This electronic version（PDF）was scanned by the International Telecommunication Union（ITU） Library \＆Archives Service from an original paper document in the ITU Library \＆Archives collections．

La présente version électronique（PDF）a été numérisée par le Service de la bibliothèque et des archives de l＇Union internationale des télécommunications（UIT）à partir d＇un document papier original des collections de ce service．

Esta versión electrónica（PDF）ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones（UIT）a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT．
（PDF）هذه النسخة الإلكترونية نقلا من وثيقة ورقية أصلية ضمن الوثائق المتوفرة في قسم الدكتبة والمحفوظات．

此电子版（PDF 版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант（PDF）был подготовлен в библиотечно－архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно－архивной службы МСЭ．

A NOTE FROM THE ITU LIBRARY \& ARCHIVES SERVICE

Update Pages to the Radio Regulations

This PDF includes only the update pages. It does not represent a complete edition of the Radio Regulations.

COVERING NOTE

GENERAL SECRETARIAT INTERNATIONAL TELECOMMUNICATION UNION

Subject: 1986 Updating of the Radio Regulations (edition of 1982, revised in 1985)

aeneve, 31 October 1986

REPLACEMENT PAGES

for the updating of the Radio Regulations, edition of 1982 , revised in 1985 , as a consequence of the entry into force, on 30 October 1986 , of the Final Acts of the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985 (WARC Orb-85).

TABLE FOR THE 1986 UPDATING OF THE RADIO REGULATIONS
(edition of 1982, revised in 1985)

Part of the RR	Pages to be removed (ed. 1982, rev. 1985)	Pages to be inserted (rev. 1986)
Outer cover (Volume 1)	Cover label	Cover label
Inside cover (Volume 1)	Inside cover	Inside cover
Table of Contents	I and II VII to LV	I and II VII to LVIII
Foreword	1 to 2	1 to 3
Analytical Table	$\begin{aligned} & \text { TA }-1 / 6 \\ & \text { TA- } 11 / 16 \\ & \text { TA }-23 / 26 \\ & \text { TA }-31 / 32 \\ & \text { TA }-35 / 36 \end{aligned}$	$\begin{aligned} & \text { TA }-1 / 6 \\ & \text { TA }-11 / 16 \\ & \text { TA }-23 / 26 \\ & \text { TA }-31 / 32 \\ & \text { TA }-35 / 36 \end{aligned}$
Analytical Index	IA-1/4	IA-1/4
Notes	N-3/10	N-3/47
Articles	$\begin{aligned} & \text { RR1-1/2 } \\ & \text { RR1-21/22 } \\ & \text { RR8-71/71A } \\ & \text { RR8-79/80 } \\ & \text { RR8-137/140 } \\ & \text { RR8-149/150 } \end{aligned}$	$\begin{aligned} & \text { RR1-1/2 } \\ & \text { RR1-21/22 } \\ & \text { RR8-71/71A } \\ & \text { RR8-79/80 } \\ & \text { RR8-137/140 } \\ & \text { RR8-149/150 } \end{aligned}$

TABLE (continued)

Part of the RR	Pages to be removed (ed. 1982, rev. 1985)	Pages to be inserted (rev. 1986)
Articles (continued)	$\begin{aligned} & \text { RR11-1/2 } \\ & \text { RR12-1/2 } \\ & \text { RR13-1/2 } \\ & \text { RR15-1 } \\ & \text { RR29-1/5 } \\ & \text { RR38-7/10 } \\ & \text { RR38-13/16 } \\ & \text { RR60-3/4 } \\ & \text { RR60-31/32 } \\ & \text { RR62-3/4 } \\ & \text { RR69-1/2 } \end{aligned}$	$\begin{aligned} & \text { RR11-1/2 } \\ & \text { RR12-1/2 } \\ & \text { RR13-1/2 } \\ & \text { RR15-1 } \\ & \text { RR15A-1 } \\ & \text { RR29-1/6 } \\ & \text { RR38-7/10 } \\ & \text { RR38-13/16 } \\ & \text { RR60-3/4 } \\ & \text { RR60-31/32 } \\ & \text { RR62-3/4 } \\ & \text { RR69-1/2 } \end{aligned}$
The Appendices 1 to 24 must be transferred from the beginning of Volume 2 and placed at the end of Volume 1 of the Radio Regulations to allow for the insertion of the new Appendices 30 (Orb-85) and 30A.		
Separation cardboard		Appendices 1-24 to the Radio Regulations
Appendices 1 to 24	AP14-1/2 AP16-9	$\begin{aligned} & \text { AP14-1/2 } \\ & \text { AP16-9 } \end{aligned}$
Outer cover (Volume 2)	Cover label	Cover label
Inside cover (Volume 2)	Inside cover	Inside cover

TABLE (continued)

Part of the RR	Pages to be removed (ed. 1982, rev. 1985)	Pages to be inserted (rev. 1986)
Separation cardboard		Appendices 25-44 to the Radio Regulations
Appendices 25 to 44	AP25-1/100 AP30-1/153 AP42-3/4 AP42-7/8 AP43-1/2 AP44-5/9	AP25-1/109
AP30A-1/170		

General Secretariat

Radio

 Regulations

 Regulations}

Edition of 1982
Revised in 1985 and 1986

Radio Regulations. Appendices 1-24 to the Radio Regulations

TABLE OF CONTENTS

VOLUME 1

Page
FOREWORD $1 / 3$
ANALYTICAL TABLE TA-1/36
ANALYTICAL INDEX OF RESOLUTIONS AND RECOMMENDATIONS IA-1/7
NOTES N-1/47
Call sign formation possibilities N-1/2
Provisions of the Radio Regulations containing refer- ences to CCIR Recommendations N-3/10
Flowcharts extracted from the IFRB Handbook on regu- latory procedures $\mathrm{N}-11 / 47$

Radio Regulations

PREAMBLE

PART A

Page
CHAPTER I. Terminology
ARTICLE 1. Terms and Definitions RR1-1/23
Introduction RR1-1
Section I. General Terms RR1-1
Section II. Specific Terms Related to Frequency Management RR1-3
Section III. Radio Services RR1-3
Section IV. Radio Stations and Systems RR1-8
Section V. Operational Terms RR1-13
Section VI. Characteristics of Emissions and Radio Equipment RR1-16
Section VII. Frequency Sharing RR1-21
Section VIII. Technical Terms Relating to Space RR1-22
ARTICLE 2. Nomenclature of the Frequency and Wavelength Bands Used in Radiocom- munication RR2-1/2
ARTICLE 3. Nomenclature of Dates and Times Used in Radiocommunication RR3-1
ARTICLE 4. Designation of Emissions RR4-1/4
Section I. Necessary Bandwidth RR4-1
Section II. Classification RR4-1
ARTICLE 15. Coordination, Notification and Record-
ing of Frequency Assignments to Stations
of the Broadcasting-Satellite Service in
the Frequency Bands $11.7-12.2 \mathrm{GHz}$ (in
Region 3), 12.2-12.7 GHz (in Region 2)
and $11.7-12.5 \mathrm{GHz}$ (in Region 1) and to
the Other Services to Which these Bands
Are Allocated, so far as their Relation-
ship to the Broadcasting-Satellite Service
in these Bands Is Concerned RR15-1

ARTICLE 15A. Coordination, Notification and Recording of Frequency Assignments to Stations in the Fixed-Satellite Service (Earth-toSpace) in the Frequency Band 17.317.8 GHz (in Region 2) Providing Feeder Links for the Broadcasting-Satellite Service and also to Stations of Other Services to Which this Band Is Allocated in Region 2, so far as their Relationship to the Fixed-Satellite Service (Earth-toSpace) in this Band Is Concerned in Region 2

RR15A-1
$\begin{array}{ll}\text { ARTICLE 16. } & \begin{array}{l}\text { Procedure for Bringing Up to Date the } \\ \text { Frequency Allotment Plan for Coast } \\ \text { Radiotelephone Stations Operating in the } \\ \text { Exclusive Maritime Mobile Bands Be- }\end{array} \\ & \text { tween } 4000 \mathrm{kHz} \text { and } 23000 \mathrm{kHz} \ldots . .\end{array}$

ARTICLE 17. Procedure for the Bands Allocated Exclusively to the Broadcasting Service Between 5950 kHz and 26100 kHz

RR17-1/5
Section I. $\begin{array}{llll}\text { Submission of Seasonal High Fre- } \\ \text { quency Broadcasting Schedules }\end{array} \quad . R^{\text {RR17-1 }}$
(Rev. 1986)
Page
Section II. Preliminary Examination and Prepara- tion of the Tentative High Frequency Broadcasting Schedule RR17-2
Section III. Technical Examination and Revision of the Tentative Schedule RR17-3
Section IV. Publication of the High Frequency Broadcasting Schedule RR17-4
Section V. Annual High Frequency Broadcasting Frequency List RR17-4
Section VI. Miscellaneous Provisions RR17-5
CHAPTER V. Measures Against Interference. Tests
ARTICLE 18. Interference RR18-1/3
Section I. General Interference RR18-1
Section II. Interference from Electrical Apparatus and Installations of any Kind Except Equipment Used for Industrial, Scien- tific and Medical Applications RR18-2
Section III. Interference from Equipment Used for Industrial, Scientific and Medical Applications RR18-3
Section IV. Special Cases of Interference RR18-3
ARTICLE 19. Tests RR19-1
ARTICLE 20. International Monitoring RR20-1/3
ARTICLE 21. Reports of Infringements RR21-1
ARTICLE 22. Procedure in a Case of Harmful Interfer- ence RR22-1/4

Page

CHAPTER VI. Administrative Provisions for Stations

ARTICLE 23. Secrecy RR23-1
ARTICLE 24. Licences RR24-1/2
ARTICLE 25. Identification of Stations RR25-1/13
Section I. General Provisions RR25-1
Section II. Allocation of International Series and Assignment of Call Signs RR25-4
Section III. Formation of Call Signs RR25-6
Section IV. Identification of Stations Using Radiotelephony RR25-9
Section V. Selective Call Numbers in the Mari- time Mobile Service RR25-11
Section VI. Maritime Mobile Service Identities in the Maritime Mobile Service and the Maritime Mobile-Satellite Service RR25-12
Section VII. Special Provisions RR25-13
CHAPTER VII.
ARTICLE 26. Service Documents RR26-1/7
Section I. Titles, Contents and Publication of Service Documents RR26-1
Section II. Preparation and Amendment of Ser- vice Documents RR26-6

PART B

Page

CHAPTER VIII. Provisions Relating to Groups of Services and to Specific Services and Stations

ARTICLE 27. Terrestrial Radiocommunication Services Sharing Frequency Bands with Space Radiocommunication Services above 1 GHz RR27-1/4
Section 1. Choice of Sites and Frequencies RR27-1
Section II. Power Limits RR27-2
ARTICLE 28. Space Radiocommunication Services Sharing Frequency Bands with Terrestrial Radiocommunication Services above 1 GHz RR28-1/11
Section I. Choice of Sites and Frequencies RR28-1
Section II. Power Limits RR28-1
Section III. Minimum Angle of Elevation RR28-4
Section IV. Limits of Power Flux-Density from Space Stations RR28-4
ARTICLE 29. Special Rules Relating to Space Radio- communication Services RR29-1/6
Section I. Cessation of Emissions RR29-1
Section II. Control of Interference to Geosta- tionary-Satellite Systems RR29-1
Page
Section III. Station Keeping of Space Stations RR29-2
Section IV. Pointing Accuracy of Antennae on Geostationary Satellites RR29-3
Section V. Power Flux-Density at the Geosta- tionary-Satellite Orbit RR29-4
Section VI. Radio Astronomy in the Shielded Zone of the Moon RR29-4
Section VII. Earth Station Off-Axis Power Limita- tions RR29-5
ARTICLE 30. Broadcasting Service and Broadcasting- Satellite Service RR30-1/2
Section I. Broadcasting Service RR30-1
Section II. Broadcasting-Satellite Service RR30-2
ARTICLE 31. Fixed Service RR31-1
Section I. General RR31-1
Section II. Frequencies for the International Exchange of Police Information RR31-1
Section III. Frequencies for the International Exchange of Synoptic Meteorological Information RR31-1
ARTICLE 32. Amateur Service and Amateur-Satellite Service RR32-1/2
Section 1. Amateur Service RR32-1
Section II. Amateur-Satellite Service RR32-2
ARTICLE 33. Standard Frequency and Time Signal Service RR33-1/2
Page
ARTICLE 34. Experimental Stations RR34-1/2
ARTICLE 35. Radiodetermination Service and Radio- determination-Satellite Service RR35-1/5
Section I. General Provisions RR35-1
Section II. Provisions for the Radiodetermina- tion-Satellite Service RR35-2
Section III. Radio Direction-Finding Stations RR35-2
Section IV. Radiobeacon Stations RR35-3
ARTICLE 36. Radio Astronomy Service RR36-1/2
Section I. General Provisions RR36-1
Section II. Measures to Be Taken in the Radio Astronomy Service RR36-1
Section III. Protection of the Radio Astronomy Service RR36-1
CHAPTER IX. Distress and Safety Communications
article 37. General Provisions RR37-1/5
ARTICLE 38. Frequencies for Distress and Safety RR38-1/19
Section I. Availability of Frequencies RR38-1
Section II. Protection of Distress and Safety Fre- quencies RR38-12
Section III. Watch on Distress Frequencies RR38-15
ARTICLE 39. Distress Communications RR39-1/12
Section I. General RR39-1
Section II. Distress Signal RR39-1
Section III. Distress Call RR39-1
Page
Section IV. Distress Messages RR39-2
Section V. Procedures RR39-3
Section VI. Acknowledgement of Receipt of a Distress Message RR39-5
Section VII. Distress Traffic RR39-7
Section VIII. Transmission of a Distress Message by a Station Not Itself in Distress RR39-11
ARTICLE 40. Urgency and Safety Transmissions, and Medical Transports RR40-1/5
Section I. Urgency Signal and Messages RR40-1
Section II. Medical Transports RR40-2
Section III. Safety Signal and Messages RR40-4
ARTICLE 41. Alarm and Warning Signals RR41-1/4
Section I. Emergency Position-Indicating Radio- beacon Signals RR41-1
Section II. Radiotelegraph and Radiotelephone Alarm Signals RR41-2
Section III. All Ships Selective Call RR41-4
Section IV. Navigational Warning Signal RR41-4
ARTICLE 42. Special Services Relating to Safety RR42-1/4
Section I. Meteorological Messages RR42-1
Section II. Notices to Mariners RR42-3
Section III. Medical Advice RR42-3
Section IV. Narrow-band Direct-printing Tel- egraphy System for Transmission of Navigational and Meteorological Warnings and Urgent Information to Ships (NAVTEX) RR42-3

CHAPTER X. Aeronautical Mobile Service and Aeronautical Mobile-Satellite Service

ARTICLE 42A. Introduction RR42A-1
ARTICLE 43. Authority of the Person Responsible for the Mobile Stations in the Aeronautical Mobile Service and in the Aeronautical Mobile-Satellite Service RR43-1
ARTICLE 44. Operators' Certificates for Aircraft Sta- tions and for Aircraft Earth Stations RR44-1/10
Section I. General Provisions RR44-1
Section II. Classes and Categories of Certificates RR44-3
Section III. Conditions for the Issue of Operators' Certificates RR44-4
ARTICLE 45. Personnel of Aeronautical Stations RR45-1
ARTICLE 46. Inspection of Aircraft Stations and Air- craft Earth Stations RR46-1/2
ARTICLE 47. Working Hours of Stations in the Aero- nautical Mobile Service RR47-1
Section I. General RR47-1
Section II. Aeronautical Stations RR47-1
Section III. Aircraft Stations RR47-1
ARTICLE 48. Aircraft Stations Communicating with Stations in the Maritime Mobile Service and in the Maritime Mobile-Satellite Ser- vice RR48-1
Page
ARTICLE 49. Conditions to be Observed by Mobile Stations in the Aeronautical Mobile Ser- vice and in the Aeronautical Mobile- Satellite Service RR49-1
ARTICLE 50. Special Rules Relating to the Use of Fre- quencies in the Aeronautical Mobile Ser- vice RR50-1/2
ARTICLE 51. Order of Priority of Communications in the Aeronautical Mobile Service and in the Aeronautical Mobile-Satellite Service RR51-1/2
ARTICLE 52. General Radiotelegraph Procedure in the Aeronautical Mobile Service RR52-1/10
Section I. General Provisions RR52-1
Section II. Calls RR52-1
Section III. Preliminary Operations RR52-3
Section IV. Method of Calling, Reply to Calls and Signals Preparatory to Traffic RR52-4
Section V. Forwarding (Routing) of Traffic RR52-7
Section VI. End of Traffic and Work RR52-8
Section VII. Control of Working RR52-9
Section VIII. Tests RR52-10
ARTICLE 53. Radiotelephone Procedure in the Aero- nautical Mobile Service - Calls RR53-1/2
CHAPTER XI. Maritime Mobile Service and Maritime Mobile-Satellite Service
ARTICLE 54. Authority of the Master RR54-1

Page

ARTICLE 55. Operators' Certificates for Ship Stations and Ship Earth Stations RR55-1/13
Section I. General Provisions RR55-1
Section II. Categories of Certificates for Ship Sta- tion Operators RR55-3
Section III. Conditions for the Issue of Operators' Certificates RR55-5
Section IV. Qualifying Service RR55-12
ARTICLE 56. Personnel of Stations in the Maritime Mobile Service RR56-1/2
Section I. Personnel of Coast Stations RR56-1
Section II. Class and Minimum Number of Oper- ators for Stations on board Ships RR56-1
ARTICLE 57. Inspection of Ship Stations and Ship Earth Stations RR57-1/2
ARTICLE 58. Working Hours of Stations in the Mari- time Mobile Service RR58-1/4
Section I. General RR58-1
Section II. Coast Stations RR58-1
Section III. Ship Stations RR58-2
ARTICLE 59. Conditions to Be Observed in the Mari- time Mobile Service and in the Maritime Mobile-Satellite Service RR59-1/7
Section I. Maritime Mobile Service RR59-1
Section II. Conditions to Be Observed by Ship Earth Stations RR59-5
Page
Section III. Aircraft Communicating with Stations of the Maritime Mobile Service and the Maritime Mobile-Satellite Service RR59-5
ARTICLE 60. Special Rules Relating to the Use of Fre- quencies in the Maritime Mobile Service . RR60-1/35
Section I. General Provisions RR60-1
Section II. Use of Frequencies for Morse Radio- telegraphy RR60-9
Section III. Use of Frequencies for Narrow-Band Direct-Printing Telegraphy RR60-21
Section IV. Use of Frequencies for Radiotel- ephony RR60-23
ARTICLE 61. Order of Priority of Communications in the Maritime Mobile Service and in the Maritime Mobile-Satellite Service RR61-1/2
ARTICLE 62. Selective Calling Procedure in the Mari- time Mobile Service RR62-1/5
Section I. General RR62-1
Section II. Sequential Single-Frequency Code System RR62-1
Section III. Digital Selective Calling System RR62-3
ARTICLE 63. General Radiotelegraph Procedure in the Maritime Mobile Service RR63-1/12
Section I. General Provisions RR63-1
Section II. Preliminary Operations RR63-1
Section III. Calls by Radiotelegraphy RR63-2
Page
Section IV. Method of Calling, Reply to Calls and Signals Preparatory to Traffic RR63-5
Section V. Forwarding (Routing) of Traffic RR63-8
Section VI. End of Traffic and Work RR63-10
Section VII. Control of Working RR63-11
Section VIII. Tests RR63-11
ARTICLE 64. General Procedures for Narrow-Band Direct-Printing Telegraphy in the Mari- time Mobile Service RR64-1/5
Section I. General RR64-1
Section II. Procedures for Manual Operation RR64-2
Section III. Procedures for Automatic Operation RR64-3
Section IV. Message Format RR64-4
Section V. Procedures for Operation in the For- ward-Error-Correcting Mode RR64-5
ARTICLE 65. General Radiotelephone Procedure in the Maritime Mobile Service RR65-1/18
Section I. General Provisions RR65-1
Section II. Preliminary Operations RR65-2
Section III. Calls by Radiotelephony RR65-2
Section IV. Method of Calling, Reply to Calls and Signals Preparatory to Traffic RR65-6
Section V. Forwarding (Routing) of Traffic RR65-14
Section VI. Duration and Control of Working RR65-17
Section VII. Tests RR65-17
Page
ARTICLE 66. Public Correspondence in the Maritime Mobile Service and the Maritime Mobile- Satellite Service RR66-1/3
Section I. General RR66-1
Section II. Accounting Authority RR66-1
Section III. Accounting RR66-2
Section IV. Payment of Balances RR66-3
Section V. Archives RR66-3
CHAPTER XII. Land Mobile Service
ARTICLE 67. Conditions to Be Observed by Mobile Stations in the Land Mobile Service RR67-1
ARTICLE 68. General Radiotelephone Procedure in the Land Mobile Service - Calls RR68-1
CHAPTER XIII.
ARTICLE 69. Entry into Force of the Radio Regula- tions RR69-1/2

Appendices 1-24 to the Radio Regulations

Page
APPENDIX 1. AP1-1/33
Section A, Basic Characteristics to Be Furnished for Notification under Nos. 1214 to 1217 of the Radio Regulations AP1-2
Section B. Basic Characteristics to Be Furnished for Notification under No. 1219 of the Radio Regulations AP1-7
Section C. Basic Characteristics to Be Furnished for Notification under Nos. 1223 to 1227 of the Radio Regulations AP1-8
Section D. Information to Be Furnished for Notifi- cation under No. 1218 of the Radio Regulations AP1-10
Section E. Form of Notice AP1-14
Section F. General Instructions AP1-15
Annex Geographical Zones for Broadcasting AP1-33
APPENDIX 2. AP2-1/7
Section A. Form of Notice AP2-1
Section B. General Instructions AP2-2
APPENDIX 3.
Notices Relating to Space Radiocommunications and Radio Astronomy Stations AP3-1/30
Section A. General Instructions AP3-1
(Rev. 1986)
Page
Section B. Basic Characteristics to Be Furnished in Notices Relating to Frequencies Used by Earth Stations for Transmitting AP3-3
Section C. Basic Characteristics to Be Furnished in Notices Relating to Frequencies to Be Received by Earth Stations AP3-9
Section D. Basic Characteristics to Be Furnished in Notices Relating to Frequencies Used by Space Stations for Transmitting AP3-13
Section E. Basic Characteristics to Be Furnished in Notices Relating to Frequencies to Be Received by Space Stations AP3-20
Section F. Basic Characteristics to Be Furnished in Notices Relating to Frequencies to Be Received by Radio Astronomy Stations AP3-25
Section G. Forms of Notice (earth station) AP3-27
Section H. Forms of Notice (space station) AP3-27
Annex Minimum Information Required for Coordination in Accordance with Nos. 1060 and 1107 AP3-28
APPENDIX 4.
Advance Publication Information to Be Furnished for a Satellite Network AP4-1/11
Section A. General Instructions AP4-1
Section B. General Characteristics to Be Furnished for a Satellite Network AP4-1
Section C. Characteristics of the Satellite Network in the Earth-to-Space Direction AP4-3
Section D. Characteristics of the Satellite Network in the Space-to-Earth Direction AP4-6
Section E. Characteristics to Be Furnished for Space-to-Space Relays AP4-10
Section F. Supplementary Information AP4-10
APPENDIX 5.
Information to Be Supplied in Accordance with
Nos. 1682 to 1684 AP5-1/2
APPENDIX 6.
Additional Characteristics for the Classification of Emis-sions; Determination of Necessary Bandwidths IncludingExamples for their Calculation and Associated Examplesfor the Designation of EmissionsAP6-1/15
Part A. Additional Characteristics for the Classi- fication of Emissions AP6-1
Part B. Determination of Necessary Bandwidths Including Examples for their Calculation and Associated Examples for the Desig- nation of Emissions AP6-3
APPENDIX 7.
Table of Transmitter Frequency Tolerances AP7-1/10
APPENDIX 8.
Table of Maximum Permitted Spurious Emission Power Levels AP8-1/5
APPENDIX 9.
Service Documents AP9-1/19
APPENDIX 10.
Service Document Symbols AP10-1/4

APPENDIX 11.

Documents with Which Ship and Aircraft Stations Shall Be Provided AP11-1/4
Section I. Ship Stations for Which a Radiotele- graph Installation Is Required by Inter- national Agreement AP11-1
Section II. Other Ship Radiotelegraph Stations AP11-2
Section III. Ship Stations for Which a Radiotele- phone Installation Is Required by Inter- national Agreement AP11-2
Section IV. Other Ship Radiotelephone Stations AP11-3
Section V. Ship Stations Equipped with Multiple Installations AP11-3
Section VI. Aircraft Stations AP11-4
APPENDIX 12.
Hours of Service for Ship Stations of the Second and Third Categories AP12-1/5
Section I. Table AP12-1
Section II. Diagram and Map AP12-2
APPENDIX 13.
Miscellaneous Abbreviations and Signals to Be Used in Radiotelegraphy Communications Except in the Mari- time Mobile Service AP13-1/28
Section I. Q Code AP13-1
Section II. Miscellaneous Abbreviations and Signals AP13-26
APPENDIX 14.Miscellaneous Abbreviations and Signals to Be Used forRadiocommunications in the Maritime Mobile ServiceAP14-1/31

Section I.	Q Code	AP14-1
Section II.	Miscellaneous Abbreviations and Signals	AP14-29

APPENDIX 15.

SINPO and SINPFEMO Codes

APPENDIX 16.
Channelling of the Maritime Mobile Radiotelephone Bands Between 4000 kHz and 23000 kHz
Section A. Table of Single-Sideband Transmitting Frequencies for Duplex (Two-Frequency) Operation (in kHz) AP16-5
Section B. Table of Single-Sideband Transmitting Frequencies for Simplex (Single-Fre- quency) Operation and for Intership Cross-Band (Two-Frequency) Operation (in kHz) AP16-7
Section C-1. Table of Single-Sideband Transmitting Frequencies (in kHz) for Ship Stations in the Band $4000-4063 \mathrm{kHz}$ Shared with the Fixed Service AP16-8

Section C-2. Table of Single-Sideband Transmitting Frequencies (in kHz) for Ship and Coast Stations in the Band 8100-8 195 kHz Shared with the Fixed ServiceAP16-9

APPENDIX 17.

Technical Characteristics of Single-Sideband Transmitters Used in the Maritime Mobile Service for Radiotelephony in the Bands Between 1606.5 kHz (1605 kHz Region 2) and 4000 kHz and Between 4000 kHz and 23000 kHz .
Page
APPENDIX 18.
Table of Transmitting Frequencies in the Band 156174 MHz for Stations in the Maritime Mobile ServiceAP18-1/5
APPENDIX 19.
Technical Characteristics for Transmitters and Receivers Used in the Maritime Mobile Service in the Band 156 174 MHz AP19-1
APPENDIX 20.
Characteristics of Equipment Used for On-Board Com- munication in the $450-470 \mathrm{MHz}$ Bands AP20-1/2
APPENDIX 21
Reports of International Monitoring of Emissions AP21-1/6
Section I. Reports Concerning Stations in the Ter- restrial Radiocommunication Services AP21-1
Section II. Reports Concerning Stations in the Space Radiocommunication Services AP21-3
APPENDIX 22.
Report of an Irregularity or of an Infringement of the Convention or the Radio Regulations AP22-1/4
APPENDIX 23.
Report of Harmful Interference AP23-1/2
APPENDIX 24.
Phonetic Alphabet and Figure Code AP24-1/3

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

VOLUME 2

Appendices 25-44 to

the Radio Regulations
Page
APPENDIX 25.
Frequency Allotment Plan for Coast Radiotelephone Sta- tions Operating in the Exclusive Maritime Mobile Bands Between 4000 kHz and 23000 kHz AP25-1/109
Table of Allotments Added to the Plan AP25-97
APPENDIX 26.
Frequency Allotment Plan for the Aeronautical MobileService and Related InformationAP26-1*
APPENDIX 27 Aer2.
Frequency Allotment Plan for the Aeronautical Mobile(R) Service and Related Information Between 2850 kHzand 22000 kHzAP27 Aer2-1*
APPENDIX 28.
Method for the Determination of the Coordination AreaAround an Earth Station in Frequency Bands Between1 GHz and 40 GHz Shared Between Space and Terres-trial Radiocommunication ServicesAP28-1/46
Table I. Parameters Required for the Determina- tion of Coordination Distance for a Transmitting Earth Station AP28-17
Table II. Parameters Required for the Determina- tion of Coordination Distance for a Receiving Earth Station AP28-19

[^0]Page
Table III. Maximum Coordination Distance for Propagation Mode (1) AP28-21
Table IV. Characteristic Values of Parameters for the Five Rain-Climatic Zones (0.01% of the time) AP28-21
Table V. Maximum Rain-Scatter Distances (km) AP28-21
Annex I. Determination and Use of Auxiliary Contours AP28-36
Annex II. Antenna Gain in the Direction of the Earth Station Horizon for Geostationary Satellites AP28-38
Annex III. Graphical Method for the Determination of Coordination Distance for Mixed Paths AP28-42
APPENDIX 29.Method of Calculation for Determining if Coordinationis Required Between Geostationary-Satellite NetworksSharing the Same Frequency BandsAP29-1/17
Annex I. Calculation of the Topocentric Angular Separation Between Two Geostationary Satellites AP29-12
Annex II. Calculation of the Free-Space Transmis- sion Loss AP29-12
Annex III. Radiation Patterns for Earth Station Antennae to Be Used When They Are Not Published AP29-13
Annex IV. Example of an Application of Appendix 29 AP29-15
APPENDIX 30 (Orb-85).
APPENDIX 30 (Orb-85).Provisions for All Services and Associated Plans for theBroadcasting-Satellite Service in the Frequency Bands11.7-12.2 GHz (in Region 3), $11.7-12.5 \mathrm{GHz}$ (inRegion 1) and $12.2-12.7 \mathrm{GHz}$ (in Region 2) . . AP30 (Orb-85)-1/275
Table of Contents AP30 (Orb-85)-1/4

APPENDIX 30A.

> Provisions and Associated Plan for the Feeder Links for the Broadcasting-Satellite Service $(12.2-12.7 \mathrm{GHz})$ in the Frequency Band $17.3-17.8 \mathrm{GHz}$ in Region $2 \ldots$. . . AP30A-1/170

Table of Contents . AP30A-1/3

APPENDIX 31.

Table of Frequencies to Be Used in the Bands Between 4 MHz and 27.5 MHz Allocated Exclusively to the Mari- time Mobile Service

AP31-1/7

Table of Frequencies to Be Used in the Bands Be
tween 4 MHz and 23 MHz Allocated Exclusively to
the Maritime Mobile Service

AP31-3

Table of Frequencies Assignable to Ship Stations in
the 25 MHz Band . AP31-7

APPENDIX 32.
Channelling of the Maritime Mobile Bands Between 4000 kHz and 23000 kHz Used for Narrow-Band Direct-Printing Telegraphy and Data Systems (Paired Frequencies)

AP32-1/5
Table of Frequencies for Two-Frequency Operation by Coast Stations

AP32-2

APPENDIX 33.

Channelling of the Maritime Mobile Bands Between 4000 kHz and 27500 kHz Used for Narrow-Band Direct-Printing Telegraphy and Data Transmission (Non- Paired Frequencies) AP33-1/2
Table of Ship Station Transmitting Frequencies AP33-2
APPENDIX 34.Table of Calling Frequencies Assignable to Ship Stationsfor A1A Morse Telegraphy at Speeds Not Exceeding40 BaudsAP34-1/3
APPENDIX 35.
Table of Working Frequencies, in kHz , Assignable toShip Stations for A1A Morse Telegraphy at Speeds NotExceeding 40 BaudsAP35-1/7
APPENDIX 36.Automatic Receiving Equipment for Radiotelegraph andRadiotelephone Alarm SignalsAP36-1/2
APPENDIX 37.Technical Characteristics of Emergency Position-Indicating Radiobeacons Operating on the Carrier Fre-quency 2182 kHzAP37-1
APPENDIX 37A.Technical Characteristics of Emergency Position-Indicating Radiobeacons Operating on the Carrier Fre-quencies 121.5 MHz and 243 MHzAP37A-1
APPENDIX 38.Narrow-Band Direct-Printing Telegraph EquipmentAP38-1/3
APPENDIX 39.Selective Calling System for Use in the InternationalMaritime Mobile ServiceAP39-1/6
APPENDIX 40.
Linked Compressor and Expander Systems AP40-1/2
(Rev. 1986)

APPENDIX 41.

Procedure for Obtaining Radio Direction-Finding Bear- ings and Positions AP41-1/6
Section I. General Instructions AP41-1
Section II. Rules of Procedure AP41-2
Table Classification of Bearings AP41-6
APPENDIX 42.
Table of Allocation of International Call Sign Series AP42-1/8
APPENDIX 43.
Maritime Mobile Service Identities AP43-1/10
Table 1 Maritime Identification Digits AP43-3
APPENDIX 44.
Ship Station Selective Call Numbers and Coast Station Identification Numbers AP44-1/11Part I. Table of Blocks of Selective Call Num-bers for Ship Stations and Selective CallNumbers for Groups of Ship StationsSupplied to AdministrationsAP44-1Part II. Table of Blocks of Coast Station Identifi-cation Numbers Supplied to Administra-tionsAP44-9
Page
Resolutions
RESOLUTION No. 1 Relating to Notification of Fre- quency Assignments RES1-1/2
RESOLUTION No. 2 Relating to the Equitable Use, by All Countries, with Equal Rights, of the Geosta- tionary-Satellite Orbit and of Frequency Bands for Space Radiocommunication Services RES2-1/2
RESOLUTION No. 3 Relating to the Use of the Geo- stationary-Satellite Orbit and to the Planning of Space Services Utilizing It RES3-1/3
RESOLUTION No. 4 Relating to the Period of Validity of Frequency Assignments to Space Stations Using the Geostationary-Satellite Orbit RES4-1/3
RESOLUTION No. 5 Relating to Technical Cooperation with the Developing Countries in the Study of Propa- gation in Tropical Areas RES5-1/2
RESOLUTION No. 6 Relating to the Preparation of a Handbook to Explain and Illustrate the Procedures of the Radio Regulations RES6-1/2
RESOLUTION No. 7 Relating to the Development of National Radio Frequency Management RES7-1/3
RESOLUTION No. 8 Relating to Implementation of the Changes in Allocations in the Bands Between 4000 kHz and 27500 kHz RES8-1/10
Annex A. Transitional Procedure for the Selection and Approval of Replacement Assign- ments
Part I. Preparatory Phase RES8-3
Part II. Transfer Phase RES8-6
PageAnnex B. Interim Procedure Concerning NoticesRelating to Assignments in the BandsBetween 4000 kHz and 27500 kHzAllocated on an Exclusive or SharedBasis to the Fixed ServiceRES8-7
Annex C. Review Procedure Concerning Notices Relating to Assignments for Stations of the Fixed Service in the Bands Between 4000 kHz and 27500 kHz RES8-8
RESOLUTION No. 9 Relating to the Revision of Entries in the Master International Frequency Register in the Bands Allocated to the Fixed Service Between 3000 kHz and 27500 kHz RES9-1/7
Annex Procedure for Reviewing Entries in the Master Register in Frequency Bands Allocated to the Fixed Service Between 3000 kHz and 27500 kHz RES9-3
RESOLUTION No. 10 Relating to the Use of Radiotele- graph and Radiotelephone Links by the Red Cross, Red Crescent, and Red Lion and Sun Organizations RES10-1/2
RESOLUTION No. 11 Relating to the Use of Radiocom- munications for Ensuring the Safety of Ships and Aircraft of States Not Parties to an Armed Conflict . .
Annex Possible Procedure for the Identification and Location of Ships and Aircraft of Neutral States
RESOLUTION No. 12 Relating to the New Rules for the Formation of Call Signs RES12-1

[^1]Page
RESOLUTION No. 13 Relating to the Formation of Call Signs and the Allocation of New International Series RES13-1/3
RESOLUTION No. 14 Relating to the Transfer of Tech- nology RES14-1/3
RESOLUTION No. 15 Relating to International Coopera- tion and Technical Assistance in the Field of Space Radiocommunications RES15-1/2
RESOLUTION No. 16 Relating to the Role of Telecom- munications in Integrated Rural Development RES16-1/3
RESOLUTION No. 17 Relating to the Determination, on the Basis of the Agenda, of the Possible Committee Structure to Be Set Up at an Administrative Radio Conference RES17-1/2
RESOLUTION No. 18 (Mob-83) Relating to the Procedure for Identifying and Announcing the Position of Ships and Aircraft of States Not Parties to an Armed Conflict RES18-1/3
RESOLUTION No. 30 Relating to the Review of Entries in the Master International Frequency Register at the Request of Previous Conferences RES30-1/2
RESOLUTION No. 31 Relating to the Application of Cer- tain Provisions of the Final Acts of the World Broadcasting-Satellite Administrative Radio Confer- ence, Geneva, 1977, to Take into Account Changes Made by the World Administrative Radio Confer- ence, Geneva, 1979 to the Table of Frequency Alloca- tions for Region 2 in the Band $11.7-12.7 \mathrm{GHz}$ RES31-1/3
RESOLUTION No. 32 Relating to the Use of Frequency Assignments to Terrestrial and Space Radiocom- munication Stations in the Band 11.7-12.2 GHz in Region 3 and in the Band 11.7-12.5 GHz in Region 1 RES32-1/2PageRESOLUTION No. 33 Relating to the Bringing into Useof Space Stations in the Broadcasting-Satellite Service,Prior to the Entry into Force of Agreements andAssociated Plans for the Broadcasting-Satellite Service
RES33-1/9
Section A. Coordination Procedure Between Space Stations in the Broadcasting-Satellite Service and Terrestrial Stations RES33-2
Section B. Coordination Procedure Between Space Stations in the Broadcasting-Satellite Service and Space Systems of Other Administrations RES33-4Section C. Notification, Examination and Record-ing in the Master Register of Assign-ments to Space Stations in the Broad-casting-Satellite Service Dealt Withunder this ResolutionRES33-5
RESOLUTION No. 34 Relating to the Establishment of the Broadcasting-Satellite Service in Region 3 in the 12.5-12.75 GHz Frequency Band and to Sharing with Space and Terrestrial Services in Regions 1, 2 and 3 RES34-1/2
RESOLUTION No. 35 Relating to a Procedure for Resolving a Disagreement over the Technical Stan- dards or Rules of Procedure of the International Frequency Registration Board RES35-1/2
RESOLUTION No. 36 Relating to the Preparation of Explanatory Information by the International Fre- quency Registration Board on the Application of the New Method for Designating Emissions in Notifica- tion Procedures and the Consequential Revision of the Master International Frequency Register RES36-1/2

Page

RESOLUTION No. 37 Relating to the Introduction and Development of Computer Assistance in Radio Fre- quency Management Within Administrations

RES37-1/2
RESOLUTION No. 38 Relating to the Reassignment of Frequencies of Stations in the Fixed and Mobile Services in the Bands Allocated to the Radiolocation and Amateur Services in Region 1 RES38-1/3
RESOLUTION No. 39 (Mob-83) Relating to the Improved Use of the International Monitoring System in Applying Decisions of Administrative Radio Confer- ences RES39-1/4
RESOLUTION No. 40 (Orb-85) Relating to the Recording in the Master International Frequency Register of the Assignments for Region 2 Contained in Appendix 30 (Orb-85) and Appendix 30A RES40-1
RESOLUTION No. 41 (Orb-85) Relating to the Provisional Application of the Partial Revision of the Radio Regulations as Contained in the Final Acts of the WARC Orb-85 Prior to its Entry into Force RES41-1/2RESOLUTION No. 42 (Orb-85) Relating to the ProvisionalApplication for Region 2 of Resolution No. 2(Sat-R2)RES42-1/2
RESOLUTION No. 43 (Orb-85) Relating to Orbital Posi- tion Limitations for the Broadcasting-Satellite Service in Regions 1 and 2 in the Band $12.2-12.5 \mathrm{GHz}$ and for the Fixed-Satellite Service (Feeder-Link Stations) in Region 2 for the Band $17.3-17.8 \mathrm{GHz}$ RES43-1/2
RESOLUTION No. 60 Relating to Information on the Propagation of Radio Waves Used in the Determina- tion of the Coordination Area RES60-1/3
RESOLUTION No. 61 Relating to the Division of the World into Climatic Zones for the Purpose of Calcu- lation of Propagation Parameters RES61-1/2
RESOLUTION No. 62 Relating to the Experimental Use of Radio Waves by Ionospheric Research Satellites RES62-1/2
RESOLUTION No. 63 Relating to the Protection of Radiocommunication Services Against Interference Caused by Radiation from Industrial, Scientific and Medical (ISM) Equipment RES63-1/2
RESOLUTION No. 64 Relating to CCIR Study of Lightning Protection of Radio Equipment RES64-1/2
RESOLUTION No. 65 Relating to the Circulation of Cur- rent Information on CCIR Recommendations Referred To in the Radio Regulations RES65-1/2
RESOLUTION No. 66 Relating to the Division of the World into Regions for the Purposes of Allocating Frequency Bands RES66-1/2
RESOLUTION No. 67 Relating to Improvements in the Design and Use of Radio Equipment RES67-1
RESOLUTION No. 68 Relating to the Redefinition of Certain Terms Contained in Annex 2 to the Interna- tional Telecommunication Convention (Malaga- Torremolinos, 1973) and Applicable to the Radio Regulations RES68-1/2
RESOLUTION No. 90 (Mob-83) Relating to the Revision, Replacement and Abrogation of Resolutions and Recommendations of the World Administrative Radio Conference, Geneva, 1979 RES90-1/3
Page
RESOLUTION No. 100 Relating to the Coordination, Notification and Recording in the Master Interna- tional Frequency Register of Assignments to Stations in the Fixed-Satellite Service with Respect to Stations in the Broadcasting-Satellite Service in Region 2 RES100-1
RESOLUTION No. 101 Concerning the Drawing Up of Agreements and of the Associated Plans for Feeder Links to Space Stations in the Broadcasting-Satellite Service Operating in the 12 GHz Band under the Plan Adopted by the World Broadcasting-Satellite Ad- ministrative Radio Conference, Geneva, 1977, for Regions 1 and 3 RES101-1/3
RESOLUTION No. 102 Relating to Coordination amongAdministrations of the Technical Characteristics ofFeeder Links to Space Stations in the Broadcasting-Satellite Service in the Band $11.7-12.5 \mathrm{GHz}$(Region 1) and $11.7-12.2 \mathrm{GHz}$ (Region 3) During thePeriod Between the Entry into Force of the Final Actsof the World Administrative Radio Conference,Geneva, 1979, and the Entry into Force of the FinalActs of a Future Conference on the Planning ofFeeder Links to Such Space StationsRES102-1/2
RESOLUTION No. 103 Relating to Improvements inAssistance to Developing Countries in SecuringAccess to the HF Bands for their Fixed Services andin Ensuring Protection of their Assignments fromHarmful InterferenceRES103-1/2
RESOLUTION No. 200 Relating to the Use of Class R3E and J3E Emissions for Distress and Safety Purposes on the Carrier Frequency 2182 kHz

[^2]
RESOLUTION No. 200 (Rev.Mob-83) Relating to the Class of Emission to Be Used for Distress and Safety Purposes on the Carrier Frequency 2182 kHz
 RES200-1/2
 RESOLUTION No. 201 Relating to Operational Provi- sions, Charging and Accounting for Public Corre- spondence in the Mobile Services
 RES201-1/2

RESOLUTION No. 202 Relating to the Convening of a World Administrative Radio Conference for the Mobile Services RES202-1/2
RESOLUTION No. 203 (Mob-83) Relating to the Use of Frequencies of the Future Global Maritime Distress and Safety System (FGMDSS) by the Land Mobile Service RES203-1/2
RESOLUTION No. 204 (Mob-83) Relating to the Use of the Band 2 170-2 194 kHz RES204-1/3
RESOLUTION No. 205 (Mob-83) Relating to the Protec- tion of the Band $406-406.1 \mathrm{MHz}$ Allocated to the Mobile-Satellite Service RES205-1/3
RESOLUTION No. 206 (Mob-83) Relating to the Date of Entry Into Force of the 10 kHz Guardband for the Frequency 500 kHz in the Mobile Service (Distress and Calling) RES206-1/2
RESOLUTION No. 300 Relating to the Use and Notifica-tion of Paired Frequencies Reserved for Narrow-BandDirect-Printing Telegraph and Data Transmission Sys-tems in the HF Bands Allocated to the MaritimeMobile ServiceRES300-1/3
RESOLUTION No. 301 Relating to the Notification of Non-Paired Ship Station Frequencies Used for Narrow-Band Direct-Printing Telegraph and Data Transmission Systems RES301-1/2
PageRESOLUTION No. 302 Relating to the Manner in Whichthe IFRB Shall Treat Notifications Dealing with Fre-quency Assignments to Oceanographic StationsRES302-1
RESOLUTION No. 303 Relating to Inter-Ship Frequencies in the Bands Between 1605 kHz and 3600 kHz in Region 1 RES303-1/2
RESOLUTION No. 304 Relating to the Implementation ofthe New Channelling Arrangement for A1A MorseRadiotelegraphy in the Bands Allocated to the Mari-time Mobile Service Between 4000 kHz and27500 kHzRES304-1/2
RESOLUTION No. 305 Relating to the Use of Class R3Eand J3E Emissions on the Carrier Frequencies4125 kHz and 6215.5 kHz Used to Supplement theCarrier Frequency 2182 kHz for Distress and SafetyPurposesRESOLUTION No. 306 Relating to the Use of Single-Sideband Technique in the Radiotelephone MaritimeMobile Service Bands Between 1605 kHz and4000 kHzRES306-1/2
RESOLUTION No. 307 Relating to the Conversion toSingle-Sideband Technique of Stations of the Radio-telephone Maritime Mobile Service Operating in theBands Between 1605 kHz and 4000 kHzRES307-1/2RESOLUTION No. 308 Relating to the Channel Spacingof Frequencies Allocated to the Maritime MobileService in the Band $156-174 \mathrm{MHz}$
RESOLUTION No. 309 Relating to the Unauthorized Use of Frequencies in the Bands Allocated to the Maritime Mobile ServiceRES309-1/2

[^3]Page
RESOLUTION No. 310 Relating to Frequency Provisions for Development and Future Implementation of Ship Movement Telemetry, Telecommand and Data Exchange Systems
RESOLUTION No. 310 (Rev.Mob-83) Relating to Fre- quency Provisions for Development and Future Implementation of Ship Movement Telemetry, Tele- command and Data Exchange Systems RES310-1/2
RESOLUTION No. 311 Relating to the Introduction of a Digital Selective Calling System to Meet the Require- ments of the Maritime Mobile Service RES311-1/2
RESOLUTION No. 312 Relating to the Introduction of New Calling Procedures for HF A1A Morse Tel- egraphy RES312-1/6
Annex Distribution Plan for Group Channels HF A1A Morse Coast Stations by Countries and Areas RES312-3
RESOLUTION No. 313 Relating to the Introduction of a New System for Identifying Stations in the Maritime Mobile and Maritime Mobile-Satellite Services (Mari- time Mobile Service Identities)
RESOLUTION No. 314 Relating to the Establishment of a Coordinated Worldwide System for the Collection of Data Relating to Oceanography RES314-1/2
RESOLUTION No. 315 Relating to the Eventual Aboli-tion of Mobile Station Charges for Public Correspon-dence in the Maritime Mobile ServiceRES315-1/2

[^4]Page
RESOLUTION No. 316 Relating to Technical Coopera- tion with the Developing Countries in Maritime Tele- communications RES316-1/3
RESOLUTION No. 317 (Mob-83) Relating to the Imple- mentation of the Frequency 156.525 MHz for Distress and Safety Digital Selective Calling in the Maritime Mobile Service RES317-1/2RESOLUTION No. 318 (Mob-83) Relating to ProvisionalProcedures Applicable to Stations Transmitting Navi-gational and Meteorological Warnings and UrgentInformation to Ships on the Frequency 518 kHzUsing Automatic Narrow-Band Direct-Printing Tele-graphy (NAVTEX)RES318-1/6
Annex Provisional Procedures to Be Applied by Administrations and the IFRB for the Coordination of the Planned Use of the Frequency 518 kHz for the Transmission by Coast Stations of Navigational and Meteorological Warnings and Urgent Information to Ships by Means of Auto- matic Narrow-Band Direct-Printing Tel- egraphy (NAVTEX) RES318-5
RESOLUTION No. 319 (Mob-83) Relating to a GeneralReview of the HF Bands Allocated on an Exclusiveor Shared Basis to the Maritime Mobile ServiceRES319-1/4
RESOLUTION No. 320 (Mob-83) Relating to the Alloca- tion of Maritime Identification Digits (MID), and the Formation and Assignment of Identities in the Mari- time Mobile and Maritime Mobile-Satellite Services (Maritime Mobile Service Identities) RES320-1/7
Annex Guidelines for Assignment of Ship Sta- tion Identities RES320-5

Page

Abstract

RESOLUTION No. 321 (Mob-83) Relating to the Development of Operational Provisions for the Future Global Maritime Distress and Safety System (FGMDSS) and to Their Introduction Into the Radio Regulations

RES321-1/3

RESOLUTION No. 322 (Mob-83) Relating to the Selection
of Coast Stations to Assume Watch-Keeping Respon
sibilities on Certain Frequencies in Connection with
the Implementation of the Future Global Maritime
Distress and Safety System (FGMDSS)

RES322-1/2

RESOLUTION No. 400 Relating to the Treatment of
Notices Concerning Frequency Assignments to Aero-
nautical Stations in the Bands Allocated Exclusively
to the Aeronautical Mobile
2850 kHz and 22000 kHz Service Between
RES400-1/4

RESOLUTION No. 401 Relating to the Implementation of
the Frequency Allotment Plan in the Bands Allocated
Exclusively to the Aeronautical Mobile (R) Service
Between 2850 kHz and 22000 kHz

RESOLUTION No. 402 Relating to the Implementation of the New Arrangement Applicable to Bands Allocated Exclusively to the Aeronautical Mobile (R) Service Between 2850 kHz and 22000 kHz

RES402-1/4

RESOLUTION No. 403 Relating to the Use of Frequencies 3023 kHz and 5680 kHz Common to the Aeronautical Mobile (R) and (OR) Services

RES403-1/2

RESOLUTION No. 404 Relating to the Implementation of the New Arrangement of Bands Allocated Exclusively to the Aeronautical Mobile (R) Service Between 21924 kHz and 22000 kHz

RES404-1/4
$\begin{array}{ll}\text { Annex } & \begin{array}{l}\text { Outline of Changes to Be Made to } \\ \\ \\ \\ \\ \text { Appendix } 27 \text { Aer2 to the Radio Regula- }\end{array} \\ & \text { tions RES404-3 }\end{array}$

RESOLUTION No. 405 Relating to the Use of Frequencies of the Aeronautical Mobile (R) Service

RESOLUTION No. 406 Relating to the Use of Frequency Bands Higher than the HF Bands in the Aeronautical Mobile (R) Service and the Aeronautical MobileSatellite (R) Service for Communication and for Meteorological Broadcasts

RES406-1/2

RESOLUTION No. 407 Relating to the Unauthorized Use of Frequencies in the Bands Allocated to the Aeronautical Mobile (R) Service

RES407-1/3

RESOLUTION No. 500 Relating to the Modification of Carrier Frequencies of LF Broadcasting Stations in Region 1

RES500-1/3

RESOLUTION No. 501 Relating to Examination by the IFRB of the Notices Referring to Stations in the Broadcasting Service in Region 2 in the Band 5351605 kHz During the Period Preceding the Entry into Force of the Final Acts of the Regional Administrative MF Broadcasting Conference (Region 2)

RES501-1/2

RESOLUTION No. 502 Relating to the Period Between the Entry into Force of the Final Acts of the World Broadcasting-Satellite Administrative Radio Conference, Geneva, 1977, and the Date on Which the Provisions and Associated Plan Adopted by that Conference Are Annexed to the Radio Regulations

RES502-1/2

RESOLUTION No. 503 Relating to the Coordination, Notification and Recording in the Master International Frequency Register of Frequency Assignments to Stations in the Broadcasting-Satellite Service in Region 2

RES503-1/2

RESOLUTION No. 504 Relating to the Final Acts of the World Broadcasting-Satellite Administrative Radio Conference, Geneva, 1977, with Respect to Region 2.
Page
RESOLUTION No. 505 Relating to the Broadcasting- Satellite Service (Sound) in the Frequency Range 0.5 GHz to 2 GHz RES505-1/2
RESOLUTION No. 506 Relating to the Use, by Space Sta-tions Operating in the 2 GHz Frequency Bands Allo-cated to the Broadcasting-Satellite Service, of theGeostationary-Satellite Orbit and No OtherRES506-1
RESOLUTION No. 507 Relating to the Establishment of Agreements and Associated Plans for the Broad- casting-Satellite Service RES507-1/2
RESOLUTION No. 508 Relating to the Convening of a World Administrative Radio Conference for the Plan- ning of the HF Bands Allocated to the Broadcasting Service RES508-1/3
RESOLUTION No. 509 Relating to the Convening of a Regional Broadcasting Conference to Review and Revise the Provisions of the Final Acts of the African VHF/UHF Broadcasting Conference, Geneva, 1963 RES509-1/2RESOLUTION No. 510 Relating to the Convening of aPlanning Conference for Sound Broadcasting in theBand 87.5-108 MHz for Region 1 and Certain Coun-tries Concerned in Region 3RES510-1/3RESOLUTION No. 600 Relating to the Use for the Radio-navigation Service of the Frequency Bands 2900 -$3100 \mathrm{MHz}, 5470-5650 \mathrm{MHz}, 9200-9300 \mathrm{MHz}$,$9300-9500 \mathrm{MHz}$, and $9500-9800 \mathrm{MHz}$RES600-1/2
RESOLUTION No. 601 Relating to the Recommendationsand Standards for Emergency Position-IndicatingRadiobeacons Operating on the Frequencies121.5 MHz and 243 MHzRES601-1

Page

RESOLUTION No. 640 Relating to the International Use of Radiocommunications, in the Event of Natural Disasters, in Frequency Bands Allocated to the Amateur Service

RES640-1/3

RESOLUTION No. 641 Relating to the Use of the Fre-
quency Band $7000-7100 \mathrm{kHz}$. RES641-1

RESOLUTION No. 642 Relating to the Bringing into Use of Earth Stations in the Amateur-Satellite Service

RES642-1/2

RESOLUTION No. 700 Relating to Sharing Between the Fixed-Satellite Service in Regions 1 and 3 and the Broadcasting-Satellite Service in Region 2 in the Band $12.2-12.7 \mathrm{GHz}$

RES700-1/2

RESOLUTION No. 701 Relating to the Convening of a
Regional Administrative Radio Conference for the
Detailed Planning of the Broadcasting-Satellite Ser-
vice in the 12 GHz Band and Associated Feeder
Links in Region 2. RES701-1/5

RESOLUTION No. 702 Relating to the Convening of a Regional Administrative Radio Conference to Establish Criteria for the Shared Use of the VHF and UHF Bands Allocated to Fixed, Broadcasting and Mobile Services in Region 3

RES702-1/2

RESOLUTION No. 703 Relating to the Calculation Methods and Interference Criteria Recommended by the CCIR for Sharing Frequency Bands Between Space Radiocommunication and Terrestrial Radiocommunication Services or Between Space Radiocommunication Services

RES703-1/5

Page

RESOLUTION No. 704 (Mob-83) Relating to the Holding of a Regional Administrative Radio Conference to Prepare Frequency Assignment Plans for the Maritime Mobile Service in the Bands Between 435 kHz and 526.5 kHz and in Parts of the Band Between 1606.5 kHz and 3400 kHz in Region 1 and to Plan for the Aeronautical Radionavigation Service in the Band 415-435 kHz in Region 1

RES704-1/9
Appendix 1. Tables of Recommended Assignable Frequencies for Planning for the Maritime Mobile Service in the Band Between 435 kHz and 526.5 kHz in Region 1

RES704-5
Appendix 2. Tables of Recommended Assignable Frequencies for Planning for the Maritime Mobile Service in the Bands $1606.5-1625 \mathrm{kHz}, \quad 1635-1800 \mathrm{kHz}$ and 2045-2 160 kHz in Region 1

RES704-7
Appendix 3. Tables of Recommended Assignable Frequencies to Be Used by Administrations in Region 1 when Planning and Assigning Frequencies in the Bands $1850-2045 \mathrm{kHz}, \quad 2194-2498 \mathrm{kHz}$, $2502-2850 \mathrm{kHz}, 3155-3400 \mathrm{kHz}$ and 3500-3 800 kHz

RES704-8
Page
Recommendations
RECOMMENDATION No. 1 Relating to the Use of SpaceRadiocommunication Systems in the Event of NaturalDisasters, Epidemics, Famines and Similar Emergen-ciesREC1-1/2
RECOMMENDATION No. 2 Relating to the Examination by World Administrative Radio Conferences of the Situation with Regard to Occupation of the Fre- quency Spectrum in Space Radiocommunications REC2-1/2
RECOMMENDATION No. 3 Relating to the Transmission of Electric Power by Radio Frequencies from a Spacecraft REC3-1/2
RECOMMENDATION No. 4 Relating to the More Effi- cient Consolidation of National and International Radiocommunication Circuits Operating in the Bands Between 4000 kHz and 27500 kHz REC4-1/2
RECOMMENDATION No. 5 Relating to the Means of Reducing the Congestion in Band 7 (3-30 MHz) REC5-1
RECOMMENDATION No. 6 Relating to the Practical Needs of Countries in Need of Special Assistance REC6-1
RECOMMENDATION No. 7 Relating to the Adoption of Standard Forms for Ship Station Licences and Air- craft Station Licences REC7-1/4
Annex $1 . \quad$ Principles for the Formulation of Stan- dard Ship and Aircraft Station Licences REC7-2
Annex 2. Ship Station Licence REC7-3
Annex 3. Aircraft Station Licence REC7-4
RECOMMENDATION No. 8 Relating to Automatic Iden- tification of Stations REC8-1

Page

RECOMMENDATION No. 9 Relating to the Measures to Be Taken to Prevent the Operation of Broadcasting Stations on Board Ships or Aircraft Outside National Territories REC9-1/2
RECOMMENDATION No. 10 Relating to the Presentation of Draft Amendments to the Radio Regulations REC10-1/2
RECOMMENDATION No. 11 Relating to the Marginal Numbering of the Radio Regulations REC11-1/2
RECOMMENDATION No. 12 Relating to the Convening of Future Administrative Radio Conferences to Deal with Specific Services REC12-1/3
RECOMMENDATION No. 13 Relating to a World
Administrative Radio Conference to Carry Out a General or Partial Revision of the Radio Regulations. REC13-1
RECOMMENDATION No. 30 Relating to International Monitoring REC30-1/2
RECOMMENDATION No. 31 Relating to a Handbook for Computer-Aided Techniques in Radio Frequency Management REC31-1/2
RECOMMENDATION No. 60 Relating to the Technical Standards of the IFRB REC60-1
RECOMMENDATION No. 61 Relating to TechnicalStandards for the Assessment of Harmful Interferencein the Frequency Bands above 28 MHzREC61-1/2
RECOMMENDATION No. 62 Supplementing the Addi-tional Characteristics for Classifying Emissions andProviding Additional Examples for the Full Designa-tion of Emissions, Both as Given in Appendix 6REC62-1/2
Page
RECOMMENDATION No. 63 Relating to the Provision of Formulae and Examples for the Calculation of Neces- sary Bandwidths REC63-1/2
RECOMMENDATION No. 64 Relating to Protection Ratios and Minimum Field Strengths Required REC64-1
RECOMMENDATION No. 65 Relating to the Technology for New Spectrum Sharing and Band Utilization Schemes REC65-1
RECOMMENDATION No. 66 Relating to Studies of the Maximum Permitted Levels of Spurious Emissions REC66-1/2
RECOMMENDATION No. 67 Relating to the Definitions of "Service Area" and "Coverage Area" REC67-1/2
RECOMMENDATION No. 68 Relating to Studies and Prediction of Radio Propagation and Radio Noise REC68-1/3
RECOMMENDATION No. 69 Relating to the Frequency Tolerances of Transmitters REC69-1/2
RECOMMENDATION No. 70 Relating to Studies of the Technical Characteristics of Equipment REC70-1/2
RECOMMENDATION No. 71 Relating to the Standardiza- tion of the Technical and Operational Characteristics of Radio Equipment REC71-1/2
RECOMMENDATION No. 72 Relating to Terminology REC72-1
RECOMMENDATION No. 73 Relating to the Use of the Term "Channel" in the Radio Regulations REC73-1
RECOMMENDATION No. 74 Relating to the Use of the Rationalized "Système International d'Unités" (SI) REC74-1RECOMMENDATION No. 100 Relating to Preferred Fre-quency Bands for Systems Using Tropospheric Scatter
Page
RECOMMENDATION No. 101 Relating to Feeder Links for the Broadcasting-Satellite Service REC101-1/3
RECOMMENDATION No. 102 Relating to the Study of Modulation Methods for Radio-Relay Systems in Relation to Sharing with Fixed-Satellite Service Systems REC102-1/2
RECOMMENDATION No. 103 Relating to Carrier Energy Dispersal in Systems in the Fixed-Satellite Service REC103-1
RECOMMENDATION No. 200 Relating to the Date of Entry into Force of the 10 kHz Guardband for the Frequency 500 kHz in the Mobile Service (Distress and Calling)
RECOMMENDATION No. 201 Relating to Distress, Urgency and Safety Traffic
RECOMMENDATION No. 201 (Rev.Mob-83) Relating toDistress, Urgency and Safety TrafficREC201-1/2
RECOMMENDATION No. 202 Relating to the Improve-ment of Protection of Distress and Safety Frequen-cies, and Those Related to Distress and Safety,Against Harmful Interference
RECOMMENDATION No. 203 Relating to the Future Use of the Band 2170-2 194 kHz REC203-1/2
RECOMMENDATION No. 204 Relating to the Applica- tion of Chapters NX, NXI and NXII of the Re-Arranged Radio Regulations
RECOMMENDATION No. 204 (Rev.Mob-83) Relating tothe Application of Chapters IX, X, XI and XII of theRadio RegulationsREC204-1/2

* Abrogated by Resolution 90 (Mob-83).

LII

PageRECOMMENDATION No. 300 Relating to Planning theUse of Frequencies by the Maritime Mobile Service inthe Band $435-526.5 \mathrm{kHz}$ in Region 1REC300-1/2
RECOMMENDATION No. 301 Relating to Planning for the Use of Frequencies in the Bands Between 1606.5 kHz and 3400 kHz Allocated to the Maritime Mobile Service in Region 1 REC301-1/2
RECOMMENDATION No. 302 Relating to the ImprovedUse of the HF Radiotelephone Channels for CoastStations in the Bands Allocated Exclusively to theMaritime Mobile ServiceREC302-1/2
RECOMMENDATION No. 303 Relating to the Use of theCarrier Frequencies 4125 kHz and 6215.5 kHz toSupplement the Carrier Frequency 2182 kHz for Dis-tress and Safety and for Call and Reply Purposes inthe Zone of Regions 1 and 2 South of Latitude$15^{\circ} \mathrm{N}$, but Including Mexico, and in the Zone ofRegion 3 South of Latitude $25^{\circ} \mathrm{N}$REC303-1/2
RECOMMENDATION No. 304 Relating to the Frequen- cies in Appendix 16, Section B, of the Radio Regula- tions, Provided for Worldwide Use by Ships of All Categories and by Coast Stations REC304-1
RECOMMENDATION No. 305 Relating to the Use of Channels 15 and 17 of Appendix 18 by On-Board Communication Stations REC305-1/2
RECOMMENDATION No. 306 Relating to the Estab- lishment of a Watch by Coast Stations for Distress Purposes on the Frequency 156.8 MHz REC306-1
RECOMMENDATION No. 307 On the Choice of a Fre- quency in the Maritime Mobile Bands Between 1605 kHz and 3800 kHz to Be Reserved for Safety Requirements REC307-1/2
Page
RECOMMENDATION No. 308 Relating to the Designa- tion of Common Frequencies in the Medium Fre- quency Bands for Use by Coast Radiotelephone Sta- tions for Communicating with Ships of Other Nation- alities REC308-1/2
RECOMMENDATION No. 309 Relating to the Designa-tion of a Frequency in the Band $435-495 \mathrm{kHz}$ or$505-526.5 \mathrm{kHz}$ (525 kHz in Region 2) on a World-wide Basis for the Transmission by Coast Stations ofNavigational and Meteorological Warnings to Ships,Using Narrow-Band Direct-Printing Telegraphyy
RECOMMENDATION No. 310 Relating to an AutomatedUHF Maritime Mobile Radiocommunication System .REC310-1/3
RECOMMENDATION No. 311 Relating to the Introduc- tion of an Additional Tone after the Radiotelephone Alarm Signal Transmitted by Coast Stations REC311-1/2
RECOMMENDATION No. 312 Relating to Studies of the Interconnection of Maritime Mobile Radiocommuni- cation Systems with the International Telephone and Telegraph Networks REC312-1/2
RECOMMENDATION No. 313 Relating to Temporary Provisions Covering the Technical and Operational Aspects of the Maritime Mobile-Satellite Service
RECOMMENDATION No. 313 (Rev.Mob-83) Relating to
Temporary Provisions Covering the Technical andOperational Aspects of the Maritime Mobile-SatelliteService
Page
RECOMMENDATION No. 314 (Mob-83) Relating to a Radiotelephone Frequency in the 8 MHz Band for Exclusive Use for Distress and Safety Traffic in the Future Global Maritime Distress and Safety System (FGMDSS) REC314-1
RECOMMENDATION No. 315 (Mob-83) Relating to Shore-Ship Digital Selective Calls in the Band around 500 kHz REC315-1/2
RECOMMENDATION No. 316 (Mob-83) Relating to the Use of Ship Earth Stations Within Harbours and Other Waters Under National Jurisdiction REC316-1/2
RECOMMENDATION No. 317 (Mob-83) Relating to the Use of a Priority Indicator Signal for Alerting Ships to Send Overdue Position Reports and for Other Ships to Report Sightings REC317-1/2
RECOMMENDATION No. 400 Relating to the Transition from the Present to the New Frequency Allotment Plan in the Bands Allocated Exclusively to the Aero- nautical Mobile (R) Service Between 2850 kHz and 22000 kHz REC400-1/2
RECOMMENDATION No. 401 Relating to the EfficientUse of Aeronautical Mobile (R) Worldwide Frequen-ciesREC401-1
RECOMMENDATION No. 402 Relating to Cooperation in the Efficient Use of Worldwide Frequencies in the Aeronautical Mobile (R) Service REC402-1/2
RECOMMENDATION No. 403 Relating to the Develop-ment of Techniques Which Would Help to ReduceCongestion in the High Frequency Bands Allocated tothe Aeronautical Mobile (R) ServiceREC403-1/2
Page
RECOMMENDATION No. 404 Relating to the Use of the Band 136-137 MHz by the Aeronautical Mobile (R) Service REC404-1/2
RECOMMENDATION No. 405 Relating to a Study of the Utilization of the Aeronautical Mobile-Satellite (R) Service REC405-1/5
Annex REC405-3
RECOMMENDATION No. 406 Relating to the Revision of the Frequency Allotment Plan for the Aeronautical Mobile (OR) Service REC406-1/2
RECOMMENDATION No. 407 Relating to No. 27/123 of Appendix 27 Aer2 - Sub-Area 5B REC407-1
RECOMMENDATION No. 500 Relating to the Preparation of the Technical Information Necessary for the World Administrative Radio Conference for HF Broad- casting REC500-1/2
RECOMMENDATION No. 501 Relating to Studies for the Introduction of Single-Sideband (SSB) Techniques in the HF Bands Allocated to the Broadcasting Service, in Preparation for the World Administrative Radio Conference for HF Broadcasting REC501-1
RECOMMENDATION No. 502 Relating to Specifications of Low-Cost Television Receivers REC502-1/2
RECOMMENDATION No. 503 Relating to HF Broad- casting REC503-1/2
RECOMMENDATION No. 504 Relating to the Preparation of a Broadcasting Plan in the Band 1605-1705 kHz in Region 2 REC504-1/2
Page
RECOMMENDATION No. 505 Relating to Studies of Propagation at 12 GHz for the Broadcasting-Satellite Service REC505-1/2
RECOMMENDATION No. 506 Relating to the Harmonics of the Fundamental Frequency of Broadcasting- Satellite Stations REC506-1
REC506-1
RECOMMENDATION No. 507 Relating to Spurious Emis- sions in the Broadcasting-Satellite Service REC507-1
RECOMMENDATION No. 508 Relating to Transmitting Antennae for the Broadcasting-Satellite Service REC508-1
RECOMMENDATION No. 600 Relating to the Use of the Frequency Band 9300-9500 MHz REC600-1/2
REC600-1/2
RECOMMENDATION No. 601 Concerning the Matter of Providing a Suitable Frequency Allocation for a Col- lision Avoidance System in the Aeronautical Radio- navigation Service REC601-1
RECOMMENDATION No. 602 Relating to Maritime Radiobeacons *
RECOMMENDATION No. 602 (Rev.Mob-83) Relating to the Planning of Frequencies in the Band 283.5- 315 kHz used by Maritime Radiobeacons in the Euro- pean Maritime Area REC602-1/2
RECOMMENDATION No. 603 Relating to Technical Pro- visions for Maritime Radiobeacons in the African Area REC603-1RECOMMENDATION No. 604 Relating to the Future Useand Characteristics of Emergency Position-IndicatingRadiobeacons*

[^5]Page
RECOMMENDATION No. 604 (Rev.Mob-83) Relating to the Future Use and Characteristics of Emergency Position-Indicating Radiobeacons REC604-1/2
RECOMMENDATION No. 605 Relating to Technical Characteristics and Frequencies for Shipborne Trans- ponders REC605-1/2
RECOMMENDATION No. 620 Relating to the Meteoro- logical Aids Service in the Band $27.5-28 \mathrm{MHz}$ REC620-1
RECOMMENDATION No. 700 Relating to the Utilization and Sharing of Frequency Bands Allocated to Space Radiocommunications REC700-1/2
RECOMMENDATION No. 701 Relating to the Use of theFrequency Band 1330-1 400 MHz by the RadioAstronomy Service
REC701-1
RECOMMENDATION No. 702 Relating to the Use of the Frequency Bands $1400-1727 \mathrm{MHz}, 101-120 \mathrm{GHz}$ and $197-220 \mathrm{GHz}$ for Search for Intentional Emissions of Extraterrestrial Origin
REC702-1/2
RECOMMENDATION No. 703 Relating to the Need to Cease Operations of the Fixed and Mobile Services in the Bands $149.9-150.05 \mathrm{MHz}$ and $399.9-400.05 \mathrm{MHz}$ Allocated to the Radionavigation-Satellite Service
REC703-1/2
RECOMMENDATION No. 704 Relating to the Compatibility Between the Broadcasting Service in the Band $100-108 \mathrm{MHz}$ and the Aeronautical Radionavigation Service in the Band $108-117.975 \mathrm{MHz}$
REC704-1/2
RECOMMENDATION No. 705 Relating to the Criteria to Be Applied for Frequency Sharing Between the Broadcasting-Satellite Service and the Terrestrial Broadcasting Service in the Band $620-790 \mathrm{MHz}$
REC705-1/3
RECOMMENDATION No. 706 Relating to Frequency Sharing by the Earth Exploration-Satellite Service (Passive Sensors) and the Space Research Service (Passive Sensors) with the Fixed, Mobile Except Aero- nautical Mobile, and Fixed-Satellite Services in the Band 18.6-18.8 GHz REC706-1/2
RECOMMENDATION No. 707 Relating to the Use of theFrequency Band $32-33 \mathrm{GHz}$ Shared Between theInter-Satellite Service and the Radionavigation Ser-viceREC707-1
RECOMMENDATION No. 708 Relating to Frequency Bands Shared Between Space Radiocommunication Services and Between Space and Terrestrial Radio- communication Services REC708-1/5
RECOMMENDATION No. 709 Relating to Sharing Fre-quency Bands Between the Aeronautical Mobile Ser-vice and the Inter-Satellite ServiceREC709-1/2
RECOMMENDATION No. 710 Relating to the Use of Airborne Radars in the Frequency Bands Shared Between the Inter-Satellite Service and the Radioloca- tion Service REC710-1/2
RECOMMENDATION No. 711 Relating to the Coordina- tion of Earth Stations REC711-1/2RECOMMENDATION No. 712 Relating to the Interdepen-dence of Receiver Design, Channel Grouping andSharing Criteria in the Broadcasting-Satellite ServiceREC712-1
RECOMMENDATION No. 713 (Mob-83) Relating to theUse of Radar Transponders for Facilitating Searchand Rescue Operations at SeaREC713-1/2

FOREWORD

1. This edition of the Radio Regulations is published under the authority of the Secretary-General of the International Telecommunication Union. It is a consolidated document, which incorporates, in Volume 1, the provisions of the Radio Regulations (Geneva, 1979) and Appendices 1 to 24 thereto, and, in Volume 2, Appendices 25 to 44, as well as Resolutions and Recommendations, as adopted by the World Administrative Radio Conference, Geneva, 1979.
1.1 This edition includes the partial revision adopted by the World Administrative Radio Conference for the Mobile Services, Geneva, 1983.
1.2 It also includes the partial revision adopted by the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985.
1.3 The Final Protocol (reservations and counter-reservations of signatory delegations) to the Final Acts of the World Administrative Radio Conference, Geneva, 1979, that to the Final Acts of the World Administrative Radio Conference for the Mobile Services, Geneva, 1983, and that to the Final Acts of the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, have not been reproduced in this edition.
2. Pages are separately numbered for each Article, Appendix, Resolution, Recommendation, etc. The following symbols have been used for this numbering, which appears at the top of each page:

TA $\quad=$ Analytical Table
IA $=$ Analytical Index of Resolutions and Recommendations
$\mathrm{N} \quad=$ Notes
RR $\quad=$ Radio Regulations
AP $\quad=$ Appendix
RES $\quad=$ Resolution
REC $\quad=$ Recommendation.

Examples:

TA-6	$=$ Analytical Table, page 6
IA-3	$=$Analytical Index of Resolutions and Recommendations, page 3
N-2	Notes, page 2
RR8-14	$=$ Article 8 of the Radio Regulations, page 14
AP16-5	$=$ Appendix 16, page 5
RES500-2	$=$ Resolution 500, page 2
REC604-1	$=$ Recommendation 604, page 1.

2.1 The Foreword bears arabic page numbers and the Table of Contents bears roman page numbers.
2.2 In the Table of Contents the total number of pages for each category of information is indicated.

For example:
RR1-1/23 shows that Article 1 has 23 pages;
RR3-1 shows that Article 3 has only one page.
2.3 The symbol Mob-83 indicates an addition, modification or deletion of a Provision, Appendix, Resolution or Recommendation by the World Administrative Radio Conference for the Mobile Services, Geneva, 1983. The pages which have been modified in the updating of January 1985 bear the abbreviation (Rev. 1985) at the bottom of the page.
2.4 Similarly, the symbol Orb-85 is used when a decision of the First Session of the World Administrative Radio Conference on the Use of the GeostationarySatellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, is concerned. The pages which have been modified in the updating of October 1986 bear the abbreviation (Rev. 1986) at the bottom of the page.
2.5 In the case of a deletion the symbol SUP is used and the conference having made the decision is indicated.
3. The General Secretariat has furnished, in addition to several short notes in the body of the text, the following notes:

- in Appendix 42 to the Radio Regulations, a note listing the international call sign series allocated by the Secretary-General on a provisional basis between the end of the World Administrative Radio Conference, Geneva, 1979, and 29 January 1985;
- in Appendix 44 to the Radio Regulations, two notes listing blocks of selective call numbers for ship stations, and blocks of coast station identification numbers supplied to administrations by the SecretaryGeneral between the end of the World Administrative Radio Conference, Geneva, 1979, and, respectively, 2 June 1986 and 20 June 1986;
- preceding the Resolutions, a note indicating the manner in which the Resolutions have been grouped;
- preceding the Recommendations, a note indicating the manner in which the Recommendations have been grouped;
- in the section "Notes":
- a note referring to the formation and use of call signs;
- a note listing the provisions of the Radio Regulations that contain references to CCIR Recommendations, together with the reference numbers and titles of the CCIR Recommendations;
- flowcharts from the IFRB Handbook on Radio Regulatory Procedures (see Resolution 6).

