

INTERNATIONAL TELECOMMUNICATION UNION

OF ITU

STANDARDIZATION SECTOR

SERIES Q: SWITCHING AND SIGNALLING

Specifications of Signalling System No. 7 – Signalling connection control part (SCCP)

Signalling connection control part formats and codes

ITU-T Recommendation Q.713

(Formerly CCITT Recommendation)

ITU-T Q-SERIES RECOMMENDATIONS SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE	Q.1–Q.3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING	Q.4–Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN	Q.60–Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS	Q.100-Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4 AND No. 5	Q.120-Q.249
SPECIFICATIONS OF SIGNALLING SYSTEM No. 6	Q.250-Q.309
SPECIFICATIONS OF SIGNALLING SYSTEM R1	Q.310-Q.399
SPECIFICATIONS OF SIGNALLING SYSTEM R2	Q.400-Q.499
DIGITAL EXCHANGES	Q.500-Q.599
INTERWORKING OF SIGNALLING SYSTEMS	Q.600-Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7	Q.700-Q.799
General	Q.700
Message transfer part (MTP)	Q.701–Q.709
Signalling connection control part (SCCP)	Q.711–Q.719
Telephone user part (TUP)	Q.720–Q.729
ISDN supplementary services	Q.730–Q.739
Data user part	Q.740–Q.749
Signalling System No. 7 management	Q.750–Q.759
ISDN user part	Q.760–Q.769
Transaction capabilities application part	Q.770–Q.779
Test specification	Q.780–Q.799
Q3 INTERFACE	Q.800–Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1	Q.850–Q.999
PUBLIC LAND MOBILE NETWORK	Q.1000–Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS	Q.1100–Q.1199
INTELLIGENT NETWORK	Q.1200-Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000	Q.1700–Q.1799
SPECIFICATIONS OF SIGNALLING RELATED TO BEARER INDEPENDENT CALL CONTROL (BICC)	Q.1900–Q.1999
BROADBAND ISDN	Q.2000-Q.2999

For further details, please refer to the list of ITU-T Recommendations.

Signalling connection control part formats and codes

Summary

This Recommendation specifies the Signalling Connection Control Part (SCCP) messages formats and codes for the purpose of connection-oriented services, connectionless services and management of SCCP.

Source

ITU-T Recommendation Q.713 was revised by ITU-T Study Group 11 (2001-2004) and approved under the WTSA Resolution 1 procedure on 1 March 2001.

i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

CONTENTS

Page

1	General	1
1.1	Message type code	1
1.2	Formatting principles	2
1.3	Mandatory fixed part	3
1.4	Mandatory variable part	3
1.5	Optional part	3
1.6	End of optional parameters octet	3
1.7	Order of transmission	3
1.8	Coding of spare bits	4
1.9	National message types and parameters	4
1.10	International message types and parameters	4
2	Coding of the general parts	4
2.1	Coding of the message type	4
2.2	Coding of the length indicator	5
2.3	Coding of the pointers	5
3	SCCP parameters	5
3.1	End of optional parameters	6
3.2	Destination local reference	6
3.3	Source local reference	6
3.4	Called party address	7
	3.4.1 Address indicator	7
	3.4.2 Address	8
3.5	Calling party address	12
3.6	Protocol class	13
3.7	Segmenting/reassembling	13
3.8	Receive sequence number	13
3.9	Sequencing/segmenting	14
3.10	Credit	14
3.11	Release cause	14
3.12	Return cause	15
3.13	Reset cause	15
3.14	Error cause	16
3.15	Refusal cause	16
3.16	Data	17

Page

3.17	Segmentation	17								
3.18	Hop counter	18								
3.19	Importance	18								
3.20	Long data									
4	SCCP messages and codes									
4.1	General									
4.2	Connection request (CR)	19								
4.3	Connection confirm (CC)	19								
4.4	Connection refused (CREF)	20								
4.5	Released (RLSD)	20								
4.6	Release complete (RLC)	20								
4.7	Data form 1 (DT1)	21								
4.8	Data form 2 (DT2)	21								
4.9	Data acknowledgement (AK)	21								
4.10	Unitdata (UDT)	22								
4.11	Unitdata service (UDTS)	22								
4.12	Expedited data (ED)	23								
4.13	Expedited data acknowledgement (EA)	23								
4.14	Reset request (RSR)	23								
4.15	Reset confirmation (RSC)	23								
4.16	Protocol data unit error (ERR)	24								
4.17	Inactivity test (IT)	24								
4.18	Extended unitdata (XUDT)	24								
4.19	Extended unitdata service (XUDTS)	25								
4.20	Long unitdata (LUDT)	26								
4.21	Long unitdata service (LUDTS)	26								
5	SCCP Management messages and codes	27								
5.1	General	27								
	5.1.1 SCMG format identifier	27								
	5.1.2 Formatting principles	27								
5.2	SCMG message parameters	27								
	5.2.1 Affected SSN	27								
	5.2.2 Affected PC	27								
	5.2.3 Subsystem multiplicity indicator	27								
	5.2.4 SCCP congestion level	28								
5.3	SCCP Messages	28								

Page

Annex	A – Map	ping for cause parameter values	29				
A.1	Introduction						
A.2	Connection refusal						
A.3	Connec	tion release	29				
A.4	Connec	tion reset	29				
A.5	Return	cause	29				
Annex	B – Inter	national SCCP addressing and format specification	32				
B .1	Introdu	ction	32				
B.2		nes on using SCCP addressing information elements in the international					
	networl	ζ	32				
B.3	GT rou	ting specification of international services	33				
B.4	Internat	ional GT routing specification	34				
	B.4.1	Translation selector: $TT = 17$, $NP = 1$, $NAI = 4$	34				
	B.4.2	Translation selector: $TT = 1$, $NP = 0$, $NAI = 4$	35				
	B.4.3	Translation selector: $TT = 2$, $NP = 2$, $NAI = 4$	36				
	B.4.4	Translation selector: $TT = 0$, $NP = 1$, $NAI = 4$	36				
	B.4.5	Translation selector: $TT = 3$, $NP = 1$, $NAI = 4$	37				
	B.4.6	Translation Selector: $TT = 40$, $NP = 6$, $NAI = 4$	38				
	B.4.7	Translation Selector: $TT = 0$, $NP = 7$, $NAI = 4$	39				

v

ITU-T Recommendation Q.713

Signalling connection control part formats and codes

1 General

This Recommendation specifies the SCCP messages formats and codes for the support of connection-oriented services, connectionless services and the management of SCCP.

The SCCP messages are passed between SCCP and MTP across the MTP-SAP by means of the user data parameter of the MTP-TRANSFER request or indication primitives as appropriate (see Table 1/Q.701).

NOTE – The MTP-TRANSFER primitive, in addition to the user data parameter, contains four parameters with the contents as follows (see Table 1/Q.701):

- the contents of the OPC consisting of information equivalent to 14 bits, to be conveyed in the standard routing label of the MTP;
- the contents of the DPC consisting of information equivalent to 14 bits, to be conveyed in the standard routing label of the MTP;
- the contents of the SLS consisting of information equivalent to 4 bits. If the MTP service "in-sequence delivery" of SDUs is a requirement, SCCP shall use the same SLS value for all SDUs with the same sequence control and called address parameters;
- information equivalent to the contents of the SIO. For SCCP, the encoding for the service indicator is 0011 binary (see 14.2.1/Q.704).

A SCCP message consists of the following parts (see Figure 1):

- the message type code;
- the mandatory fixed part;
- the mandatory variable part;
- the optional part, which may contain fixed length and variable length fields.

The description of the various parts is contained in the following clauses. SCCP management messages and codes are provided in clause 5.

MTP routing label)
Message type code)	
Mandatory fixed part	SCCP Message	SIF
Mandatory variable part	SCCI Message	f on
Optional part	J	

Figure 1/Q.713 – General layout

1.1 Message type code

The message type code consists of a one octet field and is mandatory for all messages. The message type code uniquely defines the function and format of each SCCP message. The allocation of message type codes, with reference to the appropriate descriptive clause of this Recommendation is summarized in Table 1. Table 1 also contains an indication of the applicability of the various message types to the relevant classes of protocol.

1

1.2 Formatting principles

Each message consists of a number of parameters listed and described in clause 3. Each parameter has a "name" that can be represented by a single octet (see clause 3), and is present in optional parameters. The length of a parameter may be fixed or variable, and a "length indicator" of one octet for each parameter may be included as described below. The length indicator of the long data parameter shall be two octets, with the less significant octet preceding the transmission of the more significant octet.

The detailed format is uniquely defined for each message type as described in clause 4.

A general SCCP message format is shown in Figure 2.

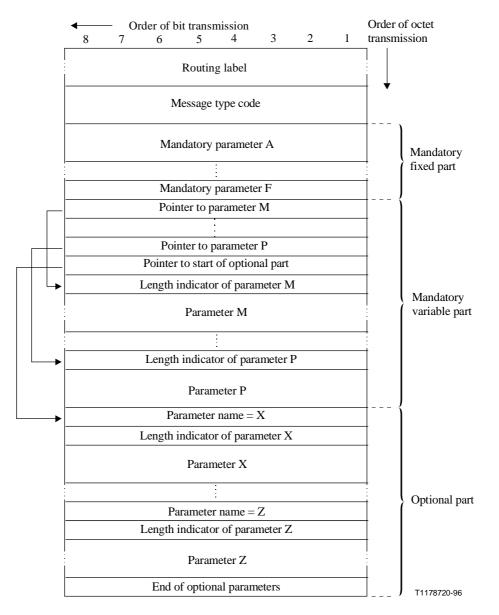


Figure 2/Q.713 – General SCCP message format

1.3 Mandatory fixed part

Those parameters that are mandatory and of fixed length for a particular message type will be contained in the "mandatory fixed part". The position, length and order of the parameters is uniquely defined by the message type. Thus the names of the parameters and the length indicators are not included in the message.

