt of the update information. If the application of the update has failed or some remaining update is found, the update server retries the procedure from steps 6 to 14 until the application has succeeded (see clause 6.2.2).

6.2.2 Consideration for unbounded retries

According to the retry-until-succeed description mentioned in step 15, note that in some cases the procedure will never succeed, and eventually the description can cause the VMG to retry an unbounded number of times. To avoid this, the number of retries should be bounded by a number 'N' which can be determined based on the policy for the update procedure. How to define the policy for the update is out of the scope in this Recommendation.

6.2.3 Consideration for resource constraints

As for the practical application of the update software in a vehicle (in informative step 12 in clause 6.2.1), there are modules in the vehicle that do not mount enough memory resource for caching a whole update module at one time. For those modules, the stream updating technology is required by means of streaming fragmented data.

In general, for any modules in a vehicle, whatever the update system, the constraints of finite resources of devices such as memory, storage and network throughput should be carefully taken into account.

7 Specification of secure software update procedure

This clause specifies a practical procedure and its application message formats between update server and vehicle (VMG) for software update with security functions. Note that this Recommendation does not specify functions of message confidentiality. The confidentiality can be provided by lower layer protocols (e.g., hypertext transfer protocol secure (HTTPS) and secure tunnelling protocol, etc.).

The procedure needs to take into account the diversity of security capabilities among vehicles. Therefore, in this Recommendation, vehicles with asymmetric crypto algorithm apply the digital signature method (clause 7.1.1), while vehicles without asymmetric crypto algorithm apply the message authentication code (MAC) method (clause 7.1.2) for secure message exchange.

7.1 General message format with security functions

This clause introduces a general message format with security functions including authentication method of message sender and verification of the integrity of a message. In terms of integrity and authenticity technique, the digital signature method with the public key algorithm and/or message authentication code with shared key algorithm can be applied. In the secure software update procedure, every message should be constructed in one of the security methods as follows.

7.1.1 Digital signature method

As one implementation method, the digital signature based on [ITU-T X.509] can be applied for authentication of entities and verification of message integrity among vehicles with asymmetric crypto capability by hardware security module (HSM) (e.g., TPM).

7.1.2 MAC method

Since the shared key algorithm requires less processing load than the public key algorithm, the shared key algorithm is suitable for devices with a low processing capacity. However, in the shared key algorithm, the sender and receiver use the same key, thus a large number of devices use the same key. This operation requires the update of keys in all devices in the system once the shared key is leaked. Besides, since the shared key itself does not provide authenticity of the sender, each message needs to contain a device ID of the sender, which presupposes that the ID in the device is not improperly manipulated.

7.2 Protocol definition and data format

The application data format is dedicated to deliver messages only regarding software update, which is enclosed in the general message format described in the previous clause. This clause firstly defines message types applied in the software update procedure, and secondly it introduces specifications of the message types. The examples of messages are provided with an extended mark-up language (XML) format for information.

7.2.1 Protocol overview

Based on the model of software update procedure described in clause 6, the messages are categorized into several types according to their objectives, as depicted in Figure 3. Procedures of in-vehicle communication are out of the scope in this Recommendation and are described with grey fonts in Figure 3.

Supplier			mobile (VMG) E0		User terface
	Update				1. N/A
			Request		2. Diagnose (request)
			List		3. Diagnose (report)
		Report			4. Diagnose (submit)
		Receipt			5. Diagnose (receipt)
	Ľ	\mathcal{I}			6. N/A
		Request			7. Update_check (request)
		Response			8. Update_check (response)
		Update			9. N/A
			Notifi	cation	10. Update (notification)
			Confir	mation	11. Update (confirmation)
			Update		12. Update (application)
			Result	\square	13. Update (result)
		Report			14. Update_report (submit)
		Receipt			15. Update_report (receipt)
			•		X.1373(17)_F0

NOTE - Procedure of in-vehicle communication can be found in [b-ISO 14229] and [b-ISO 13440].

Figure 3 – Definition of message types

In steps 2, 3, 4 and 5, since the purpose of the messages are request and report of diagnoses of the software status of each ECU, the messages are categorized as "diagnose". In the same manner, the messages in steps 7 and 8 are categorized as "update_check". Steps 10, 11, 12 and 13 are "update", which are messages to confirm and apply the updates. Finally, the results of the updates are submitted

by "update_report" messages in steps 14 and 15. The types, subtypes and codes of the messages are shown in Table 1.

Туре	Subtype	From	То	Purpose
	request	VMG	ECU	Request of diagnose of software status
diagnosa	report	ECU	VMG	Result of diagnose including software status
diagnose	submit	VMG	Usvr	Report of results of ECUs in a vehicle
	receipt	Usvr	VMG	Receipt for submit of diagnose report
undata abaali	request	VMG	Usvr	Request of update module
update_check	response	Usvr	VMG	Update module provided
update	notification	VMG	UI	Notification message to introduce update for the driver
	confirmation	UI	VMG	Confirmation message from the driver to apply update
	application	VMG	ECU	Request message including update module
	result	ECU	VMG	Result of application of the update module
	submit	VMG	Usvr	Report of application of the update
update_report	receipt	Usvr	VMG	Receipt of the report
* Usvr: Update s	server			
* UI: User interf	face			

Table 1 – Message types

NOTE – In Table 1 grey font italics is used to indicate elements that are outside the scope of this Recommendation, and are provided just for information.

7.2.2 Diagnose messages

With the purpose of determining the necessary update modules for a vehicle, diagnose messages are used between an update server and VMG to upload software information from vehicles to the update server.

7.2.2.1 Diagnose (submit) message

After collecting the diagnose results from the vehicle, VMG submits a list of software information to the update server in the manufacture (or garage). The diagnose (submit) message includes the identity of the vehicle (vid) and a list of software information that is extracted from diagnose (report) messages.

Mes	sage				
	Vehicle				
	Dev	ice "foo"			
		Module	""		
		Has	h		
	Dev	ice "bar"			
		Module	""		
		Has	h		
	Dev	ice ""			
		Module	""		
		Has	h		
	Issu	edTime			
	Exp	irationTir	ne		
				X.1373(17)_F04	

Figure 4 – Structure of diagnose (submit) message

Element	Attribute in element	Description
	_	Container of the message.
	protocol	Always '1.0".
	version	The version number of the message sender.
	type	Message type (always "diagnose").
	subtype	Message subtype (always "submit").
Message	sessionid	Session identifier (ID) is a random global user ID (GUID) associated with the diagnose session. An identical session ID is applied to a set of diagnose request, report, submit and receipt messages.
	trustlevel	Trust level is determined based on the security capability and safety requirement of the device that generated this message.
	ownerid	Owner ID provided by a car manufacturer/supplier.
	messageid	Message ID is a random GUID associated with an individual message.
	_	Container of vehicle information. It contains multiple module elements.
	name	Name of the vehicle, if any.
Vehicle	model	Model name of the vehicle provided by the car manufacturer.
	modelid	Model name of the vehicle.
	vehicleid	Vehicle ID defined by a car manufacturer/supplier.
	locale	Locale information of the vehicle.
	_	Container of device information. It contains multiple module elements.
Device	name	Name of the device, if any.
	type	Type name of the device, such as "Power management ECU", "Seat belt control ECU", etc.
	model	Model name of the device.

Table 2 – Elements of diagnose (submit) message

Element	Attribute in element	Description
	deviceid	Device ID defined by a car manufacturer/supplier.
	hwversion	Version of this hardware module.
	—	Container of module information, which contains a hash element.
	moduleid	Module ID is a unique ID provided by a car manufacturer/ supplier.
Module	version	Version of this software module.
	nextversion	The version of the module update in progress, which is mainly used for sending a response message during an update.
Hash		Hash is a container of a hash value and information of its hash algorithm.
	algorithm	Algorithm of the hash function (e.g., SHA-3, SHA-256, etc.).
IssuedTime	_	Time of generation of this message.
ExpirationTime	_	Expiration time of this message.