ANALYTICAL TABLE

RADIO REGULATIONS
APPENDICES TO THE RADIO REGULATIONS
RESOLUTIONS
RECOMMENDATIONS
Edition of 1982, revised in 1985 and 1986

```
ABBREVIATIONS AND SYMBOLS
Anx - Annex
AP - Appendix
Art - Article
RES - Resolution
REC - Recommendation
Sec - Section
- - used in order to avoid repeating a heading or subheading
```

ABBREVIATIONS AND SIGNALS
for designation of emissions Art4, AP6
for distress and safety communications 2938, 3088, 3089,3196, 3197, 3221,3222, 3255, 3268,3270, 3284, AP24
for identifying dates and times Art 3
for identifying frequency and wavelength bands Art2
for radiocommunications in the maritime mobile service AP14
for radiotelegraphy communications except in the maritime mobile service AP13
for the indication of working frequencies 4309
TR 3802-3805
See Codes (TA-6) and Symbols (TA-34)
ACCOUNTING 5092-5099
authority 5086-5091
Archives 5101, 5102
Payment of balances 5100
Public correspondence in the maritime mobile service, eventual abolition of mobile station charges RES315
ADMINISTRATIVE PROVISIONS FOR STATIONS Art23-25
AERONAUTICAL, see Service(s) (TA-30) and Stations (TA-33)
AGREEMENTS (SPECIAL $=$) Art 7
Information to the IFRB 1233
Information to the Secretary-General 378
Members' right to conclude -
regarding the assignment of frequencies below 5060 kHz or above 27500 kHz 375
regarding the assignment of frequencies on a worldwide basis 376
regarding the sub-allocation of frequency bands 374
Participation by the IFRB 379
ALARM SIGNALS Art41 (SecII)
Procedures 3101, 3110, 3116,3162, 3166
Purpose and use of - 3273-3282
Radiotelegraphy 3268, 3269, 3274Radiotelephony3270-3272, 3275
Requirements for automatic receiving devices 3281, 3282, AP36
ALLOCATION(S) (Frequency \boldsymbol{m}), see Bands under Frequency(ies) (TA-14)
ALLOTMENTS, see Frequency allotment plans (TA-12)
ALL SHIPS CALL 3283, 4674, AP39
AMATEUR, see Services under Frequency(ies) (TA-16) and Stations (TA-33)
ANTENNA AP28 (AnxII),AP29 (AnxIII),AP30 (Orb-85)(Anx5), 30A (Anx3)
Symbols for type of = AP2 (SecB-III)
AREA
African Broadcasting 400
Coordination $=$ around an earth station (method for determination) AP28
European Broadcasting = 404
European Maritime 405
Tropical Zone 406-411
See Regions (TA-29)
ASSIGNMENT(S) (Frequency -), see Frequency(ies) (TA-13)
AUTHORITY OF THE MASTER Art54
Cases of distress 3087, 3132, 3159
Transmission of the urgency signal 3198
AUTHORITY OF THE PERSON RESPONSIBLE FOR THE MOBILE STATIONS IN the aeronautical mobile service Art43
Cases of distress 3087, 3132, 3159
Transmission of the urgency signal 3198

B

BANDS, see Emissions (TA-12) and Frequency(ies) (TA-14)
BANDWIDTH
Necessary 266, 267, AP6
Determination 307, AP6
BEACONS
Aeronautical radiobeacons 2854
Associated airborne 799
Fixed-frequency radar - (racons) 775
Ground-based radars 825
Maritime radiobeacons 2860
Technical characteristics of emergency position-indicating radiobeacons AP37, AP37A
BROADCASTING, see Services (TA-30)

C
CALLING FREQUENCIES, see Frequency(ies) (TA-15)
CALLS
All ships call ... 3283, 4674, AP39
CP 3701, 4753
CQ 3696-3700, 4724, 4726, 4727, 4747. 4752, 4926, 4927
Form of reply 3720, 4767, 4982
Frequencies for reply 4268, 4769, 4984. 5002
See also Radiotelegraphy and Radiotelephony under Maritime mobile service under Frequency(ies) (TA-17)Methods of calling .. 3708-3710, 4947.4954
Radiotelegraphy Art52(SecII),Art63(SecIII-IV)
Radiotelephony Art53 and Art65
CALIS (continued)
Selective call numbers, see TA-30
Selective calling procedure in the maritime mobile service . Art62, AP39
Traffic lists 4264, 4389, 4722,4723, 4726, 4727,4731, 4732, 4924.4930
CALL SIGN(S)
Alphabetical List of $=$ 2215-2221
Allocation of international $\mathbf{-}$ series 2085, 2086, 2101
Table AP42
Assignment 2082, 2084, RES13
Uniqueness (non duplication nor ambiguous assignments) 2091
Choice and notification 2089
Formation 2096-2101, RES13
Aircraft stations 2109, 2150-2152
Aircraft survival craft stations 2115
Amateur and experimental stations 2119-2120
Emergency position-indicating radiobeacon stations 2113
Fixed stations 2103, 2104
Land mobile stations 2117
Land stations 2103
Ship stations 2106, 2107
Ship's survival craft stations 2111
Stations in space service 2122
Phonetic alphabet and figure code AP24
CERTIFICATES, see Operators' certificates (TA-24)
CHANNELLING (in the maritime mobile service bands) AP16, 32, 33
CHARACTERISTICS (basic = to be furnished for notification of frequencies) AP1, 3
CHARGES (inland and limitrophic rates) 2201, 2202
CIRAF (International High Frequency Broadcasting Conference,
Mexico, 1948) geographical zones for broadcasting AP1 (Anx)
COAST STATION IDENTITIES, see Maritime mobile service identities (TA-22)
CODE (S)
International - of signals 2938
Phonetic alphabet and figure - AP24
Q -
for radiocommunications in the maritime mobile service AP14
for radiotelegraphy communications except in the maritime mobile service AP13
SINPO and SINPFEMO AP15
CONTROL OF WORKING
Distress traffic 3136
Radiotelegraphy 3763-3765, 4811.4813
Radiotelephony 5056, 5057
CONVENTION(S) (regarding safety)
on International Civil Aviation 2940
International = for the Safety of Life at Sea 2939
COORDINATION (OF FREQUENCY ASSIGNMENTS), see Assignment under Frequency (TA-13)
COUNTRY
Term used in service documents 2246
CP, see Calls (TA-4)
CQ, see Calls (TA-4)
D
DEFINITIONS AND TERMS Artl
Active Sensor 174
Administration 3
Allocation (of a frequency band) 17
Allotment (of a radio frequency or radio frequency channel) 18
Altimeter, Radio 102
Altitude of the Apogee or of the Perigee 179
Antenna, Gain of an 154
DEFINITIONS AND TERMS (continued)
Telecommand 128
Telecommunication 4
Telegram 112
Telegraphy 111
Frequency-Shift $=$ 115
Telemetry 125
Space 127
Telephony 117
Television 122
Terrestrial Radiocommunication 8
Tolerance, Frequency 145
Transmitter, Ship's Emergency 93
Tropospheric Scatter 158
digital selective calling system 4665A-4685
DIRECTION-FINDING, see Radio direction-finding under Service(s) (TA-32)
DISTRESS 2930-2968
Aircraft in $=$ 3000,3096
call 3091, 3092
frequencies, see Frequency(ies) (TA-15)
Future Global Maritime Distress and Safety System (FGMDSS) 2944-2949,
RES203, 321, 322,REC201, 314
message 3093, 3094
Acknowledgement of receipt 3125-3133
Transmission by a station not itself in distress 3157-3168
Rescue Coordination Centre 2934A
signal (MAYDAY, $\overline{S O S}$) 3088-3090
Silence: Imposition 3137-3144
traffic 3134, 3135, REC201
Control 3136
End 3150
transmission procedure Radiotelegraphy 3100-3113
Radiotelephony 3115-3124
Watch 3038-3060

DOCUMENTS

with which mobile stations shall be provided 3604, 4104, AP11
Service Art26
Forms (format to be used in preparation of) 2239, AP9
Preparation and amendment 2237
Symbols AP10
Terms (to be used with names of stations) 2240-2246
Titles, contents and publication of 2180
See also Publication(s) (TA-27)

E

EMERGENCY

```
    Essential purpose of the - position-indicating radiobeacon
    signals
    3260
    Frequency, aeronautical = .................................................. . . . . 2991
    See also Urgency (TA-36)
```


EMISSION(S)

Class of - 1811
Classification of 268, 269, AP6, REC62
Damped wave - 313
Designation of - Art4, AP6
Out-of-band 1812
Spurious 1813
Maximum Permitted $=$ Power Levels (Table) AP8
See also Monitoring (International -) (TA-23)
F
FEEDER LINKS (Region 2) Art15A, AP30A
See also Frequency(ies) (TA-13/14)
FREQUENCY(IES)
allotment
Meaning of this term and the equivalent in the three working languages 18, 391 plans AP26
Aeronautical mobile service (OR)
Aeronautical mobile service (R) AP27, RES400-406, REC400

```
FREQUENCY(IES) (continued)
allotment (continued)
    plans (continued)
```



```
            Plan for Region 2 (12.2 - 12.7 GHz) ....................AP30 (Orb-85)
                                    (Art10)
            Plan for Region 1 (11.7 - 12.5 GHz) and Region 3
            (11.7 - 12.2 GHz)
                                    AP30 (Orb-85)
                                    (Artll)
```



```
                Plan for Region 2 (17.3 - 17.8 GHz) ...................AP30A (Art9)
            Maritime mobile service (radiotelephone coast
```



```
                                    REC302
            Meteorological broadcasts ................................. RES406
assignment
    and use
```



```
    Meaning of this term and the equivalent in the three
    working languages
                            19, 391
    Notification and recording in the Master International
    Frequency Register
            Agreements between Administrations prior to notifying
```



```
            ..... 1105, 1146, 1183
            Fixed-satellite service 12.1 - 12.3 GHz (Region 2) ... RES100
            Intership, 1 605 - 3 600 kHz (Region 1) ......................ES303
            Radio astronomy and space radiocommunication stations
            except stations in the broadcasting-satellite service. Art13, AP3, RES4,
```



```
                                    RES31-33, 101,
                                    102, 503
```



```
                                    (Art5, 6, 7)
Terrestrial radiocommunication stations ............... Art12, AP1
    Aeronautical stations ................................. 1333-1349
    Broadcasting stations
                                    1350
            Coast radiotelephone stations ....................... 1315-1332
Special agreements and coordination between Members .. 375-377, 380,
                                    1059-1183, 1610-
                                    1630, 3362, RES1
        Coordination area around an earth station (method
        for determination)
                            AP28, REC711
```

FREQUENCY(IES) (continued)
bands

```
Allocation .....................................................................
    Categories of allocations
    Additional ............................................... . 426-429
    Alternative ...............................................430-433
    Categories of services ......................... ...... 413-425
    Meaning of this term and the equivalent in the three
    working languages
    17, }39
    Regions and areas ............................................ . . 392-412
    Table of frequency allocations .......................... 444-927
    Description of the Table ....... .................. 437-443
```



```
Broadcasting-satellite service
    Region 1 (11.7 - 12.5 GHz), Region 2 (12.2 - 12.7 GHz)
    and Region 3 (11.7 - 12.2 GHz) ....................................... 15, AP30
                                    (Orb-85)
    Region 2 feeder links for the - (17.3-17.8 GHz)) ... Art15A, AP30A
congestion in band 7 (3 - 30 MHz), Means of reducing .... REC5
Chart in Colours Showing Frequency Allocations .......... 2229
Emergency position-indicating radiobeacons (use of the =
```



```
Experimental use of radio waves by ionospheric
research satellites, MF and HF bands
    RES62
Implementation of changes in = between 4 000 - 27 500 kHz RES8
More efficient consolidation of national and
international radiocommunication circuits operating
in the bands between 4 000 - 27 500 kHz .................. REC4, 302
Nomenclature (VLF, LF, MF, HF, VHF, UHF, SHF, EHF) ...... Art2
Reassignment, stations in the fixed and mobile services
in the bands allocated to the radiolocation and amateur
services in Region 1 (1 625-1 635 kHz, 1 800 -
1 810 kHz, 1 810-1 850 kHz and 2 160 - 2 170 kHz) ..... RES38
Red Cross, Red Crescent, Red Lion and Sun Organizations . RESlO
Space radiocommunication services
RES2, REC700
Terrestrial radiocommunication services sharing the
frequency bands above l GHz with space radiocommunication
services
2501, 2539
```

FREQUENCY(IES) (continued)
bands (continued)

 Unauthorized use of frequencies, in the =

 Aeronautical mobile (R) service RES407

 Maritime mobile service .. RES309

 Use of the band \(136-137 \mathrm{MHz}\) by the aeronautical

 mobile (R), fixed, space operation, meteorological-

 satellite and space research services

 REC404
 Broadcasting

 High Frequency Broadcasting Frequency List (annual

 publication) 1769

 in the Tropical Zone (frequencies by Region) 2669

 Prohibited in the band \(7000-7100 \mathrm{kHz}\).

 see also allotment (TA-13) and bands (TA-14) under this heading
 Call

 500 kHz 4225, 4226

 512 kHz . \(4239-4241\)

 4959, 4964, 4966

 4980

 156.6 MHz 4402, 4975

 156.8 MHz .. . 2994, 4386-4388,

 4974

 See also Radiotelegraphy (TA-17) and Radiotelephony (TA-17)

 under this heading
 Distress and safety . 728, Art38
Protection of frequencies 964, 3009-3036
Radiotelegraphy 2969-2971, 4218-
4224
Radiotelephony ... 2972-2977, 2994,

500 kHz .. . 2970, 3010, 4218

See also Future Global Maritime Distress and Safety System
(FGMDSS) under Distress (TA-11)
International Frequency List ... 2181-2196, AP9
Master International Frequency Register 13
Meteorology
Frequencies for the international exchange of synoptic
meteorological information
1214, 2704, 2705
Meteorological broadcasts RES406
Stations in the band 27.5-28 MHz REC620

```
FREQUENCY(IES) (continued)
Notification and recording of frequency assignments in the
Master International Frequency Register, see assignment (TA-13)
under this heading
Police - Frequencies for the international exchange of
```



```
Radiobeacons, see assignment and use (TA-13) under this heading
```



```
    AP41
```



```
    2980, 2984, 2988
Service(s)
    Aeronautical mobile -
```



```
    3734, 3740-3744
    Communication with a station of the maritime mobile
    service (405 - 535 kHz) ........................................4225
    Examination of notices concerning frequency
    assignments
    1333-1349
    Reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }372
    Special rules relating to the use of frequencies ..... Art50
    Aeronautical mobile (R) =, use of the band 136 - 137 MHz REC404
    Amateur -
        Exclusive allocation, of the band 7 000 - 7 100 kHz .. RES641
        International use of radiocommunications in the fre-
        quency bands of =, in the event of natural disasters . RES640
```



```
                            (Orb-85), 30A
        In the frequency range 0,5 - 2 GHz, = (sound) ........ RES505
    Fixed =, assistance to developing countries in securing
    access to and the use of HF bands ...................................ESS103
    Fixed and mobile =, need to cease operations in the bands
    149.9 - 150.05 MHz and 399.9 - 400.05 MHz ............... REC703
    Inter-satellite and radiolocation -, use of airborne
    radars in the band 59-64 GHz and 126 - 134 GHz ........ REC710
    Land mobile ........................................................ . . 5128, 5129
```

METEOROLOGY 3312-3333
Broadcasts RES406
Frequencies for the international exchange of synopticmeteorological information1214, 2704, 2705
Satellite service, in the band 136-137 MHz REC404
Stations, in the band $27.5-28 \mathrm{MHz}$ REC620
MID (Maritime Identification Digits) 2087, 2087A, 2090,AP34, RES320
MONITORING (International) Art20, REC30
Reports on - data AP21
Summaries of - data 1000
Technical standards recommended by the CCIR 1878
N
NARROW-BAND DIRECT-PRINTING TELEGRAPHY 4123, Art64, AP38
See Telegraphy (TA-35)
NAVIGATIONAL WARNING SIGNAL 3284-3286
NAVTEX 3339-3341, RES318
NOTICES TO MARINERS 3334-3336
NOTIFICATION (Frequency), see Assignment under Frequency(ies) (TA-13)
NUMBERING OF RADIOTELEGRAMS 3746, 3747, 4794,4795
0
OPERATING AGENCY: Information to be furnished by mobile stations to land stations 3690, 3801, 4740, 4941
OPERATORS: Class and minimum number for stations on board ships Art56
OPERATORS' CERTIFICATES Art44, 55
Cases where - are not necessary 3395, 3398, 3864, 3867
maritime mobile service 3879, 3884, 3898- 3907
Radiotelegraph = 3403, 3878-3882
lst class $3405,3419-3427$,
$3880,3884,3909-$ 3917
2nd class 3405, 3412, 3429 -

$$
3437,3881,3884
$$

$$
3890,3919-3927
$$

Special 3411, 3412, 3439 -
3443, 3882, 3888- 3890, 3929-3934
Radiotelephone 3404, 3883
General 3406, 3445-3449, 3456, 3885, 3936- 3940
Restricted 3407-3411, 3450- 3456, 3886-3888, 3941-3949
Qualifying service 3950-3953
ORDER OF PRIORITY OF COMMUNIGATIONS
Aeronautical mobile service Art51
Maritime mobile and maritime mobile-satellite services Art61
P
PAN PAN (Urgency signal in radiotelephony) 3197
PERSONNEL (Aeronautical stations and maritime mobile service). Art45, 56See also Operators' certificates (TA-24)
PLANS (Allotment), see allotment under Frequency(ies). (TA-13)
POLICE INFORMATION (Frequencies) 2702, 2703
PORT OPERATIONS, see Services (TA-31)
POWER (Limitations)
Aircraft stations, 156 - 174 MHz 4150
Amateur/amateur-satellite stations 488, 2737Broadcasting-satellite stations - power flux-density(Regions 1, 2 and 3) ... 836, 847, AP30(Orb-85) (Art9,Anxl, 3, 5)
Feeder links (Region 2) AP30A (Anxl)
Broadcasting stations, below 5060 kHz or above 41 MHz 477, 514, 515, 2666
Coast radiotelegraph stations, $4000-27500 \mathrm{kHz}$ 4256, 4257
Coast radiotelephone stations, $1605-23000 \mathrm{kHz}$ $4338,4342,4373$
Simplex operation 4382
Earth stations, above 1 GHz 2541, 2548
Experimental stations 2802
Fixed and mobile stations, $2160-2170 \mathrm{kHz}$, above 1 GHz 499, 831, 868, 871883, 2505-2511
Fixed stations, $2065-2107 \mathrm{kHz}, 4063-4438 \mathrm{kHz}$, $6200-6525 \mathrm{kHz}, 9775-9900 \mathrm{kHz}, 11650-12050 \mathrm{kHz}$, $14250-14350 \mathrm{kHz}, 18068-18168 \mathrm{kHz}, 104-108 \mathrm{MHz} \ldots .498,518,519,522$,530, 535, 538, 588
Land mobile stations, U.K., $5725-5850 \mathrm{MHz}$ 801
Maritime mobile stations, on-board communications $450-470 \mathrm{MHz}$ AP20
Radiobeacons, general 2852
aeronautical, $160-435 \mathrm{kHz}$ 2855-2858
emergency position-indicating radiobeacons (EPIRB)(406 - 406.1 MHz)649
maritime, $283.5-335 \mathrm{kHz}$ 2860-2864
Radiodetermination stations, $1606.5-1625 \mathrm{kHz}$,$1635-1800 \mathrm{kHz}, 1850-2160 \mathrm{KHz}, 2194-2300 \mathrm{kHz}$,$2502-2850 \mathrm{kHz}, 3500-3800 \mathrm{kHz}$484
Radiolocation stations, $1625-1635 \mathrm{kHz}, 1800$
1810 kHz and $2160-2170 \mathrm{kHz}$ 487
Ship radiotelephone stations, $1605-2850 \mathrm{kHz}$, 4000 - 23000 kHz 4357, 4374
Ship stations, 156 - 174 MHz 4416, AP19
Stations, general 1804
PRIORITY, see Order of priority of communications (TA-24)
PROCEDURE(S)
General radiotelegraph - in the aeronautical mobile and
maritime mobile services Art52, 63
Calls, reply to calls, signals preparatory to traffic 3708-3739, 4755-4786
Forwarding (routing) of traffic 3741-3753, 4788-4801
Frequency 3740-3744
Interdiction against the use of calling frequencies 3742, 4790
Preliminary operations 3702-3706, 4713-4717
General radiotelephone = in the aeronautical mobile and maritime mobile services Art53, 65
Calls, reply to calls, signals preparatory to traffic 4947-5027
Forwarding (routing) of traffic 5029-5050
Acknowledgement of receipt 5052-5054
Establishment of radiotelephone calls 5039-5043
Frequency 5029-5036
Interdiction against the use of calling frequencies 5031
Transmission of radiotelegrams 5045-5050
Preliminary operations 4915-4919
General radiotelephone - in the land mobile service Art68
Introduction of new calling = for HF AlA Morse telegraphy in the maritime mobile service RES312
See Distress (TA-11)
PROFICIENCY
Amateurs 2735, 2736
Persons operating in experimental stations 2800, 2801
See Operators' certificates (TA-24)
PROPAGATION AND RADIO NOISE REC68
PROTECTION RATIO AP30 (Orb-85)
Aeronautical radiobeacons 2854
Maritime radiobeacons 2860

```
SERVICE(S) (continued)
    Broadcasting = (continued)
    HF broadcasting schedule
        Form of notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AP2
        Publication ................................................ . . . 1766-1768
        Seasonal ....................................................... . . . 1748-1753
        Tentative .................................................... 1754-1765
        LF, modification of carrier frequencies, Region 1 ....... RES500
        Power of broadcasting stations .......................... }266
    See Compatibility (TA-21) under Interference
```



```
    (Orb-85), RES33-34
```



```
Fixed - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Art31
Land mobile, conditions to be observed by mobile stations .. Art67
Maritime mobile
    Conditions to be observed .....................................4096-4137
    General procedure
        Radiotelegraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Art63
    Radiotelephony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Art65
    Identities, see Maritime mobile service identities (TA-22)
    Narrow-band direct-printing telegraphy, see Telegraphy (TA-35)
```



```
    Order of priority for communications ........................ Art61
```



```
    Spacing of frequencies in the band 156 - 174 MHz ........ RES308
    Special rules relating to the use of frequencies ........ Art60
        See also Frequency(les) (TA-12)
    Technical characteristics of transmitters and receiversin the band \(156-174 \mathrm{MHz}\)AP19
```

Working hours of stations Art58
Maritime mobile-satellite =
Conditions to be observed by ship earth stations 4138-4141
Order of priority for communications Art61
Port operations -
Communications 4406
Map of coast stations which participate in the = 2228
Radio astronomy Art 36
Protection against interference 344, 2901-2904,

```REC701
```

Radiodetermination and radiodetermination-satellite - 2831-2840
SERVICE(S) (continued)
Radio direction-finding 2841-2845
Procedure for obtaining bearings and positions AP41
Use of 500 kHz 4236
Space radiocommunication Art29
Cessation of emissions 2612
Coordination of frequency assignments Artll, AP4
Use of, in the event of natural disasters, epidemics,
famines and similar emergencies REC1
Special
Medical advice 3337, 3338
Meteorological messages 3312-3333
Notices to mariners 3334-3336
Space radiocommunication services sharing frequency bands with terrestrial radiocommunication services Art28
Standard frequency and time signal service Art33
Terrestrial radiocommunication services sharing frequency bands with space radiocommunication services Art27
SHIP STATION IDENTITIES, see Maritime mobile service identities (TA-22)
SIGNAL(S)
Emergency position-indicating radiobeacon $=$ Art4l (SecI)
End of transmission = 3755, 3756, 4803,4804
End of work - 3761, 3762, 4809,4810
Navigational warning = 3284-3286
Radiotelegraph alarm = 3268, 3269, AP36
Radiotelegraph distress - 3088
Radiotelephone alarm = 3270-3272, AP36,REC311
Radiotelephone distress - 3089
Safety - and messages Art40 (SecIII)
Time Art33
Urgency = and messages Art40 (SecI)
SINGLE-SIDEBAND
Apparatus linked compressor and expander systems 4329, 4330, AP40
Radiotelegraph transmissions 4181
TECHNICAL CHARACTERISTICS (continued)
Single-sideband transmitters used in the maritime mobile service for radiotelephony ($1606.5-23000 \mathrm{kHz}$) AP17
Standardization of $=$ of radio equipment REC71
Stations Art5
Transmitters and receivers used in the maritime mobile service (156 - 174 MHz) AP19
Use of the rationalized "système international d'unités" (SI) system REC74
TELEGRAPHY
Message format 4869
Narrow-band direct-printing in the maritime mobile service 4123, Art64, AP38
Channelling AP32, 33
Frequencies, see Distress (TA-15) under Frequency and Maritime mobile service (TA-17) under Frequency
Procedures 4841
for automatic operation 4862
for manual operation 4851
for operation in the forward error correcting mode 4876
Working frequencies AP35
TERMS AND DEFINITIONS, see Definitions and Terms (TA-6)
TESTS AND ADJUSTMENTS Art19
Harmful interference resulting from 1842
in the aeronautical mobile service 3766, 3767
in the maritime mobile service 4814, 5058
TOLERANCES, see Frequency (TA-19)
TRAFFIC
Distress, urgency and safety $=$ REC201
End of work and 3755, 4803
Forwarding (routing)
Radiotelegraphy 3685, 3741, 4734,4788
Radiotelephony 5029
lists 4264, 4722, 4924
TTT (safety signal) 3221

U

URGENCY

message 3148, 3200
signal (PAN PAN, XXX) 3196, 3197
traffic REC201
See also Emergency (TA-12)
UTC (Universal Coordinated Time) 237, 238, 3541,
4044, 4045

W

WATCH Art38 (SecIII)
WAVELENGTHSNomenclature of the frequency and = bands used inradiocommunication208, 209
WEEKLY CIRCULAR (IFRB), see Publications (TA-27)
X
XXX (urgency signal) 3196

Z
ZONE(S), see also Area (TA-3) and Regions (TA-29)
CIRAF, see CIRAF (TA-5)
Tropical 406-411
Broadcasting 2668-2673

ANALYTICAL INDEX OF RESOLUTIONS AND RECOMMENDATIONS

The Analytical Index of Resolutions and Recommendations is presented as a set of six tables. Each table groups Resolutions and Recommendations bearing the same numbers As far as possible, the grouping of the Resolutions and Recommendations respects the grouping system agreed upon for the 1982 edition of the Radio Regulations; revisions by the World Administrative Radio Conference for the Mobile Services, Geneva, 1983 (Mob-83) and the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985 (Orb-85) have been taken into account

The table on page IA-2 covers the numbers 1 - 18 ,
that on page IA-3, the numbers $30-69$,
that on page IA-4, the numbers $70-206$,
that on page IA-5, the numbers 300-322, that on page IA-6, the numbers $400-602$
and that on page IA-7, the numbers 603-713.

The Resolution numbers are entered along the top of the table and the Recommendation numbers along the bottom. The absence of a number in the series indicates that the corresponding Resolution and/or Recommendation does not exist.

The key words or subjects relating specifically to the group of Resolutions and Recommendations in each separate table are listed in alphabetical order on the right-hand side of each page. These key words or subjects may be of a primary (main) or secondary importance for a particular Resolution or Recommendation.

For Resolutions, the symbol " 0 " denotes a primary key word or subject and the symbol "@" denotes a secondary one. For Recommendations, the symbol "-" denotes a primary key word or subject and the symbol "\#" denotes a secondary one.

To determine the main subject of a Resolution or Recommendation, simply trace down the column bearing the relevant Resolution andor Recommendation number until the symbol " 0 " or " $=$ " is encountered. From that position trace towards the right of the table to find the subject concerned. The same procedure applies for determining a secondary subject where the relevant symbols are "@" for Resolutions and "\#" for Recommendations.
Example:
On the page grouping numbers 1 to 18 , the symbols " 0 " and "@" are entered under Resolution 5. By tracing to the right along a horizontal line on which the symbol "O" appears, a primary subject "Technical Cooperation and Assistance", for example, is found. Using the same method for the symbol "@", a secondary subject "UNDP", for example, is found.

To determine the Resolutions or Recommendations to which a particular subject refers, begin on the right-hand side of the table(s) at the appropriate subject and trace across towards the left until one (or more) of the relevant symbols is encountered. Then trace up or down the columns for Resolutions or Recommendations, as the case may be Example:
"Technical Cooperation" is listed on the right-hand side of the table on page IA-2 By tracing towards the left it becomes evident that "Technical Cooperation" is a primary subject for Resolutions 5, 7, 14, 15, 16 and Recommendation 6, and a secondary one for Recommendation 5.

The Table of Contents contains a complete list of Resolutions and Recommendations together with their full titles, as well as references to the revisions made by the Mob- 83 and by the Orb- 85 .

RESOLUTIONS (0, ©)
Abrogation of Resolutions and Recomendations of the WARC-79 Channels - Use

Changes
Chages

D1stress and Safety
Emissions
Equipaent
Feeder links
Frequency - Assignment

- Management

Future Global Maritime Distress and Safety System FGiDSS Guardband
Guardband
International Organizations - ICAO
ITU - Administrative Conferences

- Administrative Council
- CCIR
- CCITT
- Secretary-General

Master International Frequency Register MIPR
Monitoring
Propagation
Public Correspondence
Radio Regulations
Radio-relay System
Satellite Emergency Position-Indicating Radiobeacons EPIRBs Selective Calling
Selective Calling
Services - Aeronautical Moblle (R

- Broadcasting-Satellite
- Fixed
- Fixed-Satell
- Maritime Mobile
- Maritime Mobile-Satelilte

Mobile

- Mobile-Satellite

SI Syatems
Technical Cooperation and Aasistance
Technical Standards of the IFRB
Terminology
Tropoapheric Scatter
RECOMMENDATIONS (- ,)

PROVISIONS OF THE RADIO REGULATIONS CONTAINING REFERENCES TO CCIR RECOMMENDATIONS* (see Resolution 65)

$\begin{aligned} & \text { RR } \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the RR
15	Coordinated Universal Time (UTC)	460-4
15.1		
147	Occupied bandwidth	328-6
150	Power (relations between peak envelope power, mean power and carrier power)	326-5
161	Permissible interference	
300	Choice of transmitting, receiving and measuring equipment	$\begin{aligned} & 139-2,162-2,205-2, \\ & 246-3,266,328-6,329-5, \\ & 331-4,332-4,338-2, \\ & 343-1, \\ & 344-2,346-1, \\ & 436-2, \\ & 349-4, \end{aligned} 415-2, \quad 450-1,454-1,467,$
302	Signal processing methods for most efficient use of the frequency spectrum	455-1, 475-1
305	Maximum permitted power level for out-of-band emissions	328-6

\qquad

* In columns where the numbers of the Recommendations or Reports (see note **) appear, the number following the hyphen indicates, in each case, the most recent version of each Recommendation or Report to date on publication of this Note by the General Secretariat.
** Four Reports explicitly cited in the Radio Regulations are also included in this column.

$\begin{aligned} & \text { RR } \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the $R R$
312	Technique of measurements and the intervals of measurements to be employed when checking the compliance with the Radio Regulations	$\begin{aligned} & 182-3,377-2,378-4 \\ & 443-1 \end{aligned}$
524	Use of band 6765-6795 kHz for ISM	433-3
661	Use of band 433.05-434.79 MHz for ISM	433-3
911	Use of band 61-61.5 GHz for ISM	433-3
916	Use of band 122-123 GHz for ISM	433-3
922	Use of band $244-246 \mathrm{GHz}$ for ISM	433-3
$\begin{aligned} & 1084 \\ & 1084.1 \end{aligned}$	Calculation methods and criteria to be employed in evaluating interference	$\begin{aligned} & 452-4,465-2,466-4, \\ & 483-1,509,523-1,524-1, \\ & 580,619,620 \end{aligned}$
$\begin{aligned} & 1107 \\ & 1107.1 \end{aligned}$	Criteria to be employed in evaluating interference between earth stations and other terrestrial services, except for fixed and mobile	$\begin{array}{ll} 355-3, & 356-4, \\ 358-3, & 359-5, \\ 4506-5, \\ 452-4, & 465-2, \\ 580-1, & 615, \\ 520 \end{array}$
$\begin{aligned} & 1118 \\ & 1118.1 \end{aligned}$	Calculation methods and criteria to be employed in evaluating interference which would be caused to terrestrial services by earth stations	$\begin{array}{ll} 355-3, & 357-3, \\ 359-5, & 452-4,4 \\ 580-1, & 615,619, \\ 580 \end{array}$
$\begin{aligned} & 1119 \\ & 1119.1 \end{aligned}$	Calculation methods and criteria to be employed in evaluating interference which would be caused to reception at the earth station by terrestrial services	$\begin{aligned} & 355-3,356-4,359-5, \\ & 406-5,465-2,558-2, \\ & 580 \end{aligned}$
$\begin{aligned} & 1148 \\ & 1148.1 \end{aligned}$	Criteria relating to coordination between earth station and other terrestrial services, except fixed and mobile	$\begin{aligned} & 359-5,452-4,465-2, \\ & 580-1,620 \end{aligned}$
$\begin{aligned} & 1164 \\ & 1164.1 \end{aligned}$	Calculation methods and the criteria in evaluating interference relating to coordination between terrestrial	355-3, 356-4, 359-5, 406-5, 452-4, 465-2, 558-2, 580, 620

$\begin{aligned} & \mathrm{RR} \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the RR
1454	Technical standards of IFRB should be based, amongst other things, on CCIR Recommendations	$\begin{aligned} & 205-2,240-4,314-6, \\ & 339-6,355-3,356-4, \\ & 357-3,358-3,359-5, \\ & 364-4,368-5,370-5, \\ & 371-5,372-4,406-5, \\ & 412-4,434-4,435-5, \\ & 441-1,450-1,452-4, \\ & 465-2,496-2,509,527-1, \\ & 528-2,529,530-2,532, \\ & 533-1,534-1,558-2,570, \\ & 578,580-1,589-1,591-1, \\ & 597-1,598,599,615, \\ & 617,619,620,638 \end{aligned}$
1582	Technical standards of IFRB shou1d be based, amongst other things, on CCIR Recommendations	$\begin{aligned} & 314-6,355-3,356-4, \\ & 358-3,359-5,364-4, \\ & 368-5,373-1,465-1, \\ & 479-2,496-2,509,510-1, \\ & 514,517-1,523-2,524-2, \\ & 527-1,528-2,529,530-2, \\ & 531,558-2,578,580-1, \\ & 611,617,619,620 \end{aligned}$
1812	Receiver characteristics	$\begin{aligned} & 331-4, \quad 332-4,478-3, \\ & 489-1,494,539-2 \end{aligned}$
$\begin{aligned} & 1814 \\ & 1814.1 \end{aligned}$	Interference from technical apparatus (except ISM)	433-3
$\begin{aligned} & 1815 \\ & 1815.1 \end{aligned}$	Interference from ISM equipment	433-3
1878	Standards on monitoring stations	$\begin{aligned} & 182-3,328-6,377-2, \\ & 378-4,443-1 \end{aligned}$
2057	Identification signals	493-3, 585-1, 587-1
2075	Forms of identification signals	493-3, 585-1, 587-1
2076	Transmission of identification signals	493-3, 585-1, 587-1
2077	Identification methods	585-1, 587-1
2149	Identity assignments	493-3, 585-1, 587-1

$\begin{aligned} & \text { RR } \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the RR
2501	Selection of sites and frequencies for terrestrial stations	452-4, 620
2502	Direction of maximum radiation in the	406-5,
2502.2	frequency bands between 1 and 10 GHz	Report 393-4
2503	Direction of maximum radiation in the	406-5,
2503.2	frequency bands between 10 and 15 GHz	Report 393-4
2504	Direction of maximum radiation in the	406-5
2504.1	frequency bands above 15 GHz	
2506	Power limits where compliance with	406-5,
2506.1	No. 2502 is impracticable	Report 393-4
2509	Application of the limits concerning	*355-3, 356-4, 357-3,
2509.1	inter-regional interference	$\begin{aligned} & 358-3,359-5,406-5 \\ & 558-2,615 \end{aligned}$
2510	Application of the limits concerning	*355-3, 356-4, 357-3,
2510.1	inter-regional interference	$\begin{aligned} & 358-3, \quad 359-5, \quad 406-5, \\ & 558-2,615 \end{aligned}$
2511	Application of the limits concerning	* 355 -3, 356-4, 357-3,
2511.2	inter-regional interference	$\begin{aligned} & 358-3,359-5,406-5, \\ & 558-2,615 \end{aligned}$
2539	Selection of sites and frequencies for Earth stations	$\begin{array}{rll} * 355-3, & 356-4, & 357-3, \\ 358-3, & 359-5, & 363-3, \\ 406-5, & 465-2, & 558-2 \\ 580-1, & 615 \end{array}$
2547	Application of the limits concerning	*355-3, 356-4, 357-3,
2547.1	```inter-regional interference (Earth stations)```	$\begin{aligned} & 358-3, \quad 359-5, \quad 363-3, \\ & 406-5,465-1, \quad 558-2, \\ & 580-1, \quad 615 \end{aligned}$
2548	Application of the limits concerning	*355-3, 356-4, 357-3,
2548.1	```inter-regional interference (Earth stations)```	$\begin{aligned} & 358-3,359-5,363-3, \\ & 406-5, \\ & 580-1, \\ & 615 \end{aligned}$

[^6](Rev. 1986)

$\begin{aligned} & \text { RR } \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the RR
2559	Application of the limits concerning	*355-3, 356-4, 357-3,
2559.1	inter-regional interference	$\begin{array}{ll} 358-3, & 359-5, \\ 406-5, & 465-1, \\ 585-3 \\ 580-1, & 615 \end{array}$
$\begin{aligned} & 2576 \\ & 2576.1 \end{aligned}$	Application of the limits concerning inter-regional interference	$\begin{array}{rll} * 355-3, & 356-4, & 357-3 \\ 358-3, & 359-5, & 363-3 \\ 406-5, & 465-1, & 558-2 \\ 580-1, & 615 \end{array}$
$\begin{aligned} & 2580 \\ & 2580.1 \end{aligned}$	Application of the limits concerning inter-regional interference	$\begin{array}{lll} *_{355-3}, & 356-4, & 357-3, \\ 358-3, & 359-5, & 363-3, \\ 406-5, & 465-1, & 558-2, \\ 580-1, & 615 \end{array}$
$\begin{aligned} & 2582 \\ & 2582.1 \end{aligned}$	Power-flux density limits	358-3
$\begin{aligned} & 2613 \\ & 2613.1 \end{aligned}$	Accepted level of interference	$\begin{aligned} & 466-4,483-1,514,523-2 \\ & 609 \end{aligned}$
$\begin{aligned} & 2614 \\ & 2614.1 \end{aligned}$	Accepted level of interference	$\begin{aligned} & 466-4,483-1,514,523-2, \\ & 609 \end{aligned}$
$\begin{aligned} & 2619 \\ & 2619.1 \end{aligned}$	Accepted level of interference	$\begin{aligned} & 466-4,483-1,509,514, \\ & 523-2,609 \end{aligned}$
$\begin{aligned} & 2623 \\ & 2623.1 \end{aligned}$	Accepted level of interference	509, 514, 609
$\begin{aligned} & 2627 \\ & 2627.1 \end{aligned}$	Accepted level of interference	$\begin{aligned} & 466-4,483-1,514,523-2 \\ & 609 \end{aligned}$
$\begin{aligned} & 2630 \\ & 2630.1 \end{aligned}$	Accepted level of interference	$\begin{aligned} & 466-4,483-1,514,523-2 \\ & 609 \end{aligned}$
$\begin{aligned} & 2632 \\ & 2632.2 \end{aligned}$	Level of interference	$\begin{aligned} & 314-6,465-2,479-2,514, \\ & 515,517-1,524-1,577-1, \\ & 580-1,611 \end{aligned}$

[^7]N-8

$\begin{aligned} & \text { RR } \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the RR
2636	Limitation of off-axis radiation	$\begin{aligned} & 465-2,509,514,524-1 \\ & 580 \end{aligned}$
2770	Interference reduction	374-3, 376-1, 537
2772	Standard frequency and time signals	375-2, 460-4, 583
2904	Level of interference	314-6, 479-2, 517-1, 611
4123A	Characteristics of the digital selective calling equipment (Frequency bands between 4000 kHz and 27500 kHz)	493-3, 541-2
4681	Digital selective calling system	493-3, 541-2
Art. 64	Narrow-band direct-printing telegraphy	490, 491-1, 492-3, 540-2
AP3 Sect. B Item 8b Sect. D Item 9b	Maximum power density calculation	Report 792-2
AP4 Sect. C Item 4a, Sect. D Item $4 a$	Maximum spectral power density calculation	Report 792-2
AP6 Part B Item 2	Computation of necessary bandwidth	328-6, 338-2
AP7 Note 36	Frequency tolerances	$\begin{aligned} & 478-3 \\ & \text { Report } 181.4 \end{aligned}$
AP8 Notes 12 and 13	Spurious emissions	329-5
AP9 List VIII Part II-D Note 1	Particulars of monitoring stations carrying out bandwidth measurements	$\begin{aligned} & \text { 443-1, } \\ & \text { Report 275-4 } \end{aligned}$

$\begin{aligned} & \text { RR } \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the RR
AP9 List VIII Part III Note 1	Information available for bandwidth measurements	$\begin{aligned} & \text { 443-1, } \\ & \text { Report } 275-4 \end{aligned}$
AP28 Para 2.3.1 Note 2	Permissible level of the interfering emission	356-4, 357-3
Para 3.2.2 Note	Calculation of coordination distance. Numerical method	$\begin{aligned} & 359-5,452-4,465-2 \\ & 580-1,620 \end{aligned}$
Table 1 Note 5	Parameters required for determination of coordination distances in satellite communications	$\begin{aligned} & 359-5,452-4,465-2 \\ & 580-1,620 \end{aligned}$
AP29 Para 2.2.1	Radiation patterns for earth station antennas	465-2, 580-1
Annex III	Radiation patterns for earth station antennas to be used when they are not published	465-2, 580-1
AP30 (Orb-85) Art. 6 Para 6.3.1 Note 1	Criteria of evaluation of interference in satellite communications	452-4, 619, 620
Art. 7 Para 7.2.5	Criteria of evaluation of interference in satellite communications	452-4, 619, 620
$\begin{aligned} & \text { Annex } 5 \\ & \text { Para } 3.1 \end{aligned}$	Pre-emphasis characteristics in satellite broadcasting	405-1
$\begin{aligned} & \text { Annex } 5 \\ & \text { Para } 3.6 \end{aligned}$	Figure of merit (G / T) of receiving installations	Report 473-4
Annex 5 Para 3.9 .3	Spurious emissions	329-5

N-10

$\begin{aligned} & \text { RR } \\ & \text { Item } \end{aligned}$	Subject	CCIR Recommendations** cited in the RR
AP30	Criteria for sharing between services	483-1
Annex 6		
Para 1.1		
Annex 6	Quality of the service	500-3
Para 1.6b ${ }^{\text {b }}$		
Note 1		
Annex 6	Reference antenna	465-2, 580-1
Para 2.1 465-2, 580-1		
Annex 6	Use of energy dispersion	Report 631-3
Para 3.3		
AP37 Para c	Emergency position indicating radio beacons	439-3
AP38 Para e, g and j	Narrow-band direct-printing telegraphy	476-4, 490, 491-1, 625
AP40 Para a	Lincompex	455-1, 475-1
AP43 Para 1.2	Maritime mobile service identities	585-1, 587-1

(Rev. 1986)

FLOWCHARTS EXTRACTED FROM THE IFRB HANDBOOK ON RADIO REGULATORY PROCEDURES
 (See Resolution 6)

The flowcharts listed below are an aid to understanding and do not form part of the Radio Regulations.

Flowchart	Subject	Relevant provisions of the
		Radio Regulations
AW	The advance publication procedure of Section I of Article 11 of the Radio Regulations, applicable to space and earth stations in geostationary or non-geostationary-satellite networks	Artll (Sec I)
AX	The RR1060 coordination procedure applicable to space or earth stations in a geostationarysatellite network in relation to other geosta-tionary-satellite networks operating in the same frequency band before an assignment is notified to the IFRB	Artll (Sec II)
AY	The RR1107 coordination procedure applicable to earth stations in relation to terrestrial stations in frequency bands above 1 GHz before an assignment is notified to the IFRB	Artll (Sec III)
AR	The coordination procedure of Section IV of Article 11 of the Radio Regulations	Artll (Sec IV)
$A B$	Date of submission of a notice vis-à-vis date of putting the assignment into use (terrestrial services in bands not shared with space services)	Artl2 (Sec I)
$A S^{*}$	Date of submission of a notice vis-à-vis date of putting the assignment into use (terrestrial services in frequency bands above 28 MHz).....	Art12 (Sec I)

[^8]Flowchart \quad Subject $\quad \frac{\text { Relevant }}{\frac{\text { provisions of the }}{\text { Radio Regulations }}}$

AC Regulatory examination of notices with respect to RR1240, RR1352 or RR1503 for conformity with the Table of frequency allocations or a footnote concerning additional or alternative allocations

Art12 (S-Secs IIA and IIE)/
Art13 (Sec II)
AD Procedure relating to technical examination of frequency assignment notices in bands below 28 MHz other than exclusive bands (RR1241 or RR1242)

Art12 (S-Sec IIA)
AG Procedures relevant to examination of frequency assignment notices concerning stations in the broadcasting service in bands below 5950 kHz to which Article 12 of the Radio Regulations applies

Art12 (S-Sec IIA)
AE Procedure relating to resubmitted notices (RR1254 - RR1265)

Art12 (S-Sec IIA)
AF Procedure under RR1218 for the fixed service in bands between 3 and 27.5 MHz Art12 (S-Sec IIA)

AQ Procedures relating to examination and recording of assignments to terrestrial services operating in bands above 28 MHz which are not shared with equal rights with space services Artl2 (S-Sec IIA)
$A M^{*} \quad$ Procedure relating to examination of notices of assignments to transmitting coast radiotelephone stations in the exclusive maritime mobile bands between 4 and 23 MHz Art12 (S-Sec IIB)

Procedure relating to examination of notices of assignments to receiving coast radiotelephone stations in the exclusive maritime mobile bands between 4 and 23 MHz Art12 (S-Sec IIB)

[^9]| Flowchart | Subject | Relevant | |
| :---: | :---: | :---: | :---: |
| | | $\begin{aligned} & \text { provis } \\ & \text { Radio } \end{aligned}$ | sions of the Regulations |
| AO^{*} | Procedure relating to notices of frequency assignments in the exclusive aeronautical mobile (R) bands between 2850 and 22000 kHz . | Art12 | (S-Sec IIC) |
| AP | Procedure relating to notices of frequency assignments in the exclusive aeronautical mobile (OR) bands between 3025 and 18030 kHz | Artl2 | (S-Sec IIC) |
| AT | Procedures relating to examination and recording of assignments to terrestrial stations which are in the same frequency band as, and within the coordination area of, an existing earth station or one for which coordination has been successfully completed or initiated | Artl2 | (S-Sec IIE) |
| Az* | Date of submission of a notice vis-à-vis date of putting the assignment into use (space services, space or earth stations) | Artl3 | (Sec I) |
| AC | Regulatory examination of notices with respect to RR1240, RR1352 or RR1503 for conformity with the Table of frequency allocations or a footnote concerning additional or alternative allocations | Art13
 Art12 | (Sec II)/ (S-Secs IIA and IIE) |
| BA | Procedure of examination and registration of assignments to stations in space services other than the broadcasting-satellite service: all frequency bands | Art13 | (Sec II) |
| AA | The Article 14 procedure | Art14 | |
| AL | The Article 16 procedure | Artl6 | |
| AJ | Article 17: Time table of activities | Artl7 | |

[^10]

* This IFRB Handbook flowchart is at present under revision and has not been reproduced in the "Notes" section of the Radio Regulations.

THE ADVANCE PUBLICATION PROCEDURE OF SECTION

OF ARTICLE 11 OF THE RADIO REGULATIONS, APPLICABLE TO SPACE AND EARTH STATIONS IN GEOSTATIONARY OR NON-GEOSTATIONARY SATELLITE NETWORKS (SEE NOTE 1)

FLOWCHART No. AW
Sheet 1 of 2 ANNEX V.2. (See V.2.1)
this flowchart is issued as an aid to understanding and does not form part of the radio regulations

THIS FLOWCHART IS ISSUED AS AN AID TO
UNDERSTANDING AND DOES NOT FORM PART OFTANDING AND DOES NOT FOR
$t=Y$ es

- = No

Action by

THE RR 1060 COORDINATION PROCEDURE APPLICABLE TO SPACE OR EARTH STATIONS IN A GEOSTATIONARY SATELITE NETWORK IN REIATION TO OTHER GEOSTATIONARY SATELLITE NETWORKS OPERATING IN THE SAME FREQUENCY BAND BEFORE AN ASSIGNMENT IS NOTIFIED TO THE IFRB

Administration A responsible for the station identifies any other administrations which may be affected, using the method of Appendix 29
It may request the assistance of the IFRB in this context (RR 1184). It is assumed that the coordination under RR 1107, when required,

FLOWCHART No AX
Sheet 1 of 3

THE RR 1107 COORDINATION PROCEDURE APPLICABLE TO EARTH STATIONS

N RELATION TO TERRESTRIAL STATIONS IN FREQUENCY BANDS ABOVE 1 GHZ BEFORE

 AN ASSIGNMENT IS NOTIFIED TO THE.IFRBFLOWCHART No AY

THIS FLOWCHART IS ISSUED AS AN AID TO UNDERSTANDING AND DOES NOT FORM PART OF THE RADIO REGULATIONS

1
Administration A responsible for the earth station identifies other administrations which may be affected using the methods of Appendix 28. It may request Administration A responsible for the earth station identifies other administrations which may be affected using the men reduired, has been or is being effected
the assistance of the IFRB (RR 1184, RR 1186 or RR 1187). It is assumed that the coordination under RR 1060, when requir

$\mathrm{R}_{1}=$ Date of recelpt of original notice by IFRB
$S_{1}=$ Originally notified date of putting the assignment into use
Action by
\square Administration A
DATE OF SUBMISSION OF A NOTICE VIS-A-VIS DATE OF PUTTING THE ASSIGNMENT INTO USE

ANNEX III.1.1

FLOWCHART No. AB

Sheet 2 of 2

Note 2: This flowchart is primarily concerned with dates, and consequentiy does not sow lt in other flowcharts dealing with particular frequency bands or services.

Articles 12 and 13
ATticles 12 and 13
REGULATORY EXAMINATION OF NOTICES WITH RESPECT TO RR 1240, RR 1352 OR RR 1503 FOR CONFORMITY WITH THE
TALE OF FREOUENCY ALLOCATIONS OR AOOTNOTE CONCERNING ADDITIONAL OR ALTERNATIVE ALLOCATIONS

ANNEX III. 1.2 See III 1.32 and IV.I)

PROCEDURE RELATING TO TECHNICAL EXAMINATION OF FREQUENCY ASSIGNMENT NOTICES

 IN BANDS BELOW 28 MHZ OTHER THAN EXCLUSIVE BANDS (RR 1241 OR RR 1242)

PROCEDURES RELEVANT TO EXAMINATION OF FREQUENCY ASSIGNMENT NOTICES
CONCERNING STATIONS IN THE BROADCASTING SERVICE IN BANDS BELOW 5950 kHz TO WHICH article 12 of the radio regulations applies

ANNEX III.4.3
FLOWCHART No. AG
(See III. 4.33 and III. 44 Sheet 1 of 2
$R_{1}=$ Date of receipt of notice by IFRB
$P_{1}=\begin{aligned} & \text { Date of publication in Spectal Section } \\ & \text { GE } 75 / / R E S 500 \text { of weekly circular }\end{aligned}$
$P_{2}=\begin{aligned} & \text { Date of publication in Part } 1 \text { of weekly } \\ & \text { circular, not more than } 40 \text { days after } R_{1}\end{aligned}$
$P_{3}=$ Not more than 45 days atter P_{2}
$S_{1}=\begin{aligned} & \text { Date on which modification or introduction } \\ & \text { of new station is to be effected }\end{aligned}$
$+=$ Yes

- = No

$\left[\begin{array}{l}\square \\ L\end{array}\right]=\operatorname{RBB}$

ANNEX III.1.4

 FLOWCHART No. AEF Assignment in question
$D_{1}=$ Date of receipt of origina notice by IFRB
$+=Y e s$
= No
\square Administration
\square Another administration
\square IFRB

ANNEX III. 1.4

FLOWCHART No. AE
(See III. 1.4.4)

FROM BOX 16 ON SHEET 1

Note 1: Date D_{8} is the date determined by the Board for a review of the unfavourable finding under RR 1241 or RR 1242 in accordance with RR 1428, and is usually date $\mathrm{D}_{3}+2$ year assignments between 9 kHz and 4000 kHz , or date $\mathrm{D}_{3}+6$ years for assignment between 4 MHz and 28 MHz . However if the assignment giving rise to the unfavourab of WARC-79, date D_{8} is 2 or 6 years after the date on which that assignment is brought into service.

NB 1) The IFRB consults with admunistration A when approprite as to
the acceppobitity of F (RR ${ }^{12921}$
2) Administrations are urged to afford all possible assistance through
therr monitoring stations (RR 1294)
3) The provisions of RR 1438 - RR 145
3) The provisions of RR 1438 - RR 1450 and RR 1964 - RR 1966 are
relevant to this procedure

PROCEDURE RELATING TO EXAMINATION OF NOTICES OF ASSIGNMENTS TO RECEIVING COAST radiotelephone stations in the exclusive maritime mobile bands between 4 and 23 MHz

$\mathrm{R}_{1}=$ Date of receipt of notice by IFRB
$P_{1}=\begin{aligned} & \text { Date of publication of detats in Part } 1 \text { of weekly } \\ & \text { Circular, not more than } 40 \text { days after } R_{1}\end{aligned}$
$P_{2}=$ Not more than 45 days atter P_{1}
ANNEX III.7.1
$\mathrm{F}=$ Assigned Frequenc,
$\mathrm{I}=$ Action oy IFRB
$+=$ Yes
$-=$ No
this flowchart is issued as an aid to understanding and does not form part
of the radio regulations
FLOWCHART No AP
(See III.7.3.3)
procedure relating to notices of frequency assignments in the exclusive aeronautical mobile (or)
Notes
1FR8 concludes that F conforms with a primary
allotment in the Plan and thus with RR 1345
2 IFRE concludes that F conforms with a secondary
allotment in the Plan and thus with RR 1346 .
3 IFRB concludes that F conforms with RR 1347
4 IFRB concludes that F satsifies the requirements
for a secoconary allorment in the Plan and thus
for a secondary allormen
conforms with RR 1346

THIS FLOWCHART IS ISSUED AS AN AID TO UNDERSTANDING AND DOES NOT FORM PART OF THE RADIO REGULATIONS

LOWCHART No BA

SHEET 1 OF 4
(ANNEX V.8.2

Action by \square $=$ Administration A $[7]=I F R B$

$$
t=\text { Yes }
$$

- No

NOTES:

1. When an assignment is recorded in the Master Register the particulars are published in Part II of the weekly circular.
2. When a notice is returned to the notifying administration the particulars are published in Part III of the weekly ircula
3. When a notice is resubmitted to the IFRB the particulars are published in Part IB of the weekly circular
4. When examinations in respect of RR 1504 and RR 1505 re both relevant they are carried out at the same time or convenience, they are shown on Sheets 3 and 4 as consecutive examinations
5. The space service assignment concerned may be recorded if it and the assignment which gave rise to the unfavourable finding under RR $1506-1508$ or RR 1509-1512 as relevant, have both been in use for a common month period without complaint of harmful interference (RR 1544).

PROCEDURE OF EXAMINATION AND REGISTRATION OF ASSIGNMENTS TO STATIONS IN SPACE SERVICES OTHER THAN THE BROADCASTING - SATELLITE SERVICE: ALL FREQUENCY BANDS

this flowchart is issued as an aid to understanding and does not form par of the radio regulations

ARticle 17 : time tabl OF ACTIVITIES

ANNEX III.4.5
FLOWCHART No A (See III.4.7)

Date $D_{s} \quad=$ Date on which implementation of the seasonal
Date $D_{1} \quad$ schedule in question starts at 0100 U
$\begin{aligned} & =\text { Approximately } 6 \text { months before } D_{s} \\ \text { Date } D_{2} & =\text { Closing date for submission of propected schedules }\end{aligned}$
(approximately 4 months before D_{3})
Date $D_{3}=2$ months before D_{0}

$$
-\quad=\text { No }
$$

$$
+_{\text {Action bv }}=Y_{\text {es }}
$$

\square
$=$ Administrations
$\Gamma 7=1 F R B$

FRB studies projected schedules and

1. Selects frequencles where appropriate
(RR $1754-1757$)
(RR 1754-1757)
2. Identifies incompatibilities
3. Gives special consideration in appro
prate cases (RR 1759)
4 Makes suggestions to administrations
5 Prepares and arranges publication of Tentative Schedule by date D_{3} (RR 1760) \qquad

CHAPTER I

Terminology

ARTICLE 1

Terms and Definitions

Introduction

For the purposes of these Regulations, the following terms shall have the meanings defined below. These terms and definitions do not, however, necessarily apply for other purposes. Definitions identical to those contained in the International Telecommunication Convention (Malaga-Torremolinos, 1973) are marked "(CONV.)".*
Note: If, in the text of a definition below, a term is printed in italics, this means that the term itself is defined in this Article.

Section I. General Terms

1.1. Administration: Any governmental department or service responsible for discharging the obligations undertaken in the Convention of the International Telecommunication Union and the Regulations (CONV.).
1.2 Telecommunication: Any transmission, emission or reception of signs, signals, writing, images and sounds or intelligence of any nature by wire, radio, optical or other electromagnetic systems (CONV.).
1.3 Radio: A general term applied to the use of radio waves (CONV.).
1.4 Radio Waves or Hertzian Waves: Electromagnetic waves of frequencies arbitrarily lower than 3000 GHz , propagated in space without artificial guide.

[^11]7 1.5 Radiocommunication: Telecommunication by means of radio waves (CONV.).

8 1.6 Terrestrial Radiocommunication: Any radiocommunication other than space radiocommunication or radio astronomy.
91.7 Space Radiocommunication: Any radiocommunication involving the use of one or more space stations or the use of one or more reflecting satellites or other objects in space.

10 Radiodetermination: The determination of the position, velocity and/or other characteristics of an object, or the obtaining of information relating to these parameters, by means of the propagation properties of radio waves.

11 Radionavigation: Radiodetermination used for the purposes of navigation, including obstruction warning.

12 I.10 Radiolocation: Radiodetermination used for purposes other than those of radionavigation.

13 L.11 Radio Direction-Finding: Radiodetermination using the reception of radio waves for the purpose of determining the direction of a station or object.
1.13 Coordinated Universal Time (UTC): Time scale, based on the second (SI), as defined and recommended by the CCIR ${ }^{\prime}$, and maintained by the International Time Bureau (BIH).

For most practical purposes associated with the Radio Regulations, UTC is equivalent to mean solar time at the prime meridian (0° longitude), formerly expressed in GMT.
$16 \quad 1.14 \quad$ Industrial, Scientific and Medical (ISM) Applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.
15.1

[^12]
Section VII. Frequency Sharing

160 7.1 Interference: The effect of unwanted energy due to one or a combination of emissions, radiations, or inductions upon reception in a radiocommunication system, manifested by any performance degradation, misinterpretation, or loss of information which could be extracted in the absence of such unwanted energy.

161 P.2 Permissible Interference ${ }^{1}$: Observed or predicted interference which complies with quantitative interference and sharing criteria contained in these Regulations or in CCIR Recommendations or in special agreements as provided for in these Regulations.

162 7.3 Accepted Interference ${ }^{1}$: Interference at a higher level than that defined as permissible interference and which has been agreed upon between two or more administrations without prejudice to other administrations.

163 7.4 Harmful Interference: Interference which endangers the functioning of a radionavigation service or of other safety services or seriously degrades, obstructs, or repeatedly interrupts a radiocommunication service operating in accordance with these Regulations.

164 7.5 Protection Ratio (R.F.): The minimum value of the wanted-to-unwanted signal ratio, usually expressed in decibels, at the receiver input, determined under specified conditions such that a specified reception quality of the wanted signal is achieved at the receiver output.

165 7.6 Coordination Area: The area associated with an earth station outside of which a terrestrial station sharing the same frequency band neither causes nor is subject to interfering emissions greater than a permissible level.

166 7.7 Coordination Contour: The line enclosing the coordination area.
161.1
${ }^{1}$ The terms "permissible interference" and "accepted interference" are used in the coordination of frequency assignments between administrations.
$167 \quad 7.8 \quad$ Coordination Distance: Distance on a given azimuth from an earth station beyond which a terrestrial station sharing the same frequency band neither causes nor is subject to interfering emissions greater than a permissible level.
$168 \quad 7.9 \quad$ Equivalent Satellite Link Noise Temperature: The noise temperature referred to the output of the receiving antenna of the earth station corresponding to the radio frequency noise power which produces the total observed noise at the output of the satellite link excluding noise due to interference coming from satellite links using other satellites and from terrestrial systems.

Section VIII. Technical Terms Relating to Space

169 D.1 Deep Space: Space at distances from the Earth approximately equal to, or greater than, the distance between the Earth and the Moon.

170 Spacecraft: A man-made vehicle which is intended to go beyond the major portion of the Earth's atmosphere.

171 Satellite: A body which revolves around another body of preponderant mass and which has a motion primarily and permanently determined by the force of attraction of that other body.

172 8.4 Active Satellite: A satellite carrying a station intended to transmit or retransmit radiocommunication signals.

173 R.5 Reflecting Satellite: A satellite intended to reflect radiocommunication signals.
8.6 Active Sensor: A measuring instrument in the earth explora-tion-satellite service or in the space research service by means of which information is obtained by transmission and reception of radio waves.

175 8.7 Passive Sensor: A measuring instrument in the earth explora-tion-satellite service or in the space research service by means of which information is obtained by reception of radio waves of natural origin.

In making assignments to stations of other services to which the band $150.05-153 \mathrm{MHz}$ is allocated, administrations are urged to take all practicable steps to protect the radio astronomy service from harmful interference. Emissions from space or airborne stations can be particularly serious sources of interference to the radio astronomy service (see Nos. 343 and 344 and Article 36).

611 Additional allocation: in Australia and India, the band $150.05-153 \mathrm{MHz}$ is also allocated to the radio astronomy service on a primary basis.

Additional allocation: in Sweden and Switzerland the band 150.05 153 MHz is also allocated to the aeronautical mobile (OR) service on a secondary basis.

613 The frequency 156.8 MHz is the international distress, safety and calling frequency for the maritime mobile VHF radiotelephone service. The conditions for the use of this frequency are contained in Article 38.

In the bands $156-156.7625 \mathrm{MHz}, \quad 156.8375-157.45 \mathrm{MHz}$, $160.6-160.975 \mathrm{MHz}$ and $161.475-162.05 \mathrm{MHz}$, each administration shall give priority to the maritime mobile service on only such frequencies as are assigned to stations of the maritime mobile service by that administration (see Article 60).

Any use of frequencies in these bands by stations of other services to which they are allocated should be avoided in areas where such use might cause harmful interference to the maritime mobile VHF radiocommunication service.

However, the frequency 156.8 MHz and the frequency bands in which priority is given to the maritime mobile service may be used for radiocommunications on inland waterways subject to agreement between interested and affected administrations and taking into account current frequency usage and existing agreements.

613A In the maritime mobile VHF service the frequency 156.525 MHz is to be Mob-83 used exclusively as from 1 January 1986 for digital selective calling for distress and safety communications. The frequency 156.825 MHz is used exclusively for direct-printing telegraphy in the maritime mobile VHF service for distress and safety purposes. The conditions for the use of these frequencies are prescribed in Article 38 and in Appendix 18.

614 Alternative allocation: in France and Monaco, the band $162-174 \mathrm{MHz}$ is allocated to the broadcasting service on a primary basis until 1 January 1985.

615 Alternative allocation: in Morocco, the band $162-174 \mathrm{MHz}$ is allocated to the broadcasting service on a primary basis. The use of this band shall be subject to agreement with administrations having services, operating or planned, in accordance with the Table which are likely to be affected. Stations in existence on 1 January 1981, with their technical characteristics as of that date, are not affected by such agreement.

616 Additional allocation: in China, the band $163-167 \mathrm{MHz}$ is also allocated to the space operation service (space-to-Earth) on a primary basis subject to agreement obtained under the procedure set forth in Article 14.

617 Additional allocation: in Afghanistan, China and Pakistan, the band $167-174 \mathrm{MHz}$ is also allocated to the broadcasting service on a primary basis. The introduction of the broadcasting service into this band shall be subject to agreement with the neighbouring countries in Region 3 whose services are likely to be affected.

618 Additional allocation: in Japan, the band $170-174 \mathrm{MHz}$ is also allocated to the broadcasting service on a primary basis.

Additional allocation: in Canada, the bands $405.5-406 \mathrm{MHz}$ and $406.1-410 \mathrm{MHz}$ are also allocated to the mobile-satellite, except aeronautical mobile-satellite, service (Earth-to-space), on a primary basis, subject to agreement obtained under the procedure set forth in Article 14.

649 The use of the band $406-406.1 \mathrm{MHz}$ by the mobile-satellite service is Mob-83 limited to low-power satellite emergency position-indicating radiobeacons (see also Article 38).

650 In making assignments to stations of other services to which the band $406.1-410 \mathrm{MHz}$ is allocated, administrations are urged to take all practicable steps to protect the radio astronomy service from harmful interference. Emissions from space or airborne stations can be particularly serious sources of interference to the radio astronomy service (see Nos. 343 and 344 and Article 36).

RR8-80

GHz

10.7 - 11.7

Allocation to Services		
Region 1	Region 2	Region 3
$\mathbf{1 0 . 7 - 1 1 . 7}$	$\mathbf{1 0 . 7 - 1 1 . 7}$	
FIXED	FIXED	
FIXED-SATELLITE (space-to-Earth) (Earth-to-space) 835 MOBILE except aeronautical mobile	FIXED-SATELLITE (space-to-Earth)	

835 In Region 1, the use of the band $10.7-11.7 \mathrm{GHz}$ by the fixed-satellite service (Earth-to-space) is limited to feeder links for the broadcasting-satellite service.

GHz

11.7 - 12.75

Allocation to Services		
Region 1	Region 2	Region 3

836 In Region 2, in the band $11.7-12.2 \mathrm{GHz}$, transponders on space stations Orb-85 in the fixed-satellite service may be used additionally for transmissions in the broadcasting-satellite service, provided that such transmissions do not have a maximum e.i.r.p. greater than 53 dBW per television channel and do not cause greater interference or require more protection from interference than the coordinated fixed-satellite service frequency assignments. With respect to the space services, this band shall be used principally for the fixed-satellite service.

837 Different category of service: in Canada, Mexico and the United States, the Orb-85 allocation of the band $11.7-12.1 \mathrm{GHz}$ to the fixed service is on a secondary basis (see No. 424).

838 In the band $11.7-12.5 \mathrm{GHz}$ in Regions 1 and 3, the fixed, fixed-satellite, mobile, except aeronautical mobile, and broadcasting services, in accordance with their respective allocations, shall not cause harmful interference to broadcasting-satellite stations operating in accordance with the provisions of Appendix 30 *.

839 The use of the bands $11.7-12.2 \mathrm{GHz}$ by the fixed-satellite service in
Orb-85 Region 2 and $11.7-12.7 \mathrm{GHz}$ by the broadcasting-satellite service in Region 2 is limited to national and sub-regional systems. The use of the band $11.7-12.2 \mathrm{GHz}$ by the fixed-satellite service in Region 2 is subject to previous agreement between the administrations concerned and those having services, operating or planned to operate in accordance with the Table, which may be affected (see Articles 11, 13 and 14). For the use of the band $12.2-12.7 \mathrm{GHz}$ by the broadcasting-satellite service in Region 2, see Article 15.

840 and 841 SUP

Orb-85
842 Additional allocation: the band $12.1-12.2 \mathrm{GHz}$ in Brazil and Peru, is also Orb-85 allocated to the fixed service on a primary basis.

843 SUP
 Orb-85

844 In Region 2, in the band $12.2-12.7 \mathrm{GHz}$, existing and future terrestrial Orb-85 radiocommunication services shall not cause harmful interference to the space services operating in conformity with the Broadcasting-Satellite Plan for Region 2 contained in Appendix 30 (Orb-85).

845 In Region 3, the band $12.2-12.5 \mathrm{GHz}$ is also allocated to the fixedsatellite (space-to-Earth) service limited to national and sub-regional systems. The power flux-density limits in No. 2574 shall apply to this frequency band.

[^13]The introduction of the service in relation to the broadcasting-satellite service in Region 1 shall follow the procedures specified in Article 7 of Appendix 30^{*}, with the applicable frequency band extended to cover 12.2 12.5 GHz .

846 In Region 2, in the band $12.2-12.7 \mathrm{GHz}$, assignments to stations of the Orb-85 broadcasting-satellite service in the Plan for Region 2 contained in Appendix 30 (Orb-85) may also be used for transmissions in the fixed-satellite service (space-to-Earth), provided that such transmissions do not cause more interference or require more protection from interference than the broad-casting-satellite service transmissions operating in conformity with the Region 2 Plan. With respect to the space services, this band shall be used principally for the broadcasting-satellite service.

847 The broadcasting-satellite service in the band $12.5-12.75 \mathrm{GHz}$ in
Orb-85 Region 3 is limited to community reception with a power flux-density not exceeding $-111 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ as defined in Annex 5 of Appendix 30 (Orb-85). See also Resolution 34.

848 Additional allocation: in Algeria, Angola, Saudi Arabia, Bahrain, Cameroon, the Central African Republic, the Congo, the Ivory Coast, Egypt, the United Arab Emirates, Ethiopia, Gabon, Ghana, Guinea, Iraq, Israel, Jordan, Kenya, Kuwait, the Lebanon, Libya, Madagascar, Mali, Morocco, Mongolia, Niger, Nigeria, Qatar, Syria, Senegal, Somalia, Sudan, Chad, Togo, Yemen (P.D.R. of) and Zaire, the band $12.5-12.75 \mathrm{GHz}$ is also allocated to the fixed and mobile, except aeronautical mobile, services on a primary basis.

849 Additional allocation: in the Federal Republic of Germany, Belgium, Denmark, Spain, Finland, France, Greece, Liechtenstein, Luxembourg, Monaco, Norway, Uganda, the Netherlands, Portugal, Roumania, Sweden, Switzerland, Tanzania, Tunisia and Yugoslavia, the band $12.5-12.75 \mathrm{GHz}$ is also allocated to the fixed and mobile, except aeronautical mobile, services on a secondary basis.

850 Additional allocation: in Austria, Bulgaria, Hungary, Poland, the German Democratic Republic, Czechoslovakia and the U.S.S.R., the band 12.5 12.75 GHz is also allocated to the fixed service and the mobile, except aeronautical mobile, service on a primary basis. However, stations in these services shall not cause harmful interference to fixed-satellite earth stations of countries in Region 1 other than those mentioned in this footnote. Coordination of these earth stations is not required with stations of the fixed and mobile services of the countries mentioned in this footnote. The power flux-density limit at the Earth's surface given in No. $\mathbf{2 5 7 4}$ for the fixed-satellite service shall apply on the territory of the countries mentioned in this footnote.

[^14]867 Additional allocation: in Israel, the band $15.7-17.3 \mathrm{GHz}$ is also allocated to the fixed and mobile services on a primary basis. These services shall not claim protection from or cause harmful interference to services operating in accordance with the Table in countries other than those included in No. 866.

868 Additional allocation: in Afghanistan, Algeria, the Federal Republic of Germany, Angola, Saudi Arabia, Austria, Bahrain, Bangladesh, Cameroon, Costa Rica, El Salvador, the United Arab Emirates, Finland, Guatemala, Honduras, India, Indonesia, Iran, Iraq, Israel, Japan, Kuwait, Libya, Nepal, Nicaragua, Pakistan, Qatar, Sudan, Sri Lanka, Sweden, Thailand and Yugoslavia, the band $17.3-17.7 \mathrm{GHz}$ is also allocated to the fixed and mobile services on a secondary basis. The power limits given in Nos. 2505 and 2508 shall apply provisionally (see Resolution 101).

869 The use of the band $17.3-18.1 \mathrm{GHz}$ by the fixed-satellite service
Orb-85 (Earth-to-space) is limited to feeder links for the broadcasting-satellite service. For the use of the band $17.3-17.8 \mathrm{GHz}$ in Region 2 by the feeder links for the broadcasting-satellite service in the band $12.2-12.7 \mathrm{GHz}$, see Article 15A.

GHz

$17.7-19.7$

ARTICLE 11

Coordination of Frequency Assignments to Stations in a Space Radiocommunication Service Except Stations in the BroadcastingSatellite Service and to Appropriate Terrestrial Stations ${ }^{1}$

Section I. Procedures for the Advance Publication of Information on Planned Satellite Networks ${ }^{2}$

1041
 Publication of Information

1042 § 1. (1) An administration (or one acting on behalf of a group of named administrations) which intends to establish a satellite system shall, prior to the coordination procedure in accordance with No. 1060 where applicable, send to the International Frequency Registration Board, not earlier than five years and preferably not later than two years before the date of bringing into service each satellite network of the planned system, the information listed in Appendix 4.
(2) Any amendments to the information sent concerning a planned satellite system in accordance with No. 1042 shall also be sent to the Board as soon as they become available.
(3) The Board shall publish the information sent under Nos. 1042 and 1043 in a special section of its weekly circular and shall also, when the weekly circular contains such information, so advise all administrations by circular telegram. The circular telegram shall include the frequency bands to be used and, in the case of a geostationary satellite, the orbital location of the space station.
(4) If the information is found to be incomplete, the Board shall publish it under No. 1044 and immediately seek, from the administration concerned, any clarification and information not provided. In

[^15]such cases, the period of four months specified in No. 1047 shall count from the date of publication, under No. 1044, of the complete information.

1047 § $2 . \quad$ If, after studying the information published under No. 1044, any administration is of the opinion that interference which may be unacceptable may be caused to its existing or planned space radiocommunication services, it shall, within four months after the date of the weekly circular publishing the complete information listed in Appendix 4, send its comments to the administration concerned. A copy of these comments shall also be sent to the Board. If no such comments are received from an administration within the period mentioned above, it may be assumed that that administration has no basic objections to the planned satellite network(s) of that system on which details have been published.

1048 Resolution of Difficulties

1049 §3. (1) An administration receiving comments sent in accordance with No. 1047 shall endeavour to resolve any difficulties that may arise and shall provide any additional information that may be available.
(2) In case of difficulties arising when any planned satellite network of a system is intended to use the geostationary-satellite orbit:

1051 a) the administration responsible for the planned system shall first explore all possible means of meeting its requirements, taking into account the characteristics of the geostationary-satellite networks of other systems, and without considering the possibility of adjustment to systems of other administrations. If no such means can be found, the administration concerned is then free to apply to other administrations concerned to solve these difficulties;
b) an administration receiving a request under No. 1051 shall, in consultation with the requesting administration, explore all possible means of meeting the

ARTICLE 12

Orb-85 Notification and Recording in the Master International Frequency Register of frequency Assignments ${ }^{1}$ to Terrestrial Radiocommunication Stations ${ }^{2,3,4}$

Section I. Notification of Frequency Assignments

1214 § 1. (1) Any frequency assignment ${ }^{5}$ to a fixed, land, broadcasting ${ }^{6}$, radionavigation land, radiolocation land or a standard frequency and time signal station, or to a ground-based station in the meteorological aids service, shall be notified to the International Frequency Registration Board:
a) if the use of the frequency concerned is capable of causing harmful interference to any service of another administration ${ }^{7}$; or
A.12.1 ${ }^{1}$ The expression frequency assignment, wherever it appears in this Article, shall be understood to refer either to a new frequency assignment or to a change in an assignment already recorded in the Master International Frequency Register (heremafter called the Master Register).
A.12.2 $\quad 2$ For the notification and recording in the Master International Frequency Register of frequency assignments to radio astronomy and space radiocommunication stations, see Article 13
${ }^{3}$ For the notification and recording of frequency assignments to terres-Orb-85 trial stations in the frequency bands $11.7-12.2 \mathrm{GHz}$ (in Region 3), 12.2-12.7 GHz (in Regton 2) and 11.7-12.5 GHz (in Region 1), so far as their relationship to the broadcasting-satellite service in these bands is concerned, see also Article 15.
A. 12.4

Orb-85
1214.1
1214.2
1215.1
${ }^{4}$ For the notification and recording of frequency assıgnments to terrestrial stations in the frequency band $17.7-17.8 \mathrm{GHz}$ (in Region 2), so far as their relationshıp to the fixed-satellite service (Earth-to-space) in this band is concerned, see also Article 15A.
uncy is used by numerous stations under the paragraphs 3 and 4). see Article 17.
${ }^{7}$ The attention of admınistrations is specifically drawn to the application of the provisions of Nos. 1215 and 1217 in those cases where they make a frequency assignment to a terrestrial station, located within the coordination area of an earth station (see Nos. 1148 to 1154), in a band which terrestrial radiocommunication services share with equal rights with space radiocommunication services in the frequency spectrum above 1 GHz .
(2) Similar notice ${ }^{2}$ shall be given when an administration desires to request the assistance of the Board in selecting a frequency assignment to a station of the fixed service in any of the bands allocated exclusively, or on a shared basis, to that service between 3000 kHz and 27500 kHz , or when an administration wishes to use for the same type of station a predetermined frequency assignment; in the latter case, the
administration shall indicate the reasons on which the request is based of station a predetermined frequency assignment; in the latter case, the
administration shall indicate the reasons on which the request is based together with the possible modifications which could be made to the characteristics of its assignment, and the Board will take account of this information when searching for a satisfactory solution. For this purpose an individual notice shall be drawn up as specified in Section D of Appendix 1. It is recommended that the notifying administration should provide the additional information called for in that Appendix, together with such further information as it may consider appropriate. The procedure to be followed is given in Nos. 1275 to 1304.
(3) Similar notice shall be given for any frequency to be used for the reception of mobile stations by a particular land station in each
case where one or more of the conditions specified in Nos. 1214 to the reception of mobile stations by a particular land station in each
case where one or more of the conditions specified in Nos. 1214 to 1217 are applicable.
1220 (4) Specific frequencies listed in the Preface to the International Frequency List which are prescribed by these Regulations for common use by stations of a given service (for example, international distress frequencies 500 kHz and 2182 kHz , frequencies of ship radiotelegraph stations operating in their exclusive high frequency bands, etc.), shall not be notified to the Board.

1221 § 2. (1) For any notification under Nos. 1214 to $\mathbf{1 2 1 7}$ or $\mathbf{1 2 1 9}$ an individual notice for each frequency assignment shall be drawn up as prescribed in Section A or B of Appendix 1, which specify the basic characteristics to be furnished, according to the case. It is recommended that the notifying administration should also supply the additional information called for in that Appendix, together with such further information as it may consider appropriate.
${ }^{1}$ Same text as for No. 1215.1.
1218.1
b) if the frequency is to be used for international radiocommunication; or
c) if it is desired to obtain international recognition of the use of the frequency ${ }^{1}$.解

[^16]
ARTICLE 13

Notification and Recording in the Master International Frequency Register of Frequency Assignments ${ }^{1}$ to Radio Astronomy and Space Radiocommunication Stations Except Stations in the Broadcasting-Satellite Service ${ }^{2}$

Section I. Notification of Frequency Assignments
§ 1. (1) Any frequency assignment to be used for transmission or reception by an earth or space station shall be notified to the Board: tion by a particular radio astronomy station may be notified if it is desired that such data should be included in the Master Register.
(3) When the Board receives from one administration a notice containing a modification or deletion of a space station assignment already recorded in the Master Register on behalf of a group of administrations, it shall be assumed, in the absence of information to the contrary, that the notice of modification or deletion is submitted on behalf of all the administrations which were associated with the original notification.

[^17](4) A notice submitted in accordance with Nos. 1488 to 1491 and relating to a frequency assignment to mobile earth stations in a satellite system shall include the technical characteristics either of each mobile earth station, or of a typical mobile earth station, and an indication of the service area within which these stations are to be operated.
§ 2. For any notification under Nos. 1488 to 1492 or 1494 , a notice for each frequency assignment shall be drawn up as prescribed in Appendix 3, the various sections of which specify the basic characteristics to be furnished according to the case. It is recommended that the notifying administration should also supply the additional data called for in Section A of that Appendix, together with such further data as it may consider appropriate.

1496 § 3. (1) For a frequency assignment to an earth or space station, each notice shall be submitted in order to reach the Board not earlier than three years before the date on which the assignment is to be brought into use. The notice shall reach the Board in any case not later than three months ${ }^{1}$ before this date, except in the case of assignments in the space research service in bands allocated exclusively to this service or in shared bands in which this service is the sole primary service. In the case of such an assignment in the space research service, the notice should, whenever practicable, reach the Board before the date on which the assignment is brought into use, but it shall in any case reach the Board not later than thirty days after the date it is actually brought into use.
(2) Any frequency assignment to an earth or space station, the notice of which reaches the Board after the applicable period specified in No. 1496, shall, where it is to be recorded, bear a mark in the Master Register to indicate that it is not in conformity with No. 1496.

[^18]ARTICLE 15

Orb-85 Coordination, Notification and Recording of Frequency Assignments to Stations of the Broadcasting-Satellite Service in the Frequency Bands 11.7 - $\mathbf{1 2 . 2} \mathbf{~ G H z}$ (in Region 3), 12.2-12.7 GHz (in Region 2) and 11.7 - $\mathbf{1 2 . 5} \mathbf{~ G H z}$ (in Region 1) and to the Other Services to Which these Bands Are Allocated, so far as their Relationship to the Broadcasting-Satellite Service in these Bands Is Concerned

1656 casting-satellite service in the frequency bands $11.7-12.5 \mathrm{GHz}$ (in Region 1), $12.2-12.7 \mathrm{GHz}$ (in Region 2) and $11.7-12.2 \mathrm{GHz}$ (in Region 3), as contained in Appendix 30 (Orb-85) to the Radio Regulations, shall apply to the assignment and use of frequencies by stations of the broadcasting-satellite service in these bands and to the stations of other services to which these bands are allocated so far as their relationship to the broadcasting-satellite service in these bands is concerned. For the broadcasting-satellite service in Region 2, Resolution 42 (Orb-85) is also applicable.

The provisions and associated Plans for the broadRegion 2, Resolution 42 (Orb-85) is also applicable.

Orb-85 Coordination, Notification and Recording of Frequency Assignments to Stations in the Fixed-Satellite Service
(Earth-to-Space) in the Frequency Band 17.3 - 17.8 GHz (in Region 2) Providing Feeder Links for the Broadcasting-Satellite Service and also to Stations of Other Services to Which this Band Is Allocated in Region 2, so far as their Relationship to the Fixed-Satellite Service (Earth-to-Space) in this Band Is Concerned in Region 2

1668
Orb-85

The provisions and associated Plan for feeder links associated with the broadcasting-satellite service, utilizing the fixed-satellite service (Earth-to-space) in the band $17.3-17.8 \mathrm{GHz}$ (in Region 2), as contained in Appendix 30A, shall apply to the assignment to and use by feeder links of frequencies in this band and to stations of other services to which this band is allocated in Region 2 so far as the relationship of these other services to the fixed-satellite service (Earth-to-space) in this band is concerned in Region 2. For feeder links in the fixed-satellite service for the broadcasting-satellite service in Region 2, Resolution 42 (Orb-85) is also applicable.

1669
to NOT allocated.
1681

ARTICLE 29

Special Rules Relating to Space Radiocommunication Services

Section I. Cessation of Emissions

2612 § $1 . \quad$ Space stations shall be fitted with devices to ensure immediate cessation of their radio emissions by telecommand, whenever such cessation is required under the provisions of these Regulations.

Section II. Control of Interference to Geostationary-Satellite Systems

2613 § 2. Non-geostationary space stations shall cease or reduce to a negligible level their emissions, and their associated earth stations shall not transmit to them, whenever there is insufficient angular separation between non-geostationary satellites and geostationary satellites, and whenever there is unacceptable interference ${ }^{1}$ to geostationary-satellite space systems in the fixed-satellite service operating in accordance with these Regulations.

2614 § 3. In the frequency band $29.95-30 \mathrm{GHz}$ space stations in the earth exploration-satellite service on board geostationary satellites and operating with space stations in the same service on board non-geostationary satellites shall have the following restriction:

Whenever the emissions from the geostationary satellites are directed towards the geostationary-satellite orbit and cause unacceptable interference ${ }^{1}$ to any geostationary-satellite space system in the fixed-satellite service, these emissions shall be reduced to a level at or less than accepted interference ${ }^{1}$.

[^19]
Section III. Station Keeping of Space Stations ${ }^{1}$

2615 § 4. (1) Space stations on board geostationary satellites which use any frequency band allocated to the fixed-satellite service or the broadcasting-satellite service ${ }^{2}$:

2616

2617

2618

2619
d) however, space stations need not comply with No. 2617 nor No. 2618 as appropriate as long as the satellite network to which the space station belongs does not cause unacceptable interference ${ }^{3}$ to any other satellite network whose space station complies with the limits given in Nos. 2617 and 2618.
' In the case of space stations on board geosynchronous satellites with orbits having an angle of inclination greater than 5 degrees the positional tolerance shall relate to the nodal point.
${ }^{2}$ Space stations in the broadcasting-satellite service on geostationary satellites operating in the band $11.7-12.7 \mathrm{GHz}$ are exempted from these provisions but shall maintain their positions in accordance with Appendix 30 *.
2619.1
${ }^{3}$ The level of accepted interference shall be fixed by agreement between the administrations concerned, using the relevant CCIR Recommendations as a guide.

* Note by the General Secretariat: Appendix 30 has been revised by the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, and becomes Appendix 30 (Orb-85).
b) shall maintain their positions within ± 1 degree of longitude of their nominal positions; but
(2) Space stations on board geostationary satellites which do not use any frequency band allocated to the fixed-satellite service or the broadcasting-satellite service:
a) shall have the capability of maintaining their positions within ± 0.5 degree of the longitude of their nominal positions;
b) shall maintain their positions within ± 0.5 degree of longitude of their nominal positions; but
c) need not comply with No. 2622 as long as the satellite network to which the space station belongs does not cause unacceptable interference ${ }^{1}$ to any other satellite network whose space station complies with the limits given in No. 2622.
(3) Space stations ${ }^{2}$ on board geostationary satellites which are put into service prior to 1 January 1987, with the advance publication information for the network having been published before 1 January 1982, are exempted from the provisions of Nos. 2615 to 2623 inclusive; however they
2623.1
2624.1 between the administrations concerned, using the relevant CCIR Recommendations as a guide.
${ }^{2}$ Space stations in the broadcasting-satellite service on geostationary satellites operating in the band $11.7-12.7 \mathrm{GHz}$ are exempted from these provisions but shall maintain their positions in accordance with Appendix 30 *.
* Note by the General Secretariat: Appendix $\mathbf{3 0}$ has been revised by the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, and becomes Appendix 30 (Orb-85).
c) need not comply with No. 2626 as long as the satellite network to which the space station belongs does not cause unacceptable interference ${ }^{1}$ to any other satellite network whose space station complies with the limits given in No. 2626.

Section IV. Pointing Accuracy of Antennae on Geostationary Satellites

2628 § 5. (1) The pointing direction of maximum radiation of any earthward beam of antennae on geostationary satellites ${ }^{2}$ shall be capable of being maintained within:
a) 10% of the half power beamwidth relative to the nominal pointing direction, or
b) 0.3 degree relative to the nominal pointing direction,
whichever is greater. This position applies only when such a beam is intended for less than global coverage.

2629
2627.1
${ }^{1}$ The level of accepted interference shall be fixed by agreement between the administrations concerned, using the relevant CCIR Recommendations as a guide.
2628.1
(2) In the event that the beam is not rotationally symmetrical about the axis of maximum radiation, the tolerance in any plane containing this axis shall be related to the half power beamwidth in that plane.
${ }^{2}$ Transmitting antennae of space stations in the broadcasting- satellite service operating in the band $11.7-12.7 \mathrm{GHz}$ are not subject to these provisions but shall maintain their pointing accuracy in accordance with paragraph 3.14.1 of Annex 8 to Appendix $\mathbf{3 0}$ *.

* Note by the General Secretariat: Appendix 30 has been revised by the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, and becomes Appendix 30 (Orb-85).
(3) This accuracy shall be maintained only if it is required to avoid unacceptable interference ${ }^{1}$ to other systems.

Section V. Power Flux-Density at the Geostationary-Satellite Orbit

2631 § 6. In the frequency band $8025 \mathrm{MHz}-8400 \mathrm{MHz}$, which the earth exploration-satellite service using non-geostationary satellites shares with the fixed-satellite service (Earth-to-space) or the meteorological-satellite service (Earth-to-space), the maximum power flux-density produced at the geostationary-satellite orbit by any earth exploration-satellite service space station shall not exceed $-174 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ in any 4 kHz band.

Section VI. Radio Astronomy in the Shielded Zone of the Moon

2632 § 7. (1) In the shielded zone of the Moon ${ }^{2}$ emissions causing harmful interference to radio astronomy observations ${ }^{3}$ and to other users of passive services shall be prohibited in the entire frequency spectrum except in the following bands:
a) the frequency bands allocated to the space research service using active sensors;

[^20]2632.2

2634

2635

NOT allocated. istrations concerned.
(2) In frequency bands in which emissions are not prohibited by Nos. 2632 to 2634, radio astronomy observations and passive space research in the shielded zone of the Moon may be protected from harmful interference by agreement between admin-

Section VII. Earth Station Off-Axis Power Limitations

§ 8. The level of equivalent isotropically radiated power (e.i.r.p.) emitted by an earth station at angles in the direction of the geostationary-satellite orbit off the main-beam axis has a significant impact on interference caused to other geostationary-satellite networks. Enhanced utilization of the geostationary-satellite orbit and easier coordination would be attained by minimizing such off-axis radiation and administrations are encouraged to achieve the lowest values practicable bearing in mind the latest CCIR Recommendations. Minimizing such levels is particularly important in intensively used up-link bands.

2988I
Mob-83
2988J § 7E. The carrier frequency 16522 kHz is used for distress Mob-83 and safety traffic by radiotelephony (see No. 2944).

2988K
W. 16695 kHz

Mob-83
2988L § 7F. The frequency 16695 kHz is used exclusively for dis-Mob-83 tress and safety traffic using narrow-band direct-printing telegraphy (see No. 2944).

2988M
X. $\quad 16750 \mathrm{kHz}$

Mob-83
2988N § 7G. The frequency 16750 kHz is used exclusively for dis-Mob-83 tress and safety calls using digital selective calling techniques (see No. 2944).

2989
Mob-83
2990
SUP
Mob-83
2990A §8. (1A)The aeronautical emergency frequency $121.5 \mathrm{MHz}^{1}$ is Mob-83 used for the purposes of distress and urgency for radiotelephony by stations of the aeronautical mobile service using frequencies in the band between 117.975 MHz and 136 MHz (137 MHz after 1 January 1990). This frequency may also be used for these purposes in survival craft stations and emergency positionindicating radiobeacons.

2990A. 1
Mob-83
Y. 121.5 MHz and 123.1 MHz

[^21]2990B Mob-83
(1B) The aeronautical auxiliary frequency 123.1 MHz , which is auxiliary to the aeronautical emergency frequency 121.5 MHz , is for use by stations of the aeronautical mobile service and by other mobile and land stations engaged in coordinated search and rescue operations (see also No. 593).

2991

Mob-83

2992
Z. 156.3 MHz

Mob-83

2993 § 9. The frequency 156.3 MHz may be used for communica-Mob-83 tion between ship stations and aircraft stations, using G3E emission, engaged in coordinated search and rescue operations. It may also be used by aircraft stations to communicate with ship stations for other safety purposes (see also note g) of Appendix 18).

2993A
AA. $\quad 156.525 \mathrm{MHz}$
Mob-83

2993B § 9A. The frequency 156.525 MHz is used exclusively in the Mob-83 maritime mobile service for distress and safety calls by digital selective calling techniques (see Nos. 613A and 2944 and Resolution 317 (Mob-83)).

2993C
Mob-83

2993D § 9B. The frequency 156.650 MHz is used for ship-to-ship Mob-83 communications related to the safety of navigation in accordance with note n) of Appendix 18 (see No. 2944).

2993E
Mob-83
$2994 \S 10$. (1) The frequency 156.8 MHz is the international distress,
Mob-83 safety and calling frequency for radiotelephony for stations of the maritime mobile service when they use frequencies in the authorized bands between 156 MHz and 174 MHz (see also Nos. $\mathbf{5 0 1}$ and 613). It is used for the distress signal, the distress call and distress traffic, as well as for the urgency signal, urgency traffic and the safety signal (see also No. 2995A). Safety messages shall be transmitted where practicable on a working frequency after a preliminary announcement on 156.8 MHz . The class of emission to be used for radiotelephony on the frequency 156.8 MHz shall be G3E (see No. 2944 and Appendix 19).

2995
(2) However, ship stations which cannot transmit on 156.8 MHz should use any other available frequency on which attention might be attracted.
(3) The frequency 156.8 MHz may be used by aircraft Mob-83 stations for safety purposes only.

2995B

Mob-83

2995C § 10A. The frequency 156.825 MHz is used exclusively in the maritime mobile service for distress and safety traffic by directprinting telegraphy (see Nos. 2944, 3033 and 4393 and note k) of Appendix 18).

2996
Mob-83
(See Nos. 501 and 642)

2997
Mob-83

2997A § 10B. The frequency band $406-406.1 \mathrm{MHz}$ is used exclusively Mob-83 by satellite emergency position-indicating radiobeacons in the Earth-to-space direction (see No. 649).

2998
AG. 1544-1545 MHz Band
Mob-83
2998A § 10C. Use of the band $1544-1545 \mathrm{MHz}$ (space-to-Earth) is Mob-83 limited to distress and safety operations (see No. 728) including:

2998B
Mob-83

2998C
Mob-83
a) feeder links of satellites needed to relay the emissions of satellite emergency position-indicating radiobeacons to earth stations;
b) narrow-band (space-to-Earth) links from space stations to mobile stations.

2998D
AH. 1 $645.5-1646.5 \mathrm{MHz}$ Band
Mob-83
2998E § 10D. Use of the band 1645.5-1646.5 MHz (Earth-to-space)
Mob-83 is limited to distress and safety operations (see No. 728).

2999
Mob-83
3000 § 11. Any aircraft in distress shall transmit the distress call on the frequency on which watch is kept by the land or mobile stations capable of helping it. When the call is intended for stations in the maritime mobile service, the provisions of Nos. 2970 and 2971 or 2973 and 2975 or 2994 and 2995 shall be complied with.

3011 § 14. (1) Test transmissions shall be kept to a minimum on the Mob-83 frequencies identified in Section I of this Article and should, wherever practicable, be carried out on artificial antennas or with reduced power.

3012 to 3015 SUP
Mob-83

3016
Mob-83 for testing purposes on any frequency except for essential tests coordinated with competent authorities. As an exception such tests are permitted for radiotelephone equipment which can operate only on the international distress frequency 2182 kHz , in which case a suitable artificial antenna shall be employed.

3016A § 14A.(1) Before transmitting on any of the frequencies identified
Mob-83 in Section I for distress and safety, a station shall listen on the frequency concerned to make sure that no distress transmission is being sent (see No. 4915).

3016B
(2) The provisions of No. 3016A do not apply to stations in Mob-83 distress.

3017
B. 500 kHz

3018 § 15. (1) Apart from the transmissions authorized on 490 kHz Mob-83 and 500 kHz , and taking account of No. 4226, all transmissions on the frequencies included between 490 kHz and 510 kHz are forbidden (see No. 471 and Resolution 206 (Mob-83)).

3019
(2) In order to facilitate the reception of distress calls, other transmissions on the frequency 500 kHz shall be reduced to a minimum, and in any case shall not exceed one minute.

3020 and 3021 SUP
Mob-83

3023 § 16. (1) Except for transmissions authorized on the carrier Mob-83 frequency 2182 kHz and on the frequencies 2174.5 kHz and 2187.5 kHz , all transmissions on the frequencies between 2173.5 kHz and 2190.5 kHz are forbidden.

3024 and 3025 SUP
Mob-83
3026 (4) To facilitate the reception of distress calls, all transmissions on 2182 kHz shall be kept to a minimum.

3027
(5) At sea it is not permitted to radiate test transmissions

Mob-83 of the radiotelephone alarm signal on the carrier frequency 2182 kHz . The function of the generator of the radiotelephone alarm signal shall be checked by aural monitoring without operating a transmitter. The transmitter shall be checked independently. During tests of the radio installation carried out by an administration or on behalf of an administration the radiotelephone alarm signal device should be checked with a suitable artificial antenna on frequencies other than 2182 kHz . If the installation is capable of operating only on the frequency 2182 kHz a suitable artificial antenna should be employed (see No. 3016).

3028
(6) Before and after the tests performed using an artificial Mob-83 antenna in accordance with No. 3027, a suitable announcement should be made on the test frequency that the signals are or were for testing purposes only. The identification of the station should be included in the announcement.

3029 to 3031
SUP
Mob-83

3031A
DA. 121.5 MHz, 123.1 MHz and 243 MHz
Mob-83
3031B § 17A. On the frequencies $121.5 \mathrm{MHz}, 123.1 \mathrm{MHz}$ and
Mob-83 243 MHz transmissions other than those authorized are forbidden (see Nos. 501, 593, 642, 2990A and 2990B).

3033 § 18. (1) All emissions in the band $156.7625-156.8375 \mathrm{MHz}$ Mob-83 capable of causing harmful interference to the authorized transmissions of stations of the maritime mobile service on 156.8 MHz are forbidden. The frequency 156.825 MHz may, however, be used for the purposes described in No. 2995C subject to not causing harmful interference to authorized transmissions on 156.8 MHz (see also note k) of Appendix 18).

3034 and 3035 SUP
Mob-83
3036 (4) To facilitate the reception of distress calls all transmissions on 156.8 MHz shall be kept to a minimum and shall not exceed one minute.

Section III. Watch on Distress Frequencies

3038 § 19. (1) In order to increase the safety of life at sea and over the
3033.1

SUP
Mob-83
(2) During the periods mentioned above, except for the emissions provided for in this Chapter on the frequency 500 kHz : sea, all stations of the maritime mobile service normally keeping watch on frequencies in the authorized bands between 415 kHz and 526.5 kHz shall, during their hours of service, take the necessary measures to ensure watch on the international distress frequency 500 kHz for three minutes twice an hour beginning at x h 15 and x h 45, Coordinated Universal Time (UTC) by an operator using headphones or loudspeaker.
a) transmissions shall cease in the bands between 485 kHz and 515 kHz (see also Resolution 206 (Mob-83));
$\overline{\text { SUP }}$

析

3041 b) outside these bands, transmissions of stations of the mobile service may continue; stations of the maritime mobile service may listen to these transmissions on the express condition that they first ensure watch on the distress frequency as required by No. 3038.

3042 § 20. (1) Stations of the maritime mobile service open to public Mob-83 correspondence and using frequencies in the authorized bands between 415 kHz and 526.5 kHz shall, during their hours of service, remain on watch on 500 kHz . This watch is obligatory only for class A2A and H2A emissions.

3043
(2) These stations, while observing the requirements of No. 3038, are authorized to relinquish this watch only when they are engaged in communications on other frequencies.