1.4 Mandatory variable part

Mandatory parameters of variable length will be included in the mandatory variable part. The name of each parameter and the order in which the pointers are sent is implicit in the message type. Parameter names are, therefore, not included in the message. A pointer is used to indicate the beginning of each parameter. Because of this, parameters may be sent in an order different from that of the pointers. Each pointer is encoded as a single octet or two octets in the case of LUDT and LUDTS. In the case of the two-octet pointer, the less significant octet shall be transmitted before the more significant octet. The details of how pointers are encoded is found in 2.3. The number of parameters, and thus the number of pointers, is uniquely defined by the message type.

A pointer is also included to indicate the beginning of the optional part. If the message type indicates that no optional part is allowed, then this pointer will not be present. If the message type indicates that an optional part is possible, but there is no optional part included in this particular message, then a pointer field containing all zeros will be used¹.

All the pointers are sent consecutively at the beginning of the mandatory variable part. Each parameter contains the parameter length indicator followed by the contents of the parameter.

All the pointers indicating the beginning of each mandatory variable parameter and the beginning of the optional part shall ensure that at the originating node the parameters are contiguous; and "gaps" shall not be left in between parameters in generating messages. Treatment of "gaps" at the receiving side is specified in 1.1.4.5/Q.714. Gaps should not be generated between the last pointer and first mandatory variable parameter. No extraneous octets should be added after the last parameter. All the above cases will not cause a protocol error.

1.5 Optional part

The optional part consists of a contiguous block of parameters that may or may not occur in any particular message type. The optional part may start after the pointer or after the mandatory variable part. Both fixed length and variable length parameters may be included. Optional parameters may be transmitted in any order. Each optional parameter will include the parameter name (one octet) and the length indicator (one octet) followed by the parameter contents.

1.6 End of optional parameters octet

After all optional parameters have been sent, an end of optional parameters octet containing all zeros will be transmitted. This octet is included only if optional parameters are present in the message. The end of optional parameters octet should not be used to detect the end of messages.

1.7 Order of transmission

Since all the parameters consist of an integral number of octets, the formats are presented as a stack of octets. The first octet transmitted is the one shown at the top of the stack and the last is the one at the bottom (see Figure 2).

¹ There are currently messages (RSR and ERR) containing one pointer to the beginning of the optional part although no optional parameters are currently defined for them.

1.8 Coding of spare bits

According to the general rules defined in ITU-T Q.700 and Q.1400, spare bits are coded 0 unless indicated otherwise at the originating nodes. Handling of spare fields is specified in 1.1.4.4/Q.714.

1.9 National message types and parameters

If message type codes and parameter codes are required for national uses, it is suggested that the codes be selected from the highest code downwards, that is starting at code 11111110. Code 11111111 is reserved for future use.

1.10 International message types and parameters

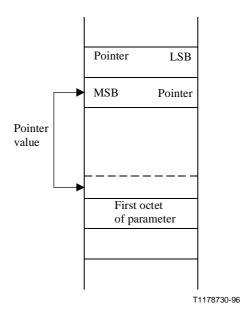
Message type codes and parameter codes are required for international use. These codes are selected from the lowest code values upwards, i.e., starting at 00000000. Note that the special codes applicable for international use are specified in each relevant section.

2 Coding of the general parts

2.1 Coding of the message type

The coding of the message is shown in Table 1.

Marra a free			Cla	sses			Message
Message type			1	2	3	Clause	Type Code
CR	Connection request			Х	Х	4.2	0000 0001
CC	Connection confirm			Х	Х	4.3	0000 0010
CREF	Connection refused			Х	Х	4.4	0000 0011
RLSD	Released			Х	Х	4.5	0000 0100
RLC	Release complete			Х	Х	4.6	0000 0101
DT1	Data form 1			Х		4.7	0000 0110
DT2	Data form 2				Х	4.8	0000 0111
AK	Data acknowledgement				Х	4.9	0000 1000
UDT	Unitdata	Х	Х			4.10	0000 1001
UDTS	Unitdata service	X^1	X^1			4.11	0000 1010
ED	Expedited data				Х	4.12	0000 1011
EA	Expedited data acknowledgement				Х	4.13	0000 1100
RSR	Reset request				Х	4.14	0000 1101
RSC	Reset confirmation				Х	4.15	0000 1110
ERR	Protocol data unit error			Х	Х	4.16	0000 1111
IT	Inactivity test			Х	Х	4.17	0001 0000
XUDT	Extended unitdata	Х	Х			4.18	0001 0001
XUDTS	Extended unitdata service	X^1	X^1			4.19	0001 0010
LUDT	Long unitdata	Х	Х			4.20	0001 0011
LUDTS	Long unitdata service	\mathbf{X}^1	\mathbf{X}^1			4.21	0001 0100
1	X Type of message of this protocol class.						


Table 1/Q.713 – SCCP message types

2.2 Coding of the length indicator

The length indicator field is binary coded to indicate the number of octets in the parameter content field. The length indicator does not include the parameter name octet or the length indicator octet.

2.3 Coding of the pointers

The pointer value (in binary) gives the number of octets between the most significant octet of the pointer itself (included) and the first octet (not included) of the parameter associated with that pointer² as shown in the following diagram.

The pointer value all zeros is used to indicate that, in the case of optional parameters, no optional parameter is present.

3 SCCP parameters

The parameter name codes are given in Table 2 with reference to the clauses in which they are described.

Parameter name	Clauses	Parameter name code 8765 4321
End of optional parameters	3.1	0000 0000
Destination local reference	3.2	0000 0001
Source local reference	3.3	0000 0010
Called party address	3.4	0000 0011

Table 2/Q.713 – SCCP parameter name codes

² For example, a pointer value of "00000001" indicates that the associated parameter begins in the octet immediately following the most significant octet of the pointer. A pointer value of "00001010" indicates that ten octets of information exist between the most significant octet of the pointer octet (included) and the first octet of the parameter associated with that pointer (not included). A two-octet pointer value of "00000000 00001010" indicates that ten octets of information exist between the most significant octet of the pointer (included) and the first octet of the parameter associated with that pointer (not included).

Parameter name	Clauses	Parameter name code 8765 4321
Calling party address	3.5	0000 0100
Protocol class	3.6	0000 0101
Segmenting/reassembling	3.7	0000 0110
Receive sequence number	3.8	0000 0111
Sequencing/segmenting	3.9	0000 1000
Credit	3.10	0000 1001
Release cause	3.11	0000 1010
Return cause	3.12	0000 1011
Reset cause	3.13	0000 1100
Error cause	3.14	0000 1101
Refusal cause	3.15	0000 1110
Data	3.16	0000 1111
Segmentation	3.17	0001 0000
Hop counter	3.18	0001 0001
Importance	3.19	0001 0010
Long data	3.20	0001 0011
	(0001 0100
Reserved for International Use		to
	l	1111 0011
		1111 0100
Reserved for National Networks		to
	l	1111 1110
Reserved		1111 1111

Table 2/Q.713 – SCCP parameter name codes (concluded)

3.1 End of optional parameters

The "end of optional parameters" parameter field consists of a single octet containing all zeros.

3.2 Destination local reference

The "destination local reference" parameter field is a three-octet field containing a reference number which, in outgoing messages, has been allocated to the connection section by the remote node.

The coding "all ones" is reserved for future use.

3.3 Source local reference

The "source local reference" parameter field is a three-octet field containing a reference number which is generated and used by the local node to identify the connection section after the connection section is set up.

The coding "all ones" is reserved for future use.

3.4 Called party address

The "called party address" is a variable length parameter. Its structure is shown in Figure 3.

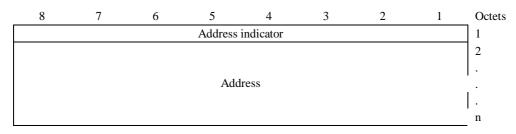


Figure 3/Q.713 – Called/calling party address

3.4.1 Address indicator

The "address indicator" indicates the type of address information contained in the address field (see Figure 4). The address consists of one or any combination of the following elements:

- signalling point code;
- global title (for instance, dialled digits);
- subsystem number.

8	7	6	5	4	3	2	1
Reserved for national use	Routing indicator		Global titl	e indicator		SSN indicator	Point code indicator

Figure 4/Q.713 – Address indicator encoding

A "1" in bit 1 indicates that the address contains a signalling point code.

A "1" in bit 2 indicates that the address contains a subsystem number.

Bits 3-6 of the address indicator octet contain the global title indicator (GTI), which is encoded as follows:

Bits <u>6543</u> 0000 0001 0010 0011 0100	no global title included global title includes nature of address indicator only global title includes translation type only global title includes translation type, numbering plan and encoding scheme global title includes translation type, numbering plan, encoding scheme
	and nature of address indicator
$ \begin{array}{c} 0 \ 1 \ 0 \ 1 \\ to \\ 0 \ 1 \ 1 \ 1 \end{array} $	spare international
$ \begin{array}{c} 1 \ 0 \ 0 \ 0 \\ t o \\ 1 \ 1 \ 1 \ 0 \end{array} $	spare national
1111	reserved for extension.