Table 2 – Elements of diagnose (submit) message

Table 3 – Example of diagnose (submit) message

```
<message protocol="1.0" version="1.0.2" type="diagnose" subtype="submit"</pre>
sessionid="{7316A97D-8C04-428B-B498-0F51087A1093}" ownerid="oid987239487"
messageid="{BBCE3B0B-2A10-443A-97D0-EF4650457422}" trustlevel="3">
    <Vehicle name="vehicleName" model="modelName" modelid="mid34987130"</pre>
vehicleid="vid0987234" locale="CH"/>
    <Device name="device1" type="ECU" model="model1" id="did0987234" hwversion="HB-01">
       <Module moduleid="{66E6F81E-F293-4531-B2FC-A93F177373AA }" version="1.3.23.0"</pre>
nextversion=""/>
            <Hash algorithm="SHA-256">hash data here</Hash>
        </Module>
        <Module moduleid="{4D168B58-26FA-4157-9703-A431D99C8438}" version="2.4.34.0"
nextversion=""/>
            <Hash algorithm="SHA-256">hash data here</Hash>
        </Module>
    </Device>
    <Device name="device2" type="ECU" model="model1" id="did0987234" hwversion="HC-02">
        <Module moduleid="{70628FDC-2282-4B2F-8A36-13445DED587A}" version="3.5.45.0"</pre>
nextversion=""/>
            <Hash algorithm="SHA-256">hash data here</Hash>
        </Module>
    </Device>
    <IssuedTime "1903-07-01T00:00:00Z"/>
    <ExpirationTime "1903-07-01T00:00:00Z"/>
</message>
```

7.2.2.2 Diagnose (receipt) message

After the upload of a software information of a vehicle with diagnoses (submit) message, the update server sends back a receipt with diagnose (receipt) message so that the vehicle recognizes that the submission was successfully finished and that the vehicle can proceed to the next state (update_check).

Mes	ssage		
	IssuedTime		
	ExpirationTime		
		X.1373(17)	F05

Figure 5 – Structure of diagnose (receipt) message

Element	Attribute in element	Description
	_	Container of the message.
	protocol	Always "1.0".
	version	The version number of the message sender.
	type	Message type (always "diagnose").
	subtype	Message subtype (always 'receipt").
Message	sessionid	Session ID is a random GUID associated with the diagnose session. An identical session ID is applied to a set of diagnose request, report, submit and receipt messages.
	trustlevel	Trust level is determined based on the security capability and safety requirement of the device that generated this message.
	ownerid	Owner ID provided by a car manufacturer/supplier.
	messageid	Message ID is a random GUID associated with an individual message.
	status	Acknowledgement of report for diagnose (submit)
IssuedTime – Time of generation of this message.		Time of generation of this message.
ExpirationTime – Expiration time of this message.		Expiration time of this message.

Table 4 – Elements of diagnose (receipt) message

Table 5 – Example of diagnose (receipt) message

7.2.3 update_check messages

After a software information is uploaded to the update server by a diagnose message, the update server starts the analysis to determine the necessary update modules for the vehicle, which might take a long time. The update_check message is periodically applied to inquire about the decision of the update server. There are two subtypes of the update_check message, request and response, which are transferred between VMG and an update server.

7.2.3.1 update_check (request) message

The update_check (request) message is transferred from VMG to an update server to check for the necessity of the updates. This message includes information of modules to be inspected, which are quite similar to diagnose (receipt) message.

Mes	Message			
	Vehicle			
	Device "foo"			
	Module ""			
	Device "bar"			
	Module ""			
	Device ""			
	Module ""			
	IssuedTime			
	ExpirationTime			
	X.1373(17)_F06			

Figure 6 – Structure of update_check (request) message

Element	Attribute in element	Description		
	-	Container of the message.		
	protocol	Always "1.0".		
	version	The version number of the message sender.		
	type	Message type (always "update_check").		
	subtype	Message subtype (always "request").		
Message	sessionid	Session ID is a random GUID associated with the update_check session. An identical session ID is applied to a set of update_check request and response messages.		
	trustlevel	Trust level is determined based on the security capability and safety requirement of the device that generated this message.		
	ownerid	Owner ID is provided by a car manufacturer/supplier.		
	messageid	Message ID is a random GUID associated with an individual message.		
	_	Container of vehicle information. It contains multiple module elements.		
	name	Name of the vehicle, if any.		
Vehicle	model	Model name of the vehicle provided by the car manufacturer.		
	modelid	Model name of the vehicle.		
	vehicleid	Vehicle ID defined by a car manufacturer/supplier.		
	locale	Locale information of the vehicle.		
	-	Container of device information. It contains multiple module elements.		
	name	Name of the device, if any.		
Device	type	Type name of the device, such as "Power management ECU", "Seat belt control ECU", etc.		
Device	model	Model name of the device.		
	deviceid	Device ID defined by a car manufacturer/supplier.		
	hwversion	Version of this hardware module.		

Table 6 – Elements of update_check (request) message

Element	Attribute in element	Description	
		Container of module information, which contains a hash element.	
	moduleid	Module ID is a unique ID provided by a car manufacturer/ supplier.	
Module	version	Version of this software module.	
	nextversion	The version of the module update in progress, which is mainly used for sending a response message during an update.	
IssuedTime – Time of generation of this message.		Time of generation of this message.	
ExpirationTime	tionTime – Expiration time of this message.		

Table 6 – Elements of update_check (request) message

Table 7 – Example of update_check (request) message

```
<message protocol="1.0" version="1.0.2" type="update check" subtype="request"</pre>
sessionid="{19622672-A025-4500-B26A-BB626BC61C62}" ownerid="oid987239487"
messageid="{4604A6C9-F72F-452B-ABA5-94168CCD8FD6}" trustlevel="3">
    <Vehicle name="vehicleName" model="modelName" modelid="mid34987130"
vehicleid="vid0987234" locale="CH"/>
   <Device name="device1" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HB-01">
        <Module moduleid="{1F6EDD6C-17D4-461B-8403-1E240E26464E}"
version="1.3.23.0" nextversion=""/>
        <Module moduleid="{4D168B58-26FA-4157-9703-A431D99C8438}"
version="2.4.34.0" nextversion=""/>
    </Device>
    <Device name="device2" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HC-02">
        <Module moduleid="{70628FDC-2282-4B2F-8A36-13445DED587A}"
version="3.5.45.0" nextversion=""/>
   </Device>
    <IssuedTime "1903-07-01T00:00:00Z"/>
    <ExpirationTime "1903-07-01T00:00:00Z"/>
</message>
```

7.2.3.2 update_check (response) message

In response to update_check (request) message, the update server sends back the result of the inspection. If there are necessary updates for any of modules in the vehicle, the update_check (response) message downloads URLs to obtain the update modules. Note that an update message does not contain a binary file of the update module itself, while VMG downloads it with another connection based on the resource information in the update_check (response) message.

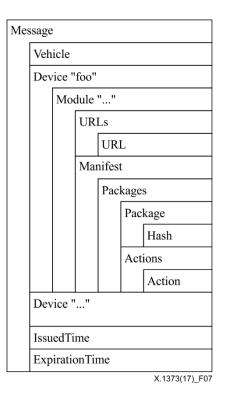


Figure 7 – Structure of update_check (response) message

Element	Attribute in element	Description
	-	Container of the message.
	protocol	Always "1.0".
	version	The version number of the message sender.
	type	Message type (always "update_check").
	subtype	Message subtype (always "response").
Message	sessionid	Session ID is a random GUID associated with the update_check session. An identical session ID is applied to a set of update_check request and response messages.
	trustlevel	Trust level is determined based on the security capability and safety requirement of the device that generated this message.
	ownerid	Owner ID provided by a car manufacturer/supplier.
	messageid	Message ID is a random GUID associated with an individual message.
	_	Container of vehicle information. It contains multiple module elements.
	name	Name of the vehicle, if any.
Vehicle	model	Model name of the vehicle provided by the car manufacturer.
	modelid	Model name of the vehicle.
	vehicleid	Vehicle ID defined by a car manufacturer/supplier.
	locale	Locale information of the vehicle.
Device – Container of device information. It contains multiple mo elements.		Container of device information. It contains multiple module elements.