3044
3045

3046

3046A
(4) Ship stations, while observing the requirements of

Mob-83 No. 3038, are also authorized to relinquish this watch ${ }^{1}$ when it is impractical to listen by split headphones or by loudspeaker, and by order of the master in order to repair or carry out maintenance required to prevent imminent malfunction of:

[^22](3) When they are engaged in such communications:
a) ship stations may maintain this watch on 500 kHz by means of an operator using headphones or a loudspeaker or by some appropriate means such as an automatic alarm receiver;
b) coast stations may maintain this watch on 500 kHz by means of an operator using headphones or a loudspeaker; in the latter case an indication may be inserted in the List of Coast Stations.

- 3200-3340 kHz: Ship stations, single-sideband radiotelephony.
- 3340-3400 kHz: Intership, single-sideband radiotelephony.
- 3500-3600 kHz: Intership, single-sideband radiotelephony.
- 3600-3800 kHz: Coast stations, single-sideband radiotelephony.

4188A
(1A) In Region 1, frequencies assigned to stations operating Mob-83 in the bands listed below shall be in accordance with the following subdivision:

- 1606.5-1625 kHz: Coast stations, narrowband direct-printing telegraphy, digital selective calling.
$-1635-1800 \mathrm{kHz}$: Coast stations, single-sideband radiotelephony.
- $2045-2141.5 \mathrm{kHz}: \quad$ Ship stations, single-sideband radiotelephony.
- 2141.5-2 160 kHz : Ship stations narrow-band direct-printing telegraphy, digital selective calling.

4189 Mob-83
(2) In these bands, in Region 1, the channel spacing for narrow-band direct-printing telegraphy and for digital selective calling is 0.5 kHz and for single-sideband radiotelephony it is 3 kHz .
4190 to $4192 \quad$ SUP
Mob-83
(Rev. 1986)

4193 § 7. In Regions 2 and 3, the carrier frequencies 2635 kHz Mob-83 (assigned frequency 2636.4 kHz) and 2638 kHz (assigned frequency 2639.4 kHz) are used as single-sideband intership radiotelephony working frequencies in addition to the frequencies prescribed for common use in certain services. The carrier frequencies 2635 kHz and 2638 kHz should be used with class J3E emissions only. In Region 3 these frequencies are protected by a guardband between 2634 kHz and 2642 kHz .

4194

SUP

Mob-83

4195 D. Bands Between 4000 kHz and 27500 kHz

4196 § 9. (1) The bands exclusively allocated to the maritime mobile service between 4000 kHz and 27500 kHz (see Article 8) are subdivided into the following categories:

4197
Mob-83
a) Ship stations, telephony, duplex operation (twofrequency channels) ${ }^{\text {' }}$

$$
\begin{array}{r}
4063-4143.6 \mathrm{kHz} \\
6200-6218.6 \mathrm{kHz} \\
8195-8291.1 \mathrm{kHz} \\
12330-12429.2 \mathrm{kHz} \\
16460-16587.1 \mathrm{kHz} \\
22000-22124 \mathrm{kHz}
\end{array}
$$

b) Coast stations, telephony, duplex operation (twofrequency channels)

$$
\begin{array}{r}
4357.4-4438 \mathrm{kHz} \\
6506.4-6525 \mathrm{kHz} \\
8718.9-8815 \mathrm{kHz} \\
13100.8-13200 \mathrm{kHz} \\
17232.9-17360 \mathrm{kHz} \\
22596-22720 \mathrm{kHz}
\end{array}
$$

4197.1

Mob-83

[^23]stations shall be associated in pairs, as indicated in Appendix 16, except temporarily in cases where working conditions prohibit the use of paired frequencies in order to meet operational needs.
(2) The frequencies to be used for the conduct of simplex radiotelephony are shown in Appendix 16, Section B. In these cases, the peak envelope power of the coast station transmitter shall not exceed 1 kW .
(3) The frequencies indicated in Appendix 16 for ship station transmissions may be used by ships of any category according to traffic requirements.
(4) The technical characteristics of transmitters used for radiotelephony in the bands between 4000 kHz and 23000 kHz are specified in Appendix 17.
D. Bands Between 156 MHz and 174 MHz

D1. Call and Reply

§ 86. (1) The frequency 156.8 MHz is the international distress, safety and calling frequency for radiotelephony when using frequencies in the authorized bands between 156 MHz and 174 MHz (see No. 2994 for details of use). The class of emission to be used for radiotelephony on the frequency 156.8 MHz shall be G3E (see Appendix 19).
(2) The frequency 156.8 MHz may also be used:
a) by coast and ship stations for call and reply in accordance with the provisions of Articles 62 and 65;
b) by coast stations to announce the transmission on another frequency of traffic lists and important maritime information (see Nos. 4925 to 4929).
(3) The frequency 156.8 MHz may be used by ship stations and coast stations for selective calling.

4391 (4) Any one of the channels designated in Appendix 18 for public correspondence may be used as a calling channel if an administration so desires. Such use shall be indicated in the List of Coast Stations.

4392

4393
Mob-83
(5) Ship and coast stations in the public correspondence service may use a working frequency, for calling purposes, as provided in Articles 62 and 65.
(6) All emissions in the band 156.7625-156.8375 MHz capable of causing harmful interference to the authorized transmissions of stations of the maritime mobile service on 156.8 MHz are forbidden. The frequency 156.825 MHz may, however, be used for the purposes described in No. 2995C subject to not causing harmful interference to authorized transmissions on 156.8 MHz (see also note k) of Appendix 18).

4394 (7) To facilitate the reception of distress calls all transmissions on 156.8 MHz shall be kept to a minimum and shall not exceed one minute.
(8) Before transmitting on the frequency 156.8 MHz , a station should listen on this frequency for a reasonable period to make sure that no distress traffic is being sent (see No. 4915).

4396
(9) The provisions of No. 4395 do not apply to stations in distress.

D2. Watch

4397 § 87. (1) In addition to the watch referred to in No. 3057, a coast station open to the international public correspondence service should, during its hours of service, maintain watch on its receiving frequency or frequencies indicated in the List of Coast Stations.
4393.1

SUP
Mob-83
13162.8 kHz
17294.9 kHz
22658 kHz
$156.8 \mathrm{MHz}^{1}$

4679B
Mob-83

4679C
Mob-83
4680
Mob-83
b) appropriate radiotelephone working frequencies in the band $1606.5-4000 \mathrm{kHz}$ (Regions 1 and 3) and in the band $1605^{*}-4000 \mathrm{kHz}$ (Region 2);
c) appropriate radiotelephone working frequencies in the band $156-174 \mathrm{MHz}$.

Section III. Digital Selective Calling System

4681 § 6. A digital selective calling system may be used if it is in full conformity with the relevant CCIR Recommendations in which all operational, technical and compatibility aspects which might be involved have been taken into account.

4681A § 6A. The frequencies used for distress and safety purposes Mob-83 using digital selective calling are as follows (see also Article 38):

$\quad 490$	kHz (shore-to-ship) ${ }^{2}$
2187.5	kHz
4188	kHz
6282	kHz

4679A. 1 Selective calling on this frequency should normally be only in the direction coast station to ship or intership. Selective calls from ship to coast station should whenever possible be sent on other frequencies of Appendix 18, as appropriate.
4680.1 and 4680.2 SUP

Mob-83

4681A. $1 \quad{ }^{2}$ See also Resolution 206 (Mob-83).
Mob-83

* For the band 1605-1625 kHz, see Nos. 480 and 481.

8375	kHz
12563	kHz
16750	kHz
	156.525
MHz	

4682 § 7. The frequencies assignable to ship and coast stations for Mob-83 digital selective calling, for purposes other than distress and safety, are as follows:

4683
Mob-83

4684
a) Ship stations
4187.5 kHz
6281.5 kHz
8375.5 kHz

12562 kHz
12562.5 kHz
16750.5 kHz

16751 kHz
22248 kHz
22248.5 kHz
b) Coast stations

4357 kHz
6506 kHz
8718.5 kHz

13100 kHz
13100.5 kHz

17232 kHz
17232.5 kHz

22595 kHz
22595.5 kHz

4685 § 8. In addition to the frequencies listed in Nos. 4683
Mob-83 and 4684, appropriate working frequencies in the following bands may be used for digital selective calling:

$$
\begin{array}{rl}
415-526.5 \mathrm{kHz} & \text { (Regions 1 and 3) } \\
415-525 \mathrm{kHz} & (\text { Region 2) } \\
1606.5-4000 \mathrm{kHz} & \text { (Regions 1 and 3) } \\
1605^{*}-4000 & \mathrm{kHz}
\end{array} \text { (Region 2) }
$$

* For the band 1605-1 625 kHz , see Nos. 480 and 481.

CHAPTER XIII

ARTICLE 69

Entry into Force of the Radio Regulations

5187 § 1 These Regulations, which are annexed to the Interna-Orb-85 tional Telecommunication Convention, shall enter into force on 1 January 1982, except as specified in Nos. 5188, 5189 and 5193.

5188 § $2 . \quad$ Article 25 and Appendix 43 - but not Appendices 42 and 44 related to this Article - and Article 66 of these Regulations shall enter into force on 1 January 1981.
5189 § 3. The Frequency Allotment Plan for the Aeronautical Mobile (R) Service and the directly related provisions contained in Appendix 27 Aer2* of these Regulations shall enter into force at 0001 h UTC on 1 February 1983.
5190 § $4 . \quad$ On the date of entry into force of Article $\mathbf{2 5}$ and Article 66 of these Regulations, as specified in No. 5188 (1 January 1981), the provisions of the following Articles of the Radio Regulations, Geneva, 1959, as amended:
a) Article 19 - with the exception of provisions 745 to 747 thereof and the Appendices related thereto - and
b) Articles $38,39,40$ and 40 A - including the related Appendices 21, 21A and $22-$ as well as the Additional Radio Regulations
shall be abrogated and replaced respectively by the provisions of Articles $\mathbf{2 5}$ and $\mathbf{6 6}$ of these Regulations.

5191 § $5 . \quad$ On the date specified in No. 5187 (1 January 1982) all the other provisions of the Radio Regulations (Geneva, 1959), as partially revised by the:
a) Extraordinary Administrative Radio Conference to Allocate Frequency Bands for Space Radiocommunication Purposes, Geneva, 1963,

[^24]b) Extraordinary Administrative Radio Conference for the Preparation of a Revised Allotment Plan for the Aeronautical Mobile (R) Service, Geneva, 1966,
c) World Administrative Radio Conference to Deal with Matters Relating to the Maritime Mobile Service, Geneva, 1967,
d) World Administrative Radio Conference for Space Telecommunications, Geneva, 1971,
e) World Maritime Administrative Radio Conference, Geneva, 1974, and the
f) World Administrative Radio Conference on the Aeronautical Mobile (R) Service, Geneva, 1978,
shall be abrogated and replaced by the provisions of these Regulations.

5192 § $6 . \quad$ In accordance with the request by the World Administrative Radio Conference for the Planning of the BroadcastingSatellite Service in Frequency Bands 11.7 - 12.2 GHz (in Regions 2 and 3) and 11.7-12.5 GHz (in Region 1), Geneva, 1977, the provisions and associated Plan adopted by that Conference are, in the appropriate form and without affecting their content and integrity, included in these Regulations as Appendix 30^{*} and form an integral part of these Regulations.

5193 § 7. The partial revision of the Radio Regulations contained Orb-85 in the Final Acts of WARC Orb-85 shall enter into force on 30 October 1986 at 0001 hours UTC. ${ }^{1}$
5193.1

Orb-85

1 For the provisional application of this partial revision, see Resolution 41 (Orb-85).
*: Note by the General Secretariat: Appendix $\mathbf{3 0}$ has been revised by the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, and becomes Appendix 30 (Orb-85).

APPENDICES 1-24

TO THE RADIO REGULATIONS

APPENDIX 14

Mob-83

Miscellaneous Abbreviations and Signals to Be Used for Radiocommunications in the Maritime Mobile Service

(See Articles 37, 63 and 65)

Section I. Q Code

Introduction

1. The series of groups listed in this Appendix range from QOA to QUZ.
2. The QOA to QQZ series are reserved for the maritime mobile service.
3. Certain Q code abbreviations may be given an affirmative or negative sense by sending, immediately following the abbreviation, the letter C or the letters NO (in radiotelephony spoken as: CHARLIE or NO).
4. The meanings assigned to Q code abbreviations may be amplified or completed by the appropriate addition of other groups, call signs, place names, figures, numbers, etc. It is optional to fill in the blanks shown in parentheses. Any data which are filled in where blanks appear shall be sent in the same order as shown in the text of the following tables.
5. Q code abbreviations are given the form of a question when followed by a question mark in radiotelegraphy and RQ (ROMEO QUEBEC) in radiotelephony. When an abbreviation is used as a question and is followed by additional or complementary information, the question mark (or RQ) should follow this information.
6. $\quad \mathrm{Q}$ code abbreviations with numbered alternative significations shall be followed by the appropriate figure to indicate the exact meaning intended. This figure shall be sent immediately following the abbreviation.
7. All times shall be given in Coordinated Universal Time (UTC) unless otherwise indicated in the question or reply.
8. An asterisk * following a Q code abbreviation means that this signal has a meaning similar to a signal appearing in the International Code of Signals.

Abbreviations Available for the Maritime Mobile Service

A. List of Abbreviations in Alphabetical Order

Abbreviation	Question	Answer or Advice
QOA	Can you communicate by radiotelegraphy (500 kHz)?	l can communicate by radiotelegraphy (500 kHz).
QOB	Can you communicate by radiotelephony (2182 kHz)?	I can communicate by radiotelephony (2182 kHz).
QOC	Can you communicate by radiotelephony (channel 16 - frequency 156.80 MHz)?	I can communicate by radiotelephony (channel 16 - frequency 156.80 MHz).
QOD	Can you communicate with me in	I can communicate with you in ...
	0. Dutch 5. Italian 1. English 6. Japanese 2. French 7. Norwegian 3. German 8. Russian 4. Greek 9. Spanish?	0. Dutch 5. Italian 1. English 6. Japanese 2. French 7. Norwegian 3. German 8. Russian 4. Greek 9. Spanish.
QOE	Have you received the safety signal sent by ... (name and/or call sign)?	I have received the safety signal sent by ... (name and/or call sign).
QOF	What is the commercial quality of my signals?	The quality of your signals is ... I. not commercial 2. marginally commercial 3. commercial.
QOG	How many tapes have you to send?	I have . . . tapes to send.
QOH	Shall I send a phasing signal for ... seconds?	Send a phasing signal for ... seconds.
QOI	Shall I send my tape?	Send your tape.
QOJ	Will you listen on $\ldots \mathrm{kHz}$ (or MHz) for signals of emergency position-indicating radiobeacons?	I am listening on $\ldots \mathrm{kHz}$ (or MHz) for signals of emergency posi-tion-indicating radiobeacons.

SECTION C-2

Table of Single-Sideband Transmitting Frequencies (in $\mathbf{k H z}$) for Ship and Coast Stations in the Band 8100-8 195 kHz

Shared with the Fixed Service
(See paragraph 8 of this Appendix)

The frequencies in this Section may be used:

- for supplementing ship-to-shore and shore-to-ship channels for duplex operation in Section A;
- for intership simplex (single frequency) and cross-band operation;
- for cross-band working with ship stations on channels in Section C-1;
- for ship-to-shore or shore-to-ship simplex operation.

Channel No.	Carrier Frequency	Assigned Frequency	Channel No.	Carrier Frequency	Assigned Frequency
1	8101	8102.4	17	8149	8150.4
2	8104	8105.4	18	8152	8153.4
3	8107	8108.4	19	8155	8156.4
4	8110	8111.4	20	8158	8159.4
5	8113	8114.4	21	8161	8162.4
6	8116	8117.4	22	8164	8165.4
7	8119	8120.4	23	8167	8168.4
8	8122	8123.4	24	8170	8171.4
9	8125	8126.4	25	8173	8174.4
10	8128	8129.4	26	8176	8177.4
11	8131	8132.4	27	8179	8180.4
12	8134	8135.4	28	8182	8183.4
13	8137	8138.4	29	8185	8186.4
14	8140	8141.4	30	8188	8189.4
15	8143	8144.4	31	8191	8192.4
16	8146	8147.4			

INTERNATIONAL TELECOMMUNICATION UNION

General Secretariat

Radio Regulations

Edition of 1982
Revised in 1985 and 1986

Appendices 25-44 to the Radio Regulations.
Resolutions and
Recommendations.

APPENDICES 25-44

TO THE RADIO REGULATIONS

APPENDIX 25

Frequency Allotment Plan for Coast Radiotelephone Stations Operating in the Exclusive Maritime Mobile Bands Between 4000 kHz and 23000 kHz

(See Nos. 4198 and 4212 of the Radio Regulations and Appendix 16)

Note a): The frequencies in Column 1 are assigned frequencies (see No. 142) as listed in Appendix 16 to the Radio Regulations. Each frequency is followed, in parentheses, by the carrier frequency and the channel number. (See Section A of Appendix 16 to the Radio Regulations.)

Note b): The coast radiotelephone stations operating in the exclusive maritime mobile bands between 4000 kHz and 23000 kHz must use the minimum power required to cover their service area. They may in no case use a peak envelope power above 10 kW per channel. (See No. 4373 of the Radio Regulations.)

[^25]AP25-2

Note c): The Plan contained in this Appendix is updated in accordance with the procedure defined in Article 16 of the Radio Regulations.

Column 1	Column 2	Column 3
Assigned frequency (carrier frequency) (channel number)	Country or area	Observations

Column 3
Observations

ADD This allotment has been entered in the Plan as a result of the application of the procedure of Article 16. The basic characteristics of the allotment are given, as published in Part B of the relevant Special Section of the IFRB Circular, in the Table of allotments added to the Plan, pages AP25-97 to AP25-103.

1	2	3
$\begin{gathered} 4361.9 \\ (4360.5) \end{gathered}$		
(Ch. No. 402)	Alaska Albania Argentina	
	Bangladesh China United States of America (Central)	
	United States of America (East) United States of America (West) United States of America (South)	
	Guam Hawaii Iran	
	Italy Japan Madagascar	
	Panama Papua New Guinea Poland	
	Puerto Rico United Kingdom Thailand	
	Tunisia U.S.S.R. (Southern Asia) U.S.S.R. (North West)	
$\begin{gathered} 4365 \\ (4363.6) \end{gathered}$		
(Ch. No. 403)	Argentina Canada (East) Canada (North)	
	Canada (West) Denmark Spain	
	United States of America (Central) United States of America (East) United States of America (West)	
	United States of America (South) Ethiopia Greece	

1	2	3
$\begin{aligned} & 4377.4 \\ & (4376) \end{aligned}$		
(Ch. No. 407) (cont.)	Guam Hawaii India (East)	
	Iran Italy Japan	ADD
	Norway Netherlands Peru	
	Puerto Rico German Democratic Republic Singapore	
	South Africa Turkey U.S.S.R. (Northern Asia)	,
	U.S.S.R. (North West)	
$\begin{gathered} 4380.5 \\ (4379.1) \end{gathered}$		
(Ch. No. 408)	Alaska Netherlands Antilles Argentina	
	Belgium Brazil Canada (East)	ADD
	Canada (West) United States of America (East) United States of America (West)	
	Guam Hawaii Indonesia	
	Iran Italy Japan	
	Liberia Mexico Mozambique	

1	2	3
$\mathbf{4 3 8 0 . 5}$ $\mathbf{(4 3 7 9 . 1)}$ (Ch. No. 408) (cont.)	New Zealand Poland American Samoa Switzerland Yugoslavia	ADD
 $\mathbf{4 3 8 3 . 6}$ $\mathbf{(4 3 8 2 . 2)}$ (Ch. No. 409)	Saudi Arabia Brazil China Cuba Denmark United States of America (Central) United States of America (East) United States of America (West) United States of America (South) India (West) Italy Norway Papua New Guinea Philippines Sweden Thailand Turkey Zaire	
4386.7 (4 385.3) (Ch. No. 410) (cont.)	Algeria Argentina (South) Bermuda Canada (West) Canary Islands China United States of America (East) Greece Guam	

1	2	3
$\begin{gathered} 4392.9 \\ (4391.5) \end{gathered}$		
(Ch. No. 412)	Germany (Federal Republic of) Australia United States of America (East)	
	United States of America (West) United States of America (South) India (West)	
	Iraq Italy Japan	
	Peru Philippines Ukraine	
	U.S.S.R. (Far East) U.S.S.R. (Europe) U.S.S.R. (North West)	
	Yemen (P.D.R. of)	
$\begin{gathered} 4396 \\ (4394.6) \end{gathered}$ (Ch. No. 413)		
	Azores Alaska Algeria	
	Germany (Federal Republic of) Angola Argentina	
	Bahrain Bangladesh Canada (East)	
	Canada (West) Cape Verde United States of America (Central)	
	United States of America (East) United States of America (West) United States of America (South)	
	Finland Greece Guam	

1	2	3
$\begin{gathered} 4402.2 \\ (4400.8) \end{gathered}$		
(Ch. No. 415)(cont.)	China Denmark United States of America (East)	
	United States of America (West) United States of America (South) France	
	Greece Guam Hawaii	
	Iran Liberia Madagascar	
	Malaysia Norway Pakistan	
	Panama Puerto Rico Romania	
	U.S.S.R. (Europe) U.S.S.R. (North West)	
4405.3 (4 403.9) (Ch. No. 416) (cont.)		
	Alaska Bangladesh Brazil	
	United States of America (Central) United States of America (East) United States of America (West)	
	France Greece Hungary	
	Indonesia Iran Iceland	
	Jamaica Japan Mauritius	

1	2	3
$\mathbf{4 4 0 5 . 3}$ $\mathbf{(4 4 0 3 . 9)}$ (Ch. No. 416) (cont.)	Peru French Polynesia United Kingdom U.S.S.R. (Europe)	
 $\mathbf{4 4 4 0 8 . 4}$ (Ch. No. 417)	Argentina Australia Belgium United States of America (Central) United States of America (East) United States of America (West) United States of America (South) Finland Hongkong India (West) Japan Malaysia Morocco Papua New Guinea United Kingdom Tanzania Czechoslovakia Turkey U.S.S.R. (Far East) Yemen (P.D.R. of) Yugoslavia	ADD
4411.5 (4 410.1) (Ch. No. 418) (cont.)	Argentina Brazil Bulgaria Canada (East) Canada (West) Cuba	ADD

1	2	3
$\begin{gathered} 4414.6 \\ (4413.2) \\ \\ \begin{array}{c} \text { (Ch. No. 419) } \\ \text { (cont.) } \end{array} \end{gathered}$	German Democratic Republic Tanzania Czechoslovakia U.S.S.R. (North West) Yugoslavia	ADD
 $\mathbf{4 4 1 7 . 7}$ (Ch. No. 420)	Alaska Bulgaria Cameroon Denmark United States of America (East) United States of America (West) Guam Hawaii India (East) Iran Italy Japan Jordan Malaysia Morocco Norway Panama Puerto Rico Sweden Turkey U.S.S.R. (Southern Asia) U.S.S.R. (Northern Asia)	
4423.9 (4 422.5) (Ch. No. 422) (cont.)	Alaska Belgium Canada (West)	

1	2	3
$\begin{gathered} 4423.9 \\ (4422.5) \end{gathered}$		
(Ch. No. 422) (cont.)	Canary Islands China Cuba	
	United States of America (East) United States of America (West) Finland	
	Greece Guiana (French Dep. of) Hungary	
	Indonesia Iraq Japan	
	Liberia Libya Morocco	
	United Kingdom Switzerland U.S.S.R. (Europe)	ADD
$\begin{gathered} 4427 \\ (4425.6) \\ \text { (Ch. No. 423) } \end{gathered}$		
	Alaska Germany (Federal Republic of) Brazil	ADD
	China United States of America (Central) United States of America (East)	
	United States of America (West) United States of America (South) Indonesia	
	Israel Italy Japan	
	Malta Pakistan Panama	ADD
	Papua New Guinea Poland Qatar	ADD

1	2	3
$\begin{gathered} 4430.1 \\ (4428.7) \end{gathered}$		
(Ch. No. 424)	Alaska Algeria Argentina	
	Australia (East) Australia (West) China	ADD
	Denmark United States of America (Central) United States of America (East)	
	United States of America (West) United States of America (South) Greece	
	Guadeloupe (French Dep. of) Guam Hawaii	
	Morocco Martinique (French Dep. of) Norway	
	Puerto Rico Sweden Switzerland	
	Thailand	
$\begin{gathered} 4433.2 \\ (4431.8) \end{gathered}$		
(Ch. No. 425)	Alaska Belgium Brazil	ADD
	Chile Denmark Spain	
	United States of America (Central) United States of America (East) United States of America (West)	
	United States of America (South) Greece Guam	

1	2	3
$\begin{gathered} \hline 4433.2 \\ (4431.8) \end{gathered}$		
(Ch. No. 425) (cont.)	Hawaii Hungary Japan	
	Jordan Kuwait Libya	ADD
	Malaysia Norway New Zealand	
	Panama Netherlands Puerto Rico	
$\begin{gathered} \hline 4436.3 \\ (4434.9) \end{gathered}$		
(Ch. No. 426)	Azores Alaska Algeria	
	Angola Argentina Bulgaria	
	Cape Verde China Cyprus	
	Denmark United States of America (East) United States of America (West)	
	United States of America (South) Guam Guinea-Bissau	
	Hawaii Japan Lebanon	
	Madeira Mozambique Norway	
	Panama Puerto Rico Portugal	

1	2	3
$\begin{gathered} 4436.3 \\ (4434.9) \end{gathered}$		
(Ch. No. 426) (cont.)	United Kingdom Thailand Portuguese Timor	

1	2	3
$\begin{gathered} 6507.8 \\ (6506.4) \end{gathered}$		
(Ch. No. 601)	Alaska Algeria Germany (Federal Republic of)	
	Saudi Arabia Argentina (Central) Argentina (South)	
	Bangladesh Canada (West) Chile (Central)	
	Chile (North) China Congo	
	United States of America (Central) United States of America (East) United States of America (West)	
	United States of America (South) Greece Guam	
	Hawaii Hungary Indonesia	
	Iran Iraq Iceland	
	Japan Libya Malaysia	
	Mexico (East) Mexico (West) New Zealand	
	Peru Puerto Rico Romania	
	Sri Lanka Czechoslovakia Ukraine	
	U.S.S.R. (Southern Asia) U.S.S.R. (Europe) Yugoslavia	

1	2	3
$\begin{gathered} 6510.9 \\ (6509.5) \end{gathered}$		
(Ch. No. 602)	Alaska Bangladesh Belgium	
	Brazil Bulgaria Canada (East)	ADD
	Canada (West) Korea Ivory Coast	
	United States of America (Central) United States of America (East) United States of America (West)	
	United States of America (South) Fiji Guam	ADD
	Hawaii Indonesia Iran	
	Italy Kuwait Madagascar	
	Monaco Netherlands Peru	
	Poland Puerto Rico Portugal	
	Singapore South Africa Tunisia	
	Turkey U.S.S.R. (Southern Asia) U.S.S.R. (Northern Asia)	
	U.S.S.R. (Europe) U.S.S.R. (Far East) Yugoslavia	

1	2	3
$\begin{gathered} 6514 \\ (6512.6) \end{gathered}$		
(Ch. No. 603)	Alaska Albania Algeria	
	Saudi Arabia Argentina Australia	ADD
	Bangladesh Bermuda Canada (North)	
	Canada (West) Cyprus Ivory Coast	
	Denmark Spain United States of America (Central)	
	United States of America (East) United States of America (West) United States of America (South)	
	Greece Guam Hawaii	
	Hungary India (East) Indonesia	
	Iran Iraq Iceland	
	Israel Japan Libya	
	Malta Mauritania Mexico	ADD
	Norway Peru Philippines	
	Puerto Rico Romania Western Samoa	

1	2	3
$\begin{gathered} 6514 \\ (6512.6) \\ \\ \text { (Ch. No. 603) } \\ \text { (cont.) } \end{gathered}$		
	Sweden Thailand Togo	
	Ukraine U.S.S.R. (Far East) U.S.S.R. (North West)	
6517.1 (6515.7) (Ch. No. 604)		
	Alaska Netherlands Antilles Australia	ADD
	Bangladesh Brazil Bulgaria	ADD
	Cameroon Canada (West) Chile	
	China Spain United States of America (Central)	
	United States of America (East) United States of America (West) United States of America (South)	
	Guam Hawaii Hongkong	
	Indonesia Iran Israel	
	Italy Madagascar Mauritania	
	Mexico Pakistan Papua New Guinea	
	Peru Poland	
(cont.)	Puerto Rico	

1	2	3
$\begin{gathered} 6520.2 \\ (6518.8) \end{gathered}$		
(Ch. No. 605) (cont.)	Norway New Zealand Netherlands	ADD
	Peru Philippines Puerto Rico	
	Sweden Thailand Ukraine	
	Uruguay U.S.S.R. (Far East) Yugoslavia	

1	2	3
$\begin{gathered} 8720.3 \\ (8718.9) \end{gathered}$		
(Ch. No. 801)	Alaska Bahrain Bangladesh	
	Chile Denmark Spain	
	United States of America (East) United States of America (West) United States of America (South)	
	Guam Hawaii Israel	
	Japan Malaysia Norway	
	Panama Puerto Rico Romania	
	South Africa Sweden U.S.S.R. (Northern Asia)	
$\begin{aligned} & \hline 8723.4 \\ & (8722) \end{aligned}$		
(Ch. No. 802)	Azores Alaska Algeria	
	Angola Argentina Australia	
	Cape Verde China United States of America (East)	
	United States of America (South) Finland Greece	
	Guinea-Bissau Hawaii India (East)	

1	2	3
8723.4 (8722) (Ch. No. 802) (cont.)	Iraq Madeira Mozambique Netherlands Portugal German Democratic Republic United Kingdom Sri Lanka	
 $\mathbf{8 7 2 6 . 5}$ $\mathbf{(8 7 2 5 . 1})$ (Ch. No. 803)	Netherlands Antilles Belgium Canada (East) Korea Cuba Spain United States of America (Central) Norway Pakistan Papua New Guinea Senegal South Africa Sweden Switzerland Turkey U.S.S.R. (Europe) U.S.S.R. (Far East) U.S.S.R. (North West)	ADD
8729.6 (8728.2) (Ch. No. 804) (cont.)	Argentina Spain United States of America (East) United States of America (West) United States of America (South) Finland	

1	2	3
$\begin{gathered} 8729.6 \\ (8728.2) \end{gathered}$		
(Ch. No. 804) (cont.)	Greece Iraq Japan	
	Jordan Monaco Peru	ADD
	Poland Qatar Sierra Leone	ADD
	Singapore U.S.S.R. (Southern Asia) U.S.S.R. (Northern Asia)	
	U.S.S.R. (Far East)	
8732.7(8731.3)(Ch. No. 805)		
	Albania Belgium Spain	
	United States of America (East) United States of America (West) United States of America (South)	
	Ethiopia Finland Iran	
	Iceland Israel Japan	
	Liberia New Caledonia and Dependencies Papua New Guinea	
	Netherlands South Africa U.S.S.R. (Europe)	
	U.S.S.R. (Far East)	

1	2	3
8738.9 (8737.5) (Ch. No. 807) (cont.)	New Zealand S. Helena Czechoslovakia U.S.S.R. (Southern Asia) U.S.S.R. (Northern Asia) U.S.S.R. (Europe)	
$8 \mathbf{8 7 4 2}$ $\mathbf{(8 7 4 0 . 6)}$ (Ch. No. 808)	Alaska Saudi Arabia Argentina Bahamas Denmark Spain United States of America (East) United States of America (West) Greece Guam Hawaii Japan Norway Philippines Romania Sri Lanka South Africa Sweden	
8745.1 (8743.7) (Ch. No. 809) (cont.)	Algeria Australia (West) Canary Islands Chile Cuba United States of America (East) United States of America (West) Finland Greece	

1	2	3
$\begin{gathered} \hline 8754.4 \\ (8753) \\ \\ \text { (Ch. No. 812) } \\ (\text { cont.) } \end{gathered}$	U.S.S.R. (Europe) U.S.S.R. (North West) Zaire	
$\begin{gathered} \hline 8757.5 \\ (8756.1) \\ \\ \text { (Ch. No. 813) } \end{gathered}$	Azores Alaska Algeria Angola Australia Belgium Cape Verde Chile (North) China Denmark United States of America (Central) United States of America (East) United States of America (West) United States of America (South) Greece Guam Guinea-Bissau Hawaii Hungary India (West) Madeira Mozambique Norway Panama Puerto Rico Portugal	
$\begin{gathered} 8760.6 \\ (8759.2) \end{gathered}$ (Ch. No. 814) (cont.)	Alaska Argentina Canada (West)	

1	2	3
$\begin{gathered} 8760.6 \\ (8759.2) \end{gathered}$		
(Ch. No. 814) (cont.)	Cuba United States of America (Central) United States of America (East)	
	United States of America (West) United States of America (South) Greece	
	Hawaii Indonesia Italy	
	Japan Kiribati Liberia	ADD
	Pakistan Philippines Thailand	
	U.S.S.R. (Southern Asia) U.S.S.R. (Northern Asia) U.S.S.R. (Europe)	
	U.S.S.R. (Far East)	
$\begin{gathered} \hline 8763.7 \\ (8762.3) \end{gathered}$		
(Ch. No. 815)	Germany (Federal Republic of) Australia (West) Belgium	
	Chile China United States of America (East)	
	United States of America (West) United States of America (South) Greece	
	Guiana (French Dep. of) Iraq Japan	
	Morocco Singapore U.S.S.R. (Europe)	

1	2	3
$\mathbf{8 7 6 3 . 7}$ $\mathbf{(8 7 6 2 . 3)}$ (Ch. No. 815) (cont.)	U.S.S.R. (North West) Zaire	
8766.8 (8765.4) (Ch. No. 816)	Alaska Argentina Barbados China Congo Spain United States of America (East) United States of America (West) United States of America (South) Greece Guam Hawaii Indonesia Pakistan Puerto Rico United Kingdom Tunisia U.S.S.R. (Europe) U.S.S.R. (North West)	
8769.9 (8768.5) (Ch. No. 817) (cont.)	Alaska Germany (Federal Republic of) Australia Bangladesh Bermuda Canada (East) Chile Egypt United States of America (Central)	

1	2	3
$\begin{gathered} 8769.9 \\ (8768.5) \end{gathered}$		
(Ch. No. 817) (cont.)	United States of America (East) United States of America (West) United States of America (South)	
	France Guam Hawaii	
	Iran Mexico Nauru	ADD
	Philippines Puerto Rico Romania	
	Thailand U.S.S.R. (Europe) U.S.S.R. (Far East)	
	Yemen (P.D.R. of)	
$\begin{gathered} 8773 \\ (8771.6) \end{gathered}$ (Ch. No. 818)		
	Alaska Argentina Bulgaria	
	Cameroon China Cyprus	
	Denmark United States of America (East) United States of America (West)	
	Guam Hawaii Libya	
	Malaysia Norway Pakistan	
	Panama Puerto Rico Seychelles (Republic of)	

1	2	3
8773 (8771.6) (Ch. No. 818) (cont.)	Sweden Ukraine	
8776.1 (8774.7) (Ch. No. 819)	Alaska Brazil Canada (West) United States of America (Central) United States of America (East) United States of America (West) United States of America (South) Greece Guam Hawaii Indonesia Italy Japan Easter Island Reunion (French Dep. of) United Kingdom Thailand U.S.S.R. (Southern Asia) U.S.S.R. (Northern Asia) U.S.S.R. (Europe) U.S.S.R. (North West) Yemen (P.D.R. of)	
8779.2 (8777.8) (Ch. No. 820) (cont.)	Alaska Germany (Federal Republic of) Argentina Cyprus United States of America (East) United States of America (West)	

1	2	3
$\begin{gathered} \hline 8788.5 \\ (8787.1) \end{gathered}$		
(Ch. No. 823)	Argentina Canada (East) Denmark	
	Greece India (West) Iraq	
	Italy Jamaica Japan	
	Norway Romania Sweden	
	Tanzania Portuguese Timor U.S.S.R. (Far East)	ADD
	U.S.S.R. (North West)	
$\mathbf{8 7 9 1 . 6}$$\mathbf{(8 7 9 0 . 2)}$(Ch. No. 824)		
	Germany (Federal Republic of) Brazil China	
	United States of America (East) United States of America (West) United States of America (South)	
	Greece Iran Jamaica	
	Morocco Oman Peru	
	Poland Reunion (French Dep. of) Singapore	
	Switzerland Tunisia U.S.S.R. (North West)	

1	2	3
$\begin{gathered} \hline 8794.7 \\ (8793.3) \end{gathered}$		
(Ch. No. 825)	Alaska Algeria Argentina	
	Barbados Canada (Central) Cook Islands	
	Denmark United States of America (East) United States of America (West)	
	United States of America (South) France Guadeloupe (French Dep. of) Hungary India (East) Iran	
	Martinique (French Dep. of) Norway Philippines	
	S. Paul and Amsterdam Islands Sweden Ukraine	$\begin{aligned} & \text { ADD } \\ & \text { ADD } \end{aligned}$
	U.S.S.R. (Southern Asia) U.S.S.R. (Far East)	
$\begin{gathered} \hline 8797.8 \\ (8796.4) \end{gathered}$		
(Ch. No. 826)	Cameroon Canada (West) China	
	Colombia United States of America (Central) United States of America (East)	
	Guam Indonesia Italy	
	Japan Mexico Netherlands	

\begin{tabular}{|c|c|c|}
\hline 1 \& 2 \& 3 \\
\hline \[
\begin{gathered}
8797.8 \\
(8796.4)
\end{gathered}
\] \& \& \\
\hline (Voie \(\mathrm{N}^{\mathrm{o}}{ }^{826)}\) (suite) \& German Democratic Republic United Kingdom Ukraine \& \\
\hline \multirow[t]{8}{*}{88800.9
\(\mathbf{(8 7 9 9 . 5})\)
(Ch. No. 827)} \& \& \\
\hline \& \begin{tabular}{l}
Alaska \\
Argentina Bangladesh
\end{tabular} \& \\
\hline \& Korea Denmark Djibouti \& \\
\hline \& \begin{tabular}{l}
Spain \\
United States of America (East) \\
United States of America (West)
\end{tabular} \& \\
\hline \& \begin{tabular}{l}
Guam \\
Hawaii \\
Iran
\end{tabular} \& \\
\hline \& \begin{tabular}{l}
Israel \\
Macao \\
Niue Island
\end{tabular} \& \\
\hline \& Norway Panama Peru \& \\
\hline \& \begin{tabular}{l}
Puerto Rico \\
Sweden \\
Yugoslavia
\end{tabular} \& \\
\hline \[
\begin{gathered}
8804 \\
(8802.6)
\end{gathered}
\] \& \& \\
\hline \multirow[t]{3}{*}{(Ch. No. 828)

(cont.)} \& | Alaska |
| :--- |
| Albania Germany (Federal Republic of) | \&

\hline \& | Brazil |
| :--- |
| United States of America (East) |
| United States of America (West) | \&

\hline \& | France |
| :--- |
| Guadeloupe (French Dep. of) Guam | \&

\hline
\end{tabular}

1	2	3
$\begin{gathered} 8804 \\ (8802.6) \end{gathered}$		
(Ch. No. 828) (cont.)	Hawaii Hungary Indonesia	
	Japan Lebanon Morocco	
	Martinique (French Dep. of) Mauritius Mauritania	
	Norway Panama Puerto Rico	
	Ukraine	
$\begin{gathered} 88807.1 \\ \mathbf{(8 8 0 5 . 7)} \\ \\ \text { (Ch. No. 829) } \end{gathered}$		
	Australia Bangladesh Belgium	
	China Cyprus Denmark	
	United States of America (East) United States of America (West) United States of America (South)	
	Finland Gambia Iran	
	Libya Mexico Norway	
	Paraguay French Polynesia Sweden	
	Ukraine	

1	2	3
$\begin{gathered} 13117.7 \\ (13 \\ \hline 116.3) \end{gathered}$		
$\begin{aligned} & \text { (Ch. No. 1206) } \\ & \text { (cont.) } \end{aligned}$	United States of America (South) Finland Iran	
	Iceland Italy Japan	
	Madagascar Morocco Peru	
	German Democratic Republic United Kingdom Turkey	
13120.8(13119.4)(Ch. No. 1207)		
	Azores Algeria Angola	
	Netherlands Antilles Belgium Canada (West)	
	Cape Verde China Greece	
	Iran Israel Japan	
	Madeira Mozambique Nauru	ADD
	Netherlands Portugal Portuguese Timor	
	U.S.S.R. (North West) Yugoslavia	

1	2	3
13133.2 (13131.8) (Ch. No. 1211) (cont.)	Easter Island Sweden U.S.S.R. (Southern Asia) U.S.S.R. (Northern Asia)	
13136.3 (13134.9) (Ch. No. 1212)	Alaska Germany (Federal Republic of) Ivory Coast United States of America (East) United States of America (South) Greece Hawaii Indonesia Japan Mauritius Peru Puerto Rico U.S.S.R. (Europe) U.S.S.R. (Far East)	
13139.4 (13 138) (Ch. No. 1213) (cont.)	Argentina Barbados Belgium Canada (East) Canary Islands China Korea Finland Greece India (East) Iran Iraq	

1	2	3
$\begin{array}{r} 13145.6 \\ (13144.2) \end{array}$		
(Ch. No. 1215) (cont.)	Denmark Spain United States of America (West)	
	United States of America (South) Greece India (West)	
	Iceland Israel Japan	
	Panama Netherlands Peru	
	Puerto Rico Romania Seychelles (Republic of)	
	Sweden	
13148.7 (13 147.3) (Ch. No. 1216) (cont.)		
	Alaska Albania Argentina	
	China Egypt United States of America (East)	
	United States of America (West) United States of America (South) Finland	
	Guam Hawaii Iran	
	Lebanon Malta Morocco	ADD
	Panama Poland Puerto Rico	

1	2	3
13154.9(13153.5)(Ch. No. 1218)(cont.)		
	United States of America (South) Guam Hawaii	
	Iran Italy Japan	
	Niue Island Norway Panama	
	Puerto Rico Turkey U.S.S.R. (Europe)	
13158(13156.6)(Ch. No. 1219)		
	Alaska Belgium Brazil	
	Bulgaria Denmark United States of America (East)	
	United States of America (West) United States of America (South) Japan	
	Morocco Norway Netherlands	
	Singapore Sweden Ukraine	
	U.S.S.R. (Europe) U.S.S.R. (Far East) U.S.S.R. (North West)	
$\begin{array}{r} 13161.1 \\ (13159.7) \end{array}$		
(Ch. No. 1220) (cont.)	Alaska Argentina Bangladesh	

1	2	3
$\begin{gathered} 13182.8 \\ (13181.4) \end{gathered}$		
(Ch. No. 1227) (cont.)	United States of America (East) United States of America (West) Finland	
	Guam Hawaii India (East)	
	Kuwait Panama Poland	
	Puerto Rico Switzerland Tanzania	ADD.
	U.S.S.R. (Far East) Yugoslavia Zaire	
13185.9(13184.5)(Ch. No. 1228)		
	Brazil Chile China	
	Cuba United States of America (Central) United States of America (East)	
	United States of America (West) Hungary Norway	
	Pakistan United Kingdom Ukraine	
	U.S.S.R. (Europe)	
$\begin{gathered} 13189 \\ (13187.6) \end{gathered}$		
(Ch. No. 1229) (cont.)	Argentina Australia Bulgaria	

\begin{tabular}{|c|c|c|}
\hline 1 \& 2 \& 3 \\
\hline \multirow[t]{5}{*}{13189
\((13187.6)\)
(Ch. No. 1229)
(cont.)} \& \& \\
\hline \& \begin{tabular}{l}
Canada (East) \\
Korea \\
United States of America (West)
\end{tabular} \& \\
\hline \& France Japan Poland \& \\
\hline \& \begin{tabular}{l}
Qatar \\
U.S.S.R. (Southern Asia) \\
U.S.S.R. (Northern Asia)
\end{tabular} \& ADD \\
\hline \& \begin{tabular}{l}
U.S.S.R. (Europe) \\
U.S.S.R. (North West) \\
Yugoslavia
\end{tabular} \& \\
\hline \multirow[t]{6}{*}{13192.1
\((13190.7)\)
(Ch. No. 1230)} \& \& \\
\hline \& Argentina Bangladesh Cyprus \& \\
\hline \& United States of America (East) United States of America (West) United States of America (South) \& \\
\hline \& \begin{tabular}{l}
Finland \\
Hawaii \\
Italy
\end{tabular} \& \\
\hline \& Japan Mauritania United Kingdom \& \\
\hline \& Switzerland Ukraine \& \\
\hline \multirow[t]{3}{*}{13195.2
\((13193.8)\)
(Ch. No. 1231)

(cont.)} \& \&

\hline \& | Alaska |
| :--- |
| Australia |
| United States of America (East) | \&

\hline \& United States of America (West) France Greece \&

\hline
\end{tabular}

1	2	3
$\left.\begin{array}{cl} 13 & 195.2 \\ (13 & 193.8 \end{array}\right)$		
(Ch. No. 1231) (cont.)	Guam Hawaii Hongkong	
	Iran Libya Norway	
	Panama Paraguay Peru	
	Poland Puerto Rico	
$\begin{gathered} 13198.3 \\ (13196.9) \\ \\ \text { (Ch. No. 1232) } \end{gathered}$		
	Alaska Algeria Argentina	
	United States of America (East) United States of America (West) Greece	
	Guam Hawaii Japan	
	Mauritania Pakistan German Democratic Republic	
	United Kingdom American Samoa U.S.S.R. (Southern Asia)	ADD

1	2	3
17240.5 (17239.1) (Ch. No. 1603) (cont.)	China Cyprus Denmark United States of America (East) United States of America (West) United States of America (South) Guadeloupe (French Dep. of) Hungary Italy Malta Martinique (French Dep. of) Norway. Sweden	ADD
17243.6 (17242.2) (Ch. No. 1604)	Australia Canada (East) France Greece Japan Mexico Norway Romania	
17246.7 (17245.3) (Ch. No. 1605) (cont.)	Denmark United States of America (East) United States of America (West) France India (West) Iran Japan Norway Philippines	

1	2	3
17246.7 (17245.3) (Ch. No. 1605) (cont.)	French Polynesia Sweden Ukraine U.S.S.R. (Europe)	
17249.8 (17248.4) (Ch. No. 1606)	Bangladesh Brazil Cuba United States of America (West) United States of America (South) Finland Iceland Italy Japan New Zealand Puerto Rico United Kingdom Turkey U.S.S.R. (Europe)	
17252.9 (17 251.5) (Ch. No. 1607) (cont.)	Alaska Netherlands Antilles Canada (East) United States of America (East) United States of America (West) United States of America (South) Greece India (East) Iran Liberia Monaco Norway	

1	2	3
17252.9 (17251.5) (Ch. No. 1607) (cont.)	Poland U.S.S.R. (Far East) U.S.S.R. (North West)	
17256 (17254.6) (Ch. No. 1608)	Canada (West) China Denmark Italy Mauritania Norway Peru South Africa Sweden Czechoslovakia Turkey	
17259.1 (17257.7) (Ch. No. 1609)	Saudi Arabia Belgium Cook Islands Spain United States of America (East) United States of America (West) United States of America (South) Greece India (East) Israel Japan U.S.S.R. (North West)	
17262.2 (17260.8) (Ch. No. 1610) (cont.)	Germany (Federal Republic of) Australia China	

1	2	3
17268.4 (17267) (Ch. No. 1612) (cont.)	Guam Hawaii Morocco Pakistan Puerto Rico Ukraine U.S.S.R. (Europe) U.S.S.R. (Far East) U.S.S.R. (North West)	
17271.5 (17270.1) (Ch. No. 1613)	Alaska Belgium Brazil Spain United States of America (East) United States of America (West) United States of America (South) Greece Guam Hawaii Iran Israel Norway Panama Puerto Rico Romania Singapore U.S.S.R. (Far East)	
17274.6 (17 273.2) (Ch. No. 1614) (cont.)	Canada (West) China Denmark Finland Italy Mexico	

1	2	3
17274.6 (17273.2) (Ch. No. 1614) (cont.)	Niue Island Norway Sweden U.S.S.R. (Northern Asia)	
17277.7 (17276.3) (Ch. No. 1615)	Azores Angola Cape Verde Finland Guinea-Bissau Iran Iceland Madeira Mozambique Portugal United Kingdom Switzerland Portuguese Timor U.S.S.R. (Far East)	
17280.8 (17279.4) (Ch. No. 1616)	Alaska Germany (Federal Republic of) United States of America (East) United States of America (West) United States of America (South) Hawaii Iran Italy Japan Morocco Turkey U.S.S.R. (North West)	

1	2	3
$\begin{array}{r} 17283.9 \\ (17282.5) \end{array}$		
(Ch. No. 1617)	Bangladesh Brazil Canary Islands	
	Denmark France Greece	
	Hungary Iran Israel	
	Mexico Norway Sweden	
	U.S.S.R. (Northern Asia) U.S.S.R. (Far East)	
$\begin{gathered} 17287 \\ (17285.6) \end{gathered}$		
(Ch. No. 1618)	Argentina Bahrain Bermuda	
	Denmark India (West) Japan	
	Morocco Norway United Kingdom	
	Sweden Turkey Yugoslavia	
$\begin{gathered} 17290.1 \\ (17288.7) \end{gathered}$		
(Ch. No. 1619)	Alaska United States of America (East) United States of America (West)	
	France Greece Guam	

1	2	3
17324.2 (17322.8) (Ch. No. 1630) (cont.)	U.S.S.R. (Europe)	
17327.3 (17325.9) (Ch. No. 1631)	Algeria Bulgaria Chile China United States of America (East) Greece Iraq Poland Switzerland Togo	
17330.4 (17329) (Ch. No. 1632)	Azores Alaska Argentina Bangladesh Cyprus United States of America (East) United States of America (West) United States of America (South) Hungary Japan Madagascar Madeira Pakistan Portugal United Kingdom	

1	2	3
17339.7 (17338.3) (Ch. No. 1635) (cont.)	Macao Madeira Mozambique Norway Portugal Sweden Portuguese Timor	
17342.8 (17341.4) (Ch. No. 1636)	Alaska Algeria United States of America (East) United States of America (West) Finland Greece Guam Hawaii India (East) Japan Pakistan Panama Netherlands Puerto Rico	
17345.9 (17344.5) (Ch. No. 1637)	Korea Spain Hongkong \qquad Jamaica Madagascar New Zealand United Kingdom U.S.S.R. (Southern Asia)	

1	2	3
$\begin{gathered} 17349 \\ (17347.6) \end{gathered}$		
(Ch. No. 1638)	Alaska Bulgaria United States of America (East)	
	United States of America (West) Finland Guam	
	Hawaii Morocco Pakistan	
	Poland American Samoa Yugoslavia	ADD
17352.1(17350.7)(Ch. No. 1639)		
	Alaska Albania Germany (Federal Republic of)	
	Spain United States of America (East) United States of America (West)	
	Guam Hawaii Panama	
	Netherlands Puerto Rico Zaire	
17355.2(17353.8)(Ch. No. 1640)		
	Barbados Chile Greece	
	Japan German Democratic Republic United Kingdom	
	Sri Lanka Thailand U.S.S.R. (Europe)	

1	2	3
 $\mathbf{2 2 6 0 6 . 7}$ $\mathbf{(2 2 6 0 5 . 3})$ (Ch. No. 2204)	Argentina Canada (North) Finland France Israel Kuwait South Africa U.S.S.R. (Far East) U.S.S.R. (North West) Yugoslavia	
$\begin{gathered} 22609.8 \\ (22608.4) \\ \text { (Ch. No. 2205) } \end{gathered}$	Algeria Australia United States of America (East) United States of America (West) United States of America (South) Greece Iran Netherlands U.S.S.R. (Europe) U.S.S.R. (Far East) U.S.S.R. (North West)	
22612.9 (22 611.5) (Ch. No. 2206) (cont.)	Alaska United States of America (East) United States of America (West) United States of America (South) Guam Hawaii India (West) Japan Morocco	

1	2	3
22612.9 (22611.5) (Ch. No. 2206) (cont.)	Peru Poland Puerto Rico United Kingdom South Africa Yugoslavia	
$\begin{gathered} 22616 \\ (22614.6) \\ \text { (Ch. No. 2207) } \end{gathered}$	Azores Germany (Federal Republic of) Bangladesh Cape Verde China Israel Madeira Portugal Portuguese Timor Tunisia U.S.S.R. (Europe)	
 $\mathbf{2 2 6 1 9 . 1}$ $\mathbf{(2 2 6 1 7 . 7)}$ (Ch. No. 2208)	Argentina (North) Bulgaria Denmark India (East) Japan Morocco Norway Sweden	
22622.2 $\mathbf{(2 2 6 2 0 . 8)}$ (Ch. No. 2209) (cont.)	Alaska Belgium Korea	

1	2	3
22622.2 (22620.8) (Ch. No. 2209) (cont.)	United States of America (East) United States of America (West) Greece Guam Hawaii Morocco Panama Poland Puerto Rico U.S.S.R. (North West)	
 $\mathbf{2 2 6 2 5 . 3}$ (22 623.9) (Ch. No. 2210)	Bangladesh Spain United States of America (East) Finland Greece Japan Netherlands Ukraine	
22628.4 (22 627) (Ch. No. 2211)	Cuba Denmark Italy Japan Norway Sweden Ukraine	

1	2	3
22637.7 (22636.3) (Ch. No. 2214) (cont.)	Switzerland Turkey Uruguay U.S.S.R. (North West)	
 $\mathbf{2 2 6 4 0 . 8}$ (22 639.4) (Ch. No. 2215)	United States of America (East) United States of America (West) United States of America (South) France Greece Iraq Japan Norway Peru Poland	
 $\mathbf{2 2 6 4 3 . 9}$ (22642.5) (Ch. No. 2216)	Canada (West) Denmark United States of America (East) United States of America (South) Greece Guam Italy Japan Kuwait Mauritania Norway	

1	2	3
22665.6 (22664.2) (Ch. No. 2223)	Alaska Germany (Federal Republic of) Australia Bangladesh United States of America (East) United States of America (West) Hawaii Italy Japan Malta Puerto Rico Togo Turkey	ADD
22668.7 (22667.3) (Ch. No. 2224)	Alaska Spain United States of America (East) United States of America (West) Greece Guam Hawaii Iraq Mauritius Panama Puerto Rico German Democratic Republic	
$\begin{gathered} 22671.8 \\ (22670.4) \end{gathered}$ (Ch. No. 2225) (cont.)	Algeria Belgium Chile Ivory Coast Greece India (West)	

1	2	3
22681.1 (22679.7) (Ch. No. 2228) (cont.)	Morocco Norway Sweden U.S.S.R. (Far East)	
22684.2 (22682.8) (Ch. No. 2229)	Canada (East) Spain India (West) Japan United Kingdom Thailand Ukraine	
22687.3 (22685.9) (Ch. No. 2230)	Alaska Australia Spain United States of America (East) United States of America (West) Guam Hawaii Norway Panama Puerto Rico German Democratic Republic Sweden Turkey U.S.S.R. (Southern Asia)	

1	2	3
 $\mathbf{2 2 6 9 0 . 4}$ $\mathbf{(2 2 6 8 9)}$ (Ch. No. 2231)	Alaska Saudi Arabia Canada (West) United States of America (East) United States of America (West) United States of America (South) Finland France Greece Japan Malaysia Niue Island U.S.S.R. (Europe)	
$\begin{gathered} 22693.5 \\ (22692.1) \\ \\ \text { (Ch. No. 2232) } \end{gathered}$	Cuba Greece Irag. \qquad Netherlands Poland Switzerland U.S.S.R. (Europe) U.S.S.R. (Far East)	
$\begin{gathered} 22696.6 \\ (22695.2) \end{gathered}$ (Ch. No. 2233) (cont.)	Alaska Bangladesh Cook Islands United States of America (East) United States of America (West) United States of America (South) Greece Guam Hawaii	ADD

1	2	3
 $\mathbf{2 2 7 0 5 . 9}$ $\mathbf{(2 2 7 0 4 . 5)}$ (Ch. No. 2236)	Denmark Spain United States of America (East) United States of America (West) Greece Iraq Japan Norway New Zealand Ukraine	
22709 (22707.6) (Ch. No. 2237)	Azores United States of America (East) United States of America (West) United States of America (South) Iran Italy Japan Madeira Norway Portugal Romania	
22712.1 (22 710.7) (Ch. No. 2238) (cont.)	Algeria Germany (Federal Republic of) Australia Brazil Greece Hungary Iraq Japan Mexico	

1	2	3
22712.1 (22710.7) (Ch. No. 2238) (cont.)	U.S.S.R. (Europe)	
$\begin{gathered} 22715.2 \\ (22713.8) \\ \\ \text { (Ch. No. 2239) } \end{gathered}$	Alaska Belgium Spain United States of America (East) United States of America (West) Guam Hawaii India (East) Iran Norway Panama Puerto Rico Yugoslavia	
22718.3 $(\mathbf{2 2} 716.9)$ (Ch. No. 2240)	Chile Greece Jamaica Japan Madagascar Norway Pakistan Tunisia	

TABLE OF ALLOTMENTS ADDED TO THE PLAN

Column headings

1. Channel number (the corresponding carrier and assigned frequencies are indicated in Section A of Appendix 16 and in the present Appendix).
2. Country or area of allotment.
3.1 Main service area.

A number between 1 and 22 refers to a Zone defined on the Map of Maritime Zones appearing in the Preface to the International Frequency List.
3.2 Maximum length of circuit in kilometres.
4. Nature of service.
5. Class of emission.
6. Peak envelope power in kW .
7. Transmitting antenna characteristics.
7.1 In the case of a non-directional antenna, the symbol ND is entered in this column and columns 7.2a), b) and c) are left blank. In the case of a directional antenna, the symbol D is entered in this column and the characteristics are given in columns 7.2a), b) and c).
7.2a) Azimuth of maximum radiation. The symbol ROT entered in this column means that a rotatable antenna is used.
7.2b) Angular width of main lobe.
7.2c) Relative gain of the antenna in dB .
8. Planned scheduled hours of operation in the channel (UTC).
9.a) Estimated peak hours of traffic.
9.b) Estimated daily volume of traffic in minutes.
10. Special Section No./IFRB Circular No./Date (e.g. MAR/10/1305/280278).

1	2	3		4	5	6	7				8	9		10
		3.1	3.2				7.1	7.2 a)	7.2 b)	$\begin{aligned} & \hline 7.2 \\ & \text { c) } \end{aligned}$		9a)	9b)	
401	AUS	GF CARPENTARIA	800	CV	J3E	0.1	ND				2200-1000	2200-1000	30	MAR/54/1640/021084
405	USA	GREAT LAKES (CL USA)	800	CP	J3E	$\begin{gathered} 1 \\ 0.032 \end{gathered}$	ND				$\begin{aligned} & 1100-2300 \\ & 2300-1100 \end{aligned}$	1200-1800	180	MAR/50/1609/280284
407	AUS	-	800	COCP	J3E R3E	5	ND				0000-2400			MAR/48/1602/100184
407	I	17	1200	CO	J3E	1.5	ND				0500-2200	0700-1100	60	MAR/58/1682/300785
408	B	-	800	CV	J3E	0.15	ND				0000-2400		120	MAR/69/1712/040386
408	SMA	SO PACIF	1000	CP	J3E	1	ND				1800-0400		30	MAR/10/1305/280278
411	AMS	10	-	CP	J3E R3E	0.3	ND				$\begin{aligned} & 0430-0445 \\ & 0830-0845 \\ & 1230-1245 \end{aligned}$		5-25	MAR/15/1347/191278
411	KIR	-	500	CP	J3E	0.5	ND				0800-1800			MAR/59/1686/270885
417	TZA	6, 10, 19, 21	3200	COCP	J3E	5	ND				0700-1800	$\begin{array}{\|l} 0800-1000 \\ 1500-1700 \end{array}$	240	MAR/66/1707/280186
418	B	-	800	CV	J3E	0.15	ND				0000-2400	0700-1100	240	MAR/69/1712/040386
419	TZA	6,10,19, 21	3200	COCP	J3E	5	ND				0700-1800	$\begin{aligned} & 0800-1000 \\ & 1500-1700 \end{aligned}$	240	MAR/57/1680/160785
422	SUI	15,17	4000	CP	J3E	5	D	ROT	30	8	1900-0200	2000-2200	20	MAR/62/1694/221085
423	B	-	800	CV	J3E	0.5	ND				0000-2400			MAR/16/1350/160179
423	MLT	MEDIT, NO E ATLANT, RED SEA, NO INDN OC	3000	CP	J3E R3E	1.5	ND				HN	2000-2100	60	MAR/41/1565/190483
423	QAT	GULF, INDN OC GULF, INDN OC GULF, INDN OC GULF, INDN OC	$\begin{array}{r} 800 \\ 1500 \\ 1500 \\ 1500 \end{array}$	CP	J3E R3E	$5\{$	$\begin{array}{\|c} \hline \text { ND } \\ \mathrm{D} \\ \mathrm{D} \\ \mathrm{D} \end{array}$	$\begin{aligned} & 130 \\ & 200 \\ & 310 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	0000-2400		200	MAR/23/1412/010480
424	AUS	-	800	COCP	J3E R3E	1	ND				0000-2400			MAR/48/1602/100184
425	B	-	800	CV	J3E	0.5	ND				1000-2300	1900-2200	100	MAR/16/1350/160179
425	JOR	6, 15, 17	5000	CP	J3E R3E	5	ND				1700-0500			MAR/49/1604/240184
602	B	-	800	CP	J3E	1	ND				0000-2400			MAR/69/1712/040386
602	FJI	12	1000	CP	J3E	1	ND				1800-0600	2000-0500	120	MAR/37/1519/180582
603	AUS	AUSTRALIAN COASTAL	4000	CP	J3E	1	ND				HX	HJ	30	MAR/55/1651/181284
603	MLT	MEDIT, NO E ATLANT, RED SEA, NO INDN OC	3000	CP	J3E R3E	1.5	ND				HJ	0900-1100	60	MAR/41/1565/190483
604	ATN	CL ATLANT, CARIB SEA, GF MEX	1500	CP	J3E R3E	1	ND				$\begin{aligned} & 0000-0200 \\ & 0600-1000 \end{aligned}$		120	MAR/35/1495/171181

1	2	3		4	5	6	7				8	9		10
		3.1	3.2				7.1	7.2 a)	7.2 b)	7.2 c)		9a)	9b)	
604	B	-	800	CP	J3E	1	ND				$\begin{aligned} & 1000-1300 \\ & 1700-2000 \end{aligned}$			MAR/69/1712/040386
605	B	-	800	CP	J3E	1	ND				$\begin{aligned} & 1000-1300 \\ & 1700-2000 \end{aligned}$			MAR/69/1712/040386
605	F	GOLFE DE GASCOGNE / BAY OF BISCAY / MAR CANTÁBRICO, MEDIT	2500	CP	J3E	10	ND				$\begin{aligned} & 0600-0900 \\ & 1700-2200 \end{aligned}$	1800-2200	300	MAR/56/1679/090785
605	NZL	7, 8, 11, 12, 13	6000	CP	J3E	5	ND				0000-2400	0400-0900	90	MAR/63/1695/291085
803	SUI	15, 16, 17, 18, 19	6000	CP	J3E	10	D	ROT	30	8	0600-0200	$\begin{aligned} & 0600-1000 \\ & 1700-2200 \end{aligned}$	50	MAR/62/1694/221085
804	JOR	6,15,17	5000	CP	J3E R3E	5	ND				0500-1700			MAR/49/1604/240184
804	QAT	GULF, RED SEA, INDN OC GULF, INDN OC GULF, RED SEA, INDN OC GULF, RED SEA, INDN OC, MEDIT	$\begin{aligned} & 1500 \\ & 2500 \\ & 2500 \\ & 2500 \end{aligned}$	$\left.\int\right\} \mathrm{CP}$	J3E R3E	$5\{$	$\begin{gathered} \mathrm{ND} \\ \mathrm{D} \\ \mathrm{D} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & 130 \\ & 200 \\ & 310 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	0000-2400		200	MAR/23/1412/010480
806	AUS	COTE / COAST / COSTA: AUS NW, W, SW	2000	CP	J3E	1	ND				2100-0500	2100-0500	90	MAR/52/1631/310784
806	SMA	SO PACIF	3000	CP	J3E	1	ND				1800-0400		30	MAR/11/1310/040478
807	MLT	MEDIT, NO E ATLANT, RED SEA, NO INDN OC	3000	CP	J3E R3E	1.5	ND				HJ	0100-1100	60	MAR/41/1565/190483
814	KIR	-	500	CP	J3E	0.5	ND				1800-0800			MAR/65/1702/171285
817	NRU	PACIF	2500	CP	J3E R3E	1	ND				$2030-0500$		3	MAR/28/1440/141080
820	TZA	6, 10, 19, 21	3200	COCP	J3E	5	ND				0700-1800	$\begin{aligned} & 0800-1000 \\ & 1500-1700 \end{aligned}$	240	MAR/66/1707/280186
822	AUS	COTE / COAST / COSTA: AUS N, NE	3000	CP	$\mathrm{J} 3 \mathrm{E}$	1	ND				HJ	HJ	90	MAR/64/1696/051185
823	TZA	$6,10,19,21$	3200	COCP	J3E	1	ND				0700-1800	$\begin{aligned} & 0800-1000 \\ & 1500-1700 \end{aligned}$	240	MAR/66/1707/280186
825	AMS	10	-	CP	J3E R3E	0.3	ND				$\begin{aligned} & 0445-0500 \\ & 0845-0900 \\ & 1245-1300 \end{aligned}$		5-25	MAR/15/1347/191278
825	S	$5,6,10,15,16,17,18,19,21$		CP	J3E	10	D $\{$	10 50 130 170 210 250 310	60	11	0000-2400	0800-1000	90	AR16/70/1730/080786

1	2	3		4	5	6	7				8	9		10
		3.1	3.2				7.1	7.2 a)	7.2 b)	$\begin{aligned} & 7.2 \\ & \mathrm{c}) \end{aligned}$		9a)	9b)	
1207	NRU	CL PACIF	3000	CP	J3E R3E	1	ND				HX	2000-0530	20	MAR/34/1475/300681
1210	SUI	$6,10,15,16,17,18,19,20,21$	9000	CP	J3E	10	D	ROT	30	8	0600-0200	$\begin{aligned} & 0800-1200 \\ & 1600-2100 \end{aligned}$	60	MAR/62/1694/221085
1216	MLT	MEDIT, NO ATLANT	3000	CP	J3E R3E	1.5	ND				0000-2400			MAR/22/1399/030180
1220	JOR	6, 15, 17	5000	CP	J3E R3E	5	ND				0500-1700			MAR/49/1604/240184
1226	S	$5,6,10,15,16,17,18,19,21$		CP	J3E	10		10 50			0000-2400	0800-1000	90	AR16/70/1730/080786
								130						
							D	170	60	11				
								210						
								250 310						
1227	TZA	6,10,19, 21	3200	COCP	J3E	5	ND				0700-1800	$\begin{aligned} & 0800-1000 \\ & 1500-1700 \end{aligned}$	240	MAR/66/1707/280186
1229	QAT	GULF, RED SEA, INDN OC, MEDIT GULF, INDN OC	$\begin{aligned} & 2000 \\ & 3000 \end{aligned}$				$\begin{array}{\|c} \mathrm{ND} \\ \mathrm{D} \end{array}$				0400-0600			
		GULF, RED SEA, INDN OC, MEDIT	3000	CP	J3E R3E	5	D	130 200	60	11	1400-1600		200	MAR/23/1412/010480
		GULF, RED SEA, INDN OC, MEDIT	3000				D			11				
1232	SMA	SO PACIF	3000	CP	J3E	1	ND				1800-0400		30	MAR/11/1310/040478
1603	MLT	MEDIT, NO ATLANT	3000	CP	J3E R3E	1.5	ND				0000-1159			MAR/21/1379/070879
1622	SUI	$3,4,5,6,7,9,10, \frac{15}{21}, 16,17,18,19,20 \text {, }$	10000	CP	J3E	10	D	ROT	30	8	0600-0200	0800-1700	60	MAR/62/1694/221085
1626	QAT	INDN OC, RED SEA, MEDIT	4000				ND							
		INDN OC	6000	CP	J3E R3E	10	D	130			0600-0800		200	MAR/23/1412/010480
		INDN OC, RED SEA, MEDIT	6000	CP	J3E R3E	10	D	200	60	11	1200-1400		200	MAR/23/1412/010480
		RED SEA, MEDIT, ATLANT	6000				D	310	60	11				
1638	SMA	SO PACIF	4000	CP	J3E	1	ND				1800-0400		30	MAR/10/1305/280278
2220	SUI	6, 10, 18, 20, 21	14000	CP	J3E	10	D	ROT	70	8,5	0600-1800	0900-1600	60	MAR/27/1431/120880
2223	MLT	MEDIT, NO ATLANT	3000	CP	J3E R3E	1.5	ND				0000-1159			MAR/20/1372/190679
2233	GRC	17 (MEDIT)	2600	CO	J3E	1	ND				0500-2200	$\begin{gathered} 0600,1000 \\ 2200 \end{gathered}$	30	MAR/51/1621/220584
2235	QAT	INDN OC, MEDIT	5000				ND							
		INDN OC	8000	CP	J3E R3E	10	D				0800-1200		200	MAR/23/1412/010480
		INDN OC, MEDIT, ATLANT MEDIT, ATLANT	$\begin{aligned} & 8000 \\ & 8000 \end{aligned}$	CP	JJE RJE	10	D D	$\begin{aligned} & 200 \\ & 310 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	11 11	-080-1200		200	MAR/23/1412/010480

Note by the General Secretariat

Bringing up to date the Frequency Allotment Plan for Coast Radiotelephone Stations Operating in the Exclusive Maritime Mobile Band Between 4000 kHz and 23000 kHz

(Article 16 of the Radio Regulations)

June 1979 - First Revision

1. This revision of the Plan is published in accordance with No. 1722.
2. The present revision contains the following new allotments:
Symbol Country or area Channel(s)

AMS St Paul and Amsterdam Islands 411825
B Brazil 423425
MLT Malta 16032223
SMA American Samoa 40880612321638
3. The allotments of channels 411 and 825 to Kerguelen Islands have been deleted from the Plan at the request of the Administration concerned.
4. The present revision takes into account the deletion of the following allotments in application of No. 1720:

Symbol	Country or area	Channel(s)
ASC	Ascension	414808
BEN	Benin	412605809120116242209
BER	Bermuda	2204
BHR	Bahrain	415812818
BOL	Bolivia	402409602605801805120416032209

4. (cont.)

Symbol	Country or area	Channel(s)
BRB	Barbados	405412605822
CNR	Canaries	409416601804808818120816202226 2234
COG	Congo (Brazzaville)	120412161604160922052208
COM	Comoro Islands	414
DOM	Dominican Republic	819
E	Spain	1228
EGY	Egypt	408601807120316142233
FJI	Fiji	403410801816
G	United Kingdom	8098128148241212121412201222 16091626162916352202221422332240
GIB	Gibraltar	401404602807121216112212
GIL	Gilbert and Ellice Islands	41181412071607
GUB	Guyana	824
HKG	Hongkong	603805122716262218
HND	Honduras.	402
IOB	Turks and Caicos Islands	401816
IRQ	Iraq.	16341639
KEN	Kenya	40742360380480981482612081213 1229123016242228
NHB	New Hebrides	406808818
PHL	Philippines..	4208062220
SLM	Solomon Islands	830

These deletions have been published in Sub-section C of Special Section No. MAR/21/1397 of 7 August 1979.
5. The present revision contains the following modification of country name or area:

From		To		Channel(s)
AFI	French Territory of the Afars and Issas	DJI	Djibouti	4188271210

1. This revision of the Plan is published in accordance with No. 1722.
2. The present revision contains the following new allotments:

Symbol	Country or area	Channel(s)
MLT	Malta	1216
NRU	Nauru	817
QAT	Qatar	423804122916262235
SUI	Switzerland	2220

3. The present revision takes into account the deletion of the following allotments in application of No. 1720:

Symbol	Country or area	Channel(s)
AGL	Angola	22072222
CBG	Khmer Republic	406410604828830120616042203
CLM	Colombia	1615
CTI	Ivory Coast	16052203
ETH	Ethiopia .	413425602812827829120112041214 12281231160416111614162016271640
GAB	Gabon	401403602603806811120112101614 16172211
GHA	Ghana	402409601602823825120212241616 162222132215
GMB	Gambia	831
GNB	Guinea-Bissau	1207
GTM	Guatemala	402
MOZ	Mozambique	22072222
NIG	Nigeria	4144234256016046058018178191220 12251231162516271640220222042206
PAK	Pakistan	$\begin{aligned} & 4034064144244266018078268281201 \\ & 12041207121516082201220922112218 \\ & 2220 \end{aligned}$
PNR	Panama	4014034246028178191204
PRG	Paraguay	410826121712271637
PRU	Peru	16172211
STP	Sao Tome and Principe	4134268028131203120716151635
SUR	Surinam	40880812071608

Symbol	Country or area	Channel(s)
TGK	Tanzania (Tanganyika)	4174198208231227
TMP	Portuguese Timor	802813
TUR	Turkey	82282812111227161516242239
VEN	Venezuela	$\begin{aligned} & 4094196028278291203121916041622 \\ & 22032206 \end{aligned}$
ZAN	Tanzania (Zanzibar).	4174198208231227

These deletions have been published in Sub-section C of Special Sections Nos. MAR/22/1399 of 3 January 1980 and MAR/29/1441 of 21 October 1980.

February 1984 - Third Revision

1. This revision of the Plan is published in accordance with No. 1722.
2. The present revision contains the following new allotments:

Symbol Country or area Channel(s)
ATN Netherlands Antilles 604
AUS Australia 407424
FJI Fiji 602
JOR Jordan 4258041220
MLT Malta 423603807
NRU Nauru......................... . . . 1207
USA United States of America 405

July 1986 - Fourth Revision

1. This revision of the Plan is published in accordance with No. 1722.
2. The present revision contains the following new allotments:

Symbol	Country or area	Channel(s)
AUS	Australia	401603806822
B	Brazil.	408418602604605
F	France	605
GRC	Greece	2233
I	Italy	407
KIR	Kiribati	411814
NZL	New Zealand	605
S	Sweden	8251226
SUI	Switzerland	$\begin{array}{lllll}422 & 803 & 1210 & 1622\end{array}$
TZA	Tanzania..	4174198208231227

Orb-85

> Provisions for All Services and Associated Plans for the Broadcasting-Satellite Service in the Frequency Bands $11.7-12.2$ GHz (in Region 3), 11.7-12.5 GHz (in Region 1) and $12.2-12.7 \mathrm{GHz}$ (in Region 2)
(See Article 15)

TABLE OF CONTENTS

Article 1. General Definitions 5
Article 2. Frequency Bands 6
Article 3. Execution of the Provisions and Associated Plans 6
Article 4. Procedure for Modifications to the Plans 7
Article 5. Notification, Examination and Recording in the Master Register of Frequency Assignments to Space Stations in the Broadcasting-Satellite Service 14
Article 6. Coordination, Notification and Recording in the Master International Frequency Register of Fre- quency Assignments to Terrestrial Stations Affecting Broadcasting-Satellite Frequency Assign- ments in the Frequency Bands $11.7-12.2 \mathrm{GHz}$ (in Region 3), 11.7-12.5 GHz (in Region 1) and 12.2 - 12.7 GHz (in Region 2) 19
Section I. Coordination Procedure to Be Applied 19
Section II. Notification Procedure for Fre- quency Assignments 23
Page
Section III. Procedure for the Examination of Notices and the Recording of Fre- quency Assignments in the Master Register 24
Article 7. Procedures for Coordination, Notification andRecording in the Master International FrequencyRegister of Frequency Assignments to Stations inthe Fixed-Satellite Service in the Frequency Bands11.7-12.2 GHz (in Region 2), 12.2 - 12.7 GHz (inRegion 3) and $12.5-12.7 \mathrm{GHz}$ (in Region 1),When Frequency Assignments to Broadcasting-Sat-ellite Stations in Conformity with the Regions 1and 3 Plan, or the Region 2 Plan, Respectively,Are Involved30
Section I. Procedure for the Advance Publica- tion of Information on Planned Fixed-Satellite Systems 30
Section II. Coordination Procedures to Be Applied in Appropriate Cases 32
Section III. Notification of Frequency Assign- ments 36
Section IV. Procedure for the Examination of Notices and the Recording of Fre- quency Assignments in the Master Register 37
Section V. Recording of Findings in the Master Register 43
Section VI. Categories of Frequency Assign- ments 44
Section VII. Review of Findings 44
Section VIII. Modification, Cancellation and Review of Entries in the Master Register 45
Page
Article 8. Miscellaneous Provisions Relating to the Pro- cedures 46
Article 9. Power Flux-Density Limits Between 12.2 GHz and 12.7 GHz to Protect Terrestrial Services in Regions 1 and 3 from Interference from Region 2 Broadcasting-Satellite Space Stations 47
Article 10. The Plan for the Broadcasting-Satellite Service in the Frequency Band 12.2 - 12.7 GHz in Region 2 48
Article 11. The Plan for the Broadcasting-Satellite Service in the Frequency Bands $11.7-12.2 \mathrm{GHz}$ in Region 3 and $11.7-12.5 \mathrm{GHz}$ in Region 1 155
Article 12. Relationship to Resolution 507 199
Article 13. Interference 199
Article 14. Period of Validity of the Provisions and Associated Plans 200

ANNEXES

Annex 1. Limits for Determining Whether a Service of anAdministration is Affected by a Proposed Modifi-cation to the Plans or When It is Necessary UnderThis Appendix to Seek the Agreement of AnyOther Administration (See Article 4)201Annex 2. Basic Characteristics to Be Furnished in Notices Relating to Space Stations in the Broadcasting- Satellite Service 208
Page
Annex 3. Method for Determining the Limiting Interfering Power Flux-Density at the Edge of a Broadcasting- Satellite Service Area in the Frequency Bands 11.7-12.2 GHz (in Region 3), $11.7-12.5 \mathrm{GHz}$ (in Region 1) and $12.2-12.7 \mathrm{GHz}$ (in Region 2) and for Calculating the Power Flux-Density Produced There by a Terrestrial Station 211
Annex 4. Need for Coordination of a Space Station in the Fixed-Satellite Service: in Region 2 (11.7- 12.2 GHz) with Respect to the Regions 1 and 3 Plan, in Region 1 ($12.5-12.7 \mathrm{GHz}$) and in Region 3 ($12.2-12.7 \mathrm{GHz}$) with Respect to the Region 2 Plan (See Article 7) 223
Annex 5. Technical Data Used in Establishing the Provisions and Associated Plans and Which Should Be Used for Their Application 224
Annex 6. Criteria for Sharing Between Services 268
Annex 7. Orbital Position Limitations 274

ARTICLE 1

General Definitions

1. For the purposes of this Appendix the following terms shall have the meanings defined below:
1.1 1977 Conference: World Administrative Radio Conference for the Planning of the Broadcasting-Satellite Service in the Frequency Bands 11.7-12.2 GHz (in Regions 2 and 3) and 11.7-12.5 GHz (in Region 1), called in short World Broadcasting-Satellite Administrative Radio Conference, Geneva, 1977.
1.2 1983 Conference: Regional Administrative Radio Conference for the Planning in Region 2 of the Broadcasting-Satellite Service in the Frequency Band $12.2-12.7 \mathrm{GHz}$ and Associated Feeder Links in the Frequency Band 17.3-17.8 GHz, called in short Regional Administrative Conference for the Planning of the Broadcasting-Satellite Service in Region 2 (RARC Sat-R2), Geneva, 1983.
1.3 1985 Conference: First Session of the Word Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, called in short WARC Orb-85.
1.4 Regions 1 and 3 Plan: The Plan for the Broadcasting-Satellite Service in the Frequency Bands $11.7-12.2 \mathrm{GHz}$ in Region 3 and 11.7 12.5 GHz in Region 1 contained in this Appendix, together with any modifications resulting from the successful application of the procedures of Article 4 of this Appendix.
1.5 Region 2 Plan: The Plan for the Broadcasting-Satellite Service in the Frequency Band 12.2-12.7 GHz in Region 2 contained in this Appendix, together with any modifications resulting from the successful application of the procedures of Article 4 of this Appendix.
1.6 Frequency assignment in conformity with the Plan: Any frequency assignment which appears in the Regions 1 and 3 Plan or the Region 2 Plan or for which the procedure of Article 4 of this Appendix has been successfully applied.

ARTICLE 2

Frequency Bands

2.1 The provisions of this Appendix apply to the broadcasting-satellite service in the frequency bands between 11.7 GHz and 12.2 GHz in Region 3, between 11.7 GHz and 12.5 GHz in Region 1 and between 12.2 GHz and 12.7 GHz in Region 2 and to the other services to which these bands are allocated in Regions 1, 2 and 3, insofar as their relationship to the broadcasting-satellite service in these bands is concerned.

ARTICLE 3

Execution of the Provisions and Associated Plans

3.1 The Members of the Union in Regions 1, 2 and 3 shall adopt, for their broadcasting-satellite space stations ${ }^{1}$ operating in the frequency bands referred to in this Appendix, the characteristics specified in the appropriate Regional Plan and the associated provisions.
3.2 The Members of the Union shall not change the characteristics specified in the Regions 1 and 3 Plan or in the Region 2 Plan, or bring into use assignments to broadcasting-satellite space stations or to stations in the

[^26]other services to which these frequency bands are allocated, except as provided for in the Radio Regulations and the appropriate Articles and Annexes of this Appendix.

ARTICLE 4

Procedure for Modifications to the Plans

4.1 When an administration intends to make a modification ${ }^{1}$ to one of the Regional Plans, i.e. either:
a) to modify the characteristics of any of its frequency assignments to a space station ${ }^{2}$ in the broadcasting-satellite service which are shown in the appropriate Regional Plan, or for which the procedure in this Article has been successfully applied, whether or not the station has been brought into use; or
b) to include in the appropriate Regional Plan a new frequency assignment to a space station in the broadcasting-satellite service; or
c) to cancel a frequency assignment to a space station in the broadcasting-satellite service;
the following procedure shall be applied before any notification of the frequency assignment is made to the International Frequency Registration Board (see Article 5 of this Appendix);

[^27]4.1.1 Before an administration proposes to include in the Region 2 Plan under the provisions of paragraph 4.1 b), a new frequency assignment to a space station or to include in the Plan new frequency assignments to a space station whose orbital position is not designated in the Plan for this administration, all of the assignments to the service area involved should normally have been brought into service or have been notified to the Board in accordance with Article 5 of this Appendix. Should this not be the case, the administration concerned shall inform the Board of the reasons therefor.
4.2 The term "frequency assignment in conformity with the Plan" used in this and the following Articles is defined in Article 1.
4.3 Proposed modifications to a frequency assignment in conformity with one of the Regional Plans or inclusion in that Plan of a new frequency assignment

For Regions 1 and 3:

4.3.1 An administration proposing a modification to the characteristics of a frequency assignment in conformity with the Regions 1 and 3 Plan, or the inclusion of a new frequency assignment in that Plan, shall seek the agreement of those administrations:
4.3.1.1 of Regions 1 and 3 having a frequency assignment to a space station in the broadcasting-satellite service in the same or adjacent channel which is in conformity with the Regions 1 and 3 Plan, or in respect of which proposed modifications to that Plan have already been published by the Board in accordance with the provisions of paragraph 4.3.5.1 or 4.3.6 of this Article; or
4.3.1.2 of Region 2 having a frequency assignment to a space station in the broadcasting-satellite service with the necessary bandwidth, any portion of which falls within the necessary bandwidth of the proposed assignment, which is in conformity with the Region 2 Plan, or in respect of which proposed modifications to that Plan have already been published by the Board in accordance with the provisions of paragraph 4.3.5.1 or 4.3.6 of this Article; or
4.3.1.3 identified in accordance with resolves 2 of Resolution 43 (Orb-85); or
(Rev. 1986)
4.3.1.4 having no frequency assignment in the broadcasting-satellite service in the channel concerned but in whose territory the power flux-density value exceeds the prescribed limit as a result of the proposed modification or having an assignment whose associated service area does not cover the whole of the territory of the administration, and in whose territory outside that service area the power flux-density from the broadcasting-satellite space station subject to this modification exceeds the prescribed limit as a result of the proposed modification; or
4.3.1.5 having a frequency assignment in the band $11.7-12.2 \mathrm{GHz}$ in Region 2 or 12.2-12.5 GHz in Region 3 to a space station in the fixed-satellite service which is recorded in the Master Register or which has been coordinated or is being coordinated under the provisions of No. $\mathbf{1 0 6 0}$ of the Radio Regulations, or those of paragraph 7.2.1 of this Appendix;
4.3.1.6 whose services are considered to be affected.
4.3.2 The services of an administration are considered to be affected when the limits shown in Annex 1 are exceeded.

For Region 2:
4.3.3 An administration proposing a modification to the characteristics of a frequency assignment in conformity with the Region 2 Plan, or the inclusion of a new frequency assignment in that Plan, shall seek the agreement of those administrations:
4.3.3.1 of Region 2 having a frequency assignment in the Region 2 Plan to a space station in the broadcasting-satellite service in the same or adjacent channel which is in conformity with that Plan, or in respect of which proposed modifications to that Plan have already been published by the Board in accordance with the provisions of paragraph 4.3.5.1 or 4.3.6 of this Article; or
4.3.3.2 of Regions 1 and 3 having a frequency assignment to a space station in the broadcasting-satellite service with the necessary bandwidth, any portion of which falls within the necessary bandwidth of the proposed assignment, which is in conformity with the Regions 1 and 3 Plan, or in respect of which proposed modifications to that Plan have already been published by the Board in accordance with the provisions of paragraph 4.3.5.1 or 4.3.6 of this Article; or
4.3.3.3 identified in accordance with resolves 1 of Resolution 43 (Orb-85); or
4.3.3.4 having no frequency assignment in the broadcasting-satellite service in the channel concerned but in whose territory the power flux-density value exceeds the prescribed limit as a result of the proposed modification or having an assignment whose associated service area does not cover the whole of the territory of the administration, and in whose territory outside that service area the power flux-density from the broadcasting-satellite space station subject to this modification exceeds the prescribed limit as a result of the proposed modification; or
4.3.3.5 having a frequency assignment in the band $12.5-12.7 \mathrm{GHz}$ in Region 1 or $12.2-12.7 \mathrm{GHz}$ in Region 3 to a space station in the fixed-satellite service which is recorded in the Master Register or which has been coordinated or is being coordinated under the provisions of No. $\mathbf{1 0 6 0}$ of the Radio Regulations or those of paragraph 7.2.1 of this Appendix; or
4.3.3.6 having a frequency assignment to a space station in the broad-casting-satellite service in the band $12.5-12.7 \mathrm{GHz}$ in Region 3 with the necessary bandwidth, any portion of which falls within the necessary bandwidth of the proposed assignment and which
a) is recorded in the Master Register, or
b) has been coordinated or is being coordinated under the provisions of Resolution 33, or
c) appears in a Region 3 Plan to be adopted at a future administrative radio conference, taking account of modifications to that Plan which may be introduced in accordance with the Final Acts of the Conference;
4.3.3.7 whose services are considered to be affected.
4.3.4 The services of an administration are considered to be affected when the limits shown in Annex 1 are exceeded.