Bit 7 of the address indicator octet contains routing information identifying which address element shall be used for routing, and is encoded as follows:

Bit	
<u>7</u>	
1	Route on SSN
0	Route on GT

Bit 8 of the address indicator octet is reserved for national use and is always set to zero on international network.

3.4.2 Address

The various elements, when provided, occur in the order: point code, subsystem number, global title, as shown in Figure 5.

It is suggested that the called party address contain a subsystem number. This serves to simplify message reformatting following global title translation. The subsystem number shall be encoded "00000000" when the subsystem number is not known, e.g. before translation.

8	7	6	5	4	3	2	1
Signalling point code							
Subsystem number							
Global title							

Figure 5/Q.713 – Ordering of address elements

3.4.2.1 Signalling point code

The signalling point code, when provided, is represented by two octets. Bits 7 and 8 in the second octet are set to zero (see Figure 6).

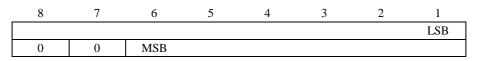


Figure 6/Q.713 – Signalling point code encoding

3.4.2.2 Subsystem number

The subsystem number (SSN) identifies an SCCP user function and, when provided, consists of one octet coded as follows:

Bits	
<u>87654321</u>	
000000000	SSN not known/not used
00000001	SCCP management
00000010	reserved for ITU-T allocation
00000011	ISDN user part
00000100	operation, maintenance and administration part (OMAP)
00000101	mobile application part (MAP)
00000110	home location register (HLR)
00000111	visitor location register (VLR)
00001000	mobile switching centre (MSC)

00001001		equipment identifier centre (EIC)
00001010		authentication centre (AUC)
00001011		ISDN supplementary services
00001100		reserved for international use
00001101		broadband ISDN edge-to-edge applications
00001110		TC test responder
00001111)	
to	}	reserved for international use
00011111	J	
00100000)	
to	<pre>}</pre>	reserved for national networks
11111110	J	
11111111	,	reserved for expansion of national and international SSN.

Network specific subsystem numbers should be assigned in descending order starting with "11111110".

3.4.2.3 Global title

The format of the global title (GT) is of variable length. Figures 7, 9, 10 and 11 show four possible formats for global title.

3.4.2.3.1 Global title indicator = 0001

Figure 7 shows the format of the global title, if the global title indicator equals "0001".

8	7	6	5	4	3	2	1	Octets
O/E		Nature of address indicator						1
Global title address information							2 and further	

Figure 7/Q.713 – Global title format for indicator 0001

Bits 1 to 7 of octet 1 contain the nature of address indicator (NAI) and are coded as follows:

Bits		
<u>7654321</u>		
00000000		unknown
$0\ 0\ 0\ 0\ 0\ 0\ 1$		subscriber number
0000010		reserved for national use
$0\ 0\ 0\ 0\ 0\ 1\ 1$		national significant number
0000100		international number
0000101)	
to	}	spare
$1\ 1\ 0\ 1\ 1\ 1\ 1$	J	
1110000)	
to	Į	reserved for national use
1111110	J	
1111111	-	reserved

Bit 8 of octet 1 contains the odd/even indicator and is coded as follows:

Bit	
<u>8</u>	
0	even number of address signals
1	odd number of address signals

The octets 2 and further contain a number of address signals and possibly a filler as shown in Figure 8.

8	7	6	5	4	3	2	1	Octets
	2nd addre	ess signal			1st addre	ess signal		2
	4th addre	ess signal			3rd addr	ess signal		3
			•	•••				
	filler (if n	ecessary)			nth addr	ess signal		m (Note)

NOTE – m depends on the restriction posed by the numbering plan in its defining Recommendation.

Figure 8/Q.713 – Global title address information (if encoding scheme is BCD)

Each address signal is coded as follows:

In case of an odd number of address signals, a filler code 0000 is inserted after the last address signal.

3.4.2.3.2 Global title indicator = 0010

Figure 9 shows the format of the global title, if the global title indicator equals "0010".

The translation type (TT) is a one-octet field that is used to direct the message to the appropriate translator.

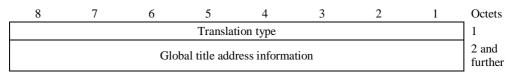


Figure 9/Q.713 – Global title format for indicator 0010

This octet will be coded "00000000" when not used. Translation types for internetwork services will be assigned in ascending order starting with "00000001". Translation types for network specific services will be assigned in descending order starting with "11111110". The code "11111111" is reserved for expansion.

Global title with GTI = 0010 is for national use only and is not used on the international interface. The allocation of the translation types for GTI = 0010 is a national matter.

In the case of this global title format (0010), the translation type may also imply the encoding scheme, used to encode the address information, and the numbering plan.

3.4.2.3.3 Global title indicator = 0011

Figure 10 shows the format of the global title, if the global title indicator equals "0011".

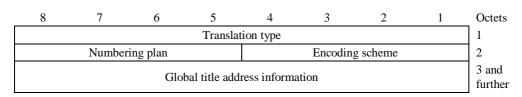


Figure 10/Q.713 – Global title format for indicator 0011

The coding and definition of the translation type for this global title format (0011) is for further study.

The numbering plan (NP) is encoded as follows:

$ \begin{array}{ccccc} \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 0 \\ \hline 0 & $	Bits	
$ \begin{array}{ccccc} 0 & 0 & 0 & 1 & \\ 0 & 0 & 1 & \\ 0 & 0 & 1 & \\ 0 & 0 & 1 & \\ 0 & 0 & 1 & \\ 0 & 0 & 1 & \\ 0 & 1 & 1 & \\ 0 & 1 & 0 & \\ 0 & 1 & 0 & \\ 0 & 1 & 0 & \\ 1 & 0 & 1 & \\ 0 & 1 & 0 & \\ 1 & 0 & 1 & \\ 0 & 1 & 0 & \\ 1 & 1 & 0 & \\ 1 & 0 & 0 & \\ 0 & 1 & 1 & \\ 1 & 0 & 0 & \\ 0 & 1 & 0 & \\ 1 & 0 & 1 & \\ 1 & 0 & 0 & \\ 0 & 1 & 0 & \\ 1 & 0 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	<u>8765</u>	
$ \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 &$	0000	unknown
$ \begin{array}{cccc} 0 & 0 & 1 & 1 & data numbering plan (ITU-T X.121) \\ 0 & 1 & 0 & 0 & telex numbering plan (ITU-T F.69) \\ 0 & 1 & 0 & 0 & to & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 $	0001	ISDN/telephony numbering plan (ITU-T E.163 and E.164)
$ \begin{array}{cccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 &$	0010	generic numbering plan
$ \begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ t & t & 0 \\ 1 & 1 & 0 & 1 \end{array} \right) $ maritime mobile numbering plan (ITU-T E.210, E.211) land mobile numbering plan (ITU-T E.212) ISDN/mobile numbering plan (ITU-T E.214) spare	0011	data numbering plan (ITU-T X.121)
$ \begin{array}{ccc} 0 \ 1 \ 1 \ 0 \\ 0 \ 1 \ 1 \ 0 \\ 1 \ 1 \ 1 \\ 1 \ 0 \ 0 \ 0 \\ to \\ 1 \ 1 \ 0 \ 1 \end{array} \right) \begin{array}{c} \text{land mobile numbering plan (ITU-T E.212)} \\ \text{ISDN/mobile numbering plan (ITU-T E.214)} \\ \text{spare} \\ 1 \ 1 \ 0 \ 1 \end{array} \right) $	0100	telex numbering plan (ITU-T F.69)
$ \begin{array}{c} 0 \ 1 \ 1 \ 1 \\ 1 \ 0 \ 0 \ 0 \\ to \\ 1 \ 1 \ 0 \ 1 \end{array} \right\} $ ISDN/mobile numbering plan (ITU-T E.214) spare	0101	maritime mobile numbering plan (ITU-T E.210, E.211)
$ \begin{array}{c} 1 \ 0 \ 0 \ 0 \\ t \ 0 \\ 1 \ 1 \ 0 \ 1 \end{array} $ spare $ \begin{array}{c} 1 \ 0 \ 0 \\ 1 \ 1 \ 0 \ 1 \end{array} $	0110	land mobile numbering plan (ITU-T E.212)
to $\left. \begin{array}{c} \text{spare} \\ 1 \ 1 \ 0 \ 1 \end{array} \right\}$	0111	ISDN/mobile numbering plan (ITU-T E.214)
1101	1000	
	to }	spare
1 1 1 0 private network or network-specific numbering plan	1101	
i i i o private network of network-specific numbering plan	1110	private network or network-specific numbering plan
1111 reserved	1111	reserved

The encoding scheme (ES) is encoded as follows:

Bits		
<u>4321</u>		
$0\ 0\ 0\ 0$		unknown
$0\ 0\ 0\ 1$		BCD, odd number of digits
0010		BCD, even number of digits
0011		national specific
0100)	
to	<pre>}</pre>	spare
1110	J	
1111		reserved

If the encoding scheme is binary coded decimal, the global title address information, starting from octet 3, is encoded as shown in Figure 8.

3.4.2.3.4 Global title indicator = 0100

Figure 11 shows the format of the global title, if the global title indicator equals "0100".