Table 8 – Elements of update_check (response) message

Element	Attribute in element	Description
	name	Name of the device, if any.
	type	Type name of the device, such as "Power management ECU", "Seat belt control ECU", etc.
	model	Model name of the device.
	deviceid	Device ID defined by a car manufacturer/supplier.
	hwversion	Version of this hardware module.
	_	Container of module information, which contains a hash element.
	moduleid	Module ID is a unique ID provided by a car manufacturer/a supplier.
	version	Version of this software module.
Module	nextversion	The version of the module update in progress, which is mainly used for sending a response message during an update.
	status	Status of the inspection of update. "noupdate" is set if there are no updates, while "ok" is set if there are any updates for this module.
URLs	—	Container of URL elements if there are any updates. This element is contained in a module element when the status is ok.
URL	_	URL of update file. The URL element should be listed at least two times for the backup of the first URL (server). The maximum number of URL elements should be carefully determined taking the computational resource of VMG into account.
	codebase	Location of the update file.
Manifest	_	Describes the module needed to be installed, and the actions needed to be taken with those files.
	version	Specific newer version number of this software module.
Packages A set of files needed to be installed		A set of files needed to be installed. Contains no attribution. Contains one or more package child elements.
	_	A single file to be installed for the module.
Dealerer	name	Describes the filename of the update module.
Package	size	Contains the size in bytes of the update module.
	description	Description of update module.
Hash	_	Container of a hash value and information of its hash algorithm.
nasii	algorithm	Algorithm of the hash function (e.g., SHA-3, SHA-256, etc.).
Actions	_	Actions to be performed to install the module once all required files in the packages element have been successfully downloaded.
	_	A single action to perform as part of the install process.
Action	event	A fixed string denoting when this action should be run. One of "preinstall", "install", "postinstall" and "update".
	arguments	Arguments to be passed to the installation process.
IssuedTime	-	Time of generation of this message.
ExpirationTime	-	Expiration time of this message.

Table 8 – Elements of update_check (response) message

Table 9 – Example of update_check (response) message

```
<message protocol="1.0" version="1.0.2" type="update check" subtype="response</pre>
" sessionid="{19622672-A025-4500-B26A-BB626BC61C62}" ownerid="oid987239487"
messageid="{4604A6C9-F72F-452B-ABA5-94168CCD8FD6}" trustlevel="3">
    <Vehicle name="vehicleName" model="modelName" modelid="mid34987130"
vehicleid="vid0987234" locale="CH"/>
    <Device name="device1" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HB-01">
        <Module moduleid="{1F6EDD6C-17D4-461B-8403-1E240E26464E}"
version="1.3.23.0" nextversion="" status="ok">
            <Urls>
                 <Url
codebase="http://update1.server/this/is/an/example/url/"/>
                 <Url
codebase="http://update2.server/this/is/an/example/url/"/>
                 <Url
codebase="http://update3.server/this/is/an/example/url/"/>
            </Urls>
            <Manifest version="1.4.0">
                <Packages>
                    <Package name="module1.bin" size="589" description="This
update provides ... ">
                         <Hash algorithm="SHA-256">hash data here</Hash>
                    </Package>
                </Packages>
                <Actions>
                    <Action arguments="--argument-for-installation"
event="install"/>
                </Actions>
            </Manifest>
        </Module>
        <Module moduleid="{4D168B58-26FA-4157-9703-A431D99C8438}"
version="2.4.34.0" nextversion="" status="noupdate">
        </Module>
    </Device>
    <Device name="device2" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HC-02">
        <Module moduleid="{70628FDC-2282-4B2F-8A36-13445DED587A}"
version="3.5.45.0" nextversion="" status="noupdate">
        </Module>
    </Device>
    <IssuedTime "1903-07-01T00:00:00Z"/>
    <ExpirationTime "1903-07-01T00:00:00Z"/>
</message>
```

7.2.4 Update messages

Update process conducted in vehicle is outside the scope of this Recommendation. There is no definition and specification for the update messages.

7.2.5 update_report messages

As the final step of a sequence of update procedures, VMG submits all the collected reports of an update application in the devices to the update server so that the latter grasps and manages each vehicle from a remote site. VMG sends a report to the update server via update_report (submit) message. Finally, the update server sends a receipt of the report (update_report (receipt) message) to VMG so that it can recognize the end of the whole update process.

7.2.5.1 update_report (submit) message

After collecting application reports from the devices, VMG sends an update_report (submit) message to the update server. This message includes the results of the applications as well as the current status of software such as diagnose (submit) message.

Mes	lessage			
	Vehicle			
	Dev	vice "	foo"	
		Mo	dule ""	
			Hash	
	Device "bar"			
		Mo	dule ""	
			Hash	
	Dev	vice "	"	
		Mo	dule ""	
			Hash	
	Issu	edTi	me	
	Exp	iratio	onTime	
	-			X.1373(17)_F08

Figure 8 – Structure of update_report (submit) message

Element	Attribute in element	Description
	_	Container of the message.
	protocol	Always "1.0".
	version	The version number of the message sender.
	type	Message type (always "update_report").
	subtype	Message subtype (always "submit").
Message	sessionid	Session ID is a random GUID associated with the update_report session. An identical session ID is applied to a set of update_report submit and receipt messages.
	trustlevel	Trust level is determined based on the security capability and safety requirement of device that generated this message.
	ownerid	Owner ID provided by a car manufacturer/supplier.
	messageid	Message ID is a random GUID associated with an individual message.
	_	Container of vehicle information. It contains multiple module elements.
	name	Name of the vehicle, if any.
Vehicle	model	Model name of the vehicle provided by the car manufacturer.
	modelid	Model name of the vehicle.
	vehicleid	Vehicle ID defined by a car manufacturer/supplier.
	locale	Locale information of the vehicle

Table 10 – Elements of update_report (submit) message

Element	Attribute in element	Description	
	_	Container of device information. It contains multiple module elements.	
	name	Name of the device, if any.	
Device	type	Type name of the device, such as "Power management ECU", "Seat belt control ECU", etc.	
	model	Model name of the device.	
	deviceid	Device ID defined by a car manufacturer/supplier.	
	hwversion	Version of this hardware module.	
	—	Container of module information, which contains a hash element.	
	moduleid	Module ID is a unique ID provided by a car manufacturer/a supplier.	
Module	version	Version of this software module.	
Would	nextversion	The version of the module update in progress, which is mainly used for sending a response message during an update.	
	status	Result of the application of this module.	
Hash	—	Hash is a container of a hash value and information of its hash algorithm.	
	algorithm	Algorithm of the hash function (e.g., SHA-3, SHA-256, etc.).	
IssuedTime	-	Time of generation of this message.	
ExpirationTime	_	Expiration time of this message.	

Table 10 – Elements of update_report (submit) message

Table 11 – Example of update_report (submit) message

```
<message protocol="1.0" version="1.0.2" type="update report" subtype="submit"
sessionid="{9AFFEB5A-F36B-4E05-819F-5BDCD3A0E3EC}" ownerid="oid987239487"
messageid="{3F7A6438-8306-447E-A1BB-99CED4C2B6AD}" trustlevel="3">
    <Vehicle name="vehicleName" modelid="mid34987130" type="ECU"
model="modelName" vid="vid0987234" locale="CH"/>
   <Device name="device1" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HB-01">
        <Module moduleid="{1F6EDD6C-17D4-461B-8403-1E240E26464E}"
version="1.4.0" nextversion="" status="ok">
            <Hash algorithm="SHA-256">hash data here</ModuleHash>
        </Module>
        <Module moduleid="{4D168B58-26FA-4157-9703-A431D99C8438}"
version="2.4.34.0" nextversion="" status="ok">
            <Hash algorithm="SHA-256">hash data here</ModuleHash>
        </Module>
    </Device>
    <Device name="device1" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HB-02">
        <Module moduleid="{70628FDC-2282-4B2F-8A36-13445DED587A}"
version="3.5.45.0" nextversion="" status="ok">
            <Hash algorithm="SHA-256">hash data here</ModuleHash>
        </Module>
    </Device>
    <IssuedTime "1903-07-01T00:00:00Z"/>
    <ExpirationTime "1903-07-01T00:00:00Z"/>
</message>
```

7.2.5.2 update_report (receipt) message

At the end of the sequence, the update server sends an update_report (receipt) message to VMG so that the vehicle recognizes the termination of the whole update procedure. The message format of update_report (receipt) is almost the same as diagnose (receipt) message.