For all Regions:

4.3.5 An administration intending to modify characteristics in one of the Regional Plans shall send to the Board, not earlier than five years but preferably not later than eighteen months before the date on which the
assignment is to be brought into use, the relevant information listed in Annex 2. Modifications to that Plan involving additions under paragraph 4.1 b) shall lapse if the assignment is not brought into use by that date.
4.3.5.1 Where as a result of the intended modification the limits defined in Annex 1 are not exceeded, this fact shall be indicated when submitting to the Board the information required by paragraph 4.3.5. The Board shall then publish this information in a special section of its weekly circular.
4.3.5.2 In all other cases the administration shall notify the Board of the names of the administrations whose agreement it considers should be sought in order to arrive at the agreement referred to in paragraph 4.3.1 or 4.3.3, as well as of those with which agreement has already been reached.
4.3.6 The Board shall determine on the basis of Annex 1 the administrations whose frequency assignments are considered to be affected within the meaning of paragraph 4.3.1 or 4.3.3. The Board shall include the names of those administrations with the information received under paragraph 4.3.5.2 and shall publish the complete information in a special section of its weekly circular. The Board shall immediately send the results of its calculations to the administration proposing the modification to the appropriate Regional Plan.
4.3.7 The Board shall send a telegram to the administrations listed in the special section of the weekly circular drawing their attention to the information it contains and shall send them the results of its calculations.
4.3.8 An administration which feels that it should have been included in the list of administrations whose services are considered to be affected may, giving the technical reasons for so doing, request the Board to include its name. The Board shall study this request on the basis of Annex 1 and shall send a copy of the request with an appropriate recommendation to the administration proposing the modification to the appropriate Regional Plan.
4.3.9 Any modification to a frequency assignment which is in conformity with the appropriate Regional Plan or any inclusion in that Plan of a new frequency assignment which would have the effect of exceeding the limits specified in Annex 1 shall be subject to the agreement of all administrations whose services are considered to be affected.
4.3.10 The administration seeking agreement or the administration with which agreement is sought may request any additional technical information it considers necessary. The administrations shall inform the Board of such requests.
4.3.11 Comments from administrations on the information published pursuant to paragraph 4.3 .6 should be sent either directly to the administration proposing the modification or through the Board. In any event the Board shall be informed that comments have been made.
4.3.12 An administration that has not notified its comments either to the administration seeking agreement or to the Board within a period of four months following the date of the weekly circular referred to in paragraph 4.3.5.1 or 4.3.6 shall be understood to have agreed to the proposed assignment. This time limit may be extended by up to three months for an administration that has requested additional information under paragraph 4.3.10 or for an administration that has requested the assistance of the Board under paragraph 4.3.20. In the latter case the Board shall inform the administrations concerned of this request.
4.3.13 If, in seeking agreement, an administration modifies its initial proposal, it shall again apply the provisions of paragraph 4.3.5 and the consequent procedure with respect to any other administration whose services might be affected as a result of modifications to the initial proposal.
4.3.14 If no comments have been received on the expiry of the periods specified in paragraph 4.3.12, or if agreement has been reached with the administrations which have made comments and with which agreement is necessary, the administration proposing the modification may continue with the appropriate procedure in Article 5 and shall inform the Board, indicating the final characteristics of the frequency assignment together with the names of the administrations with which agreement has been reached.
4.3.15 The agreement of the administrations affected may also be obtained in accordance with this Article, for a specified period.
4.3.16 When the proposed modification to the appropriate Regional Plan involves developing countries, administrations shall seek all practicable solutions conducive to the economical development of the broadcastingsatellite systems of these countries.
4.3.17 The Board shall publish in a special section of its weekly circular the information received under paragraph 4.3.14 together with the names of any administrations with which the provisions of this Article have been successfully applied. The frequency assignment concerned shall enjoy the same status as those appearing in the appropriate Regional Plan and will be considered as a frequency assignment in conformity with the Plan.
4.3.18 When an administration proposing to modify the characteristics of a frequency assignment or to make a new frequency assignment receives notice of disagreement from an administration whose agreement it has sought, it should first endeavour to solve the problem by exploring all possible means of meeting its requirement. If the problem still cannot be solved by such means, the administration whose agreement has been sought should endeavour to overcome the difficulties as far as possible, and shall state the technical reasons for any disagreement if the administration seeking the agreement requests it to do so.
4.3.19 If no agreement is reached between the administrations concerned, the Board shall carry out any study that may be requested by these administrations; the Board shall inform them of the result of the study and shall make such recommendations as it may be able to offer for the solution of the problem.
4.3.20 An administration may at any stage in the procedure described, or before applying it, request the assistance of the Board, particularly in seeking the agreement of another administration.
4.3.21 The relevant provisions of Article 5 of this Appendix shall be applied when frequency assignments are notified to the Board.

4.4 Cancellation of frequency assignments

When a frequency assignment in conformity with one of the Regional Plans is no longer required, whether or not as a result of a modification, the administration concerned shall immediately so inform the Board. The Board shall publish this information in a special section of its weekly circular and delete the assignment from the appropriate Regional Plan.

4.5 Master copy of the Plans

4.5.1 a) The Board shall maintain an up-to-date master copy of the Regions 1 and 3 Plan taking account of the application of the procedure specified in this Article. The Board shall prepare a document listing the amendments to be made to the Plan as a result of modifications made in accordance with the procedure in this Article.
b) The Board shall maintain an up-to-date master copy of the Region 2 Plan, including the overall equivalent protection margins of each assignment, taking account of the application of the procedure specified in this Article. This master copy shall contain the overall equivalent protection margins derived from the Plan as established by the 1983 Conference and those derived from all modifications to the Plan as a result of the successful completion of the modification procedure described in this Article. The Board shall prepare a document listing the amendments to be made to the Plan as a result of modifications made in accordance with the procedure described in this Article.
4.5.2 The Secretary-General shall be informed by the Board of any modifications made to the Regional Plans and shall publish an up-to-date version of those Plans in an appropriate form when justified by the circumstances.

ARTICLE 5

Notification, Examination and Recording in the Master Register of Frequency Assignments
to Space Stations in the Broadcasting-Satellite Service

5.1 Notification

5.1.1 Whenever an administration intends to bring into use a frequency assignment to a space station in the broadcasting-satellite service, it shall
notify this frequency assignment to the Board. For this purpose, the notifying administration shall apply the following provisions.
5.1.2 For any notification under paragraph 5.1.1, an individual notice for each frequency assignment shall be drawn up as prescribed in Annex 2, the various sections of which specify the basic characteristics to be provided as appropriate. It is recommended that the notifying administration should also supply any other data it may consider useful.
5.1.3 Each notice must reach the Board not earlier than three years before the date on which the frequency assignment is to be brought into use. In any case, the notice must reach the Board not later than three months before that date ${ }^{1}$.
5.1.4 Any frequency assignment the notice of which reaches the Board after the applicable period specified in paragraph 5.1.3 shall, where it is to be recorded, bear a remark in the Master Register to indicate that it is not in conformity with paragraph 5.1.3.
5.1.5 Any notice made under paragraph 5.1.1 which does not contain the characteristics specified in Annex 2 shall be returned by the Board immediately by airmail to the notifying administration with the relevant reasons.
5.1.6 Upon receipt of a complete notice, the Board shall include its particulars, with the date of receipt, in its weekly circular, which shall contain the particulars of all such notices received since the publication of the previous circular.
5.1.7 The circular shall constitute the acknowledgement to the notifying administration of the receipt of a complete notice.

[^28]5.1.8 Complete notices shall be considered by the Board in order of receipt. The Board shall not postpone its finding unless it lacks sufficient data to reach a decision; moreover, the Board shall not act upon any notice which has a technical bearing on an earlier notice still under consideration by the Board until it has reached a finding with respect to such earlier notice.

5.2 Examination and recording

〔2.1 The Board shall examine each notice:

a) with respect to its conformity with the Convention and the relevant provisions of the Radio Regulations (with the exception of those relating to b), c) and d) below);
b) with respect to its conformity with the appropriate Regional Plan; or
c) with respect to its conformity with the appropriate Regional Plan, however, having characteristics differing from those in the appropriate Regional Plan in one or more of the following aspects:

- use of a reduced e.i.r.p.,
- use of a reduced coverage area entirely situated within the coverage area appearing in the appropriate Regional Plan,
- use of other modulating signals in accordance with the provisions of paragraph 3.1.3 of Annex 5,
- use of the assignment for transmission in the fixed-satellite service in accordance with No. 846 of the Radio Regulations,
- use of an orbital position under the conditions specified in paragraph B of Annex 7; or
d) with respect to its conformity with the provisions of Resolution 42 (Orb-85).
5.2.2 Where the Board reaches a favourable finding with respect to paragraphs 5.2.1 a) and 5.2.1 b), the frequency assignment of an administration shall be recorded in the Master Register. The date of receipt of the notice by the Board shall be entered in Column 2d. In relations between administrations, all frequency assignments brought into use in conformity with the appropriate Regional Plan and recorded in the Master Register shall be considered to have the same status irrespective of the dates entered in Column 2d for such frequency assignments.
5.2.2.1 Where the Board reaches a favourable finding with respect to paragraphs 5.2.1 a) and 5.2.1 c), the frequency assignment shall be recorded in the Master Register. The date of receipt of the notice by the Board shall be entered in Column 2d. In relations between administrations, all frequency assignments brought into use in conformity with the appropriate Regional Plan and recorded in the Master Register shall be considered to have the same status irrespective of the dates entered in Column 2d for such frequency assignments. When recording these assignments, the Board shall indicate by an appropriate symbol the characteristics having a value different from that appearing in the appropriate Regional Plan.
5.2.2.2 Where the Board reaches a favourable finding with respect to paragraph 5.2.1 a) but an unfavourable finding with respect to paragraphs 5.2.1 b) and 5.2.1 c), it shall examine the notice with respect to the successful application of the provisions of Resolution 42 (Orb-85). A frequency assignment for which the provisions of Resolution 42 (Orb-85) have been successfully applied shall be recorded in the Master Register with an appropriate symbol to indicate its interim status. The date of receipt of the notice by the Board shall be entered in Column 2d. In relations between administrations all frequency assignments brought into use following the successful application of the provisions of Resolution 42 (Orb-85) and recorded in the Master Register shall be considered to have the same status irrespective of the dates entered in Column 2d for such frequency assignments.
5.2.3 Whenever a frequency assignment is recorded in the Master Register, the finding reached by the Board shall be indicated by a symbol in Column 13a.
5.2.4 Where the Board reaches an unfavourable finding with respect to paragraphs 5.2.1 a), 5.2.1 b) and 5.2.1 c), the notice shall be returned immediately by airmail to the notifying administration with the reasons of the Board for this finding and with such suggestions as the Board may be able to offer with a view to a satisfactory solution of the problem.
5.2.5 Where the notifying administration resubmits the notice and the finding of the Board becomes favourable with respect to the appropriate parts of paragraph 5.2.1, the notice shall be treated as in paragraph 5.2.2, 5.2.2.1 or 5.2.2.2, as appropriate.
5.2.6 If the notifying administration resubmits the notice without modification and insists on its reconsideration, and if the Board's finding with respect to paragraph 5.2.1 remains unfavourable, the notice is returned to the notifying administration in accordance with paragraph 5.2.4. In this case, the notifying administration undertakes not to bring into use the frequency assignment until the condition specified in paragraph 5.2.5 is fulfilled. For Regions 1 and 3, in the event that the Board has been informed of agreement to modification of the Plan for a specified period of time in accordance with Article 4, the frequency assignment shall be recorded in the Master Register with a note indicating that the frequency assignment is valid only for the period specified. The notifying administration using the frequency assignment over a specified period shall not subsequently invoke this fact to justify the continued use of the frequency beyond the period specified unless it obtains the agreement of the administration(s) concerned.
5.2.7 If a frequency assignment notified in advance of bringing into use in conformity with paragraph 5.1.3 has received a favourable finding by the Board with respect to the provisions of paragraph 5.2.1, it shall be entered provisionally in the Master Register with a special symbol in the Remarks Column indicating the provisional nature of that entry.
5.2.8 When the Board has received confirmation that the frequency assignment has been brought into use, the Board shall remove the symbol in the Master Register.
5.2.9 The date in Column 2c shall be the date of bringing into use notified by the administration concerned. It is given for information only.

5.3 Cancellation of entries in the Master Register

5.3.1 If an administration has not confirmed the bringing into use of a frequency assignment under paragraph 5.2 .8 , the Board will make inquiries of the administration not earlier than six months after the expiry of the period specified in paragraph 5.1.3. On receipt of the relevant information, the Board will either modify the date of coming into use or cancel the entry.
5.3.2 If the use of any recorded frequency assignment is permanently discontinued, the notifying administration shall so inform the Board within three months, whereupon the entry shall be removed from the Master Register.

ARTICLE 6

> Coordination, Notification and Recording in the Master International Frequency Register of Frequency Assignments to Terrestrial Stations Affecting Broadcasting-Satellite Frequency Assignments in the Frequency Bands $11.7-12.2 \mathrm{GHz}$ (in Region 3), $11.7-12.5 \mathrm{GHz}$ (in Region 1) and $12.2-12.7 \mathrm{GHz}$ (in Region 2)

Section I. Coordination Procedure to Be Applied

6.1.1 Before notifying to the Board a frequency assignment to a terrestrial transmitting station, an administration shall initiate coordination with any other administration having a frequency assignment to a broadcasting-satellite station in conformity with the appropriate Regional Plan if:

- the necessary bandwidths of the two transmissions overlap; and

[^29]- the power flux-density which would be produced by the proposed terrestrial transmitting station exceeds the value derived in accordance with Annex 3 at one or more points on the edge of the service area which is within the coverage area of the broadcasting-satellite station of that administration.
6.1.2 For the purpose of effecting coordination, the administration responsible for the terrestrial station shall send to the administrations concerned, by the fastest possible means, a diagram drawn to an appropriate scale indicating the location of the terrestrial station and all other data of the proposed frequency assignment and the approximate date on which it is planned to bring the station into use.
6.1.3 An administration with which coordination is sought shall acknowledge receipt of the coordination data immediately by telegram. If no acknowledgement is received within fifteen days of dispatch, the administration seeking coordination may dispatch a telegram requesting acknowledgement of receipt of the coordination data, to which the receiving administration shall reply. Upon receipt of the coordination data, an administration with which coordination is sought shall promptly examine the matter with regard to interference ${ }^{1}$ which would be caused to its frequency assignments in conformity with the appropriate Regional Plan and shall, within an overall period of two months from dispatch of the coordination data, either notify the administration requesting coordination of its agreement to the proposed assignment or, if this is impossible, indicate the reasons therefor and make such suggestions as it may be able to offer with a view to a satisfactory solution of the problem.

[^30]6.1.4 No coordination is required when an administration proposes to change the characteristics of an existing assignment in such a way as not to increase the level of interference to the service to be rendered by the broadcasting-satellite stations of other administrations.
6.1.5 An administration seeking coordination may request the Board to endeavour to effect coordination where:
a) an administration with which coordination is sought fails to acknowledge receipt under paragraph 6.1 .3 within one month of dispatch of the coordination data;
b) an administration which has acknowledged receipt under paragraph 6.1.3 fails to give a decision within three months of dispatch of the coordination data;
c) the administration seeking coordination and an administration with which coordination is sought disagree on the acceptable level of interference; or
d) coordination is impossible for any other reason.

In so doing, the administration concerned shall provide the Board with the necessary information to enable it to endeavour to effect such coordination.
6.1.6 Either the administration seeking coordination or an administration with which coordination is sought, or the Board, may request any additional information which they may require to assess the level of interference to the services concerned.
6.1.7 Where the Board receives a request under paragraph 6.1.5 a), it shall forthwith send a telegram to the administration concerned requesting immediate acknowledgement.
6.1.8 Where the Board receives an acknowledgement following its action under paragraph 6.1.7 or receives a request under paragraph 6.1.5 b), it shall forthwith send a telegram to the administration concerned requesting an early decision on the matter.
6.1.9 Where the Board receives a request under paragraph 6.1.5 d), it shall endeavour to effect coordination in accordance with the provisions of paragraph 6.1.2. Where the Board receives no acknowledgement of its request for coordination within the period specified in paragraph 6.1.3, it shall act in accordance with paragraph 6.1.7.
6.1.10 Where an administration fails to reply within one month of dispatch of the Board's telegram sent under paragraph 6.1.7 requesting an acknowledgement or fails to give a decision on the matter within two months of dispatch of the Board's telegram of request sent under paragraph 6.1.8, the administration with which coordination was sought shall be considered to have undertaken that no complaint will be made in respect of any harmful interference which may be caused by the terrestrial station being coordinated to the service rendered or to be rendered by its satellite-broadcasting station.
6.1.11 Where necessary, as part of the procedure under paragraph 6.1.5, the Board shall assess the level of interference. In any case, the Board shall inform the administrations concerned of the results obtained.
6.1.12 In the event of continuing disagreement between one administration seeking to effect coordination and one with which coordination has been sought, the administrations concerned may explore the possibility of reaching an agreement on the use of the proposed frequency assignment for a specified period.

Section II. Notification Procedure for Frequency Assignments

6.2.1 Any frequency assignment to a fixed, land or broadcasting station shall be notified to the International Frequency Registration Board if the use of the frequency concerned is capable of causing harmful interference to the service rendered or to be rendered by a broadcasting-satellite station of any other administration, or if it is desired to obtain international recognition of the use of the frequency ${ }^{1}$.
6.2.2 For this notification, an individual notice for each frequency assignment shall be drawn up as prescribed in Section A of Appendix 1 to the Radio Regulations, which specifies the basic characteristics to be furnished as required. It is recommended that the notifying administration should also supply the additional data called for in that Section, together with such further data as it may consider appropriate.
6.2.3 Whenever practicable, each notice should reach the Board before the date on which the assignment is brought into use. The notice made in accordance with paragraph 6.2.2 must reach the Board not earlier than three years and not later than three months before the date on which the assignment is to be brought into use.
6.2.4 Any frequency assignment, the notice of which reaches the Board less than three months before it is brought into use shall, where it is to be recorded, bear a remark in the Master Register to indicate that it is not in conformity with paragraph 6.2.3.

[^31]Section III. Procedure for the Examination of Notices and the Recording of Frequency Assignments in the Master Register
6.3.1 Whatever the means of communication, including telegraph, by which a notice is transmitted to the Board, it shall be considered complete if it contains at least the appropriate basic characteristics specified in Section A of Appendix 1 to the Radio Regulations.
6.3.2 Complete notices shall be considered by the Board in the order of their receipt.
6.3.3 Any incomplete notice shall be returned by the Board immediately, by airmail, to the notifying administration with the reasons therefor.
6.3.4 Upon receipt of a complete notice, the Board shall include the particulars thereof, with the date of receipt, in its weekly circular; this circular shall contain the particulars of all such notices received since publication of the previous circular.
6.3.5 The circular shall constitute the Board's acknowledgement to the notifying administration of the receipt of a complete notice.
6.3.6 Complete notices shall be considered by the Board in the order specified in paragraph 6.3.2. The Board may not postpone the formulation of a finding unless it lacks sufficient data to reach a decision; moreover, the Board shall not act upon any notice which has a technical bearing on an earlier notice still under consideration by the Board until it has reached a finding with respect to such earlier notice.

6.3.7 The Board shall examine each notice:

6.3.8 - with respect to its conformity with the Convention, the relevant provisions of the Radio Regulations and the provisions of this Appendix (with the exception of those relating to the coordination procedure and the probability of harmful interference);
6.3.9 - with respect to its conformity with the provisions of paragraph 6.1.1 relating to coordination of the use of the frequency assignment with the other administrations concerned;
6.3.10 - where appropriate, with respect to the probability of harmful interference to a broadcasting-satellite station whose frequency assignment is in conformity with the appropriate Regional Plan.
6.3.11 Depending upon the findings of the Board subsequent to the examination prescribed in paragraphs 6.3.8, 6.3.9 and 6.3.10, further action shall be as follows:

6.3.12 Finding unfavourable with respect to paragraph 6.3.8

6.3.13 Where the notice includes a specific reference to the fact that the station will be operated in accordance with the provisions of No. 342 of the Radio Regulations, it shall be examined immediately with respect to paragraphs 6.3.9 and 6.3.10.
6.3.14 If the finding is favourable with respect to paragraph 6.3 .9 or 6.3.10, as appropriate, the assignment shall be recorded in the Master Register. The date of receipt of the notice by the Board shall be entered in Column 2d.
6.3.15 If the finding is unfavourable with respect to paragraph 6.3.9 or 6.3.10, as appropriate, the notice shall be returned immediately by airmail to the notifying administration with the Board's reasons for this finding. In such case the notifying administration shall undertake not to bring into use the frequency assignment until the condition specified in paragraph 6.3.14 can be fulfilled. However, the administrations concerned may explore the possibility of reaching an agreement on the use of the proposed frequency assignment for a specified period.
6.3.16 Where the notice does not include a specific reference to the fact that the station will be operated in accordance with the provisions of No. 342 of the Radio Regulations, it shall be returned immediately by airmail to the notifying administration with the Board's reasons for this finding and with such suggestions as the Board may be able to offer with a view to a satisfactory solution of the problem.
6.3.17 If the notifying administration resubmits the notice unchanged, it shall be treated in accordance with the provisions of paragraph 6.3.16.
6.3.18 If the notifying administration resubmits the notice with a specific reference to the fact that the station will be operated in accordance with the provisions of No. 342 of the Radio Regulations, it shall be treated in accordance with the provisions of paragraphs 6.3.13 and 6.3.14 or 6.3.15, as appropriate.
6.3.19 If the notifying administration resubmits the notice with modifications which, after re-examination, result in a favourable finding by the Board with respect to paragraph 6.3.8, the notice shall be treated in accordance with the provisions of paragraphs 6.3.20 to 6.3.32. However, in any subsequent recording of the assignment, the date of receipt of the resubmitted notice by the Board shall be entered in Column 2d.

6.3.20 Finding favourable with respect to paragraph 6.3.8

6.3.21 Where the Board finds that the coordination procedure mentioned in paragraph 6.3.9 has been successfully applied with all administrations whose broadcasting-satellite services may be affected, the assignment shall be recorded in the Master Register. The date of receipt of the notice by the Board shall be entered in Column 2d.
6.3.22 Where the Board finds that the coordination procedure mentioned in paragraph 6.3.9 has not been applied, and the notifying administration requests the Board to effect the required coordination, the Board shall take the appropriate action and shall inform the administrations concerned of the results obtained. If the Board's efforts are successful, the notice shall be treated in accordance with the provisions of paragraph 6.3.21. If the Board's efforts are unsuccessful, the notice shall be examined by the Board with respect to the provisions of paragraph 6.3.10.
6.3.23 Where the Board finds that the coordination procedure mentioned in paragraph 6.3.9 has not been applied and the notifying administration does not request the Board to effect the required coordination, the notice shall be returned immediately by airmail to the notifying administration with the Board's reasons for this action and with such suggestions as the Board may be able to offer with a view to a satisfactory solution of the problem.
6.3.24 Where the notifying administration resubmits the notice and the Board finds that the coordination procedure mentioned in paragraph 6.3.9 has been successfully applied with all administrations whose broadcastingsatellite services may be affected, the assignment shall be recorded in the Master Register. The date of receipt of the original notice by the Board shall be entered in Column 2d. The date of the receipt of the resubmitted notice by the Board shall be entered in the Remarks Column.
6.3.25 Where the notifying administration resubmits the notice, requesting the Board to effect the required coordination, it shall be treated in accordance with the provisions of paragraph 6.3.22. However, in any subsequent recording of the assignment, the date of receipt of the resubmitted notice by the Board shall be entered in the Remarks Column.
6.3.2 Where the notifying administration resubmits the notice and states that it has been unsuccessful in its efforts to effect coordination, it shall be examined by the Board with respect to the provisions of paragraph 6.3.10. However, in any subsequent recording of the assignment, the date of receipt of the resubmitted notice by the Board shall be entered in the Remarks Column.
6.3.27 Finding favourable with respect to paragraphs 6.3.8 and 6.3.10
6.3.28 The assignment shall be recorded in the Master Register. The date of receipt by the Board of the notice shall be entered in Column 2d.
6.3.29 Finding favourable with respect to paragraph 6.3 .8 but unfavourable with respect to paragraph 6.3.10
6.3.30 The notice shall be returned immediately by airmail to the notifying administration with the Board's reasons for this finding and with such suggestions as the Board may be able to offer with a view to a satisfactory solution of the problem.
6.3.31 Should the notifying administration resubmit the notice with modifications which result, after re-examination, in a favourable finding by the Board with respect to paragraph 6.3.10, the assignment shall be recorded in the Master Register. The date of receipt of the original notice by the Board shall be entered in Column 2d. The date of receipt of the resubmitted notice by the Board shall be indicated in the Remarks Column.
6.3.32 Should the notifying administration resubmit the notice, either unchanged or with modifications which reduce the probability of harmful interference, but insufficiently to permit the provisions of paragraph 6.3.31 to be applied and should that administration insist upon reconsideration of the notice but the Board's finding remain unchanged, the notification shall again be returned to the notifying administration in accordance with paragraph 6.3.30. In such case, the notifying administration shall undertake not to bring into use the proposed frequency assignment until the condition specified in paragraph 6.3 .31 can be fulfilled. However, the administrations concerned may explore the possibility of reaching an agreement on the use of the frequency assignment for a specified period. In that event the Board shall be notified of the agreement and the frequency assignment shall be recorded in the Master Register with a note indicating that the assignment is valid only for the specified period. The notifying administration using the frequency assignment during a specified period shall not subsequently use this circumstance to justify continued use of the frequency beyond this period unless it obtains the agreement of the administration or administrations concerned.

6.3.33 Change in the basic characteristics of assignments already recorded in the Master Register

6.3.34 Any notice of a change in the basic characteristics of an assignment already recorded in the Master Register, as specified in Appendix 1 to the Radio Regulations (except those entered in Columns 2c, 3 and 4 a of the Master Register), shall be examined by the Board in accordance with the provisions of paragraphs 6.3.8 and 6.3.9 and, where appropriate, paragraph 6.3.10 and the provisions of paragraphs 6.3.12 to 6.3 .32 inclusive shall be applied. Where the change should be recorded, the original assignment shall be amended according to the notice.
6.3.35 However, in the event of a change in the basic characteristics of an assignment which is in conformity with paragraph 6.3.8, should the Board reach a favourable finding with respect to paragraph 6.3.9 and, if applicable, paragraph 6.3.10, or find that the change does not increase the probability of harmful interference to assignments already recorded, the amended assignment shall retain the original date in Column 2d. In addition, the date of receipt by the Board of the notice relating to the change shall be entered in the Remarks Column.
6.3.36 The planned date of bringing into use of a frequency assignment may be extended on request of the notifying administration by three months. Where the administration states that, due to exceptional circumstances, it needs a further extension of this period, such extension may be granted, but it shall in no case exceed six months from the original planned date of bringing into use.
6.3.37 In applying the provisions of this Section, any resubmitted notice which is received by the Board more than two years after the date of its return by the Board shall be considered as a new notice.
6.3.38 Recording of frequency assignments notified before being brought into use
6.3.39 If a frequency assignment notified prior to its bringing into use has received a favourable finding by the Board with respect to paragraphs 6.3.8 and 6.3.9, and, where appropriate, 6.3.10, it shall be entered provisionally in the Master Register with a special symbol in the Remarks Column indicating the provisional nature of that entry.
6.3.40 Within one month after the date of bringing into use, either as originally notified or as modified in application of paragraph 6.3.36, the notifying administration shall confirm that the frequency assignment has been brought into use. When the Board is informed that the assignment has been brought into use, the special symbol shall be deleted from the Remarks Column.
6.3.41 If the Board fails to receive this confirmation within the period referred to in paragraph 6.3.40, the entry concerned shall be cancelled. The Board shall consult the administration concerned before taking such action.

ARTICLE 7

Procedures for Coordination, Notification and Recording in the Master International Frequency Register of Frequency Assignments to Stations in the Fixed-Satellite Service in the Frequency Bands 11.7-12.2 GHz (in Region 2), 12.2 - 12.7 GHz (in Region 3) and 12.5-12.7 GHz (in Region 1), When Frequency Assignments to Broadcasting-Satellite Stations in Conformity with the Regions 1 and 3 Plan, or the Region 2 Plan, Respectively, Are Involved ${ }^{1}$

Section I. Procedure for the Advance Publication of Information on Planned Fixed-Satellite Systems

Publication of Information

7.1.1 An administration which intends to establish a fixed-satellite system shall, prior to the procedure described in paragraph 7.2.1, where applicable, send to the International Frequency Registration Board, not earlier than five years and preferably not later than two years before the date of bringing into service each satellite network of the planned system, the information listed in Appendix 4 to the Radio Regulations.
7.1.2 Any amendments to the information concerning a planned satellite system sent in accordance with paragraph 7.1.1 shall also be sent to the Board as soon as they become available.

[^32]7.1.3 The Board shall publish the information sent under paragraphs 7.1.1 and 7.1.2 in a special section of its weekly circular and shall also, when the weekly circular contains such information, so advise all administrations by circular telegram. The circular telegram shall include the frequency bands to be used and, in the case of a geostationary satellite, the orbital location of the space station.
7.1.3.1 If the information is found to be incomplete, the Board shall publish it under paragraph 7.1.3 and immediately seek, from the administration concerned, any clarification and information not provided. In such cases, the period of three months specified in paragraph 7.1.4 shall count from the date of publication, under paragraph 7.1.3, of the complete information.

Comments on Published Information

7.1.4 If, after studying the information published under paragraph 7.1.3, any administration is of the opinion that interference which may be unacceptable may be caused to its frequency assignments in conformity with the appropriate Regional Plan, it shall, within three months after the date of the weekly circular publishing the information listed in Appendix 4 to the Radio Regulations, send its comments to the administration concerned. A copy of these comments shall also be sent to the Board. If no such comments are received from an administration within the period mentioned above, it may be assumed that that administration has no basic objections to the planned fixed-satellite network(s) of that system of which details have been published.

Resolution of Difficulties

7.1.5 An administration receiving comments sent in accordance with paragraph 7.1.4 shall endeavour to resolve any difficulties that may arise without considering the possibility of adjustment to broadcasting-satellite stations of other administrations. If no such means can be found, the administration concerned is then free to apply to other administrations concerned in order to solve these difficulties, provided that any modifications which may result to the appropriate Regional Plan are in accordance with Article 4.
7.1.6 In their attempts to resolve the difficulties mentioned above, administrations may seek the assistance of the Board.

Results of Advance Publication

7.1.7 An administration, on behalf of which details of planned satellite networks have been published in accordance with the provisions of paragraphs 7.1.1 and 7.1.2 shall, after the period of three months specified in paragraph 7.1.4, inform the Board whether or not comments provided for in paragraph 7.1.4 have been received and of the progress made in resolving any remaining difficulties. Additional information on the progress made in resolving any remaining difficulties shall be sent to the Board at intervals not exceeding six months prior to the commencement of coordination or the sending in of notices to the Board. The Board shall publish this information in a special section of its weekly circular and shall also, when the weekly circular contains such information, so inform all administrations by circular telegram.

Commencement of Coordination or Notification Procedure

7.1.8 In complying with the provisions of paragraphs 7.1.5 and 7.1.6, an administration responsible for a planned fixed-satellite system shall, if necessary, defer its commencement of the coordination procedure of paragraph 7.2.1 or, where this is not applicable, the sending of its notices to the Board until five months after the date of the weekly circular containing the information listed in Appendix 4 to the Radio Regulations on the relevant satellite network. However, in respect of those administrations with which difficulties have been resolved or which have responded favourably, the coordination procedure, where applicable, may be commenced prior to the expiry of the five months mentioned above.

Section II. Coordination Procedures to Be Applied in Appropriate Cases

7.2.1 Before an administration notifies to the Board or brings into use any frequency assignment to a space station in the fixed-satellite service, it shall seek the agreement of any other administration having a frequency assignment in conformity with the appropriate Regional Plan, if:
a) any portion of the necessary bandwidth proposed for the space station in the fixed-satellite service falls within the necessary bandwidth associated with the frequency assignment to the broadcasting-satellite station; and
b) the power flux-density which would be produced by the proposed fixed-satellite assignment exceeds the value specified in Annex 4.

For this purpose, the administration seeking agreement shall send to any other such administration the information listed in Appendix 3 to the Radio Regulations.
7.2.2 No additional agreement is necessary when an administration proposes to change the characteristics of an existing assignment in such a way as will, in respect of the broadcasting-satellite service of another administration, meet the requirements of paragraph 7.2.1 above, or when this assignment has previously been the subject of an agreement and when the change will not cause any increase in the interference potential specified in that agreement.
7.2.3 An administration seeking coordination under paragraph 7.2.1 shall at the same time send to the Board a copy of the request for coordination together with the information listed in Appendix 3 to the Radio Regulations and the name(s) of the administration(s) whose agreement is sought. The Board shall determine on the basis of Annex 4 which frequency assignments in conformity with the appropriate Regional Plan are considered to be affected. The Board shall include the names of those administrations with the information received from the administration seeking coordination and shall publish this information in a special section of its weekly circular, together with a reference to the weekly circular in which details of the satellite system were published in accordance with Section I of this Article. When the weekly circular contains such information, the Board shall so inform all administrations by circular telegram.
7.2.4 An administration believing that it should have been included in the procedure under paragraph 7.2 .1 shall have the right to request that it be brought into the procedure.
7.2.5 An administration whose agreement is sought under paragraph 7.2.1 shall acknowledge receipt of the coordination data immediately by telegram. If no acknowledgement is received within one month after the date of the weekly circular publishing the information under paragraph 7.2.3, the administration seeking coordination shall dispatch a telegram requesting acknowledgement, to which the receiving administration shall reply within a further period of one month. Upon receipt of the coordination data, an administration shall, having regard to the proposed date of bringing into use of the assignment for which agreement was requested, promptly examine the matter with regard to interference ${ }^{1}$ which would be caused to the service rendered by its stations in respect of which agreement is sought under paragraph 7.2.1, and shall, within three months from the date of the relevant weekly circular, notify its agreement to the requesting administration. If the administration with which coordination is sought does not agree, it shall, within the same period, send to the administration seeking coordination the technical details upon which its disagreement is based, and make such suggestions as it may be able to offer with a view to a satisfactory solution of the problem. A copy of these comments shall also be sent to the Board.
7.2.6 An administration seeking coordination may request the Board to endeavour to effect coordination in those cases where:
a) an administration whose agreement is sought under paragraph 7.2.1 fails to acknowledge receipt, under paragraph 7.2.5, within two months after the date of the weekly circular publishing the information relating to the request for coordination;
b) an administration has acknowledged receipt under paragraph 7.2.5, but fails to give a decision within three months from the date of the relevant weekly circular;

[^33]c) there is disagreement between the administration seeking coordination and an administration whose agreement is sought as to the acceptable level of interference; or
d) agreement between administrations is not possible for any other reason.

In so doing, it shall furnish the Board with the necessary information to enable it to endeavour to effect such coordination.

7.2.7 Either the administration seeking coordination or an administration

 whose agreement is sought, or the Board, may request additional information which they may require to assess the level of interference to the services concerned.7.2.8 Where the Board receives a request under paragraph 7.2.6 a), it shall forthwith send a telegram to the administration whose agreement is sought requesting immediate acknowledgement.
7.2.9 Where the Board receives an acknowledgement following its action under paragraph 7.2.8, or where the Board receives a request under paragraph 7.2.6 b), it shall forthwith send a telegram to the administration whose agreement is sought requesting an early decision on the matter.
7.2.10 Where the Board receives a request under paragraph 7.2.6 d), it shall endeavour to effect coordination in accordance with the provisions of paragraph 7.2.1. The Board shall also, where appropriate, act in accordance with paragraph 7.2.3. Where the Board receives no acknowledgement to its request for coordination within the periods specified in paragraph 7.2.5, it shall act in accordance with paragraph 7.2.8.
7.2.11 Where an administration fails to reply within one month of dispatch of the Board's telegram requesting an acknowledgement sent under paragraph 7.2.8, or fails to give a decision on the matter within one month of dispatch of the Board's telegram of request under paragraph 7.2.9, it shall be deemed that the administration whose agreement was sought has undertaken:
a) that no complaint will be made in respect of any harmful interference which may be caused to the services rendered by its
broadcasting-satellite stations by the use of the assignment for which coordination was requested;
b) that its broadcasting-satellite stations will not cause harmful interference to the use of the assignment for which coordination was requested.
7.2.12 Where necessary, as part of the procedure under paragraph 7.2.6, the Board shall assess the level of interference. In any case, the Board shall inform the administrations concerned of the results obtained.
7.2.13 In the event of continuing disagreement between one administration seeking to effect coordination and one whose agreement has been sought, provided that the assistance of the Board has been requested, the administration seeking coordination may, after five months from the date of the request for coordination, taking into consideration the provisions of paragraph 7.3.4, send its notice concerning the proposed assignment to the Board. In those circumstances the notifying administration shall undertake not to bring the frequency assignment into use until the condition in paragraph 7.4.11.2 can be fulfilled. But the administrations concerned may explore the possibility of reaching an agreement on the use of the proposed frequency assignment for a specified period.

Section III. Notification of Frequency Assignments

7.3.1 Any frequency assignment to a space station in the fixed-satellite service shall be notified to the Board:
a) if the use of the frequency concerned is capable of causing harmful interference to a frequency assignment of another administration which is in conformity with the appropriate Regional Plan ${ }^{1}$; or
b) if it is desired to obtain international recognition of the use of the frequency.

[^34]7.3.2 Similar notice shall be given for any frequency to be used for reception by an earth station where one or more of the conditions specified in paragraph 7.3.1 are applicable.
7.3.3 For any notification under paragraph 7.3.1 or 7.3.2, an individual notice for each frequency assignment shall be drawn up as prescribed in Appendix 3 to the Radio Regulations, the various Sections of which specify the basic characteristics to be furnished according to the case. The notifying administration shall furnish such further data as it considers appropriate.
7.3.4 Each notice must reach the Board not earlier than three years before the date on which the assignment is to be brought into use. The notice must reach the Board in any case not later than three months ${ }^{1}$ before this date.
7.3.5 Any frequency assignment to an earth or space station, the notice of which reaches the Board after the applicable period specified in paragraph 7.3.4, shall, where it is to be recorded, bear a mark in the Master Register to indicate that it is not in conformity with paragraph 7.3.4.

Section IV. Procedure for the Examination of Notices and the Recording of Frequency Assignments in the Master Register

7.4.1 Any notice which does not contain at least those basic characteristics specified in Appendix 3 to the Radio Regulations shall be returned by the Board immediately, by airmail, to the notifying administration with the reasons therefor.
7.4.2 Upon receipt of a complete notice, the Board shall include the particulars thereof, with the date of receipt, in its weekly circular which shall contain the particulars of all such notices received since the publication of the previous circular.

[^35](Rev. 1986)
7.4.3 The circular shall constitute the acknowledgement to the notifying administration of the receipt of a complete notice.
7.4.4 Complete notices shall be considered by the Board in the order of their receipt. The Board shall not postpone the formulation of a finding unless it lacks sufficient data to render a decision in connection therewith; moreover, the Board shall not act upon any notice which has a technical bearing on an earlier notice still under consideration by the Board, until it has reached a finding with respect to such earlier notice.

7.4.5 The Board shall examine each notice:

7.4.5.1 with respect to its conformity with the Convention, the relevant provisions of the Radio Regulations and the provisions of this Appendix (with the exception of those relating to the coordination procedures and the probability of harmful interference);
7.4.5.2 where appropriate, with respect to its conformity with the provisions of paragraph 7.2.1, relating to the coordination of the use of the frequency assignment with the other administrations concerned having a frequency assignment in conformity with the appropriate Regional Plan;
7.4.5.3 where appropriate, with respect to the probability of harmful interference to the service rendered or to be rendered by a broadcastingsatellite station whose frequency assignment is in conformity with the appropriate Regional Plan.
7.4.6 Depending upon the findings of the Board subsequent to the examination prescribed in paragraphs 7.4.5.1, 7.4.5.2 and 7.4.5.3, as appropriate, further action shall be as follows:

7.4.7 Finding favourable with respect to paragraph 7.4.5.1 in cases where the provisions of paragraph 7.4.5.2 are not applicable

7.4.7.1 The assignment shall be recorded in the Master Register. The date of receipt by the Board of the notice shall be entered in Column 2d.

7.4.8 Finding unfavourable with respect to paragraph 7.4.5.I

7.4.8.1 Where the notice includes a specific reference to the fact that the station will be operated in accordance with the provisions of No. 342 of the Radio Regulations and the finding is favourable with respect to paragraphs 7.4.5.2 and 7.4.5.3, as appropriate, the assignment shall be recorded in the Master Register. The date of receipt of notice by the Board shall be entered in Column 2d.
7.4.8.2 Where the notice includes a specific reference to the fact that the station will be operated in accordance with the provisions of No. 342 of the Radio Regulations and the finding is unfavourable with respect to paragraph 7.4.5.2 or 7.4.5.3, as appropriate, the notice shall be returned immediately by airmail to the notifying administration with the reasons of the Board for this finding. In those circumstances the notifying administration shall undertake not to bring into use the frequency assignment until the condition in paragraph 7.4.8.1 can be fulfilled. The agreement of the administrations affected can also be obtained in accordance with this Article for a specified period. In that event the Board shall be notified of the agreement and the frequency assignment shall be recorded in the Master Register with a note indicating that the frequency assignment is valid only for the period specified. The notifying administration using the frequency assignment over a specified period shall not subsequently use this circumstance to justify continued use of the frequency beyond the period specified if it does not obtain the agreement of the administration(s) concerned. The date of receipt by the Board of the original notice shall be entered in Column 2d.
7.4.8.3 Where the notice does not include a specific reference to the fact that the station will be operated in accordance with the provisions of No. 342 of the Radio Regulations, it shall be returned immediately by airmail to the notifying administration with the reasons of the Board for this finding and with such suggestions as the Board may be able to offer with a view to the satisfactory solution of the problem.
7.4.8.4 If the notifying administration resubmits the notice unchanged, it shall be treated in accordance with the provisions of paragraph 7.4.8.3. If it is resubmitted with a specific reference to the fact that the station will be operated in accordance with the provisions of No. 342 of the Radio Regulations, it shall be treated in accordance with the provisions of
paragraph 7.4.8.1 or 7.4.8.2, as appropriate. If it is resubmitted with modifications which, after re-examination, result in a favourable finding by the Board with respect to paragraph 7.4.5.1, it shall be treated as a new notice.

7.4.9 Finding favourable with respect to paragraph 7.4.5.1 in cases where the provisions of paragraph 7.4.5.2 are applicable

7.4.9.1 Where the Board finds that the coordination procedures mentioned in paragraph 7.4.5.2 have been successfully completed with all administrations whose frequency assignments in conformity with the appropriate Regional Plan may be affected, the frequency assignment shall be recorded in the Master Register. The date of receipt by the Board of the notice shall be entered in Column 2d.
7.4.9.2 Where the Board finds that the coordination procedure mentioned in paragraph 7.4.5.2 has not been applied, and the notifying administration requests the Board to effect the required coordination, the Board shall take appropriate action and shall inform the administrations concerned of the results obtained. If the Board's efforts are successful, the notice shall be treated in accordance with paragraph 7.4.9.1. If the Board's efforts are unsuccessful, the notice shall be examined by the Board with respect to the provisions of paragraph 7.4.5.3.
7.4.9.3 Where the Board finds that the coordination procedure mentioned in paragraph 7.4.5.2 has not been applied, and the notifying administration does not request the Board to effect the required coordination, the notice shall be returned immediately by airmail to the notifying administration with the reasons of the Board for this action and with such suggestions as the Board may be able to offer with a view to the satisfactory solution of the problem.
7.4.9.4 Where the notifying administration resubmits the notice and the Board finds that the coordination procedure mentioned in paragraph 7.4.5.2 has been successfully completed with all administrations whose frequency assignments in conformity with the appropriate Regional Plan may be affected, the frequency assignment shall be recorded in the Master Register. The date of receipt of the original notice by the Board shall be entered in Column 2d. The date of receipt by the Board of the resubmitted notice shall be entered in the Remarks Column.
7.4.9.5 Where the notifying administration resubmits the notice with a request that the Board effect the required coordination under paragraph 7.2.1, it shall be treated in accordance with the provisions of paragraph 7.4.9.2. However, in any subsequent recording of the assignment, the date of receipt by the Board of the resubmitted notice shall be entered in the Remarks Column.
7.4.9.6 Where the notifying administration resubmits the notice and states it has been unsuccessful in effecting the coordination, the Board shall inform the administrations concerned thereof. The notice shall be examined by the Board with respect to the provisions of paragraph 7.4.5.3. However, in any subsequent recording of the assignment, the date of receipt by the Board of the resubmitted notice shall be entered in the Remarks Column.
7.4.10 Finding favourable with respect to paragraphs 7.4.5.1 and 7.4.5.3
7.4.10.1 The assignment shall be recorded in the Master Register. The date of receipt by the Board of the notice shall be entered in Column 2d.

7.4.11 Finding favourable with respect to paragraph 7.4.5.1, but unfavourable with respect to paragraph 7.4.5.3

7.4.11.1 The notice shall be returned immediately by airmail to the notifying administration with the reasons of the Board for this finding and with such suggestions as the Board may be able to offer with a view to the satisfactory solution of the problem.
7.4.11.2 Should the notifying administration resubmit the notice with modifications which result, after re-examination, in a favourable finding by the Board with respect to paragraph 7.4.5.3, the assignment shall be recorded in the Master Register. The date of receipt by the Board of the original notice shall be entered in Column 2d. The date of receipt by the Board of the resubmitted notice shall be indicated in the Remarks Column.
7.4.11.3 Should the notifying administration resubmit the notice, either unchanged, or with modifications which decrease the probability of harmful
interference, but not sufficiently to permit the provisions of paragraph 7.4.11.2 to be applied, and should that administration insist upon reconsideration of the notice, but should the Board's finding remain unchanged, the notification shall again be returned to the notifying administration in accordance with paragraph 7.4.11.1. In those circumstances, the notifying administration shall undertake not to bring into use the proposed frequency assignment until the condition in paragraph 7.4.11.2 can be fulfilled. The agreement of the administrations affected can also be obtained in accordance with this Article for a specified period. In that event the Board shall be notified of the agreement and the frequency assignment shall be recorded in the Master Register with a note in the Remarks Column indicating that the assignment is valid only for the specified period. The notifying administration using the frequency assignment over a specified period shall not subsequently use this circumstance to justify continued use of the frequency beyond the period specified if it does not obtain the agreement of the administration(s) concerned. The date of receipt by the Board of the original notice shall be entered in Column 2d.

7.4.12 Change in the basic characteristics of assignments already recorded in the Master Register

7.4.12.1 A notice of a change in the basic characteristics of an assignment in the fixed-satellite service already recorded, as specified in Appendix 3 to the Radio Regulations (except the name of the station or the name of the locality in which it is situated or the date of bringing into use), shall be examined by the Board in conformity with paragraph 7.4.5.1 and, where appropriate, paragraphs 7.4.5.2 and 7.4.5.3, and the provisions of paragraphs 7.4.7 to 7.4.11.3 inclusive shall apply. Where the change should be recorded, the original assignment shall be amended accordingly.
7.4.12.2 However, in the case of a change in the characteristics of an assignment which is in conformity with paragraph 7.4.5.1, should the Board reach a favourable finding with respect to paragraphs 7.4.5.2 and 7.4.5.3, where appropriate, or find that the changes do not increase the probability of harmful interference to frequency assignments in conformity with the
appropriate Regional Plan, the amended assignment shall retain the original date in Column 2d. The date of receipt of the notice by the Board relating to the change shall be entered in the Remarks Column.
7.4.12.3 The projected date of bringing into use of a frequency assignment may be extended by four months at the request of the notifying administration. If the administration states that, due to exceptional circumstances, it needs a further extension of this period, such extension may be provided but it shall in no case exceed eighteen months from the original projected date of bringing into use.
7.4.12.4 In applying the provisions of this Section IV, any resubmitted notice which is received by the Board more than two years after the date of its return by the Board shall be considered as a new notice.

7.4.13 Recording of frequency assignments in the fixed-satellite service notified before being brought into use

7.4.13.1 If a frequency assignment notified in advance of bringing into use has received a favourable finding by the Board with respect to paragraph 7.4.5.1 and, where appropriate, paragraphs 7.4.5.2 and 7.4.5.3, it shall be entered provisionally in the Master Register with a special symbol in the Remarks Column indicating the provisional nature of that entry.
7.4.13.2 Within one month after the date of bringing into use, either as originally notified or as modified in application of paragraph 7.4.12.3, the notifying administration shall confirm that the frequency assignment has been brought into use. When the Board is informed that the assignment has been brought into use, the special symbol shall be deleted from the Remarks Column.
7.4.13.3 If the Board does not receive this confirmation within the period referred to in paragraph 7.4.13.2, the entry concerned shall be cancelled. The Board shall advise the administration concerned before taking such action.

Section V. Recording of Findings in the Master Register

7.5 In any case where a frequency assignment is recorded in the Master Register, the finding reached by the Board shall be indicated by a symbol in Column 13a. In addition, a remark indicating the reasons for any unfavourable finding shall be inserted in the Remarks Column.

Section VI. Categories of Frequency Assignments

7.6.1 The date in Column 2 c shall be the date of putting into use notified by the administration concerned. It is given for information only.
7.6.2 If harmful interference is actually caused to the reception of any broadcasting-satellite station whose frequency assignment is in conformity with the appropriate Regional Plan, by the use of a frequency assignment to a space radiocommunication station subsequently recorded in the Master Register in accordance with the provisions of paragraph 7.4.11.3, the station using the latter frequency assignment must, upon receipt of advice thereof, immediately eliminate this harmful interference.
7.6.3 If harmful interference to the reception of any broadcasting-satellite station whose frequency assignment is in conformity with the appropriate Regional Plan, is actually caused by the use of a frequency assignment which is not in conformity with paragraph 7.4.5.1, the station using the latter frequency assignment must, upon receipt of advice thereof, immediately eliminate this harmful interference.

Section VII. Review of Findings

7.7.1 The review of a finding by the Board may be undertaken:
a) at the request of the notifying administration;
b) at the request of any other administration interested in the question, but only on the grounds of actual harmful interference;
c) on the initiative of the Board itself when it considers this is justified.
7.7.2 The Board, in the light of all the data at its disposal, shall review the matter, taking into account paragraph 7.4.5.1 and, where appropriate, paragraphs 7.4.5.2 and 7.4.5.3, and shall render an appropriate finding, informing the notifying administration prior either to the promulgation of its finding or to any recording action.
7.7.3 If the finding of the Board is then favourable it shall enter in the Master Register the changes that are required so that the entry shall appear in the future as if the original finding had been favourable.
7.7.4 If the finding with regard to the probability of harmful interference remains unfavourable, no change shall be made in the original entry.

Section VIII. Modification, Cancellation and Review of Entries in the Master Register

7.8 The Board shall at intervals not exceeding two years request confirmation from the notifying administration that its assignment has been and will continue to be in regular use in accordance with its recorded characteristics.
7.8.1 Where the use of a recorded assignment to a station in the fixed-satellite service is suspended for a period of eighteen months, the notifying administration shall, within this eighteen-month period, inform the Board of the date on which such use was suspended and of the date on which the assignment is to be brought back into regular use.
7.8.2 Whenever it appears to the Board, whether or not as a result of action under paragraph 7.8.1, that a recorded assignment to a space station in the fixed-satellite service has not been in regular use for more than eighteen months, the Board shall inquire of the notifying administration as to when the assignment is to be brought back into regular use.
7.8.3 If no reply is received within six months of action by the Board under paragraph 7.8.2, or if the reply does not confirm that the assignment to a space station in the fixed-satellite service is to be brought back into regular use within this six-month limit, a mark should be entered against the entry in the Master Register.
7.8.4 In case of permanent discontinuance of the use of any recorded frequency assignment, the notifying administration shall inform the Board within three months of such discontinuance, whereupon the entry shall be removed from the Master Register.
7.8.5 Whenever it appears to the Board from the information available that a recorded assignment has not been brought into regular operation in accordance with the notified basic characteristics, or is not being used in accordance with those basic characteristics, the Board shall consult the notifying administration and, subject to its agreement, shall either cancel or suitably modify or retain the basic characteristics of the entry.
7.8.6 If, in connection with an inquiry by the Board under paragraph 7.8.5, the notifying administration has failed to supply the Board within three months with the necessary or pertinent information, the Board shall make suitable entries in the Remarks Column of the Master Register to indicate the situation.

ARTICLE 8

Miscellaneous Provisions Relating to the Procedures

8.1 If so requested by any administration, the Board, using such means at its disposal as are appropriate in the circumstances, shall conduct a study of cases of alleged contravention or non-observance of these provisions or of harmful interference.
8.2 The Board shall thereupon prepare and forward to the administration or administrations concerned a report containing its findings and recommendations for the solution of the problem.
8.3 On receiving the Board's recommendations for the solution of the problem, an administration shall promptly acknowledge their receipt by telegram and shall indicate the action it intends to take. Where the Board's suggestions or recommendations are unacceptable to the administrations concerned, further efforts should be made by the Board to find an acceptable solution to the problem.
8.4 Where, as a result of a study, the Board submits to one or more administrations suggestions or recommendations for the solution of a problem, and where no reply has been received from one or more of these administrations within a period of three months, the Board shall consider that the suggestions or recommendations concerned are unacceptable to the administrations which did not answer. If it was the requesting administration which failed to answer within this period, the Board shall discontinue the study.
8.5 If so requested by any administration, particularly by an administration of a country in need of special assistance, the Board, using such means at its disposal as are appropriate in the circumstances, shall render the following assistance:
a) computation necessary in the application of Annexes 1, 3 and 4;
b) any other assistance of a technical nature for completion of the procedures in this Appendix.
8.6 In making a request to the Board under paragraph 8.5, the administration shall provide the Board with the necessary information.

ARTICLE 9

Power Flux-Density Limits Between 12.2 GHz and 12.7 GHz to Protect Terrestrial Services in Regions 1 and $\mathbf{3}$ from Interference from Region 2 Broadcasting-Satellite Space Stations

9.1 The power flux-density at the Earth's surface in Regions 1 and 3, produced by emissions from a space station in the broadcasting-satellite service in Region 2 for all conditions and for all methods of modulation shall not exceed the values given in Section 5 of Annex 1 on the territory of any country unless the administration of that country so agrees.

The Plan for the Broadcasting-Satellite Service in the Frequency Band 12.2-12.7 GHz in Region 2

10.1

COLUMN HEADINGS OF THE PLAN

Col. 1 Beam identification (Column 1 contains the symbol designating the country or the geographical area taken from Table B. 1 of the Preface to the International Frequency List followed by the symbol designating the service area).

Col. 2 Nominal orbital position, in degrees and hundredths of a degree.
Col. 3 Channel number (see Table 4 showing channel numbers and corresponding assigned frequencies).

Col. 4. Boresight geographical coordinates, in degrees and hundredths of a degree.

Col. 5. Antenna beamwidth. This column contains two figures corresponding to the major axis and the minor axis respectively of the elliptical cross-section half-power beam, in degrees and hundredths of a degree.

Col. 6. Orientation of the ellipse determined as follows: in a plane normal to the beam axis, the direction of a major axis of the ellipse is specified as the angle measured anti-clockwise from a line parallel to the equatorial plane to the major axis of the ellipse to the nearest degree.

Col. 7. Polarization $(1=$ direct, $2=$ indirect $) .{ }^{1}$
Col. 8. E.i.r.p. in the direction of maximum radiation, in dBW.
Col. 9. Remarks.

[^36](Rev. 1986)

10.2

TEXT FOR SYMBOLS IN REMARKS COLUMN OF THE PLAN

1. Fast roll-off space station transmitting antenna as defined in Annex 5 (item 3.13.3).
2. Television standard with 625 lines using greater video bandwidth and necessary bandwidth of 27 MHz .

3. Not used

4. This assignment may be utilized in the geographical area of Anguilla (AIA) (which is in the beam area).
5. Feeder-link earth stations for this assignment may also be located in the territories of Puerto Rico and the United States Virgin Islands. Such operation shall not cause more interference nor require more protection than the assignment under the Plan.
6. Feeder-link earth stations for this assignment may also be located in the States of Alaska and Hawaii. Such operation shall not cause more interference nor require more protection than the assignment under the Plan.
7. The feeder-link earth station for this assignment may also be located at the point with geographical coordinates $3^{\circ} 31^{\prime}$ West, $48^{\circ} 46^{\prime}$ North. Such operation shall not cause more interference nor require more protection than the assignment under the Plan.
8. Feeder-link earth stations for this assignment may also be located at the points with the following geographical coordinates:

$47^{\circ} 55^{\prime}$ West	$15^{\circ} 47^{\prime}$ South	$34^{\circ} 53^{\prime}$ West	$08^{\circ} 04^{\prime}$ South
$43^{\circ} 13^{\prime}$ West	$22^{\circ} 55^{\prime}$ South	$60^{\circ} 02^{\prime}$ West	$03^{\circ} 06^{\prime}$ South
$46^{\circ} 38^{\prime}$ West	$23^{\circ} 33^{\prime}$ South	$38^{\circ} 31^{\prime}$ West	$12^{\circ} 56^{\prime}$ South
$51^{\circ} 13^{\prime}$ West	$30^{\circ} 02^{\prime}$ South	$49^{\circ} 15^{\prime}$ West	$16^{\circ} 40^{\prime}$ South

Such operation shall not cause more interference nor require more protection than the assignment under the Plan.

9/GR ... This assignment is part of a group, the number of which follows the symbol. The group consists of the beams and has the number of channels assigned to it as indicated in Table 1 below.
a) The overall equivalent protection margin to be used for the application of Article 4 and Resolution 42 (Orb-85) shall be calculated on the following basis:

- for the calculation of interference to assignments that are part of a group, only the interference contributions from assignments that are not part of the same group are to be included; and
- for the calculation of interference from assignments belonging to a group to assignments that are not part of that same group, only the worst interference contribution from that group shall be used on a test point to test point basis.
b) If an administration notifies the same frequency in more than one beam of a group for use at the same time, the aggregated C / I produced by all emissions from that group shall not exceed the C / I calculated on the basis of a) above.

10. This assignment shall be brought into use only when the limits given in Table 2 are not exceeded or with the agreement of the affected administration identified in Table 3.

These administrations shall be informed by the notifying administration of changes in characteristics before these beams are brought into use.

TABLE 1

Group	Beams in the group	Number of channels assigned to the group
GR1	ALS00002 HWA00002 USAPSA02	32 channels
GR2	ALS00003 HWA00003 USAPSA03	32 channels
GR3	ARGINSU4 ARGSUR04	16 channels
GR4	ARGINSU5 ARGSUR05	12 channels
GR5	BOLAND01 CLMAND01 EQACAND1 EQAGAND1 PRUAND02 VENAND03	16 channels
GR6	B SU111 B SU211	32 channels
GR7	B CE311 B CE411 B CE511	32 channels
GR8	B NO611 B NO711 B NO811	32 channels
GR9	B SU112 B SU212 B CE312 B CE412	32 channels
GR10	CAN01101 CAN01201	32 channels
GR11	Not used	
GR12	CAN01203 CAN01303 CAN01403	32 channels
GR13	CAN01304 CAN01404 CAN01504	32 channels
GR14	CAN01405 CAN01505 CAN01605	32 channels
GR15	Not used	
GR16	CHLCONT4 CHLCONT6	16 channels
GR17	CHLCONT5 PAQPAC01 CHLPAC02	16 channels
GR18	CRBBER01 CRBBLZ01 CRBJMC01 CRBBAH01 CRBECO01	16 channels
GR19	EQACOO01 EQAGOO01	16 channels
GR20	PTRVIR01 USAEHO02	32 channels
GR21	PTRVIR02 USAEHO03	32 channels
GR22	VEN02VEN VEN11VEN	4 channels

(Rev. 1986)

TABLE 2

APPLICABLE CRITERIA

Symbol	P.F.D. Limit Criteria
a	Paragraph 3, Annex 1
b	Paragraph 5 b), Annex 1
c	Paragraph 5 c), Annex 1
d	Paragraph 5 d), Annex 1

11.

This assignment shall be brought into use only when the e.i.r.p. in the direction of all points situated within the service area and within the -3 dB contour of the "Metropole" beam (space-to-Earth) in the VIDEO-SAT-3 network as described in IFRB Special Section AR11/C/766 to Weekly Circular No. 1678 of 2 July 1985 does not exceed the limit 26.8 dBW .
12. This assignment shall be brought into use only when the e.i.r.p. in the direction of all points situated within the service area and within the -3 dB contour of the "Metropole" beam (space-to-Earth) in the VIDEO-SAT-3 network as described in IFRB Special Section AR11/C/766 to Weekly Circular No. 1678 of 2 July 1985 does not exceed the limit 26.8 dBW , and when the e.i.r.p. in the direction of all points situated within the service area and also between the -3 dB and -6 dB contours of the same beam does not exceed the limit 29.5 dBW .

TABLE 3

Beam name	Channels	Lumıt Crt. Ref. Table 2	Countries or geographical areas affected
ALS00002	$1,4,5,6,9,10,11,14,15,16$ All channels For channels 20 to 32	a c d	URS MNG/URS URS
ALS00003	$1,4,5,6,9,10,11,14,15,16$ All channels For channels 20 to 32	a c d	URS URS URS
ARGINSU5	$3,7,11,15,17,19$	b	NOR

(Rev. 1986)

AP30 (Orb-85)-54

TABLE 3 (cont.)

Beam name	Channels	Limit Crit Ref. Table 2	Countries or geographical areas affected				
B CE511	For channels 1 to 20	b	CAF/CME/COG/GAB/ GNE/NIG/NMB/NOR/ STP/ZAI				
B NO611	For channels 1 to 20	b	BEN/GHA/TGO	$	$	B NO711	For channels 1 to 20
:---	:---						

TABLE 3 (cont.)

Beam name	Channels	Lumit Crit. Ref. Table 2	Countries or geographical areas affected
CAN01505	For channels 1 to 20	b	ALG/E/F/G/IRL/ISL/ MRC/POR
CAN01605	For channels 1 to 20	b	E/F/G/IRL/ISL/MRC/ POR
CAN01606	For channels 1 to 20	b	BEL/F/G/HOL/IRL/ ISL/LUX/NOR
CLMAND01	21, 23, 25, 27, 29, 31	c	URS
CLM00001	$\begin{aligned} & 1,3,5,7,9,11,13,15,17,19 \\ & 21,23,25,27,29,31 \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{c} \end{aligned}$	AZR/CPV URS
CRBEC001	$\begin{aligned} & 2,4,6,8,10,12,14,16,18, \\ & 20 \end{aligned}$	b	ASC/AZR/GMB/GNB/ GUI/ISL/MTN/SEN/ SRL
FLKANT01	$1,5,9,13$	b	NOR
GRLDNK01	3, 7, 11, 15, 19	b	D/DDR/DNK/G/HOL/ ISL/NOR/POL/S/TCH
GUFMGG02	$4,8,12,16,20$	b	NOR
HWA00002	For channels 1 to 20 All channels	$\begin{aligned} & \mathrm{b} \\ & \mathrm{c} \end{aligned}$	CHN/KRE MNG/URS
HWA00003	For channels 1 to 20 All channels	$\begin{aligned} & \mathrm{b} \\ & \mathrm{c} \end{aligned}$	CHN MNG/URS
MEX02NTE	All channels	c	URS
MEX01SUR	$1,3,5,7,9,11,13,15,17,19$	b	KIR
MEX02SUR	All channels	c	URS
PRU00004	$\begin{aligned} & 2,4,6,8,10,12,14,16,18 \\ & 20 \end{aligned}$	b	ALG/AOE/ASC/BFA/ CTI/E/G/GMB/GUI/ ISL/LBR/MLI/MRC/ MTN/POR/SEN/SHN/ SRL/TRC

TABLE 3 (cont.)

Beam name	Channels	Limit Crit. Ref rable 2	Countries or geographical areas affected
SPMFRAN3	$1,5,9,13,17$	b	D/DDR/DNK/ISL/ NOR/S
USAEH001	For channels 1 to 20	b	ALG/AUT/BEL/CVA/D/ DDR/DNK/E/F/G/HOL/ I/ISL/LBY/LIE/LUX/ MCO/MLT/NGR/NIG/ NOR/OCE/SMR/SUI/ TCH/TUN/YUG
USAEH002	For channels 1 to 20 All channels	b c	AZR/CPV/HWL URS
USAEH003	For channels 1 to 20 All channels	b	MRL c
URS			

Country symbols

1. For the explanation of symbols designating countries or geographical areas in Region 2, see the Preface to the International Frequency List.
(Rev. 1986)
2. One additional symbol, CRB, has been created for the purposes of the 1983 Conference only, to designate a geographical area in the Caribbean Area. The five Caribbean beams are identified as follows:

CRBBAH01, CRBBER01, CRBBLZ01, CRBEC001 and CRBJMC01 and are intended collectively to provide coverage for the following countries or geographical areas: AIA, ATG, BAH, BER, BLZ, BRB, CYM, DMA, GRD, GUY, JMC, LCA, MSR, SCN, SUR, TCA, TRD, VCT and VRG to be so used if approved by them.

TABLE 4
TABLE SHOWING CORRESPONDENCE BETWEEN CHANNEL NUMBERS AND ASSIGNED FREQUENCIES

Channel No.	Assigned frequency (MHz)	Channel No.	Assigned frequency (MHz)
1	12224.00	17	12457.28
2	12238.58	18	12471.86
3	12253.16	19	12486.44
4	12267.74	20	12501.02
5	12282.32	21	12515.60
6	12296.90	22	12530.18
7	12311.48	23	12544.76
8	12326.06	24	12559.34
9	12340.64	25	12573.92
10	12355.22	26	12588.50
11	12369.80	27	12603.08
12	12384.38	28	12617.66
13	12398.96	29	12632.24
14	12413.54	30	12646.82
15	12428.12	31	12661.40
16	12442.70	32	12675.98

12224,00 MHz (1)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

12224,00 MHz (1)

CAN01303	- 129.20	1	- 102.42	5712	3.54	0.91	154	1	60.0	9/GR12	10
CAN01304	-91.20	1	-99.12	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	- 129.20	1	-89.75	52.02	4.68	0.80	148	1	61.8	9/GR12	10
CAN01404	-91.20	1	-84.82	52.42	3.10	2.05	152	1	60.4	9/GR13	10
CAN01405	-8220	1	-84.00	52.39	2.84	2.29	172	1	60.3	9/GR14	10
CAN01504	-91.20	1	-72.66	53.77	3.57	1.67	156	1	60.2	9/GR13	10
CAN01505	-82.20	1	-71.77	53.79	330	1.89	162	1	60.1	9/GR14	10
CAN01605	-82.20	1	-61.50	49.55	2.65	1.40	143	1	60.3	9/GR14	10
CAN01606	-70.70	1	-61.30	49.55	2.40	1.65	148	1	60.2	10	
CHLCONT5	- 106.20	1	-72.23	-35.57	2.60	0.80	55	1	59.4	9/GR17	
CHLPAC02	- 106.20	1	-80.06	-30.06	1.36	0.80	69	1	59.2	9/GR17	
CLMAND01	-115.20	1	-74.72	5.93	3.85	1.63	114	1	64.9	9/GR5	
CLM00001	- 103.20	1	-74.50	5.87	3.98	1.96	118	1	63.5	10	
EQACAND1	- 115.20	1	-78.40	-1.61	137	0.95	75	1	64.0	9/GR5	
EQAGAND1	- 115.20	1	-90.34	-0.62	0.90	081	89	1	61.3	9/GR5	
FLKANT01	-57.20	1	-44.54	-60.13	3.54	0.80	12	1	59.3	2	10
FLKFALKS	-31.00	1	-59.90	-51.64	0.80	0.80	90	1	58.1	2	
GRD00002	-42.20	1	-61.58	12.29	0.80	0.80	90	1	58.8		
HWA00002	-166.20	1	-165.79	23.42	4.20	0.80	160	1	58.8	9/GR1	10
HWA00003	-17520	1	- 166.10	23.42	4.25	0.80	159	1	58.8	9/GR2	10
MEX01NTE	-78.20	1	- 105.81	26.01	2.89	2.08	155	1	60.5	1	
MEX01SUR	-69.20	1	-94.84	19.82	3.05	2.09	4	1	62.2	1	10
MEX02NTE	-136.20	1	-107.21	26.31	3.84	1.55	148	1	61.2	1	10
MEX02SUR	-127.20	1	-96.39	19.88	3.18	1.87	157	1	62.5	1	10

12224,00 MHz (1)

1	2	3	4		5		6	7	8	9	
PAQPAC01	- 106.20	1	- 109.18	-27.53	0.80	0.80	90	1	56.2	9/GR17	
PRG00002	-99.20	1	-58.66	-23.32	1.45	1.04	76	1	60.2		
PRUAND02	-115.20	1	-74.69	-8.39	3.41	1.79	95	1	63.9	9/GR5	
PTRVIR01	-101.20	1	-65.85	18.12	0.80	0.80	90	1	60.5	16 9/GR20	
PTRVIR02	-110.20	1	-65.86	18.12	080	0.80	90	1	61.0	$169 / \mathrm{GR21}$	
SPMFRAN3	-53.20	1	-67.24	47.51	3.16	0.80	7	1	60.4	27	10
TRD00001	-84.70	1	-61.23	10.70	0.80	0.80	90	1	59.4		
URG00001	- 71.70	1	-56.22	- 32.52	1.02	0.89	11	1	60.0		
USAEH001	-61.70		-8519	36.21	5.63	3.33	22	1	61.8	156	10
USAEH002	-101.20	1	-89.24	36.16	5.67	3.76	170	1	61.7	16 9/GR20	10
USAEH003	-11020	1	-90.14	36.11	5.55	3.55	161	1	620	16 9/GR21	10
USAEH004	-11920	1	-91.16	36.05	538	3.24	152	1	62.6	156	10
USAPSA02	-16620	1	- 117.80	4058	4.03	0.82	135	1	63.2	9/GR1	
USAPSA03	-175 20	1	-118.27	40.12	3.62	0.80	136	1	65.0	9/GR2	
USAWH101	-148.20	1	- 109.65	38.13	5.53	1.95	142	1	62.1	10	
USAWH102	-15720	1	- 111.41	38.57	551	154	138	1	63.2	10	
VENAND03	-115.20	1	-67.04	6.91	2.37	1.43	111	1	67.2	9/GR5	
VRG00001	-79.70	1	-64.37	18.48	0.80	0.80	90	1	58.3	4	

12238,58 MHz

ALS00002	-165.80	2	- 14963	58.52	3.81	1.23	171	2	59.7	9/GR1	10
ALS00003	- 174.80	2	- 15095	58.54	3.77	1.11	167	2	60.0	9/GR2	10
ARGNORT4	-93.80	2	-63.96	-30.01	3.86	1.99	48	2	65.6	10	
ARGNORT5	-5480	2	-62 85	-29.80	3.24	2.89	47	2	63.5	10	
ATNBEAM1	-52.80	2	-66.44	14.87	1.83	0.80	39	2	61.0		
B CE311	-63.80	2	-40.60	-6.07	3.04	206	174	2	61.6	8 9/GR7	10
B CE312	-44.80	2	-40.26	-6.06	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-63.80	2	-50.97	-15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	2	- 50.71	- 15.30	3.57	156	52	2	62.7	8 9/GR9	10
B CE511	-63.80	2	-53.11	-2.98	2.42	2.15	107	2	631	8 9/GR7	10
B NO611	-7380	2	-59.60	-11.62	2.86	1.69	165	1	62.8	8 9/GR8	10
B NO711	-73.80	2	-60.70	-1.78	3.54	1.78	126	1	62.8	8 9/GR8	10
B NO811	-73.80	2	-68.75	-4.71	2.37	1.65	73	1	62.8	8 9/GR8	
B SE911	- 101.80	2	-45.99	-19.09	2.22	0.80	62	2	65.3	8	10
B SU111	-8080	2	-51.10	-25.64	2.76	1.06	50	2	62.8	8 9/GR6	10
B SU112	-44.80	2	-50.76	-2562	247	1.48	56	2	62.3	8 9/GR9	
B SU211	-80.80	2	-44.51	- 16.94	3.22	1.37	60	2	62.5	8 9/GR6	10
B SU212	-44.80	2	-43.99	- 16.97	3.27	1.92	59	2	613	8 9/GR9	
CAN01101	- 137.80	2	-125.60	57.24	3.45	1.27	157	2	59.5	9/GR10	10
CAN01201	-137.80	2	- 111.92	55.89	3.33	0.98	151	2	59.6	9/GR10	10
CAN01202	- 72.30	2	-10764	55.62	2.75	1.11	32	2	59.6		
CAN01203	-128.80	2	- 111.43	55.56	3.07	1.15	151	2	59.5	9/GR12	10
CAN01303	- 128.80	2	- 102.39	57.12	3.54	0.92	154	2	60.0	9/GR12	10
CAN01304	-90.80	2	-99.00	57.33	1.96	1.73	1	2	59.8	9/GR13	

1	2	3	4		5		6	7	8	9	
CAN01403	- 128.80	2	-89.70	52.02	4.67	0.80	148	2	61.8	9/GR12	10
CAN01404	-90.80	2	-84.78	52.41	3.09	2.06	153	2	60.4	9/GR13	10
CAN01405	-81.80	2	-84.02	52.34	2.82	2.30	172	2	60.3	9/GR14	10
CAN01504	-90.80	2	-72.68	53.78	3.57	1.67	157	2	60.2	9/GR13	10
CAN01505	-81.80	2	-71.76	53.76	3.30	1.89	162	2	60.1	9/GR14	10
CAN01605	-81.80	2	-61.54	49.50	2.66	1.39	144	2	60.3	9/GR14	10
CAN01606	- 70.30	2	-61.32	49.51	2.41	1.65	148	2	60.2	10	
CHLCONT4	- 105.80	2	-69.59	-23.20	2.21	0.80	68	2	59.1	9/GR16	
CHLCONT6	- 105.80	2	-73.52	-55.52	3.65	1.31	39	2	59.6	9/GR16	
CRBBAH01	-92.30	2	-76.09	24.13	1.83	0.80	141	1	61.7	9/GR18	
CRBBER01	-92.30	2	-64.76	32.13	0.80	0.80	90	1	56.7	9/GR18	
CRBBLZ 01	-92.30	2	-88.61	17.26	0.80	0.80	90	1	58.6	9/GR18	
CRBEC001	-92.30	2	-60.07	8.26	4.20	0.86	115	1	64.2	9/GR18	10
CRBJMC01	-92.30	2	- 79.45	17.97	099	0.80	151	1	61.1	9/GR18	
CTR00201	- 130.80	2	-84.33	9.67	0.82	0.80	119	2	65.6		
EQAC0001	-94.80	2	-78.31	-1.52	1.48	1.15	65	1	63.0	9/GR19	
EQAG0001	-94.80	2	-90.36	-0.57	0.94	0.89	99	1	61.0	9/GR19	
GUY00302	-33.80	2	-59.07	4.77	1.43	0.85	91	2	63.5		
HNDIFRB2	-107.30	2	-86.23	15.16	1.14	0.85	8	1	63.4		
HTI00002	-83.30	2	-73.28	18.96	0.82	0.80	11	2	60.9		
HWA00002	-165.80	2	- 165.79	23.32	4.20	0.80	160	2	58.8	9/GR1	10
HWA00003	- 174.80	2	- 166.10	23.42	4.25	0.80	159	2	58.8	9/GR2	10
MEX01NTE	-77.80	2	- 105.80	25.99	2.88	2.07	155	2	60.5	,	
MEX02NTE	-135.80	2	-107.36	26.32	3.80	1.57	149	2	61.2	1	10

12238,58 MHz (2)

MEX02SUR	-126.80	2	-96.39	19.88	3.19	1.87	158	2	62.5	1	10
PRU00004	-85.80	2	-74.19	-8.39	3.74	2.45	112	2	62.8	10	
PTRVIR01	-100.80	2	-65 85	18.12	0.80	0.80	90	2	60.6	16 9/GR20	
PTRVIR02	-109.80	2	-65.85	18.12	0.80	0.80	90	2	61.1	16 9/GR21	
TCA00001	-115.80	2	-71.79	21.53	0.80	0.80	90	2	60.4		
USAEH001	-61.30	2	-85.16	3621	5.63	3.32	22	2	61.8	156	10
USAEH002	-100.80	2	-89.28	36.16	5.65	3.78	170	2	61.7	16 9/GR20	10
USAEH003	-109.80	2	-90.12	36.11	5.55	3.56	161	2	62.1	16 9/GR21	10
USAEH004	-118.80	2	-91.16	36.05	5.38	3.24	153	2	62.6	156	10
USAPSA02	-165.80	2	- 117.79	40.58	4.04	0.82	135	2	63.2	9/GR1	
USAPSA03	- 174.80	2	-118.20	40.15	3.63	0.80	136	2	64.9	9/GR2	
USAWH101	- 147.80	2	-109.70	38.13	5.52	1.96	142	2	62.1	10	
USAWH102	-156.80	2	- 111.40	38.57	5.51	1.55	138	2	63.2	10	
VCT00001	-79.30	2	-61.18	13.23	0.80	0.80	90	2	58.4		
VEN11VEN	-103.80	2	-66.79	6.90	2.50	1.77	122	2	65.1	10	

12253,16 MHz (3)

1	2	3	4		5		6	7	8	9	
ALS00002	-166.20	3	-149.66	58.37	3.76	1.24	170	1	59.8	9/GR1	10
ALS00003	- 175.20	3	-150.98	58.53	3.77	1.11	167	1	60.0	9/GR2	10
ARGINSU4	-94.20	3	-52.98	-59.81	3.40	0.80	19	1	59.9	9/GR3	
ARGINSU5	-55.20	3	-44.17	-59.91	3.77	0.80	13	1	59.3	9/GR4	10
ARGSUR04	-94.20	3	-65.04	-43.33	3.32	1.50	40	1	60.7	9/GR3	10
ARGSUR05	-55.20	3	-63.68	-43.01	2.54	2.38	152	1	60.1	9/GR4	10
ATGSJN01	-79.70	3	-61.79	17.07	0.80	0.80	90	1	58.4		
B CE311	-64.20	3	-40.60	-6.07	3.04	2.06	174	1	61.6	8 9/GR7	10
B CE312	-45.20	3	-40.27	-6.06	3.44	2.09	174	1	61.0	8 9/GR9	10
B CE411	-64.20	3	-50.97	- 15.27	3.86	1.38	49	1	62.6	8 9/GR7	10
B CE412	-45.20	3	-50.71	- 15.30	3.57	1.56	52	1	62.7	8 9/GR9	10
B CE511	-64.20	3	-53.10	-2.90	2.44	2.13	104	1	63.1	8 9/GR7	10
B NO611	-74.20	3	-59.60	-11.62	2.85	1.69	165	2	62.9	8 9/GR8	10
B NO711	-74.20	3	-60.70	-1.78	354	1.78	126	2	62.8	8 9/GR8	10
B NO811	-74.20	3	-68.76	-4.71	2.37	165	73	2	628	8 9/GR8	
B SU111	-81.20	3	-51.12	-25.63	2.76	1.05	50	1	62.9	8 9/GR6	10
B SU112	-45.20	3	-50.75	-25 62	247	1.48	56	1	623	8 9/GR9	
B SU211	-81.20	3	-4451	-16.95	3.22	136	60	,	625	8 9/GR6	10
B SU212	-45.20	3	-44.00	-16.87	320	1.96	58	1	61.3	8 9/GR9	
BERBERMU	-96.20	3	-6477	32.32	0.80	0.80	90	2	56.8		
B OLAND01	- 115.20	3	-6504	-1676	2.49	1.27	76	,	67.9	9/GR5	
B OL00001	-87.20	3	-64 61	-16.71	2.52	2.19	85	1	63.8	10	
B RB00001	-92.70	3	-59 85	12.93	0.80	0.80	90	2	59.1		
CAN01101	-138.20	3	- 125.63	57.24	3.45	1.27	157	1	595	9/GR10	10

12253,16 MHz (3)

CAN01201	-138.20	3	-112.04	55.95	3.35	0.97	151	1	59.6	9/GR10	10
CAN01202	- 72.70	3	- 107.70	55.63	274	112	32	1	59.6		
CAN01203	- 129.20	3	-111.48	55.61	308	115	151	1	59.5	9/GR12	10
CAN01303	-129.20	3	- 102.42	57.12	3.54	0.91	154	1	60.1	9/GR12	10
CAN01304	-91.20	3	-99.12	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	- 129.20	3	-89.75	52.02	468	0.80	148	1	61.8	9/GR12	10
CAN01404	-91.20	3	-84.82	52.42	3.10	205	152	1	60.4	9/GR13	10
CAN01405	-8220	3	-84.00	52.39	2.84	2.29	172	1	60.3	9/GR14	10
CAN01504	-91.20	3	-72.66	53.77	3.57	1.67	156	1	60.2	9/GR13	10
CAN01505	-82.20	3	-71.77	53.79	3.30	1.89	162	1	601	9/GR14	10
CAN01605	-82.20	3	-61.50	49.55	2.65	1.40	143	1	60.3	9/GR14	10
CAN01606	-70 70	3	-61.30	49.55	2.40	1.65	148	1	60.2	10	
CHLCONT5	- 106.20	3	-72.23	-35.57	2.60	0.80	55	1	59.4	9/GR17	
CHLPAC02	- 106.20	3	-80.06	-30.06	1.36	0.80	69	1	59.2	9/GR17	
CLMAND01	-115.20	3	-74.72	5.93	3.85	1.63	114	1	65.0	9/GR5	
CLM00001	- 103.20	3	-74.50	587	3.98	1.96	118	1	63.6	10	
CUB00001	-89.20	3	-79.81	21.62	2.24	0.80	168	1	61.1		
EQACAND1	-115.20	3	-78.40	-1.61	1.37	0.95	75	1	64.1	9/GR5	
EQAGAND1	-115.20	3	-90.34	-0.62	0.90	0.81	89	1	61.3	9/GR5	
GRD00002	-42.20	3	-61.58	12.29	0.80	0.80	90	1	58.8		
GRD00059	-57.20	3	-61.58	12.29	0.80	0.80	90	1	58.5		
GRLDNK01	-53.20	3	-44.89	66.56	2.70	0.82	173	1	60.0	2	10
HWA00002	- 166.20	3	- 165.79	23.42	4.20	0.80	160	1	58.8	9/GR1	10
HWA00003	-175.20	3	-166.10	23.42	4.25	0.80	159	1	58.8	9/GR2	10

12253, 16 MHz (3)

1	2	3	4		5		6	7	8	9	
MEX01NTE	-78.20	3	- 105.81	26.01	2.89	2.08	155	1	60.5	1	
MEX01SUR	-69.20	3	-94.84	19.82	3.05	2.09	4	1	62.3	1	10
MEX02NTE	- 136.20	3	-107.21	26.31	3.84	1.55	148	1	61.2	1	10
MEX02SUR	- 127.20	3	-96.39	19.88	3.18	1.87	157	1	62.6	1	10
PAQPAC01	-106.20	3	- 109.18	-27.53	0.80	0.80	90	1	56.2	9/GR17	
PRG00002	-99.20	3	-58.66	-23.32	1.45	1.04	76	1	60.2		
PRUAND02	- 115.20	3	- 74.69	-8.39	3.41	1.79	95	1	64.0	9/GR5	
PTRVIR01	-101.20	3	-65.85	18.12	0.80	0.80	90	1	60.6	16 9/GR20	
PTRVIR02	- 110.20	3	-65.86	18.12	0.80	0.80	90	1	61.0	16 9/GR21	
SURINAM2	-84.70	3	-55.69	4.35	1.00	0.80	86	1	63.2		
URG00001	- 71.70	3	-56.22	-32.52	1.02	0.89	11	1	60.0		
USAEH001	-61.70	3	-85.19	36.21	5.63	3.33	22	1	618	156	10
USAEH002	-101.20	3	-89.24	36.16	5.67	3.76	170	1	61.7	16 9/GR20	10
USAEH003	- 110.20	3	-90.14	36.11	5.55	3.55	161	1	62.1	16 9/GR21	10
USAEH004	- 119.20	3	-91.16	36.05	5.38	3.24	152	1	62.6	156	10
USAPSA02	- 166.20	3	- 117.80	40.58	4.03	0.82	135	1	63.3	9/GR1	
USAPSA03	- 175.20	3	-11827	40.12	362	080	136	1	650	9/GR2	
USAWH101	- 148.20	3	-109.65	38.13	5.53	1.95	142	1	62.1	10	
USAWH102	- 157.20	3	- 111.41	38.57	5.51	1.54	138	1	63.2	10	
VENAND03	- 115.20	3	-67.04	6.91	2.37	1.43	111	1	67.3	9/GR5	

12267,74 MHz
(4)

ALS00002	-165.80	4	-149.63	58.52	3.81	1.23	171	2	59.8	9/GR1	10
ALS00003	- 174.80	4	- 150.95	58.54	3.77	1.11	167	2	60.0	9/GR2	10
ARGNORT4	-93.80	4	-63.96	-30.01	3.86	1.99	48	2	65.7	10	
ARGNORT5	-54.80	4	-62.85	-29.80	3.24	2.89	47	2	63.5	10	
B CE311	-63.80	4	-40.60	-6.07	3.04	2.06	174	2	61.6	8 9/GR7	10
B CE312	-44.80	4	-40.26	-6.06	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-63.80	4	-50.97	- 15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	4	-50.71	- 15.30	3.57	1.56	52	2	62.8	8 9/GR9	10
B CE511	-63.80	4	-53.11	-2.98	2.42	2.15	107	2	63.1	8 9/GR7	10
B NO611	-7380	4	-59.60	-11.62	2.86	1.69	165	1	62.9	8 9/GR8	10
B NO711	-73.80	4	-60.70	-1.78	3.54	1.78	126	1	62.8	8 9/GR8	10
B NO811	-73.80	4	-68.75	-4.71	2.37	1.65	73	1	62.8	8 9/GR8	
B SE911	-10180	4	-45.99	-19.09	2.22	0.80	62	2	65.3	8	10
B SU111	-80.80	4	-51.10	-25.64	2.76	1.06	50	2	62.9	8 9/GR6	10
B SU112	-44.80	4	-50.76	-25.62	2.47	1.48	56	2	62.3	8 9/GR9	
B SU211	-80.80	4	-44.51	-16.94	3.22	1.37	60	2	62.5	8 9/GR6	10
B SU212	-44.80	4	-43.99	-16.97	327	1.92	59	2	61.3	8 9/GR9	
CAN01101	-137.80	4	- 125.60	57.24	3.45	1.27	157	2	59.5	9/GR10	10
CAN01201	- 137.80	4	- 111.92	55.89	3.33	0.98	151	2	59.6	9/GR10	10
CAN01202	-72.30	4	- 107.64	55.62	2.75	111	32	2	59.6		
CAN01203	- 128.80	4	-111.43	55.56	3.07	115	151	2	59.5	9/GR12	10
CAN01303	- 128.80	4	- 102.39	57.12	3.54	0.92	154	2	60.1	9/GR12	10
CAN01304	-90.80	4	-99.00	57.33	1.96	1.73	1	2	59.8	9/GR13	
CAN01403	- 128.80	4	-89.70	52.02	4.67	0.80	148	2	61.8	9/GR12	10

$12267,74 \mathrm{MHz}$ (4)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

12267,74 MHz (4)

MEX02SUR	-126.80	4	-96.39	19.88	3.19	187	158	2	62.5	1	10
PRU00004	-85.80	4	-74.19	-8.39	3.74	2.45	112	2	62.9	10	10
PTRVIR01	-100.80	4	-65.85	18.12	0.80	080	90	2	60.6	$169 /$ GR20	
PTRVIR02	-109.80	4	-65.85	18.12	080	0.80	90	2	61.1	$1699 /$ GR21	
SLVIFRB2	-107.30	4	-88.91	13.59	0.80	0.80	90	1	61.7		
USAEH001	-61.30	4	-85.16	36.21	5.63	3.32	22	2	61.9	156	10
USAEH002	-100.80	4	-89.28	36.16	5.65	3.78	170	2	61.7	$169 /$ GR20	10
USAEH003	-109.80	4	-90.12	36.11	5.55	3.56	161	2	62.1	$1699 /$ GR21	10
USAEH004	-118.80	4	-91.16	36.05	5.38	3.24	153	2	62.6	15	6
USAPSA02	-165.80	4	-117.79	40.58	4.04	0.82	135	2	63.3	$9 /$ GR1	10
USAPSA03	-17480	4	-11820	40.15	3.63	0.80	136	2	65.0	$9 / G R 2$	
USAWH101	-14780	4	-109.70	38.13	5.52	1.96	142	2	6.1	10	
USAWH102	-156.80	4	-111.40	38.57	5.51	1.55	138	2	63.2	10	
VEN11VEN	-103.80	4	-66.79	6.90	2.50	1.77	122	2	65.2	10	