8	7	6	5	4	3	2	1	Octets
			Transla	tion type				1
	Numbering plan Encoding scheme							
0	0 Nature of address indicator							
	Global title address information							

Figure 11/Q.713 – Global title format for indicator 0100

This global title format (0100) is used for international network applications. In this case, the "translation type" along with the allowable combination of its "numbering plan", "nature of address indicator", and "encoding scheme" is specified in Annex B.

The fields "numbering plan" and "encoding scheme" are as described in 3.4.2.3.3. The field "nature of address indicator" is as described in 3.4.2.3.1.

If the encoding scheme is binary coded decimal, the global title address information, starting from octet 4, is encoded as shown in Figure 8.

The ranges of the translation types to be allocated for global title with GTI = 0100 are shown as follows:

Bits		
<u>87654321</u>	Decimal Value	
$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	0	unknown
$0\ 0\ 0\ 0\ 0\ 0\ 1$	1)
to	to	<pre>international services</pre>
00111111	63	J
$0\ 1\ 0\ 0\ 0\ 0\ 0$	64)
to	to	spare
01111111	127	J
$1\ 0\ 0\ 0\ 0\ 0\ 0$	128)
to	to	anational network specific
11111110	254	
11111111	255	reserved for expansion

3.5 Calling party address

The "calling party address" is a variable length parameter. Its structure is the same as the "called party address".

For compatibility reasons with earlier versions, an SCCP should be able to receive and/or transfer a (X)UDT message in which the calling party address parameter only consists of the address indicator octet, where bits 1 to 7 are coded all zeros.

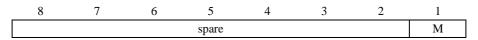
However, it is recommended that the origination point does not code the address indicator octet where bits 1 to 7 are coded all zeros. It is recommended that further information (GT and/or SSN) should be provided.

3.6 Protocol class

The "protocol class" parameter field is a one-octet parameter and is structured as follows:

Bits 1-4 indicating protocol class are coded as follows:

Bits	
<u>4321</u>	
0000	class 0
0001	class 1
0010	class 2
0011	class 3


When bits 1-4 are coded to indicate a connection-oriented-protocol class (class 2, class 3), bits 5-8 are spare.

When bits 1-4 are coded to indicate a connectionless protocol class (class 0, class 1), bits 5-8 are used to specify message handling as follows:

	no special options
)	
}	spare
J	
	return message on error
)	
}	spare
J	
	}

3.7 Segmenting/reassembling

The "segmenting/reassembling" parameter field is a one octet field and is structured as follows:

Bits 8-2 are spare.

Bit 1 is used for the more data indication and is coded as follows:

- 0 = no more data;

- 1 = more data.

3.8 Receive sequence number

The "receive sequence number" parameter field is a one octet field and is structured as follows:

 8
 7
 6
 5
 4
 3
 2
 1

 P(R)
 spare

Bits 8-2 contain the receive sequence number P(R) used to indicate the sequence number of the next expected message. P(R) is binary coded and bit 2 is the LSB.

Bit 1 is spare.

3.9 Sequencing/segmenting

The sequencing/segmenting parameter field consists of two octets and is structured as follows:

8	7	6	5	4	3	2	1	Octets
			P(S)				spare	1
			P(R)				М	2

Bits 8-2 of octet 1 are used for indicating the send sequence number P(S). P(S) is binary coded and bit 2 is the LSB.

Bit 1 of octet 1 is spare.

Bits 8-2 of octet 2 are used for indicating the receive sequence number P(R). P(R) is binary coded and bit 2 is the LSB.

Bit 1 of octet 2 is used for the more data indication and is coded as follows:

- 0 = no more data;

- 1 = more data.

The sequencing/segmenting parameter field is used exclusively in protocol class 3.

3.10 Credit

The "credit" parameter field is a one-octet field used in the protocol class 3 which include flow control functions. It contains the window size value coded in pure binary.

3.11 Release cause

The release cause parameter field is a one-octet field containing the reason for the release of the connection.

The coding of the release cause field is as follows:

Bits	
<u>87654321</u>	
00000000	end user originated
00000001	end user congestion
00000010	end user failure
00000011	SCCP user originated
00000100	remote procedure error
00000101	inconsistent connection data
00000110	access failure
00000111	access congestion
00001000	subsystem failure
00001001	subsystem congestion
00001010	MTP failure
00001011	network congestion
00001100	expiration of reset timer
00001101	expiration of receive inactivity timer
00001110	reserved
00001111	unqualified
00010000	SCCP failure
00010001	
to	Reserved for International Use
11110011	

1 1 1 1 0 1 0 0 to 1 1 1 1 1 1 1 0	Reserved for National Networks
11111111	Reserved

3.12 Return cause

In the unitdata service or extended unitdata service or long unitdata service message, the "return cause" parameter field is a one octet field containing the reason for message return. Bits 1-8 are coded as follows:

Bits		
<u>87654321</u>		
000000000		no translation for an address of such nature
00000001		no translation for this specific address
0000010		subsystem congestion
00000011		subsystem failure
00000100		unequipped user
00000101		MTP failure
00000110		network congestion
00000111		unqualified
00001000		error in message transport (Note)
00001001		error in local processing (Note)
00001010		destination cannot perform reassembly (Note)
00001011		SCCP failure
00001100		hop counter violation
00001101		segmentation not supported
00001110		segmentation failure
00001111)	
to	<pre>{</pre>	Reserved for International Use
11100100	J	
11100101)	
to	ł	Reserved for National Networks
11111110	J	
1 1 1 1 1 1 1 1 1		Reserved

NOTE – Only applicable to XUDT(S) message.

3.13 Reset cause

The "reset cause" parameter field is a one octet field containing the reason for the resetting of the connection.

The coding of the reset cause field is as follows:

Bits	
<u>87654321</u>	
00000000	end user originated
00000001	SCCP user originated
00000010	message out of order – incorrect P(S)
0000011	message out of order – incorrect P(R)
00000100	remote procedure error – message out of window
00000101	remote procedure error – incorrect P(S) after (re)initialization
00000110	remote procedure error – general

$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0$	J	remote end user operational network operational access operational network congestion reserved unqualified
0 0 0 0 1 1 0 1 to 1 1 1 1 0 0 1 1		Reserved for International Use
1 1 1 1 0 1 0 0 to 1 1 1 1 1 1 1 0	}	Reserved for National Networks
11111111		Reserved

3.14 Error cause

The "error cause" parameter field is a one octet field containing the indication of the exact protocol error.

The coding of the error cause field is as follows:

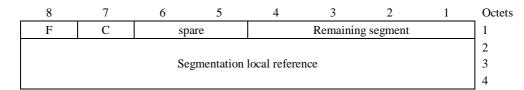
Bits		
<u>87654321</u>		
000000000		local reference number (LRN) mismatch – unassigned destination LRN
$0\ 0\ 0\ 0\ 0\ 0\ 0\ 1$		local reference number (LRN) mismatch – inconsistent source LRN
00000010		point code mismatch ³
$0\ 0\ 0\ 0\ 0\ 0\ 1\ 1$		service class mismatch
00000100		unqualified
0 0 0 0 0 1 0 1 to 1 1 1 1 0 0 1 1	}	Reserved for International Use
1 1 1 1 0 1 0 0 to 1 1 1 1 1 1 1 0	}	Reserved for National Networks
11111111		Reserved

3.15 Refusal cause

The refusal cause parameter field is a one octet field containing the reason for the refusal of the connection.

The coding of the refusal cause field is as follows:

end user originated
end user congestion
end user failure
SCCP user originated


³ National option, Table B.2/Q.714.

$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ \end{array}$	destination address unknown destination inaccessible
$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ \end{array}$	network resource – QoS not available/non-transient network resource – QoS not available/transient
$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \end{array}$	access failure access congestion
$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \\ \end{array}$	subsystem failure
00001100	subsystem congestion expiration of the connection establishment timer
$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \end{array}$	incompatible user data reserved
$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \end{array}$	unqualified hop counter violation
$0\ 0\ 0\ 1\ 0\ 0\ 1$	SCCP failure
$\begin{array}{c} 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \end{array}$	no translation for an address of such nature unequipped user
$\left.\begin{array}{c} 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \\ to \\ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \end{array}\right\}$	Reserved for International Use
$\left.\begin{array}{c}1\ 1\ 1\ 1\ 0\ 1\ 0\ 0\\to\\1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\end{array}\right\}$	Reserved for National Networks
11111111	Reserved

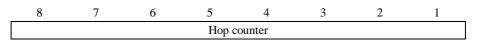
3.16 Data

The "data" parameter field is a variable length field containing less than or equal to 255 octets of SCCP-user data to be transferred transparently between the SCCP user functions.

3.17 Segmentation

Bit 8 of octet 1 is used for First segment indication and is coded as follows:

- 0: in all segments but the first;
- 1: first segment.


Bit 7 of octet 1 is used to keep in the message in sequence delivery option required by the SCCP user and is coded as follows:

- 0: Class 0 selected;
- 1: Class 1 selected.

Bits 6 and 5 in octet 1 are spare bits.

Bits 4-1 of octet 1 are used to indicate the number of remaining segments. The values 0000 to 1111 are possible; the value 0000 indicates the last segment.

3.18 Hop counter

The hop counter parameter consists of one octet. The value of the hop counter, which is decremented on each global title translation, should be in range 15 to 1.

3.19 Importance

The "importance" parameter field is a one-octet field and is structured as follows:

 8
 7
 6
 5
 4
 3
 2
 1

 Spare
 Importance

Bits 1-3 are binary coded to indicate the importance of the messages. The values are between 0 and 7, where the value of 0 indicates the least important and the value of 7 indicates the most important.