Mes	Message				
	Vehicle				
	Dev	vice "foo"			
		Module ""			
	Device "bar"				
	Module ""				
	Dev	/ice ""			
	Module ""				
	IssuedTime				
	Exp	oirationTime			
			X.1373(17)_F09		

Figure 9 – Structure of update_report (receipt) message

Element	Attribute in element	Description	
	_	Container of the message.	
	protocol	Always "1.0".	
	version	The version number of the message sender.	
	type	Message type (always "update_report").	
	subtype	Message subtype (always "receipt").	
Message	sessionid	Session ID is a random GUID associated with the update_report session. An identical session ID is applied to a set of update_report submit and receipt messages.	
	trustlevel	Trust level is determined based on the security capability and safety requirement of the device that generated this message.	
	ownerid	Owner ID provided by a car manufacturer/supplier.	
	messageid	Message ID is a random GUID associated with an individual message.	
	_	Container of vehicle information. It contains multiple module elements.	
	name	Name of the vehicle, if any.	
Vehicle	model	Model name of the vehicle provided by the car manufacturer.	
	modelid	Model name of the vehicle.	
	vehicleid	Vehicle ID defined by a car manufacturer/supplier.	
	locale	Locale information of the vehicle.	
	_	Container of device information. It contains multiple module elements.	
	name	Name of the device, if any.	
Device	type	Type name of the device, such as "Power management ECU", "Seat belt control ECU", etc.	
	model	Model name of the device.	
	deviceid	Device ID defined by a car manufacturer/supplier.	
	hwversion	Version of this hardware module.	
	_	Container of module information, which contains a hash element.	
	moduleid	Module ID is a unique ID provided by a car manufacturer/ supplier.	
Module	version	Version of this software module.	
	nextversion	The version of the module update in progress, which is mainly used for sending a response message during an update.	
	status	Acknowledgement of the report for this module.	
IssuedTime	—	Time of generation of this message.	
ExpirationTime – Expiration time of this message.		Expiration time of this message.	

 Table 12 – Elements of update_report (receipt) message

Table 13 – Example of update_report (receipt) message

```
<message protocol="1.0" version="1.0.2" type="update report" subtype="receipt"</pre>
sessionid="{9AFFEB5A-F36B-4E05-819F-5BDCD3A0E3EC}" ownerid="oid987239487"
messageid="{B5585708-6BDA-4B07-B2CB-5E9241F63271}" trustlevel="3">
    <Vehicle name="vehicleName" model="modelName" modelid="mid34987130"
vehicleid="vid0987234" locale="CH"/>
    <Device name="device1" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HB-01">
        <Module moduleid="{1F6EDD6C-17D4-461B-8403-1E240E26464E}"
version="1.4.0" nextversion="" status="ok"/>
        <Module moduleid="{4D168B58-26FA-4157-9703-A431D99C8438}"
version="2.4.34.0" nextversion="" status="ok"/>
    </Device>
    <Device name="device1" type="ECU" model="model1" id="did0987234"</pre>
hwversion="HB-02">
        <Module moduleid="{70628FDC-2282-4B2F-8A36-13445DED587A}"
version="3.5.45.0" nextversion="" status="ok"/>
        </Module>
    </Device>
    <IssuedTime "1903-07-01T00:00:00Z"/>
    <ExpirationTime "1903-07-01T00:00:00Z"/>
</message>
```

Appendix I

Methodology on risk analysis

(This appendix does not form an integral part of this Recommendation.)

I.1 Methodology on risk analysis based on [b-JASO TP15002]

This appendix provides detailed information related to Appendix II. This information is based on the guidelines concerning automotive information security [b-JASO TP15002].

Information security has become important in the design of the embedded system. Examples of the various security attacks are known for the IT system so far, and the know-how to evaluate a risk is accumulated by the IT systems design. The basic security concepts necessary for the evaluation of IT products are given in [ISO/IEC 15408-1]. In the context of evaluation, [ISO/IEC 15408-1] uses the term target of evaluation (TOE). There are assets which are entities that the owner of TOE presumably places value upon. [ISO/IEC 15408-1] aims to establish security objectives for a TOE, which is a statement of an intent to counter identified threats and/or satisfy identified organization security policies and/or assumptions. The threats give rise to risks to the assets, based on the likelihood of a threat being realized and the impact on the assets when that threat is realized. However, [ISO/IEC 15408-1] does not specify how to perform threat extraction and risk analysis.

Regarding the embedded system, this appendix describes the extracted threats and performs a risk analysis, according to the framework of [ISO/IEC 15408-1]. Here, it is aimed that the risk analysis does not depend on the know-how of the security design. Therefore, in this Recommendation, the risk analysis method CRSS [b-JASO TP15002] calculates a threat risk level of the embedded system. This method is characterized by the following: (1) formulation of the output in the system model definition step and the threat analysis step; (2) setting of the value of the parameter using the information provided by carrying out the previous step.

The security evaluation process in [b-JASO TP15002] consists of the following phases:

Phase 1: Definition of the target of evaluation

Phase 2: Identification of the threats

Phase 3: Risk analysis

Each phase is explained below.

I.1.1 Phase 1: Definition of the target of evaluation

The target for the identification of threats in the next phase is clarified.

The following four steps are performed in phase 1:

Step 1: Shared awareness establishment

Based on the system overview documentation, and in order for all the project members to establish a common awareness of life cycle of the target system, and the system construction, information such as systems construction figure, system function, and system-used data are prepared.

Step 2: Model figure construction of target of evaluation

A "model figure of target of evaluation" is constructed, which clarifies the system components and information flow between system components.

Step 3: Definition of an overview of the module functions

For each component module described in the model figure of the target of evaluation, the functions provided and their protected assets are clarified. In this way, a table of an "overview of module functions" is constructed.

Security threats can be described in terms of: "which threat agents exist, and what adverse action they perform on which assets" in the target system of evaluation. In addition to information, which has conventionally been treated as an asset to be protected, the assets in the automotive embedded systems also include embedded system software and the functions that control mechanisms such as the engine or brakes.

A system model is produced from the nature of the assets and from data flow diagrams that specify data flows in relation to these assets.

With respect to what adverse actions are performed (the threats), all of the things that can happen for each entry point are studied, and this is also considered in terms of the types of failure called confidentiality, integrity, or availability that can occur for each type of asset. For example, it is important that the functions of an automotive IT system operate as correctly as expected, and failure of integrity or availability must be prevented. Similarly, it is important that the information exchanged between central servers and vehicle-mounted intelligent transport system (ITS) devices is protected from disclosure and modification, and failure of confidentiality or integrity must also be prevented. Table I.1shows examples of information and other assets that the vehicles should protect.

Objects that should be protected	Description
Operation of "Basic control functions"	Coherence and availability of "Basic control functions", execution environment of "Basic control functions", communications for the operation.
Information unique to the vehicle	Information which is unique to the body of the car (vehicle ID, device ID, etc.), authentication code, and accumulated information such as running history and operation history.
Vehicle status information	Data representing the vehicle's status such as location, running speed, and destination.
User information	Personal information, authentication information, billing information, usage history and operation history of the user (driver/passengers).
Software	Software which is related to vehicles' "Basic control functions" and "Expanded functions". Examples include software for the ECU.
Contents	Data for applications for video, music, map, etc.
Configuration information	Setting data for the behaviour of hardware, software, etc.

 Table I.1 – Examples of information and other assets that vehicles should protect (vehicle information security)

Step 4: Definition of target scope of a life cycle

A "table of life cycle" that clarifies the entire life cycle of the target system is constructed.

The threat agents are those people involved at any point along the life cycle of a vehicle, which includes its manufacturer, its use by the owners who purchased the vehicle, be it new or second-hand, and ultimately its disposal. This is because confidential information held by the automotive embedded systems is stored and accessed not only during the normal usage phase but also at other phases such as during the manufacturing, delivery, or servicing. The details of the TOE life cycle are shown in Table I.2.

Phase	Sub-phase	Overview	Concerned persons
	Transportation	An original equipment manufacturer (OEM) staff transports a manufactured vehicle to a vehicle dealer. He asks a transportation business operator to do this.	 OEM staff Transportation business operator Vehicle dealer staff Third party
	Vehicle delivery	A vehicle dealer staff delivers the vehicle to the owner.	Vehicle dealer staffOwnerThird party
	Normal operation/use	An owner or user uses the vehicle. A server administrator is involved as an administrator of updated server that provides software. A telecommunication carrier is involved to provide communication network.	 Owner or user Server administrator Telecommunication carrier Third party
Operation	Normal operation/use Software download	To prepare for software update via the update server, the vehicle downloads the software from the update server.	 OEM staff Supplier staff Server administrator Telecommunication carrier Third party
	Maintenance (software update via update server) Software update	When the vehicle parks, software update is performed. The server administrator is involved as an administrator of the update server. The telecommunication carrier is involved as a communication network provider. A provider staff is involved as a service provider using the communication network.	 OEM staff Supplier staff Server administrator Telecommunication carrier Third party
	Maintenance (software update via OBD connector)	A vehicle dealer staff or a maintenance factory staff updates software via on-board diagnostics (OBD) connector at the time of vehicle inspection.	 Vehicle dealer staff Maintenance factory staff Owner or user Third party

Table I.2 – TOE life cycle

I.1.2 Phase 2: Identification of threats

Security problems regarding TOE defined in phase 1 are identified.