1	2	3	4		5		6	7	8	9	
ALS00002	- 166.20	5	-149.66	58.37	3.76	1.24	170	1	59.7	9/GR1	10
ALS00003	- 175.20	5	-150.98	58.53	3.77	1.11	167	1	60.0	9/GR2	10
ARGINSU4	-94.20	5	-52.98	-59.81	3.40	0.80	19	1	59.9	9/GR3	
ARGSUR04	-94.20	5	-65.04	-43.33	3.32	1.50	40	1	60.7	9/GR3	10
B CE311	-64.20	5	-40.60	-6.07	3.04	206	174	1	61.6	8 9/GR7	10
B CE312	-45.20	5	-40.27	-6.06	3.44	2.09	174	1	61.0	8 9/GR9	10
B CE411	-64.20	5	-50.97	- 15.27	3.86	138	49	1	62.6	8 9/GR7	10
B CE412	-45.20	5	-50.71	- 15.30	3.57	1.56	52	1	62.7	8 9/GR9	10
B CE511	-64.20	5	-53.10	-2.90	2.44	2.13	104	1	63.0	$89 / \mathrm{GR} 7$	10
B NO611	-74.20	5	-59.60	-11.62	2.85	1.69	165	2	62.8	8 9/GR8	10
B NO711	-74.20	5	-60.70	-1.78	3.54	178	126	2	62.8	8 9/GR8	10
B NO811	-74.20	5	-68.76	-4.71	2.37	1.65	73	2	62.8	8 9/GR8	
B SU111	-81.20	5	-51.12	-25.63	2.76	1.05	50	1	62.8	8 9/GR6	10
B SU112	-45.20	5	-50.75	-25.62	2.47	1.48	56	1	62.2	8 9/GR9	
B SU211	-81.20	5	-44.51	- 16.95	3.22	1.36	60	1	62.5	8 9/GR6	10
B SU212	-45.20	5	-44.00	-16.87	3.20	1.96	58	1	61.3	8 9/GR9	
B AHIFRB1	-87.20	5	-76.06	24.16	1.81	0.80	142	1	61.6		
BERBERMU	-96.20	5	-64.77	32.32	0.80	0.80	90	2	56.8		
B ERBER02	-31.00	5	-64.77	32.32	0.80	0.80	90	1	56.9	2	10
B OLAND01	- 115.20	5	-65.04	- 16.76	2.49	1.27	76	1	67.9	9/GR5	
CAN01101	- 138.20	5	-125.63	57.24	3.45	1.27	157	1	59.5	9/GR10	10
CAN01201	- 138.20	5	-112.04	55.95	3.35	0.97	151	1	59.6	9/GR10	10
CAN01202	-7270	5	-107.70	55.63	2.74	1.12	32	1	59.6		
CAN01203	- 129.20	5	-111.48	55.61	3.08	1.15	151	1	59.5	9/GR12	10

12282,32 MHz (5)

CAN01303	-12920	5	- 102.42	57.12	3.54	0.91	154	1	60.0	9/GR12	10
CAN01304	-91.20	5	-99.12	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	- 129.20	5	-89.75	52.02	4.68	0.80	148	1	61.8	9/GR12	10
CAN01404	-91.20	5	-84.82	52.42	3.10	2.05	152	1	60.4	9/GR13	10
CAN01405	-82.20	5	-84.00	52.39	2.84	2.29	172	1	60.3	9/GR14	10
CAN01504	-91.20	5	-72.66	53.77	3.57	1.67	156	1	60.2	9/GR13	10
CAN01505	-82.20	5	-71.77	53.79	3.30	1.89	162	1	60.1	9/GR14	10
CAN01605	-82.20	5	-61.50	49.55	2.65	1.40	143	1	60.3	9/GR14	10
CAN01606	-70.70	5	-61.30	49.55	2.40	1.65	148	1	60.2	10	
CHLCONT5	- 106.20	5	-72.23	-35.57	2.60	0.80	55	1	59.4	9/GR17	
CHLPAC02	- 106.20	5	-80.06	-30.06	1.36	0.80	69	1	59.2	9/GR17	
CLMAND01	- 115.20	5	-74 72	5.93	3.85	1.63	114	1	64.9	9/GR5	
CLM00001	-103.20	5	-74.50	5.87	3.98	1.96	118	1	63.5	10	
EQACAND1	-115.20	5	- 78.40	-1.61	1.37	0.95	75	1	64.0	9/GR5	
EQAGAND1	-115.20	5	-90.34	-0.62	0.90	0.81	89	1	61.3	9/GR5	
FLKANT01	-57.20	5	-44.54	-60.13	3.54	0.80	12	1	59.3	2	10
FLKFALKS	-31.00	5	-59.90	-5164	0.80	0.80	90	1	58.1	2	
GRD00002	-42.20	5	-61.58	12.29	0.80	080	90	1	58.8		
HWA00002	-166.20	5	-165.79	23.42	4.20	0.80	160	1	58.8	9/GR1	10
HWA00003	-175.20	5	-166.10	23.42	4.25	080	159	1	58.8	9/GR2	10
MEX01NTE	- 78.20	5	-105 81	26.01	2.89	2.08	155	1	60.5	1	
MEX01SUR	-69.20	5	-94.84	19.82	305	209	4	1	62.2	1	10
MEX02NTE	- 136.20	5	-107.21	26.31	3.84	1.55	148	1	61.2	1	10
MEX02SUR	-12720	5	-96.39	19.88	3.18	1.87	157	1	62.5	1	10

12282,32 MHz (5)

1	2	3	4		5		6	7	8	9	
PAQPAC01	- 106.20	5	- 109.18	-27.53	0.80	0.80	90	1	562	9/GR17	
PRG00002	-99.20	5	-58.66	-23.32	1.45	1.04	76	1	60.2		
PRUAND02	-115.20	5	-74.69	-8.39	3.41	1.79	95	1	63.9	9/GR5	
PTRVIR01	-101.20	5	-65.85	18.12	0.80	0.80	90	1	60.5	16 9/GR20	
PTRVIR02	-110.20	5	-65.86	18.12	0.80	0.80	90	1	61.0	16 9/GR21	
SPMFRAN3	- 53.20	5	-6724	47.51	3.16	0.80	7	1	60.4	27	10
TRD00001	-84.70	5	-61.23	10.70	0.80	0.80	90	1	59.4		
URG00001	-71.70	5	-56.22	-32.52	1.02	0.89	11	1	60.0		
USAEH001	-61.70	5	-85.19	36.21	5.63	3.33	22	1	61.8	156	10
USAEH002	-101.20	5	-89.24	3616	5.67	3.76	170	1	61.7	16 9/GR20	10
USAEH003	-110.20	5	-90.14	36.11	5.55	3.55	161	1	62.0	16 9/GR21	10
USAEH004	- 119.20	5	-91.16	36.05	5.38	3.24	152	1	62.6	156	10
USAPSA02	-166.20	5	- 117.80	40.58	4.03	0.82	135	1	63.2	9/GR1	
USAPSA03	- 175.20	5	-118.27	4012	3.62	0.80	136	1	65.0	9/GR2	
USAWH101	- 148.20	5	- 109.65	38.13	5.53	195	142	1	62.1	10	
USAWH102	- 157.20	5	- 111.41	38.57	5.51	1.54	138	1	63.2	10	
VENAND03	-115.20	5	-67.04	6.91	2.37	1.43	111	1	67.2	9/GR5	
VRG00001	- 79.70	5	-64.37	18.48	0.80	0.80	90	1	58.3	4	

12296,90 MHz

ALS00002	-165.80	6	-149.63	5852	3.81	123	171	2	59.7	9/GR1	10
ALS00003	-174.80	6	-150.95	58.54	3.77	1.11	167	2	60.0	9/GR2	10
ARGNORT4	-9380	6	-6396	-30.01	386	1.99	48	2	65.6	10	
ARGNORT5	-54.80	6	-62.85	-29.80	324	2.89	47	2	63.5	10	
ATNBEAM1	-52.80	6	-66.44	1487	1.83	0.80	39	2	61.0		
B CE311	-63.80	6	-40.60	-607	304	2.06	174	2	61.6	8 9/GR7	10
B CE312	-44.80	6	-40.26	-606	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-63.80	6	-50.97	-15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	6	-50.71	-1530	3.57	1.56	52	2	62.7	8 9/GR9	10
B CE511	-63 80	6	-53.11	-2 98	2.42	215	107	2	63.1	8 9/GR7	10
B NO611	-7380	6	-59.60	-1162	286	169	165	1	62.8	8 9/GR8	10
B NO711	-7380	6	-60.70	-1.78	3.54	178	126	1	62.8	8 9/GR8	10
B NO811	-73.80	6	-68.75	-4.71	237	1.65	73	1	62.8	8 9/GR8	
B SE911	- 101.80	6	-4599	- 19.09	2.22	0.80	62	2	65.3	8	10
B SU111	-80 80	6	-51.10	-2564	2.76	1.06	50	2	62.8	89/GR6	10
B SU112	-4480	6	-50.76	-25.62	2.47	1.48	56	2	62.3	8 9/GR9	
B SU211	-8080	6	-44.51	-16.94	322	1.37	60	2	62.5	8 9/GR6	10
B SU212	-44.80	6	-43.99	-16.97	327	1.92	59	2	61.3	8 9/GR9	
CAN01101	-13780	6	-125.60	57.24	345	1.27	157	2	59.5	9/GR10	10
CAN01201	- 137.80	6	-111.92	55.89	3.33	0.98	151	2	59.6	9/GR10	10
CAN01202	-7230	6	- 107.64	55.62	275	1.11	32	2	59.6		
CAN01203	- 128.80	6	- 111.43	55.56	3.07	1.15	151	2	59.5	9/GR12	10
CAN01303	- 128.80	6	-102.39	5712	3.54	0.92	154	2	60.0	9/GR12	10
CAN01304	-9080	6	-99.00	5733	1.96	1.73	1	2	59.8	9/GR13	

12296,90 MHz

MEX02SUR	- 126.80	6	-96.39	19.88	3.19	1.87	158	2	62.5	1	10
PRU00004	-85.80	6	-74.19	-8.39	3.74	2.45	112	2	628	10	
PTRVIR01	-100.80	6	-65.85	18.12	0.80	0.80	90	2	60.6	16 9/GR20	
PTRVIR02	- 109.80	6	-65.85	18.12	0.80	0.80	90	2	61.1	16 9/GR21	
TCA00001	- 115.80	6	-71.79	21.53	0.80	0.80	90	2	60.4		
USAEH001	-61.30	6	-85 16	36.21	5.63	3.32	22	2	61.8	156	10
USAEH002	-100.80	6	-89.28	36.16	5.65	3.78	170	2	61.7	16 9/GR20	10
USAEH003	- 109.80	6	-90.12	3611	5.55	3.56	161	2	62.1	$169 / \mathrm{GR} 21$	10
USAEH004	-118.80	6	-91.16	36.05	5.38	3.24	153	2	62.6	156	10
USAPSA02	-165.80	6	- 117.79	40.58	4.04	0.82	135	2	63.2	9/GR1	
USAPSA03	- 174.80	6	- 118.20	40.15	3.63	0.80	136	2	64.9	9/GR2	
USAWH101	- 147.80	6	- 109.70	38.13	5.52	1.96	142	2	62.1	10	
USAWH102	- 156.80	6	- 111.40	38.57	5.51	1.55	138	2	63.2	10	
VCT00001	-79.30	6	-61.18	13.23	0.80	0.80	90	2	58.4		
VEN11VEN	-103.80	6	-66.79	6.90	2.50	1.77	122	2	65.1	10	

CAN01201	-138.20	7	-112.04	55.95	3.35	0.97	151	1	59.6	9/GR10	10
CAN01202	- 72.70	7	-107.70	55.63	2.74	1.12	32	1	59.6		
CAN01203	-129.20	7	-11148	55.61	3.08	1.15	151	1	59.5	9/GR12	10
CAN01303	- 129.20	7	-102 42	57.12	3.54	091	154	1	60.1	9/GR12	10
CAN01304	-91.20	7	-99 12	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	-129 20	7	-89.75	52.02	4.68	0.80	148	1	61.8	9/GR12	10
CAN01404	-9120	7	-84.82	52.42	3.10	2.05	152	1	60.4	9/GR13	10
CAN01405	-82.20	7	-84.00	5239	2.84	2.29	172	1	60.3	9/GR14	10
CAN01504	-91.20	7	-7266	5377	3.57	1.67	156	1	60.2	9/GR13	10
CAN01505	-82.20	7	-7177	53.79	3.30	1.89	162	1	60.1	9/GR14	10
CAN01605	-82.20	7	-61.50	4955	2.65	140	143	1	60.3	9/GR14	10
CAN01606	- 70.70	7	-61.30	49.55	2.40	1.65	148	1	60.2	10	
CHLCONT5	- 106.20	7	-72.23	-35.57	2.60	0.80	55	1	59.4	9/GR17	
CHLPAC02	-10620	7	-80.06	-30.06	1.36	0.80	69	1	59.2	9/GR17	
CLMAND01	-115.20	7	-74.72	593	3.85	1.63	114	1	65.0	9/GR5	
CLM00001	- 103.20	7	-74.50	587	3.98	1.96	118	1	63.6	10	
CUB00001	-89.20	7	-79.81	21.62	224	0.80	168	1	61.1		
EQACAND1	-11520	7	-78.40	-1.61	1.37	0.95	75	1	64.1	9/GR5	
EQAGAND1	-115.20	7	-90.34	-0.62	0.90	0.81	89	1	61.3	9/GR5	
GRD00002	-42.20	7	-61.58	12.29	0.80	0.80	90	1	58.8		
GRD00059	- 57.20	7	-61.58	12.29	0.80	0.80	90	1	58.5		
GRLDNK01	-53.20	7	-44.89	66.56	2.70	0.82	173	,	60.0	2	10
HWA00002	-166.20	7	- 165.79	23.4?	4.20	0.80	160	1	58.8	9/GR1	10
HWA00003	- 175.20	7	-166.10	23.42	4.25	0.80	159	1	58.8	9/GR2	10

12311,48 MHz (7)

1	2	3	4		5		6	7	8	9	
MEX01NTE	-78.20	7	- 105.81	26.01	2.89	2.08	155	1	60.5	1	
MEX01SUR	-69.20	7	-94.84	19.82	3.05	2.09	4	1	62.3	1	10
MEX02NTE	-136.20	7	- 107.21	26.31	3.84	1.55	148	1	61.2	1	10
MEX02SUR	- 127.20	7	-9639	19.88	3.18	1.87	157	1	62.6	1	10
PAQPAC01	- 106.20	7	- 109.18	-27.53	0.80	0.80	90	1	56.2	9/GR17	
PRG00002	-99.20	7	-58.66	-23.32	1.45	1.04	76	1	60.2		
PRUAND02	-115.20	7	-74.69	-8.39	3.41	1.79	95	1	64.0	9/GR5	
PTRVIR01	-101.20	7	-65.85	18.12	0.80	0.80	90	1	60.6	16 9/GR20	
PTRVIR02	- 110.20	7	-65.86	18.12	0.80	0.80	90	1	61.0	16 9/GR21	
SURINAM2	-84.70	7	-55.69	4.35	1.00	0.80	86	1	63.2		
URG00001	- 71.70	7	-56.22	-32.52	1.02	0.89	11	1	60.0		
USAEH001	-61.70	7	-85.19	3621	5.63	3.33	22	1	61.8	156	10
USAEH002	- 101.20	7	-89.24	36.16	5.67	3.76	170	1	617	16 9/GR20	10
USAEH003	-110.20	7	-90.14	3611	5.55	3.55	161	1	62.1	16 9/GR21	10
USAEH004	- 119.20	7	-91.16	36.05	5.38	3.24	152	1	62.6	156	10
USAPSA02	-166.20	7	- 117.80	40.58	4.03	0.82	135	1	63.3	9/GR1	
USAPSA03	-175.20	7	-118.27	40.12	3.62	0.80	136	1	65.0	9/GR2	
USAWH101	- 148.20	7	- 109.65	38.13	5.53	1.95	142	1	62.1	10	
USAWH102	- 157.20	7	- 111.41	38.57	5.51	1.54	138	1	63.2	10	
VENAND03	- 115.20	7	-67.04	6.91	2.37	1.43	111	1	67.3	9/GR5	

12326,06 MHz

ALS00002	-165.80	8	-149.63	58.52	3.81	1.23	171	2	59.8	9/GR1	10
ALS00003	- 174.80	8	-150.95	58.54	3.77	1.11	167	2	60.0	9/GR2	10
ARGNORT4	-93.80	8	-63.96	-30.01	3.86	1.99	48	2	65.7	10	
ARGNORT5	-54.80	8	-62.85	-29.80	3.24	2.89	47	2	63.5	10	
B CE311	-63.80	8	-40.60	-6 07	3.04	2.06	174	2	61.6	8 9/GR7	10
B CE312	-44.80	8	-40.26	-6.06	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-63.80	8	-50.97	-15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	8	-50.71	-15.30	3.57	1.56	52	2	62.8	8 9/GR9	10
B CE511	-63.80	8	-53.11	-2.98	2.42	2.15	107	2	63.1	8 9/GR7	10
B N0611	-73.80	8	-59 60	-11.62	2.86	1.69	165	1	62.9	8 9/GR8	10
B NO711	-73.80	8	-60.70	-1.78	3.54	1.78	126	1	62.8	8 9/GR8	10
B NO811	- 73.80	8	-68.75	-4.71	2.37	1.65	73	1	62.8	8 9/GR8	
B SE911	-101.80	8	-45.99	-19.09	2.22	0.80	62	2	65.3	-	10
B SU111	-80.80	8	-51.10	-25.64	2.76	1.06	50	2	62.9	8 9/GR6	10
B SU112	-44.80	8	-50.76	-25.62	2.47	1.48	56	2	62.3	8 9/GR9	
B SU211	-80.80	8	-44.51	-16.94	3.22	1.37	60	2	62.5	8 9/GR6	10
B SU212	-44.80	8	-43.99	-16.97	3.27	1.92	59	2	61.3	8 9/GR9	
CAN01101	-137.80	8	-125 60	57.24	3.45	1.27	157	2	59.5	9/GR10	10
CAN01201	-137.80	8	-111.92	55.89	3.33	098	151	2	59.6	9/GR10	10
CAN01202	-72.30	8	-107.64	55.62	2.75	1.11	32	2	59.6		
CAN01203	- 128.80	8	-111.43	55.56	3.07	1.15	151	2	59.5	9/GR12	10
CAN01303	-128.80	8	- 102.39	57.12	3.54	0.92	154	2	60.1	9/GR12	10
CAN01304	-90.80	8	-99.00	57.33	1.96	1.73	1	2	59.8	9/GR13	
CAN01403	-128.80	8	-89.70	52.02	4.67	0.80	148	2	61.8	9/GR12	10

12326,06 MHz (8)

1	2	3	4		5		6	7	8	9	
CAN01404	-90.80	8	-84.78	52.41	3.09	2.06	153	2	60.4	9/GR13	10
CAN01405	-81.80	8	-84.02	52.34	2.82	2.30	172	2	60.3	9/GR14	10
CAN01504	-90.80	8	-72.68	53.78	3.57	1.67	157	2	60.2	9/GR13	10
CAN01505	-81.80	8	-71.76	53.76	3.30	1.89	162	2	60.2	9/GR14	10
CAN01605	-81.80	8	-61.54	49.50	2.66	1.39	144	2	60.3	9/GR14	10
CAN01606	-70.30	8	-61.32	49.51	2.41	1.65	148	2	60.2	10	
CHLCONT4	-105.80	8	-69.59	-23.20	2.21	0.80	68	2	59.1	9/GR16	
CHLCONT6	- 105.80	8	-7352	-55.52	3.65	1.31	39	2	59.6	9/GR16	
CRBBAH01	-92.30	8	-7609	24.13	1.83	0.80	141	1	61.7	9/GR18	
CRBBER01	-92.30	8	-64.76	32.13	0.80	0.80	90	1	56.8	9/GR18	
CRBBLZ01	-92.30	8	-88.61	17.26	0.80	0.80	90	1	58.7	9/GR18	
CRBEC001	-92.30	8	-60.07	8.26	4.20	0.86	115	1	64.3	9/GR18	10
CRBJMC01	-9230	8	-79.45	17.97	0.99	0.80	151	1	61.1	9/GR18	
CYM00001	-115.80	8	-80.58	19.57	0.80	0.80	90	2	59.6		
DOMIFRB2	-83.30	8	- 70.51	18.79	098	0.80	167	2	61.1		
EQAC0001	-94.80	8	-7831	-1.52	148	1.15	65	,	630	9/GR19	
EQAG0001	-94.80	8	-90.36	-0.57	094	0.89	99	1	61.0	9/GR19	
GUFMGG02	-52.80	8	-56.42	8.47	4.16	0.81	123	2	62.7	27	10
HWA00002	- 165.80	8	- 165.79	23.32	4.20	0.80	160	2	58.8	9/GR1	10
HWA00003	-174.80	8	-166.10	23.42	4.25	080	159	2	58.8	9/GR2	10
JMC00005	-33.80	8	-77.27	18.12	0.80	080	90	2	60.6		
LCAIFRB1	-79.30	8	-61.15	13.90	0.80	0.80	90	2	58.4		
MEX01NTE	-77.80	8	- 105.80	25.99	2.88	207	155	2	60.5	1	
MEX02NTE	-135.80	8	-107.36	26.32	380	1.57	149	2	61.2	1	10

12326,06 MHz (8)

MEXO2SUR	-126.80	8	-96.39	19.88	3.19	1.87	158	2	62.5	1	10
PRU00004	-85.80	8	-74.19	-8.39	3.74	2.45	112	2	62.9	10	10
PTRVIR01	-100.80	8	-6585	1812	0.80	0.80	90	2	60.6	$169 /$ GR20	
PTRVIR02	-109.80	8	-65.85	18.12	0.80	0.80	90	2	61.1	1699 GR21	
SLVIFRB2	-107.30	8	-88.91	1359	0.80	0.80	90	1	61.7		
USAEH001	-61.30	8	-85.16	3621	5.63	3.32	22	2	61.9	156	10
USAEH002	-100.80	8	-89.28	36.16	5.65	3.78	170	2	61.7	$169 /$ GR20	10
USAEH003	-109.80	8	-90.12	36.11	5.55	3.56	161	2	62.1	$1699 / G R 21$	10
USAEH004	-118.80	8	-91.16	36.05	5.38	3.24	153	2	62.6	156	10
USAPSA02	-165.80	8	-117.79	40.58	4.04	0.82	135	2	63.3	$9 /$ GR1	
USAPSA03	-174.80	8	-118.20	40.15	3.63	0.80	136	2	650	$9 / G R 2$	
USAWH101	-147.80	8	-109.70	38.13	5.52	1.96	142	2	62.1	10	
USAWH102	-15680	8	-111.40	38.57	551	1.55	138	2	63.2	10	
VEN11VEN	-103.80	8	-66.79	6.90	2.50	1.77	122	2	65.2	10	

12340,64 MHz

CAN01303	-129 20	9	- 102.42	57.12	3.54	0.91	154	1	60.0	9/GR12	10
CAN01304	-91.20	9	-99.12	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	- 129.20	9	-89.75	52.02	4.68	0.80	148	1	61.8	9/GR12	10
CAN01404	-91.20	9	-84.82	52.42	3.10	2.05	152	1	60.4	9/GR13	10
CAN01405	-82.20	9	-84.00	52.39	2.84	2.29	172	1	60.3	9/GR14	10
CAN01504	-91.20	9	-72.66	53.77	3.57	1.67	156	1	60.2	9/GR13	10
CAN01505	-82.20	9	- 71.77	53.79	3.30	1.89	162	1	60.1	9/GR14	10
CAN01605	-82.20	9	-61.50	49.55	2.65	1.40	143	1	60.3	9/GR14	10
CAN01606	-70.70	9	-61.30	49.55	2.40	1.65	148	1	60.2	10	
CHLCONT5	- 106.20	9	-72.23	-35.57	2.60	0.80	55	1	59.4	9/GR17	
CHLPAC02	- 106.20	9	-80.06	-30 06	1.36	0.80	69	1	59.2	9/GR17	
CLMAND01	-115.20	9	-74.72	593	3.85	1.63	114	1	64.9	9/GR5	
CLM00001	-103.20	9	-7450	5.87	398	196	118	1	63.5	10	
EQACAND1	-115.20	9	-7840	-1.61	137	095	75	1	64.0	9/GR5	
EQAGAND1	- 115.20	9	-9034	-0.62	0.90	0.81	89	1	61.3	9/GR5	
FLKANT01	-57.20	9	-4454	-60.13	3.54	0.80	12	1	59.3	2	10
FLKFALKS	-31.00	9	-59.90	-5164	0.80	0.80	90	1	58.1	2	
GRD00002	-42.20	9	-61.58	1229	0.80	0.80	90	1	58.8		
HWA00002	-166.20	9	- 165.79	2342	4.20	0.80	160	1	58.8	9/GR1	10
HWA00003	-175.20	9	- 166.10	23.42	4.25	0.80	159	1	58.8	9/GR2	10
MEX01NTE	-78.20	9	- 105.81	26.01	2.89	2.08	155	1	605	1	
MEX01SUR	-69.20	9	-94.84	19.82	3.05	2.09	4	1	62.2	,	10
MEX02NTE	-136.20	9	-107.21	2631	3.84	1.55	148	1	61.2	1	10
MEX02SUR	-12720	9	-96.39	19.88	3.18	1.87	157	1	62.5	1	10

12340,64 MHz (9)

1	2	3	4		5		6	7	8	9	
PAOPAC01	-106.20	9	-109.18	-27.53	0.80	0.80	90	1	56.2	9/GR17	
PRG00002	-99.20	9	-58.66	-23.32	1.45	1.04	76	1	60.2		
PRUAND02	-115.20	9	-74.69	-8.39	3.41	1.79	95	1	63.9	9/GR5	
PTRVIR01	- 101.20	9	-65.85	18.12	0.80	0.80	90	1	60.5	16 9/GR20	
PTRVIR02	- 110.20	9	-65.86	18.12	0.80	0.80	90	1	61.0	16 9/GR21	
SPMFRAN3	-5320	9	-67.24	47.51	3.16	0.80	7	1	60.4	27	10
TRD00001	-84.70	9	-6123	10.70	0.80	080	90	1	59.4		
URG00001	-71.70	9	-56.22	-32.52	1.02	0.89	11	1	60.0		
USAEH001	-61.70	9	-85.19	36.21	5.63	3.33	22	1	61.8	156	10
USAEH002	-101.20	9	-89.24	36.16	5.67	3.76	170	1	61.7	16 9/GR20	10
USAEH003	-110.20	9	-90.14	36.11	5.55	3.55	161	1	62.0	16 9/GR21	10
USAEH004	- 119.20	9	-91.16	36.05	5.38	3.24	152	1	62.6	156	10
USAPSA02	-166.20	9	- 117.80	40.58	403	0.82	135	1	63.2	9/GR1	
USAPSA03	-175.20	9	-118.27	40.12	3.62	0.80	136	1	65.0	9/GR2	
USAWH101	- 148.20	9	-109.65	38.13	5.53	1.95	142	1	62.1	10	
USAWH102	- 157.20	9	- 111.41	38.57	5.51	1.54	138	1	632	10	
VENAND03	-115.20	9	-67.04	6.91	2.37	1.43	111	1	67.2	9/GR5	
VRG00001	-79.70	9	-64.37	18.48	080	0.80	90	1	58.3	4	

12355, 22 MHz (10)

ALS00002	-165 80	10	- 149.63	58.52	3.81	1.23	171	2	59.7	9/GR1	10
ALS00003	- 17480	10	-150.95	58.54	3.77	1.11	167	2	600	9/GR2	10
ARGNORT4	-93.80	10	-63.96	-30.01	3.86	1.99	48	2	65.6	10	
ARGNORT5	-54.80	10	-62.85	-29.80	3.24	2.89	47	2	63.5	10	
ATNBEAM1	- 52.80	10	-66.44	14.87	1.83	0.80	39	2	61.0		
B CE311	-63.80	10	-40.60	-6.07	3.04	2.06	174	2	61.6	8 9/GR7	10
B CE312	-44.80	10	-40.26	-6.06	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-63.80	10	-50.97	-15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	10	-50.71	- 15.30	3.57	1.56	52	2	62.7	8 9/GR9	10
B CE511	-63.80	10	-5311	-2.98	2.42	2.15	107	2	63.1	8 9/GR7	10
B NO611	-73.80	10	-59.60	-11.62	2.86	1.69	165	1	62.8	8 9/GR8	10
B NO711	-7380	10	-60.70	-1.78	3.54	1.78	126	1	62.8	8 9/GR8	10
B N0811	-73.80	10	-68.75	-4.71	237	1.65	73	1	62.8	8 9/GR8	
B SE911	-10180	10	-4599	-19.09	2.22	0.80	62	2	65.3	8	10
B SU111	-8080	10	-51.10	-25.64	2.76	1.06	50	2	62.8	8 9/GR6	10
B SU112	-44.80	10	-50.76	- 25.62	2.47	1.48	56	2	62.3	8 9/GR9	
B SU211	-80.80	10	-44.51	- 16.94	3.22	1.37	60	2	62.5	8 9/GR6	10
B SU212	-4480	10	-43.99	-16.97	3.27	192	59	2	61.3	8 9/GR9	
CAN01101	-137.80	10	- 125.60	57.24	3.45	1.27	157	2	59.5	9/GR10	10
CAN01201	-13780	10	- 111.92	55.89	3.33	0.98	151	2	59.6	9/GR10	10
CAN01202	-72.30	10	-10764	55.62	2.75	1.11	32	2	59.6		
CAN01203	- 128.80	10	-111.43	55.56	307	1.15	151	2	595	9/GR12	10
CAN01303	- 128.80	10	- 102.39	57.12	3.54	0.92	154	2	600	9/GR12	10
CAN01304	-90.80	10	-99.00	57.33	1.96	1.73	1	2	59.8	9/GR13	

1	2	3	4		5		6	7	8	9	
CAN01403	-128.80	10	-89.70	52.02	4.67	0.80	148	2	61.8	9/GR12	10
CAN01404	-90.80	10	-84.78	52.41	3.09	2.06	153	2	60.4	9/GR13	10
CAN01405	-81.80	10	-84.02	52.34	2.82	2.30	172	2	60.3	9/GR14	10
CAN01504	-90.80	10	- 72.68	53.78	3.57	1.67	157	2	60.2	9/GR13	10
CAN01505	-81.80	10	-71.76	53.76	3.30	1.89	162	2	60.1	9/GR14	10
CAN01605	-81.80	10	-61 54	49.50	2.66	1.39	144	2	60.3	9/GR14	10
CAN01606	-70.30	10	-61.32	49.51	2.41	1.65	148	2	60.2	10	
CHLCONT4	- 105.80	10	-69.59	-23.20	2.21	0.80	68	2	59.1	9/GR16	
CHLCONT6	- 105.80	10	- 73.52	-55.52	3.65	1.31	39	2	59.6	9/GR16	
CRBBAH01	-92.30	10	- 76.09	24.13	1.83	0.80	141	1	61.7	9/GR18	
Crbbero1	-92.30	10	-64.76	32.13	0.80	0.80	90	1	56.7	9/GR18	
CRBBLZ01	-92.30	10	-88.61	17.26	0.80	0.80	90	1	58.6	9/GR18	
CRBEC001	-92.30	10	-60.07	8.26	4.20	0.86	115	1	64.2	9/GR18	10
CRBJMC01	-92.30	10	-79.45	17.97	0.99	0.80	151	1	61.1	9/GR18	
CTR00201	- 130.80	10	-84.33	967	0.82	0.80	119	2	65.6		
EQAC0001	-94.80	10	-78.31	-1.52	1.48	1.15	65	1	63.0	9/GR19	
EQAG0001	-94.80	10	-90.36	-0.57	0.94	0.89	99	1	61.0	9/GR19	
GUY00302	- 33.80	10	-59.07	4.77	1.43	085	91	2	63.5		
HNDIFRB2	- 107.30	10	-86.23	15.16	1.14	0.85	8	1	63.4		
HT100002	-83.30	10	-73.28	18.96	0.82	0.80	11	2	60.9		
HWA00002	-165.80	10	-165.79	23.32	4.20	0.80	160		58.8	9/GR1	10
HWA00003	- 174.80	10	- 166.10	23.42	4.25	0.80	159	2	58.8	9/GR2	10
MEX01NTE	-77.80	10	-105.80	25.99	2.88	2.07	155	2	60.5	1	
MEX02NTE	-13580	10	-107.36	26.32	3.80	1.57	149	2	61.2	1	10

12355,22 MHz

MEX02SUR	-126.80	10	-9639	1988	3.19	1.87	158	2	62.5	1	10
PRU00004	-85.80	10	-74.19	-8.39	3.74	245	112	2	62.8	10	
PTRVIR01	-100.80	10	-65.85	1812	0.80	080	90	2	60.6	$169 /$ GR20	
PTRVIR02	-109.80	10	-6585	18.12	080	0.80	90	2	61.1	$1699 /$ GR21	
TCA00001	-115.80	10	-71.79	21.53	080	0.80	90	2	60.4		
USAEH001	-61.30	10	-8516	36.21	5.63	3.32	22	2	61.8	156	10
USAEH002	-100.80	10	-8928	3616	5.65	3.78	170	2	61.7	$169 /$ GR20	10
USAEH003	-109.80	10	-9012	36.11	5.55	356	161	2	62.1	$1699 /$ GR21	10
USAEH004	-118.80	10	-9116	36.05	5.38	3.24	153	2	62.6	156	10
USAPSA02	-165.80	10	-11779	40.58	4.04	0.82	135	2	63.2	$9 / G R 1$	
USAPSA03	-17480	10	-11820	4015	3.63	080	136	2	64.9	$9 /$ GR2	
USAWH101	-147.80	10	-10970	38.13	552	1.96	142	2	62.1	10	
USAWH102	-15680	10	-111.40	38.57	5.51	1.55	138	2	63.2	10	
VCTOOOO1	-7930	10	-6118	1323	080	0.80	90	2	58.4		
VEN11VEN	-103.80	10	-6679	690	2.50	177	122	2	651	10	

12369,80 MHz (11)

1	2	3	4		5		6	7	8	9	
ALS00002	-166.20	11	- 149.66	58.37	3.76	1.24	170	1	59.8	9/GR1	10
ALS00003	- 175.20	11	- 150.98	5853	3.77	1.11	167	1	60.0	9/GR2	10
ARGINSU4	-94.20	11	-52.98	-59.81	340	0.80	19	1	59.9	9/GR3	
ARGINSU5	-55.20	11	-44.17	-59.91	3.77	0.80	13	,	59.3	9/GR4	10
ARGSUR04	-94.20	11	-65.04	-43.33	3.32	1.50	40	1	607	9/GR3	10
ARGSUR05	-55.20	11	-63.68	-43.01	2.54	2.38	152	1	60.1	9/GR4	10
ATGSJN01	-79.70	11	-61.79	17.07	0.80	0.80	90	1	58.4		
B CE311	-64.20	11	-40.60	-6.07	3.04	2.06	174	1	61.6	8 9/GR7	10
B CE312	-45.20	11	-40.27	-6.06	3.44	2.09	174	1	61.0	8 9/GR9	10
B CE411	-64.20	11	-50.97	-15.27	3.86	1.38	49	1	62.6	8 9/GR7	10
B CE412	-45.20	11	-50.71	-1530	3.57	1.56	52	1	62.7	8 9/GR9	10
B CE511	-64.20	11	-53.10	-290	2.44	2.13	104		63.1	8 9/GR7	10
B N0611	-74.20	11	-59.60	-11.62	2.85	1.69	165	2	62.9	8 9/GR8	10
B N0711	-74.20	11	-60.70	-1.78	3.54	178	126	2	62.8	8 9/GR8	10
B N0811	-74.20	11	-68.76	-471	2.37	1.65	73	2	62.8	8 9/GR8	
B SU111	-81.20	11	-51.12	-25.63	2.76	1.05	50	1	62.9	8 9/GR6	10
B SU112	-45.20	11	-50.75	-25.62	2.47	1.48	56	1	62.3	8 9/GR9	
B SU211	-81.20	11	-44.51	-16.95	3.22	1.36	60	1	62.5	8 9/GR6	10
B SU212	-45.20	11	-44.00	-16.87	3.20	1.96	58	1	61.3	8 9/GR9	
BERBERMU	-96.20	11	-64.77	32.32	0.80	0.80	90	2	56.8		
B OLAND01	- 115.20	11	-65.04	-16.76	2.49	1.27	76	1	67.9	9/GR5	
B OL00001	-87.20	11	-64.61	- 16.71	2.52	219	85	1	63.8	10	
B RB00001	-92.70	11	-59.85	12.93	0.80	0.80	90	2	59.1		
CAN01101	- 138.20	11	- 125.63	57.24	345	1.27	157	1	59.5	9/GR10	10

12369,80 MHz (11)

CAN01201	-138.20	11	-11204	55.95	3.35	0.97	151	1	59.6	9/GR10	10
CAN01202	- 72.70	11	-107.70	5563	2.74	1.12	32	1	59.6		
CAN01203	- 129.20	11	-11148	55.61	308	1.15	151	1	59.5	9/GR12	10
CAN01303	- 12920	11	- 102.42	57.12	354	0.91	154	1	60.1	9/GR12	10
CAN01304	-9120	11	-9912	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	- 12920	11	-8975	52.02	4.68	0.80	148	1	61.8	9/GR12	10
CAN01404	-91.20	11	-84.82	52.42	3.10	205	152	1	60.4	9/GR13	10
CAN01405	-82.20	11	-84.00	52.39	2.84	2.29	172	1	603	9/GR14	10
CAN01504	-9120	11	- 72.66	5377	3.57	1.67	156	1	60.2	9/GR13	10
CAN01505	-82.20	11	-71.77	53.79	3.30	1.89	162	1	60.1	9/GR14	10
CAN01605	-82.20	11	-61.50	49.55	265	1.40	143	1	60.3	9/GR14	10
CAN01606	-70.70	11	-6130	49.55	2.40	1.65	148	1	602	10	
CHLCONT5	- 106.20	11	-72.23	-35.57	260	080	55	1	59.4	9/GR17	
CHLPAC02	- 106.20	11	-80.06	-30.06	1.36	080	69	1	59.2	9/GR17	
CLMAND01	- 115.20	11	- 74.72	5.93	3.85	1.63	114	1	65.0	9/GR5	
CLM00001	- 103.20	11	-74.50	5.87	3.98	1.96	118	1	63.6	10	
CUB00001	-89.20	11	-79.81	21.62	2.24	0.80	168	1	61.1		
EQACAND1	- 115.20	11	-78.40	-1.61	1.37	0.95	75	1	64.1	9/GR5	
EQAGAND1	- 115.20	11	-90.34	-0.62	0.90	0.81	89	1	61.3	9/GR5	
GRD00002	-42.20	11	-61.58	12.29	0.80	0.80	90	1	58.8		
GRD00059	-57.20	11	-61.58	12.29	080	0.80	90	1	585		
GRLDNK01	-53.20	11	-44.89	66.56	2.70	0.82	173	1	60.0	2	10
GUY00201	-84.70	11	-59.19	4.78	1.44	0.85	95	1	63.5		
HWA00002	- 166.20	11	-165.79	23.42	4.20	0.80	160	1	58.8	9/GR1	10

12369,80 MHz (11)

1	2	3	4		5		6	7	8	9	
HWA00003	-17520	11	- 166.10	23.42	4.25	0.80	159	1	58.8	9/GR2	10
MEX01NTE	-78.20	11	- 105.81	26.01	2.89	2.08	155	1	60.5	1	
MEX01SUR	-69.20	11	-94.84	19.82	3.05	2.09	4	1	62.3	1	10
MEX02NTE	- 136.20	11	-107.21	26.31	3.84	1.55	148	1	61.2	1	10
MEX02SUR	- 127.20	11	-96.39	19.88	3.18	1.87	157	1	62.6	1	10
PAQPAC01	- 106.20	11	- 109.18	-27.53	0.80	0.80	90	1	56.2	9/GR17	
PRG00002	-9920	11	-58.66	-23.32	1.45	1.04	76	1	60.2		
PRUAND02	-115.20	11	- 74.69	-8.39	3.41	1.79	95	1	64.0	9/GR5	
PTRVIR01	- 10120	11	-65.85	18.12	0.80	0.80	90	1	60.6	16 9/GR20	
PTRVIR02	- 110.20	11	-65.86	18.12	0.80	0.80	90	1	61.0	16 9/GR21	
URG00001	-71.70	11	-56.22	-32.52	1.02	0.89	11	1	60.0		
USAEH001	-61.70	11	-8519	36.21	5.63	3.33	22	1	61.8	156	10
USAEH002	- 101.20	11	-89.24	36.16	5.67	3.76	170	,	61.7	16 9/GR20	10
USAEH003	- 110.20	11	-90.14	36.11	5.55	3.55	161	1	62.1	16 9/GR21	10
USAEH004	- 119.20	11	-91.16	36.05	5.38	3.24	152	1	62.6	156	10
USAPSA02	-16620	11	-117.80	40.58	4.03	0.82	135	1	63.3	9/GR1	
USAPSA03	- 175.20	11	- 118.27	40.12	3.62	0.80	136	,	65.0	9/GR2	
USAWH101	- 148.20	11	- 109.65	38.13	5.53	1.95	142	1	62.1	10	
USAWH102	- 157.20	11	- 11141	38.57	5.51	1.54	138	1	63.2	10	
VENAND03	- 115.20	11	-67.04	6.91	2.37	1.43	111	1	67.3	9/GR5	

ALS00002	-165 80	12	-149.63	58.52	3.81	1.23	171	2	59.8	9/GR1	10
ALS00003	-174.80	12	- 150.95	5854	3.77	1.11	167	2	60.0	9/GR2	10
ARGNORT4	-93.80	12	-63.96	-30.01	3.86	1.99	48	2	65.7	10	
ARGNORT5	-54.80	12	-62.85	-29.80	3.24	2.89	47	2	63.5	10	
B CE311	-63.80	12	-40.60	-6.07	3.04	2.06	174	2	61.6	8 9/GR7	10
B CE312	-44.80	12	-40.26	-606	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-63.80	12	-50.97	- 15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	12	-50.71	- 15.30	3.57	1.56	52	2	62.8	8 9/GR9	10
B CE511	-63.80	12	-53.11	-2.98	2.42	2.15	107	2	631	8 9/GR7	10
B NO611	-73.80	12	-59.60	-11.62	2.86	1.69	165	1	62.9	8 9/GR8	10
B NO711	-73.80	12	-60.70	-1.78	3.54	1.78	126	1	62.8	8 9/GR8	10
B N0811	- 73.80	12	-68.75	-471	2.37	1.65	73	1	62.8	8 9/GR8	
B SE911	- 101.80	12	-45.99	-19.09	2.22	0.80	62	2	65.3	8	10
B SU111	-80.80	12	-51.10	-25.64	276	1.06	50	2	62.9	8 9/GR6	10
B SU112	-44.80	12	-50.76	-25.62	2.47	1.48	56	2	62.3	8 9/GR9	
B SU211	-80.80	12	-44.51	- 16.94	3.22	1.37	60	2	62.5	8 9/GR6	10
B SU212	-44.80	12	-43.99	-16.97	3.27	1.92	59	2	61.3	8 9/GR9	
CAN01101	- 137.80	12	- 125.60	57.24	3.45	1.27	157	2	59.5	9/GR10	10
CAN01201	-137.80	12	-111.92	55.89	3.33	0.98	151	2	59.6	9/GR10	10
CAN01202	- 72.30	12	-107.64	55.62	2.75	1.11	32	2	59.6		
CAN01203	-128.80	12	-111.43	55.56	3.07	115	151	2	59.5	9/GR12	10
CAN01303	- 128.80	12	-102.39	57.12	3.54	0.92	154	2	60.1	9/GR12	10
CAN01304	-90.80	12	-99.00	57.33	1.96	1.73	1		59.8	9/GR13	
CAN01403	- 128.80	12	-89.70	52.02	4.67	0.80	148	2	61.8	9/GR12	10

12384,38 MHz

MEXO2SUR	-126.80	12	-96.39	19.88	3.19	1.87	158	2	62.5	1	
PRU00004	-85.80	12	-74.19	-8.39	3.74	2.45	112	2	62.9	10	10
PTRVIR01	-100.80	12	-6585	18.12	080	0.80	90	2	60.6	$169 /$ GR20	
PTRVIR02	-109.80	12	-65.85	18.12	080	0.80	90	2	61.1	$169 /$ GR21	
SLVIFRB2	-107.30	12	-8891	13.59	0.80	0.80	90	1	617		
USAEH001	-61.30	12	-85.16	36.21	5.63	3.32	22	2	61.9	156	10
USAEH002	-100.80	12	-89.28	36.16	5.65	3.78	170	2	617	$169 /$ GR20	10
USAEH003	-109.80	12	-90.12	36.11	5.55	3.56	161	2	62.1	$169 /$ GR21	10
USAEH004	-118.80	12	-91.16	3605	5.38	3.24	153	2	62.6	156	10
USAPSA02	-165.80	12	-117.79	40.58	4.04	0.82	135	2	63.3	$9 / G R 1$	
USAPSA03	-174.80	12	-118.20	40.15	3.63	0.80	136	2	65.0	$9 / G R 2$	
USAWH101	-147.80	12	-10970	38.13	5.52	1.96	142	2	62.1	10	
USAWH102	-156.80	12	-11.40	38.57	5.51	1.55	138	2	63.2	10	
VEN11VEN	-103.80	12	-6679	6.90	2.50	1.77	122	2	65.2	10	

12398,96 MHz (13)

CAN01303	- 129.20	13	- 102.42	57.12	3.54	091	154	1	60.0	9/GR12	10
CAN01304	-91.20	13	-99.12	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	- 129.20	13	-89.75	52.02	4.68	0.80	148	1	61.8	9/GR12	10
CAN01404	-91.20	13	-84.82	52.42	3.10	2.05	152	1	60.4	9/GR13	10
CAN01405	-8220	13	-84.00	52.39	2.84	2.29	172	1	60.3	9/GR14	10
CAN01504	-91.20	13	-7266	53.77	3.57	1.67	156	1	602	9/GR13	10
CAN01505	-82.20	13	-7177	53.79	3.30	189	162	1	60.1	9/GR14	10
CAN01605	-82.20	13	-61.50	49.55	265	140	143	1	60.3	9/GR14	10
CAN01606	-70.70	13	-61.30	49.55	2.40	1.65	148	1	60.2	10	
CHLCONT5	-106.20	13	-72.23	-35.57	2.60	0.80	55	1	59.4	9/GR17	
CHLPAC02	- 106.20	13	-80.06	-30.06	136	0.80	69	1	59.2	9/GR17	
CLMAND01	-115.20	13	-74.72	5.93	3.85	1.63	114	1	64.9	9/GR5	
CLM00001	- 103.20	13	-74.50	5.87	3.98	1.96	118	1	63.5	10	
EQACAND1	- 115.20	13	-78.40	-1.61	1.37	0.95	75	1	64.0	9/GR5	
EQAGAND1	- 115.20	13	-90.34	-0.62	0.90	0.81	89	1	61.3	9/GR5	
FLKANT01	-57.20	13	-44.54	-60.13	3.54	0.80	12	1	59.3	2	10
FLKFALKS	-31.00	13	-59.90	-5164	0.80	080	90	1	58.1	2	
GRD00002	-42.20	13	-61.58	12.29	0.80	0.80	90	1	58.8		
HWA00002	- 166.20	13	- 165.79	23.42	4.20	0.80	160	1	58.8	9/GR1	10
HWA00003	-175.20	13	-166.10	23.42	4.25	0.80	159	1	58.8	9/GR2	10
MEX01NTE	-78.20	13	- 105.81	26.01	2.89	2.08	155	1	60.5	1	
MEX01SUR	-69.20	13	-94.84	19.82	3.05	2.09	4	1	62.2	1	10
MEX02NTE	-136.20	13	-107.21	26.31	3.84	1.55	148	1	61.2	1	10
MEX02SUR	-127.20	13	-96.39	19.88	3.18	1.87	157	1	62.5	1	10

12398,96 MHz (13)

1	2	3	4		5		6	7	8	9	
PAQPAC01	-106.20	13	- 109.18	-27.53	0.80	0.80	90	1	56.2	9/GR17	
PRG00002	-99.20	13	-58.66	-23.32	1.45	1.04	76	1	60.2		
PRUAND02	-115.20	13	-74.69	-8.39	3.41	1.79	95	1	639	9/GR5	
PTRVIR01	- 101.20	13	-65.85	18.12	0.80	0.80	90	1	60.5	16 9/GR20	
PTRVIR02	- 110.20	13	-65.86	18.12	0.80	0.80	90	1	61.0	16 9/GR21	
SPMFRAN3	-53.20	13	-67.24	47.51	3.16	0.80	7	1	60.4	27	10
TRD00001	-84.70	13	-61.23	10.70	0.80	0.80	90	1	59.4		
URG00001	-71.70	13	-56.22	-32.52	1.02	0.89	11	1	60.0		
USAEH001	-61.70	13	-85.19	36.21	5.63	3.33	22	1	618	156	10
USAEH002	- 101.20	13	-89.24	36.16	5.67	3.76	170	1	61.7	16 9/GR20	10
USAEH003	- 110.20	13	-90 14	36.11	5.55	3.55	161	1	62.0	16 9/GR21	10
USAEH004	- 119.20	13	-91.16	36.05	5.38	3.24	152	1	62.6	156	10
USAPSA02	- 166.20	13	- 117.80	40.58	4.03	0.82	135	1	63.2	9/GR1	
USAPSA03	- 175.20	13	-118.27	40.12	3.62	0.80	136	1	65.0	9/GR2	
USAWH101	- 148.20	13	- 109.65	38.13	5.53	1.95	142	1	62.1	10	
USAWH102	- 157.20	13	- 111.41	38.57	5.51	1.54	138	1	63.2	10	
VENAND03	- 115.20	13	-67.04	6.91	2.37	1.43	111	1	67.2	9/GR5	
VRG00001	-79.70	13	-64 37	18.48	0.80	0.80	90	1	58.3	4	

12413,54 MHz (14)

ALS00002	- 165.80	14	-149.63	58.52	3.81	1.23	171	2	59.7	9/GR1	10
ALS00003	- 174.80	14	-150.95	58.54	3.77	1.11	167	2	60.0	9/GR2	10
ARGNORT4	-93.80	14	-63.96	-30.01	3.86	199	48	2	65.6	10	
ARGNORT5	-54.80	14	-62.85	-29.80	3.24	2.89	47	2	635	10	
ATNBEAM1	-52.80	14	-66.44	14.87	1.83	0.80	39	2	610		
B CE311	-63.80	14	-4060	-607	3.04	2.06	174	2	61.6	8 9/GR7	10
B CE312	-4480	14	-40.26	-6.06	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-6380	14	-5097	-15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	14	-50.71	- 15.30	3.57	1.56	52	2	62.7	8 9/GR9	10
B CE511	-63.80	14	-53.11	-2.98	2.42	2.15	107	2	63.1	8 9/GR7	10
B N0611	-73.80	14	-59.60	-11.62	2.86	1.69	165	1	62.8	8 9/GR8	10
B NO711	-73.80	14	-60.70	-1.78	3.54	1.78	126	1	62.8	8 9/GR8	10
B NO811	-73.80	14	-68.75	-4.71	2.37	1.65	73	1	62.8	8 9/GR8	
B SE911	- 101.80	14	-45.99	-19.09	2.22	0.80	62	2	65.3	8	10
B SU111	-80.80	14	-51.10	-25.64	2.76	1.06	50	2	62.8	8 9/GR6	10
B SU112	-44.80	14	-50.76	-25.62	2.47	1.48	56	2	62.3	8 9/GR9	
B SU211	-80.80	14	-44.51	-16.94	3.22	1.37	60	2	62.5	8 9/GR6	10
B SU212	-44.80	14	-43.99	-16.97	3.27	1.92	59	2	61.3	8 9/GR9	
CAN01101	-137.80	14	- 125.60	57.24	3.45	1.27	157	2	59.5	9/GR10	10
CAN01201	- 137.80	14	- 111.92	55.89	3.33	0.98	151	2	59.6	9/GR10	10
CAN01202	-72.30	14	- 107.64	55.62	2.75	1.11	32	2	59.6		
CAN01203	- 128.80	14	- 111.43	55.56	3.07	1.15	151	2	59.5	9/GR12	10
CAN01303	- 128.80	14	- 102.39	57.12	3.54	0.92	154	2	60.0	9/GR12	10
CAN01304	-90.80	14	-99.00	57.33	1.96	1.73	1	2	59.8	9/GR13	

12413,54 MHz

1	2	3	4		5		6	7	8	9	
CANO1403	- 128.80	14	-89.70	52.02	4.67	0.80	148	2	61.8	9/GR12	10
CAN01404	-90.80	14	-84.78	52.41	3.09	2.06	153	2	60.4	9/GR13	10
CAN01405	-81.80	14	-84.02	52.34	2.82	2.30	172	2	60.3	9/GR14	10
CAN01504	-90.80	14	-72.68	53.78	3.57	1.67	157	2	60.2	9/GR13	10
CAN01505	-81.80	14	-71.76	53.76	3.30	1.89	162	2	60.1	9/GR14	10
CAN01605	-81.80	14	-61.54	49.50	2.66	1.39	144	2	60.3	9/GR14	10
CAN01606	-70.30	14	-61.32	49.51	2.41	1.65	148	2	60.2	10	
CHLCONT4	- 105.80	14	-69.59	-23.20	2.21	0.80	68	2	59.1	9/GR16	
CHLCONT6	- 105.80	14	-73.52	-55.52	3.65	1.31	39	2	59.6	9/GR16	
CRbBAH01	-92.30	14	-76.09	24.13	1.83	0.80	141	1	61.7	9/GR18	
CRBBER01	-92.30	14	-64.76	32.13	0.80	0.80	90	1	56.7	9/GR18	
CRBBLZ01	-92.30	14	-88.61	17.26	0.80	0.80	90	1	58.6	9/GR18	
CRBEC001	-92.30	14	-60.07	8.26	4.20	0.86	115	1	64.2	9/GR18	10
CRBJMC01	-92.30	14	-79.45	17.97	0.99	0.80	151	1	61.1	9/GR18	
CTR00201	- 130.80	14	-84.33	9.67	0.82	0.80	119	2	65.6		
EQAC0001	-94.80	14	-7831	-1.52	1.48	1.15	65	1	63.0	9/GR19	
EQAG0001	-94.80	14	-90 36	-0.57	0.94	0.89	99	1	61.0	9/GR19	
GUY00302	-33.80	14	-59.07	4.77	1.43	0.85	91	2	63.5		
HNDIFRB2	-107.30	14	-86.23	15.16	1.14	0.85	8	1	63.4		
HT100002	-83.30	14	-73.28	18.96	0.82	0.80	11	2	60.9		
HWA00002	-165.80	14	-165.79	23.32	4.20	0.80	160	2	58.8	9/GR1	10
HWA00003	-174.80	14	- 166.10	2342	4.25	0.80	159	2	58.8	9/GR2	10
MEX01NTE	-77.80	14	- 105.80	25.99	2.88	2.07	155	2	60.5	1	
MEX02NTE	-135.80	14	- 107.36	26.32	3.80	1.57	149	2	61.2	1	10

12413,54 MHz
(14)

MEX02SUR	- 126.80	14	-96.39	19.88	3.19	1.87	158	2	62.5	1	10
PRU00004	-85.80	14	-7419	-8.39	3.74	2.45	112	2	62.8	10	
PTRVIR01	-100.80	14	-65.85	18.12	0.80	0.80	90	2	60.6	$169 / \mathrm{GR} 20$	
PTRVIR02	-109.80	14	-65.85	18.12	0.80	0.80	90	2	61.1	16 9/GR21	
TCA00001	-115.80	14	-71.79	21.53	0.80	0.80	90	2	60.4		
USAEH001	-61.30	14	-8516	36.21	5.63	3.32	22	2	61.8	156	10
USAEH002	- 100.80	14	-89.28	36.16	5.65	3.78	170	2	61.7	16 9/GR20	10
USAEH003	- 109.80	14	-90.12	36.11	5.55	3.56	161	2	62.1	$169 / \mathrm{GR} 21$	10
USAEH004	-118.80	14	-91.16	36.05	5.38	3.24	153	2	62.6	156	10
USAPSA02	-165.80	14	- 117.79	40.58	4.04	0.82	135	2	63.2	9/GR1	
USAPSA03	-174.80	14	-118.20	40.15	3.63	0.80	136	2	64.9	9/GR2	
USAWH101	- 147.80	14	- 109.70	38.13	5.52	1.96	142	2	62.1	10	
USAWH102	-156.80	14	- 111.40	38.57	5.51	1.55	138	2	63.2	10	
VCT00001	-79.30	14	-61.18	13.23	0.80	0.80	90	2	58.4		
VEN11VEN	- 103.80	14	-66.79	6.90	2.50	1.77	122	2	65.1	10	

	－
 	N
	ω
䍐 స	A
$\omega \circ N \mathrm{NO} \omega \omega \mathrm{N} N \mathrm{~N} \omega \mathrm{~N} N \omega \omega \omega \omega$ ON $\omega \omega \omega \omega \omega$ 	G
	$\boldsymbol{\sigma}$
－－－－－－－NN，－－－－－－－－	\checkmark
 	∞
	ω

[^37]12428, 12 MHz

CAN01201	-138.20	15	-112.04	55.95	3.35	0.97	151	1	596	9/GR10	10
CAN01202	-72.70	15	- 107.70	55.63	2.74	112	32	1	59.6		
CAN01203	-129.20	15	- 111.48	55.61	3.08	115	151	1	59.5	9/GR12	10
CAN01303	- 129.20	15	- 102.42	57.12	3.54	0.91	154	1	60.1	9/GR12	10
CAN01304	-91.20	15	-99.12	57.36	1.98	1.72	2	1	59.8	9/GR13	
CAN01403	- 129.20	15	-8975	52.02	4.68	0.80	148	1	61.8	9/GR12	10
CAN01404	-91.20	15	-84.82	52.42	3.10	2.05	152	1	60.4	9/GR13	10
CAN01405	-82.20	15	-84.00	52.39	2.84	2.29	172	1	60.3	9/GR14	10
CAN01504	-9120	15	-72.66	53.77	3.57	1.67	156	1	60.2	9/GR13	10
CAN01505	-82.20	15	-7177	53.79	3.30	1.89	162	1	60.1	9/GR14	10
CAN01605	-82.20	15	-61.50	49.55	2.65	1.40	143	1	60.3	9/GR14	10
CAN01606	-70.70	15	-6130	49.55	2.40	1.65	148	1	60.2	10	
CHLCONT5	-10620	15	-7223	-35.57	2.60	0.80	55	1	59.4	9/GR17	
CHLPAC02	-10620	15	-80 06	-30.06	1.36	080	69	1	59.2	9/GR17	
CLMAND01	-115.20	15	-74.72	5.93	3.85	163	114	1	65.0	9/GR5	
CLM00001	-10320	15	-74.50	5.87	3.98	1.96	118	1	63.6	10	
CUB00001	-89.20	15	-7981	2162	2.24	0.80	168	1	61.1		
EQACAND1	- 115.20	15	-78.40	-1.61	137	095	75	1	641	9/GR5	
EQAGAND1	- 115.20	15	-90.34	-0.62	0.90	0.81	89	1	61.3	9/GR5	
GRD00002	-42.20	15	-61.58	12.29	0.80	0.80	90	1	58.8		
GRD00059	-57.20	15	-6158	12.29	0.80	0.80	90	1	58.5		
GRLDNK01	-53.20	15	-44.89	66.56	2.70	0.82	173	1	60.0	2	10
GUY00201	-84.70	15	-5919	4.78	1.44	0.85	95	1	635		
HWA00002	-166.20	15	-165 79	23.42	4.20	0.80	160	1	58.8	9/GR1	10

12428,12 MHz (15)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

12442,70 MHz (16)

ALS00002	-165.80	16	-149.63	58.52	3.81	1.23	171	2	59.8	9/GR1	10
ALS00003	- 17480	16	- 150.95	5854	3.77	1.11	167	2	60.0	9/GR2	10
ARGNORT4	-9380	16	-63.96	-30.01	3.86	1.99	48	2	65.7	10	
ARGNORT5	-54.80	16	-62.85	-29.80	3.24	2.89	47	2	63.5	10	
B CE311	-6380	16	-40.60	-6.07	304	2.06	174	2	61.6	$89 / \mathrm{GR} 7$	10
B CE312	-44.80	16	-4026	-606	3.44	2.09	174	2	61.0	8 9/GR9	10
B CE411	-63.80	16	-50 97	-15.26	3.86	1.38	49	2	62.6	8 9/GR7	10
B CE412	-44.80	16	-50 71	- 15.30	3.57	1.56	52	2	62.8	8 9/GR9	10
B CE511	-63.80	16	-53.11	-298	2.42	2.15	107	2	63.1	8 9/GR7	10
B NO611	-73.80	16	-5960	-1162	286	1.69	165	1	62.9	8 9/GR8	10
B NO711	-73.80	16	-60.70	-1.78	354	178	126	1	62.8	8 9/GR8	10
B NO811	-73.80	16	-6875	-471	237	1.65	73	1	62.8	8 9/GR8	
B SE911	- 101.80	16	-4599	-19.09	222	0.80	62	2	65.3	8	10
B SU111	-80.80	16	-51.10	-2564	2.76	1.06	50		62.9	8 9/GR6	10
B SU112	-44.80	16	-50.76	- 25.62	247	148	56	2	62.3	8 9/GR9	
B SU211	-80.80	16	-4451	-16.94	322	1.37	60	2	62.5	8 9/GR6	10
B SU212	-44.80	16	-43.99	-16.97	327	1.92	59	2	61.3	8 9/GR9	
CAN01101	- 137.80	16	- 125.60	57.24	3.45	1.27	157	2	59.5	9/GR10	10
CAN01201	- 137.80	16	-11192	55.89	333	0.98	151	2	59.6	9/GR10	10
CAN01202	- 72.30	16	-107.64	55.62	2.75	1.11	32	2	59.6		
CAN01203	- 128.80	16	-11143	55.56	307	1.15	151	2	59.5	9/GR12	10
CAN01303	- 128.80	16	- 102.39	57.12	354	0.92	154	2	601	9/GR12	10
CAN01304	-90.80	16	-99.00	57.33	196	1.73	1	2	59.8	9/GR13	
CAN01403	-128.80	16	-89.70	52.02	4.67	0.80	148	2	61.8	9/GR12	10

12442,70 MHz (16)

MEX02SUR	-126.80	16	-9639	19.88	319	1.87	158	2	62.5	1	10
PRU00004	-8580	16	-74.19	-8.39	3.74	2.45	112	2	62.9	10	
PTRVIR01	-10080	16	-65.85	1812	0.80	0.80	90	2	60.6	$169 /$ GR20	
PTRVIR02	-10980	16	-65.85	18.12	0.80	0.80	90	2	61.1	$169 /$ GR21	
SLVIFRB2	-10730	16	-88.91	1359	080	0.80	90	1	61.7		
USAEH001	-6130	16	-85.16	36.21	5.63	3.32	22	2	61.9	156	10
USAEH002	-10080	16	-89.28	36.16	5.65	3.78	170	2	61.7	$169 /$ GR20	10
USAEH003	-10980	16	-90.12	36.11	555	3.56	161	2	62.1	$1699 /$ GR21	10
USAEH004	-11880	16	-91.16	36.05	5.38	324	153	2	626	15	6
USAPSA02	-165.80	16	-117.79	40.58	4.04	082	135	2	633	$9 / G R 1$	10
USAPSA03	-174.80	16	-11820	4015	3.63	0.80	136	2	65.0	$9 / G R 2$	
USAWH101	-14780	16	-109.70	3813	5.52	1.96	142	2	62.1	10	
USAWH102	-156.80	16	-111.40	38.57	5.51	1.55	138	2	63.2	10	
VEN11VEN	-103.80	16	-66.79	690	2.50	177	122	2	65.2	10	

12457,28 MHz (17)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

12457,28 MHz

CAN01203	-129.20	17	-111.48	5561	3.08	1.15	151	1	59.7	9/GR12	10
CAN01303	- 129.20	17	- 102.42	57.12	3.54	0.91	154	1	60.2	9/GR12	10
CAN01304	-91.20	17	-99.12	57.36	1.98	1.72	2	1	60.0	9/GR13	
CAN01403	- 129.20	17	-89.75	52.02	4.68	0.80	148	1	62.1	9/GR12	10
CAN01404	-91.20	17	-84.82	52.42	3.10	2.05	152	1	60.6	9/GR13	10
CAN01405	-82.20	17	-84.00	52.39	2.84	229	172	1	60.5	9/GR14	10
CAN01504	-91.20	17	-72.66	53.77	3.57	1.67	156	1	60.4	9/GR13	10
CAN01505	-82.20	17	-71.77	53.79	3.30	1.89	162	1	60.3	9/GR14	10
CAN01605	-82.20	17	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	10
CAN01606	-70.70	17	-61.30	49.55	2.40	1.65	148	1	60.4	10	
CHLCONT5	- 106.20	17	-72.23	-35.57	2.60	0.80	55	1	59.6	9/GR17	
CHLPAC02	- 106.20	17	-80.06	-30.06	1.36	0.80	69	1	59.4	9/GR17	
CLMAND01	- 115.20	17	- 74.72	5.93	3.85	1.63	114	1	65.3	9/GR5	
CLM00001	-103.20	17	-74.50	5.87	3.98	1.96	118	1	63.9	10	
EQACAND1	-115.20	17	-78.40	-1.61	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	-115.20	17	-90.34	-0.62	0.90	0.81	89	1	61.5	9/GR5	
FLKFALKS	-31.00	17	-59.90	-51.64	0.80	0.80	90	1	58.2	2	
HWA00002	- 166.20	17	-165.79	23.42	4.20	0.80	160	1	59.0	9/GR1	10
HWA00003	-175.20	17	-166.10	23.42	4.25	0.80	159	1	58.9	9/GR2	10
JMC00002	-92.70	17	-77.30	18.12	0.80	0.80	90	2	60.1		
MEX01NTE	-78.20	17	-105.81	26.01	2.89	2.08	155	1	60.7	1	
MEX01SUR	-69.20	17	-94.84	19.82	3.05	2.09	4	1	62.5	1	10
MEX02NTE	-136.20	17	-107.21	26.31	3.84	1.55	148	1	61.4	1	10
MEX02SUR	- 127.20	17	-96.39	19.88	3.18	1.87	157	1	62.8	1	10

12457,28 MHz (17)

1	2	3	4		5		6	7	8	9	
PAQPAC01	- 106.20	17	- 109.18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	17	-58.66	-23.32	1.45	1.04	76	1	60.4		
PRUAND02	-115.20	17	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	-101.20	17	-65.85	18.12	0.80	0.80	90	1	60.8	16 9/GR20	
PTRVIR02	- 110.20	17	-65.86	18.12	0.80	0.80	90	1	61.3	16 9/GR21	
SCN00001	-79.70	17	-62.46	17.44	0.80	0.80	90	1	58.6		
SPMFRAN3	-53.20	17	-67.24	47.51	3.16	0.80	7	1	60.6	27	10
SURINAM2	-84.70	17	-55.69	4.35	100	0.80	86	1	63.5		
URG00001	-71.70	17	-56.22	-32.52	1.02	0.89	11	1	60.2		
USAEH001	-61.70	17	-85.19	36.21	5.63	3.33	22	1	62.1	156	10
USAEH002	- 101.20	17	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	- 110.20	17	-90.14	36.11	5.55	3.55	161	1	62.3	16 9/GR21	10
USAEH004	-119.20	17	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	-166.20	17	- 117.80	40.58	4.03	0.82	135	1	63.5	9/GR1	
USAPSA03	-175.20	17	- 118.27	4012	3.62	0.80	136	1	65.3	9/GR2	
USAWH101	-148.20	17	- 109.65	38.13	5.53	1.95	142	1	62.3	10	
USAWH102	-157.20	17	- 111.41	38.57	5.51	154	138	1	63.5	10	
VENAND03	- 115.20	17	-67.04	6.91	2.37	1.43	111	1	67.6	9/GR5	

ALS00002	- 165.80	18	-149.63	58.52	3.81	1.23	171	2	59.9	9/GR1	10
ALS00003	-174.80	18	-150.95	58.54	3.77	1.11	167	2	60.2	9/GR2	10
ARGNORT4	-93.80	18	-63.96	-3001	3.86	1.99	48	2	66.0	10	
ARGNORT5	-54.80	18	-62.85	-2980	3.24	2.89	47	2	63.8	10	
ATNBEAM1	-52.80	18	-66.44	14.87	1.83	0.80	39	2	61.3		
B CE311	-63.80	18	-40.60	-6.07	3.04	2.06	174	2	61.9	8 9/GR7	10
B CE312	-44.80	18	-40.26	-6.06	344	2.09	174	2	61.2	8 9/GR9	10
B CE411	-63.80	18	-50.97	-15.26	3.86	1.38	49	2	62.9	8 9/GR7	10
B CE412	-44.80	18	-50.71	-15.30	3.57	1.56	52	2	63.0	8 9/GR9	10
B CE511	-63.80	18	-53.11	-2.98	2.42	2.15	107	2	63.4	8 9/GR7	10
B N0611	-73.80	18	-59.60	- 11.62	2.86	1.69	165	1	63.1	8 9/GR8	10
B NO711	-73.80	18	-60.70	-1.78	3.54	1.78	126	1	63.1	8 9/GR8	10
B NO811	-73.80	18	-68.75	-4.71	2.37	1.65	73	1	63.1	8 9/GR8	
B SE911	- 101.80	18	-45.99	-19.09	2.22	0.80	62	2	65.7	8	10
B SU111	-80.80	18	-51.10	-25.64	2.76	1.06	50	2	63.1	8 9/GR6	10
B SU112	-44.80	18	-50.76	-25.62	2.47	1.48	56	2	62.6	8 9/GR9	
B SU211	-80.80	18	-44.51	- 16.94	3.22	1.37	60	2	62.8	8 9/GR6	10
B SU212	-44.80	18	-43.99	- 16.97	3.27	1.92	59	2	61.6	8 9/GR9	
B LZ00001	- 115.80	18	-88.68	17.27	0.80	0.80	90	2	59.2		
CAN01101	- 137.80	18	- 125.60	57.24	3.45	1.27	157	2	59.7	9/GR10	10
CAN01201	-137.80	18	-111.92	55.89	3.33	0.98	151	2	59.8	9/GR10	10
CAN01202	-72.30	18	-107.64	55.62	2.75	1.11	32	2	59.8		
CAN01203	-128.80	18	-111.43	55.56	3.07	1.15	151	2	59.7	9/GR12	10
CAN01303	-128.80	18	-102.39	57.12	3.54	0.92	154	2	60.3	9/GR12	10

1	2	3	4		5		6	7	8	9	
CAN01304	-90.80	18	-99.00	57.33	1.96	1.73	1	2	60.0	9/GR13	
CAN01403	- 128.80	18	-89.70	52.02	4.67	0.80	148	2	62.1	9/GR12	10
CAN01404	-90.80	18	-84.78	52.41	3.09	2.06	153	2	60.6	9/GR13	10
CAN01405	-81.80	18	-84.02	52.34	2.82	2.30	172	2	60.5	9/GR14	10
CAN01504	-90.80	18	-72.68	53.78	3.57	1.67	157	2	60.4	9/GR13	10
CAN01505	-81.80	18	- 71.76	53.76	3.30	1.89	162	2	60.3	9/GR14	10
CAN01605	-81.80	18	-61.54	49.50	2.66	1.39	144	2	60.5	9/GR14	10
CAN01606	- 70.30	18	-61.32	49.51	2.41	1.65	148	2	60.4	10	
CHLCONT4	- 105.80	18	-69.59	-23.20	2.21	0.80	68	2	59.3	9/GR16	
CHLCONT6	- 105.80	18	-73.52	-55.52	3.65	1.31	39	2	59.7	9/GR16	
CRBBAH01	-92.30	18	-76.09	24.13	1.83	0.80	141	1	61.9	9/GR18	
CRBBER01	-92.30	18	-64.76	32.13	0.80	0.80	90	1	56.9	9/GR18	
CRBBLZ01	-92.30	18	-88.61	17.26	0.80	0.80	90	1	58.9	9/GR18	
CRBEC001	-92.30	18	-60.07	8.26	4.20	0.86	115	1	64.6	9/GR18	10
CRBJMC01	-92.30	18	- 79.45	17.97	0.99	0.80	151	1	61.3	9/GR18	
CTR00201	- 130.80	18	-84.33	9.67	0.82	0.80	119	2	66.0		
DMAIFRB1	- 79.30	18	-61.30	15.35	0.80	0.80	90	2	58.7		
EQAC0001	-94.80	18	-78.31	-1.52	1.48	1.15	65	1	63.3	9/GR19	
EQAG0001	-94.80	18	-90.36	-0.57	0.94	0.89	99	1	61.2	9/GR19	
HWA00002	- 165.80	18	- 165.79	23.32	4.20	0.80	160	2	59.0	9/GR1	10
HWA00003	- 174.80	18	- 166.10	23.42	4.25	0.80	159	2	59.0	9/GR2	10
MEX01NTE	-77.80	18	- 105.80	25.99	2.88	2.07	155	2	60.7	1	
MEX02NTE	-135.80	18	- 107.36	26.32	3.80	1.57	149	2	61.4	1	10
MEX02SUR	-126.80	18	-96.39	19.88	319	1.87	158	2	62.8	1	10

12471,86 MHz (18)

NCG00003	-107.30	18	-84.99	12.90	1.05	1.01	176	1	63.6		
PRU00004	-85.80	18	-74.19	-8.39	3.74	2.45	112	2	63.1	10	
PTRVIR01	-100.80	18	-65.85	18.12	0.80	0.80	90	2	60.8	$1699 /$ GR20	
PTRVIR02	-109.80	18	-65.85	18.12	0.80	0.80	90	2	61.4	$1699 /$ GR21	
USAEH001	-61.30	18	-85.16	36.21	5.63	3.32	22	2	62.1	156	10
USAEH002	-100.80	18	-89.28	36.16	5.65	3.78	170	2	62.0	$169 /$ GR20	10
USAEH003	-109.80	18	-90.12	36.11	5.55	3.56	161	2	62.3	$169 /$ GR21	10
USAEH004	-118.80	18	-91.16	36.05	5.38	3.24	153	2	62.9	156	10
USAPSA02	-165.80	18	-117.79	40.58	4.04	0.82	135	2	63.5	$9 / G R 1$	
USAPSA03	-174.80	18	-118.20	40.15	3.63	0.80	136	2	65.3	$9 /$ GR2	
USAWH101	-147.80	18	-109.70	38.13	5.52	1.96	142	2	62.3	10	
USAWH102	-156.80	18	-111.40	38.57	5.51	1.55	138	2	63.5	10	
VEN11VEN	-103.80	18	-66.79	6.90	2.50	1.77	122	2	65.5	10	

12486,44 MHz (19)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

12486,44 MHz (19)

CAN01202	-72.70	19	-107.70	55.63	2.74	1.12	32	1	59.8		
CAN01203	-129.20	19	-111.48	55.61	3.08	1.15	151	1	59.7	9/GR12	10
CAN01303	- 129.20	19	- 102.42	57.12	3.54	0.91	154	1	60.3	9/GR12	10
CAN01304	-91.20	19	-99.12	57.36	1.98	1.72	2	1	60.1	9/GR13	
CAN01403	- 129.20	19	-89.75	52.02	4.68	0.80	148	1	62.1	9/GR12	10
CAN01404	-91.20	19	-84.82	52.42	310	2.05	152	1	60.6	9/GR13	10
CAN01405	-82.20	19	-84.00	52.39	2.84	2.29	172	1	60.5	9/GR14	10
CAN01504	-91.20	19	-72.66	53.77	3.57	1.67	156	1	60.4	9/GR13	10
CAN01505	-82.20	19	-71.77	53.79	3.30	1.89	162	1	60.4	9/GR14	10
CAN01605	-82.20	19	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	10
CAN01606	-70.70	19	-61.30	49.55	2.40	1.65	148	1	60.5	10	
CHLCONT5	-106.20	19	-72.23	-35.57	2.60	0.80	55	1	59.6	9/GR17	
CHLPAC02	-106.20	19	-80.06	-30.06	1.36	0.80	69	1	59.4	9/GR17	
CLMAND01	-115.20	19	-74.72	5.93	3.85	1.63	114	1	65.4	9/GR5	
CLM00001	- 103.20	19	-74.50	5.87	3.98	1.96	118	1	63.9	10	
CUB00001	-89.20	19	-79.81	21.62	2.24	0.80	168	1	61.3		
EQACAND1	-115.20	19	-78.40	-1.61	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	- 115.20	19	-90.34	-0.62	0.90	0.81	89	,	61.6	9/GR5	
GRD00059	-57.20	19	-61.58	12.29	0.80	0.80	90	1	58.7		
GRLDNK01	-53.20	19	-44.89	66.56	2.70	0.82	173	1	60.2	2	10
GUY00201	-84.70	19	-59.19	4.78	1.44	0.85	95	1	63.8		
HWA00002	-166.20	19	- 165.79	23.42	4.20	0.80	160	1	59.0	9/GR1	10
HWA00003	-175.20	19	- 166.10	23.42	4.25	0.80	159	1	59.0	9/GR2	10
MEX01NTE	-78.20	19	- 105.81	26.01	2.89	2.08	155	1	60.8	1	

12486,44 MHz (19)

1	2	3	4		5		6	7	8	9	
MEX01SUR	-69.20	19	-94.84	19.82	3.05	2.09	4	1	62.5	1	10
MEX02NTE	-136.20	19	- 107.21	26.31	3.84	1.55	148	1	61.5	1	10
MEX02SUR	- 127.20	19	-96.39	19.88	3.18	1.87	157	1	62.8	1	10
MSR00001	-79.70	19	-61.73	16.75	0.80	0.80	90	1	58.9	4	
PAQPAC01	- 106.20	19	- 109.18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	19	-58.66	-23.32	1.45	1.04	76	1	60.5		
PRUAND02	- 115.20	19	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	-101.20	19	-65.85	18.12	0.80	0.80	90	1	60.8	16 9/GR20	
PTRVIR02	-110.20	19	-65.86	18.12	0.80	0.80	90	1	61.3	16 9/GR21	
URG00001	- 71.70	19	-56.22	-32.52	1.02	0.89	11	1	60.2		
USAEH001	-61.70	19	-85.19	36.21	5.63	3.33	22	1	62.1	156	10
USAEH002	- 101.20	19	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	- 110.20	19	-90.14	36.11	5.55	3.55	161	1	62.4	16 9/GR21	10
USAEH004	- 119.20	19	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	- 166.20	19	-117.80	40.58	4.03	0.82	135	1	63.6	9/GR1	
USAPSA03	-175.20	19	-118.27	40.12	3.62	0.80	136	1	65.4	9/GR2	
USAWH101	- 148.20	19	- 109.65	38.13	5.53	1.95	142	1	62.4	10	
USAWH102	- 157.20	19	- 111.41	38.57	5.51	1.54	138	1	63.5	10	
VENAND03	- 115.20	19	-67.04	6.91	2.37	1.43	111	1	67.7	9/GR5	

12501,02 MHz

ALS00002	-165.80	20	- 149.63	58.52	3.81	1.23	171	2	59.9	9/GR1	10	
ALS00003	-174.80	20	-150.95	58.54	3.77	1.11	167	2	60.2	9/GR2	10	
ARGNORT4	-93.80	20	-63.96	-30.01	3.86	1.99	48	2	66.1	10		
ARGNORT5	-54.80	20	-62.85	-29.80	3.24	2.89	47	2	63.9	10		
B CE311	-63.80	20	-40.60	-6.07	3.04	2.06	174	2	61.9	8 9/GR7	10	
B CE312	-44.80	20	-40.26	-6.06	3.44	2.09	174	2	61.3	8 9/GR9	10	11
B CE411	-63.80	20	-50.97	-15.26	3.86	1.38	49	2	62.9	8 9/GR7	10	
B CE412	-44.80	20	-50.71	- 15.30	357	1.56	52	2	63.1	8 9/GR9	10	12
B CE511	-63.80	20	-53.11	-2.98	2.42	2.15	107	2	63.4	8 9/GR7	10	
B N0611	-73.80	20	-59.60	-11.62	2.86	1.69	165	1	63.2	8 9/GR8	10	
B N0711	-73.80	20	-60.70	-1.78	3.54	1.78	126	1	63.2	8 9/GR8	10	
B N0811	- 73.80	20	-68.75	-4.71	2.37	1.65	73	1	63.2	8 9/GR8		
B SE911	-101.80	20	-45.99	-19.09	2.22	0.80	62	2	65.7	8	10	
B SU111	-80.80	20	-51.10	- 25.64	2.76	1.06	50	2	63.2	8 9/GR6	10	
B SU112	-44.80	20	-50.76	-25.62	2.47	1.48	56	2	62.6	8 9/GR9	11	
B SU211	-80.80	20	-44.51	- 16.94	3.22	1.37	60	2	62.8	8 9/GR6	10	
B SU212	-44.80	20	-43.99	-16.97	3.27	1.92	59	2	61.6	8 9/GR9	12	
CAN01101	-137.80	20	- 125.60	57.24	3.45	1.27	157	2	59.7	9/GR10	10	
CAN01201	-137.80	20	-111.92	55.89	3.33	0.98	151	2	59.8	9/GR10	10	
CAN01202	-72.30	20	- 107.64	55.62	2.75	1.11	32	2	59.8			
CAN01203	-128.80	20	-111.43	55.56	3.07	1.15	151	2	59.7	9/GR12	10	
CAN01303	-128.80	20	- 102.39	57.12	3.54	0.92	154	2	60.3	9/GR12	10	
CAN01304	-90.80	20	-99.00	57.33	1.96	1.73	1	2	60.0	9/GR13		
CAN01403	-128.80	20	-89.70	52.02	4.67	0.80	148	2	62.1	9/GR12	10	

12501,02 MHz

1	2	3	4		5		6	7	8	9	
CAN01404	-90.80	20	-84.78	52.41	3.09	2.06	153	2	60.6	9/GR13	10
CAN01405	-81.80	20	-84.02	52.34	2.82	2.30	172	2	60.5	9/GR14	10
CAN01504	-90.80	20	-72.68	53.78	3.57	1.67	157	2	60.4	9/GR13	10
CAN01505	-81.80	20	- 71.76	53.76	3.30	1.89	162	2	60.4	9/GR14	10
CAN01605	-81.80	20	-61.54	49.50	2.66	1.39	144	2	60.5	9/GR14	10
CAN01606	-70.30	20	-61.32	49.51	2.41	1.65	148	2	60.5	10	
CHLCONT4	-105.80	20	-69.59	-23.20	2.21	0.80	68	2	59.3	9/GR16	
CHLCONT6	-105.80	20	- 73.52	-55.52	3.65	1.31	39	2	59.8	9/GR16	
CRBBAH01	-92.30	20	-76.09	24.13	1.83	0.80	141	1	62.0	9/GR18	
CRBBER01	-92.30	20	-64.76	32.13	0.80	0.80	90	1	57.0	9/GR18	
CRBBLZ01	-92.30	20	-88.61	17.26	0.80	0.80	90	1	58.9	9/GR18	
CRBEC001	-92.30	20	-60.07	8.26	4.20	0.86	115	1	64.6	9/GR18	10
CRBJMC01	-92.30	20	-79.45	17.97	0.99	0.80	151	1	61.4	9/GR18	
EQAC0001	-94.80	20	-78.31	-1.52	1.48	1.15	65	1	63.3	9/GR19	
EQAG0001	-94.80	20	-90.36	-0.57	0.94	0.89	99	1	61.3	9/GR19	
GRD00003	-79.30	20	-61.62	12.34	0.80	0.80	90	2	58.9		
GTMIFRB2	-107.30	20	-90.50	15.64	1.03	0.80	84	1	61.4		
GUFMGG02	-52.80	20	-56.42	8.47	4.16	0.81	123	2	63.0	27	10
HWA00002	-165.80	20	- 165.79	23.32	4.20	0.80	160	2	59.0	9/GR1	10
HWA00003	-174.80	20	-166.10	23.42	4.25	0.80	159	2	59.0	9/GR2	10
MEX01NTE	-77.80	20	-105.80	25.99	2.88	2.07	155	2	60.8	1	
MEX02NTE	- 135.80	20	-107.36	26.32	3.80	1.57	149	2	61.5	1	10
MEX02SUR	-126.80	20	-96.39	19.88	3.19	1.87	158	2	62.8	1	10
PNRIFRB2	- 121.00	20	-80.15	8.46	1.01	0.80	170	1	65.1		

12501,02 MHz

PRUO0004	-85.80	20	-74.19	-8.39	3.74	2.45	112	2	63.2	10	
PTRVIR01	-100.80	20	-65.85	18.12	0.80	0.80	90	2	60.9	$1699 /$ GR20	
PTRVIR02	-109.80	20	-65.85	18.12	0.80	0.80	90	2	61.4	$1699 /$ GR21	
USAEH001	-61.30	20	-85.16	36.21	5.63	3.32	22	2	62.1	156	10
USAEH002	-100.80	20	-89.28	36.16	5.65	3.78	170	2	62.0	$1699 /$ GR20	10
USAEH003	-109.80	20	-90.12	36.11	5.55	3.56	161	2	62.4	$169 /$ GR21	10
USAEH004	-118.80	20	-91.16	36.05	5.38	3.24	153	2	62.9	15	6
USAPSA02	-165.80	20	-117.79	40.58	4.04	0.82	135	2	63.6	$9 /$ GR1	10
USAPSA03	-174.80	20	-118.20	40.15	3.63	0.80	136	2	65.3	$9 /$ GR2	
USAWH101	-147.80	20	-109.70	38.13	5.52	1.96	142	2	62.4	10	
USAWH102	-156.80	20	-111.40	38.57	5.51	1.55	138	2	63.5	10	
VENO2VEN	-103.80	20	-63.50	15.50	0.80	0.80	90	2	60.1	$9 /$ GR22	
VEN11VEN	-103.80	20	-66.79	6.90	2.50	1.77	122	2	65.6	$9 /$ GR22	10

12515,60 MHz

1	2	3	4		5		6	7	8	9	
ALS00002	-166.20	21	- 149.66	58.37	3.76	1.24	170	1	59.9	9/GR1	10
ALS00003	- 175.20	21	-150.98	58.53	3.77	1.11	167	1	60.2	9/GR2	10
ARGINSU4	-94.20	21	-52.98	-59.81	3.40	0.80	19	1	60.1	9/GR3	
ARGINSU5	-55.20	21	-44.17	-59.91	3.77	0.80	13	1	59.5	9/GR4	
ARGSUR04	-94.20	21	-65.04	-43.33	3.32	1.50	40	1	60.9	9/GR3	
ARGSUR05	-55.20	21	-63.68	-43.01	2.54	2.38	152	1	60.2	9/GR4	
B CE311	-64.20	21	-40.60	-6.07	3.04	2.06	174	1	61.9	8 9/GR7	
B CE312	-45.20	21	-40.27	-6.06	3.44	2.09	174	1	61.2	8 9/GR9	1011
B CE411	-64.20	21	-50.97	-15.27	3.86	1.38	49	1	62.9	8 9/GR7	
B CE412	-45.20	21	-50.71	-15.30	3.57	1.56	52	1	63.0	8 9/GR9	1012
B CE511	-64.20	21	-53.10	-2.90	2.44	2.13	104	1	63.4	8 9/GR7	
B N0611	- 74.20	21	-59.60	-11.62	2.85	1.69	165	2	63.1	8 9/GR8	
B NO711	-74.20	21	-60.70	-1.78	3.54	1.78	126	2	63.1	8 9/GR8	
B NO811	-74.20	21	-68.76	-4.71	2.37	1.65	73	2	63.1	8 9/GR8	
B SU111	-81.20	21	-51.12	-25.63	2.76	1.05	50	1	63.2	8 9/GR6	
B SU112	-45.20	21	-50.75	-25.62	2.47	1.48	56	1	62.5	8 9/GR9	11
B SU211	-81.20	21	-44.51	-16.95	3.22	1.36	60	1	62.8	8 9/GR6	
B SU212	-45.20	21	-44.00	-16.87	3.20	1.96	58	1	61.6	8 9/GR9	12
BERBERMU	-96.20	21	-64.77	32.32	0.80	0.80	90	2	57.0		
B OLAND01	- 115.20	21	-65.04	-16.76	2.49	1.27	76	1	68.0	9/GR5	
CAN01101	- 138.20	21	-125.63	57.24	3.45	1.27	157	1	59.7	9/GR10	10
CAN01201	- 138.20	21	-11204	55.95	3.35	0.97	151	1	59.8	9/GR10	10
CAN01202	-72.70	21	-107.70	55.63	2.74	1.12	32	1	59.8		
CAN01203	-129.20	21	-111.48	55.61	3.08	1.15	151	1	59.7	9/GR12	10