Bits 4-8 are spare bits.

The importance values may be subject to improvement pending further analysis of the impact of the SCCP congestion control procedures in different network scenarios and based on the results of operational experiences.

3.20 Long data

The "long data" parameter field is a variable length field containing SCCP-user data up to 3952 octets to be transferred transparently between the SCCP user functions. The "long data" parameter has a two-octet "length indicator" field.

4 SCCP messages and codes

4.1 General

4.1.1 In the following clauses, the format and coding of the SCCP messages is specified.

For each message a list of the relevant parameters is given in a tabular form.

4.1.2 For each parameter the table also includes:

- a reference to the clause where the formatting and coding of the parameter content is specified;
- the type of the parameter. The following types are used in the tables:
 - F = mandatory fixed length parameter;
 - V = mandatory variable length parameter;
 - O = optional parameter of fixed or variable length;
- the length of the parameter. The value in the table includes:
 - for type F parameters the length, in octets, of the parameter content;
 - for type V parameters the length, in octets, of the length indicator and of the parameter content; (The minimum and the maximum length are indicated.)
 - for type O parameters the length, in octets, of the parameter name, length indicator and parameter content. (For variable length parameters the minimum and maximum length is indicated.)
- **4.1.3** For each message the number of pointers included is also specified.

4.1.4 For each message type, type F parameters and the pointers for the type V parameters must be sent in the order specified in the following tables. The pointer to the optional parameter block occurs after all pointers to variable parameters.

4.2 Connection request (CR)

The CR message contains:

- two pointers;
- the parameters indicated in Table 3.

Parameter	Clause	Type (F V O)	Length (octets)
Message type code	2.1	F	1
Source local reference	3.3	F	3
Protocol class	3.6	F	1
Called party address	3.4	V	3 minimum
Credit	3.10	0	3
Calling party address	3.5	0	4 minimum
Data	3.16	0	3-130
Hop counter	3.18	0	3
Importance	3.19	0	3
End of optional parameters	3.1	0	1

Table 3/Q.713 – Message type: Connection request

4.3 Connection confirm (CC)

The CC message contains:

- one pointer;
- the parameters indicated in Table 4.

Table 4/Q.713 – Me	ssage type: Cor	nnection confirm	

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Source local reference	3.3	F	3
Protocol class	3.6	F	1
Credit	3.10	0	3
Called party address	3.4	0	4 minimum
Data	3.16	0	3-130
Importance	3.19	0	3
End of optional parameter	3.1	0	1

4.4 Connection refused (CREF)

The message contains:

- one pointer;
- the parameters indicated in Table 5.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Refusal cause	3.15	F	1
Called party address	3.4	0	4 minimum
Data	3.16	0	3-130
Importance	3.19	0	3
End of optional parameter	3.1	0	1

Table 5/Q.713 – Message type: Connection refused

4.5 Released (RLSD)

The RLSD message contains:

- one pointer;
- the parameters indicated in Table 6.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Source local reference	3.3	F	3
Release cause	3.11	F	1
Data	3.16	0	3-130
Importance	3.19	0	3
End of optional parameter	3.1	0	1

Table 6/Q.713 – Message type: Released

4.6 Release complete (RLC)

The RLC message contains:

- no pointers;
- the parameters indicated in Table 7.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Source local reference	3.3	F	3

Table 7/Q.713 – Message type: Release complete

4.7 Data form 1 (DT1)

The DT1 message contains:

- one pointer;
- the parameters indicated in Table 8.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Segmenting/reassembling	3.7	F	1
Data	3.16	V	2-256

Table 8/Q.713 – Message type: Data form 1

4.8 Data form 2 (DT2)

The DT2 message contains:

- one pointer;
- the parameters indicated in Table 9.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Sequencing/segmenting	3.9	F	2
Data	3.16	V	2-256

Table 9/Q.713 – Message type: Data form 2

4.9 Data acknowledgement (AK)

The AK message contains:

- no pointers;
- the parameters indicated in Table 10.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Receive sequence number	3.8	F	1
Credit	3.10	F	1

Table 10/Q.713 – Message type: Data acknowledgement

4.10 Unitdata (UDT)

The UDT message contains:

- three pointers;
- the parameters indicated in Table 11.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Protocol class	3.6	F	1
Called party address	3.4	V	3 minimum
Calling party address	3.5	V	3 minimum (Note 2)
Data	3.16	V	2-X (Note 1)
NOTE 1 – Due to the ongoing studies on the SCCP called and calling party address, the maximum length			

NOTE 1 – Due to the ongoing studies on the SCCP called and calling party address, the maximum length of this parameter needs further study. It is also noted that the transfer of up to 255 octets of user data is allowed when the SCCP called and calling party address do not include global title.

NOTE 2 – The minimum length = 2 might apply in the special case of AI = X0000000 described in 3.5.

4.11 Unitdata service (UDTS)

The UDTS message contains:

- three pointers;
- the parameters indicated in Table 12.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Return cause	3.12	F	1
Called party address	3.4	V	3 minimum
Calling party address	3.5	V	3 minimum
Data	3.16	V	2-X (Note)
NOTE – See Note 1 Table 11.			

Table 12/Q.713 – Message type: Unitdata service

4.12 Expedited data (ED)

The ED message contains:

- one pointer;
- the parameters indicated in Table 13.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Data	3.16	V	2-33

Table 13/Q.713 – Message type: Expedited data

4.13 Expedited data acknowledgement (EA)

The EA message contains:

- no pointers;
- the parameters indicated in Table 14.

Table 14/Q.713 – Message type: Expedited data acknowledgement

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3

4.14 Reset request (RSR)

The RSR message contains:

- one pointer (this allows for inclusion of optional parameters in the future);
- the parameters indicated in Table 15.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Source local reference	3.3	F	3
Reset cause	3.13	F	1

4.15 Reset confirmation (RSC)

The RSC message contains:

- no pointers;
- the parameters indicated in Table 16.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Source local reference	3.3	F	3

Table 16/Q.713 – Message type: Reset confirmation

4.16 Protocol data unit error (ERR)

The ERR message contains:

- one pointer (this allows for inclusion of optional parameters in the future);
- the parameters indicated in Table 17.

Table 17/Q.713 – Message type: Protocol data unit error

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Error cause	3.14	F	1

4.17 Inactivity test (IT)

The IT message contains:

- no pointers;
- the parameters indicated in Table 18.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Destination local reference	3.2	F	3
Source local reference	3.3	F	3
Protocol class	3.6	F	1
Sequencing/segmenting (Note)	3.9	F	2
Credit (Note)	3.10	F	1

Table 18/Q.713 – Message type: Inactivity test

NOTE – Information in these parameter fields reflect those values sent in the last data form 2 or data acknowledgement message. They are ignored if the protocol class parameter indicates class 2.

4.18 Extended unitdata (XUDT)

The XUDT message contains:

- four pointers;
- the parameters indicated in Table 19.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Protocol class	3.6	F	1
Hop counter	3.18	F	1
Called party address	3.4	V	3 minimum
Calling party address	3.5	V	3 minimum (Note 3)
Data	3.16	V	2 to Y+1 (Note 1)
Segmentation	3.17	0	6 (Note 2)
Importance	3.19	0	3
End of optional parameters	3.1	0	1

Table 19/Q.713 – Message type: Extended unitdata

NOTE 1 – The maximum length of this parameter depends on the length of the called party address, calling party address parameters, and the presence of optional parameters. Y is between 160 and 254 inclusive. Y can be 254 when called party address and calling party address parameters do not include the GT, and the importance and segmentation parameters are absent. Y can be at most 247 if the segmentation parameter is absent. See 8.3.2/Q.715.

NOTE 2 - Should not be present in case of a single XUDT message.

NOTE 3 – The minimum length = 2 might apply in the special case of AI = X0000000 described in 3.5

4.19 Extended unitdata service (XUDTS)

The XUDTS message contains:

- four pointers;
- the parameters indicated in Table 20.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Return cause	3.12	F	1
Hop counter	3.18	F	1
Called party address	3.4	V	3 minimum
Calling party address	3.5	V	3 minimum
Data	3.16	V	2 to Y+1 (Note)
Segmentation	3.17	0	6
Importance	3.19	0	3
End of optional parameters	3.1	0	1

Table 20/Q.713 – Message type: Extended unitdata service

NOTE – The maximum length of this parameter depends on the length of the called party address, calling party address parameters, and the presence of optional parameters. Y is between 160 and 254 inclusive. Y can be 254 when called party address and calling party address parameters do not include the GT, and the importance and segmentation parameters are absent. Y can be at most 247 if the segmentation parameter is included and the importance parameter is absent. See 8.3.2/Q.715.

4.20 Long unitdata (LUDT)

The LUDT message contains:

- four two-octet pointers;
- the parameters indicated in Table 21.

Clause	Type (F V O)	Length (octets)
2.1	F	1
3.6	F	1
3.18	F	1
3.4	V	3 minimum
3.5	V	3 minimum
3.20	V	3-3954 (Note 2)
3.17	0	6 (Note 1)
3.19	0	3
3.1	0	1
	2.1 3.6 3.18 3.4 3.5 3.20 3.17 3.19	2.1 F 3.6 F 3.18 F 3.18 V 3.4 V 3.5 V 3.20 V 3.17 O 3.19 O

Table 21/Q.713 – Message type: Long unitdata

NOTE 1 – Originating SCCP node must include this parameter if segmentation at relay node may be encountered in certain network configuration.