The following three steps are performed in phase 2.

Step 1: Assumption setting

In order to clarify the scope where the threats are identified, assumptions are defined based on the model figure of the target of evaluation, the overview of module functions, and the table of the life cycle. The scope where the threats are identified in phase 2 is limited. The assumptions on the environment of TOE are defined. An identifier with a prefix "A" is assigned to each identified threat. In this way, a "table of assumptions" is constructed.

TOE is operated under the following assumptions:

A.Reliability_OfficeStaff (OEM staff/supplier staff/vehicle dealer staff/maintenance factory staff reliability)

OEM staff or supplier staff does not physically access the attack target vehicle. Furthermore, vehicle dealer staff/maintenance factory staff does not physically access the vehicle in normal operation/use phase.

A.Reliability_ServiceProvider (server administrator/telecommunication carrier reliability)

The update server administrator/telecommunication carrier does not physically access the vehicle. Furthermore, the update server administrator/telecommunication carrier does not intentionally cause threats.

A.Reliability_User (owner/user reliability)

An owner/user, in the maintenance phase, does not physically access the attack target vehicle.

An owner/user, in the maintenance phase, does not physically access the vehicle. Furthermore, the owner/user always locks the door in the normal operation/use phase. Furthermore, the owner/user does not allow concerned unauthorized persons to access in-vehicle in the normal operation/use phase.

A.Operation_Server (protection of server outside of target of evaluation)

The update server is properly operated, meaning that the concerned persons will not get/manipulate information stored in the server.

A.Control_OBD-Tool (protection of measuring device, etc., outside of target of evaluation)

A measuring device is properly operated, meaning that the concerned persons will not get/manipulate information stored in the measuring device.

Step 2: Identification of threats

Based on the model figure of the target of evaluation, the overview of module functions, and the table of the life cycle for each system component, the identity of the threats from the perspectives of where (entry points), who (threat agents), when (life cycle phase), why (reasons), and what (adverse actions) is shown in Table I.3. An identifier with a prefix "T" is assigned to each identified threat. In this way, a "table of threats" is constructed.

By applying these perspectives to the system model, the life cycle and adverse actions, which are studied in defining the target system of the evaluation described in clause I.1, it can be exhaustively identified which threat agents exist, and which adverse actions they perform on which assets and at which phases.

Perspective	Explanation			
Where	Identify entry points of attacks.			
Who	dentify threat agents.			
When	Identify life cycle phases of attacks.			
Why	Identify reasons for attacks.			
What	Identify adverse actions.			

Table I.3 – Perspectives for identification of threats

Step 3: Organization's security policy setting

The organization's security policy defines the requirements that necessitate the security countermeasures due to reasons other than threats. Examples are laws and industry guidelines that

need to be followed in the TOE development and in the operation environment. Laws or company rules concerning the system development that should be defined as security problems of the TOE are identified. An identifier with a prefix "O" is assigned to each security policy. In this way, a "table of the organization's security policy" is constructed.

There is no organization's security policy applied to TOE.

I.1.3 Phase 3: Risk analysis

This step specifies the degrees of risk for all the threats that have been identified.

For each threat in the table of threats, the degree of its priority is computed.

The following two steps are performed in phase 3.

Step 1: Risk evaluation

The risk that threats pose to an IT system has been typically assessed by deriving it from the value of the assets and the attack cost, which depends on how the threat is carried out. This is an effective approach when there are numerous examples of attacks, and a consensus can be reached about the cost of the attack method, including factors such as the execution time needed to undertake the attack and the capabilities of the person launching it. In the case of automotive embedded systems, while a number of example attacks have been identified at the research level, a wide range of attack method variations that exist for IT systems is not available. As a consequence, it is difficult to estimate the cost of attack methods.

I.1.3.1 CRSS

CVSS based risk scoring system (CRSS) is a threat risk assessment method that is based on the common vulnerability scoring system (CVSS), i.e., the risk scoring system (RSS) of [ITU-T X.1521], used to score the severity of IT system vulnerabilities [b-JASO TP15002]. CVSS is composed of three metric groups: base, temporal, and environmental, each consisting of a set of metrics. These metric groups are described as follows:

- Base: represents the intrinsic and fundamental characteristics of a vulnerability that are constant over time and user environments.
- Temporal: represents the characteristics of a vulnerability that change over time but not among user environments.
- Environmental: represents the characteristics of a vulnerability that are relevant and unique to a particular user's environment.

CRSS evaluates risk scores by means of *base metric group* in CVSS scoring. The base metric group captures the characteristics of a vulnerability that are constant with time and across user environments. The access vector, access complexity, and authentication metrics capture how the vulnerability is accessed and whether or not extra conditions are required to exploit it.

The CRSS method assigns an asset value to each asset in terms of confidentiality, integrity, and availability and then it calculates a score for risk from the degree of ease in mounting an attack and from the degree of impact.

The degree of ease in mounting an attack is derived from the metric that reflects how close the threat agents need to get to the assets and from the existence of barriers that they break through to access them. A classification example with respect to the degree of ease in mounting an attack is shown in Table I.4.

The degree of impact measures how a vulnerability, if exploited, will directly affect an asset, where the impacts are independently defined as the degree of loss of confidentiality, integrity, and availability. For example, a vulnerability could cause a partial loss of integrity and availability, but no loss of confidentiality. A classification example with respect to the degree of impact is shown in Table I.5.

Parameter	Consideration principle	Classification	Examples	
	Classification in terms of	Local (L)	USB memory	
Access Vector (AV): Classification of the origin of the attack	the origin (where) of the attack that caused the	Adjacent network (A)	Wi-Fi connection device	
of the attack	threat	Network (N)	Mobile line	
		High (H)	Both skill and knowledge of the attack are required	
Access Complexity (AC): The degree of the complexity of the attack condition	Classification in terms of the number of the required skills and	Medium (M)	Knowledge of the attack is required	
	knowledge of the attack	Low(L)	None (little) skill and knowledge of the attack are required	
Authentication (Au): The number of necessary authentication before attack	Classification in terms of	Multiple (M)	Multiple	
	the number of authentication between	Single (S)	Single	
	the asset and the threat agent	None (N)	Unnecessary	

Table I.4 – Classification example with respect to degree of ease in mounting an attack (Table D.2 of [b-JASO TP15002])

	Classification	C: Confidentiality impact			I: Integrity impact			A: Availability impact		
Asset		No ne	Parti al	Compl ete	No ne	Parti al	Compl ete	No ne	Parti al	Comple te
Mobile communication function	Update service	Y					Y			Y
Mobile authentication information				Y			Y	Y		
Software get function		Y					Y			Y
Software				Y			Y	Y		
Remote software update function		Y					Y			Y
Software				Y			Y	Y		
GPS reception function	Information process	Y				Y			Y	
Wi-Fi connection function		Y				Y			Y	
Wi-Fi authentication information			Y			Y		Y		
USB connection function		Y				Y			Y	
CAN communication function	Vehicle control	Y					Y			Y
CAN gateway function		Y					Y			Y
Rooting table				Y			Y	Y		
OBD connection function		Y					Y			Y

Table I.5 – Classification example with respect to degree of impact (Table D.3 of [b-JASO TP15002])

For each threat described in the 5W (where, who, when, why, what) form, the risk score is computable.

Table I.6 provides an example of risk scoring evaluation.