12515,60 MHz (21)

CAN01303	- 129.20	21	-102 42	57.12	3.54	0.91	154	1	60.2	9/GR12	10
CAN01304	-91.20	21	-99.12	57.36	1.98	1.72	2	1	60.0	9/GR13	
CAN01403	- 129.20	21	-89.75	52.02	4.68	0.80	148	,	62.1	9/GR12	10
CAN01404	-9120	21	-84.82	52.42	3.10	2.05	152	1	60.6	9/GR13	
CAN01405	-82 20	21	-84.00	52.39	2.84	2.29	172	1	60.5	9/GR14	
CAN01504	-91.20	21	-72.66	53.77	3.57	1.67	156	1	60.4	9/GR13	
CAN01505	-82.20	21	-71.77	53.79	330	1.89	162	1	60.3	9/GR14	
CAN01605	-82.20	21	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	
CAN01606	-70 70	21	-61.30	49.55	2.40	1.65	148	1	60.4		
CHLCONT5	- 106.20	21	-72.23	-35.57	2.60	0.80	55	1	59.6	9/GR17	
CHLPAC02	- 106.20	21	-80.06	-30.06	1.36	0.80	69	1	59.4	9/GR17	
CLMAND01	- 115.20	21	-74.72	5.93	3.85	1.63	114	1	65.3	9/GR5	10
CLM00001	- 103.20	21	-74.50	5.87	3.98	1.96	118	1	63.9	10	
EQACAND1	- 115.20	21	-78.40	-1.61	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	- 115.20	21	-90.34	-0.62	0.90	0.81	89	1	615	9/GR5	
HWA00002	- 166.20	21	- 165.79	23.42	4.20	0.80	160	1	59.0	9/GR1	10
HWA00003	- 175.20	21	- 166.10	23.42	4.25	0.80	159	1	58.9	9/GR2	10
JMC00002	-92.70	21	-77.30	18.12	0.80	0.80	90	2	60.1		
MEX01NTE	-78.20	21	- 105.81	26.01	2.89	2.08	155	1	60.7	1	
MEX01SUR	-69.20	21	-94.84	19.82	3.05	2.09	4	1	62.5	1	
MEX02NTE	- 136.20	21	- 107.21	26.31	3.84	1.55	148	1	61.4	1	10
MEX02SUR	- 127.20	21	-96.39	19.88	3.18	1.87	157	1	62.8	1	10
PAQPAC01	- 106.20	21	- 109.18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	21	-58.66	-23.32	1.45	1.04	76	1	60.4		

12515,60 MHz (21)

1	2	3	4		5		6	7	8	9	
PRUAND02	-115.20	21	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	- 101.20	21	-65.85	18.12	0.80	0.80	90	1	60.8	$169 / \mathrm{GR} 20$	
PTRVIR02	-110.20	21	-65.86	18.12	0.80	0.80	90	1	61.3	16 9/GR21	
SCN00001	-79.70	21	-62.46	17.44	0.80	0.80	90	1	58.6		
SPMFRAN3	-53.20	21	-67.24	47.51	3.16	0.80	7	1	60.6	27	
SURINAM2	-84.70	21	-55.69	4.35	1.00	0.80	86	1	63.5		
URG00001	-71.70	21	-56.22	-32.52	1.02	0.89	11	1	60.2		
USAEH001	-61.70	21	-85.19	36.21	5.63	3.33	22	1	62.1	156	
USAEH002	- 101.20	21	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	-110.20	21	-9014	36.11	5.55	3.55	161	1	62.3	16 9/GR21	10
USAEH004	- 119.20	21	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	- 166.20	21	-117.80	40.58	4.03	0.82	135	1	63.5	9/GR1	
USAPSA03	-175.20	21	-118.27	40.12	3.62	0.80	136	1	65.3	9/GR2	
USAWH101	- 148.20	21	- 109.65	38.13	5.53	1.95	142	1	62.3	10	
USAWH102	-157.20	21	- 111.41	38.57	5.51	1.54	138	1	635	10	
VENAND03	-115.20	21	-67.04	6.91	2.37	1.43	111	1	67.6	9/GR5	10

12530,18 MHz (22)

ALS00002	- 165.80	22	- 149.63	58.52	3.81	1.23	171	2	59.9	9/GR1	10
ALS00003	- 174.80	22	- 150.95	58.54	3.77	1.11	167	2	60.2	9/GR2	10
ARGNORT4	-93.80	22	-63.96	-30.01	3.86	1.99	48	2	66.0		
ARGNORT5	-54.80	22	-62.85	-2980	3.24	2.89	47	2	63.8		
ATNBEAM1	-52.80	22	-66.44	14.87	1.83	0.80	39	2	61.3		
B CE311	-63.80	22	-40.60	-6.07	3.04	2.06	174	2	61.9	8 9/GR7	
B CE312	-44.80	22	-40.26	-606	3.44	209	174	2	61.2	8 9/GR9	1011
B CE411	-63.80	22	-50.97	-15.26	3.86	1.38	49	2	62.9	8 9/GR7	
B CE412	-44.80	22	-50.71	-15.30	3.57	1.56	52	2	63.0	8 9/GR9	1012
B CE511	-63.80	22	-53.11	-2.98	2.42	2.15	107	2	63.4	8 9/GR7	
B NO611	-73.80	22	-59.60	- 1162	2.86	1.69	165	1	63.1	8 9/GR8	
B NO711	-73.80	22	-60.70	-1.78	3.54	1.78	126	1	63.1	8 9/GR8	
B NO811	-73.80	22	-68.75	-4.71	2.37	1.65	73	1	63.1	8 9/GR8	
B SE911	-101.80	22	-45.99	-19.09	2.22	0.80	62	2	65.7	8	
B SU111	-80.80	22	-51.10	-25.64	2.76	1.06	50	2	63.1	8 9/GR6	
B SU112	-44.80	22	-50.76	-25.62	2.47	1.48	56	2	62.6	8 9/GR9	11
B SU211	-80.80	22	-44.51	-1694	3.22	1.37	60	2	62.8	8 9/GR6	
B SU212	-44.80	22	-43.99	- 16.97	3.27	1.92	59	2	61.6	8 9/GR9	12
B LZ00001	-115.80	22	-88.68	17.27	0.80	0.80	90	2	59.2		
CAN01101	-137.80	22	-125.60	57.24	3.45	1.27	157	2	59.7	9/GR10	10
CAN01201	-137.80	22	- 111.92	55.89	3.33	0.98	151	2	59.8	9/GR10	10
CAN01202	-72.30	22	-10764	55.62	2.75	1.11	32	2	59.8		
CAN01203	-128.80	22	-111.43	55.56	3.07	1.15	151	2	59.7	9/GR12	10
CAN01303	- 128.80	22	-102.39	57.12	3.54	0.92	154	2	60.3	9/GR12	10

12530, 18 MHz

1	2	3	4		5		6	7	8	9	
CAN01304	-90.80	22	-99.00	57.33	1.96	1.73	1	2	60.0	9/GR13	
CAN01403	- 128.80	22	-89.70	52.02	4.67	0.80	148	2	62.1	9/GR12	10
CAN01404	-90.80	22	-84.78	52.41	3.09	2.06	153	2	606	9/GR13	
CAN01405	-81.80	22	-84.02	52.34	2.82	2.30	172	2	60.5	9/GR14	
CAN01504	-90.80	22	-72.68	53.78	3.57	1.67	157	2	60.4	9/GR13	
CAN01505	-81.80	22	-71.76	53.76	3.30	1.89	162	2	60.3	9/GR14	
CAN01605	-81.80	22	-61.54	49.50	2.66	1.39	144	2	60.5	9/GR14	
CAN01606	-70.30	22	-61.32	49.51	2.41	1.65	148	2	60.4		
CHLCONT4	-105.80	22	-69.59	-23.20	2.21	0.80	68	2	59.3	9/GR16	
CHLCONT6	- 105.80	22	-73.52	-55.52	3.65	1.31	39	2	59.7	9/GR16	
CRBBAH01	-92.30	22	-76.09	24.13	1.83	0.80	141	1	61.9	9/GR18	
CRBBER01	-92.30	22	-64.76	32.13	0.80	0.80	90	1	56.9	9/GR18	
CRBBLZ01	-92.30	22	-8861	17.26	0.80	0.80	90	1	58.9	9/GR18	
CRBEC001	-92.30	22	-60.07	8.26	4.20	0.86	115	1	64.6	9/GR18	
CRBJMC01	-92.30	22	-79.45	17.97	0.99	0.80	151	1	61.3	9/GR18	
CTR00201	-130.80	22	-84.33	9.67	0.82	0.80	119	2	66.0		
DMAIFRB1	-79.30	22	-61.30	15.35	0.80	0.80	90	2	58.7		
EQAC0001	-94.80	22	- 78.31	-1.52	1.48	1.15	65	1	63.3	9/GR19	
EQAG0001	-94.80	22	-9036	-0.57	0.94	0.89	99	1	61.2	9/GR19	
HWA00002	- 165.80	22	-165.79	23.32	4.20	0.80	160	2	59.0	9/GR1	10
HWA00003	- 174.80	22	- 166.10	23.42	4.25	0.80	159	2	59.0	9/GR2	10
MEX01NTE	-77.80	22	- 105.80	25.99	2.88	2.07	155	2	60.7	,	
MEX02NTE	- 135.80	22	-107.36	26.32	3.80	1.57	149	2	61.4	1	10
MEX02SUR	- 126.80	22	-96.39	19.88	3.19	1.87	158	2	62.8	1	10

12530,18 MHz (22)

NCG00003	-107.30	22	-84.99	12.90	1.05	1.01	176	1	63.6	
PRU00004	-85.80	22	-7419	-8.39	3.74	245	112	2	63.1	
PTRVIR01	-100.80	22	-6585	18.12	0.80	0.80	90	2	60.8	16 9/GR20
PTRVIR02	-109.80	22	-65.85	1812	0.80	080	90	2	61.4	16 9/GR21
USAEH001	-6130	22	-85.16	3621	5.63	332	22	2	621	156
USAEH002	- 100.80	22	-89.28	3616	5.65	3.78	170	2	62.0	$169 / \mathrm{GR20} 10$
USAEH003	-109.80	22	-90.12	36.11	5.55	3.56	161	2	62.3	16 9/GR21 10
USAEH004	-118.80	22	-91.16	36.05	5.38	3.24	153	2	62.9	15610
USAPSA02	- 165.80	22	-117.79	40.58	4.04	082	135	2	63.5	9/GR1
USAPSA03	- 174.80	22	-118.20	40.15	3.63	0.80	136	2	65.3	9/GR2
USAWH101	- 147.80	22	-109.70	38.13	5.52	1.96	142	2	62.3	10
USAWH102	- 156.80	22	- 111.40	38.57	5.51	1.55	138	2	63.5	10
VEN11VEN	- 103.80	22	-66.79	6.90	2.50	1.77	122	2	65.5	10

12544,76 MHz (23)

CAN01202	-72.70	23	-107.70	55.63	2.74	1.12	32	1	59.8		
CAN01203	- 129.20	23	-111.48	55.61	3.08	1.15	151	1	59.7	9/GR12	10
CAN01303	- 129.20	23	- 102.42	57.12	3.54	0.91	154	1	60.3	9/GR12	10
CAN01304	-91.20	23	-99.12	57.36	1.98	1.72	2	1	60.1	9/GR13	
CAN01403	- 129.20	23	-89.75	52.02	4.68	0.80	148	1	62.1	9/GR12	10
CAN01404	-91.20	23	-84.82	52.42	3.10	2.05	152	1	60.6	9/GR13	
CAN01405	-82.20	23	-84.00	52.39	2.84	2.29	172	1	60.5	9/GR14	
CAN01504	-91.20	23	-72.66	53.77	3.57	1.67	156	1	60.4	9/GR13	
CAN01505	-82.20	23	- 71.77	53.79	3.30	1.89	162	1	60.4	9/GR14	
CAN01605	-82.20	23	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	
CAN01606	- 70.70	23	-61.30	49.55	2.40	1.65	148	1	60.5		
CHLCONT5	- 106.20	23	- 72.23	-35.57	2.60	0.80	55	1	59.6	9/GR17	
CHLPAC02	-106.20	23	-80.06	-30.06	1.36	0.80	69	1	59.4	9/GR17	
CLMAND01	-115.20	23	-74.72	5.93	3.85	1.63	114	1	65.4	9/GR5	10
CLM00001	-10320	23	-74.50	5.87	3.98	1.96	118	1	63.9	10	
CUB00001	-89.20	23	-79.81	21.62	2.24	0.80	168	1	61.3		
EQACAND1	-115.20	23	-78.40	-1.61	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	-115.20	23	-90.34	-0.62	0.90	0.81	89	1	61.6	9/GR5	
GRD00059	-57.20	23	-61.58	12.29	0.80	0.80	90	1	58.7		
GRLDNK01	-53.20	23	-44.89	66.56	2.70	0.82	173	1	60.2	2	
GUY00201	-84.70	23	-59.19	4.78	1.44	0.85	95	1	63.8		
HWA00002	-166.20	23	- 165.79	23.42	4.20	0.80	160	1	59.0	9/GR1	10
HWA00003	-175.20	23	- 166.10	23.42	4.25	0.80	159	1	59.0	9/GR2	10
MEX01NTE	-78.20	23	-105.81	26.01	2.89	2.08	155	1	60.8	1	

12544, 76 MHz (23)

1	2	3	4		5		6	7	8	9	
MEX01SUR	-69.20	23	-94.84	19.82	3.05	2.09	4	1	62.5	1	
MEX02NTE	-136.20	23	-107.21	26.31	3.84	1.55	148	1	61.5	1	10
MEX02SUR	- 127.20	23	-96.39	19.88	3.18	1.87	157	1	628	1	10
MSR00001	-79.70	23	-61.73	16.75	0.80	0.80	90	1	58.9	4	
PAQPAC01	-10620	23	- 109.18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	23	-58.66	-23.32	1.45	1.04	76	1	60.5		
PRUAND02	- 115.20	23	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	- 101.20	23	-65 85	18.12	0.80	0.80	90	1	60.8	16 9/GR20	
PTRVIR02	- 110.20	23	-65.86	18.12	0.80	0.80	90	1	61.3	16 9/GR21	
URG00001	-71.70	23	-56.22	-3252	1.02	0.89	11	1	602		
USAEH001	-61.70	23	-85.19	36.21	5.63	3.33	22	1	62.1	156	
USAEH002	-101.20	23	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	- 110.20	23	-90.14	36.11	5.55	3.55	161	1	62.4	16 9/GR21	10
USAEH004	- 119.20	23	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	- 166.20	23	- 117.80	40.58	4.03	0.82	135	1	63.6	9/GR1	
USAPSA03	-175.20	23	- 118.27	40.12	362	0.80	136	1	65.4	9/GR2	
USAWH101	-148.20	23	- 109.65	38.13	553	1.95	142	1	62.4	10	
USAWH102	-157.20	23	- 11141	38.57	551	1.54	138	1	63.5	10	
VENAND03	- 115.20	23	-67.04	6.91	237	1.43	111	1	67.7	9/GR5	10

12559,34 MHz
(24)

ALS00002	-165.80	24	-149.63	58.52	381	1.23	171	2	59.9	9/GR1	10
ALS00003	- 174.80	24	-150.95	58.54	3.77	1.11	167	2	60.2	9/GR2	10
ARGNORT4	-93.80	24	-63.96	-30.01	3.86	1.99	48	2	66.1		
ARGNORT5	-54.80	24	-62.85	-29.80	3.24	2.89	47	2	639		
B CE311	-63.80	24	-40.60	-607	304	2.06	174	2	61.9	8 9/GR7	
B CE312	-44.80	24	-40.26	-6.06	344	2.09	174	2	61.3	8 9/GR9	$10 \quad 11$
B CE411	-63.80	24	-50.97	- 15.26	3.86	1.38	49	2	62.9	8 9/GR7	
B CE412	-44.80	24	-50.71	-15.30	3.57	1.56	52	2	63.1	8 9/GR9	$10 \quad 12$
B CE511	-63.80	24	-53.11	-2.98	2.42	2.15	107	2	63.4	8 9/GR7	
B NO611	-73.80	24	-59.60	- 11.62	2.86	1.69	165	1	63.2	8 9/GR8	
B NO711	-73.80	24	-60.70	-1.78	3.54	1.78	126	1	63.2	8 9/GR8	
B NO811	-73.80	24	-68.75	-4.71	2.37	1.65	73	1	63.2	8 9/GR8	
B SE911	- 101.80	24	-45.99	-19.09	2.22	0.80	62	2	65.7	8	
B SU111	-80.80	24	-51.10	-25.64	2.76	1.06	50	2	63.2	8 9/GR6	
B SU112	-44.80	24	-50.76	-25.62	2.47	1.48	56	2	62.6	8 9/GR9	11
B SU211	-80.80	24	-44.51	-16.94	3.22	1.37	60	2	62.8	8 9/GR6	
B SU212	-44.80	24	-43.99	-16.97	3.27	1.92	59	2	61.6	8 9/GR9	12
CAN01101	- 137.80	24	- 125.60	57.24	3.45	1.27	157	2	59.7	9/GR10	10
CAN01201	- 137.80	24	- 111.92	5589	3.33	0.98	151	2	59.8	9/GR10	10
CAN01202	-72.30	24	-107.64	55.62	2.75	1.11	32	2	59.8		
CAN01203	- 128.80	24	-111.43	55.56	3.07	1.15	151	2	59.7	9/GR12	10
CAN01303	- 128.80	24	-102.39	57.12	3.54	0.92	154	2	60.3	9/GR12	10
CAN01304	-90.80	24	-99.00	57.33	1.96	1.73	1	2	60.0	9/GR13	
CAN01403	-128.80	24	-89.70	52.02	4.67	0.80	148	2	62.1	9/GR12	10

12559,34 MHz (24)

PRU00004	-85.80	24	-74.19	-839	3.74	2.45	112	2	63.2		
PTRVIR01	-100.80	24	-65.85	1812	0.80	0.80	90	2	60.9	16 9/GR20	
PTRVIR02	-109.80	24	-65.85	18.12	0.80	0.80	90	2	61.4	16 9/GR21	
USAEH001	-61.30	24	-85.16	36.21	5.63	3.32	22	2	62.1	156	
USAEH002	-100.80	24	-89.28	36.16	5.65	3.78	170	2	62.0	16 9/GR20	10
USAEH003	-109.80	24	-90.12	36.11	5.55	3.56	161	2	62.4	$169 / \mathrm{GR} 21$	10
USAEH004	-118.80	24	-91.16	36.05	538	3.24	153	2	62.9	156	10
USAPSA02	-165 80	24	-117.79	40.58	4.04	0.82	135	2	63.6	9/GR1	
USAPSA03	- 174.80	24	-11820	40.15	3.63	0.80	136	2	65.3	9/GR2	
USAWH101	- 147.80	24	-109.70	38.13	5.52	1.96	142	2	62.4	10	
USAWH102	- 156.80	24	- 111.40	38.57	5.51	1.55	138	2	63.5	10	
VEN02VEN	- 103.80	24	-63.50	15.50	0.80	0.80	90	2	60.1	9/GR22	
VEN11VEN	-103.80	24	-66.79	6.90	2.50	1.77	122	2	65.6	9/GR22	10

12573,92 MHz (25)

1	2	3	4		5		6	7	8	9		
ALS00002	-166.20	25	-149.66	58.37	3.76	1.24	170	1	59.9	9/GR1	10	
ALS00003	-175.20	25	-150.98	58.53	3.77	1.11	167	1	60.2	9/GR2	10	
ARGINSU4	-94.20	25	-52.98	-59.81	3.40	0.80	19	1	60.1	9/GR3		
ARGINSU5	-55.20	25	-44.17	-59.91	3.77	0.80	13	1	59.5	9/GR4		
ARGSUR04	-94.20	25	-65.04	-43.33	3.32	1.50	40	1	60.9	9/GR3		
ARGSUR05	-55.20	25	-63.68	-43.01	2.54	2.38	152	1	60.2	9/GR4		
B CE311	-64.20	25	-40.60	-6.07	3.04	2.06	174	1	61.9	8 9/GR7		
B CE312	-45.20	25	-40.27	-6.06	3.44	2.09	174	1	61.2	8 9/GR9	10	11
B CE411	-64.20	25	-50.97	- 15.27	3.86	1.38	49	1	62.9	8 9/GR7		
B CE412	-45.20	25	-50.71	- 15.30	3.57	1.56	52	1	63.0	8 9/GR9	10	12
B CE511	-64.20	25	-53.10	-2.90	2.44	2.13	104	1	63.4	8 9/GR7		
B NO611	-74.20	25	-59.60	-11.62	2.85	1.69	165	2	63.1	8 9/GR8		
B NO711	-74.20	25	-60.70	-1.78	354	1.78	126	2	63.1	8 9/GR8		
B N0811	-74.20	25	-68.76	-4.71	2.37	1.65	73	2	63.1	8 9/GR8		
B SU111	-81.20	25	-51.12	-25.63	276	1.05	50	1	63.2	8 9/GR6		
B SU112	-45.20	25	-50.75	-25.62	2.47	1.48	56	1	62.5	8 9/GR9	11	
B SU211	-81.20	25	-4451	-16.95	3.22	1.36	60	1	62.8	8 9/GR6		
B SU212	-45.20	25	-4400	- 16.87	3.20	1.96	58	1	61.6	8 9/GR9	12	
BERBERMU	-96.20	25	-6477	32.32	0.80	0.80	90	2	57.0			
B OLAND01	- 115.20	25	-65.04	-16.76	2.49	1.27	76	1	68.0	9/GR5		
CAN01101	- 138.20	25	- 125.63	57.24	3.45	1.27	157	1	59.7	9/GR10	10	
CAN01201	- 138.20	25	-112.04	55.95	335	0.97	151	1	59.8	9/GR10	10	
CAN01202	- 72.70	25	- 107.70	55.63	2.74	1.12	32	1	59.8			
CAN01203	- 129.20	25	-111.48	55.61	3.08	1.15	151	1	59.7	9/GR12	10	

12573,92 MHz

CAN01303	- 129.20	25	- 102.42	57.12	354	0.91	154	1	60.2	9/GR12	10
CAN01304	-91.20	25	-99.12	57.36	198	1.72	2	1	60.0	9/GR13	
CAN01403	- 129.20	25	-89.75	52.02	468	0.80	148	1	62.1	9/GR12	10
CAN01404	-91.20	25	-84.82	52.42	310	2.05	152	1	60.6	9/GR13	
CAN01405	-82.20	25	-84.00	52.39	284	2.29	172	1	60.5	9/GR14	
CAN01504	-91.20	25	-72.66	5377	357	1.67	156	1	60.4	9/GR13	
CAN01505	-82.20	25	- 71.77	53.79	3.30	1.89	162	1	60.3	9/GR14	
CAN01605	-82.20	25	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	
CAN01606	-70.70	25	-61.30	49.55	2.40	1.65	148	1	60.4		
CHLCONT5	-106.20	25	- 72.23	-35.57	2.60	0.80	55	1	596	9/GR17	
CHLPAC02	-106.20	25	-8006	-30.06	136	0.80	69	1	59.4	9/GR17	
CLMAND01	-115.20	25	- 74.72	593	3.85	1.63	114	1	65.3	9/GR5	10
CLM00001	- 103.20	25	- 74.50	587	3.98	1.96	118	1	63.9	10	
EQACAND1	-115.20	25	-78.40	-161	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	-115.20	25	-90.34	-0.62	0.90	0.81	89	1	61.5	9/GR5	
HWA00002	-166.20	25	- 165.79	23.42	4.20	0.80	160	1	59.0	9/GR1	10
HWA00003	- 175.20	25	- 166.10	23.42	4.25	0.80	159	1	58.9	9/GR2	10
JMC00002	-92.70	25	-77.30	18.12	0.80	0.80	90	2	60.1		
MEX01NTE	-78.20	25	- 105.81	26.01	2.89	2.08	155	1	60.7	1	
MEX01SUR	-69.20	25	-94.84	19.82	3.05	2.09	4	1	62.5	,	
MEX02NTE	-136.20	25	-107.21	26.31	3.84	1.55	148	1	61.4	1	10
MEX02SUR	- 127.20	25	-96.39	19.88	3.18	1.87	157	1	62.8	1	10
PAQPAC01	- 106.20	25	- 109.18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	25	-58.66	-23.32	1.45	1.04	76	1	60.4		

12573,92 MHz (25)

1	2	3	4		5		6	7	8	9	
PRUAND02	-115.20	25	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	- 101.20	25	-65.85	18.12	0.80	0.80	90	1	60.8	16 9/GR20	
PTRVIR02	- 110.20	25	-65.86	18.12	0.80	0.80	90	1	61.3	16 9/GR21	
SCN00001	-79.70	25	-62.46	17.44	0.80	0.80	90	1	58.6		
SPMFRAN3	-53.20	25	-67.24	47.51	3.16	0.80	7	1	60.6	27	
SURINAM2	-84.70	25	-55.69	4.35	1.00	0.80	86	1	635		
URG00001	-71.70	25	-56.22	-32.52	102	0.89	11	1	60.2		
USAEH001	-61.70	25	-85.19	36.21	5.63	3.33	22	1	62.1	156	
USAEH002	- 101.20	25	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	-110.20	25	-90.14	36.11	5.55	3.55	161	1	62.3	16 9/GR21	10
USAEH004	- 119.20	25	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	-166.20	25	-117.80	40.58	4.03	0.82	135	1	63.5	9/GR1	
USAPSA03	- 175.20	25	-118.27	40.12	3.62	0.80	136	1	65.3	9/GR2	
USAWH101	- 148.20	25	- 109.65	38.13	5.53	1.95	142	1	62.3	10	
USAWH102	- 157.20	25	- 111.41	38.57	5.51	1.54	138	1	63.5	10	
VENAND03	- 115.20	25	-67.04	6.91	2.37	1.43	111	1	67.6	9/GR5	10

12588,50 MHz (26)

ALS00002	-165.80	26	-149.63	58.52	3.81	1.23	171	2	59.9	9/GR1	10	
ALS00003	- 174.80	26	- 150.95	58.54	3.77	1.11	167	2	60.2	9/GR2	10	
ARGNORT4	-93.80	26	-6396	-30.01	3.86	1.99	48	2	66.0			
ARGNORT5	-54.80	26	-62.85	-29.80	3.24	2.89	47	2	638			
ATNBEAM1	-52.80	26	-66.44	1487	1.83	0.80	39	2	61.3			
B CE311	-63.80	26	-4060	-6.07	3.04	2.06	174	2	619	8 9/GR7		
B CE312	-4480	26	-40.26	-6.06	3.44	2.09	174	2	61.2	8 9/GR9	10	11
B CE411	-63.80	26	-50.97	- 15.26	3.86	1.38	49	2	62.9	8 9/GR7		
B CE412	-44.80	26	-50 71	-15.30	3.57	1.56	52	2	63.0	8 9/GR9	10	12
B CE511	-63.80	26	-53.11	-2.98	2.42	2.15	107	2	63.4	8 9/GR7		
B NO611	-73.80	26	-59.60	-11.62	2.86	1.69	165	1	63.1	8 9/GR8		
B NO711	-73.80	26	-60 70	-1.78	3.54	178	126	1	63.1	8 9/GR8		
B NO811	-73.80	26	-68.75	-4.71	2.37	1.65	73	1	63.1	8 9/GR8		
B SE911	- 101.80	26	-4599	- 19.09	2.22	080	62	2	65.7	8		
B SU111	-80.80	26	-51.10	-25.64	2.76	1.06	50	2	63.1	8 9/GR6		
B SU112	-44.80	26	-50.76	-25.62	2.47	1.48	56	2	62.6	8 9/GR9	11	
B SU211	-80.80	26	-44.51	-16.94	3.22	1.37	60	2	628	8 9/GR6		
B SU212	-44.80	26	-43.99	-16.97	3.27	1.92	59	2	61.6	8 9/GR9	12	
B LZ00001	- 115.80	26	-88.68	17.27	0.80	0.80	90	2	59.2			
CAN01101	-137.80	26	-125.60	57.24	3.45	1.27	157	2	59.7	9/GR10	10	
CAN01201	- 137.80	26	-111.92	5589	3.33	0.98	151	2	59.8	9/GR10	10	
CAN01202	-72.30	26	-107.64	5562	2.75	1.11	32	2	59.8			
CAN01203	-128.80	26	-111.43	5556	3.07	1.15	151	2	59.7	9/GR12	10	
CAN01303	-128.80	26	-102.39	57.12	3.54	0.92	154	2	60.3	9/GR12	10	

12588,50 MHz (26)

NCG00003	-107.30	26	-84.99	12.90	105	1.01	176	1	63.6	
PRU00004	-85.80	26	- 74.19	-8.39	374	245	112	2	63.1	
PTRVIR01	-100.80	26	-65.85	1812	0.80	080	90	2	60.8	16 9/GR20
PTRVIR02	- 109.80	26	-65.85	18.12	0.80	080	90	2	61.4	16 9/GR21
USAEH001	-61.30	26	-8516	36.21	5.63	332	22	2	62.1	156
USAEH002	- 100.80	26	-89.28	36.16	5.65	378	170	2	62.0	$169 / \mathrm{GR20} 10$
USAEH003	-109.80	26	-90.12	36.11	555	356	161	2	62.3	$169 / \mathrm{GR} 2110$
USAEH004	-118.80	26	-91.16	36.05	5.38	3.24	153	2	62.9	15610
USAPSA02	-165.80	26	-11779	40.58	4.04	082	135	2	63.5	9/GR1
USAPSA03	-174.80	26	-118.20	40.15	3.63	0.80	136	2	65.3	9/GR2
USAWH101	- 147.80	26	- 10970	3813	5.52	1.96	142	2	62.3	10
USAWH102	-156.80	26	- 111.40	3857	5.51	1.55	138	2	63.5	10
VEN11VEN	-103.80	26	-66.79	6.90	2.50	1.77	122	2	65.5	10

1	2	3	4		5		6	7	8	9		
ALS00002	- 166.20	27	- 149.66	58.37	3.76	1.24	170	1	60.0	9/GR1	10	
ALS00003	- 175.20	27	- 150.98	58.53	3.77	1.11	167	1	60.2	9/GR2	10	
ARGINSU4	-94.20	27	-52.98	-59.81	3.40	0.80	19	1	60.1	9/GR3		
ARGINSU5	-55.20	27	-44.17	-59.91	3.77	0.80	13	1	59.5	9/GR4		
ARGSUR04	-94.20	27	-65.04	-43.33	3.32	1.50	40	1	60.9	9/GR3		
ARGSUR05	-55.20	27	-63.68	-43.01	2.54	2.38	152	1	60.3	9/GR4		
B CE311	-64.20	27	-40.60	-6.07	3.04	2.06	174	1	61.9	8 9/GR7		
B CE312	-45.20	27	-40.27	-6.06	344	2.09	174	1	61.3	8 9/GR9	10	11
B CE411	-64 20	27	-50.97	-15.27	3.86	138	49	1	62.9	8 9/GR7		
B CE412	-4520	27	-50.71	-15.30	3.57	1.56	52	1	63.1	8 9/GR9	10	12
B CE511	-64.20	27	-53.10	-2.90	2.44	2.13	104	1	63.4	8 9/GR7		
B NO611	-74.20	27	-59.60	-11.62	2.85	1.69	165	2	63.2	8 9/GR8		
B NO711	-74.20	27	-60.70	- 1.78	3.54	1.78	126	2	63.2	8 9/GR8		
B NO811	-74.20	27	-68.76	-4.71	2.37	1.65	73	2	63.1	8 9/GR8		
B SU111	-81.20	27	-51.12	-2563	2.76	1.05	50	1	63.2	8 9/GR6		
B SU112	-4520	27	-50.75	-25.62	2.47	1.48	56	1	62.6	8 9/GR9	11	
B SU211	-81.20	27	-44.51	-16.95	3.22	1.36	60	1	62.8	8 9/GR6		
B SU212	-45.20	27	-44.00	-16.87	3.20	1.96	58	1	61.6	8 9/GR9	12	
BERBERMU	-96.20	27	-64.77	32.32	0.80	0.80	90	2	570			
B OLAND01	-11520	27	-65.04	-16.76	2.49	1.27	76	1	68.1	9/GR5		
B OL00001	-87.20	27	-64.61	- 16.71	2.52	2.19	85	1	64.2			
B RB00001	-92.70	27	-59.85	12.93	080	0.80	90	2	59.4			
CAN01101	- 138.20	27	-125.63	57.24	3.45	1.27	157	1	59.7	9/GR10	10	
CAN01201	-138.20	27	- 112.04	55.95	3.35	0.97	151	1	59.8	9/GR10	10	

12603,08 MHz (27)

CAN01202	-7270	27	-107.70	55.63	2.74	1.12	32	1	59.8		
CAN01203	- 129.20	27	-111.48	55.61	308	1.15	151	1	59.7	9/GR12	10
CAN01303	-129 20	27	-- 102.42	57.12	3.54	0.91	154	1	60.3	9/GR12	10
CAN01304	-9120	27	-99.12	57.36	1.98	1.72	2	1	60.1	9/GR13	
CAN01403	-129 20	27	-89.75	52.02	4.68	0.80	148	1	62.1	9/GR12	10
CAN01404	-9120	27	-84.82	52.42	3.10	2.05	152	1	60.6	9/GR13	
CAN01405	-82.20	27	-84.00	5239	2.84	2.29	172	1	605	9/GR14	
CAN01504	-91.20	27	- 72.66	53.77	3.57	1.67	156	1	60.4	9/GR13	
CAN01505	-82.20	27	-71.77	53.79	3.30	1.89	162	1	60.4	9/GR14	
CAN01605	-8220	27	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	
CAN01606	-70 70	27	-61.30	4955	2.40	1.65	148	1	60.5		
CHLCONT5	- 106.20	27	-72.23	-35.57	2.60	0.80	55	1	59.6	9/GR17	
CHLPAC02	- 106.20	27	-80.06	-30 06	1.36	0.80	69	1	59.4	9/GR17	
CLMAND01	- 115.20	27	-7472	5.93	3.85	1.63	114	1	65.4	9/GR5	10
CLM00001	-10320	27	-74.50	5.87	3.98	1.96	118	1	63.9	10	
CUB00001	-89.20	27	-79 81	21.62	2.24	0.80	168	1	61.3		
EQACAND1	- 115.20	27	-78.40	-1.61	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	-115.20	27	-90.34	-0.62	0.90	0.81	89	1	616	9/GR5	
GRD00059	-57.20	27	-61.58	12.29	0.80	0.80	90	1	58.7		
GRLDNK01	-53.20	27	-44.89	66.56	2.70	0.82	173	1	60.2	2	
GUY00201	-8470	27	-59.19	4.78	1.44	0.85	95	1	63.8		
HWA00002	-16620	27	- 165.79	23.42	420	0.80	160	1	59.0	9/GR1	10
HWA00003	-175.20	27	-166.10	2342	4.25	0.80	159	1	59.0	9/GR2	10
MEX01NTE	-78.20	27	-105.81	26.01	2.89	2.08	155	1	60.8	/	

12603,08 MHz (27)

1	2	3	4		5		6	7	8	9	
MEX01SUR	-69.20	27	-94.84	19.82	3.05	2.09	4	1	62.5	1	
MEX02NTE	-136.20	27	- 107.21	26.31	3.84	1.55	148	1	61.5	1	10
MEX02SUR	- 127.20	27	-96.39	19.88	318	187	157	1	62.8	1	10
MSR00001	-79.70	27	-61.73	16.75	0.80	0.80	90	1	58.9	4	
PAQPAC01	- 106.20	27	-109 18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	27	-58.66	-23.32	1.45	1.04	76	1	60.5		
PRUAND02	-115.20	27	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	- 101.20	27	-65.85	18.12	0.80	0.80	90	1	60.8	16 9/GR20	
PTRVIR02	- 110.20	27	-65.86	18.12	0.80	080	90	1	61.3	16 9/GR21	
URG00001	-71.70	27	-56.22	- 32.52	1.02	0.89	11	1	60.2		
USAEH001	-61.70	27	-85.19	36.21	5.63	3.33	22	1	62.1	156	
USAEH002	-101.20	27	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	-110.20	27	-90.14	36.11	5.55	3.55	161	1	62.4	16 9/GR21	10
USAEH004	-119.20	27	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	-166.20	27	- 117.80	40.58	4.03	0.82	135	1	63.6	9/GR1	
USAPSA03	- 175.20	27	- 118.27	40.12	3.62	0.80	136	1	65.4	9/GR2	
USAWH101	- 148.20	27	- 109.65	38.13	5.53	1.95	142	1	62.4	10	
USAWH102	- 157.20	27	- 111.41	38.57	5.51	1.54	138	1	63.5	10	
VENAND03	- 115.20	27	-6704	6.91	2.37	1.43	111	1	67.7	9/GR5	10

12617,66 MHz (28)

ALS00002	- 165.80	28	-149 63	58.52	3.81	1.23	171	2	59.9	9/GR1	10
ALS00003	- 174.80	28	- 150.95	5854	3.77	1.11	167	2	60.2	9/GR2	10
ARGNORT4	-93.80	28	-63.96	-30.01	3.86	1.99	48	2	66.1		
ARGNORT5	-54.80	28	-62.85	-29.80	3.24	2.89	47	2	63.9		
B CE311	-63.80	28	-40.60	-6.07	3.04	206	174	2	61.9	8 9/GR7	
B CE312	-44.80	28	-40.26	-6.06	3.44	2.09	174	2	61.3	8 9/GR9	$10 \quad 11$
B CE411	-63.80	28	-50.97	-15.26	3.86	1.38	49	2	62.9	8 9/GR7	
B CE412	-44.80	28	-50.71	-15.30	3.57	1.56	52	2	63.1	8 9/GR9	$10 \quad 12$
B CE511	-63.80	28	-53.11	-2.98	2.42	2.15	107	2	63.4	8 9/GR7	
B NO611	-73.80	28	-59.60	-11.62	2.86	1.69	165	1	63.2	8 9/GR8	
B N0711	-73.80	28	-60.70	-1.78	3.54	1.78	126	1	63.2	8 9/GR8	
B N0811	-73.80	- 28	-68.75	-4.71	2.37	1.65	73	1	63.2	8 9/GR8	
B SE911	- 101.80	28	-45.99	-19.09	2.22	0.80	62	2	65.7	8	
B SU111	-80.80	28	-51.10	-2564	2.76	1.06	50	2	63.2	8 9/GR6	
B SU112	-44.80	28	-50.76	-25.62	2.47	1.48	56	2	62.6	8 9/GR9	11
B SU211	-80.80	28	-44.51	-16.94	3.22	1.37	60	2	62.8	8 9/GR6	
B SU212	-44.80	28	-43.99	-16.97	3.27	1.92	59	2	61.6	8 9/GR9	12
CAN01101	- 137.80	28	- 125.60	57.24	3.45	1.27	157	2	59.7	9/GR10	10
CAN01201	-137.80	28	- 111.92	55.89	3.33	0.98	151	2	59.8	9/GR10	10
CAN01202	-72.30	28	-107.64	55.62	2.75	1.11	32	2	59.8		
CAN01203	- 128.80	28	-111.43	55.56	3.07	1.15	151	2	59.7	9/GR12	10
CAN01303	- 128.80	28	- 102.39	57.12	3.54	0.92	154	2	60.3	9/GR12	10
CAN01304	-90.80	28	-99 00	57.33	1.96	1.73	1	2	60.0	9/GR13	
CAN01403	-128.80	28	-89.70	52.02	4.67	0.80	148	2	62.1	9/GR12	10

1	2	3	4		5		6	7	8	9	
CAN01404	-90.80	28	-84.78	52.41	3.09	2.06	153	2	60.6	9/GR13	
CAN01405	-81.80	28	-84.02	52.34	2.82	2.30	172	2	60.5	9/GR14	
CAN01504	-90.80	28	-72.68	53.78	357	1.67	157	2	60.4	9/GR13	
CAN01505	-81.80	28	-71.76	53.76	3.30	1.89	162	2	60.4	9/GR14	
CAN01605	-81.80	28	-61.54	49.50	2.66	1.39	144	2	60.5	9/GR14	
CAN01606	-70.30	28	-61.32	49.51	241	1.65	148	2	605		
CHLCONT4	- 105.80	28	-69.59	-23.20	2.21	0.80	68	2	59.3	9/GR16	
CHLCONT6	- 105.80	28	- 73.52	-55.52	365	1.31	39	2	59.8	9/GR16	
CRBBAH01	-92.30	28	-76.09	24.13	1.83	0.80	141	1	62.0	9/GR18	
CRBBER01	-92.30	28	-64.76	32.13	0.80	0.80	90	1	57.0	9/GR18	
CRBBLZ01	-92.30	28	-88.61	17.26	0.80	0.80	90	1	58.9	9/GR18	
CRBEC001	-9230	28	-60.07	8.26	4.20	0.86	115	1	64.6	9/GR18	
CRBJMC01	-9230	28	-79.45	17.97	0.99	0.80	151	1	61.4	9/GR18	
EQAC0001	-94.80	28	- 78.31	-1.52	1.48	1.15	65	1	63.3	9/GR19	
EQAG0001	-94.80	28	-90.36	-0.57	0.94	0.89	99	1	61.3	9/GR19	
GRD00003	-79.30	28	-61.62	12.34	0.80	0.80	90	2	58.9		
GTMIFRB2	-107.30	28	-90.50	15.64	1.03	0.80	84	1	61.4		
GUFMGG02	-52.80	28	-56.42	8.47	4.16	0.81	123	2	63.0	27	
HWA00002	-165.80	28	- 165.79	23.32	4.20	0.80	160	2	59.0	9/GR1	10
HWA00003	-174.80	28	- 16610	23.42	4.25	0.80	159	2	59.0	9/GR2	10
MEX01NTE	-77.80	28	- 105.80	25.99	2.88	2.07	155	2	60.8	1	
MEX02NTE	- 135.80	28	- 107.36	26.32	3.80	1.57	149	2	61.5	1	10
MEX02SUR	- 126.80	28	-96.39	19.88	3.19	1.87	158	2	62.8	1	10
PNRIFRB2	- 121.00	28	-80.15	8.46	1.01	0.80	170	1	65.1		

12617,66 MHz (28)

PRU00004	-85.80	28	-74.19	-8.39	3.74	2.45	112	2	63.2		
PTRVIR01	-100.80	28	-65.85	18.12	0.80	0.80	90	2	60.9	$169 /$ GR20	
PTRVIR02	-109.80	28	-65.85	18.12	0.80	0.80	90	2	61.4	$1699 /$ GR21	
USAEH001	-6130	28	-85.16	36.21	563	3.32	22	2	62.1	156	
USAEH002	-100.80	28	-89.28	36.16	565	3.78	170	2	62.0	$169 /$ GR20	10
USAEH003	-109.80	28	-90.12	36.11	555	3.56	161	2	62.4	$169 /$ GR21	10
USAEH004	-118.80	28	-91.16	36.05	5.38	3.24	153	2	62.9	156	10
USAPSA02	-165.80	28	-117.79	40.58	4.04	0.82	135	2	63.6	$9 /$ GR1	
USAPSA03	-174.80	28	-118.20	40.15	3.63	0.80	136	2	65.3	$9 /$ GR2	
USAWH101	-147.80	28	-109.70	38.13	5.52	1.96	142	2	62.4	10	
USAWH102	-156.80	28	-111.40	3857	5.51	1.55	138	2	63.5	10	
VENO2VEN	-103.80	28	-63.50	15.50	0.80	0.80	90	2	60.1	$9 /$ GR22	
VEN11VEN	-103.80	28	-66.79	6.90	2.50	1.77	122	2	65.6	$9 /$ GR22	10

$12632,24 \mathrm{MHz}$ (29)

CAN01303	- 129.20	29	- 102.42	57.12	3.54	0.91	154	1	60.2	9/GR12	10
CAN01304	-91.20	29	-99.12	57.36	1.98	1.72	2	1	60.0	9/GR13	
CAN01403	- 129.20	29	-8975	52.02	4.68	0.80	148	1	62.1	9/GR12	10
CAN01404	-91.20	29	-84.82	52.42	3.10	2.05	152	1	60.6	9/GR13	
CAN01405	-82.20	29	-84.00	52.39	2.84	2.29	172	1	60.5	9/GR14	
CAN01504	-91.20	29	-7266	53.77	3.57	1.67	156	1	60.4	9/GR13	
CAN01505	-82.20	29	-71.77	53.79	3.30	1.89	162	1	60.3	9/GR14	
CAN01605	-82.20	29	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	
CAN01606	-70.70	29	-61.30	49.55	2.40	1.65	148	1	60.4		
CHLCONT5	-106.20	29	- 72.23	-35.57	2.60	0.80	55	1	59.6	9/GR17	
CHLPAC02	-106.20	29	-80.06	-30.06	1.36	0.80	69	1	59.4	9/GR17	
CLMAND01	- 115.20	29	-74.72	5.93	3.85	1.63	114	1	65.3	9/GR5	10
CLM00001	- 103.20	29	-74.50	5.87	3.98	1.96	118	1	63.9	10	
EQACAND1	-115.20	29	-78.40	-1.61	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	-115.20	29	-90.34	-0.62	0.90	0.81	89	1	61.5	9/GR5	
HWA00002	-166.20	29	- 165.79	23.42	4.20	0.80	160	1	59.0	9/GR1	10
HWA00003	-175.20	29	- 166.10	23.42	4.25	0.80	159	1	58.9	9/GR2	10
JMC00002	-92.70	29	-77.30	18.12	0.80	0.80	90	2	60.1		
MEX01NTE	-78.20	29	- 105.81	26.01	2.89	2.08	155	1	60.7	1	
MEX01SUR	-69.20	29	-94.84	19.82	3.05	2.09	4	1	62.5	1	
MEX02NTE	-136.20	29	- 107.21	26.31	3.84	1.55	148	1	61.4	1	10
MEX02SUR	-127.20	29	-96.39	19.88	318	1.87	157	1	62.8	1	10
PAQPAC01	- 106.20	29	- 109.18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	29	-58.66	-23.32	1.45	1.04	76	1	60.4		

$12632,24 \mathrm{MHz}$ (29)

1	2	3	4		5		6	7	8	9	
PRUAND02	-11520	29	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	-101.20	29	-65.85	18.12	0.80	0.80	90	1	60.8	16 9/GR20	
PTRVIR02	- 110.20	29	-65.86	18.12	0.80	0.80	90	1	61.3	16 9/GR21	
SCN00001	- 79.70	29	-62.46	17.44	0.80	0.80	90	1	58.6		
SPMFRAN3	-5320	29	-67.24	47.51	3.16	0.80	7	1	60.6	27	
SURINAM2	-84.70	29	-55.69	4.35	1.00	0.80	86	1	635		
URG00001	-71.70	29	-56.22	-32.52	1.02	0.89	11	1	60.2		
USAEH001	-61.70	29	-85.19	36.21	5.63	3.33	22	1	62.1	156	
USAEH002	- 101.20	29	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	-110.20	29	-90.14	36.11	5.55	3.55	161	1	62.3	16 9/GR21	10
USAEH004	- 119.20	29	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	- 166.20	29	- 117.80	40.58	4.03	0.82	135	1	63.5	9/GR1	
USAPSA03	- 175.20	29	- 118.27	40.12	3.62	0.80	136	1	65.3	9/GR2	
USAWH101	- 148.20	29	-109.65	38.13	5.53	1.95	142	1	62.3	10	
USAWH102	- 157.20	29	-111.41	38.57	5.51	154	138	1	63.5		
VENAND03	-115.20	29	-67.04	6.91	2.37	1.43	111	1	67.6	9/GR5	10

12646,82 MHz
(30)

ALS00002	-165.80	30	-149.63	58.52	3.81	1.23	171	2	59.9	9/GR1	10
ALS00003	- 174.80	30	- 150.95	58.54	3.77	1.11	167	2	60.2	9/GR2	10
ARGNORT4	-93.80	30	-63.96	-30.01	3.86	1.99	48	2	66.0		
ARGNORT5	-54.80	30	-62.85	-29.80	3.24	2.89	47	2	63.8		
ATNBEAM1	-52.80	30	-66.44	14.87	1.83	0.80	39	2	61.3		
B CE311	-63.80	30	-40.60	-6.07	304	2.06	174	2	61.9	8 9/GR7	
B CE312	-44.80	30	-40.26	-6.06	3.44	2.09	174	2	61.2	8 9/GR9	1011
B CE411	-63.80	30	-50.97	-15.26	3.86	1.38	49	2	62.9	8 9/GR7	
B CE412	-44.80	30	-50.71	-15.30	3.57	1.56	52	2	63.0	8 9/GR9	1012
B CE511	-63.80	30	-53.11	-2.98	2.42	2.15	107	2	63.4	8 9/GR7	
B NO611	-73.80	30	-59.60	-11.62	2.86	1.69	165	1	63.1	8 9/GR8	
B NO711	-73.80	30	-60.70	-178	3.54	1.78	126	1	63.1	8 9/GR8	
B NO811	-73.80	30	-6875	-4.71	2.37	1.65	73	1	63.1	8 9/GR8	
B SE911	- 101.80	30	-45.99	-19.09	2.22	080	62	2	65.7	8	
B SU111	-80.80	30	-51.10	-2564	2.76	1.06	50	2	63.1	8 9/GR6	
B SU112	-44.80	30	-50.76	-25.62	2.47	148	56	2	62.6	8 9/GR9	11
B SU211	-80.80	30	-44.51	-16.94	3.22	1.37	60	2	62.8	8 9/GR6	
B SU212	-44.80	30	-43.99	-16.97	3.27	1.92	59	2	61.6	8 9/GR9	12
B LZ00001	- 115.80	30	-88.68	17.27	0.80	0.80	90	2	59.2		
CAN01101	- 137.80	30	- 125.60	57.24	3.45	127	157	2	59.7	9/GR10	10
CAN01201	- 137.80	30	- 111.92	55.89	3.33	0.98	151	2	59.8	9/GR10	10
CAN01202	-72.30	30	- 107.64	55.62	2.75	1.11	32	2	59.8		
CAN01203	- 128.80	30	-111.43	55.56	3.07	1.15	151	2	59.7	9/GR12	10
CAN01303	- 128.80	30	-10239	57.12	3.54	092	154	2	60.3	9/GR12	10

12646,82 MHz (30)

1	2	3	4		5		6	7	8	9	
CAN01304	-90.80	30	-99.00	57.33	1.96	1.73	1	2	60.0	9/GR13	
CAN01403	- 128.80	30	-89.70	52.02	4.67	0.80	148	2	62.1	9/GR12	10
CAN01404	-90.80	30	-84.78	52.41	3.09	2.06	153	2	60.6	9/GR13	
CAN01405	-81.80	30	-84.02	52.34	2.82	2.30	172	2	60.5	9/GR14	
CAN01504	-90.80	30	-72.68	53.78	3.57	1.67	157	2	60.4	9/GR13	
CAN01505	-81.80	30	- 71.76	53.76	3.30	1.89	162	2	60.3	9/GR14	
CAN01605	-81.80	30	-61.54	49.50	2.66	1.39	144	2	60.5	9/GR14	
CAN01606	-70.30	30	-61.32	49.51	2.41	1.65	148	2	60.4		
CHLCONT4	- 105.80	30	-69.59	-23.20	2.21	0.80	68	,	59.3	9/GR16	
CHLCONT6	- 105.80	30	-73.52	-55.52	3.65	1.31	39	2	59.7	9/GR16	
CRBBAH01	-92.30	30	-76.09	24.13	1.83	0.80	141	,	61.9	9/GR18	
CRBBER01	-92.30	30	-64.76	3213	0.80	0.80	90	,	56.9	9/GR18	
CRBBLZ01	-92.30	30	-88.61	17.26	0.80	0.80	90	1	58.9	9/GR18	
CRBEC001	-92.30	30	-60.07	8.26	4.20	0.86	115	1	64.6	9/GR18	
CRBJMC01	-92.30	30	- 79.45	17.97	0.99	0.80	151	1	61.3	9/GR18	
CTR00201	- 130.80	30	-84.33	9.67	0.82	0.80	119	2	66.0		
DMAIFRB1	-79.30	30	-61.30	15.35	0.80	0.80	90	2	58.7		
EQAC0001	-94.80	30	-78.31	-1.52	1.48	1.15	65	1	63.3	9/GR19	
EQAG0001	-94.80	30	-90.36	-0.57	0.94	0.89	99	1	61.2	9/GR19	
HWA00002	- 165.80	30	- 165.79	23.32	4.20	0.80	160	2	59.0	9/GR1	10
HWA00003	- 174.80	30	- 166.10	23.42	4.25	0.80	159	2	59.0	9/GR2	10
MEX01NTE	-77.80	30	- 105.80	25.99	2.88	2.07	155	2	60.7	1	
MEX02NTE	- 135.80	30	-107.36	26.32	3.80	1.57	149	2	61.4		10
MEX02SUR	- 126.80	30	-96.39	19.88	3.19	1.87	158	2	62.8	1	10

12646,82 MHz

NCG00003	-107.30	30	-8499	12.90	1.05	1.01	176	1	63.6		
PRU00004	-85.80	30	-74.19	-8.39	3.74	245	112	2	63.1		
PTRVIR01	-100.80	30	-6585	18.12	0.80	080	90	2	608	$169 /$ GR20	
PTRVIR02	-109.80	30	-65.85	18.12	0.80	0.80	90	2	61.4	$1699 /$ GR21	
USAEH001	-61.30	30	-85.16	36.21	5.63	3.32	22	2	62.1	156	
USAEH002	-100.80	30	-89.28	3616	5.65	3.78	170	2	62.0	$169 /$ GR20	10
USAEH003	-109.80	30	-90.12	36.11	5.55	3.56	161	2	62.3	$169 /$ GR21	10
USAEH004	-118.80	30	-91.16	36.05	5.38	3.24	153	2	629	156	10
USAPSA02	-165.80	30	-117.79	40.58	4.04	0.82	135	2	63.5	$9 /$ GR1	
USAPSA03	-174.80	30	-118.20	40.15	3.63	0.80	136	2	65.3	$9 /$ GR2	
USAWH101	-14780	30	-109.70	38.13	5.52	1.96	142	2	62.3	10	
USAWH102	-156.80	30	-111.40	38.57	5.51	1.55	138	2	63.5	10	
VEN11VEN	-103.80	30	-66.79	6.90	2.50	1.77	122	2	65.5	10	

12661,40 MHz (31)

1	2	3	4		5		6	7	8	9		
ALS00002	-166.20	31	-149.66	58.37	3.76	1.24	170	1	60.0	9/GR1	10	
ALS00003	-175.20	31	- 150.98	58.53	3.77	1.11	167	1	60.2	9/GR2	10	
ARGINSU4	-94.20	31	-52.98	-59.81	3.40	0.80	19	1	60.1	9/GR3		
ARGINSU5	-55.20	31	-44.17	-59.91	3.77	0.80	13	1	59.5	9/GR4		
ARGSUR04	-94.20	31	-65.04	-43.33	3.32	1.50	40	1	60.9	9/GR3		
ARGSUR05	-55.20	31	-63.68	-43.01	2.54	2.38	152	1	60.3	9/GR4		
B CE311	-64.20	31	-40.60	-6.07	3.04	2.06	174	1	61.9	8 9/GR7		
B CE312	-45.20	31	-40.27	-6.06	3.44	2.09	174	1	61.3	8 9/GR9	10	11
B CE411	-64.20	31	-50.97	-15.27	3.86	1.38	49	1	62.9	8 9/GR7		
B CE412	-45.20	31	-50.71	- 15.30	3.57	1.56	52	1	63.1	8 9/GR9	10	12
B CE511	-64.20	31	-53.10	-2.90	244	2.13	104	1	63.4	8 9/GR7		
B N0611	-74.20	31	-59.60	-11.62	2.85	1.69	165	2	63.2	8 9/GR8		
B N0711	-74.20	31	-60.70	-1.78	3.54	1.78	126	2	63.2	8 9/GR8		
B N0811	-74.20	31	-68.76	-4.71	2.37	1.65	73	2	63.1	8 9/GR8		
B SU111	-81.20	31	-51.12	-25.63	2.76	1.05	50	1	63.2	8 9/GR6		
B SU112	-45.20	31	-50.75	-25.62	2.47	1.48	56	1	62.6	8 9/GR9	11	
B SU211	-81.20	31	-44.51	-16.95	3.22	1.36	60	1	62.8	8 9/GR6		
B SU212	-45.20	31	-44.00	-16.87	3.20	1.96	58	1	61.6	8 9/GR9	12	
BERBERMU	-96.20	31	-64.77	3232	0.80	0.80	90	2	57.0			
B OLAND01	- 115.20	31	-65.04	-16.76	2.49	1.27	76	1	68.1	9/GR5		
B OL00001	-87.20	31	-64.61	- 16.71	2.52	2.19	85	1	64.2			
B RB00001	-92.70	31	-59.85	12.93	0.80	0.80	90	2	59.4			
CAN01101	- 138.20	31	-125.63	57.24	3.45	1.27	157	1	59.7	9/GR10	10	
CAN01201	-13820	31	-112.04	55.95	3.35	0.97	151	1	59.8	9/GR10	10	

12661,40 MHz (31)

CAN01202	- 72.70	31	-107.70	5563	2.74	1.12	32	1	59.8		
CAN01203	-129.20	31	-111.48	55.61	3.08	115	151	1	59.7	9/GR12	10
CAN01303	- 129.20	31	- 102.42	57.12	3.54	0.91	154	1	60.3	9/GR12	10
CAN01304	-91.20	31	-99.12	5736	1.98	172	2	1	60.1	9/GR13	
CAN01403	- 129.20	31	-89.75	52.02	4.68	0.80	148	1	62.1	9/GR12	10
CAN01404	-91.20	31	-84.82	52.42	3.10	2.05	152	1	60.6	9/GR13	
CAN01405	-82.20	31	-84.00	52.39	2.84	2.29	172	1	60.5	9/GR14	
CAN01504	-91.20	31	- 72.66	53.77	3.57	1.67	156	1	60.4	9/GR13	
CAN01505	-82.20	31	-71.77	53.79	3.30	1.89	162	1	60.4	9/GR14	
CAN01605	-82.20	31	-61.50	49.55	2.65	1.40	143	1	60.5	9/GR14	
CAN01606	- 70.70	31	-61.30	49.55	2.40	1.65	148	1	60.5		
CHLCONT5	- 106.20	31	- 72.23	-35.57	260	0.80	55	1	59.6	9/GR17	
CHLPAC02	- 106.20	31	-80.06	-30.06	1.36	0.80	69	1	59.4	9/GR17	
CLMAND01	- 115.20	31	- 74.72	5.93	3.85	1.63	114	1	65.4	9/GR5	10
CLM00001	- 10320	31	-74.50	5.87	3.98	1.96	118	1	63.9	10	
CUB00001	-8920	31	- 79.81	21.62	2.24	0.80	168	1	61.3		
EQACAND1	-115.20	31	- 78.40	-1.61	1.37	0.95	75	1	64.4	9/GR5	
EQAGAND1	-115.20	31	-90.34	-0.62	0.90	0.81	89	1	61.6	9/GR5	
GRD00059	-57.20	31	-61.58	12.29	0.80	0.80	90	1	58.7		
GRLDNK01	-53.20	31	-44.89	66.56	2.70	0.82	173	1	60.2	2	
GUY00201	-84.70	31	-59 19	478	1.44	0.85	95	1	63.8		
HWA00002	-166.20	31	-165.79	23.42	4.20	0.80	160	1	59.0	9/GR1	10
HWA00003	-175.20	31	-16610	23.42	4.25	0.80	159	1	59.0	9/GR2	10
MEX01NTE	- 78.20	31	-105.81	26.01	2.89	2.08	155	1	60.8	1	

12661,40 MHz (31)

1	2	3	4		5		6	7	8	9	
MEX01SUR	-69.20	31	-94.84	19.82	3.05	2.09	4	1	62.5	1	
MEX02NTE	- 136.20	31	- 107.21	26.31	3.84	1.55	148	1	61.5	1	10
MEX02SUR	-127.20	31	-96.39	19.88	3.18	1.87	157	1	62.8	1	10
MSR00001	-79.70	31	-61.73	16.75	0.80	0.80	90	1	58.9	4	
PAQPAC01	- 106.20	31	- 109.18	-27.53	0.80	0.80	90	1	56.4	9/GR17	
PRG00002	-99.20	31	-58.66	-23.32	1.45	1.04	76	1	60.5		
PRUAND02	- 115.20	31	-74.69	-8.39	3.41	1.79	95	1	64.3	9/GR5	
PTRVIR01	- 101.20	31	-65.85	18.12	0.80	0.80	90	1	60.8	16 9/GR20	
PTRVIR02	- 110.20	31	-65.86	18.12	0.80	080	90	1	61.3	16 9/GR21	
URG00001	-71.70	31	-56.22	- 32.52	1.02	0.89	11	1	60.2		
USAEH001	-61.70	31	-85.19	36.21	5.63	3.33	22	1	62.1	156	
USAEH002	- 101.20	31	-89.24	36.16	5.67	3.76	170	1	62.0	16 9/GR20	10
USAEH003	-110.20	31	-90.14	36.11	5.55	3.55	161	1	62.4	16 9/GR21	10
USAEH004	- 119.20	31	-91.16	36.05	5.38	3.24	152	1	62.9	156	10
USAPSA02	- 166.20	31	-117.80	40.58	403	0.82	135	1	63.6	9/GR1	
USAPSA03	- 175.20	31	-118.27	40.12	3.62	0.80	136	1	65.4	9/GR2	
USAWH101	- 148.20	31	- 109.65	38.13	5.53	1.95	142	1	62.4	10	
USAWH102	- 157.20	31	-11141	38.57	551	1.54	138	1	63.5	10	
VENAND03	- 115.20	31	-67.04	6.91	2.37	1.43	111	1	67.7	9/GR5	10

12675,98 MHz (32)

ALS00002	-165 80	32	- 149.63	5852	3.81	1.23	171	2	59.9	9/GR1	10	
ALS00003	- 174.80	32	-150.95	5854	3.77	111	167	2	60.2	9/GR2	10	
ARGNORT4	-93.80	32	-6396	-30.01	3.86	199	48	2	66.1			
ARGNORT5	- 54.80	32	-62.85	-29.80	3.24	2.89	47	2	63.9			
B CE311	-63.80	32	-4060	-6.07	304	2.06	174	2	61.9	8 9/GR7		
B CE312	-44.80	32	-4026	-6.06	344	2.09	174	2	61.3	8 9/GR9	10	11
B CE411	-6380	32	-50.97	-1526	3.86	138	49	2	62.9	8 9/GR7		
B CE412	-44.80	32	-50.71	- 15.30	3.57	1.56	52	2	63.1	8 9/GR9	10	12
B CE511	-63.80	32	-5311	-2.98	242	2.15	107	2	63.4	8 9/GR7		
B NO611	-73.80	32	-59.60	- 11.62	286	1.69	165	1	632	8 9/GR8		
B N0711	-7380	32	-60.70	-178	3.54	1.78	126	1	63.2	8 9/GR8		
B NO811	-7380	32	-68.75	-471	2.37	1.65	73	1	63.2	8 9/GR8		
B SE911	- 101.80	32	-45.99	- 19.09	2.22	0.80	62	2	65.7	8		
B SU111	-80.80	32	-51.10	-25.64	2.76	1.06	50	2	63.2	8 9/GR6		
B SU112	-4480	32	-50.76	-2562	247	1.48	56	2	62.6	8 9/GR9	1	
B SU211	-80.80	32	-44.51	-16.94	3.22	1.37	60	2	62.8	8 9/GR6		
B SU212	-44.80	32	-43.99	-16.97	3.27	1.92	59	2	61.6	8 9/GR9	12	
CAN01101	-137.80	32	-125.60	57.24	3.45	1.27	157	2	59.7	9/GR10	10	
CAN01201	- 137.80	32	-111.92	55.89	3.33	0.98	151	2	59.8	9/GR10	10	
CAN01202	-7230	32	-107.64	55.62	2.75	1.11	32	2	59.8			
CAN01203	- 128.80	32	-111.43	55.56	3.07	1.15	151	2	59.7	9/GR12	10	
CAN01303	- 128.80	32	-102 39	57.12	3.54	0.92	154	2	60.3	9/GR12	10	
CAN01304	-90.80	32	-99.00	57.33	1.96	1.73	1	2	60.0	9/GR13		
CAN01403	- 128.80	32	-8970	5202	4.67	0.80	148	2	62.1	9/GR12	10	

12675,98 MHz (32)

PRU00004	-85.80	32	-74.19	-8.39	3.74	2.45	112	2	63.2	
PTRVIR01	-100.80	32	-65.85	18.12	0.80	0.80	90	2	609	16 9/GR20
PTRVIR02	-109.80	32	-65 85	18.12	080	0.80	90	2	61.4	16 9/GR21
USAEH001	-61.30	32	-85 16	36.21	5.63	3.32	22	2	62.1	156
USAEH002	-100.80	32	-89 28	36.16	5.65	3.78	170	2	62.0	$169 / \mathrm{GR20} 10$
USAEH003	-109.80	32	-9012	36.11	5.55	3.56	161	2	62.4	$169 / \mathrm{GR} 2110$
USAEH004	- 118.80	32	-91.16	36.05	5.38	3.24	153	2	62.9	15610
USAPSA02	-165.80	32	-117.79	4058	4.04	082	135	2	63.6	9/GR1
USAPSA03	-174.80	32	-118.20	40.15	3.63	0.80	136	2	65.3	9/GR2
USAWH101	-147.80	32	-109.70	38.13	5.52	196	142	2	624	10
USAWH102	-156.80	32	-111.40	38.57	5.51	1.55	138	2	63.5	10
VEN02VEN	-103.80	32	-63.50	15.50	080	0.80	90	2	60.1	9/GR22
VEN11VEN	-103.80	32	-66.79	6.90	2.50	1.77	122	2	65.6	9/GR22 10

ARTICLE 11

The Plan for the Broadcasting-Satellite Service in the Frequency Bands 11.7-12.2 GHz in Region 3 and 11.7-12.5 GHz in Region 1

11.1
 COLUMN HEADINGS OF THE PLAN

Col. 1. Country symbol and IFRB Serial Number (Column 1 contains the symbol designating the country or the geographical area taken from Table No. 1 of the Preface to the International Frequency List).

Col. 2. Nominal orbital position, in degrees.
Col. 3. Channel number (see table showing channel numbers and corresponding assigned frequencies).

Col. 4. Boresight geographical coordinates, in degrees and tenths of a degree.

Col. 5. Antenna beamwidth. This column contains two figures corresponding to the major axis and the minor axis respectively of the elliptical cross-section half-power beam, in degrees and tenths of a degree.

Col. 6. Orientation of the ellipse determined as follows: in a plane normal to the beam axis, the direction of a major axis of the ellipse is specified as the angle measured anti-clockwise from a line parallel to the equatorial plane to the major axis of the ellipse to the nearest degree.

Col. 7. Polarization $(1=\text { direct, } 2=\text { indirect })^{1}$.
Col. 8. E.i.r.p. in the direction of maximum radiation in dBW.
Col. 9. Remarks.

[^38]
11.2
 NOTES RELATING TO THE PLAN

1. The ΔG of this assignment is $\ldots \mathrm{dB}$.
2. To be dedicated to the Islamic programme envisaged in the Conference ${ }^{1}$ documents.
3.

This assignment results from a common requirement of the Administrations of Denmark and Iceland. The service area includes the Faeroe Islands and Iceland. The assignment may, after consultations between the two Administrations, be used by either of them.
4. IFB - IFRB. This assignment has been included in the Plan by the Conference.
5. Assignment intended to ensure coverage of Algeria, Libya, Morocco, Mauritania and Tunisia, with the agreement of the countries concerned. If required, this assignment may be used with the characteristics of the beam TUN 150 .
6.

Assignments appearing in the Plan for Somalia should be coordinated with each country concerned and in particular with Ethiopia.

[^39]11.3

TABLE SHOWING CORRESPONDENCE BETWEEN CHANNEL NUMBERS AND ASSIGNED FREQUENCIES

Channel No.	Assigned frequency (MHz)	Channel No.	Assigned frequency (MHz)
1	11727.48	21	12111.08
2	11746.66	22	12130.26
3	11765.84	23	12149.44
4	11785.02	24	12168.62
5	11804.20	25	12187.80
6	11823.38	26	12206.98
7	11842.56	27	12226.16
8	11861.74	28	12245.34
9	11880.92	29	12264.52
10	11900.10	30	12283.70
11	11919.28	31	12302.88
12	11938.46	32	12322.06
13	11957.64	33	12341.24
14	11976.82	34	12360.42
15	11996.00	35	12379.60
16	12015.18	36	12398.78
17	12034.36	37	12417.96
18	12053.54	38	12437.14
19	12072.72	39	12456.32
20	12091.90	40	12475.50

(Rev. 1986)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	
AFG	246A	50.0	1	64.5	33.1	1.44	1.40	21	1	63.4	
AUS	005A	98.0	1	133.5	-18.8	2.70	1.40	76	2	64.3	
CAR	338A	122.0	1	149.5	8.0	5.36	0.77	178	1	62.5	
CHN	155A	62.0	1	88.3	31.5	3.38	1.45	162	2	62.9	
CHN	162A	92.0	1	115.9	21.0	2.74	2.42	23	2	63.9	
CHN	163A	80.0	1	116.0	39.2	1.20	0.80	132	1	64.4	
CME	300A	-13.0	1	12.7	6.2	2.54	1.68	87	1	63.4	
F	093A	-19.0	1	2.6	45.9	2.50	0.98	160	1	63.8	
FJI	193A	152.0	1	179.4	-17.9	1.04	0.98	67	1	63.7	
GUI	192A	-37.0	1	-11.0	10.2	1.58	1.04	147	2	63.4	
IND	039A	56.0	1	727	11.2	1.26	0.60	107	1	63.1	
IND	044A	68.0	1	79.5	22.3	2.19	1.42	146	1	63.3	
INS	035A	104.0	1	124.3	-3.2	3.34	1.94	82	1	63.2	
J	111A	110.0	1	134.5	31.5	3.52	3.30	68	1	63.2	
LBY	280A	-25.0	1	21.4	26.0	2.50	1.04	119	2	63.5	
MDG	236A	29.0	1	46.6	-18.8	2.72	1.14	65	2	633	
NZL	055A	158.0	1	172.3	-39.7	2.88	1.56	47	1	633	
PLM	337A	170.0	1	-1614	7.0	0.60	0.60	0	1	624	
POL	132A	-1.0	1	19.3	51.8	1.46	0.64	162	2	641	
QAT	247A	17.0	1	51.1	25.3	0.60	0.60	0	1	61.8	$1 / 16$
SMA	335A	170.0	1	-1701	-14.2	0.60	0.60	0	2	611	$1 / 0.9$
SMR	311A	-37.0	1	12.6	437	0.60	0.60	0	1	624	$1 / 08$
SWZ	313A	-1.0	1	31.5	-265	0.62	0.60	66	1	62.8	$1 / 17$
THA	142A	74.0	1	100.7	132	2.82	1.54	106	2	636	
TUR	145A	5.0	1	344	38.9	2.68	1.04	168	1	63.7	
URS	064A	23.0	1	45.6	408	216	0.60	163	2	63.9	
URS	067A	44.0	1	62.4	58.5	320	1.52	169	1	663	
WAK	334A	140.0	1	1665	19.2	0.60	0.60	0	1	63.6	
YMS	267A	11.0	1	48.8	152	176	1.54	176	2	62.8	

11 746,66 MHz (2)
(986I ^^әу)

ALG	251A	-25.0	2	42	332	245	1.25	172	1	634	
ARS	275A	17.0	2	48.3	246	384	120	138	2	627	
AUS	006A	98.0	2	135.4	-30.3	2.00	140	44	1	632	
AUS	008A	1280	2	145.9	-215	2.90	200	120	2	63.7	
BOT	297A	-1.0	2	23.3	-222	2.13	150	36	2	637	
CHN	154A	62.0	2	83.9	40.5	2.75	205	177	1	63.2	
CHN	161A	92.0	2	1181	311	2.49	169	117	1	644	
CKH	052A	158.0	2	-161.0	-19.8	102	0.64	132	2	64.6	
CLN	219A	500	2	806	77	1.18	060	106	1	63.6	
D	087A	-19.0	2	96	499	162	072	147	2	65.5	
FNL	103A	5.0	2	22.5	64.5	1.38	076	171	2	677	
GNP	304A	-310	2	-15.0	120	090	060	172	2	63.1	
GUM	331A	122.0	2	144.5	131	060	060	0	2	633	
IND	037A	680	2	93.0	25.5	146	1.13	40	2	63.9	
IND	045A	560	2	76.2	19.5	1.58	158	21	2	635	
INS	028A	80.0	2	101.5	00	3.00	120	133	2	633	
IRL	211A	-31.0	2	-8.2	53.2	0.84	060	162	1	642	
KOR	112A	1100	2	127.5	360	124	1.02	168	2	63.6	
LAO	284A	74.0	2	103.7	18.1	216	078	133	1	638	
MAU	242A	29.0	2	59.8	-18.9	1.62	1.24	55	1	640	
MLA	228A	86.0	2	114.1	3.9	234	1.12	45	1	63.6	
MLI	327A	-37.0	2	-2.0	19.0	2.66	1.26	127	1	63.2	
MRL	333A	146.0	2	166.7	79	1.50	150	177	1	63.3	
NCL	100A	140.0	2	1660	-21.0	1.14	072	146	1	63.7	
PAK	127A	38.0	2	69.6	29.5	230	2.16	14	1	63.9	
PNG	131A	10.0	2	147.7	-6.3	2.50	218	169	1	64.4	
ROU	136A	-1.0	2	25.0	45.7	1.38	0.66	155	1	63.8	
TCD	143A	-13.0	2	18.1	155	3.40	1.72	107	2	64.0	
TGO	226A	-25.0	2	0	0.8	8.6	1.52	0.60	105	2	63.4
WAL	102A	140.0	2	-176.8	-14.0	0.74	0.60	29	1	64.4	
YEM	266A	11.0	2	44.3	15.1	1.14	0.70	109	1	62.6	
ZAI	323A	-19.0	2	21.3	-6.8	2.80	1.52	149	1	64.6	

$6 乌 I-(\varsigma 8-q 1 O) 0 \varepsilon d \forall$

11 765,84 MHz (3)

11 785,02 MHz (4)

	ALG	252A	-250	4	1.6	25.5	3.64	216	152	1	62.8	
	AND	341A	-37.0	4	1.6	42.5	0.60	0.60	0	2	61.5	1/0.5
	ARS	003A	17.0	4	41.1	23.8	3.52	1.68	134	2	62.7	
	AUS	007A	128.0	4	145.0	- 38.1	1.83	1.39	134	2	63.3	
	AUT	016A	- 19.0	4	122	47.5	1.14	0.63	166	2	64.1	
	BUL	020A	-1.0	4	25.0	43.0	1.04	060	165	1	63.6	
	CHN	156A	620	4	97.8	36.3	2.56	158	157	1	635	
	CHN	161B	92.0	4	118.1	31.1	2.49	1.69	117	1	64.4	
	CKN	053A	158.0	4	-1630	- 11.2	1.76	072	30	2	64.3	
	CPV	301A	-310	4	-24.0	16.0	0.86	070	144	2	62.2	
	EGY	026A	-7.0	4	29.7	26.8	2.33	1.72	136	2	63.1	
	G	027A	- 31.0	4	-3.5	53.8	1.84	0.72	142	1	65.0	
	IND	040A	56.0	4	73.0	25.0	1.82	1.48	58	2	63.6	
	IND	048A	68.0	4	86.2	25.0	1.56	090	120	2	63.7	
	INS	028B	80.0	4	101.5	0.0	3.00	120	133	2	63.3	
	KOR	112B	110.0	4	127.5	36.0	1.24	1.02	168	2	63.6	
	LAO	284B	74.0	4	103.7	18.1	2.16	0.78	133	1	63.8	
	MAU	243A	29.0	4	56.8	-13.9	1.56	1.38	65	1	63.7	
	MLA	228B	86.0	4	114.1	3.9	2.34	1.12	45	1	63.6	
	MLI	328A	-37.0	4	-7.6	13.2	1.74	1.24	171	1	63.7	
	MLT	147A	- 13.0	4	14.3	35.9	0.60	060	0	1	61.0	1/0.7
	MOZ	307A	-1.0	4	34.0	- 18.0	3.57	1.38	55	2	64.2	
	OCE	101A	-160.0	4	- 145.0	-16.3	4.34	3.54	4	2	63.5	
	PAK	283A	38.0	4	74.7	33.9	1.34	1.13	160	1	64.3	
	PNG	271A	128.0	4	148.0	-6.7	2.80	2.05	155	1	63.4	
	RRW	310A	11.0	4	30.0	-2.1	0.66	0.60	42	2	64.8	
	S	138A	5.0	4	16.2	61.0	1.04	0.98	14	2	67.1	
0	STP	241A	-13.0	4	7.0	0.8	0.60	0.60	0	2	61.4	1/1.3
$\stackrel{\square}{6}$	TON	215A	170.0	4	- 174.7	-18.0	1.41	0.68	85	1	63.3	
	URS	060A	23.0	4	$4{ }^{1.5}$	57.4	3.08	1.56	153	1	66.7	
$\stackrel{\rightharpoonup}{\infty}$	ZAI	322A	-19.0	4	22.4	0.0	2.16	1.88	48	1	64.7	

	ALG	252A	-250	4	1.6	25.5	3.64	216	152	1	62.8	
	AND	341A	-37.0	4	1.6	42.5	0.60	0.60	0	2	61.5	1/0.5
	ARS	003A	17.0	4	41.1	23.8	3.52	1.68	134	2	62.7	
	AUS	007A	128.0	4	145.0	- 38.1	1.83	1.39	134	2	63.3	
	AUT	016A	- 19.0	4	122	47.5	1.14	0.63	166	2	64.1	
	BUL	020A	-1.0	4	25.0	43.0	1.04	060	165	1	63.6	
	CHN	156A	620	4	97.8	36.3	2.56	158	157	1	635	
	CHN	161B	92.0	4	118.1	31.1	2.49	1.69	117	1	64.4	
	CKN	053A	158.0	4	-1630	- 11.2	1.76	072	30	2	64.3	
	CPV	301A	-310	4	-24.0	16.0	0.86	070	144	2	62.2	
	EGY	026A	-7.0	4	29.7	26.8	2.33	1.72	136	2	63.1	
	G	027A	- 31.0	4	-3.5	53.8	1.84	0.72	142	1	65.0	
	IND	040A	56.0	4	73.0	25.0	1.82	1.48	58	2	63.6	
	IND	048A	68.0	4	86.2	25.0	1.56	090	120	2	63.7	
	INS	028B	80.0	4	101.5	0.0	3.00	120	133	2	63.3	
	KOR	112B	110.0	4	127.5	36.0	1.24	1.02	168	2	63.6	
	LAO	284B	74.0	4	103.7	18.1	2.16	0.78	133	1	63.8	
	MAU	243A	29.0	4	56.8	-13.9	1.56	1.38	65	1	63.7	
	MLA	228B	86.0	4	114.1	3.9	2.34	1.12	45	1	63.6	
	MLI	328A	-37.0	4	-7.6	13.2	1.74	1.24	171	1	63.7	
	MLT	147A	- 13.0	4	14.3	35.9	0.60	060	0	1	61.0	1/0.7
	MOZ	307A	-1.0	4	34.0	- 18.0	3.57	1.38	55	2	64.2	
	OCE	101A	-160.0	4	- 145.0	-16.3	4.34	3.54	4	2	63.5	
	PAK	283A	38.0	4	74.7	33.9	1.34	1.13	160	1	64.3	
	PNG	271A	128.0	4	148.0	-6.7	2.80	2.05	155	1	63.4	
	RRW	310A	11.0	4	30.0	-2.1	0.66	0.60	42	2	64.8	
	S	138A	5.0	4	16.2	61.0	1.04	0.98	14	2	67.1	
0	STP	241A	-13.0	4	7.0	0.8	0.60	0.60	0	2	61.4	1/1.3
$\stackrel{\square}{6}$	TON	215A	170.0	4	- 174.7	-18.0	1.41	0.68	85	1	63.3	
	URS	060A	23.0	4	$4{ }^{1.5}$	57.4	3.08	1.56	153	1	66.7	
$\stackrel{\rightharpoonup}{\infty}$	ZAI	322A	-19.0	4	22.4	0.0	2.16	1.88	48	1	64.7	

	ALG	252A	-250	4	1.6	25.5	3.64	216	152	1	62.8	
	AND	341A	-37.0	4	1.6	42.5	0.60	0.60	0	2	61.5	1/0.5
	ARS	003A	17.0	4	41.1	23.8	3.52	1.68	134	2	62.7	
	AUS	007A	128.0	4	145.0	- 38.1	1.83	1.39	134	2	63.3	
	AUT	016A	- 19.0	4	122	47.5	1.14	0.63	166	2	64.1	
	BUL	020A	-1.0	4	25.0	43.0	1.04	060	165	1	63.6	
	CHN	156A	620	4	97.8	36.3	2.56	158	157	1	635	
	CHN	161B	92.0	4	118.1	31.1	2.49	1.69	117	1	64.4	
	CKN	053A	158.0	4	-1630	- 11.2	1.76	072	30	2	64.3	
	CPV	301A	-310	4	-24.0	16.0	0.86	070	144	2	62.2	
	EGY	026A	-7.0	4	29.7	26.8	2.33	1.72	136	2	63.1	
	G	027A	- 31.0	4	-3.5	53.8	1.84	0.72	142	1	65.0	
	IND	040A	56.0	4	73.0	25.0	1.82	1.48	58	2	63.6	
	IND	048A	68.0	4	86.2	25.0	1.56	090	120	2	63.7	
	INS	028B	80.0	4	101.5	0.0	3.00	120	133	2	63.3	
	KOR	112B	110.0	4	127.5	36.0	1.24	1.02	168	2	63.6	
	LAO	284B	74.0	4	103.7	18.1	2.16	0.78	133	1	63.8	
	MAU	243A	29.0	4	56.8	-13.9	1.56	1.38	65	1	63.7	
	MLA	228B	86.0	4	114.1	3.9	2.34	1.12	45	1	63.6	
	MLI	328A	-37.0	4	-7.6	13.2	1.74	1.24	171	1	63.7	
	MLT	147A	- 13.0	4	14.3	35.9	0.60	060	0	1	61.0	1/0.7
	MOZ	307A	-1.0	4	34.0	- 18.0	3.57	1.38	55	2	64.2	
	OCE	101A	-160.0	4	- 145.0	-16.3	4.34	3.54	4	2	63.5	
	PAK	283A	38.0	4	74.7	33.9	1.34	1.13	160	1	64.3	
	PNG	271A	128.0	4	148.0	-6.7	2.80	2.05	155	1	63.4	
	RRW	310A	11.0	4	30.0	-2.1	0.66	0.60	42	2	64.8	
	S	138A	5.0	4	16.2	61.0	1.04	0.98	14	2	67.1	
0	STP	241A	-13.0	4	7.0	0.8	0.60	0.60	0	2	61.4	1/1.3
$\stackrel{\square}{6}$	TON	215A	170.0	4	- 174.7	-18.0	1.41	0.68	85	1	63.3	
	URS	060A	23.0	4	$4{ }^{1.5}$	57.4	3.08	1.56	153	1	66.7	
$\stackrel{\rightharpoonup}{\infty}$	ZAI	322A	-19.0	4	22.4	0.0	2.16	1.88	48	1	64.7	

$$
\begin{array}{r}
25.5 \\
42.5 \\
23.8 \\
-38.1 \\
47.5 \\
43.0 \\
36.3 \\
31.1 \\
-11.2 \\
16.0 \\
26.8 \\
53.8 \\
25.0 \\
25.0 \\
0.0 \\
36.0 \\
18.1 \\
-13.9 \\
3.9 \\
13.2 \\
35.9 \\
-18.0 \\
-16.3 \\
33.9 \\
-6.7 \\
-2.1 \\
61.0 \\
0.8 \\
-18.0 \\
57.4
\end{array}
$$

	ALG	252A	-250	4	1.6	25.5	3.64	216	152	1	62.8	
	AND	341A	-37.0	4	1.6	42.5	0.60	0.60	0	2	61.5	1/0.5
	ARS	003A	17.0	4	41.1	23.8	3.52	1.68	134	2	62.7	
	AUS	007A	128.0	4	145.0	- 38.1	1.83	1.39	134	2	63.3	
	AUT	016A	- 19.0	4	122	47.5	1.14	0.63	166	2	64.1	
	BUL	020A	-1.0	4	25.0	43.0	1.04	060	165	1	63.6	
	CHN	156A	620	4	97.8	36.3	2.56	158	157	1	635	
	CHN	161B	92.0	4	118.1	31.1	2.49	1.69	117	1	64.4	
	CKN	053A	158.0	4	-1630	- 11.2	1.76	072	30	2	64.3	
	CPV	301A	-310	4	-24.0	16.0	0.86	070	144	2	62.2	
	EGY	026A	-7.0	4	29.7	26.8	2.33	1.72	136	2	63.1	
	G	027A	- 31.0	4	-3.5	53.8	1.84	0.72	142	1	65.0	
	IND	040A	56.0	4	73.0	25.0	1.82	1.48	58	2	63.6	
	IND	048A	68.0	4	86.2	25.0	1.56	090	120	2	63.7	
	INS	028B	80.0	4	101.5	0.0	3.00	120	133	2	63.3	
	KOR	112B	110.0	4	127.5	36.0	1.24	1.02	168	2	63.6	
	LAO	284B	74.0	4	103.7	18.1	2.16	0.78	133	1	63.8	
	MAU	243A	29.0	4	56.8	-13.9	1.56	1.38	65	1	63.7	
	MLA	228B	86.0	4	114.1	3.9	2.34	1.12	45	1	63.6	
	MLI	328A	-37.0	4	-7.6	13.2	1.74	1.24	171	1	63.7	
	MLT	147A	- 13.0	4	14.3	35.9	0.60	060	0	1	61.0	1/0.7
	MOZ	307A	-1.0	4	34.0	- 18.0	3.57	1.38	55	2	64.2	
	OCE	101A	-160.0	4	- 145.0	-16.3	4.34	3.54	4	2	63.5	
	PAK	283A	38.0	4	74.7	33.9	1.34	1.13	160	1	64.3	
	PNG	271A	128.0	4	148.0	-6.7	2.80	2.05	155	1	63.4	
	RRW	310A	11.0	4	30.0	-2.1	0.66	0.60	42	2	64.8	
	S	138A	5.0	4	16.2	61.0	1.04	0.98	14	2	67.1	
0	STP	241A	-13.0	4	7.0	0.8	0.60	0.60	0	2	61.4	1/1.3
$\stackrel{\square}{6}$	TON	215A	170.0	4	- 174.7	-18.0	1.41	0.68	85	1	63.3	
	URS	060A	23.0	4	$4{ }^{1.5}$	57.4	3.08	1.56	153	1	66.7	
$\stackrel{\rightharpoonup}{\infty}$	ZAI	322A	-19.0	4	22.4	0.0	2.16	1.88	48	1	64.7	