NOTE 2 – See 8.3.2/Q.715.

4.21 Long unitdata service (LUDTS)

The LUDTS message contains:

- four two-octet pointers;
- the parameters indicated in Table 22.

Parameter	Clause	Type (F V O)	Length (octets)
Message type	2.1	F	1
Return cause	3.12	F	1
Hop counter	3.18	F	1
Called party address	3.4	V	3 minimum
Calling party address	3.5	V	3 minimum
Long data	3.20	V	3-3954 (Note)
Segmentation	3.17	0	6
Importance	3.19	0	3
End of optional parameters	3.1	0	1
NOTE – See 8.3.2/Q.715.	·		

Table 22/Q.713 – Message type: Long unitdata service

5 SCCP Management messages and codes

5.1 General

SCCP management (SCMG) messages are carried using the connectionless service of the SCCP. When transferring SCMG messages, class 0 is requested with no special option. The called and calling party address parameters will refer to SSN = 1 (SCMG) and will have routing indicator set to "route on SSN". SCCP management message parts are provided in the "data" parameter of the unitdata or extended unitdata message or "long data" of the LUDT message.

Descriptions of the various parameters are contained in the following subclauses. Format of the SCMG message is specified in 5.3.

5.1.1 SCMG format identifier

The SCMG format identifier consists of a one-octet field, which is mandatory for all SCMG messages. The SCMG format identifier uniquely defines the function and format of each SCMG message. The allocation of SCMG format identifiers is shown in Table 23.

Message	Code 87654321
SSA subsystem-allowed	00000001
SSP subsystem-prohibited	00000010
SST subsystem-status-test	00000011
SOR subsystem-out-of-service-request	00000100
SOG subsystem-out-of-service-grant	00000101
SSC SCCP/subsystem-congested	00000110

Table 23/Q.713 – SCMG format identifiers

5.1.2 Formatting principles

The formatting principles used for SCCP messages, as described in 1.3 and 1.4 apply to SCMG messages.

5.2 SCMG message parameters

5.2.1 Affected SSN

The "affected subsystem number (SSN)" parameter field consists of one octet coded as described for the called party address field, 3.4.2.2.

5.2.2 Affected PC

The "affected signalling point code (PC)" parameter field is represented by two octets which are coded as described for the called party address field, 3.4.2.1.

5.2.3 Subsystem multiplicity indicator

The "subsystem multiplicity incidator" parameter field consists of one octet coded as shown in Figure 12.

 8
 7
 6
 5
 4
 3
 2
 1

 Spare
 SMI

Figure 12/Q.713 – Subsystem multiplicity indicator format

The coding of the SMI field is as follows:

Bits	
<u>21</u>	
0 0	affected subsystem multiplicity unknown
1 0]	
$ \begin{array}{c} 1 & 0 \\ 1 & 1 \end{array} $	reserved for national use

Bits 3-8 are spare.

5.2.4 SCCP congestion level

The "SCCP congestion level" parameter field consists of one octet coded as shown in Figure 13.

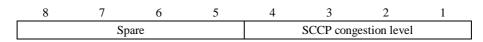


Figure 13/Q.713 – SCCP congestion level format

Bits 1-4 are binary coded to indicate the congestion level of the SCCP node. The values are between 1 and 8, where the value of 1 indicates the least congested condition and the value of 8 indicates the most congested condition.

The SCCP congestion level may be subject to improvement pending further analysis of the impact of the SCCP congestion control procedures in different network scenarios and based on the results of operational experiences.

5.3 SCCP Messages

The SCMG messages (SSA, SSP, SST, SOR and SOG) contain mandatory fixed parameters indicated in Table 24. These parameters are defined in the data field of the UDT, XUDT and LUDT message.

Parameter	Clause	Type (F V O)	Length (octets)
SCMG format identifier (Message type code)	5.1.1	F	1
Affected SSN	5.2.1	F	1
Affected PC	5.2.2	F	2
Subsystem multiplicity indicator	5.2.3	F	1

Table 24/Q.713 – SCMG messages (SSA, SSP, SST, SOR, SOG)

The SCMG message of "SCCP/subsystem-congested" (SSC) shall contain the mandatory fixed parameters indicated in Table 25. These parameters are defined in the data field of the UDT, XUDT and LUDT message.

Parameter	Clause	Type (F V O)	Length (octets)
SCMG format identifier (Message type code)	5.1.1	F	1
Affected SSN	5.2.1	F	1
Affected PC	5.2.2	F	2
Subsystem multiplicity indicator	5.2.3	F	1
SCCP congestion level	5.2.4	F	1

Table 25/Q.713 – SSC

ANNEX A

Mapping for cause parameter values

A.1 Introduction

During connection refusal/release/reset, the SCCP and its users may take corrective action, if necessary, based upon relevant information available to them. Thus, it would be very helpful if such information could be conveyed correctly.

During connection release, the "release cause" parameter in the released (RLSD) message and the N-DISCONNECT primitive (with parameters "originator" and "reason") are used together to convey information on the initiator and the cause of the connection release. In addition, the N-DISCONNECT primitive is also used together with the "refusal cause" parameter in the Connection Refused (CREF) message to convey information during connection refusal. During connection reset, the "reset cause" parameter in the Reset Request (RSR) message and the N-RESET primitive (with parameters "originator" and "reason") are used together similarly.

In order to convey information correctly, this annex provides a guideline for the mapping of values between the cause parameters and the corresponding N-primitive parameters during various scenarios.

A.2 Connection refusal

Table A.1 describes the mapping of values between the "refusal cause" parameter (see 3.15) and the "originator", "reason" parameters in the N-DISCONNECT primitive (2.1.1.2.4/Q.711).

A.3 Connection release

Table A.2 describes the mapping of values between the "release cause" parameter (see 3.11) and the "originator", "reason" parameters in the N-DISCONNECT primitive (2.1.1.2.4/Q.711).

A.4 Connection reset

Table A.3 describes the mapping of values between the "reset cause" parameter (see 3.13) and the "originator", "reason" parameters in the N-RESET primitive (2.1.1.2.3/Q.711).

A.5 Return cause

There is a one-to-one mapping between the return cause of UDTS, XUDTS or LUDTS messages and the reason for return in the N-NOTICE primitives.

	CREF Message	N-DISCONNECT primitive			
Code	Refusal cause	Reason	Originator		
00000000	end user originated	connection refusal – end user originated	NSU		
00000001	end user congestion	connection refusal – end user congestion	NSU		
00000010	end user failure	connection refusal – end user failure	NSU		
00000011	SCCP user originated	connection refusal – SCCP user originated	NSU		
00000100	destination address unknown	connection refusal – destination address unknown/non-transient condition	NSP		
00000101	destination inaccessible	connection refusal – destination inaccessible/transient condition	NSP		
00000110	network resource – QoS unavailable/non-transient	connection refusal – QoS unavailable/non-transient condition	NSP ^{a)}		
00000111	111 network resource – QoS connection refusal – QoS unavailable/transient unavailable/transient condition		NSP ^{a)}		
00001000	access failure	connection refusal – access failure	NSU		
00001001	access congestion	connection refusal – access congestion	NSU		
00001010	subsystem failure	connection refusal – destination inaccessible/non-transient condition	NSP		
00001011	subsystem congestion	connection refusal – subsystem congestion	NSU		
00001100	expiration of connection establishment timer	connection refusal – reason unspecified/transient	NSP ^{a)}		
00001101	incompatible user data	connection refusal – incompatible information in NSDU	NSU		
00001110	reserved	reserved	reserved		
00001110	not obtainable	connection refusal – reason unspecified/transient	NSP ^{a)}		
00001111	unqualified	connection refusal – reason unspecified/transient	NSU		
00001111	unqualified	connection refusal – reason unspecified/non-transient	NSP		
00001111	unqualified	connection refusal – undefined	undefined		
00010000	hop counter violation	connection refusal – hop counter violation	NSP		
00010010	no translation for an address of such nature	connection refusal – destination address unknown/non-transient condition	NSP		
00010011	unequipped user	connection refusal – destination inaccessible/non-transient condition	NSP		

Table A.1/Q.713 – Mapping during connection refusal

NSU Network Service User

NSP Network Service Provider

^{a)} When the originator is set to NSP, the causes referring to routing failures do not apply when the setup is initiated with a N-REQUEST interface element, since the routing is then done by ISUP. Only the case "SCCP user originated" with originator = NSU or those with originator = NSP and labelled with a) are then applicable.