#	Threats	AV	AC	Au	Degree of ease of attack	С	Ι	Α	Degree of impact	Risk value
1	T.control_fcn_Mobile _3rd_opearation_on_p urpose of interfere-	Network	Medium	Single		Un- necess ary	Large	Large		
	function	1	0.61	0.56	6.83	0	0.66	0.66	9.20	7.95
2	T.vehicle_status_WiFi _dealer_main_purpose	Adjacent network	Single(s)	Single		Small	Small	None		
	_forge	0.646	0.71	0.56	5.14	0.275	0.275	0	4.94	4.14
3	Т.	Local	Low	None		None	Small	None		
	info_transfer_USB_3r d_operation_pursuse_ misop	0.395	0.71	0.704	3.95	0	0.275	0	2.86	2.11

Table I.6 – Risk scoring evaluation example (Table D.4 of [b-JASO TP15002])

Even in cases such as the automotive embedded systems where there is a lack of accumulated know-how about security threats, the CRSS method can calculate a risk value analytically from the definitions of the threats and the system of evaluation. It can also incorporate consideration of factors such as risk to life into the risk assessment by treating functions as assets and, for the purpose of valuation, raising the estimated asset value in the case of functions for which loss of integrity or availability has serious consequences.

Step 2: Identifications of causes of threats

For each threat with a risk score of more than a certain value, the causes are logically analysed by means of a fault tree (FT).

I.2 Data verification using MAC algorithms

MAC algorithms play important roles in cryptography and security by achieving message integrity (authentication). In terms of MACs, ISO/IEC have produced significant results such as [b-ISO/IEC 9797-1] (Mechanisms using a block cipher), [b-ISO/IEC 9797-2] (Mechanisms using a dedicated hash-function), and [b-ISO/IEC 9797-3] (Mechanisms using a universal hash-function).

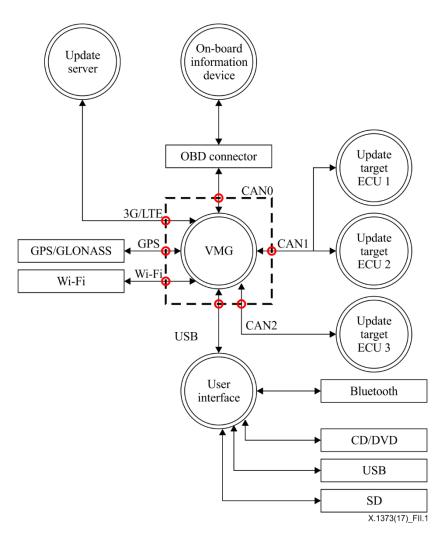
Considering limited implementation resources in a vehicle, the use of lightweight cryptography standards is suitable. From this perspective, there are two types of MACs. The first type of MAC is a block-cipher based MAC using [b-ISO/IEC 9797-1] and [b-ISO/IEC 29192-2] (lightweight block cipher). The second type of MAC is a hash-function based MAC using [b-ISO/IEC 9797-2] and [b-ISO/IEC 29192-5] (lightweight hash function).

In order to select possible candidates for automotive security, MAC algorithms may have to give a clear security or performance advantage over the existing standardized MAC algorithms. The main target of MAC may achieve compact and fast software implementations on microcontrollers as well as to offer adequate security required by target applications. In particular, a very efficient MAC algorithm for microcontrollers can be desirable.

Appendix II

Threats, security requirements and security controls

(This appendix does not form an integral part of this Recommendation.)


Examples of the various security attacks/threats are known to the information technology (IT) system so far, and the know-how to evaluate a risk is accumulated by the IT system design. The basic security concepts necessary for evaluation of IT products are given in [ISO/IEC 15408-1]. In the context of evaluation, [ISO/IEC 15408-1] uses the term target of evaluation (TOE). There are assets which are entities that the owner of TOE presumably places value upon. [ISO/IEC 15408-1] aims to establish security objectives for TOE, which is a statement of an intent to counter identified threats and/or satisfy identified organization security policies. Threats give rise to risks to the assets, based on the likelihood of a threat being realized and the impact on the assets when that threat is realized. However, [ISO/IEC 15408-1] does not specify how to perform threat identification and risk analysis. In this clause, after defining a TOE for VMG which is recognized for a major component of secure software update, identification of major threats is conducted and security requirements related to the major threats are considered. Finally, high-level security controls are provided in order to fulfil the security requirements.

II.1 Definition of target of evaluation

This clause defines TOE for VMG which is recognized for a major and core component of secure software update in this Recommendation.

As an interface to the outside, there are an on-board diagnostics (OBD) connector, a mobile communication module, a global positioning system/global navigation satellite system (GPS/GLONASS) signal reception device, a wireless fidelity (Wi-Fi), a radio/television (TV), Bluetooth connection, a CAN0/1 connection, a user interface with a compact disc/digital versatile disc (CD/DVD), a universal serial bus (USB) connector, and a secure digital (SD) connector. Though the controller area connector (CAN) is applied as one of the in-vehicle buses in this clause, identical analyses can be applied to the other types of in-vehicle buses such as media oriented systems transport (MOST), local interconnect network (LIN) and FlexRay, etc.

In Figure II.1, TOE is defined as the area surrounded by the dotted line and it realizes secure communication control as a connection interface to the outside of the vehicle.

Figure II.1 – TOE model

The overview of functions of the modules in TOE are shown in Table II.1. This table also provides the relationship between the function described in TOE and the major security features of confidentiality (C), integrity (I) and/or availability (A) in order to provide security requirements based on TOE in clause II.3.

#	Module		Asset	С	Ι	A	
1	Vehicle mobile gateway	Mobile communication	via mobile connection. It uses authentication information to authenticate the server.	Mobile communication function		Y	Y
		function		Authentication information	Y	Y	
		Software get	It gets software remotely via mobile connection or via OBD	Software get function		Y	Y
		function	connector.	Software information	Y	Y	
		Remote software update function		Remote software update function		Y	Y

Table II.1 – Overview of TOE module functions

#	Module		Function	Asset	C	Ι	A
			It updates software remotely via mobile connection or via OBD connector.	Security information for update	Y	Y	
			If software is updated remotely, it uses security information for update to authenticate the server.	Software information	Y	Y	
		GPS reception function	It receives data from GPS satellite.	GPS reception function		Y	Y
	Wi-FiIt establishes Internet connection of devices via Wi-Fi connection.		Wi-Fi connection function		Y	Y	
		connection function	It uses authentication information via Wi-Fi connection	Authentication information	Y	Y	
		USB connection function	It communicates via USB cable with the user interface.	USB connection function		Y	Y
		CAN communication function	It sends/receives CAN data to/from ECU	CAN communication function		Y	Y
		CAN gateway function	It routes CAN communication by referring to a routing table.	CAN Gateway function		Y	Y
			Routing table	Routing table	Y	Y	
		OBD connection function	It sends data in CAN via OBD connector.	OBD connection function		Y	Y

Table II.1 – Overview of TOE module functions

II.2 Identification of major threats

Based on the definition of TOE for software update in clause II.1, this clause identifies major threats located in the TOE according to the framework of [ISO/IEC 15408-1].

Regarding the method to identify major threats based on this TOE model, this Recommendation utilizes a method of risk analysis provided in Appendix I (informative).

#	Label	Who	When (phase)	Why	Where/What
1	T.DoS- Functions- From-OBD- Device	Third party Maintenance factory staff	Normal operation Maintenance	Intentionally	For asset functions of VMG, it impersonates an OBD connector connection device, sends a large amount of data, and interferes with this function.
2	T.Malfunction -Functions- From-OBD- Device	Third party Maintenance factory staff	Normal operation use/maintenance Maintenance	Intentionally	For asset functions of VMG, impersonates an OBD connector connection device, sends unauthorized data, and causes a malfunction of this functionality.