	ALG	252A	-250	4	1.6	25.5	3.64	216	152	1	62.8	
	AND	341A	-37.0	4	1.6	42.5	0.60	0.60	0	2	61.5	1/0.5
	ARS	003A	17.0	4	41.1	23.8	3.52	1.68	134	2	62.7	
	AUS	007A	128.0	4	145.0	- 38.1	1.83	1.39	134	2	63.3	
	AUT	016A	- 19.0	4	122	47.5	1.14	0.63	166	2	64.1	
	BUL	020A	-1.0	4	25.0	43.0	1.04	060	165	1	63.6	
	CHN	156A	620	4	97.8	36.3	2.56	158	157	1	635	
	CHN	161B	92.0	4	118.1	31.1	2.49	1.69	117	1	64.4	
	CKN	053A	158.0	4	-1630	- 11.2	1.76	072	30	2	64.3	
	CPV	301A	-310	4	-24.0	16.0	0.86	070	144	2	62.2	
	EGY	026A	-7.0	4	29.7	26.8	2.33	1.72	136	2	63.1	
	G	027A	- 31.0	4	-3.5	53.8	1.84	0.72	142	1	65.0	
	IND	040A	56.0	4	73.0	25.0	1.82	1.48	58	2	63.6	
	IND	048A	68.0	4	86.2	25.0	1.56	090	120	2	63.7	
	INS	028B	80.0	4	101.5	0.0	3.00	120	133	2	63.3	
	KOR	112B	110.0	4	127.5	36.0	1.24	1.02	168	2	63.6	
	LAO	284B	74.0	4	103.7	18.1	2.16	0.78	133	1	63.8	
	MAU	243A	29.0	4	56.8	-13.9	1.56	1.38	65	1	63.7	
	MLA	228B	86.0	4	114.1	3.9	2.34	1.12	45	1	63.6	
	MLI	328A	-37.0	4	-7.6	13.2	1.74	1.24	171	1	63.7	
	MLT	147A	- 13.0	4	14.3	35.9	0.60	060	0	1	61.0	1/0.7
	MOZ	307A	-1.0	4	34.0	- 18.0	3.57	1.38	55	2	64.2	
	OCE	101A	-160.0	4	- 145.0	-16.3	4.34	3.54	4	2	63.5	
	PAK	283A	38.0	4	74.7	33.9	1.34	1.13	160	1	64.3	
	PNG	271A	128.0	4	148.0	-6.7	2.80	2.05	155	1	63.4	
	RRW	310A	11.0	4	30.0	-2.1	0.66	0.60	42	2	64.8	
	S	138A	5.0	4	16.2	61.0	1.04	0.98	14	2	67.1	
0	STP	241A	-13.0	4	7.0	0.8	0.60	0.60	0	2	61.4	1/1.3
$\stackrel{\square}{6}$	TON	215A	170.0	4	- 174.7	-18.0	1.41	0.68	85	1	63.3	
	URS	060A	23.0	4	$4{ }^{1.5}$	57.4	3.08	1.56	153	1	66.7	
$\stackrel{\rightharpoonup}{\infty}$	ZAI	322A	-19.0	4	22.4	0.0	2.16	1.88	48	1	64.7	

	ALG	252A	-250	4	1.6	25.5	3.64	216	152	1	62.8	
	AND	341A	-37.0	4	1.6	42.5	0.60	0.60	0	2	61.5	1/0.5
	ARS	003A	17.0	4	41.1	23.8	3.52	1.68	134	2	62.7	
	AUS	007A	128.0	4	145.0	- 38.1	1.83	1.39	134	2	63.3	
	AUT	016A	- 19.0	4	122	47.5	1.14	0.63	166	2	64.1	
	BUL	020A	-1.0	4	25.0	43.0	1.04	060	165	1	63.6	
	CHN	156A	620	4	97.8	36.3	2.56	158	157	1	635	
	CHN	161B	92.0	4	118.1	31.1	2.49	1.69	117	1	64.4	
	CKN	053A	158.0	4	-1630	- 11.2	1.76	072	30	2	64.3	
	CPV	301A	-310	4	-24.0	16.0	0.86	070	144	2	62.2	
	EGY	026A	-7.0	4	29.7	26.8	2.33	1.72	136	2	63.1	
	G	027A	- 31.0	4	-3.5	53.8	1.84	0.72	142	1	65.0	
	IND	040A	56.0	4	73.0	25.0	1.82	1.48	58	2	63.6	
	IND	048A	68.0	4	86.2	25.0	1.56	090	120	2	63.7	
	INS	028B	80.0	4	101.5	0.0	3.00	120	133	2	63.3	
	KOR	112B	110.0	4	127.5	36.0	1.24	1.02	168	2	63.6	
	LAO	284B	74.0	4	103.7	18.1	2.16	0.78	133	1	63.8	
	MAU	243A	29.0	4	56.8	-13.9	1.56	1.38	65	1	63.7	
	MLA	228B	86.0	4	114.1	3.9	2.34	1.12	45	1	63.6	
	MLI	328A	-37.0	4	-7.6	13.2	1.74	1.24	171	1	63.7	
	MLT	147A	- 13.0	4	14.3	35.9	0.60	060	0	1	61.0	1/0.7
	MOZ	307A	-1.0	4	34.0	- 18.0	3.57	1.38	55	2	64.2	
	OCE	101A	-160.0	4	- 145.0	-16.3	4.34	3.54	4	2	63.5	
	PAK	283A	38.0	4	74.7	33.9	1.34	1.13	160	1	64.3	
	PNG	271A	128.0	4	148.0	-6.7	2.80	2.05	155	1	63.4	
	RRW	310A	11.0	4	30.0	-2.1	0.66	0.60	42	2	64.8	
	S	138A	5.0	4	16.2	61.0	1.04	0.98	14	2	67.1	
0	STP	241A	-13.0	4	7.0	0.8	0.60	0.60	0	2	61.4	1/1.3
$\stackrel{\square}{6}$	TON	215A	170.0	4	- 174.7	-18.0	1.41	0.68	85	1	63.3	
	URS	060A	23.0	4	$4{ }^{1.5}$	57.4	3.08	1.56	153	1	66.7	
$\stackrel{\rightharpoonup}{\infty}$	ZAI	322A	-19.0	4	22.4	0.0	2.16	1.88	48	1	64.7	

1
1
2
2
2
2
1
1
1
2
2
2
1
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
2
2
1

62.8
61.5
62.7
63.3
64.1
63.6
635
64.4
64.3
62.2
63.1
65.0
63.6
63.7
63.3
63.6
63.8
633.7
63.6
63.7
61.0
64.2
63.5
64.3
63.4
64.8
67.1
61.4
63.3
66.7
64.7

$1 / 0.5$

	ALG	252A	-250	4	1.6	25.5	3.64	216	152	1	62.8	
	AND	341A	-37.0	4	1.6	42.5	0.60	0.60	0	2	61.5	1/0.5
	ARS	003A	17.0	4	41.1	23.8	3.52	1.68	134	2	62.7	
	AUS	007A	128.0	4	145.0	- 38.1	1.83	1.39	134	2	63.3	
	AUT	016A	- 19.0	4	122	47.5	1.14	0.63	166	2	64.1	
	BUL	020A	-1.0	4	25.0	43.0	1.04	060	165	1	63.6	
	CHN	156A	620	4	97.8	36.3	2.56	158	157	1	635	
	CHN	161B	92.0	4	118.1	31.1	2.49	1.69	117	1	64.4	
	CKN	053A	158.0	4	-1630	- 11.2	1.76	072	30	2	64.3	
	CPV	301A	-310	4	-24.0	16.0	0.86	070	144	2	62.2	
	EGY	026A	-7.0	4	29.7	26.8	2.33	1.72	136	2	63.1	
	G	027A	- 31.0	4	-3.5	53.8	1.84	0.72	142	1	65.0	
	IND	040A	56.0	4	73.0	25.0	1.82	1.48	58	2	63.6	
	IND	048A	68.0	4	86.2	25.0	1.56	090	120	2	63.7	
	INS	028B	80.0	4	101.5	0.0	3.00	120	133	2	63.3	
	KOR	112B	110.0	4	127.5	36.0	1.24	1.02	168	2	63.6	
	LAO	284B	74.0	4	103.7	18.1	2.16	0.78	133	1	63.8	
	MAU	243A	29.0	4	56.8	-13.9	1.56	1.38	65	1	63.7	
	MLA	228B	86.0	4	114.1	3.9	2.34	1.12	45	1	63.6	
	MLI	328A	-37.0	4	-7.6	13.2	1.74	1.24	171	1	63.7	
	MLT	147A	- 13.0	4	14.3	35.9	0.60	060	0	1	61.0	1/0.7
	MOZ	307A	-1.0	4	34.0	- 18.0	3.57	1.38	55	2	64.2	
	OCE	101A	-160.0	4	- 145.0	-16.3	4.34	3.54	4	2	63.5	
	PAK	283A	38.0	4	74.7	33.9	1.34	1.13	160	1	64.3	
	PNG	271A	128.0	4	148.0	-6.7	2.80	2.05	155	1	63.4	
	RRW	310A	11.0	4	30.0	-2.1	0.66	0.60	42	2	64.8	
	S	138A	5.0	4	16.2	61.0	1.04	0.98	14	2	67.1	
0	STP	241A	-13.0	4	7.0	0.8	0.60	0.60	0	2	61.4	1/1.3
$\stackrel{\square}{6}$	TON	215A	170.0	4	- 174.7	-18.0	1.41	0.68	85	1	63.3	
	URS	060A	23.0	4	$4{ }^{1.5}$	57.4	3.08	1.56	153	1	66.7	
$\stackrel{\rightharpoonup}{\infty}$	ZAI	322A	-19.0	4	22.4	0.0	2.16	1.88	48	1	64.7	

19I-($\$ 8-910) 0 \varepsilon d V$

11 804,20 MHz (5)

11 823,38 MHz (6)
(986I ^^əy)

ALG	$251 B$
ARS	$275 B$
AUS	$006 B$
AUS	$008 B$
BOT	$297 B$
CHN	$154 B$
CHN	$161 C$
CKH	$052 B$
CLN	$219 B$
D	087B
FNL	$103 B$
GNP	$304 B$
GUM	$331 B$
IND	$037 B$
IND	$045 B$
INS	$028 C$
IRL	$211 B$
KOR	$112 C$
LAO	$284 C$
MAU	$242 B$
MLA	$228 C$
MLI	$327 B$
MRL	$333 B$
NCL	$100 B$
PAK	$127 B$
PNG	$131 B$
ROU	$136 B$
TCD	$143 B$
TGO	$226 B$
WAL	$102 B$
YEM	$266 B$
ZAI	$323 B$

-25.0
17.0
98.0
128.0
-1.0
62.0
92.0
158.0
50.0
-19.0
5.0
-31.0
122.0
68.0
56.0
80.0
-31.0
110.0
74.0
29.0
86.0
-37.0
146.0
140.0
38.0
110.0
-1.0
-13.0
-25.0
140.0
11.0
-19.0

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

	4.2
48.3	
135.4	
145.9	
23.3	
83.9	
118.1	
-161.0	
80.6	
9.6	
22.5	
-15.0	
144.5	
93.0	
76.2	
101.5	
-8.2	
127.5	
103.7	
59.8	
114.1	
-2.0	
166.7	
166.0	
69.6	
147.7	
25.0	
18.1	
0.8	
-176.8	
44.3	
21.3	

| 33.2 |
| ---: | ---: |
| 24.6 |
| -30.3 |

5	1.25	172	1	63.4	
4	1.20	138	2	62.8	
0	1.40	44	1	63.3	
0	2.00	120	2	63.7	
3	1.50	36	2	63.8	
5	2.05	177	1	63.3	
9	1.69	117	1	64.5	
2	0.64	132	2	64.6	
8	0.60	106	1	63.6	
2	0.72	147	2	65.6	
8	0.76	171	2	67.8	
O	0.60	172	2	63.2	
00	0.60	0	2	63.4	
6	1.13	40	2	64.0	
8	1.58	21	2	63.6	
	1.20	133	2	63.3	
4	0.60	162	1	64.3	
4	1.02	168	2	63.6	
	0.78	133	1	63.8	
	1.24	55	1	64.0	
4	1.12	45	1	63.6	
	1.26	127	1	63.2	
	1.50	177	1	63.3	
4	0.72	146	1	63.8	
-	2.16	14	1	64.0	
	2.18	169	1	64.4	
8	0.66	155	1	63.9	
	1.72	107	2	64.0	
2	0.60	105	2	63.4	
4	0.60	29	1	64.4	
1	0.70	109	1	62.7	
	1.52	149	1	64.7	

$\varepsilon 9 I-(\varsigma 8-q 1 O) 0 \varepsilon d \forall$

11 842,56 MHz (7)

11 861,74 MHz (8)

11 880,92 MHz
(9)

1	$\mathbf{1}$	$\mathbf{3}$		$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

(986I ^ләу)

ALG	251 C
ARS	275 C
AUS	006 C
AUS	008 C
BOT	297 C
CHN	154 C
CHN	171 A
CHN	187 A
CKH	052 C
CLN	219 C
D	087 C
FNL	103 C
GNP	304 C
GUM	331 C
IND	037 C
IND	045 C
IRL	211 C
KOR	112 E
LAO	284 E
MAU	242 C
MLI	327 C
MRL	333 C
NCL	100 C
PAK	127 C
PNG	131 C
ROU	136 C
TCD	143 C
TGO	226 C
WAL	102 C
YEM	266 C
ZAI	323 C

-25.0	10	4.2
17.0	10	48.3
98.0	10	135.4
128.0	10	145.9
-1.0	10	23.3
62.0	10	83.9
92.0	10	117.2
80.0	10	106.6
158.0	10	-161.0
50.0	10	80.6
-19.0	10	9.6
5.0	10	22.5
-31.0	10	-15.0
122.0	10	144.5
68.0	10	93.0
56.0	10	76.2
-31.0	10	-8.2
110.0	10	127.5
74.0	10	103.7
29.0	10	59.8
-37.0	10	-2.0
146.0	10	166.7
140.0	10	166.0
38.0	10	69.6
110.0	10	147.7
-1.0	10	25.0
-13.0	10	18.1
-25.0	10	0.8
140.0	10	-176.8
11.0	10	44.3
-19.0	10	21.3

33.2	2.45
24.6	3.84
-30.3	2.00
-21.5	2.90
-22.2	2.13
40.5	2.75
32.0	1.20
26.7	1.14
-19.8	1.02
7.7	1.18
49.9	1.62
64.5	1.38
12.0	0.90
13.1	0.60
25.5	1.46
19.5	1.58
53.2	0.84
36.0	1.24
18.1	2.16
-18.9	1.62
19.0	2.66
7.9	1.50
-21.0	1.14
29.5	2.30
-6.3	2.50
45.7	1.38
15.5	3.40
8.6	1.52
-14.0	0.74
15.1	1.14
-6.8	2.80

1.25
1.20
1.40
2.00
1.50
2.05
0.74
0.94
0.64
0.60
0.72
0.76
0.60
0.60
1.13
1.58
0.60
1.02
0.78
1.24
1.26
1.50
0.72
2.16
2.18
0.66
1.72
0.60
0.60
0.70
1.52

172	1	
138	2	
44	1	
120		
36		
177		
126		
179		
132		
106		
147		
171		
172		
0		
40		
21		
162		
168		
133		
55		
127	1	
177	1	
146	1	
14	1	
169	1	
155	1	
107		
105		
29	109	1
149		

63.5
62.9
63.3
63.8
63.9
63.3
64.2
64.0
64.7
63.7
65.6
67.9
63.2
63.4
64.0
63.6
64.4
63.7
63.9
64.1
63.2
63.4
63.8
64.0
64.5
63.9
64.1
63.5
64.5
62.7
64.7

AP30 (Orb-85)-167

11 919,28 MHz
(11)

11 938,46 MHz (12)

ALG	252C	-25.0	12	1.6	25.5	3.64	2.16	152	1	62.9	
AND	341C	-37.0	12	16	42.5	0.60	0.60	0	2	61.6	$1 / 0.5$
ARS	003C	17.0	12	41.1	23.8	3.52	1.68	134	2	62.8	
AUS	$007 C$	128.0	12	145.0	-38.1	1.83	1.39	134	2	63.4	
AUT	$016 C$	-19.0	12	122	47.5	1.14	0.63	166	2	64.2	
BRU	330A	74.0	12	114.7	4.4	0.60	0.60	0	1	62.5	$1 / 1.3$
BUL	020C	-1.0	12	25.0	43.0	1.04	0.60	165	1	63.8	
CHN	156C	62.0	12	97.8	36.3	2.56	1.58	157	1	63.6	
CHN	170A	92.0	12	119.5	33.0	1.34	0.64	155	1	64.4	
CHN	178A	80.0	12	111.5	27.4	1.22	0.86	130	2	64.4	
CKN	053C	158.0	12	-163.0	-11.2	1.76	0.72	30	2	64.4	
CPV	301C	-31.0	12	-240	16.0	0.86	0.70	144	2	62.3	
DNK	089A	5.0	12	12.3	57.1	1.20	0.60	177	2	64.3	
EGY	026C	-7.0	12	297	26.8	2.33	1.72	136	2	63.2	
G	027C	-31.0	12	-35	538	1.84	0.72	142	1	65.1	
IND	040C	56.0	12	73.0	25.0	1.82	1.48	58	2	63.8	
IND	048C	68.0	12	862	25.0	1.56	0.90	120	2	63.8	
KOR	112F	10.0	12	127.5	360	1.24	1.02	168	2	63.7	
MAU	243C	29.0	12	56.8	-13.9	1.56	1.38	65	1	63.8	
MLD	306A	44.0	12	73.1	6.0	0.96	0.60	90	1	63.7	
MLI	328C	-37.0	12	-7.6	13.2	1.74	1.24	171	1	63.8	
MLT	147C	-13.0	12	14.3	35.9	0.60	0.60	0	1	61.1	$1 / 0.7$
MOZ	307C	-1.0	12	34.0	-18.0	3.57	1.38	55	2	64.3	
OCE	101C	-160.0	12	-145.0	-16.3	4.34	3.54	4	2	63.6	
PAK	210A	38.0	12	72.1	30.8	1.16	0.72	90	1	63.5	
PNG	271C	128.0	12	148.0	-6.7	2.80	2.05	155	1	63.5	
RRW	310C	11.0	12	30.0	-2.1	0.66	0.60	42	2	64.9	
STP	241C	-13.0	12	7.0	0.8	0.60	0.60	0	2	61.5	$1 / 1.3$
TON	215C	170.0	12	-174.7	-18.0	1.41	0.68	85	1	63.4	
URS	060C	23.0	12	41.5	57.4	3.08	1.56	153	1	66.9	
URS	069A	44.0	12	708	38.5	1.36	0.74	161	2	64.1	
ZAI	322C	-19.0	12	22.4	0.0	2.16	1.88	48	1	64.8	

11 957,64 MHz
(13)

11 976,82 MHz

	ALG	251D	- 25.0	14	4.2	33.2	2.45	1.25	172	1	63.6	
	ARS	275D	17.0	14	48.3	24.6	3.84	1.20	138	2	63.0	
	AUS	006D	98.0	14	135.4	-30.3	2.00	1.40	44	1	63.4	
	AUS	008D	128.0	14	145.9	-21.5	2.90	2.00	120	2	63.9	
	BOT	297D	-1.0	14	23.3	-22.2	2.13	1.50	36	2	63.9	
	BRU	330B	74.0	14	114.7	4.4	0.60	0.60	0	1	62.6	1/1.3
	CHN	154D	62.0	14	83.9	40.5	2.75	2.05	177	1	63.4	
	CHN	172A	92.0	14	120.4	29.1	0.96	0.84	123	1	64.3	
	CHN	181A	80.0	14	108.5	23.8	1.41	1.08	153	2	64.1	
	CKH	052D	158.0	14	- 161.0	- 19.8	1.02	0.64	132	2	64.8	
	CLN	219D	50.0	14	80.6	7.7	1.18	0.60	106	1	63.8	
	D	087D	- 19.0	14	9.6	49.9	1.62	0.72	147	2	65.7	
	GNP	304D	-31.0	14	-15.0	12.0	0.90	0.60	172	2	63.3	
	GUM	331D	122.0	14	144.5	13.1	0.60	0.60	0	2	63.5	
	IND	037D	68.0	14	93.0	25.5	1.46	1.13	40	2	64.1	
	IND	045D	56.0	14	76.2	19.5	1.58	1.58	21	2	63.7	
	IRL	211D	-31.0	14	-8.2	53.2	0.84	0.60	162	1	64.4	
	KRE	286A	110.0	14	127.0	39.1	1.30	1.10	31	2	64.0	
	MAU	242D	29.0	14	59.8	-18.9	1.62	1.24	55	1	64.1	
	MLI	327D	-37.0	14	-2.0	19.0	2.66	1.26	127	1	63.2	
	MRL	333D	146.0	14	166.7	7.9	1.50	1.50	177	1	63.5	
	NCL	100D	140.0	14	166.0	-21.0	1.14	0.72	146	1	63.9	
	NOR	120A	5.0	14	13.1	64.1	1.84	0.88	10	2	65.0	
	PAK	210B	38.0	14	72.1	30.8	1.16	0.72	90	1	63.6	
	PNG	131D	110.0	14	147.7	-6.3	2.50	2.18	169	1	64.6	
	ROU	136D	-1.0	14	25.0	45.7	1.38	0.66	155	1	64.0	
	TCD	143D	-13.0	14	18.1	15.5	3.40	1.72	107	2	64.1	
Q	TGO	226D	-25.0	14	0.8	8.6	1.52	0.60	105	2	63.5	
	WAL	102D	140.0	14	-176.8	- 14.0	0.74	0.60	29	1	64.6	
\checkmark	YEM	266D	11.0	14	44.3	15.1	1.14	0.70	109	1	62.8	
$\stackrel{\infty}{0}$	ZAI	323D	-19.0	14	21.3	-6.8	2.80	1.52	149	1	64.8	

$11996,00 \mathrm{MHz}$ (15)

12 015,18 MHz (16)

	ALG	252D	-25.0	16	1.6	25.5	3.64	2.16	152	1	63.0	
	AND	341D	- 37.0	16	1.6	42.5	0.60	0.60	0	2	61.6	1/0.5
	ARS	003D	17.0	16	41.1	23.8	3.52	1.68	134	2	62.8	
	AUS	007D	128.0	16	145.0	-38.1	1.83	1.39	134	2	63.5	
	AUT	016D	-19.0	16	12.2	47.5	1.14	0.63	166	2	64.3	
	BUL	020D	-1.0	16	25.0	43.0	1.04	0.60	165	1	63.8	
	CHN	169A	92.0	16	118.5	36.4	1.16	0.76	11	1	64.7	
	CHN	186A	62.0	16	102.5	30.2	1.91	1.23	147	2	65.5	
	CKN	053D	158.0	16	- 163.0	- 11.2	1.76	0.72	30	2	64.5	
	CPV	301D	-31.0	16	-24.0	16.0	0.86	0.70	144	2	62.4	
	DNK	089B	5.0	16	12.3	57.1	1.20	0.60	177	2	64.4	
	EGY	026D	-7.0	16	29.7	26.8	2.33	1.72	136	2	63.3	
	G	027D	- 31.0	16	-3.5	53.8	1.84	0.72	142	1	65.2	
	IND	040D	56.0	16	73.0	25.0	1.82	1.48	58	2	63.8	
	IND	048D	68.0	16	86.2	25.0	1.56	0.90	120	2	65.5	
	KRE	286B	110.0	16	127.0	39.1	1.30	1.10	31	2	64.0	
	MAU	243D	29.0	16	56.8	- 13.9	1.56	1.38	65	1	63.9	
	MLA	227A	86.0	16	102.1	4.1	1.62	0.82	135	1	63.2	2
	MLD	306B	44.0	16	73.1	6.0	0.96	0.60	90	1	63.7	
	MLI	328D	-37.0	16	-7.6	13.2	1.74	1.24	171	1	63.9	
	MLT	147D	- 13.0	16	14.3	35.9	0.60	0.60	0	1	61.2	$1 / 0.7$
	MOZ	307D	-1.0	16	34.0	-18.0	3.57	1.38	55	2	64.4	
	OCE	101D	-160.0	16	- 145.0	-16.3	4.34	3.54	4	2	63.7	
	PHL	285A	98.0	16	121.3	11.1	3.46	1.76	99	2	63.7	
	RRW	310D	11.0	16	30.0	-2.1	0.66	0.60	42	2	65.0	
	STP	241D	-13.0	16	7.0	0.8	0.60	0.60	0	2	61.6	1/1.3
O	TON	215D	170.0	16	- 174.7	-18.0	1.41	0.68	85	1	63.5	
\bigcirc	URS	060D	23.0	16	41.5	57.4	3.08	1.56	153	1	66.9	
\checkmark	URS	069B	44.0	16	70.8	38.5	1.36	0.74	161	2	64.1	
$\stackrel{\infty}{\infty}$	ZAI	322D	-19.0	16	22.4	0.0	2.16	1.88	48	1	64.9	

$\varepsilon L I-\left(\varsigma 8-q{ }^{1} O\right) 0 \varepsilon d V$

12 034,36 MHz (17)

1		2	3	4				6	7	8	9	
AUS	005E	98.0	17	133.5	- 18.8	2.70	1.40	76	2	64.5		
BRM	298A	74.0	17	97.1	19.1	3.58	1.48	104	2	63.9		
CAR	338E	122.0	17	149.5	8.0	5.36	0.77	178	1	62.7		
CHN	167A	92.0	17	124.3	43.7	1.98	0.72	156	2	64.7		
CHN	182A	80.0	17	108.7	35.1	1.42	0.88	109	1	64.2		
CME	300E	- 13.0	17	12.7	6.2	2.54	1.68	87	1	63.6		
F	093E	- 19.0	17	2.6	45.9	2.50	0.98	160	1	64.0		
GUI	192E	-37.0	17	-11.0	10.2	1.58	1.04	147	2	63.7		
IND	038A	56.0	17	75.9	33.4	1.52	1.08	33	1	64.3		
IND	046A	68.0	17	84.7	20.5	1.60	0.86	30	1	63.6		
INS	032A	80.0	17	112.3	-0.3	2.66	2.32	109	2	64.0		
LBY	280E	-25.0	17	21.4	26.0	2.50	1.04	119	2	63.7		
MDG	236E	29.0	17	46.6	-18.8	2.72	1.14	65	2	63.5		
NPL	122A	50.0	17	83.7	28.3	1.72	0.60	163	2	64.6		
NZL	287B	128.0	17	173.0	-41.0	3.30	1.28	48	1	64.8		
PLM	337 E	170.0	17	- 161.4	7.0	0.60	0.60	0	1	62.6		
POI.	132 E	-1.0	17	19.3	51.8	1.46	0.64	162	2	64.3		
QAT	247E	17.0	17	51.1	25.3	0.60	0.60	0	1	62.0	1/1.6	2
SMA	335E	170.0	17	- 170.1	- 14.2	0.60	0.60	0	2	61.4	1/0.9	
SMR	311 E	-37.0	17	12.6	43.7	0.60	0.60	0	1	62.7	1/0.8	
SWZ	313E	- 1.0	17	31.5	-26.5	0.62	0.60	66	1	63.0	1/1.7	
TUR	145E	5.0	17	34.4	38.9	2.68	1.04	168	1	63.9		
URS	064E	23.0	17	45.6	40.8	2.16	0.60	163	2	641		
WAK	334E	140.0	17	166.5	19.2	0.60	0.60	0	1	63.8		
YMS	267E	11.0	17	48.8	15.2	1.76	154	176	2	63.0		

$12 \mathbf{0 5 3 , 5 4} \mathbf{M H z}$
(986I ^^әу)

ALG	251E	-25.0	18	4.2	332	2.45	1.25	172	1	63.6	
ARS	275E	17.0	18	48.3	24.6	3.84	120	138	2	63.0	
AUS	006E	98.0	18	135.4	-30.3	2.00	1.40	44	1	63.4	
AUS	008E	128.0	18	145.9	-21.5	2.90	2.00	120	2	63.9	
BGD	220B	74.0	18	90.3	23.6	1.46	0.84	135	1	637	
BOT	297E	-1.0	18	23.3	-22.2	2.13	1.50	36	2	64.0	
CBG	299A	68.0	18	105.0	12.7	1.01	0.90	110	1	64.3	
CHN	159A	80.0	18	109.4	27.3	2.14	1.72	107	2	64.5	
CHN	185A	62.0	18	95.7	35.4	2.10	1.14	156	1	63.4	
D	087E	- 19.0	18	9.6	49.9	1.62	0.72	147	2	65.7	
GNP	304E	-31.0	18	-15.0	12.0	0.90	060	172	2	63.3	
GUM	331E	122.0	18	144.5	13.1	0.60	0.60	0	2	63.5	
IND	041A	56.0	18	78.4	16.0	2.08	1.38	35	2	63.8	
IND	042A	68.0	18	79.3	27.7	2.14	1.16	147	2	63.8	
INS	030A	80.0	18	1123	-8.1	3.14	1.46	169	1	64.2	
IRL	211E	- 31.0	18	-8.2	53.2	0.84	0.60	162	1	64.5	
KRE	286C	110.0	18	127.0	39.1	1.30	1.10	31	2	64.0	
MAU	242E	29.0	18	59.8	- 18.9	1.62	1.24	55	1	64.2	
MLA	227B	86.0	18	102.1	4.1	1.62	0.82	135	1	63.3	
MLI	327E	-37.0	18	-2.0	19.0	2.66	1.26	127	1	63.2	
MRL	333E	146.0	18	166.7	7.9	1.50	1.50	177	1	63.5	
NOR	120B	5.0	18	13.1	64.1	1.84	0.88	10	2	65.0	
PAK	281A	38.0	18	65.2	27.9	1.52	1.42	28	1	63.0	
PHL	285B	98.0	18	121.3	11.1	3.46	1.76	99	2	63.7	
ROU	136E	-1.0	18	25.0	45.7	1.38	0.66	155	1	64.0	
TCD	143E	- 13.0	18	18.1	15.5	3.40	1.72	107	2	64.2	
TGO	226E	-25.0	18	0.8	8.6	1.52	0.60	105	2	63.6	
URS	070A	44.0	18	73.9	41.0	1.34	0.84	5	2	64.5	
YEM	266E	11.0	18	44.3	15.1	1.14	0.70	109	1	62.8	
ZAI	323E	-19.0	18	21.3	-6.8	2.80	1.52	149	1	64.9	

12 072,72 MHz (19)

12 091,90 MHz (20)

ALG	252E	- 25.0	20	1.6	25.5	3.64	2.16	152	1	63.0	
AND	341 E	-37.0	20	1.6	42.5	0.60	0.60	0	2	61.7	1/0.5
ARS	003E	17.0	20	411	23.8	3.52	1.68	134	2	62.9	
AUS	007E	128.0	20	145.0	-38.1	1.83	1.39	134	2	63.5	
AUT	016E	-190	20	12.2	47.5	1.14	0.63	166	2	64.3	
BGD	220C	74.0	20	90.3	23.6	146	0.84	135	1	63.7	
BUL	020E	-10	20	25.0	43.0	1.04	0.60	165	1	63.9	
CBG	299B	68.0	20	105.0	12.7	1.01	0.90	110	1	64.3	
CHN	159B	80.0	20	109.4	27.3	2.14	1.72	107	2	64.6	
CHN	184A	62.0	20	101.0	37.9	2.78	0.82	144	1	63.7	
CPV	301 E	-310	20	-240	16.0	0.86	0.70	144	2	62.4	
DNK	089C	5.0	20	12.3	57.1	1.20	0.60	177	2	64.4	
EGY	026E	- 7.0	20	29.7	26.8	2.33	1.72	136	2	63.3	
G	027E	-31.0	20	-3.5	53.8	1.84	0.72	142	1	65.2	
IND	041B	56.0	20	784	16.0	2.08	1.38	35	2	63.8	
IND	042B	68.0	20	79.3	27.7	2.14	1.16	147	2	63.8	
INS	030B	80.0	20	112.3	-8.1	3.14	1.46	169	1	64.2	
KRE	286D	110.0	20	127.0	39.1	1.30	1.10	31	2	64.0	
MLA	227C	86.0	20	1021	41	1.62	0.82	135	1	63.3	
MLI	328E	-37.0	20	-7.6	13.2	1.74	1.24	171	1	63.9	
MOZ	307E	-10	20	34.0	-18.0	3.57	1.38	55	2	64.4	
PAK	282A	38.0	20	68.5	25.8	1.32	0.62	133	1	63.3	
PHL	285C	98.0	20	121.3	11.1	3.46	1.76	99	2	63.7	
RRW	310E	11.0	20	30.0	-2.1	0.66	0.60	42	2	65.0	
STP	241 E	- 13.0	20	7.0	0.8	0.60	0.60	0	2	61.7	1/1.3
TKL	058A	158.0	20	-171.8	-8.9	0.70	0.60	35	1	63.8	
URS	065A	23.0	20	32.4	63.1	1.18	0.60	175	1	66.6	
URS	066A	44.0	20	64.3	44.6	4.56	2.48	169	2	65.4	
URS	079A	140.0	20	138.0	53.6	3.16	2.12	62	2	67.7	
ZAI	322E	-19.0	20	22.4	0.0	2.16	1.88	48	1	64.9	

LLI-(58-qIO) $0 \varepsilon d V$
$12111,08 \mathrm{MHz}$ (21)

$12 \mathbf{1 3 0 , 2 6 ~ M H z}$
AP30 (Orb-85)-179

12 149,44 MHz

$\boldsymbol{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$		
AGL	295A	-13.0	23	16.5	-12.0	3.09	2.26	84	1	64.1	
ARS	340A	17.0	23	52.3	24.8	2.68	0.70	143	1	63.2	
AUS	004F	98.0	23	121.8	-24.9	3.60	1.90	54	2	63.3	
AUS	009F	128.0	23	147.2	-32.0	2.10	1.40	15	1	64.3	
BRM	298D	74.0	23	97.1	19.1	3.58	1.48	104	2	64.0	
CHN	158C	80.0	23	111.8	38.0	2.60	1.74	124	1	65.0	
CNR	130A	-31.0	23	-15.7	28.4	1.54	0.60	5	2	62.8	
CVA	085A	-37.0	23	10.8	41.5	2.00	0.60	138	1	63.6	$1 / 1.5$
E	129A	-31.0	23	-3.1	39.9	2.10	1.14	154	2	63.9	
GHA	108A	-25.0	23	-1.2	7.9	148	1.06	102	1	63.6	
GNE	303A	-19.0	23	10.3	1.5	0.68	0.60	10	2	63.8	
HOL	213A	-19.0	23	5.4	52.0	0.76	0.60	171	1	644	
IND	038D	56.0	23	75.9	33.4	1.52	1.08	33	1	64.4	
IND	046D	68.0	23	84.7	20.5	1.60	0.86	30	1	63.7	
INS	032D	80.0	23	112.3	-0.3	2.66	2.32	109	2	64.1	
ISL	050A	5.0	23	-19.5	61.0	2.20	0.80	4	1	66.3	3
JOR	224A	11.0	23	35.8	31.4	0.84	0.78	114	2	63.1	
NIU	054B	158.0	23	-169.8	-19.0	0.60	0.60	0	2	64.1	
SDN	230A	-7.0	23	29.2	7.5	2.34	1.12	148	2	64.4	
SRL	259A	-31.0	23	-11.8	8.6	0.78	0.68	114	1	63.4	
TGK	225A	11.0	23	34.6	-6.2	2.41	1.72	129	1	63.7	
URS	061F	23.0	23	24.7	56.6	0.88	0.64	12	2	65.3	
URS	064F	23.0	23	45.6	40.8	2.16	0.60	163	1	64.2	
URS	077B	110.0	23	112.7	573	2.67	1.75	2	1	66.1	
YUG	149A	-7.0	23	18.4	43.7	1.68	0.66	154	1	65.2	

12 168,62 MHz (24)

AUS	007F	128.0	24	145.0	-38.1	1.83	1.39	134	2	63.6	
BGD	220E	74.0	24	90.3	23.6	1.46	0.84	135	1	63.8	
CAF	258A	-13.0	24	21.0	6.3	2.25	1.68	31	2	64.3	
CBG	299D	68.0	24	105.0	12.7	1.01	0.90	110	1	64.3	
CHN	166A	92.0	24	121.1	41.7	1.52	0.78	154	2	64.5	
CHN	177A	80.0	24	111.8	30.8	1.42	0.82	160	2	64.7	
CHN	188A	62.0	24	101.5	25.1	1.86	1.08	132	2	65.0	
DNK	090A	5.0	24	17.0	61.5	2.00	1.00	10	2	67.5	
I	082A	-19.0	24	12.3	41.3	2.38	0.98	137	2	64.1	
IND	041D	56.0	24	78.4	16.0	2.08	1.38	35	2	63.9	
IND	042D	68.0	24	79.3	27.7	2.14	1.16	147	2	63.9	
INS	030D	80.0	24	112.3	-8.1	3.14	1.46	169	1	64.3	
IRQ	256A	11.0	24	43.6	32.8	1.88	0.96	143	1	63.3	2
LSO	305A	5.0	24	27.8	-29.8	0.66	0.60	36	1	64.2	
MLA	$227 E$	86.0	24	102.1	4.1	1.62	0.82	135	1	63.4	
MTN	288A	-37.0	24	-7.8	23.4	1.63	1.10	141	1	63.0	
MWI	$308 A$	-1.0	24	34.1	-13.0	1.54	0.60	87	2	64.2	
MYT	098A	29.0	24	45.1	-12.8	0.60	0.60	0	1	63.4	
NGR	115A	-25.0	24	8.3	16.8	2.54	2.08	44	2	64.5	
OMA	123A	17.0	24	55.6	21.0	1.88	1.02	100	2	63.3	
PAK	282B	38.0	24	68.5	25.8	1.32	0.62	133	1	63.4	
PHL	285E	98.0	24	121.3	11.1	3.46	1.76	99	2	63.8	
SDN	232A	-7.0	24	30.4	19.0	2.44	1.52	176	1	63.3	
TKL	$058 B$	158.0	24	-171.8	-8.9	0.70	0.60	35	1	63.9	
URS	$066 B$	44.0	24	64.3	44.6	4.56	2.48	169	2	65.4	
URS	$079 B$	140.0	24	138.0	53.6	3.16	2.12	62	2	67.8	

$12 \mathbf{1 8 7 , 8 0} \mathbf{M H z}$ (25)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		5		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$		
AFI	099B	23.0	25	42.5	11.6	0.60	0.60	0	1	62.6	
BEL	018B	-19.0	25	4.6	50.6	0.82	0.60	167	1	641	
BLR	062B	23.0	25	27.8	52.6	1.08	0.72	1	2	649	
CYP	086B	5.0	25	33.3	35.1	0.60	0.60	0	1	636	
DDR	216B	-1.0	25	12.6	52.1	0.83	0.63	172	2	64.3	
HVO	107B	-31.0	25	-1.5	12.2	1.45	1.14	29	1	64.0	
IFB	021B	5.0	25	24.5	-28.0	3.13	1.68	27	2	64.1	4
ISL	049B	-31.0	25	-19.0	64.9	1.00	0.60	177	2	65.9	
ISR	110A	-13.0	25	34.9	31.4	0.94	0.60	117	2	63.8	
KEN	249B	11.0	25	379	1.1	2.29	1.56	94	1	63.8	
MCO	116B	-37.0	25	7.4	43.7	0.60	0.60	0	1	62.5	$1 / 0.5$
MNG	248A	74.0	25	102.2	46.6	3.60	1.13	169	1	641	
MRC	209B	-25.0	25	-9.0	29.2	2.72	1.47	43	2	63.3	
NMB	025A	-19.0	25	17.5	-21.6	2.66	1.90	48	2	64.7	
SEN	222B	-37.0	25	-14.4	13.8	1.46	1.04	139	2	63.7	
UAE	274B	17.0	25	53.6	24.2	0.98	0.80	162	1	63.2	
URS	078A	110.0	25	108.2	53.4	2.16	0.78	10	1	65.0	
YUG	148B	-7.0	25	184	43.7	1.68	0.66	154	1	65.3	

12 206,98 MHz (26)

ALB	296B	-70	26	19.8	413	0.68	0.60	146	2	63.8	
BDI	270B	11.0	26	29.9	-31	0.71	0.60	80	2	63.4	
COG	235B	-13.0	26	14.6	-07	2.02	1.18	59	2	63.8	
CTI	237B	-31.0	26	-56	7.5	1.60	1.22	108	2	63.7	
ETH	092B	23.0	26	397	9.1	3.50	2.40	124	2	63.5	
FNL	104B	5.0	26	17.0	61.5	2.00	1.00	10	2	67.5	
HNG	106B	-1.0	26	19.5	47.2	0.92	0.60	176	1	64.0	
IFB	135B	-1.0	26	29.6	-18.8	1.46	136	37	2	64.2	4
KWT	113B	17.0	26	47.6	29.2	0.68	0.60	145	2	63.1	
MTN	223B	-37.0	26	-12.2	185	2.62	1.87	150	1	62.9	
NIG	119B	-19.0	26	7.8	9.4	2.16	2.02	45	1	63.9	
REU	097B	29.0	26	55.6	-19.2	1.56	0.78	96	1	64.0	
SDN	231B	-7.0	26	28.9	12.7	2.26	1.96	159	1	63.5	
SUI	140B	-19.0	26	8.2	46.6	0.98	0.70	171	2	64.1	
SYR	229B	11.0	26	38.3	34.9	1.04	0.90	7	1	63.3	
TUN	150B	-25.0	26	9.5	33.5	1.88	0.72	135	1	63.9	
URS	068A	44.0	26	59.0	38.8	2.24	1.00	164	2	64.0	
URS	074A	74.0	26	88.8	57.6	3.08	168	162	2	67.9	
URS	080A	140.0	26	155.3	55.4	2.90	2.36	35	1	67.9	

12 226,16 MHz (27)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$		$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	
AGL	295B	-13.0	27	16.5	-12.0	3.09	2.26	84	1	64.2	
BHR	255A	17.0	27	50.5	26.1	0.60	0.60	0	1	60.8	$1 / 0.7$
CNR	130B	-31.0	27	-15.7	28.4	1.54	0.60	5	2	62.8	
CVA	083A	-37.0	27	12.4	41.8	0.60	0.60	0	1	65.2	
DNK	091A	5.0	27	-19.5	61.0	2.20	0.80	4	1	66.2	3
E	129B	-31.0	27	-3.1	39.9	2.10	1.14	154	2	64.0	
GHA	108B	-25.0	27	-1.2	7.9	1.48	1.06	102	1	63.7	
GNE	303B	-19.0	27	10.3	1.5	0.68	0.60	10	2	63.8	
HOL	213B	-19.0	27	5.4	52.0	0.76	0.60	171	1	64.5	
JOR	224B	11.0	27	35.8	31.4	0.84	0.78	114	2	63.1	
SDN	230B	-7.0	27	29.2	7.5	2.34	1.12	148	2	64.5	
SRL	259B	-31.0	27	-11.8	8.6	0.78	0.68	114	1	63.5	
TGK	225B	11.0	27	34.6	-6.2	2.41	1.72	129	1	63.8	
URS	059A	23.0	27	36.0	47.0	3.70	1.43	153	2	65.2	
URS	077C	110.0	27	112.7	57.3	2.67	1.75	2	1	67.2	
YUG	149B	-7.0	27	18.4	43.7	1.68	0.66	154	1	65.3	

12 245,34 MHz (28)

CAF	$258 B$	-13.0	28	210	6.3	2.25	1.68	31	2	64.3	
I	082B	-19.0	28	12.3	413	238	0.98	137	2	64.2	
IRQ	$256 B$	11.0	28	43.6	32.8	1.88	0.96	143	1	63.4	
LSO	$305 B$	5.0	28	278	-298	066	0.60	36	1	64.2	
MTN	$288 B$	-370	28	-78	234	1.63	1.10	141	1	63.0	
MWI	$308 B$	-1.0	28	341	-130	1.54	0.60	87	2	64.3	
MYT	$098 B$	290	28	45.1	-128	0.60	0.60	0	1	63.5	
NGR	$115 B$	-25.0	28	8.3	16.8	2.54	2.08	44	2	64.5	
NOR	121A	50	28	17.0	61.5	2.00	1.00	10	2	66.8	
OMA	123B	170	28	556	210	1.88	1.02	100	2	63.3	
SDN	$232 B$	-7.0	28	30.4	19.0	2.44	1.52	176	1	63.3	
URS	066C	44.0	28	64.3	44.6	4.56	2.48	169	2	65.5	
URS	$076 A$	74.0	28	98.0	63.2	1.84	0.69	170	2	68.1	
URS	$079 C$	1400	28	1380	53.6	3.16	2.12	62	2	67.8	

12 264,52 MHz (29)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$		
AFI	099C	230	29	42.5	116	0.60	0.60	0	1	62.6	
BEL	018C	-190	29	4.6	50.6	0.82	0.60	167	1	63.5	
CYP	086C	5.0	29	33.3	35.1	0.60	060	0	1	63.7	
DDR	$216 C$	-10	29	12.6	52.1	0.83	0.63	172	2	64.3	
HVO	107C	-310	29	-1.5	12.2	1.45	1.14	29	1	64.1	
IFB	021C	5.0	29	24.5	-28.0	3.13	1.68	27	2	64.2	4
ISL	049C	-31.0	29	-190	64.9	1.00	0.60	177	2	65.9	
ISR	110B	-130	29	349	31.4	0.94	0.60	117	2	63.9	
KEN	249C	110	29	37.9	1.1	2.29	1.56	94	1	63.8	
MCO	116C	-37.0	29	7.4	43.7	0.60	0.60	0	1	62.5	$1 / 0.5$
MNG	248B	740	29	102.2	46.6	3.60	1.13	169	1	64.2	
MRC	209C	-25.0	29	-90	292	2.72	1.47	43	2	63.4	
NMB	025B	-190	29	17.5	-216	2.66	1.90	48	2	648	
SEN	$222 C$	-37.0	29	-14.4	138	146	1.04	139	2	63.7	
UAE	$274 C$	170	29	536	242	0.98	0.80	162	1	633	
UKR	063A	23.0	29	31.2	48.4	232	0.96	172	2	64.6	
YUG	148C	-7.0	29	18.4	43.7	1.68	0.66	154	1	653	

12 283,70 MHz (30)

ALB	296C	-7.0	30	19.8	41.3	0.68	0.60	146	2	63.9	
BDI	270C	110	30	29.9	-3.1	0.71	0.60	80	2	63.5	
COG	235C	-13.0	30	14.6	-0.7	202	1.18	59	2	63.9	
CTI	237C	-31.0	30	-5.6	7.5	1.60	1.22	108	2	63.8	
ETH	092C	23.0	30	39.7	91	3.50	2.40	124	2	63.6	
HNG	106C	-1.0	30	19.5	47.2	0.92	0.60	176	1	64.1	
IFB	135C	-1.0	30	296	-18.8	1.46	1.36	37	2	64.3	4
KWT	$113 C$	17.0	30	47.6	29.2	0.68	0.60	145	2	63.2	
MTN	223C	-37.0	30	-12.2	18.5	2.62	1.87	150	1	62.9	
NIG	119C	-19.0	30	7.8	9.4	2.16	2.02	45	1	64.0	
REU	097C	290	30	55.6	-19.2	1.56	0.78	96	1	64.1	
S	139A	5.0	30	17.0	61.5	2.00	1.00	10	2	67.1	
SDN	$231 C$	-7.0	30	28.9	12.7	2.26	196	159	1	63.6	
SUI	140C	-19.0	30	8.2	46.6	0.98	070	171	2	64.2	
SYR	$229 C$	11.0	30	38.3	34.9	1.04	0.90	7	1	633	
TUN	150C	-25.0	30	9.5	33.5	1.88	0.72	135	1	63.9	
URS	O68B	44.0	30	59.0	38.8	2.24	1.00	164	2	641	
URS	$074 B$	74.0	30	88.8	57.6	3.08	1.68	162	2	68.0	
URS	080B	140.0	30	155.3	55.4	2.90	2.36	35	1	67.9	

12 302,88 MHz (31)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$			
AGL	295C	-13.0	31	16.5	-12.0	3.09	2.26	84	1	64.2		
BHR	255B	17.0	31	50.5	26.1	0.60	0.60	0	1	60.9	$1 / 0.7$	
CNR	130C	-31.0	31	-15.7	28.4	1.54	0.60	5	2	62.9		
CVA	083B	-37.0	31	12.4	41.8	0.6	0.60	0	1	65.3		
E	129C	-31.0	31	-3.1	39.9	2.10	1.14	154	2	64.0		
GHA	108C	-25.0	31	-1.2	7.9	1.48	1.06	102	1	63.7		
GNE	303C	-19.0	31	10.3	1.5	0.68	0.60	10	2	63.9		
HOL	213C	-19.0	31	5.4	52.0	0.76	0.60	171	1	64.6		
ISL	050B	5.0	31	-19.5	61.0	2.20	0.80	4	1	66.4	3	
JOR	224C	11.0	31	35.8	31.4	0.84	0.78	114	2	63.2		
SDN	230C	-7.0	31	29.2	7.5	2.34	1.12	148	2	64.5		
SRL	259C	-31.0	31	-11.8	8.6	0.78	0.68	114	1	63.6		
TGK	225C	11.0	31	34.6	-6.2	2.41	1.72	129	1	63.8		
URS	059B	23.0	31	36.0	47.0	3.70	1.43	153	2	65.2		
URS	077D	110.0	31	112.7	57.3	2.67	1.75	2	1	67.2		
YUG	149C	-7.0	31	18.4	43.7	1.68	0.66	154	1	65.4		

12 322,06 MHz (32)

CAF	258C	-13.0	32	21.0	6.3	2.25	1.68	31	2	64.4	
I	082C	-19.0	32	12.3	41.3	2.38	0.98	137	2	64.2	
IRQ	256C	11.0	32	43.6	32.8	1.88	0.96	143	1	63.4	
LSO	$305 C$	5.0	32	27.8	-29.8	0.66	0.60	36	1	64.3	
MTN	288C	-37.0	32	-7.8	23.4	1.63	1.10	141	1	63.1	
MWI	$308 C$	-1.0	32	34.1	-1.0	1.54	0.60	87	2	64.4	
MYT	$098 C$	29.0	32	45.1	-12.8	0.60	0.60	0	1	63.5	
NGR	115C	-25.0	32	8.3	16.8	2.54	2.08	44	2	64.6	
NOR	121B	5.0	32	17.0	61.5	2.00	1.00	10	2	66.9	
OMA	123C	17.0	32	55.6	21.0	1.88	1.02	100	2	63.4	
SDN	232C	-7.0	32	30.4	19.0	2.44	1.52	176	1	63.4	
URS	066D	44.0	32	64.3	44.6	4.56	2.48	169	2	65.5	
URS	075A	74.0	32	94.0	51.7	1.52	0.60	172	2	65.1	
URS	079D	140.0	32	138.0	53.6	3.16	2.12	62	2	67.9	

12 341,24 MHz (33)

1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$		
AFI	099D	23.0	33	42.5	11.6	0.60	0.60	0	1	62.7	
BEL	018D	-19.0	33	4.6	50.6	0.82	0.60	167	1	63.9	
CYP	086D	5.0	33	33.3	35.1	0.60	0.60	0	1	63.7	
DDR	216D	-1.0	33	12.6	52.1	0.83	0.63	172	2	64.4	
HVO	107D	-31.0	33	-1.5	12.2	1.45	1.14	29	1	64.1	
IFB	021D	5.0	33	24.5	-28.0	3.13	1.68	27	2	64.2	4
ISL	049D	-31.0	33	-19.0	64.9	1.00	0.60	177	2	66.0	
ISR	110C	-13.0	33	34.9	31.4	0.94	0.60	117	2	63.9	
KEN	249D	11.0	33	37.9	1.1	2.29	1.56	94	1	63.9	
MCO	116D	-37.0	33	7.4	43.7	0.60	0.60	0	1	62.6	$1 / 0.5$
MNG	248C	74.0	33	102.2	46.6	3.60	1.13	169	1	64.2	
MRC	209D	-25.0	33	-9.0	29.2	2.72	1.47	43	2	63.4	
NMB	025C	-19.0	33	17.5	-21.6	2.66	1.90	48	2	64.8	
SEN	222D	-37.0	33	-14.4	13.8	1.46	1.04	139	2	63.8	
UAE	274D	17.0	33	53.6	24.2	0.98	0.80	162	1	63.3	
UKR	063B	23.0	33	31.2	48.4	2.32	0.96	172	2	64.7	
YUG	148D	-7.0	33	18.4	43.7	1.68	0.66	154	1	65.4	

$12 \mathbf{3 6 0 , 4 2} \mathbf{~ M H z ~ (3 4)}$

ALB	296D	-7.0	34	19.8	41.3	0.68	0.60	146	2	63.9	
BDI	270D	1.0	34	29.9	-3.1	0.71	0.60	80	2	63.5	
COG	235D	-1.0	34	14.6	-0.7	2.02	1.18	59	2	63.9	
CTI	237D	-31.0	34	-5.6	7.5	1.60	1.22	108	2	6.9	
ETH	092D	23.0	34	39.7	9.1	3.50	2.40	124	2	63.6	
HNG	106D	-1.0	34	19.5	47.2	0.92	0.60	176	1	64.1	
IFB	135D	-1.0	34	29.6	-18.8	1.46	1.36	37	2	64.3	4
KWT	113D	17.0	34	47.6	29.2	0.68	0.60	145	2	63.2	
MTN	223D	-37.0	34	-12.2	18.5	2.62	1.87	150	1	63.0	
NIG	119D	-19.0	34	7.8	9.4	2.16	2.02	45	1	64.1	
REU	097D	29.0	34	55.6	-19.2	1.56	0.78	96	1	64.1	
S	138C	5.0	34	16.2	61.0	1.04	0.98	14	2	67.4	
SDN	231D	-7.0	34	28.9	12.7	2.26	1.96	159	1	63.6	
SUI	140D	-19.0	34	8.2	46.6	0.98	0.70	171	2	64.3	
SYR	229D	11.0	34	38.3	34.9	1.04	0.90	7	1	63.4	
TUN	150D	-25.0	34	9.5	33.5	1.88	0.72	135	1	64.0	
URS	071A	44.0	34	63.1	42.0	2.64	0.84	170	2	64.4	
URS	074C	74.0	34	88.8	57.6	3.08	1.68	162	2	68.0	
URS	080C	140.0	34	155.3	55.4	2.90	2.36	35	1	68.0	

12 379,60 MHz (35)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$		$\mathbf{9}$
AGL	295D	-13.0	35	16.5	-12.0	3.09	2.26	84	1	64.3	
BHR	255C	17.0	35	50.5	26.1	0.60	0.60	0	1	61.0	$1 / 0.7$
CNR	130D	-31.0	35	-15.7	28.4	1.54	0.60	5	2	63.0	
CVA	083C	-37.0	35	12.4	41.8	0.60	0.60	0	1	65.3	
DNK	091B	5.0	35	-19.5	61.0	2.20	0.80	4	1	66.3	3
E	129D	-31.0	35	-3.1	39.9	2.10	1.14	154	2	64.1	
GHA	108D	-25.0	35	-1.2	7.9	1.48	1.06	102	1	63.8	
GNE	303D	-19.0	35	10.3	1.5	0.68	0.60	10	2	63.9	
HOL	213D	-19.0	35	5.4	52.0	0.76	0.60	171	1	64.6	
JOR	224D	11.0	35	35.8	31.4	0.84	0.78	114	2	63.2	
SDN	230D	-7.0	35	29.2	7.5	2.34	1.12	148	2	64.6	
SRL	259D	-31.0	35	-11.8	8.6	0.78	0.68	114	1	63.6	
TGK	225D	11.0	35	34.6	-6.2	2.41	1.72	129	1	63.9	
URS	059C	23.0	35	36.0	47.0	3.70	1.43	153	2	65.3	
URS	077E	110.0	35	112.7	57.3	2.67	1.75	2	1	67.3	
YUG	149D	-7.0	35	18.4	43.7	1.68	0.66	154	1	65.4	

12 398,78 MHz
(36)

CAF	258D	-13.0	36	21.0	6.3	2.25	1.68	31	2	64.4	
DNK	090B	5.0	36	17.0	61.5	2.00	1.00	10	2	68.2	
I	082D	-19.0	36	12.3	41.3	2.38	0.98	137	2	64.3	
IRQ	256D	11.0	36	43.6	32.8	1.88	0.96	143	1	63.5	
LSO	305D	5.0	36	27.8	-29.8	0.66	0.60	36	1	64.3	
MTN	288D	-37.0	36	-7.8	23.4	1.63	1.10	141	1	63.1	
MWI	308D	-1.0	36	34.1	-13.0	1.54	0.60	87	2	64.4	
MYT	098D	29.0	36	45.1	-12.8	0.60	0.60	0	1	63.6	
NGR	115D	-25.0	36	8.3	16.8	2.54	2.08	44	2	64.7	
OMA	123D	17.0	36	55.6	21.0	1.88	1.02	100	2	63.4	
SDN	232D	-7.0	36	30.4	19.0	2.44	1.52	176	1	63.4	
URS	066E	44.0	36	64.3	44.6	4.56	2.48	169	2	65.6	
URS	079E	140.0	36	138.0	53.6	3.16	2.12	62	2	68.0	

12 417,96 MHz (37)

1		2	3	4		5		6	7	8	9
AFI	099E	23.0	37	42.5	11.6	0.60	0.60	0	1	62.7	
BEL	018E	- 19.0	37	4.6	50.6	0.82	0.60	167	1	64.4	
CYP	086E	5.0	37	33.3	35.1	0.60	0.60	0	1	63.8	
DDR	216E	- 1.0	37	12.6	52.1	0.83	0.63	172	2	64.4	
HVO	107E	-31.0	37	-1.5	12.2	1.45	1.14	29	1	64.2	
IFB	021E	5.0	37	24.5	-28.0	3.13	1.68	27	2	64.3	4
ISL	049E	-31.0	37	- 19.0	64.9	1.00	0.60	177	2	66.0	
ISR	110D	- 13.0	37	34.9	31.4	0.94	0.60	117	2	64.0	
KEN	249E	11.0	37	37.9	1.1	2.29	1.56	94	1	63.9	
MCO	116E	- 37.0	37	7.4	43.7	0.60	0.60	0	1	62.6	1/0.5
MNG	248D	74.0	37	102.2	46.6	3.60	1.13	169	1	64.3	
MRC	209E	-25.0	37	-9.0	29.2	2.72	1.47	43	2	63.5	
NMB	025D	-19.0	37	17.5	-21.6	2.66	1.90	48	2	64.9	
SEN	222E	-37.0	37	-14.4	13.8	1.46	1.04	139	2	63.9	
UAE	274E	17.0	37	53.6	24.2	0.98	0.80	162	1	63.4	
UKR	063C	23.0	37	31.2	48.4	2.32	0.96	172	2	64.7	
YUG	148 E	-7.0	37	18.4	43.7	1.68	0.66	154	1	65.4	

12 437,14 MHz (38)

ALB	296E	-7.0	38	19.8	413	0.68	0.60	146	2	64.0	
BDI	270E	11.0	38	29.9	-3.1	0.71	0.60	80	2	63.6	
COG	235E	- 13.0	38	14.6	-07	2.02	1.18	59	2	64.0	
CTI	237E	-31.0	38	-5.6	75	1.60	1.22	108	2	63.9	
ETH	092E	23.0	38	39.7	91	3.50	2.40	124	2	63.7	
HNG	106E	-10	38	195	472	0.92	0.60	176	1	64.2	
IFB	135E	-1.0	38	29.6	- 18.8	1.46	1.36	37	2	64.4	4
KWT	113 E	17.0	38	47.6	29.2	0.68	0.60	145	2	63.3	
MTN	223E	-37.0	38	- 12.2	18.5	2.62	1.87	150	1	63.0	
NIG	119E	- 19.0	38	7.8	9.4	2.16	2.02	45	1	64.1	
NOR	120C	5.0	38	13.1	64.1	1.84	0.88	10	2	67.0	
REU	097E	29.0	38	55.6	- 19.2	1.56	0.78	96	1	64.2	
SDN	231E	-7.0	38	28.9	12.7	2.26	1.96	159	1	63.7	
SUI	140 E	- 19.0	38	8.2	46.6	0.98	0.70	171	2	64.3	
SYR	339A	11.0	38	37.6	34.2	1.32	0.88	74	1	63.4	2
TUN	272A	- 25.0	38	2.5	32.0	3.59	1.75	175	1	61.9	5
URS	071B	44.0	38	63.1	42.0	2.64	0.84	170	2	64.5	
URS	074D	74.0	38	88.8	57.6	3.08	1.68	162	2	68.1	
URS	080D	140.0	38	155.3	55.4	2.90	236	35	1	68.1	

12 456,32 MHz

1		2	3	4		5		6	7	8	9
AGL	295 E	- 13.0	39	16.5	- 12.0	3.09	2.26	84	1	64.4	
BHR	255D	17.0	39	50.5	26.1	0.60	0.60	0	1	61.0	1/0.7
CNR	130E	-31.0	39	-15.7	28.4	1.54	0.60	5	2	63.0	
CVA	083D	-37.0	39	12.4	41.8	0.60	0.60	0	1	65.4	
E	129 E	-31.0	39	-3.1	39.9	2.10	1.14	154	2	64.2	
GHA	108 E	-25.0	39	-1.2	7.9	1.48	1.06	102	1	63.8	
GNE	303 E	- 19.0	39	10.3	1.5	0.68	0.60	10	2	64.0	
HOL	213E	- 19.0	39	5.4	52.0	0.76	0.60	171	1	64.7	
ISL	050C	5.0	39	-19.5	61.0	2.20	0.80	4	1	66.5	3
JOR	224E	11.0	39	35.8	31.4	0.84	0.78	114	2	63.3	
MNG	248 E	74.0	39	102.2	46.6	3.60	1.13	16°	1	64.3	
SDN	230 E	-7.0	39	29.2	7.5	2.34	1.12	148	2	64.6	
SRL	259 E	-31.0	39	-11.8	8.6	0.78	0.68	114	1	63.7	
tGk	225 E	11.0	39	34.6	-6.2	2.41	1.72	129	1	63.9	
URS	059D	23.0	39	36.0	47.0	3.70	1.43	153	2	65.3	
URS	077F	110.0	39	112.7	57.3	2.67	1.75	2	1	67.4	
YUG	149E	-7.0	39	18.4	43.7	1.68	0.66	154	1	65.5	

12 475,50 MHz (40)

CAF	258 E	-13.0	40	21.0	6.3	2.25	1.68	31	2	64.5	
I	082 E	-19.0	40	12.3	41.3	2.38	0.98	137	2	64.3	
IRQ	256 E	11.0	40	43.6	32.8	1.88	0.96	143	1	63.5	
LSO	305 E	5.0	40	278	-298	0.66	0.60	36	1	64.4	
MTN	288 E	-37.0	40	-7.8	23.4	1.63	1.10	141	1	63.2	
MWI	$308 E$	-1.0	40	34.1	-13.0	1.54	0.60	87	2	64.5	
MYT	098E	29.0	40	45.1	-12.8	0.60	0.60	0	1	63.6	
NGR	115E	-25.0	40	8.3	16.8	2.54	2.08	44	2	64.7	
OMA	123E	17.0	40	55.6	21.0	1.88	1.02	100	2	63.5	
S	139B	5.0	40	17.0	61.5	2.00	1.00	10	2	68.2	
SDN	$232 E$	-70	40	30.4	19.0	2.44	152	176	1	63.5	
URS	066F	44.0	40	64.3	44.6	4.56	2.48	169	2	65.6	
URS	$079 F$	140	40	138.0	53.6	3.16	2.12	62	2	68.0	

ARTICLE 12

Relationship to Resolution 507

12.1 The provisions and associated Plans for the broadcasting-satellite service in Regions 1 and 3 and in Region 2, of this Appendix, shall be regarded as including a world agreement and associated Plans for Regions 1, 2 and 3 in accordance with resolves 1 of Resolution 507, which requires the stations in the broadcasting-satellite service to be established and operated in accordance with such agreements and associated plans.

ARTICLE 13

Interference
13.1 The Members of the Union shall endeavour to agree on the action required to reduce harmful interference which might be caused by the application of these provisions and the associated Plans.

ARTICLE 14

Period of Validity of the Provisions and Associated Plans

14.1 For Regions 1 and 3, the provisions and associated Plan have been prepared in order to meet the requirements of the broadcasting-satellite service in the bands concerned for a period of at least fifteen years from 1 January 1979.
14.2 For Region 2, the provisions and associated Plan have been prepared in order to meet the requirements of the broadcasting-satellite service in the bands concerned for a period extending until at least 1 January 1994.
14.3 In any event, the provisions and associated Plans shall remain in force until their revision by a competent administrative radio conference convened in accordance with the relevant provisions of the Convention in force.

ANNEX 1

Limits for Determining Whether a Service of an Administration is Affected by a Proposed Modification to the Plans or When It is Necessary Under This Appendix to Seek the Agreement of Any Other Administration ${ }^{1}$

(See Article 4)

1. Limits to the change in the wanted-to-interfering signal ratio with respect to frequency assignments in conformity with the Regions 1 and 3 Plan

With respect to paragraph 4.3.1.1, an administration in Region 1 or 3 shall be considered as being affected if the effect of the proposed modification to the Regions 1 and 3 Plan would result in the wanted-tointerfering signal ratio at any point within the service area associated with any of its frequency assignments in that Plan falling below either 30 dB or the value resulting from the frequency assignments in the Plan at the date of entry into force of the Final Acts ${ }^{2}$, whichever is the lower.

Note: In performing the calculation, the effect at the receiver input of all the co-channel and adjacent-channel signals is expressed in terms of one equivalent co-channel interfering signal. This value is usually expressed in decibels.

[^40]2. Limits to the change in the overall equivalent protection margin with respect to frequency assignments in conformity with the Region 2 Plan

With respect to paragraph 4.3.3.1, an administration in Region 2 shall be considered as being affected if the overall equivalent protection margin ${ }^{1}$ corresponding to a test point of its entry in the Region 2 Plan, including the cumulative effect of any previous modification to that Plan or any previous agreement, falls more than 0.25 dB below 0 dB , or, if already negative, more than 0.25 dB below the value resulting from:

- the Region 2 Plan as established by the 1983 Conference; or
- a modification of the assignment in accordance with this Appendix; or
- a new entry in the Region 2 Plan under Article 4 of this Appendix; or
- any agreement reached in accordance with this Appendix.

3. Limits to the change in the power flux-density to protect the broad-casting-satellite service in Regions 1 and 2 in the band 12.212.5 GHz and in Region 3 in the band 12.5-12.7 GHz

With respect to paragraph 4.3.1.2, an administration in Region 2 shall be considered as being affected if the proposed modification to the Regions 1 and 3 Plan would result in exceeding the power flux-densities given below, at any point in the service area affected.

[^41]With respect to paragraph 4.3.3.2 or 4.3.3.6 as appropriate, an administration in Region 1 or 3 shall be considered as being affected if the proposed modification to the Region 2 Plan would result in exceeding the power flux-densities given below, at any point in the service area affected.

$$
\begin{array}{ll}
-147 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 27 \mathrm{MHz}\right) & \text { for } 0^{\circ} \leqslant \theta<0.44^{\circ} \\
-138+25 \log \theta \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 27 \mathrm{MHz}\right) & \text { for } 0.44^{\circ} \leqslant \theta<19.1^{\circ} \\
-106 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 27 \mathrm{MHz}\right) & \text { for } \theta \geqslant 19.1^{\circ}
\end{array}
$$

where θ is:

- the difference in degrees between the longitudes of the broadcasting-satellite space station in Region 1 or 3 and the broadcasting-satellite space station affected in Region 2, or
- the difference in degrees between the longitudes of the broadcasting-satellite space station in Region 2 and the broadcasting-satellite space station affected in Region 1 or 3.

4. Limits to the change in the power flux-density to protect the terrestrial services of administrations in Region 2

With respect to paragraph 4.3.1.3, an administration in Region 2 shall be considered as being affected if the proposed modification to the Regions 1 and 3 Plan would result in exceeding a power flux-density, for any angle of arrival, at any point on its territories, of:
$-125 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right) \quad$ when the broadcasting-satellite station uses circular polarization, and,
$-128 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right) \quad$ when the broadcasting-satellite station uses linear polarization.
5. Limits to the change in the power flux-density to protect the terrestrial services of administrations in Regions 1 and 3^{1}

With respect to paragraph 4.3.3.4, an administration in Region 1 or 3 shall be considered as being affected if the proposed modification to the Region 2 Plan would result in the following power flux-density limits being exceeded:
a) in the frequency band $12.2-12.7 \mathrm{GHz}$ for all the territories of administrations in Regions 1^{2} and 3 and for any arrival angle γ :
$-125 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right) \quad$ for broadcasting-satellite space stations using circular polarization;
$-128 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right)$
for broadcasting-satellite space stations using linear polarization;
b) in the frequency band $12.2-12.5 \mathrm{GHz}$ for territories of administrations in Region 3 and those in the western part of Region 1, west of longitude $30^{\circ} \mathrm{E}^{3}$:

$$
\begin{array}{ll}
-132 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 5 \mathrm{MHz}\right) & \text { for } 0^{\circ} \leqslant \gamma<10^{\circ} \\
-132+4.2(\gamma-10) \mathrm{dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 5 \mathrm{MHz}\right) & \text { for } 10^{\circ} \leqslant \gamma<15^{\circ} \\
-111 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 5 \mathrm{MHz}\right) & \text { for } 15^{\circ} \leqslant \gamma<90^{\circ}
\end{array}
$$

[^42](Rev. 1986)
c) in the frequency band $12.2-12.7 \mathrm{GHz}$ for territories of administrations in Region 1^{1}, east of longitude $30^{\circ} \mathrm{E}$:
\[

$$
\begin{array}{ll}
-134 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 5 \mathrm{MHz}\right) & \text { for } \gamma=0^{\circ} ; \\
-134+4.6975 \gamma^{2} \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 5 \mathrm{MHz}\right) & \text { for } 0^{\circ}<\gamma \leqslant 0.8^{\circ} ; \\
-128.5+25 \log \gamma \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 5 \mathrm{MHz}\right) & \text { for } \gamma>0.8^{\circ} ;
\end{array}
$$
\]

d) in the frequency band $12.5-12.7 \mathrm{GHz}$ for all the territories of administrations of Regions 1^{1} and 3:

$$
\begin{array}{ll}
-148 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right) & \text { for } \gamma=0^{\circ} ; \\
-148+4.6975 \gamma^{2} \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right) & \text { for } 0^{\circ}<\gamma \leqslant 0.8^{\circ} ; \\
-142.5+25 \log \gamma \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right) & \text { for } \gamma>0.8^{\circ},
\end{array}
$$

where γ is the angle of arrival of the incident wave above the horizontal plane, in degrees.
6. Limits to the change in the power flux-density of assignments in the Regions 1 and 3 Plan to protect the fixed-satellite service (space-toEarth) in the band 11.7-12.2 GHz in Region 2, and of assignments in the Region 2 Plan to protect the fixed-satellite service (space-to-Earth) in the band 12.5-12.7 GHz in Region 1 and in the band 12.212.7 GHz in Region 3

With respect to paragraph 4.3.1.5, an administration in Region 2 shall be considered as being affected if the proposed modification to the Regions 1 and 3 Plan would result in an increase in the power flux-density on its territory of 0.25 dB or more above that resulting from the frequency assignments in the Regions 1 and 3 Plan at the time of entry into force of the Final Acts ${ }^{2}$.

[^43]With respect to paragraph 4.3.3.5, an administration in Region 1 or 3 shall be considered as being affected if the proposed modification to the Region 2 Plan would result in an increase in the power flux-density on its territory of 0.25 dB or more above that resulting from the frequency assignments in the Region 2 Plan at the time of entry into force of the Final Acts ${ }^{1}$.

However, where an assignment in the Regions 1 and 3 Plan or its subsequent modification gives a power flux-density of less than $-138 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 27 \mathrm{MHz}\right)$ anywhere in the territory of an administration of Region 2, that administration shall be considered as not being affected; where an assignment in the Region 2 Plan or its subsequent modification gives a power flux-density of less than $-160 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right)$ anywhere in the territory of an administration of Region 1 or 3 , that administration shall be considered as not being affected.
7. Limits to the change in equivalent noise temperature to protect the fixed-satellite service (Earth-to-space) in Region 1 from modifications to the Region 2 Plan in the band 12.5-12.7 GHz

With respect to paragraph 4.3.3.5, an administration of Region 1 shall be considered as being affected if the proposed modification to the Region 2 Plan would result in:

- the $\Delta \mathrm{T} / \mathrm{T}$ resulting from the proposed modification is greater than the $\Delta \mathrm{T} / \mathrm{T}$ resulting from the assignment in the Region 2 Plan as of the date of entry into force of the Final Acts ${ }^{1}$; and
- the $\Delta T / T$ resulting from the proposed modification exceeds 4%, using the method of Appendix 29 (Case II).

[^44]
8. Limits to the change in the power flux-density to protect the terrestrial services of other administrations

a) In Region 1 or 3:

With respect to paragraph 4.3.1.4, an administration in Region 1 or 3 shall be considered as being affected if the consequence of the proposed modification of an existing assignment in the Regions 1 and 3 Plan is to increase the power flux-density arriving on any part of the territory of that administration by more than 0.25 dB over that resulting from that frequency assignment in the Regions 1 and 3 Plan at the time of entry into force of the Final Acts ${ }^{1}$. The same administration shall be considered as not being affected if the value of the power flux-density anywhere in its territory does not exceed the limits expressed in section 5 of this Annex.

With respect to paragraph 4.3.1.4 in the case of an addition of a new assignment to the Regions 1 and 3 Plan, an administration in Region 1 or 3 is considered as being affected if the power flux-density on any part of its territory exceeds the limit expressed in section 5 of this Annex.
b) In Region 2:

With respect to paragraph 4.3.3.4, an administration in Region 2 shall be considered as being affected if the consequence of the proposed modification to an existing assignment in the Region 2 Plan is to increase the power flux-density arriving on any part of the territory of that administration by more than 0.25 dB over that resulting from that frequency assignment in the Region 2 Plan at the time of entry into force of the Final Acts ${ }^{2}$. The same administration shall be considered as not being affected if the value of the power flux-density anywhere in its territory does not exceed the following limit: $-115 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$.

[^45]With respect to paragraph 4.3.3.4 in the case of an addition of a new assignment to the Region 2 Plan, an administration in Region 2 is considered as being affected if the power flux-density on any part of its territory exceeds $-115 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$.

ANNEX 2

> Basic Characteristics to Be Furnished in Notices ${ }^{1}$ Relating to Space Stations in the Broadcasting-Satellite Service ${ }^{2}$

1. Country and IFRB number in the case of Regions 1 and 3; country and beam identification in the case of Region 2.
2. Nominal orbital position (in degrees from the Greenwich meridian) in the case of Regions 1 and 3; orbital position (xxx.xx degrees from the Greenwich meridian) in the case of Region 2.
3. Assigned frequency or channel number.
4. Date of bringing into use.
5. Identity of the space station.
6. Service area (if necessary, the service area may be defined by a number of "test points").

[^46]7. Geographical coordinates of the intersection of the antenna beam axis with the Earth.
8. Rain-climatic zone(s) ${ }^{1}$.
9. Class of station.
10. Class of emission and necessary bandwidth.
11. Power supplied to the antenna (dBW) in the case of Regions 1 and 3; and, in the case of Region 2, power supplied to the antenna (dBW) and the maximum power density per $\mathrm{Hz}(\mathrm{dB}(\mathrm{W} / \mathrm{Hz}))$, averaged over the worst $5 \mathrm{MHz}, 40 \mathrm{kHz}$ and 4 kHz , supplied to the antenna.
12. Antenna characteristics:
a) gain of the antenna in the direction of maximum radiation referred to an isotropic radiator (dBi);
b) shape of the beam (elliptical, circular, or other);
c) pointing accuracy;
d) type of polarization;
e) sense of polarization;
f) for circular beams indicate the following:

- half-power beamwidth in degrees;
- co-polar and cross-polar radiation patterns;
g) for elliptical beams indicate the following:
- co-polar and cross-polar radiation patterns;
- rotation accuracy;
- orientation;
- major axis (degrees) at the half-power beamwidth;
- minor axis (degrees) at the half-power beamwidth;

1 As defined in Annex 5 to this Appendix.
h) for beams of other than circular or elliptical shape, indicate the following:

- co-polar and cross-polar gain contours plotted on a map of the Earth's surface, preferably in a radial projection from the satellite on to a plane perpendicular to the line from the centre of the Earth to the satellite. The isotropic or absolute gain shall be indicated at each contour which corresponds to a decrease in gain of $2,4,6,10$ and 20 dB and thereafter at 10 dB intervals down to a value of 0 dB relative to an isotropic radiator;
- wherever practicable, a numerical equation or table providing the necessary information to allow the gain contours to be plotted.

In the case of Regions 1 and 3:
i) ΔG (difference between the maximum gain and the gain in the direction of the point in the service area at which the power flux-density is at a minimum).
13. Station keeping accuracy.
14. Modulation characteristics:
a) type of modulation;
b) pre-emphasis characteristics;
c) TV standard;
d) sound broadcasting characteristics;
e) frequency deviation;
f) composition of the baseband;
g) type of multiplexing of the video and sound signals;
h) energy dispersal characteristics.
15. Minimum angle of elevation in the service area in the case of Regions 1 and 3.
16. Type of reception (individual or community) in the case of Regions 1 and 3.
(Rev. 1986)
17. Regular hours of operation (UTC).
18. Coordination.
19. Agreements.
20. Other information.
21. Operating administration or company.

ANNEX 3

Method for Determining the Limiting Interfering Power Flux-Density at the Edge of a Broadcasting-Satellite Service Area in the Frequency Bands 11.7 - $\mathbf{1 2 . 2} \mathbf{~ G H z}$ (in Region 3), 11.7-12.5 GHz (in Region 1) and 12.2-12.7 GHz (in Region 2) and for Calculating the Power Flux-Density Produced There by a Terrestrial Station

1. General
1.1 This Annex describes a method of calculating the interference potential from terrestrial transmitters to broadcasting-satellite receivers.
1.2 The method is in two parts:
a) the calculation of the maximum permissible interfering power flux-density at the edge of the broadcasting-satellite service area concerned;
b) the calculation of the likely power flux-density produced at any point on the edge of the service area by the terrestrial transmitter of another administration.
1.3 The interference potential of the terrestrial transmitters must be considered case by case; the power flux-density produced by each terrestrial transmitter is compared to the limiting power flux-density at any point on the edge of the service area of a broadcasting-satellite station of another administration. If, for a given transmitter, the value of the power flux-density produced is lower than the value of the limiting power flux-density at any point on the edge of the service area, the interference caused to the broadcasting-satellite service by this transmitter is considered to be lower than the permissible value and no coordination is required between administrations before the terrestrial service is brought into use. Where this is not the case, coordination and more precise calculations derived from a mutually agreed basis are necessary.
1.4 It is emphasized that, should the calculation described in this Annex indicate that the maximum permissible power flux-density is exceeded, it does not necessarily preclude the introduction of the terrestrial service since the calculations are necessarily based on worst-case assumptions for:
a) the nature of the terrain of the interference path;
b) the off-beam discrimination on the broadcasting-satellite receiving installations;
c) the necessary protection ratios for the broadcasting-satellite service;
d) the type of reception in the broadcasting-satellite service, i.e., assuming individual reception, this being more critical than community reception for the angles of elevation concerned;
$e)$ the value of power flux-density to be protected in the broad-casting-satellite service;
f) the propagation conditions between the terrestrial station and the broadcasting-satellite service area.

2. Limit of power flux-density

2.1 General

The limiting power flux-density not to be exceeded at the edge of the service area in order to protect the broadcasting-satellite service of an administration is given by the formula:

$$
\begin{equation*}
F=F_{0}-R+D+P \tag{1}
\end{equation*}
$$

where:
$F=$ the maximum permissible interfering power flux-density $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{m}^{2}\right)\right)$ within the necessary bandwidth of the broadcasting-satellite;
$F_{0}=$ the wanted power flux-density $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{m}^{2}\right)\right)$ at the edge of the service area;
$R=$ the protection ratio (dB) between the wanted and interfering signals;
$D=$ angular discrimination (dB) provided by the radiation pattern of the broadcasting-satellite receiver antenna;
$P=$ polarization discrimination (dB) between the wanted and interfering signals.
2.2 Wanted power flux-density (F_{0})

The value of F_{0} is equal to:
a) $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ for service areas in Regions 1 and 3, and
b) $-107 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ for 24 MHz , as well as for 27 MHz with respect to the cases mentioned in the footnote to section 3.8 of Annex 5 for service areas in Region 2.

2.3 Protection ratio (R)

2.3.1 The single entry protection ratio against all types of terrestrial transmissions, with the exception of amplitude-modulation multichannel television systems, is 35 dB for carrier frequency differences between the wanted and interfering signals of up to $\pm 10 \mathrm{MHz}$, decreasing linearly from 35 dB to 0 dB for carrier frequency differences between 10 MHz and 35 MHz , and is 0 dB for frequency differences in excess of 35 MHz (see Figure 1).
2.3.2 The carrier frequency difference should be determined by reference to the frequency assignments in the broadcasting-satellite Plan or, in the case of assignments not contained within a plan, by reference to the characteristics of the proposed or operational system. For amplitude-modulation multichannel television systems which produce high peaks of power flux-density spread over a wide range of their necessary bandwidth, the protection ratio R is 35 dB and is independent of the carrier frequency difference.
2.3.3 A signal from a terrestrial station should be considered only if its necessary bandwidth overlaps the necessary bandwidth of the broadcastingsatellite assignment.

2.4 Angular discrimination (D)

Regions 1 and 3:
2.4.1 Where the angle of elevation φ selected for the proposed or operational broadcasting-satellite system for the broadcasting-satellite service area concerned is equal to or greater than 19°, the value of D to be assumed in expression (1) is 33 dB . When φ is less than $19^{\circ}, D$ should be derived from the expression (2) below.

FIGURE 1

Protection ratio $R(d B)$ for a broadcasting-satellite signal against a single entry of interference from a terrestrial service (except for AM multichannel TV system)

Note: If more than one value of φ is specified for a particular service area, the appropriate value of φ should be used for each section of the edge of the service area under consideration.

$D=0$	for $0^{\circ} \leqslant \varphi \leqslant 0.5^{\circ}$
$D=3 \varphi^{2}$	for $0.5^{\circ}<\varphi \leqslant 1.41^{\circ}$
$D=3+20 \log \varphi$	for $1.41^{\circ}<\varphi \leqslant 2.52^{\circ}$
$D=1+25 \log \varphi$	for $2.52^{\circ}<\varphi \leqslant 19^{\circ}$

Note: For the graphical determination of D see Figure 2.

Region 2:

2.4.2 D should be derived from the expression (3) below where φ is the elevation angle for the proposed or operational broadcasting-satellite system for the broadcasting-satellite service area concerned.

Note: If more than one value of φ is specified for a particular service area, the appropriate value of φ should be used for each section of the edge of the service area under consideration.

$$
\begin{array}{ll}
D=0 & \text { for } 0^{\circ} \leqslant \varphi \leqslant 0.43^{\circ} \\
D=4.15 \varphi^{2} & \text { for } 0.43^{\circ}<\varphi \leqslant 1.92^{\circ} \tag{3}\\
D=8.24+25 \log \varphi & \text { for } 1.92^{\circ}<\varphi \leqslant 25^{\circ} \\
D=43.2 & \text { for } \varphi \quad>25^{\circ}
\end{array}
$$

Note: For the graphical determination of D see Figure 3.

2.5 Polarization discrimination (P)

The value of P is equal to:
a) 3 dB when the interfering terrestrial service uses linear polarization and the broadcasting-satellite service uses circular polarization or vice versa;
b) 0 dB when the interfering terrestrial service and the broad-casting-satellite service both use circular or both use linear polarization.

FIGURE 2
Discrimination $D(d B)$ of broadcastıng-satellite receiver antenna
as a function of satellite elevation angle
For service areas in Regions 1 and $3, \varphi_{0}=2^{\circ}$.

FIGURE 3
Discrimination $D(d B)$ of broadcasting-satellite receiver antenna
as a function of satellite elevation angle
3. Power flux-density produced by a terrestrial station $\left(F_{p}\right)$

The power flux-density $F_{p}\left(\mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\right)$ produced at any point on the edge of the service area by the terrestrial station is determined from the following formula:

$$
\begin{equation*}
F_{p}=E-A+43 \tag{4}
\end{equation*}
$$

where:
$E=$ the equivalent isotropically radiated power (dBW) of the terrestrial station in the direction of the point concerned on the edge of the service area;
$A=$ the total path loss in dB.
3.1 Evaluation of path loss A for a terrestrial station at a distance greater than 100 km from the edge of the service area of the broadcasting satellite

For path lengths greater than $100 \mathrm{~km}, A$ is given by:

In the case of Regions 1 and 3:

$$
\begin{equation*}
A=137.6+0.2324 d_{t}+0.0814 d_{m} \tag{5}
\end{equation*}
$$

In the case of Region 2:

$$
\begin{equation*}
A=141.9+0.2867 d_{t}+0.1522 d_{m} \tag{6}
\end{equation*}
$$

where:
d_{t} and d_{m} are the overland and oversea path lengths respectively, in kilometres.
3.2 Evaluation of path loss A for a terrestrial station at a distance equal to or less than 100 km from the edge of the service area of the broadcasting satellite

In the case of Regions 1 and 3:

For path lengths equal to or less than $100 \mathrm{~km}, A$ is calculated using equations (5) and (7) and the lower value obtained is substituted in formula (4) to calculate the power flux-density produced at the point concerned on the edge of the service area:

$$
\begin{equation*}
A=109.5+20 \log \left(d_{t}+d_{m}\right) \tag{7}
\end{equation*}
$$

The variation in A for different path lengths and percentage of oversea path is shown in Figure 4.

In the case of Region 2:

For path lengths equal to or less than $100 \mathrm{~km}, A$ is calculated using equations (6) and (8) and the lower value obtained is substituted in formula (4) to calculate the power flux-density produced at the point concerned on the edge of the service area:

$$
\begin{equation*}
A=114.4+20 \log \left(d_{t}+d_{m}\right)+0.01\left(d_{t}+d_{m}\right) \tag{8}
\end{equation*}
$$

The variation in A for different path lengths and percentage of oversea path is shown in Figure 5.

3.3 Distance beyond which the method need not be applied

The method need not be applied and coordination is unnecessary when the distance between the terrestrial station and the service area of the broadcasting satellite is greater than:
a) 400 km in the case of all overland paths; or
b) 1200 km in the case of all oversea or mixed paths.

FIGURE 4
Total path loss $A(d B)$ versus total path length $\left(d_{t}+d_{m}\right)(k m)$ and percentage of oversea path
(Regions 1 and 3)

Total path $A(d B)$ versus total path length $\left(d_{t}+d_{m}\right)(k m)$ and percentage of oversea path
(Region 2)

ANNEX 4

Need for Coordination of a Space Station in the Fixed-Satellite Service : in Region 2 (11.7-12.2 GHz) with Respect to the Regions 1 and 3 Plan, in Region 1 (12.5 - 12.7 GHz) and in Region 3 (12.2-12.7 GHz) with Respect to the Region 2 Plan

(See Article 7)

With respect to paragraph 7.2.1 of Article 7 of this Appendix, coordination of a space station in the fixed-satellite service of Region 2 is required when, under assumed free-space propagation conditions, the power flux-density on the territory of an administration in Region 1 or Region 3 exceeds the value derived from the expressions given below.

With respect to paragraph 7.2.1 of Article 7 of this Appendix, coordination of a space station in the fixed-satellite service in Region 1 or 3 is required when, under assumed free-space propagation conditions, the power flux-density on the territory of an administration in Region 2 exceeds the value derived from the same expressions:

$$
\begin{array}{lll}
-147 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 27 \mathrm{MHz}\right) & \text { for } & 0^{\circ} \leqslant \theta<0.44^{\circ} \\
-138+25 \log \theta \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 27 \mathrm{MHz}\right) & \text { for } & 0.44^{\circ} \leqslant \theta<19.1^{\circ} \\
-106 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 27 \mathrm{MHz}\right) & \text { for } & \theta \geqslant 19.1^{\circ}
\end{array}
$$

where θ is:

- the difference in degrees between the longitude of the interfering fixed-satellite space station in Region 2 and the longitude of the affected broadcasting-satellite space station in Regions 1 and 3, or
- the difference in degrees between the longitude of the interfering fixed-satellite space station in Region 1 or 3 and the longitude of the affected broadcasting-satellite space station in Region 2.