	RLSD Message	N-DISCONNECT primitive				
Code	Release cause	Reason	Originator			
00000000	end user originated	disconnection – normal condition	NSU			
00000001	end user congestion	disconnection – end user congestion	NSU			
00000010	end user failure	disconnection – end user failure	NSU			
00000011	SCCP user originated	tted disconnection – SCCP user originated				
00000100	remote procedure error	disconnection – abnormal condition of transient nature	NSP			
00000101	inconsistent connection data	disconnection – abnormal condition of transient nature	NSP			
00000110	access failure	disconnection – access failure	NSU			
00000111	access congestion	disconnection – access congestion	NSU			
00001000	subsystem failure					
00001001	subsystem congestion	disconnection – subsystem congestion	NSU			
00001010	MTP failure	disconnection – abnormal condition of non-transient nature	NSP			
00001011	network congestion	disconnection – abnormal condition of transient nature	NSP			
00001100	expiration of reset timer	disconnection – abnormal condition of transient nature	NSP			
00001101	expiration of receive inactivity timer	disconnection – abnormal condition of transient nature	NSP			
00001110	reserved	reserved	reserved			
00001111	unqualified	disconnection – abnormal condition	NSU			
00001111	unqualified	disconnection – undefined	NSP			
00001111	unqualified	disconnection – undefined	undefined			
00010000	SCCP failure	disconnection – abnormal condition of non-transient nature	NSP			

 Table A.2/Q.713 – Mapping during connection release

	RSR Message	N-RESET primitive				
Code	Reset cause	Reason	Originator			
00000000	end user originated	reset – user synchronisation	NSU			
00000001	SCCP user originated	reset – user synchronisation	NSU			
00000010	message out of order – incorrect P(S)	reset – unspecified	NSP			
00000011	message out of order – incorrect P(R)	reset – unspecified	NSP			
00000100	remote procedure error – message out of window	reset – unspecified	NSP			
00000101	remote procedure error – incorrect P(S) after initialization	reset – unspecified	NSP			
00000110	remote procedure error – general	reset – unspecified	NSP			
00000111	remote end user operational	reset – user synchronization	NSU			
00001000	network operational	reset – unspecified	NSP			
00001001	access operational	reset – user synchronisation	NSU			
00001010	network congestion	reset – network congestion	NSP			
00001011	reserved	reserved	reserved			
00001100	unqualified	reset - unspecified	NSP			
00001100	unqualified	reset – undefined	undefined			
	k Service User k Service Provider					

Table A.3/Q.713 – Mapping during connection reset

ANNEX B

International SCCP addressing and format specification

B.1 Introduction

This annex documents a list of the assigned code values of the translation types (TT), numbering plan (NP) and nature of address indicator (NAI), which are used to define the contents of the global title addresses information (GTAI); as well as the types of GT-addressable SCCP user entities allowed by the services or applications. In addition, this annex defines the address indicator (AI) and the SSN for each service or application. Guidelines are also included for application protocol development on using the SCCP addressing information. The purpose of this annex is to gather in one place all the address formats which the SCCP is currently required to support in the international network.

B.2 Guidelines on using SCCP addressing information elements in the international network

1) If SCCP routing is to be performed using the GT and the next SCCP relay node is outside the national network boundary, only the GT with global title indicator (GTI) indicating "4" shall be sent in the SCCP called party address. In addition, a SSN address element shall always be present in the SCCP called party address, and shall take one of the following values:

- if known and internationally standardised, the SSN of the called SCCP user entity, or
- if known and not internationally standardised, the SSN (from the national range) for the called SCCP user entity in the destination network, or
- zero, and coded as"0" (where the identity of the called SCCP user entity is not known).

A PC may be present in the SCCP called party address, but is not evaluated.

If the SSN supplied in the called party address cannot be used by the destination network, the content of the GT at the final translation point needs to be sufficient for the translation to derive an SSN for message distribution from the SCCP at the message's destination SP. The values of the address elements of the CdPA (including the translation type (TT) and any SSN that is not internationally standard) need to be established between the operators of the end SCCP user entities.

If SCCP routing is based on the SSN and the destination SCCP user is outside the national boundary, an internationally standard Q.713 SSN shall be used and the GT may be optionally included in the SCCP CdPA parameter. If the GT is not included, the GT indicator (GTI) should be coded as "0".

- 2) When the SCCP messages are to be sent across the international network, the calling party address (CgPA) parameter, if provided, shall include one of the following set of SCCP address information elements to identify the originating SCCP user depending on the coding of the RI field:
 - standard Q.713 global title and SSN of "0" if the RI is "route on GT", no internationally standard SSN is specified and it is not appropriate to use a national SSN value (it is not appropriate, for example, to use a national SSN value if messages would thereby be discarded);
 - standard Q.713 global title and national SSN value if the RI is "route on GT" and no internationally standard SSN is specified;
 - standard Q.713 global title and internationally standard SSN if the RI is "route on GT";
 - Q.708 ISPC and internationally standard Q.713 SSN if the RI is "route on SSN".

If a global title is included in the calling party address parameter, the GTI shall be set to "4".

- 3) In case a GT is present in the SCCP calling and/or called party addresses, the structure of the global title in the addresses shall adhere to one of the international global title specifications in the following section (deviations are only possible if multilateral agreements are obtained).
- 4) If the SCCP nodes can be addressed on the international network using the Q.708 International Signalling Point Codes (ISPC) in the DPC of the MTP routing label, routing on SSN is also allowed; and the RI field shall indicate "route on SSN".

B.3 GT routing specification of international services

This clause identifies the types of address format defined in the next clause, which shall be used in the called and/or calling party address parameters for international services requiring the SCCP GT-based routing. Table B.1 lists the international services and the addressable SCCP user entities of their SCCP messages to be routed on global title; and indicates the types of address formats in the called/calling party address parameters associated with each message flow. When the "called/calling PA" entries of Table B.1 contain more than one translation selectors, the one to be used is subject to bilateral agreement.

Applications and references	Addressable SCCP user entities of messages route on GT	Called PA	Calling PA
ISDN supplementary service – CCBS, ITU-T Q.733.3.	Entities receiving query on the busy/idle status of called parties (as defined in ISUP).	B.4.1	B.4.1 B.4.3 B.4.4
	Entities receiving response about the busy/idle status of called parties (as defined in ISUP).	B.4.1 B.4.3 B.4.4	B.4.1 B.4.3 B.4.4
International Telecommunication Charge Card Calling (ITCC), ITU-T Q.736.1 and E.118.	Entities receiving query to validate the card.	B.4.2	B.4.3 B.4.4
	Entities receiving response of card validation or subsequent messages within the same dialogue.	B.4.3 B.4.4	B.4.3 B.4.4
Broadband ISDN edge-to- edge applications	Entities receiving query.	B.4.5	B.4.3 (Note) B.4.4 DPC+SSN
	Entities receiving response.	B.4.3 (Note) B.4.4 DPC + SSN	B.4.3 (Note) B.4.4 DPC + SSN
Authentication, Registration and Location Update for E.212-based roaming application.	Entities (Home Location Register) receiving queries.	B.4.6	B.4.3 B.4.4
	Entities receiving response.	B.4.3 B.4.4	B.4.3 B.4.4
Authentication, Registration and Location Update for E.214-based roaming application.	Entities (Home Location Register) receiving queries.	B.4.7	B.4.3 B.4.4
	Entities receiving response.	B.4.3 B.4.4	B.4.3 B.4.4
IN Services.	IN entities receiving queries.	B.4.4	B.4.3 B.4.4
	Entities receiving response.	B.4.3 B.4.4	B.4.3 B.4.4
NOTE – For further study.	·		

Table B.1/Q.713 – Called/calling party address formats for international services requiring GT-based routing

NOTE – If GTAI exclusivity between SCCP user entities is not possible and only part of the signalling route is also shared, then the translator cannot be shared by different SCCP user entities.

B.4 International GT routing specification

All code values in this clause will be specified in decimal unless specified otherwise.

B.4.1 Translation selector: TT = 17, NP = 1, NAI = 4

This translation selector identifies the type of global title used by the applications listed in Table B.1.

B.4.1.1 Format of address indicator and address

8	7	6	5	4	3	2	1	Octets	
0	RI = 0		GT	I = 4		SSNI = 1	PCI = 0	1	
			SSN	N = 11				2	
			Translatio	on type = 17	,			3	
Numb							4		
0	Nature of address indicator = 4 (International)								
Cou	Country code digit 2 (if present)				Country code digit 1				
National	significant r	number (NS	N) digit 1	Country code digit 3 (if present)					
	NSN	digit 3			•				
		•			10				
	•			•					
	NSN digit 11 (if present)				NSN digit 10 (if present)			12	
	If needed	, filler $= 0$			NSN digit	12 (if present))	13	

 $\rm NOTE$ – The maximum number of the GTAI digits is normally determined by the maximum of the E.164 numbering plan.

Figure B.1/Q.713 – Address format for TT = 17, NP = 1, NAI = 4

B.4.1.2 Translation rules

- 1) A maximum of the first three digits of the GTAI are used to identify the destination country or region of the addressable entities of this application group.
- 2) The maximum number of CC + NDC digits to address an incoming international gateway to destination network is specified in the E.164 numbering plan.
- 3) The maximum number of the NSN digits used to identify a specific SCCP user entity of this application group is a national matter or network-specific.
- 4) An SSN of decimal 11 for ISDN supplementary services shall be included along with this global title in the called party address parameter at the international interface.

B.4.2 Translation selector: TT = 1, NP = 0, NAI = 4

This translation selector identifies the type of global title used by the applications listed in Table B.1.

B.4.2.1 Format of address indicator and address

See Figure B.2.

8	7	6	5	4	3	2	1	Octets	
0	RI = 0 GTI = 4 SSNI = 1						PCI = 0	1	
			SSN	N = 11				2	
			Translati	on type = 1				3	
Nun	ibering plai	n = 0 (unkn	own)	F	Incoding s	cheme = 1 or	2	4	
0		Nature of address indicator = 4 (International)							
Se	Second digit of E.118 number				First digit of E.118 number				
Fo	ourth digit of	E.118 numl	ber	Third digit of E.118 number					
S	ixth digit of	E.118 numb	er	F	8				
Ei	ghth digit of	E.118 num	ber	Seventh digit of E.118 number					
	•				•				
	•					•]•	
	If needed	, filler $= 0$		I	ast digit o	f E.118 numb	er]•	

NOTE – The maximum number of the GTAI digits is determined by the maximum number of digits specified in the E.118 numbering plan.