Table II.2 – Major threats based on the TOE model

#	Label	Who	When (phase)	Why	Where/What
3	T.MissDoS- Functions- From-OBD- Device	Vehicle dealer staff Maintenance factory staff	Maintenance	Accidentally	For asset functions of VMG, it sends a large amount of data or unauthorized data from OBD connector connection device by mistake, and causes a malfunction of this functionality.
4	T.DoS- Functions- From-ECU	Third party Maintenance factory staff	Normal operation/use/ maintenance Maintenance	Intentionally	For asset functions of VMG, it uses reverse engineering of the same product as the ECU firmware connected to CAN0-2, updates ECU firmware connected to CAN0-2 to an unauthorized firmware; in this way, it sends a large amount of data from ECU connected to CAN1-5, and interferes with this functionality.
5	T.Malfunction -Functions- From-ECU	Third party Maintenance factory staff	Normal operation/use/ maintenance Maintenance	Intentionally	For asset functions of VMG, it uses reverse engineering of the same product as the ECU firmware connected to CAN1-5, updates ECU firmware connected to CAN1-5 to an unauthorized firmware; in this way, it sends unauthorized data from ECU connected to CAN1-5, causes a malfunction of this functionality.
6	T.DoS- Functions- From-Mobile- Device	Third party	Normal operation/use/ maintenance	Intentionally	For asset functions of VMG, it impersonates a server, sends a large amount of data to VMG from a mobile connection device, and interferes with this functionality.
7	T.Spoofing- Server_ToGet- Data	Third party	Normal operation/use/ maintenance	Intentionally	For asset information of VMG, it sends a command to get VMG's asset information from mobile connection device by intercepting communication channel or by impersonating a mobile connection device. In this way, it receives VMG's asset information.
8	T.MissDoS- Functions- From-mobile- Device	Server administrator	Normal operation/use/ maintenance	Accidentally	For asset functions of VMG, the server sends, by misoperation, a large amount of data or unauthorized data from mobile connection device, interferes with this functionality, and causes a malfunction of this functionality.

 Table II.2 – Major threats based on the TOE model

#	Label	Who	When (phase)	Why	Where/What
9	T.Leaking- Mobile- Information- From-Mobile- Device	Owner/user Server administrator /vehicle dealer staff Server administrator	Normal operation/use vehicle delivery Normal operation/use/ maintenance	Accidentally	For asset information of VMG, from mobile connection device, it sends by misoperation, a command to VMG to get VMG's protection asset (information), and get and leak VMG's protection asset (information).
10	T.MissUpdate- Mobile- Information- From-Mobile- Device	Owner/user Server administrator /vehicle dealer staff Server administrator	Normal operation/use Vehicle delivery Normal operation/use/ maintenance	Accidentally	For asset information of VMG, from mobile connection device, by misoperation, it mistakenly sends a command to VMG to update VMG's protection asset (information), and updates VMG's protection asset (information).
11	T.Malfunction -Functions- From-mobile- Device	Third party	Normal operation/use/ maintenance	Intentionally	For asset functions of VMG, from mobile connection device, it impersonates a server, sends unauthorized data, and causes a malfunction of this functionality.
12	T.Spoofing- Server_ToRew rite-Data	Third party	Normal operation/use	Intentionally	For protection asset (information) of VMG, from mobile connection device, impersonates a mobile connection device, sends a command to rewrite VMG's protection asset (information), and VMG's protection asset (information).
13	T.DoS- Functions- From-Wi-Fi- Device	Third party	Normal operation/use /maintenance	Intentionally	For Wi-Fi connection function, it impersonates a Wi-Fi connection device, sends a large amount of data, and interferes with this functionality.
14	T.Malfunction -Functions- From-Wi-Fi- Device	Third party	Normal operation/use /maintenance	Intentionally	For Wi-Fi connection function, it impersonates a Wi-Fi connection device, sends unauthorized data, and causes a malfunction of this functionality.
15	T.MissDoS- Functions- From-Wi-Fi- Device	Owner/user	Normal operation/use	Accidentally	For Wi-Fi connection function, by misoperation of Wi-Fi connection device or by malware infection of Wi-Fi connection device, it sends a large amount of data or unauthorized data, interferes with this functionality, and causes a malfunction of this functionality

 Table II.2 – Major threats based on the TOE model

#	Label	Who	When (phase)	Why	Where/What
16	T.Spoofing- Wi-Fi- Device_ToGet -Wi-Fi- Information	Third party	Normal operation/use / maintenance	Intentionally	For Wi-Fi connection function, impersonates Wi-Fi connection device, and it sends a command to get Wi-Fi connection authentication information, and it exploits Wi-Fi connection authentication information.
17	T.Spoofing- Wi-Fi- Device_ToRe write-Wi-Fi- Information	Third party	Normal operation/use / maintenance	Intentionally	For Wi-Fi connection function, it impersonates a Wi-Fi connection device, sends a command to rewrite Wi-Fi connection authentication information, and rewrites Wi-Fi connection authentication information.
18	T.Leaking-Wi- Fi- Information- From-Wi-Fi- Device	Vehicle dealer staff Owner/user	Vehicle delivery Normal operation/use	Accidentally	For Wi-Fi connection authentication information, It sends a command to get a Wi-Fi connection authentication information, and gets and leaks Wi-Fi connection authentication information.
19	T.MissUpdate- Wi-Fi- Information- From-Wi-Fi- Device	Vehicle dealer staff Owner/user	Vehicle delivery Normal operation/use	Accidentally	For Wi-Fi connection authentication information, it sends a command to rewrite a Wi- Fi connection authentication information, and rewrites Wi-Fi connection authentication information.

 Table II.2 – Major threats based on the TOE model

II.3 Security Requirements in TOE

Based on threats identified in clause II.2, three components of security requirements are extracted for the TOE model in the following sub-clauses. Each security requirement is derived from threats defined in clause II.2. A set of threat IDs (#) that can be obtained from Table II.2 is attached in each security requirement in clause II.3.

II.3.1 TOE security requirements

II.3.1.1 SR.integrity/availability protection of VMG functions through CAN communication

Integrity and availability of VMG functions need to be ensured against denial of service (DoS) and malfunction attacks from ECUs through CAN0-CAN2 communication (see Threats 4and 5).

Description

In CAN communication, the only CAN data to which the specified CAN identifiers (IDs) are given is routed. If VMG receives a large amount of communication packets and/or confirms access of irregular patterns from CAN0-CAN2 connection devices, it need not perform abnormal operations.

II.3.1.2 SR.confidentiality protection of VMG data

The communication contents between VMG and the server need to be protected in terms of confidentiality in the way that a third party cannot read them (see Threats 7, 16 and 17).

II.3.1.3 SR.integrity/availability protection of VMG functions through mobile communication

Integrity and availability of VMG functions need to be ensured against DoS and malfunction attacks from mobile devices through mobile communication (see Threats 6, 7, 8, 9, 10, 11 and 12).

Description

In communication with a mobile connection device, VMG needs to confirm if the communicating party is an authorized mobile connection device. VMG needs to be protected from impersonation of the server when receiving unauthorized/abnormal data through mobile communication. If VMG receives a huge amount of communication packets from mobile connection devices and/or confirms access of irregular patterns from mobile connection device, it need not perform abnormal operations. Furthermore, VMG needs to confirm the consistency and the frequency of transmission between commands sent from mobile connection devices.

II.3.1.4 SR.FaultTolerance of VMG functions

The functions of VMG need to continue their intended operations, possibly at a reduced level in the presence of something irregular due to attacks (see Threats 1, 2, 3, 4, 5, 6, 8, 11 and 15).

II.3.1.5 SR.integrity/availability protection of VMG functions through OBD

Integrity and availability of VMG functions need to be ensured against DoS and malfunction attacks from OBD connection devices through an OBD connector (see Threats 1, 2 and 3).

Description

Regarding CAN connection via the OBD connector, only specified devices are allowed to access ECUs. VMG needs to be protected from impersonation of OBD connection devices when receiving unauthorized/abnormal data through the OBD connector. If VMG receives a large amount of communication or unauthorized commands from OBD connection devices, it need not perform abnormal operations.

II.3.1.6 SR.confidentiality/integrity/availability protection of VMG through Wi-Fi communication

VMG needs to be protected from impersonation of Wi-Fi communication devices, when receiving unauthorized/abnormal data through Wi-Fi communication (see Threats 13, 14, 15, 16, 17, 18 and 19).

Description

In communication with a Wi-Fi device, VMG needs to confirm if the device has been registered in advance. If VMG receives a large amount of communication packets from Wi-Fi devices and/or confirms access of irregular patterns from a Wi-Fi device, it need not perform abnormal operations.

II.3.2 Security requirements for the operational environment of TOE from IT perspective

II.3.2.1 SRE.ECU protection

ECU module needs to be protected against analysis of ECU firmware by means of obfuscation of the module. ECU needs to be protected against attacks using unauthorized sensor data. ECU needs to be physically protected against attacks by means of unauthorized replacement of ECU (see Threats 4 and 5).

II.3.2.2 SRE.CAN communication protection

CAN communications need to be protected against analysis of CAN communication protocol by means of scrambling operations (lightweight operations such as bit flipping, etc.) on the CAN payload

data. CAN needs to be physically protected against attacks by means of clipping to CAN wiring by a malicious third party (see Threats 4 and 5).

II.3.2.3 SRE.Mobile communication network protection

The mobile communication network that VMG uses to communicate with the server needs to be protected against attacks from unauthorized devises. The network configuration information needs to be protected in terms of confidentiality. The network needs to be monitored to detect attacks (see Threats 6, 7, 11and 12).

II.3.2.4 SRE.Wireless communication protection

Wireless communications need to be protected against analysis of the wireless communication protocol by storing only the minimum data in the payload of the communication packet, or by scrambling payload data by means of lightweight operations such as bit flipping, etc. (see Threats 7, 12, 16 and 17).

II.3.3 Security requirements for the operation environment from non-IT operation/management perspective

II.3.3.1 SREN.Caution

It is noted that an attack on the in-vehicle system is a criminal act. Furthermore, the sale of the product to help the crime needs to be restrained (see Threats 1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 16 and 17).

II.3.3.2 SREN.NetworkServicer

The server administrator needs to prevent stored data from being leaked or tampered by means of an inappropriate management of the server (see Threats 7 and 8).

II.3.3.3 SREN.OBD tool protection

OBD tools connect to a vehicle need to be protected against unauthorized usage by means of secure management. In addition, the operation methods of tools connected to a vehicle need to be confirmed before the operation (see Threat 3).

II.3.3.4 SREN.User

When users use a vehicle, they need to be informed about the required precautions.

Description

A vehicle needs to be locked to prevent invasions by a third party if a user is away from it. A vehicle needs to be parked in a place where a third party cannot easily approach it, if it is not in use. The user needs to confirm that an unidentified device is not present before using a vehicle. The user needs to be careful when he or she connects commercial products to the OBD connector that is an interface for the maintenance (see Threats 1, 2, 4, 5, 13, 14, 16 and 17).

II.3.3.5 SREN.VirusScan

Devices connected to the system via mobile/Wi-Fi connections need to be regularly scanned (see Threats 9, 10, 15, 18 and 19).

II.3.3.6 SREN.Wireless-Device protection

The concerned person needs to confirm how to operate the device connected via mobile/Wi-Fi before the operations. In addition, the concerned person needs to be careful to prevent the leakage of the password of the devices connected via Wi-Fi and commands (see Threats 9, 10, 12, 13, 14, 16, 17, 18 and 19).

II.3.3.7 SREN.Wireless-Display

Users using a Wi-Fi/mobile connection device need to confirm whether or not to send "get/write" commands of VMG asset information by making a choice on the display of the device (see Threats 9, 10, 18 and 19).

II.4 Security controls

Based on the security requirements in clause II.3, this clause provides security controls that satisfy the security requirements especially from IT perspectives.

II.4.1 SC.Trusted boot

As a countermeasure against analysis (e.g., tampering) of the original program module in ECU, it is recommended for ECU to implement self-check mechanisms of its software by using the boot security protection mechanism of the hardware security module (HSM) at every boot sequence of ECU.

Corresponding security requirement

- SRE.ECU protection in clause II.3.2.1

II.4.2 SC.Message verification

Against the attacks of tampering, eavesdropping and replaying, the message verification method is effective to retain authenticity of entities and integrity of messages.

There are two methods which are appropriate for this purpose: the first is with digital signature (digital signature method), and the second is with message authentication code (MAC).

Meanwhile, for practical implementations of ECUs in a vehicle, cryptographic capabilities of devices differ depending on the vehicles. For example, a luxury vehicle might have HSMs for all ECUs in the vehicle, while a popular vehicle might have HSMs for only a part of ECUs. Besides, there are differences of cryptographic capabilities depending on the types of the applied HSMs.

Therefore, the security architecture needs to take into account the differences of security capabilities among vehicles. Namely, this Recommendation applies the digital signature method based on [ITU-T X.509] for the message verification of vehicles with asymmetric crypto algorithm (e.g., a trusted platform module (TPM). On the other hand, for vehicles without asymmetric crypto algorithm (e.g., HSM and smart-card), this Recommendation applies MAC for message verification. For details of the communication protocol including the message verification, see clause 7. This security control is an essential measure for remote software update in order to verify messages in this Recommendation.

Corresponding security requirements

- SR.confidentiality protection of VMG data in clause II.3.1.2;
- SR.confidentiality/integrity/availability protection of VMG through Wi-Fi communication in clause II.3.1.6;
- SRE.Mobile communication network protection in clause II.3.2.3;
- SRE.Wireless communication protection in clause II.3.2.4.

II.4.3 SC.Authentication of communication entity

In order to avoid impersonation of communication entities (i.e. impersonation of ECU, VMG and the update server), those entities are recommended to authenticate each other at the beginning of every communication. This security control should be implemented under the transport layer, and secure software update procedures defined in this Recommendation should be secured by the lower layer function. As a specific countermeasure for authentication of communication entities, both client and server authentication using the secure socket layer/transport layer security (SSL/TLS) is effective under the third-party certification authority (CA).

Corresponding security requirements

- SR.confidentiality/integrity/availability protection of VMG through Wi-Fi communication in clause II.3.1.6;
- SRE.Mobile communication network protection in clause II.3.2.3;
- SRE.Wireless communication protection in clause II.3.2.4.

II.4.4 SC.Message filtering

As an example of DoS attacks against VMG, an ECU is compromised by an attacker and massively sends forged messages to VMG to improperly consume their computational power. In order to reduce the security impact by such DoS attacks, message filtering technique is one of the effective methods. It is recommended for VMG to filter out irrelevant messages according to sender ID, message type, size, frequency, etc., or a combination of all of them.

Corresponding security requirements

- SR.integrity/availability protection of VMG functions through CAN communication in clause II.3.1.1;
- SR.integrity/availability protection of VMG functions through mobile communication in clause II.3.1.3;
- SR.integrity/availability protection of VMG functions through OBD in clause II.3.1.5.

II.4.5 SC.FaultTolerance of VMG functions

Suppliers of VMG are strongly recommended to implement VMG software with fail-safe design so that VMG can continue its intended operations in the presence of something irregular due to attacks. Particularly, VMG monitors the operation status and if something irregular is detected, a measure (reboot, etc.) is taken so that it recovers to a normal state. If it is not possible to recover, it informs the driver of the issue and safely suspends the operation.

Corresponding security requirement

- SR.FaultTolerance of VMG functions in clause II.3.1.4.

Bibliography

[b-ITU-T F.749.1]	Recommendation ITU-T F.749.1 (2015), Functional requirements for vehicle gateways.
[b-ISO/IEC 9797-1]	ISO/IEC 9797-1:2011, Information technology – Security techniques – Message Authentication Codes (MACs) – Part 1: Mechanisms using a block cipher. < <u>http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50375></u>
[b-ISO/IEC 9797-2]	ISO/IEC 9797-2:2011, Information technology – Security techniques – Message Authentication Codes (MACs) – Part 2: Mechanisms using a dedicated hash-function. < <u>http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=51618></u>
[b-ISO/IEC 9797-3]	ISO/IEC 9797-3:2011, Information technology – Security techniques – Message Authentication Codes (MACs) – Part 3: Mechanisms using a universal hash-function. < <u>http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=51619></u>
[b-ISO/IEC 29192-2]	ISO/IEC 29192-2:2012, Information technology – Security techniques – Lightweight cryptography – Part 2: Block ciphers. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552
[b-ISO/IEC 29192-5]	ISO/IEC 29192-5:2016, Information technology – Security techniques – Lightweight cryptography – Part 5: Hash-functions. <http: catalogue_detail.htm?csnumber="67173" catalogue_tc="" home="" iso="" store="" www.iso.org=""></http:>
[b-JASO TP15002]	JASO TP15002:2015, Guideline for automotive information security analysis.
[b-FIPS-202]	Federal Information Processing Standards Publication-202 (2015), SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. National Institute of Standards and Technology, < <u>http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf></u>
[b-ISO 14229]	ISO 14229-1:2013, Road vehicles –Unified diagnostic services (UDS) – Part 1: Specification and requirements
[b-ISO 13400]	Road vehicles – Diagnostic communication over Internet Protocol (DoIP) – Part 1: General information and use case definition

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

- Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling, and associated measurements and tests
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
- Series Z Languages and general software aspects for telecommunication systems