Figure B.2/Q.713 – Called party address format for TT = 1, NP = 0, NAI = 4

B.4.2.2 Translation rules

- 1) A maximum of the first seven digits of the GTAI, are used to identify the card issuers, which administer the entities receiving card validation query and ITCC call disposition message. These digits are referred to "issuer identification number" (IIN).
- 2) If the first two digits are "89", the following 1/2/3 digits (third through fifth digit) shall indicate country codes (CC) of the card issuers according to the E.164 assignment. The format of the Issuer Identifier (II) that follows the CC, is a national matter.
- 3) The maximum number of the GTAI digits used to identify a specific SCCP user entity of this application group is determined by the issuer and is network-specific.
- 4) An SSN of decimal 11 for ISDN supplementary services shall be included along with this global title in the called party address parameter at the international interface.

B.4.3 Translation selector: TT = 2, NP = 2, NAI = 4

This translation selector identifies the type of global title used by the applications listed in Table B.1.

B.4.3.1 Format of address indicator and address

See Figure B.3.

8	7	6	5	4	3	2	1	Octets	
0	RI = 0	GTI = 4 SSNI = 1 PCI =					PCI = 0	1	
			SSN = 0 or	standard SS	N			2	
			Translati	on type = 2				3	
	Numberir	ng plan = 2		Eı	ncoding sch	neme = 1, 2 o	r 3	4	
0	0 Nature of address indicator = 4 (International)								
Q.7	Q.708 U digit (most significant) Q.708 Z digit						6		
Q.7	'08 U digit (1	east signific	cant)	Q.708 U digit				7	
	0 (F	iller)			8				
			National sig	gnificant par	t			9	
			National sig	gnificant par	t			•	
	•								
	•								
				•]•	

Figure B.3/Q.713 – Address format for TT = 2, NP = 2, NAI = 4

Octet 6 to 8 is called the "Q.708 Part" and its encoding scheme shall be encoded in BCD. The Q.708 Z-UUU digits are decimal representation of the Q.708 signalling area/network codes (SANC) of the final destination countries, new code values are published regularly in the Operational Bulletin of the ITU.

Encoding for the national significant part is determined by the originating network and shall be indicated by the encoding scheme field of octet 4.

B.4.3.2 Translation rules

- 1) Only the Q.708 part of the GTAI shall be translated for routing in the international network.
- 2) The format of the national significant part (NSP) is a national matter. The maximum length of NSP is network-specific.

B.4.4 Translation selector: TT = 0, NP = 1, NAI = 4

This translation selector identifies the type of global title used by the applications listed in Table B.1.

B.4.4.1 Format of address indicator and address

See Figure B.4.

8	7	6	5	4	3	2	1	Octets	
0	RI = 0		GT	[=4		SSNI = 1	PCI = 0	1	
		SSN =) or interna	tional standa	rd value			2	
			Translati	on type = 0				3	
Numb	Numbering plan = 1 (ITU-T E.164)Encoding scheme = 1 or 2						2	4	
0	0 Nature of address indicator = 4 (International)								
Cou	Country code digit 2 (if present)				Country code digit 1				
Nationa	l destination o	code (NDC) Digit 1	Country code digit 3 (if present)					
	NDC digit 3	(if present)			8				
	NDC digit 5	(if present)	1		9				
Equ	ipment identi	fication di	git 2	Equ	10				
	•				•				
	If needed, filler = 0					entification dig present)	git N	М	

NOTE – The maximum number of the GTAI digits is normally determined by the maximum of the E.164 numbering plan.

Figure B.4/Q.713 – Address format for TT = 0, NP = 1, NAI = 4

The GTAI is formatted according to the E.164 numbering plan. It consists of the E.164 country codes, followed by the nationally-assigned NDC and the network-specific or operator-assigned equipment identification digits of the signalling point. This GT, together with the SSN unambiguously identifies a particular SCCP user entity in the network.

B.4.4.2 Translation rules

- 1) A maximum of the first three digits of the GTAI are used to identify the destination country or region of the addressable entities. For destination countries with only one operator, translation of the CC should be sufficient.
- 2) For destination countries with multiple network operators, only the CC and NDC are translated within the international network to identify the destination networks.
- 3) Translation of additional digits (i.e. equipment identification) to identify a specific SCCP user entity is a national matter or network-specific.

B.4.5 Translation selector: TT = 3, NP = 1, NAI = 4

This translation selector identifies the type of global title used by the applications listed in Table B.1.

B.4.5.1 Format of address indicator and address

See Figure B.5.

8	7	6	5	4	3	2	1	Octets
0	$\mathbf{RI} = 0$		GT	[=4		SSNI = 1	PCI = 0	1
			SSN	1 = 13				2
			Translati	on type = 3				3
Numb	ering plan =	= 1 (ITU-T	E.164)	E	ncoding s	cheme = 1 or	2	4
0	0 Nature of address indicator = 4 (International)							
Cou	intry code di	git 2 (if pre	sent)	Country code digit 1				
Nationa	National significant N = number (NSN) digit 1				intry code	digit 3 (if pres	sent)	•
	NSN o	ligit 3		NSN digit 2				•
	•				•			
	•			•				11
	NSN digit 11 (if present)				NSN digit	10 (if present))	12
	If needed,	filler = 0			NSN digit	12 (if present))	13

NOTE – The maximum number of the GTAI digits is normally determined by the maximum of the E.164 numbering plan.

Figure B.5/Q.713 – Address format for TT = 3, NP = 1, NAI = 4

B.4.5.2 Translation rules

- 1) A maximum of the first three digits of the GTAI are used to identify the destination country or region of the addressable entities of this application group.
- 2) The maximum number of CC + NDC digits to address an incoming international gateway to destination network is specified in the E.164 numbering plan.
- 3) The maximum number of the NSN digits used to identify a specific SCCP user entity of this application group is a national matter or network-specific.
- 4) An SSN of decimal 13 for broadband ISDN edge-to-edge applications, which will be transferred along with this global title in the called party address parameter, shall be provided by the originating application entity.

B.4.6 Translation Selector: TT = 40, NP = 6, NAI = 4

This translation selector identifies the type of global title used by the applications listed in Table B.1.

B.4.6.1 Format of Called Party Address and its GT

See Figure B.6.

8	7	6	5	4	3	2	1	Octets	
0	RI = 0		GT	I = 4		SSNI = 1	PCI = 0	1	
	SSN	= "0" or inte	rnationally	standard SS	N value, if	f known		2	
			Translatio	on type = 40				3	
Numb	Numbering plan = 6 (ITU-T E.212)Encoding scheme = 1 or 24							4	
0	Nature of address indicator = 4 (International) 4								
Sec	Second digit of E.212 Number				First digit of E.212 Number				
Fo	urth digit of	E.212 Num	ber	Th	7				
Si	xth digit of I	E.212 Numb	er	Fi	8				
Eig	ghth digit of	E.212 Num	ber	Sev	9				
		1			•				
	•					•		•	
	If needed,	filler = 0		Last digit	of E.212 N	Number (max.	15 digits)	•	

Figure B.6/Q.713 – Address format for TT = 40, NP = 6, NAI = 4

B.4.6.2 Translation Rules

- The maximum number of the GTAI digits used to identify a specific destination network of a SCCP user entity for this application group should be the first 6 digits.

B.4.7 Translation Selector: TT = 0, NP = 7, NAI = 4

This translation selector identifies the type of global title used by the applications listed in Table B.1.

B.4.7.1 Format of Called Party Address and its GT

See Figure B.7.

8	7	6	5	4	3	2	1	Octets	
0	RI = 0	$GTI = 4 \qquad \qquad SSNI = 1 \qquad PCI = 0$					1		
	SSN	= "0" or inter	rnationally	standard SS	N value, if	known		2	
			Translati	on type = 0				3	
Numb	ering plan :	= 7 (ITU-T l	E .214)	E	ncoding s	cheme = 1 or	2	4	
0	0 Nature of address indicator = 4 (International)							5	
Sec	Second digit of E.214 Number				First digit of E.214 Number				
Fo	urth digit of	E.214 Numb	ber	Third digit of E.214 Number					
Si	xth digit of	E.214 Numb	er	Fi	8				
Eig	ghth digit of	E.214 Numb	ber	Seventh digit of E.214 Number					
	•			•				•	
	•					•		•	
	If needed	, filler = 0		Last digit	of E.214 N	Number (max.	15 digits)	•	

NOTE – The maximum number of the GTAI digits is determined by the maximum number of digits specified in the E.214 numbering plan.

Figure B.7/Q.713 – Address format for TT = 0, NP = 7, NAI = 4

B.4.7.2 Translation rules

- 1) A maximum of the first three digits of the GTAI are used to identify the destination country or region of the addressable entities of this application group.
- 2) The maximum number of CC + NDC digits to address an incoming international gateway to destination network is specified in the E.164 numbering plan.
- 3) The maximum number of the NSN digits used to identify a specific SCCP user entity of this application group is a national matter or network-specific.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series B Means of expression: definitions, symbols, classification
- Series C General telecommunication statistics
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks and open system communications
- Series Y Global information infrastructure and Internet protocol aspects
- Series Z Languages and general software aspects for telecommunication systems