ANNEX 5

Technical Data Used in Establishing the Provisions and Associated Plans and Which Should Be Used for Their Application

1. DEFINITIONS

1.1 Service area

The area on the surface of the Earth in which the administration responsible for the service has the right to demand that the agreed protection conditions be provided.

- Note: In the definition of service area, it is made clear that within the service area the agreed protection conditions can be demanded. This is the area where there should be at least the wanted power flux-density and protection against interference based on the agreed protection ratio for the agreed percentage of time.

1.2 Coverage area

The area on the surface of the Earth delineated by a contour of a constant given value of power flux-density which would permit the wanted quality of reception in the absence of interference.

Note 1: In accordance with the provisions of No. 2674 of the Radio Regulations, the coverage area must be the smallest area which encompasses the service area.

Note 2: The coverage area, which will normally encompass the entire service area, will result from the intersection of the antenna beam (elliptical or circular) with the surface of the Earth, and will be defined by a given value of power flux-density. For example, in the case of a country with a service
planned for individual reception, it would be the area delineated by the contour corresponding to a level of $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ exceeded for 99% of the worst month in the case of Regions 1 and 3, and $-107 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ exceeded for 99% of the worst month in the case of Region 2 . There will usually be an area outside the service area but within the coverage area in which the power flux-density will be at least equivalent to the minimum specified value; however, protection against interference will not be provided in this area.

1.3 Beam area

The area delineated by the intersection of the half-power beam of the satellite transmitting antenna with the surface of the Earth.

Note: The beam area is simply that area on the Earth's surface corresponding to the -3 dB points on the satellite antenna radiation pattern. In many cases the beam area would almost coincide with the coverage area, the discrepancy being accounted for by the permanent difference in path lengths from the satellite throughout the beam area, and also by the permanent variations, if any, in propagation factors across the area. However, for a service area where the maximum dimension as seen from the satellite, position is less than 0.6° in Regions 1 and 3, and less than 0.8° in Region 2 (the agreed minimum practicable satellite antenna half-power beamwidths), there could be a significant difference between the beam area and the coverage area.

1.4 Nominal orbital position

The longitude of a position in the geostationary-satellite orbit associated with a frequency assignment to a space station in a space radiocommunication service. The position is given in degrees from the Greenwich meridian.

Note: Definitions in sections 1.5 to 1.14 are applicable to Region 2.

AP30 (Orb-85)-226

1.5 Feeder link

In the Region 2 broadcasting-satellite service Plan, the term "feeder link", as defined in No. 109 of the Radio Regulations, is further qualified to indicate a fixed-satellite service link in the frequency band $17.3-17.8 \mathrm{GHz}$ from any earth station within the feeder-link service area to the associated space station in the broadcasting-satellite service.

1.6 Feeder-link area

The area delineated by the intersection of the half-power beam of the satellite receiving antenna with the surface of the Earth.

1.7 Feeder-link service area

The area on the surface of the Earth within the feeder-link beam area within which the administration responsible for the service has the right to locate transmitting earth stations for the purpose of providing feeder links to broadcasting-satellite space stations.

1.8 Adjacent channel

The RF channel in the broadcasting-satellite service frequency Plan, or in the associated feeder-link frequency Plan, which is situated immediately higher or lower in frequency with respect to the reference channel.

1.9 Second adjacent channel

The RF channel in the broadcasting-satellite service frequency Plan, or in the associated feeder-link frequency Plan, which is situated immediately beyond either of the adjacent channels, with respect to the reference channel.

1.10 Overall carrier-to-interference ratio

The overall carrier-to-interference ratio is the ratio of the wanted carrier power to the sum of all interfering RF powers in a given channel including both feeder links and down-links. The overall carrier-to-interference ratio due to interference from the given channel is calculated as the reciprocal of the sum of the reciprocals of the feeder link carrier-to-interference ratio and the down-link carrier-to-interference ratio referred to the satellite receiver input and earth station receiver input, respectively. ${ }^{1}$

1.11 Overall co-channel protection margin

The overall co-channel protection margin in a given channel is the difference in decibels between the overall co-channel carrier-to-interference ratio and the co-channel protection ratio.

1.12 Overall adjacent channel protection margin

The overall adjacent channel protection margin is the difference in decibels between the overall adjacent channel carrier-to-interference ratio and the adjacent channel protection ratio.

[^47]
1.13 Overall second adjacent channel protection margin

The overall second adjacent channel protection margin is the difference in decibels between the overall second adjacent channel carrier-to-interference ratio and the second adjacent channel protection ratio.

1.14 Overall equivalent protection margin

The overall equivalent protection margin M is given in decibels by the expression:

$$
\begin{equation*}
M=-10 \log \left(\sum_{i=1}^{5} 10^{\left(-M_{i} / 10\right)}\right) \tag{dB}
\end{equation*}
$$

where:
$M_{1} \quad=$ overall co-channel protection margin, in dB (as defined in section 1.11 of this Annex);
$M_{2}, M_{3}=$ overall adjacent channel protection margins for the upper and lower adjacent channels respectively, in dB (as defined in section 1.12 of this Annex);
$M_{4}, M_{5}{ }^{1}=$ overall second adjacent channel protection margins for the upper and lower second adjacent channels respectively, in dB (as defined in section 1.13 of this Annex).

[^48]The adjective "equivalent" indicates that the protection margins for all interference sources from the adjacent and second adjacent channels as well as co-channel interference sources have been included.

2. RADIO PROPAGATION FACTORS

In Regions 1 and 3:

2.1 The propagation loss on the space-to-Earth path is equal to the free space path loss plus the attenuation exceeded for 1% of the worst month, the latter being given in Figure 1 for the five rain-climatic zones shown in Figure 2.
2.2 In using the curves of Figure 1, the difference between clear weather attenuation and the attenuation exceeded for 1% of the worst month should be limited to a maximum of 2 dB by appropriate choice of angle of elevation.
2.3 In planning the broadcasting-satellite service, for emissions applying circular polarization, the level of the depolarized component relative to the level of the co-polar component should be taken as:
-27 dB for rain-climatic zones 1 and 2;
-30 dB for rain-climatic zones 3,4 and 5 .

In Region 2:

2.4 The propagation loss on a space-Earth path is equal to the free space path loss plus the atmospheric absorption loss plus the rain attenuation exceeded for 1% of the worst month.

AP30 (Orb-85)-230

FIGURE 1
Predicted attenuation values exceeded for 1% of the worst month $(0.25 \%$ of the time) at 12 GHz in the rain-climatic zones indicated in Figure 2 (for Regions 1 and 3)
A: Rain-climatic zone 1
C: Rain-climatic zones 3 and 4
B: Rain-climatic zone 2
D: Rain-climatic zone 5
(Rev. 1986)

AP30 (Orb-85)-232

2.4.1 Atmospheric absorption

The loss due to atmospheric absorption (i.e. clear sky attenuation) is given by:

$$
A_{a}=\frac{92.20}{\cos \theta}\left[0.017 F_{o}+0.002 \rho F_{w}\right] \quad(\mathrm{dB}) \quad \text { for } \quad \theta<5^{\circ}
$$

where:

$$
\begin{aligned}
& F_{o}=\left[24.88 \tan \theta+0.339 \sqrt{1416.77 \tan ^{2} \theta+5.51}\right]^{-1} \\
& F_{w}=\left[40.81 \tan \theta+0.339 \sqrt{3811.66 \tan ^{2} \theta+5.51}\right]^{-1}
\end{aligned}
$$

and:

$$
A_{a}=\frac{0.042+0.003 \rho}{\sin \theta} \quad(\mathrm{~dB}) \quad \text { for } \quad \theta \geqslant 5^{\circ}
$$

where:

$$
\begin{aligned}
\theta= & \text { elevation angle (degrees), } \\
\rho= & \text { surface water vapour concentration, } \mathrm{g} / \mathrm{m}^{3}, \text { being } \\
& \rho=10 \mathrm{~g} / \mathrm{m}^{3} \text { for rain-climatic zones } A \text { to } \mathrm{K} \text { and } \\
& \rho=20 \mathrm{~g} / \mathrm{m}^{3} \text { for rain-climatic zones } \mathrm{M} \text { to } \mathrm{P} \text { (see Figure } 3 \text {). }
\end{aligned}
$$

2.4.2 Rain attenuation

The rain attenuation A_{p} of circularly polarized signals exceeded for 1% of the worst month at 12.5 GHz is given by:

$$
\begin{equation*}
A_{p}=0.21 \gamma L r \tag{1}
\end{equation*}
$$

where:
$L \quad$ is the slant path length through rain

$$
\begin{equation*}
=\frac{2\left(h_{R}-h_{0}\right)}{\left\{\sin ^{2} \theta+2 \frac{\left(h_{R}-h_{0}\right)}{8500}\right\}^{1 / 2}+\sin \theta} \tag{km}
\end{equation*}
$$

r is the rain path length reduction factor

$$
=\frac{90}{90+4 L \cos \theta}
$$

h_{R} is the rain height (km)

$$
\begin{array}{ll}
=c\left\{5.1-2.15 \log \left(1+10^{(\zeta-27) / 25}\right)\right\} & (\mathrm{km} \\
c=0.6 \quad \text { for } & |\zeta| \leqslant 20^{\circ} \\
c=0.6+0.02(|\zeta|-20) & \text { for } 20^{\circ}<|\zeta| \leqslant 40^{\circ} \\
c=1.0 \quad \text { for } & |\zeta|>40^{\circ}
\end{array}
$$

h_{0} is the height (km) above mean sea level of the earth station;
$\zeta \quad$ is the earth station latitude (degrees);
θ is the elevation angle (degrees);
$\gamma \quad$ is the specific rain attenuation $=0.0202 R^{1198} \mathrm{~dB} / \mathrm{km}$;
R is the rain intensity (mm / h) obtained from the Table below for the rain climatic zones identified in Figure 3.
(Note: The method is based on R exceeded for 0.01% of an average year.)

Rainfall intensity (R) for the rain climatic zones (exceeded for 0.01\% of an average year) (see Figure 3)

Rain climatic zone	A	B	C	D	E	F	G	K	M	N	\mathbf{P}
Rainfall intensity $(\mathrm{mm} / \mathrm{h})$	8	12	15	19	22	28	30	42	63	95	145

Figure 4 presents plots of rain attenuation, as calculated using equation (1), of circularly polarized signals exceeded for 1% of the worst month at 12.5 GHz , as a function of earth station latitude and elevation angle for each of the rain climatic zones shown in Figure 3.

2.4.3 Rain attenuation limit

In the analysis of the Plan for the broadcasting-satellite service in Region 2, a maximum down-link attenuation of 9 dB was agreed in order to limit the inhomogeneity of broadcasting-satellite power flux-density and to facilitate sharing during clear-sky conditions.
(Rev. 1986)

FIGURE 3
Rain-climatic zones (Region 2)

2.4.4 Procedure for calculating the carrier-to-interference ratio at a test point

The calculation of the down-link carrier-to-interference ratio (exceeded for 99% of the worst month) used to obtain the overall equivalent protection margin at a test point is the minimum value of the carrier-tointerference ratio obtained assuming:
i) clear-sky conditions (i.e. including atmospheric absorption); or
ii) rain-faded conditions corresponding to an attenuation value exceeded for 1% of the worst month.

2.5 Depolarization

Rain and ice can cause depolarization of radio frequency signals. The level of the co-polar component relative to the depolarized component is given by the cross-polarization discrimination (XPD) ratio. For circularly polarized emissions, the XPD ratio, in dB , exceeded for 99% of the worst month is obtained from:

$$
\begin{gather*}
\text { XPD }=30 \log f-40 \log (\cos \theta)-20 \log A_{p} \tag{2}\\
\text { for } 5^{\circ} \leqslant \theta \leqslant 60^{\circ}
\end{gather*}
$$

where $A_{p}(\mathrm{~dB})$ is the co-polar rain attenuation exceeded for 1% of the worst month (calculated in section 2.4), f is the frequency in GHz and θ is the elevation angle. For angles of θ greater than 60°, use $\theta=60^{\circ}$ in equation (2).

3. BASIC TECHNICAL CHARACTERISTICS

3.1 Type of modulation

3.1.1 In Regions 1 and 3, planning of the broadcasting-satellite service is based on the use of a signal consisting of a video signal with an associated carrier, frequency-modulated by a sound signal, both frequency-modulating a carrier in the 12 GHz band, with a pre-emphasis characteristic in accordance with Figure 5 (from CCIR Recommendation 405).
3.1.2 In Region 2, planning is based on the use of a frequency-modulated composite-coded colour television signal with two sound sub-carriers. However, in recognition of the need to provide for the use of new, enhanced television coding and modulation formats (e.g. time-compressed, multiplexed analogue video component signals and digitally-coded sound and data signals), values of the important technical characteristics have been chosen to take into consideration the implementation of these new formats within the provisions of the Plan.
3.1.3 Nevertheless, this does not preclude the use of other modulating signals having different characteristics (e.g. modulation with sound channels frequency-multiplexed within the bandwidth of a television channel, digital modulation of sound and television signals, or other pre-emphasis characteristics), provided that the use of such characteristics does not cause greater interference than that caused by the system considered in the appropriate Regional Plan or complies with the provisions of paragraph 3.2 of Article 3 of this Appendix.

3.2 Polarization

3.2.1 For the planning of the broadcasting-satellite service, circular polarization shall be used in Regions 1, 2 and 3.

FIGURE 5
Pre-emphasis characteristic for television on 525-and 625-line systems
Curve A: 525-line system
Curve B: 625-line system
3.2.2 In Regions 1 and 3, the polarization of different beams intended to serve the same area should, if possible, be the same.
3.2.3 The terms "direct" and "indirect" used in the Plans to indicate the direction of rotation of circularly-polarized waves correspond to right-hand (clockwise) and left-hand (anti-clockwise) polarization respectively according to the following definitions:

Direct polarization (right-hand or clockwise polarization):

An elliptically or circularly-polarized electromagnetic wave, in which the electric field-intensity vector, observed in any fixed plane, normal to the direction of propagation, whilst looking in (i.e., not against) the direction of propagation, rotates with time in a right-hand or clockwise direction.

Note: For right-hand circularly-polarized plane waves, the ends of the electric vectors drawn from any points along a straight line normal to the plane of the wave front form, at any instant, a left-hand helix.

Indirect polarization (left-hand or anti-clockwise polarization):

An elliptically or circularly-polarized electromagnetic wave, in which the electric field-intensity vector, observed in any fixed plane, normal to the direction of propagation, whilst looking in (i.e., not against) the direction of propagation, rotates with time in a left-hand or anti-clockwise direction.

Note: For left-hand circularly-polarized plane waves, the ends of the electric vectors drawn from any points along a straight line normal to the plane of the wave front form, at any instant, a right-hand helix.

3.3 Carrier-to-noise ratio

For the purpose of planning the broadcasting-satellite service, the carrier-to-noise ratio is equal to or exceeds 14 dB for 99% of the worst month.

In Regions 1 and 3, the reduction in quality in the down-link due to thermal noise in the up-link is taken as equivalent to a degradation in the down-link carrier-to-noise ratio not exceeding 0.5 dB for 99% of the worst month. In Region 2, as a guide for planning, the reduction in quality in the down-link due to thermal noise in the feeder link is taken as equivalent to a degradation in the down-link carrier-to-noise ratio of approximately 0.5 dB not exceeded for 99% of the worst month, but the feeder-link and down-link Plans are evaluated on the basis of the overall carrier-to-noise ratio of 14 dB for the combined down-link and feeder-link contributions.

3.4 Protection ratio between FM television signals

For planning in Regions 1 and 3 the following protection ratios have been adopted for the purpose of calculating equivalent protection margins ${ }^{1}$:

31 dB for co-channel signals;
15 dB for adjacent channel signals.
${ }^{1}$ The equivalent protection margin M is given in dB by the formula

$$
M=-10 \log \left(10^{-M_{1} / 10}+10^{-M_{2} / 10}+10^{-M_{1} / 10}\right)
$$

where M_{1} is the value in dB of the protection margin for the same channel. This is defined in the following expression where the powers are evaluated at the receiver input:

$$
\frac{\text { wanted power }}{\substack{\text { sum of the co-channel } \\
\text { interfering powers }}} \begin{gathered}
\text { co-channel protection } \\
\text { ratio }(\mathrm{dB})
\end{gathered}
$$

M_{2} and M_{3} are the values in dB of the upper and lower adjacent-channel protection margins respectively.

The definition of the adjacent-channel protection margin is similar to that for the co-channel case except that the adjacent-channel protection ratio and the sum of the interfering powers due to emissions in the adjacent channel are considered.

In Region 2, the following protection ratios have been adopted for the purpose of calculating the overall equivalent protection margin ${ }^{1}$:

28 dB for co-channel signals;
13.6 dB for adjacent-channel signals;
-9.9 dB for second adjacent-channel signals.
In Region 2, as a guide for planning, the reduction in the overall carrier-to-interference ratio due to co-channel interference in the feeder link is taken as equivalent to a degradation in the down-link co-channel carrier-to-interference ratio of approximately 0.5 dB not exceeded for 99% of the worst month, but the feeder-link and down-link Plans are evaluated on the basis of the overall equivalent protection margin, which includes the combined down-link and feeder-link contributions.

In Region 2, an overall equivalent protection margin of zero decibels, or greater, indicates that the individual protection ratios have been met for the co-channel, the adjacent channels and the second adjacent channels.

3.4.1 Adjacent channel protection ratio template for Region 2^{2} (FMTV into FMTV)

The protection ratios for adjacent channels are derived from the template given in Figure 6. The template is symmetrical and is given in terms of absolute levels for the carrier-to-interference ratios.

The template is obtained by joining the segment for adjacent channels to the horizontal extension of the co-channel protection ratio value. The adjacent channel protection ratio cannot be adjusted relative to the co-channel value.

[^49]
AP30 (Orb-85)-248

FIGURE 6
Protection ratio template (FMTV/FMTV), for planning of broadcasting-satellite systems in Region 2

The template is given by the following expressions:

$P R=\left\{\right.$| 28 | dB | | | | for | $\left\|F_{0}\right\| \leqslant 8.36 \mathrm{MHz}$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| -2.762 | $\left\|F_{0}\right\|+51.09 \mathrm{~dB}$ | for | $8.36<$ | | | |
| -1.154 | $\left\|F_{0}\right\|+30.4 \mathrm{~dB}$ | for | $12.87<$ | | | |
| -2.00 | $\left\|F_{0}\right\| \leqslant$ | $\left\|F_{0}\right\| \leqslant 21.87 \mathrm{MHz}$ | | | | |
| | +48.38 dB | for | | | | |

where:
$P R$ is the protection ratio in dB and $\left|F_{0}\right|$ is the carrier spacing between the interfering and wanted signals in MHz .

3.5 Channel spacing

3.5.1 Channel spacing in the Plans

In Regions 1 and 3, the spacing between the assigned frequencies of two adjacent channels is 19.18 MHz .

In Region 2, the spacing between the assigned frequencies of two adjacent channels is 14.58 MHz , which corresponds to 32 channels in the 500 MHz bandwidth allocated to the broadcasting-satellite service.

The Plans give the assigned frequencies for each channel.

3.5.2 Grouping of channels in the same beam

Planning in Region 1 has been carried out by trying to group all the channels radiated within a single antenna beam within a frequency range of 400 MHz , in order to simplify receiver construction.
3.5.3 Spacing between assigned channel frequencies feeding a common antenna

For Regions 1 and 3, owing to technical difficulties in the output circuit of a satellite transmitter, spacing between the assigned frequencies of two channels feeding a common antenna must be greater than 40 MHz .
(Rev. 1986)

AP30 (Orb-85)-250
3.6 Figure of merit (G / T) of a receiving station in the broadcastingsatellite service

In planning the broadcasting-satellite service, the value of the figure of merit G / T used is:
for Regions 1 and 3:
$6 \mathrm{~dB}\left(\mathrm{~K}^{-1}\right)$ for individual reception;
$14 \mathrm{~dB}\left(\mathrm{~K}^{-1}\right)$ for community reception, and
for Region 2:
$10 \mathrm{~dB}\left(\mathrm{~K}^{-1}\right)$ for individual reception.
The values are calculated from the following formula which allows for pointing error, polarization effects and equipment ageing:

$$
G / T=10 \log \left(\frac{\alpha \beta G_{r}}{\alpha T_{a}+(1-\alpha) T_{0}+(n-1) T_{0}}\right) \quad \mathrm{dB}\left(\mathrm{~K}^{-1}\right)
$$

where:

$$
\left.\begin{array}{rl}
\alpha= & \text { the total coupling losses, expressed as a power ratio; } \\
\beta= & \text { the total losses due to the pointing error, polarization } \\
\text { effects and equipment ageing, expressed as a power ratio; }
\end{array}\right\}
$$

See also CCIR Report 473-3 (Annex 1).

3.7 Receiving antennas

3.7. \quad Minimum diameter of receiving antennas

For planning the broadcasting-satellite service the minimum receiving antenna diameter must be such that the half-power beamwidth φ_{0} is:
a) for individual reception: 2° in Regions 1 and 3, and 1.7° in Region 2;
b) for community reception: 1° in Regions 1 and 3.

3.7.2 Receiving antenna reference patterns

The co-polar and cross-polar receiving antenna reference patterns are given in Figures 7 and 8.
a) For Regions 1 and 3, the relative antenna gain (dB) is given by the curves in Figure 7 for:

- individual reception, for which use should be made of:
- Curve A for the co-polar component;
- Curve B for the cross-polar component;
- community reception, for which use should be made of:
- Curve A^{\prime} up to the intersection with Curve C, then Curve C , for the co-polar component;
- Curve B for the cross-polar component.
b) For Region 2, the relative antenna gain (dB) is given by the curves in Figure 8 for individual reception, for which use should be made of:
- Curve A for the co-polar component;
- Curve B for the cross-polar component.

Co-polar and cross-polar receiving antenna reference patterns
in Regions 1 and 3

Curve A: Co-polar component for individual reception without side-lobe suppression (dB relative to main beam gain)

0

$$
\text { for } 0 \leqslant \varphi \leqslant 0.25 \varphi_{0}
$$

$-12\left(\frac{\varphi}{\varphi_{0}}\right)^{2} \quad$ for $0.25 \varphi_{0}<\varphi \leqslant 0.707 \varphi_{0}$
$-\left[9.0+20 \log \left(\frac{\varphi}{\varphi_{0}}\right)\right] \quad$ for $0.707 \varphi_{0}<\varphi \leqslant 1.26 \varphi_{0}$
$-\left[8.5+20 \log \left(\frac{\varphi}{\varphi_{0}}\right)\right] \quad$ for $1.26 \varphi_{0}<\varphi \leqslant 9.55 \varphi_{0}$
-33 for $\varphi>9.55 \varphi_{0}$
Curve A^{\prime} : Co-polar component for community reception without side-lobe suppression (dB relative to main beam gain)

0

$$
\text { for } 0 \leqslant \varphi \leqslant 0.25 \varphi_{0}
$$

$-12\left(\frac{\varphi}{\varphi_{0}}\right)^{2} \quad$ for $0.25 \varphi_{0}<\varphi \leqslant 0.86 \varphi_{0}$
$-\left[10.5+25 \log \left(\frac{\varphi}{\varphi_{0}}\right)\right] \quad$ for $\varphi>0.86 \varphi_{0}$ up to intersection with Curve C (then Curve C)

Curve B: Cross-polar component for both types of reception (dB relative to main beam gain)
-25 for $0 \leqslant \varphi \leqslant 0.25 \varphi_{0}$
$-\left(30+40 \log \left|\frac{\varphi}{\varphi_{0}}-1\right|\right)$ for $0.25 \varphi_{0}<\varphi \leqslant 0.44 \varphi_{0}$
-20 for $0.44 \varphi_{0}<\varphi \leqslant 1.4 \varphi_{0}$
$-\left(30+25 \log \left|\frac{\varphi}{\varphi_{0}}-1\right|\right) \quad$ for $1.4 \varphi_{0}<\varphi \leqslant 2 \varphi_{0}$

- 30 until intersection with co-polar component curve; then co-polar component curve.

Curve C: Minus the on-axis gain (Curve C in this figure illustrates the particular case of an antenna with an on-axis gain of 37 dBi).

Note: for values of φ_{0} see section 3.7.1

FIGURE 8
Reference patterns for co-polar and cross-polar components for receiving earth station antennas in Region 2

Curve A: Co-polar component without side-lobe suppression (dB relative to main beam gain)

0
for $0 \leqslant \varphi \leqslant 0.25 \varphi_{0}$
$-12\left(\varphi / \varphi_{0}\right)^{2}$
for $0.25 \varphi_{0}<\varphi \leqslant 1.13 \varphi_{0}$
$-\left\{14+25 \log \left(\varphi / \varphi_{0}\right)\right\}$
for $1.13 \varphi_{0}<\varphi \leqslant 14.7 \varphi_{0}$
-43.2
for $14.7 \varphi_{0}<\varphi \leqslant 35 \varphi_{0}$
$-\left\{85.2-27.2 \log \left(\varphi / \varphi_{0}\right)\right\}$
for $35 \varphi_{0}<\varphi \leqslant 45.1 \varphi_{0}$
-40.2
for $45.1 \varphi_{0}<\varphi \leqslant 70 \varphi_{0}$
$-\left\{-55.2+51.7 \log \left(\varphi / \varphi_{0}\right)\right\}$
for $70 \varphi_{0}<\varphi \leqslant 80 \varphi_{0}$
-43.2 for $80 \varphi_{0}<\varphi \leqslant 180^{\circ}$

Curve B: Cross-polar component (dB relative to main beam gain)

$$
\begin{array}{ll}
-25 & \text { for } 0 \leqslant \varphi \leqslant 0.25 \varphi_{0} \\
-\left(30+40 \log \left|\frac{\varphi}{\varphi_{0}}-1\right|\right) & \text { for } 0.25 \varphi_{0}<\varphi \leqslant 0.44 \varphi_{0} \\
-20 & \text { for } 0.44 \varphi_{0}<\varphi \leqslant 1.28 \varphi_{0} \\
-\left(17.3+25 \log \left|\frac{\varphi}{\varphi_{0}}\right|\right) & \text { for } 1.28 \varphi_{0}<\varphi \leqslant 3.22 \varphi_{0}
\end{array}
$$

-30 until intersection with co-polar component curve; then co-polar component curve.

Note 1: For values of φ_{0} see paragraph 3.7.1.
Note 2: In the angular range between $0.1 \varphi_{0}$ and $1.13 \varphi_{0}$ the co-polar and cross-polar gains must not exceed the reference patterns.

Note 3: At off-axis angles larger than $1.13 \varphi_{0}$ and for 90% of all sidelobe peaks in each of the reference angular windows, the gain must not exceed the reference patterns. The reference angular windows are $1.13 \varphi_{0}$ to $3 \varphi_{0}, 3 \varphi_{0}$ to $6 \varphi_{0}, 6 \varphi_{0}$ to $10 \varphi_{0}, 10 \varphi_{0}$ to $20 \varphi_{0}, 20 \varphi_{0}$ to $40 \varphi_{0}, 40 \varphi_{0}$ to $75 \varphi_{0}$ and $75 \varphi_{0}$ to 180°.
(Rev. 1986)

3.8 Necessary bandwidth

The necessary bandwidths considered are as follows for:

- 625 -line systems in Regions 1 and 3: 27 MHz ;
- 525-line systems in Region 3: 27 MHz .

In Region 2, the Plan is based on a channel bandwidth of $24 \mathrm{MHz}^{1}$, but different bandwidths may be implemented in accordance with the provisions of this Appendix.

3.9 Guardbands

3.9.1 A guardband is defined as the portion of the frequency spectrum between the edge of the allocated band and the edge of the necessary bandwidth of the emission in the nearest channel.
3.9.2 For the planning of the broadcasting-satellite service, the guardbands necessary to protect the services in adjacent frequency bands are shown in the table below.

Regions	Guardband at the lower edge of the band	Guardband at the upper edge of the band
1	14 MHz	11 MHz
2	12 MHz	
3	14 MHz	12 MHz
11 MHz		

${ }^{1}$ For France, Denmark and some of the United Kingdom requirements which use 625 -line standards with greater video bandwidth, the channels shown in the Plan have a necessary bandwidth of 27 MHz . This is indicated by an appropriate symbol in the Plan.

For Regions 1 and 3, the guardbands assume a maximum beam centre e.i.r.p. of 67 dBW (value relating to individual reception), and a filter roll-off of $2 \mathrm{~dB} / \mathrm{MHz}$. If smaller e.i.r.p. values are assumed, the guardbands can be reduced in width by 0.5 MHz for each decibel decrease in e.i.r.p.
3.9.3 Since developments in technology or the choice of lower e.i.r.p. values than those given above are likely to permit a reduction in the necessary guardbands, it is recommended for Regions 1 and 3 that, for purposes other than planning at the 1977 Conference, the latest CCIR Recommendations concerning spurious emissions from broadcasting satellites should be followed.
3.9.4 The guardbands at both the lower and upper edges may be used for transmissions in the space operation service.

3.10 Orbital spacing

The Plan for Regions 1 and 3 has been based generally on nominal orbital positions spaced uniformly at intervals of 6°. The Plan for Region 2 has been based on a non-uniform spacing.

3.11 Satellite station-keeping

Space stations in the broadcasting-satellite service must be maintained in position with an accuracy of better than $\pm 0.1^{\circ}$ in both the $\mathrm{N}-\mathrm{S}$ and the E-W directions. For such space stations, the maintenance of the tolerance in the N -S direction is recommended but is not a requirement for Region 2.

3.12 Elevation angle of receiving antennas

The Plans have been based on the desirability of a minimum angle of elevation of 20° to minimize the required e.i.r.p. of the satellite and to reduce the effects of shadowing and the possibility of interference from terrestrial services. However, for areas situated in latitudes above about 60°, the angle of elevation is of necessity less than 20°. Attention is also drawn to section 2.2 for the Regions 1 and 3 Plan and to section 2.4.3 for the Region 2 Plan.

For mountainous areas where an elevation angle of 20° may not suffice, an angle of at least 30° has been provided, where possible, to provide an acceptable service. An angle of elevation of at least 40° has been considered for service areas subject to high precipitation (e.g., in Regions 1 and 3, rain-climatic zone 1; in Region 2, rain-climatic zones M, N and P), but exceptions were made in some cases in Region 2.

Some dry, non-mountainous areas may be given an acceptable service at angles of elevation less than 20°.

In areas with small elevation angles, the shadowing effect of tall buildings may have to be takerr into account.

In choosing a satellite position designed to give the maximum angle of elevation at the ground, the influence of such a position on the eclipse period has been borne in mind.

3.13 Transmitting antennas

3.13.1 Cross-section of transmitted beam

Planning in Regions 1, 2 and 3 has been based on the use of transmitting antennas with beams of elliptical or circular cross-section.

If the cross-section of the emitted beam is elliptical, the effective beamwidth φ_{0} is a function of the angle of rotation between the plane containing the satellite and the major axis of the beam cross-section and the plane in which the beamwidth is required.

The relationship between the maximum gain of an antenna and the half-power beamwidth can be derived from the expression:

$$
G_{m}=\frac{27843}{a b}
$$

or

$$
G_{m}(\mathrm{~dB})=44.44-10 \log a-10 \log b
$$

where:
a and b are the angles (in degrees) subtended at the satellite by the major and minor axes of the elliptical cross-section of the beam.

An antenna efficiency of 55% is assumed.

3.13.2 Minimum beamwidth of transmitting antenna

A minimum value of 0.6° for the half-power beamwidth of a transmitting antenna has been adopted for planning for Regions 1 and 3, and 0.8° for Region 2.

3.13.3 Transmitting antenna reference patterns

The reference patterns for the co-polar and cross-polar components of satellite transmitting antennas used in preparing the Plans are given in Figure 9 for Regions 1 and 3, and in Figure 10 for Region 2.

FIGURE 9
Reference patterns for co-polar and cross-polar components for satellite transmitting antennas in Regions 1 and 3

Curve A: Co-polar component (dB relative to main beam gain)

$$
\begin{array}{ll}
-12\left(\frac{\varphi}{\varphi_{0}}\right)^{2} & \text { for } 0 \leqslant \varphi \leqslant 1.58 \varphi_{0} \\
-30 & \text { for } 1.58 \varphi_{0}<\varphi \leqslant 3.16 \varphi_{0} \\
-\left[17.5+25 \log \left(\frac{\varphi}{\varphi_{0}}\right)\right] & \text { for } \varphi>3.16 \varphi_{0}
\end{array}
$$

after intersection with Curve C : as Curve C

Curve B: Cross-polar component (dB relative to main beam gain)

$$
\begin{array}{ll}
-\left(40+40 \log \left|\frac{\varphi}{\varphi_{0}}-1\right|\right) & \text { for } 0 \leqslant \varphi \leqslant 0.33 \varphi_{0} \\
-33 & \text { for } 0.33 \varphi_{0}<\varphi \leqslant 1.67 \varphi_{0} \\
-\left(40+40 \log \left|\frac{\varphi}{\varphi_{0}}-1\right|\right) & \text { for } \varphi>1.67 \varphi_{0}
\end{array}
$$

after intersection with Curve C : as Curve C

Curve C: Minus the on-axis gain (Curve C in this figure illustrates the particular case of an antenna with an on-axis gain of 43 dBi).

FIGURE 10
Reference patterns for co-polar and cross-polar components

Curve A: Co-polar component (dB relative to main beam gain)

$$
\begin{array}{lll}
-12\left(\varphi / \varphi_{0}\right)^{2} & \text { for } 0 \leqslant\left(\varphi / \varphi_{0}\right) \leqslant 1.45 \\
-\left(22+20 \log \left(\varphi / \varphi_{0}\right)\right) & \text { for }\left(\varphi / \varphi_{0}\right)>1.45
\end{array}
$$

after intersection with curve C : Curve C

Curve B: Cross-polar component (dB relative to main beam gain)
-30
for $0 \leqslant\left(\varphi / \varphi_{0}\right) \leqslant 2.51$
after intersection with co-polar pattern: co-polar pattern

Curve C: Minus the on-axis gain (Curve C in this figure illustrates the particular case of an antenna with an on-axis gain of 46 dBi).

In Region 2, when it was necessary to reduce interference, the pattern shown in Figure 11 was used; this use is indicated in the Plan by an appropriate symbol. This pattern is derived from an antenna producing an elliptical beam with fast roll-off in the main lobe. Three curves for different values of φ_{0} are shown as examples.

FIGURE 11
Reference patterns for co-polar and cross-polar components for satellite transmitting antennas with fast roll-off in the main beam for Region 2

Curve A: Co-polar component (dB relative to main beam gain)

$$
\begin{array}{ll}
-12\left(\varphi / \varphi_{0}\right)^{2} & \text { for } 0 \leqslant\left(\varphi / \varphi_{0}\right) \leqslant 0.5 \\
-18.75 \varphi_{0}^{2}\left(\varphi / \varphi_{0}-x\right)^{2} & \text { for } 0.5<\left(\varphi / \varphi_{0}\right) \leqslant\left(\frac{1.16}{\varphi_{0}}+x\right) \\
-25.23 & \text { for }\left(\frac{1.16}{\varphi_{0}}+x\right)<\left(\varphi / \varphi_{0}\right) \leqslant 1.4 \\
-\left(22+20 \log \left(\varphi / \varphi_{0}\right)\right) & \text { for }\left(\varphi / \varphi_{0}\right)>1.45
\end{array}
$$

after intersection with curve C : Curve C

Curve B: Cross-polar component (dB relative to main beam gain)
for $0 \leqslant\left(\varphi / \varphi_{0}\right)<2.51$
after intersection with co-polar pattern: co-polar pattern

Curve C: Minus the on-axis gain (Curves A and C represent examples of three antennas having different values of φ_{0} as labelled in Figure 11. The on-axis gains of these antennas are approximately 34,40 and 46 dBi , respectively).
where:
$\rho \quad=$ off-axis angle (degrees)
$\varphi_{0}=$ dimension of the minimum ellipse fitted around the down-link service area in the direction of interest (degrees)
$x=0.5\left(1-\frac{0.8}{\varphi_{0}}\right)$.

3.14 Satellite antenna pointing accuracy

3.14.1 The deviation of the antenna beam from its nominal pointing direction must not exceed a limit of 0.1° in any direction. Moreover, the angular rotation of a transmitting beam about its axis must not exceed a limit of $\pm 2^{\circ}$ for Regions 1 and 3 , and $\pm 1^{\circ}$ for Region 2; the limit on rotation is not necessary for beams of circular cross-section using circular polarization.
3.14.2 The following factors contribute to the total variation in the area on the surface of the Earth illuminated by the satellite beam:

- variations in satellite station-keeping;
- the variations caused by the pointing tolerances, which become more significant for coverage areas with low angles of elevation;
- the effect of the yaw error, which increases as the beam ellipse lengthens.
3.14.3 The effect of these possible variations should be assessed on a case-by-case basis, since their total effect on the area covered will vary with the geometry of the satellite beam, and it would not be reasonable to indicate a single value of shift in the area covered for all situations.
3.14.4 If linear polarization is used for an emission, yaw error makes a significant contribution to increasing the transmitted cross-polarized component; this increases the interference with other carriers which were originally cross-polarized with the emission in question.

3.15 Limitation of output power in the satellite transmitter

The output power of a space station transmitter in the broadcastingsatellite service must not rise by more than 0.25 dB relative to its nominal value throughout the life of the satellite.

3.16 Power flux-density at edge of coverage area

The value of the power flux-density at the edge of the coverage area exceeded for 99% of the worst month is:
$-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ for individual reception in Regions 1 and 3;
$-107 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ for individual reception in Region 2 for 24 MHz , as well as for 27 MHz with respect to the cases mentioned in the footnote to Section 3.8.
$-111 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ for community reception in Regions 1 and 3.
3.17 Difference between the e.i.r.p. directed towards the edge of the coverage area and that on the axis of the beam

For planning, the absolute value of the difference between the e.i.r.p. directed towards the edge of the coverage area and that on the axis of the beam should preferably be 3 dB .

If the beam area is larger than the coverage area, the value will be less than 3 dB .

3.18 Use of energy dispersal

For planning, an energy dispersal value has been adopted which reduces by 22 dB the spectral power flux-density measured in a 4 kHz bandwidth in relation to that measured in the entire bandwidth; this reduction corresponds to a peak-to-peak deviation of 600 kHz .

ANNEX 6^{1}

Criteria for Sharing Between Services

1. Protection requirements for sharing between services in the 12 GHz band
1.1 The establishment of sharing criteria for the different services using the 12 GHz band should be based on the protection requirements listed in the table below.
1.2 The values given as "total acceptable" are those necessary to protect the wanted signal. The "single entry" values are those which should be used as a guide for determining sharing criteria. The total interference from all sources must be calculated, since satisfying the "single entry" criteria for each source may not guarantee that the total interference meets the above protection requirements. A "single entry" is defined as the aggregate of emissions from any one station entering any receiver in the wanted service within the channel to be protected.
1.3 The carrier-to-interference ratio (C / I) refers to the ratio of the wanted-to-interfering power at the affected ground station. The value given shall be exceeded for 80% of the worst month for the fixed-satellite service (FSS), and for 99% of the worst month for the broadcasting service (BS) and the broadcasting-satellite service (BSS).
1.4 The term N refers to the post-demodulation noise power at a point of 0 dBm 0 relative test tone level in any voice channel of an FDM/FM telephony system. The value given shall not be exceeded for 80% of the worst month.
1.5 The specified values of protection ratio (i.e., the carrier-to-interference power ratio corresponding to a specified picture quality) are applicable, for planning purposes, to television signals of any of the several television standards.
[^50]| Wanted service ${ }^{1}$ | Wanted signal ${ }^{1}$ | Interfering service ${ }^{1}$ | Interfering signal ${ }^{1}$ | Protection requirements ${ }^{2}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Total acceptable ${ }^{3}$ | Single entry |
| BSS | TV/FM | BSS, FSS, FS, BS | TV/FM | $C / I=30 \mathrm{~dB}^{4.7}$ | $C / I=35 \mathrm{~dB}^{4}$ |
| FSS | FDM/FM | BSS | TV/FM | $N=500 \mathrm{pW} 0 \mathrm{p}^{8}$ | $N=300 \mathrm{pW} 0 \mathrm{p}$ |
| FSS | TV/FM | BSS, FSS | TV/FM | $C / I=32 \mathrm{~dB}^{5}$ | $C / I=37 \mathrm{~dB}{ }^{5}$ |
| FSS | 4¢-PSK | BSS, FSS | TV/FM | $C / I=30 \mathrm{~dB}$ | $C / I=35 \mathrm{~dB}$ |
| FSS | FDM/FM | FSS | FDM/FM | $N=1000 \mathrm{pW} 0 \mathrm{p}$ | $N=400 \mathrm{pW} 0 \mathrm{p}$ |
| FS | FDM/FM | BSS | TV/FM | $N=1000 \mathrm{pW} 0 \mathrm{p}$ | $-125 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 4 \mathrm{kHz}\right)^{6}$ |
| BS | TV/VSB | BSS | TV/FM | $C / I=50 \mathrm{~dB}$ | not applicable |

Notes:

${ }^{1}$ BSS	$=$ broadcasting-satellite servic
FSS	$=$ fixed-satellite service
BS	$=$ broadcasting service
FS	$=$ fixed service
TV	$=$ television

FM	$=$ frequency modulation
FDM	$=$ frequency division multiplex
4φ-PSK	$=$ four-level phase shift keying
VSB	$=$ vestigial sideband.

TV $=$ television
${ }^{2}$ These limits include both up-link and down-link contributions.
${ }^{3}$ Values in dB are protection ratios for the sum of interfering signals. Values in pW 0 p represent interference noise in the worst telephone channels caused by the sum of interfering signals.
${ }^{4}$ For BSS satellites located at the interfaces of the Regions 1 and 3 Plan and the Region 2 Plan, the C / I ratios should be 1 dB higher.
${ }^{5}$ See CCIR Recommendation 483.
${ }^{6}$ This value may be suitably modified for tropical regions to take account of rain attenuation. Allowance may also be made for polarization discrimination.
${ }^{7} C / I=$ ratio of carrier-to-interfering signal.
${ }^{8} N=$ noise power.
1.6 For BSS systems with FM/TV as the wanted signal, the protection ratios are given for particular reference conditions, the most important of which are:
a) frequency deviation of the wanted signal (12 MHz peak-topeak);
b) quality of the wanted service (grade 4.5) ${ }^{\text {' }}$;
c) co-channel carriers (no carrier-frequency offset).
1.7 If system design is based on conditions other than a) and b) above, the $\mathrm{FM} / \mathrm{TV}$ protection ratio is given by:

$$
\begin{equation*}
R=12.5-20 \log \left(D_{v} / 12\right)-Q+1.1 Q^{2} \tag{dB}
\end{equation*}
$$

where:

$$
\begin{aligned}
& D_{v}=\text { nominal peak-to-peak frequency deviation }(\mathrm{MHz}) \\
& Q=\text { the impairment grade, concerning the interference only. }
\end{aligned}
$$

1.8 When carriers are offset in frequency, condition c) does not apply and the adjacent channel protection ratios should be adjusted according to the frequency offset as shown in Figure 1. For example, at a frequency offset of 20 MHz , the total acceptable ratio of protection against interference to an FM/TV signal from another FM/TV signal is 13 dB . The corresponding "single entry" value is 18 dB .

[^51]

FIGURE 1
Reference case protection ratios relative to co-channel values
Curve A: TV/VSB-wanted, TV/FM interfering
Curve B: TV/FM-wanted, TV/FM interfering
Curve C: TV/FM-wanted, TV/VSB interfering
2. Reference antenna diameter for a fixed-satellite earth station to be used in calculating interference from space stations in the broad-casting-satellite service
2.1 For antennas larger than $100 \lambda(2.5 \mathrm{~m})$ in the fixed-satellite service, the gain of the side-lobes is given by the equation $32-25 \log \theta$, where θ is the angle from the boresight (CCIR Recommendation 465). The side-lobe gain is independent of antenna diameter.
2.2 However, in the case of transmitting earth stations, the level of interference radiated into the up-link of other satellite systems would be inversely proportional to the square of the antenna diameter. In this case, the interference decreases with increasing antenna diameter. Since the 11.7-12.2 GHz band is only assigned in the space-to-Earth direction in the fixed-satellite service, this point is not of direct concern to the broadcastingsatellite service.
2.3 Hence it does not appear appropriate, for antenna diameters greater than 100λ, to specify a minimum antenna diameter for receiving earth stations in the fixed-satellite service sharing the band $11.7-12.2 \mathrm{GHz}$. It may be useful to consider a 4.5 m antenna having an efficiency of 60% and an on-axis gain of 53 dB as typical for the purpose of planning the sharing of this band.
3. Use of energy dispersal in the broadcasting-satellite service
3.1 Artificial energy dispersal is useful in promoting sharing between the broadcasting-satellite service and the other services to which the band is also allocated.
3.2 Such energy dispersal is achieved by the addition at baseband of a triangular waveform to the video signal to form a composite baseband which, in turn, is used to frequency-modulate the up-link carrier. The frequency of the triangular waveform is usually synchronized at a sub-multiple of the television frame frequency. Typical frequencies range from 12.5 Hz to 30 Hz .
3.3 The table below gives the relative reduction in spectral power flux-density in a 4 kHz bandwidth as a function of the peak-to-peak deviation due to the energy dispersal signal. This table is based on the following equation:

Relative reduction (dB) in a 4 kHz band $=10 \log \frac{\Delta F_{p p}+\delta f_{r m s}}{4}$
where:
$\Delta F_{p p}=\underset{(\mathrm{kHz}) ;}{\text { peak-to-peak deviation due to the energy dispersal signal }}$
$\delta f_{r m s}=$ rms deviation due to "natural" energy dispersal (kHz).
In compiling the table below, a value of 40 kHz has been assumed for $\delta f_{r m s}$, on the basis of the value of 10 dB for "natural" dispersion given in Table 4 of CCIR draft Report 631 (Rev. 76).

Reduction of spectral power flux-density relative
to a 4 kHz bandwidth

Peak-to-peak deviation (kHz)	Relative reduction (dB)
0	10
100	15.44
200	17.78
300	19.29
400	20.41
500	21.30
600	22.04
700	22.67
800	23.22
900	23.71
1000	24.15

3.4 The value of energy dispersal for the broadcasting-satellite service has been determined such that the spectral power flux-density measured in a 4 kHz bandwidth is reduced by 22 dB relative to that measured in the entire bandwidth; this reduction corresponds to a peak-to-peak deviation of 600 kHz .

ANNEX 7

Orbital Position Limitations

A. In applying the procedure of Article 4 for modifications to the appropriate Regional Plan, administrations should observe the following criteria:

1) No broadcasting satellite serving an area in Region 1 and using a frequency in the band $11.7-12.2 \mathrm{GHz}$ shall occupy a nominal orbital position further west than $37^{\circ} \mathrm{W}$ or further east than $146^{\circ} \mathrm{E}$.
2) No broadcasting satellite serving an area in Region 2 that involves an orbital position different from that contained in the Region 2 Plan shall occupy a nominal orbital position:
a) further east than $54^{\circ} \mathrm{W}$ in the band $12.5-12.7 \mathrm{GHz}$; or
b) further east than $44^{\circ} \mathrm{W}$ in the band $12.2-12.5 \mathrm{GHz}$; or
c) further west than $175.2^{\circ} \mathrm{W}$ in the band $12.2-12.7 \mathrm{GHz}$.

However, modifications necessary to resolve possible incompatibilities during the incorporation of the Regions 1 and 3 feederlink Plan into the Radio Regulations shall be permitted.
3) Any new orbital position in the Regions 1 and 3 Plan in the range of the orbital arc between $37^{\circ} \mathrm{W}$ and $10^{\circ} \mathrm{E}$ associated with a new assignment, or resulting from a modification of an assignment in the Plan, shall be coincident with, or within 1° to the east of, a nominal orbital position in the Region 1 and 3 Plan at the date of entry into force of the Final Acts ${ }^{1}$.

In the event of a modification to an assignment in the Regions 1 and 3 Plan, the use of a new nominal orbital position not coincident with any nominal orbital position in the Plan at the date of entry into force of the Final Acts ${ }^{1}$ shall involve an 8 dB reduction in the e.i.r.p. compared to that appearing in the Regions 1 and 3 Plan for the assignment before modification.
B. The Region 2 Plan is based on the grouping of the space stations in nominal orbital positions of $+0.2^{\circ}$ and -0.2° from the centre of \bullet he cluster of satellites. Administrations may locate those satellites within a cluster at any orbital position within that cluster, provided they obtain the agreement of administrations having assignments to space stations in the same cluster. (See Section 3.13.1 of Annex 3 to Appendix 30A of the Radio Regulations.)

[^52]
APPENDIX 30A

Orb-85

> Provisions and Associated Plan for the Feeder Links for the Broadcasting-Satellite Service (12.2-12.7 GHz) in the Frequency Band 17.3-17.8 GHz in Region 2
(See Article 15A)

TABLE OF CONTENTS

Article 1. General Definitions 5
Article 2. Frequency Band 6
Article 3. Execution of the Provisions and Associated Plan 6
Article 4. Procedure for Modifications to the Region 2 Plan (17.3-17.8 GHz) 7
Article 5. Notification, Examination and Recording in the Master Register of Frequency Assignments to Feeder-Link Transmitting Earth Stations and Receiving Space Stations in the Fixed-Satellite Ser- vice in the Band Between 17.3 and 17.8 GHz in Region 2 13
Article 6. Procedure Concerning Notification and Recording in the Master Register of Frequency Assignments to Terrestrial Stations in Region 2 in the Band $17.7-17.8 \mathrm{GHz}$, when Frequency Assignments to Feeder-Link Earth Stations for the Broadcasting- Satellite Service in Conformity with the Region 2 Plan Are Involved 18
Page
Article 7. Procedure Concerning Notification and Recording in the Master Register of Frequency Assignments to Stations in the Fixed-Satellite Service (Space-to- Earth) in Region 2 in the Band $17.7-17.8 \mathrm{GHz}$, when Frequency Assignments to Feeder-Link Sta- tions for the Broadcasting-Satellite Service Appearing in the Region 2 Plan Are Involved 19
Article 8. Miscellaneous Provisions Relating to the Pro- cedures 20
Section I. Studies and Recommendations 20
Section II. Miscellaneous Provisions 21
Article 9. The Plan for the Feeder Links in the Fixed-Satel- lite Service in the Frequency Band $17.3-17.8 \mathrm{GHz}$ in Region 2 21
Article 10. Interference 124
Article 11. Period of Validity of the Provisions and Associated Plan 124
ANNEXES
Annex 1. Limits for Determining Whether a Service of an Administration Is Considered to Be Affected by a Proposed Modification to the Plan or When It Is Necessary Under This Appendix to Seek the Agreement of Any Other Administration 125
Annex 2. Basic Characteristics to Be Furnished in Notices Relating to Feeder-Link Stations in the Fixed-Sat- ellite Service Operating in the Frequency Band 17.3-17.8 GHz in Region 2 127
Annex 3. Technical Data Used in Establishing the Provisions and Associated Plan and Which Should Be Used for their Application 132
Annex 4. Criteria for Sharing Between Services in Region 2. 161

ARTICLE 1

General Definitions

1.1 Region 2 Feeder-Link Plan: The Plan for the feeder links for the broadcasting-satellite service in the frequency band $17.3-17.8 \mathrm{GHz}$ in Region 2 contained in this Appendix together with any modifications resulting from the successful application of the procedure of Article 4 of this Appendix herein referred to as the Plan.
1.2 Frequency assignment in conformity with the Region 2 Feeder-Link Plan: Any frequency assignment for a receiving space station which appears in the Plan or for which the procedure of Article 4 of this Appendix has been successfully applied.
1.3 1983 Conference: Regional Administrative Radio Conference for the Planning in Region 2 of the Broadcasting-Satellite Service in the Frequency Band 12.2-12.7 GHz and Associated Feeder Links in the Frequency Band 17.3-17.8 GHz, called in short Regional Administrative Conference for the Planning of the Broadcasting-Satellite Service in Region 2 (RARC Sat-R2), Geneva, 1983.
1.4 1985 Conference: First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, called in short WARC Orb-85.

ARTICLE 2

Frequency Band

2.1 The provisions of this Appendix apply to the feeder links in the fixed-satellite service (Earth-to-space) in the frequency band 17.317.8 GHz , for the broadcasting-satellite service in Region 2, and to other services to which this band is allocated in Region 2 so far as their relationship to the fixed-satellite service (Earth-to-space) in this band is concerned.

ARTICLE 3

Execution of the Provisions and Associated Plan

3.1 The Members of the Union in Region 2 shall adopt for their feeder-link space and earth stations in the fixed-satellite service (Earth-tospace) in the frequency band referred to in this Appendix, the characteristics specified in the Plan and its associated provisions.
3.2 Members of the Union in Region 2 shall not change the characteristics specified in the Plan, or bring into use assignments to feeder-link stations in the fixed-satellite service or to stations of the other services to which these frequency bands are allocated, except as provided for in the Radio Regulations and the appropriate Articles and Annexes of this Appendix.

ARTICLE 4

Procedure for Modifications to the Region 2 Plan (17.3-17.8 GHz)

4.1 When an administration intends to make a modification to the Plan, i.e. either:
a) to modify the characteristics of any of its frequency assignments in the fixed-satellite service which are shown in the Plan, or for which the procedure in this Article has been successfully applied, whether or not the station has been brought into use; or
b) to include in the Plan a new frequency assignment in the fixed-satellite service; or
c) to cancel a frequency assignment in the fixed-satellite service,
the following procedure shall be applied before any notification of the frequency assignment is made to the International Frequency Registration Board (see Article 5 of this Appendix and Resolution 42 (Orb-85)).
4.1.1 Before an administration proposes to include in the Plan under the provisions of 4.1 b) a new frequency assignment for reception at a space station ${ }^{1}$ or to include in the Plan a new frequency assignment for reception at a space station whose orbital position is not designated in the Plan to this administration, all of the assignments to the service areas involved should normally have been brought into service or have been notified to the Board in accordance with Article 5 of this Appendix. Should this not be the case, the administration concerned shall inform the Board of the reasons thereof.

[^53]4.2 Proposed modifications to a frequency assignment in conformity with the Plan or the inclusion in the Plan of a new frequency assignment
4.2.1 An administration proposing a modification to the characteristics of a frequency assignment in conformity with the Plan or the inclusion of a new frequency assignment in the Plan shall seek the agreement of those administrations:
4.2.1.1 of Region 2 having a feeder-link frequency assignment in the fixed-satellite service (Earth-to-space) in the same channel or an adjacent channel, which appears in the Plan or in respect of which proposed modifications to the Plan have already been published by the Board in accordance with the provisions of sections 4.2.3.1 and 4.2.4 of this Article; or
4.2.1.2 having a frequency assignment in the band $17.7-17.8 \mathrm{GHz}$ to an earth station in the fixed-satellite service (space-to-Earth) which is recorded in the Master Register or which has been coordinated or is being coordinated under the provisions of No. 1060 of the Radio Regulations and which is located within the coordination area of the feeder link fixed-satellite earth station;
4.2.1.3 having a frequency assignment in the band $17.7-17.8 \mathrm{GHz}$ to a terrestrial station in use or intended to be brought into use within three years of the projected date of bringing the feeder link modification into use, and which is located within the coordination area of the feeder link fixed-satellite earth station;
4.2.1.4 having an assignment in the fixed-satellite service (Earth-to-space) in Regions 1 or 3 which
a) is recorded in the Master Register; or
b) has been coordinated or is being coordinated or has been notified under Articles 11 and 13 of the Radio Regulations; or
c) appears in a Region 1 and 3 feeder-link Plan to be adopted by a future Administrative Radio Conference, taking account of modifications which may be introduced subsequently, in accordance with the Final Acts of that conference; or
d) is identified in accordance with Resolution 43 (Orb-85).
4.2.1.5 which are considered affected.
4.2.1.6 The services of an administration are considered to be affected when the limits shown in Annex 1 to this Appendix are exceeded.
4.2.2 The agreement referred to in 4.2.1 is not required when an administration proposes to bring into use, with characteristics appearing in the Plan, a fixed earth station in the band $17.3-17.8 \mathrm{GHz}$ or a transportable earth station in the band $17.3-17.7 \mathrm{GHz}$. Administrations may communicate to the Board the characteristics of such earth stations in order to include them in the Plan.
4.2.3 An administration intending to modify characteristics in the Plan shall send to the Board, not earlier than five years but preferably not later than eighteen months before the date on which the assignment is to be brought into use, the relevant information listed in Annex 2 to this Appendix.
4.2.3.1 Where as a result of the intended modification the limits defined in Annex 1 to this Appendix are not exceeded, this fact shall be indicated when submitting to the Board the information required by 4.2.3. The Board shall then publish this information in a special section of its weekly circular.
4.2.3.2 In all other cases the administration shall notify the Board of the names of the administrations whose agreement it considers should be sought in order to arrive at the agreement referred to in 4.2 .1 as well as of those with which agreement has already been reached.
4.2.4 The Board shall determine on the basis of Annex 1 to this Appendix the administrations whose frequency assignments are considered to be affected within the meaning of 4.2.1. The Board shall include the names of those administrations with the information received under 4.2.3.2 and shall
publish the complete information in a special section of its weekly circular. The Board shall immediately send the results of its calculations to the administration proposing the modification to the Plan.
4.2.5 The Board shall send a telegram to the administrations listed in the special section of the weekly circular drawing their attention to the information it contains and shall send them the results of its calculations.
4.2.6 An administration which feels that it should have been included in the list of administrations whose services are considered to be affected may, giving the technical reasons for so doing, request the Board to include its name. The Board shall study this request on the basis of Annex 1 to this Appendix and shall send a copy of the request with an appropriate recommendation to the administration proposing the modification to the Plan.
4.2.7 Any modification to a frequency assignment which is in conformity with the Plan or any inclusion in the Plan of a new frequency assignment which would have the effect of exceeding the limits specified in Annex 1 to this Appendix shall be subject to the agreement of all affected administrations.
4.2.8 The administration seeking agreement or the administration with which agreement is sought may request any additional technical information it considers necessary. The administrations shall inform the Board of such requests.
4.2.9 Comments from administrations on the information published pursuant to 4.2 .4 should be sent either directly to the administration proposing the modification or through the Board. In any event the Board shall be informed that comments have been made.
4.2.10 An administration which has not notified its comments either to the administration seeking agreement or to the Board, within a period of four months following the date of the weekly circular referred to in 4.2.3.1 or 4.2 .4 shall be understood to have agreed to the proposed modification. This time-limit may be extended by up to three months for an administration which has requested additional information under 4.2.8 or for an
administration which has requested the assistance of the Board under 4.2.18. In the latter case the Board shall inform the administrations concerned of this request.
4.2.11 If, in seeking agreement, an administration modifies its initial proposal, it shall again apply the provisions of 4.2 .3 and the consequent procedure with respect to any other administration whose services might be affected as a result of modifications to the initial proposal.
4.2.12 If no comments have been received on the expiry of the periods specified in 4.2.10, or if agreement has been reached with the administrations which have made comments and with which agreement is necessary, the administration proposing the modification may continue with the appropriate procedure in Article 5 of this Appendix and shall inform the Board, indicating the final characteristics of the frequency assignment together with the names of the administrations with which agreement has been reached.
4.2.13 The agreement of the administrations affected may also be obtained in accordance with this Article, for a specified period.
4.2.14 When the proposed modification to the Plan involves developing countries, administrations shall seek all practicable solutions conducive to the economical development of the broadcasting-satellite systems of these countries.
4.2.15 The Board shall publish in a special section of its weekly circular the information received under 4.2.12 together with the names of any administrations with which the provisions of this Article have been successfully applied. The frequency assignment concerned shall enjoy the same status as those appearing in the Plan and will be considered as a frequency assignment in conformity with the Plan.
4.2.16 When an administration proposing to modify the characteristics of a frequency assignment or to make a new frequency assignment receives notice of disagreement from an administration whose agreement it has sought, it should first endeavour to solve the problem by exploring all possible means of meeting its requirement. If the problem still cannot be
(Rev. 1986)
solved by such means, the administration whose agreement has been sought should endeavour to overcome the difficulties as far as possible, and shall state the technical reasons for any disagreement if the administration seeking the agreement requests it to do so.
4.2.17 If no agreement is reached between the administrations concerned, the Board shall carry out any study that may be requested by these administrations; the Board shall inform them of the result of the study and shall make such recommendations as it may be able to offer for the solution of the problem.
4.2.18 An administration may at any stage in the procedure described, or before applying it, request the assistance of the Board, particularly in seeking the agreement of another administration.
4.2.19 The relevant provisions of Article 5 of this Appendix shall be applied when frequency assignments are notified to the Board.

4.3 Cancellation of frequency assignments

When a frequency assignment in conformity with the Plan is no longer required, whether or not as a result of a modification, the administration concerned shall immediately so inform the Board. The Board shall publish this information in a special section of its weekly circular and delete the assignment from the Plan.

4.4 Master copy of the Plan

4.4.1 The Board shall maintain an up-to-date master copy of the Plan, including the overall equivalent protection margins of each assignment, taking account of the application of the procedure specified in this Article. This master copy shall contain the overall equivalent protection margins derived from the Plan as established by the 1983 Conference and those derived from all modifications to the Plan as a result of the successful completion of the modification procedure of this Article. The Board shall prepare a document listing the amendments to be made to the Plan as a result of modifications made in accordance with the procedure in this Article.
4.4.2 The Secretary-General shall be informed by the Board of modifications made to the Plan and shall publish an up-to-date version of the Plan in an appropriate form when justified by the circumstances.

ARTICLE 5

Notification, Examination and Recording in the Master Register of Frequency Assignments to Feeder-Link Transmitting Earth Stations and Receiving Space Stations in the Fixed-Satellite Service in the Band Between 17.3 and $\mathbf{1 7 . 8} \mathbf{~ G H z}$ in Region 2

5.1 Notification

5.1.1 Whenever an administration intends to bring into use a frequency assignment to a transmitting earth station or receiving space station in the fixed-satellite service in the band between 17.3 and 17.8 GHz , it shall notify this frequency assignment to the Board. For this purpose, the notifying administration shall apply the following provisions.
5.1.2 For any notification under 5.1.1, an individual notice for each frequency assignment shall be drawn up as prescribed in Annex 2 to this Appendix, the various sections of which specify the basic characteristics to be provided as appropriate. It is recommended that the notifying administration should also supply any other data it may consider useful.
5.1.3 Each notice must reach the Board not earlier than three years before the date on which the frequency assignment is to be brought into use. In any case, the notice must reach the Board not later than three months before that date ${ }^{1}$.

[^54]5.1.4 Any frequency assignment the notice of which reaches the Board after the applicable period specified in 5.1.3 shall, where it is to be recorded, bear a remark in the Master Register to indicate that it is not in conformity with 5.1.3.
5.1.5 Any notice made under 5.1.1 which does not contain the characteristics specified in Annex 2 to this Appendix shall be returned by the Board immediately by airmail to the notifying administration with the relevant reasons.
5.1.6 Upon receipt of a complete notice, the Board shall include its particulars, with the date of receipt, in its weekly circular which shall contain the particulars of all such notices received since the publication of the previous circular.
5.1.7 The circular shall constitute the acknowledgement to the notifying administration of the receipt of a complete notice.
5.1.8 Complete notices shall be considered by the Board in order of receipt. The Board shall not postpone its finding unless it lacks sufficient data to reach a decision; moreover, the Board shall not act upon any notice which has a technical bearing on an earlier notice still under consideration by the Board until it has reached a finding with respect to such earlier notice.

5.2 Examination and recording

5.2.1 The Board shall examine each notice:
a) with respect to its conformity with the Convention and the relevant provisions of the Radio Regulations (with the exception of those relating to b), c), and d) below); and
b) with respect to its conformity with the Plan; or
c) with respect to its conformity with the Plan, however having characteristics differing from those in the Plan in one or more of the following aspects:

- use of a reduced e.i.r.p.,
- use of a reduced coverage area entirely situated within the coverage area appearing in the Plan,
- use of other modulating signals in accordance with the provisions of 3.1.3 of Annex 5 of Appendix 30 (Orb-85),
- use of an orbital position under the conditions specified in paragraph B of Annex 7 of Appendix 30 (Orb-85),
- use of an antenna diameter greater than 5 metres without increasing the on-axis e.i.r.p.,
- use of an antenna diameter greater than 5 metres resulting in a greater on-axis e.i.r.p. if the orbital separation with any other space station is greater than 0.5°; or
d) with respect to its conformity with the provisions of Resolution 42 (Orb-85).
5.2.2 Where the Board reaches a favourable finding with respect to 5.2.1 a) and 5.2.1 b), the frequency assignment of an administration shall be recorded in the Master Register. The date of receipt of the notice by the Board shall be entered in Column 2d. In relations between administrations, all frequency assignments brought into use in conformity with the Plan and recorded in the Master Register shall be considered to have the same status irrespective of the dates entered in Column 2d for such frequency assignments.
5.2.2.1 Where the Board reaches a favourable finding with respect to 5.2.1 a) and 5.2.1 c) the frequency assignment shall be recorded in the Master Register. The date of receipt of the notice by the Board shall be entered in Column 2d. In relations between administrations, all frequency assignments brought into use in conformity with the Plan and recorded in
the Master Register shall be considered to have the same status irrespective of the dates entered in Column 2d for such frequency assignments. When recording these assignments, the Board shall indicate by an appropriate symbol the characteristics having a value different from that appearing in the Plan.
5.2.2.2 Where the Board reaches a favourable finding with respect to 5.2.1 a), but an unfavourable finding with respect to 5.2.1. b) and 5.2.1 c), it shall examine the notice with respect to the successful application of the provisions of Resolution 42 (Orb-85). A frequency assignment for which the provisions of Resolution 42 (Orb-85) have been successfully applied shall be recorded in the Master Register with an appropriate symbol to indicate its interim status. The date of receipt of the notice by the Board shall be entered in Column 2d. In relations between administrations all frequency assignments brought into use following the successful application of the provisions of Resolution 42 (Orb-85) and recorded in the Master Register shall be considered to have the same status irrespective of the dates entered in Column 2d for such frequency assignments.
5.2.3 Whenever a frequency assignment is recorded in the Master Register, the finding reached by the Board shall be indicated by a symbol in Column 13a.
5.2.4 Where the Board reaches an unfavourable finding with respect to 5.2.1 a), 5.2.1 b) and 5.2.1 c), the notice shall be returned immediately by airmail to the notifying administration with the reasons of the Board for this finding and with such suggestions as the Board may be able to offer with a view to a satisfactory solution of the problem.
5.2.5 Where the notifying administration resubmits the notice and the finding of the Board becomes favourable with respect to the appropriate parts of 5.2.1, the notice shall be treated as in 5.2.2, 5.2.2.1 or 5.2.2.2 as appropriate.
5.2.6 If the notifying administration resubmits the notice without modification and insists on its reconsideration, and if the Board's finding with respect to 5.2.1 remains unfavourable, the notice is returned to the notifying administration in accordance with 5.2.4. In this case, the notifying administration undertakes not to bring into use the frequency assignment until the condition specified in 5.2.5 is fulfilled.
5.2.7 If a frequency assignment notified in advance of bringing into use in conformity with 5.1 .3 has received a favourable finding by the Board with respect to the provisions of 5.2 .1 , it shall be entered provisionally in the Master Register with a special symbol in the Remarks Column indicating the provisional nature of that entry.
5.2.8 When the Board has received confirmation that the frequency assignment has been brought into use, the Board shall remove the symbol in the Master Register.
5.2.9 The date in Column 2 c shall be the date of bringing into use notified by the administration concerned. It is given for information only.

5.3 Cancellation of entries in the Master Register

5.3.1 If an administration has not confirmed the bringing into use of a frequency assignment under 5.2.8, the Board will make inquiries of the administration not earlier than six months after the expiry of the period specified in 5.1.3. On receipt of the relevant information, the Board will either modify the date of coming into use or cancel the entry.
5.3.2 If the use of any recorded frequency assignment is permanently discontinued, the notifying administration shall so inform the Board within three months, whereupon the entry shall be removed from the Master Register.

ARTICLE 6

Procedure Concerning Notification and Recording in the Master Register of Frequency Assignments to Terrestrial Stations in Region 2 in the Band 17.7 - 17.8 GHz, when Frequency Assignments to Feeder-Link Earth Stations for the Broadcasting-Satellite Service in Conformity with the Region 2 Plan Are Involved

6.1 Administrations planning to implement assignments for terrestrial stations in the $17.7-17.8 \mathrm{GHz}$ band should evaluate the level of interference which might be caused by the closest feeder-link earth station located on the border of the territory of another administration. In cases where the entry in the Plan contains information on specific earth stations, the level of interference shall be assessed on the basis of coordination contours calculated in accordance with Appendix 28 to the Radio Regulations. Should the administration concerned find that interference may be caused by the feeder-link earth stations to its planned terrestrial station, it may request the administration responsible for the feeder-link earth station to indicate the planned actual locations of the feeder-link earth stations.
6.2 An administration which receives a request under 6.1 shall, within a period of three months, indicate the actual locations of its feeder-link earth stations and communicate them to the Board in order to update the Plan.
6.3 If, at the end of a period of three months, the administration responsible for the terrestrial station does not receive a reply, it may request the assistance of the Board.
6.4 If the administration responsible for the feeder-link earth stations does not communicate to the Board, within a period of three months, the actual locations of its feeder-link earth stations, this administration may implement its feeder-link earth station provided it does not cause harmful interference to the terrestrial station under consideration.

ARTICLE 7

Procedure Concerning Notification and Recording in the Master Register of Frequency Assignments to Stations in the Fixed-Satellite Service (Space-to-Earth) in Region 2 in the Band 17.7 - 17.8 GHz , when Frequency Assignments to Feeder-Link Stations for the Broadcasting-Satellite Service Appearing in the Region 2 Plan Are Involved

7.1 The provisions of Articles 11 and 13 and Appendix 29 of the Radio Regulations are applicable to transmitting space stations in the fixed-satellite service of Region 2 in the band $17.7-17.8 \mathrm{GHz}$ together with the provisions of Annex 4 to this Appendix, except that in relationship with feeder-link stations in Region 2, the threshold value mentioned in Appendix 29 to the Radio Regulations is replaced by those given in Annex 4 to this Appendix.
7.2 Administrations planning to implement assignments for receiving earth stations in the $17.7-17.8 \mathrm{GHz}$ band in the fixed-satellite service (space-to-Earth) should evaluate the level of interference that might be caused by the closest feeder-link earth station located on the border of the territory of another administration. In cases where the entry in the Plan or the Master Register contains information on specific earth stations, the level of interference shall be assessed on the basis of coordination contours calculated in accordance with Annex 4 to this Appendix. Should this administration find that interference may be caused by the feeder-link earth stations to its planned fixed-satellite earth station, it may request the administration responsible for the feeder-link earth station to indicate the planned actual locations of the feeder-link earth stations.
7.3 An administration which receives a request under 7.2 shall, within a period of three months, indicate the actual locations of its earth stations and communicate it to the Board in order to update the Plan.
7.4 If, at the end of the period of three months, the administration responsible for the fixed-satellite receiving earth station does not receive a reply, it may request the assistance of the Board in this matter.
7.5 If the administration responsible for the feeder-link earth stations does not communicate to the Board, within a period of three months, the actual locations of its feeder-link earth stations, this administration may implement its feeder-link earth station provided it does not cause harmful interference to the fixed-satellite earth station under consideration.

ARTICLE 8

Miscellaneous Provisions Relating to the Procedures

Section I. Studies and Recommendations

8.1.1 If it is requested by any administration, the Board, using such means at its disposal as are appropriate in the circumstances, shall conduct a study of cases of alleged contravention or non-observance of these provisions, or of harmful interference.
8.1.2 The Board shall thereupon prepare and forward to the administrations concerned a report containing its findings and recommendations for the solution of the problem.
8.1.3 On receiving the Board's recommendations for the solution of the problem, an administration shall promptly acknowledge the receipt by telegram and shall subsequently indicate the action it intends to take. In cases when the Board's suggestions or recommendations are unacceptable to the administrations concerned, further efforts should be made by the Board to find an acceptable solution to the problem.
8.1.4 In a case where, as a result of a study, the Board submits to one or more administrations suggestions or recommendations for the solution of a problem, and where no answer has been received from one or more of these
administrations within a period of four months, the Board shall consider that the suggestions or recommendations concerned are unacceptable to the administrations which did not answer. If it was the requesting administration which failed to answer within this period, the Board shall close the study.

Section II. Miscellaneous Provisions

8.2.1 If it is requested by any administration, particularly by an administration of a country in need of special assistance, the Board, using such means at its disposal as are appropriate in the circumstances, shall render the following assistance:
a) computation necessary in the application of Annexes 1,3 and 4 to this Appendix;
b) any other assistance of a technical nature for completion of the procedures in this Appendix.
8.2.2 In making a request to the Board under paragraph 8.2.1, the administration shall furnish the Board with the necessary information.

ARTICLE 9

The Plan for the Feeder Links in the Fixed-Satellite Service in the Frequency Band 17.3 - $\mathbf{1 7 . 8} \mathbf{~ G H z}$ in Region 2

9.1
 COLUMN HEADINGS OF THE PLAN

Col. 1 Beam identification (Column 1 contains the symbol designating the country or the geographical area taken from Table B1 of the Preface to the International Frequency List followed by the symbol designating the service area).

Col. 2 Nominal orbital position, in degrees and hundredths of a degree.
Col. 3 Channel number (see Table 2 showing channel numbers and corresponding assigned frequencies).
(Rev. 1986)

Col. 4 Boresight geographical coordinates, in degrees and hundredths of a degree.

Col. 5 Antenna beamwidth. This column contains two figures corresponding to the major axis and the minor axis respectively of the elliptical cross-section half-power beam, in degrees and hundredths of a degree.

Col. 6 Orientation of the ellipse determined as follows: in a plane normal to the beam axis, the direction of a major axis of the ellipse is specified as the angle measured anti-clockwise from a line parallel to the equatorial plane to the major axis of the ellipse to the nearest degree.

Col. $7 \quad$ Polarization ($1=$ direct, $2=$ indirect $).{ }^{1}$
Col. 8 Earth station e.i.r.p. in the direction of maximum radiation, in dBW.

Col. 9 Location of earth station(s) in the band 17.7-17.8 GHz.
9.1 Geographical coordinates.
9.2 Antenna characteristics.
9.3 Elevation angle of the horizon around the earth station using the band $17.7-17.8 \mathrm{GHz}$.

Col. 10 Remarks.
9.2

TEXT FOR SYMBOLS IN REMARKS COLUMN OF THE PLAN

1. Fast roll-off space station receiving antenna as defined in Annex 3 (Section 3.6.3) to this Appendix.

[^55]2. Television standard with 625 lines using greater video bandwidth and necessary bandwidth of 27 MHz .
3. This assignment will be implemented only if it does not hinder the development and subsequent introduction of a feeder-link Plan for Region 1.
4. This assignment may be utilized in the geographical area of Anguilla (AIA) (which is in the beam area).
5. Feeder-link earth stations for this assignment may also be located in the territories of Puerto Rico and the United States Virgin Islands. Such operation shall not cause more interference nor require more protection than the assignment under the Plan.
6. Feeder-link earth stations for this assignment may also be located in the States of Alaska and Hawaii. Such operation shall not cause more interference nor require more protection than the assignment under the Plan.
7. The feeder-link earth station for this assignment may also be located at the point with geographical coordinates $3^{\circ} 31^{\prime}$ West, $48^{\circ} 46^{\prime}$ North. Such operation shall not cause more interference nor require more protection than the assignment under the Plan.
8. Feeder-link earth stations for this assignment may also be located at the points with the following geographical coordinates:

$47^{\circ} 55^{\prime}$ West	$15^{\circ} 47^{\prime}$ South	$34^{\circ} 53^{\prime}$ West	$08^{\circ} 04^{\prime}$ South
$43^{\circ} 13^{\prime}$ West	$22^{\circ} 55^{\prime}$ South	$60^{\circ} 02^{\prime}$ West	$03^{\circ} 06^{\prime}$ South
$46^{\circ} 38^{\prime}$ West	$23^{\circ} 33^{\prime}$ South	$38^{\circ} 31^{\prime}$ West	$12^{\circ} 56^{\prime}$ South
$51^{\circ} 13^{\prime}$ West	$30^{\circ} 02^{\prime}$ South	$49^{\circ} 15^{\prime}$ West	$16^{\circ} 40^{\prime}$ South

Such operation shall not cause more interference nor require more protection than the assignment under the Plan.

9/GR . . . This assignment is part of a group, the number of which follows the symbol. The group consists of the beams and has the number of channels assigned to it as indicated in the Table 1.
a) The overall equivalent protection margin to be used for the application of Article 4 and Resolution 42 (Orb-85) shall be calculated on the following basis:

- for the calculation of interference to assignments that are part of a group, only the interference contributions from assignments that are not part of the same group are to be included; and
- for the calculation of interference from assignments belonging to a group to assignments that are not part of that same group, only the worst interference contribution from that group shall be used on a test point to test point basis.
b) If an administration notifies the same frequency in more than one beam of a group for use at the same time, the aggregated C / I produced by all emissions from that group shall not exceed the C / I calculated on the basis of a) above.

TABLE 1

		Number of channels assigned to the group
Group		

Country symbols

1. For the explanation of symbols designating countries or geographical areas in Region 2, see the Preface to the International Frequency List.
2. One additional symbol, CRB, has been created for the purposes of the 1983 Conference only, to designate a geographical area in the Caribbean Area. The five Caribbean beams are identified as follows:

CRBBAH01, CRBBER01, CRBBLZ01, CRBEC001 and CRBJMC01
and are intended collectively to provide coverage for the following countries or geographical areas: AIA, ATG, BAH, BER, BLZ, BRB, CYM, DMA, GRD, GUY, JMC, LCA, MSR, SCN, SUR, TCA, TRD, VCT and VRG to be so used if approved by them.

TABLE 2

TABLE SHOWING CORRESPONDENCE BETWEEN CHANNEL NUMBERS AND ASSIGNED FREQUENCIES

Channel No.	Assigned frequency (MHz)	Channel No.	Assigned frequency (MHz)
1	17324.00	17	17557.28
2	17338.58	18	17571.86
3	17353.16	19	17586.44
4	17367.74	20	17601.02
5	17382.32	21	17615.60
6	17396.90	22	17630.18
7	17411.48	23	17644.76
8	17426.06	24	17659.34
9	17440.64	25	17673.92
10	17455.22	26	17688.50
11	17469.80	27	17703.08
12	17484.38	28	17717.66
13	17498.96	29	17732.24
14	17513.54	30	17746.82
15	17528.12	31	17761.40
16	17542.70	32	17775.98

(Rev. 1986)

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	1	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	1	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	1	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGSUR04	-94.20	1	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
B CE311	-64.20	1	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	1	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	1	-50.97	- 15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	1	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	1	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B N0611	-74.20	1	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	1	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B N0811	-74.20	1	-68.76	-4.71	2.37	1.65	73	2	87.4	89/GR8
B SU111	-81.20	1	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	1	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	1	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	1	-44.00	-16.87	3.20	1.96	58	1	87.4	8 9/GR9
B AHIFRB1	-87.20	1	-76.06	24.16	1.81	0.70	142	1	87.4	
BERBERMU	-96.20	1	-64.77	32.32	0.60	0.60	90	2	87.4	
B ERBER02	-31.00	1	-64.77	32.32	0.60	0.60	90	1	87.4	23
B OLAND01	- 115.20	1	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CAN01101	- 138.20	1	- 114.60	51.08	7.28	1.10	160	1	87.4	9/GR10
CAN01201	- 138.20	1	-114.60	51.08	7.28	1.10	160	1	87.4	9/GR10
CAN01202	-7270	1	-81.34	50.02	7.96	2.55	5	1	87.4	
CAN01203	-129.20	1	-113.02	51.08	7.47	1.26	162	1	87.4	9/GR12

17324,00 MHz (1)

CAN01303	-12920	1	-113.02	51.08	7.47	1.26	162	1	87.4	$9 / G R 12$
CAN01304	-91.20	1	-86.71	50.48	8.58	2.54	178	1	87.4	$9 / G R 13$
CAN01403	-129.20	1	-113.02	51.08	7.47	1.26	162	1	87.4	$9 /$ GR12
CAN01404	-91.20	1	-86.71	50.48	8.58	2.54	178	1	87.4	$9 /$ GR13
CAN01405	-82.20	1	-84.11	50.20	8.31	2.58	1	1	87.4	$9 /$ GR14
CAN01504	-91.20	1	-86.71	50.48	8.58	254	178	1	874	$9 /$ GR13
CAN01505	-82.20	1	-84.11	5020	8.31	258	1	1	874	$9 /$ GR14
CAN01605	-8220	1	-84.11	50.20	8.31	2.58	1	1	87.4	$9 / G R 14$
CAN01606	-70.70	1	-8077	50.03	7.88	2.53	6	1	87.4	
CHLCONT5	-10620	1	-72.23	-35.57	2.60	0.68	55	1	87.4	$9 /$ GR17
CHLPAC02	-106.20	1	-80.06	-30.06	1.36	0.68	69	1	87.4	$9 /$ GR17
CLMAND01	-11520	1	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
CLM00001	-10320	1	-74.50	587	3.98	1.96	118	1	87.4	
EQACAND1	-115.20	1	-7137	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
EQAGAND1	-115.20	1	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
FLKANT01	-57.20	1	-44.54	-60.13	3.54	0.68	12	1	87.4	2
FLKFALKS	-31.00	1	-59.90	-51.64	0.60	0.60	90	1	87.4	23
GRD00002	-42.20	1	-61.58	12.29	0.60	0.60	90	1	87.4	
HWA00002	-166.20	1	-109.94	36.86	6.04	1.11	137	1	87.4	$9 /$ GR1
HWA00003	-175.20	1	-116.23	37.50	5.60	0.75	132	1	87.4	$9 /$ GR2
MEX01NTE	-78.20	1	-105.81	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	1	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEX02NTE	-136.20	1	-107.21	26.31	384	1.55	148	1	87.4	1
MEX02SUR	-127.20	1	-96.39	19.88	3.18	1.87	157	1	87.4	1

17324,00 MHz

1	2	3	4		5		6	7	8	9
PAQPAC01	-106.20	1	-109 18	-27.53	0.60	0.60	90	1	87.4	9/GR17
PRG00002	-99.20	1	-58.66	-23.32	1.45	1.04	76	1	87.4	
PRUAND02	- 115.20	1	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	- 101.20	1	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
PTRVIR02	- 110.20	1	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
SPMFRAN3	-53.20	1	-67.24	47.51	3.16	0.79	7	1	87.4	27
TRD00001	-84.70	1	-61.23	10.70	0.60	0.60	90	1	87.4	
URG00001	-71.70	1	-56.22	-32.52	1.02	0.89	11	1	87.4	
USAEH001	-61.70	1	-87.57	36.17	6.42	3.49	12	1	87.4	156
USAEH002	- 101.20	1	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
USAEH003	- 110.20	1	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
USAEH004	-119.20	1	-96.45	36.21	8.20	3.12	165	1	87.4	156
USAPSA02	- 166.20	1	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
USAPSA03	- 175.20	1	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
USAWH101	- 148.20	1	- 111.02	40.68	4.36	2.15	162	1	87.4	
USAWH102	- 157.20	1	- 113.07	40.74	3.72	1.78	149	1	87.4	
VENAND03	-115.20	1	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
VRG00001	-79.70	1	-64.37	18.48	0.60	0.60	90	1	87.4	4

17338,58 MHz (2)

ALS00002	-165.80	2	- 109.83	36.82	6.03	1.12	137	2	874	9/GR1
ALS00003	- 174.80	2	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	2	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	2	-62.85	-29.80	3.24	2.89	47	2	87.4	
ATNBEAM1	-52.80	2	-66.44	14.87	1.83	0.68	39	2	87.4	
B CE311	-63.80	2	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	2	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	2	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	2	-50.71	-15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	2	-53.11	-2.98	2.42	2.15	107	2	87.4	$89 / \mathrm{GR} 7$
B NO611	- 73.80	2	-59.60	-1162	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	2	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	- 73.80	2	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	2	-45.99	-19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	2	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	2	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	2	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	2	-43.99	-16.97	3.27	192	59	2	87.4	8 9/GR9
CAN01101	- 137.80	2	-11410	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01201	- 137.80	2	-11410	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	-72.30	2	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	- 128.80	2	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	-128.80	2	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	2	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13

1	2	3	4		5		6	7	8	9
CAN01403	- 128.80	2	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01404	-90.80	2	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01405	-81.80	2	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01504	-90.80	2	-86.57	50.48	8.59	254	178	2	87.4	9/GR13
CAN01505	-81.80	2	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01605	-81.80	2	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01606	-70.30	2	-80.64	50.02	7.88	2.52	6	2	87.4	
CHLCONT4	-105.80	2	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	- 105.80	2	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	2	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	2	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	2	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	2	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	2	- 79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
CTR00201	-130.80	2	-84.33	9.67	0.82	0.68	119	2	87.4	
EQAC0001	-94.80	2	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	2	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GUY00302	-33.80	2	-59.07	4.77	1.43	0.85	91	2	87.4	
HNDIFRB2	-107.30	2	-86.23	15.16	1.14	0.85	8	1	87.4	
HTIO0002	-83.30	2	-73.28	18.96	0.82	0.68	11	2	87.4	
HWA00002	-165.80	2	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
HWA00003	- 174.80	2	-11610	37.47	5.60	0.76	132	2	87.4	9/GR2
MEX01NTE	-77.80	2	- 105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	-135.80	2	-107.36	26.32	3.80	1.57	149	2	87.4	1

17338,58 MHz (2)

MEX02SUR	-126.80	2	-96.39	19.88	3.19	1.87	158	2	87.4	1
PRU00004	-85.80	2	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	2	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
PTRVIR02	-109.80	2	-95.47	36.38	8.10	3.45	168	2	87.4	$1699 /$ GR21
TCAOO001	-115.80	2	-71.79	21.53	0.60	0.60	90	2	87.4	
USAEH001	-6130	2	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	2	-93.85	3631	8.26	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	2	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	2	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	2	-109.83	36.82	6.03	1.12	137	2	874	$9 /$ GR1
USAPSA03	-17480	2	-116.10	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	2	-111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	-156.80	2	-113.01	40.71	3.74	1.79	149	2	87.4	
VCTO0001	-79.30	2	-61.18	13.23	0.60	0.60	90	2	87.4	
VEN11VEN	-103.80	2	-66.79	6.90	2.50	1.77	122	2	87.4	

$\varepsilon \varepsilon-\forall 0 \varepsilon d \forall$

1	2	3	4				6	7	8	9
ALS00002	-166.20	3	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	-175.20	3	-116.23	3750	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	3	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	3	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	3	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	3	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
ATGSJN01	- 79.70	3	-61.79	17.07	0.60	0.60	90	1	87.4	
B CE311	-64.20	3	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	3	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	3	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	3	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	3	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	3	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	3	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B NO811	-74.20	3	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-8120	3	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	3	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	3	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	3	-44.00	-16.87	320	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	3	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	- 115.20	3	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
B OL00001	-87.20	3	-64.61	-16.71	2.52	2.19	85	1	87.4	
B RB00001	-92.70	3	-59.85	12.93	0.60	0.60	90	2	87.4	
CAN01101	- 138.20	3	-114.60	51.08	7.28	1.10	160	1	87.4	9/GR10

17353,16 MHz (3)

CAN01201	-138.20	3	-114.60	51.08	7.28	1.10	160	1	87.4	$9 /$ GR10
CAN01202	-72.70	3	-81.34	50.02	7.96	2.55	5	1	87.4	
CAN01203	-129.20	3	-113.02	51.08	7.47	1.26	162	1	87.4	$9 /$ GR12
CAN01303	-129.20	3	-113.02	51.08	747	1.26	162	1	87.4	$9 /$ GR12
CAN01304	-91.20	3	-86.71	50.48	8.58	2.54	178	1	87.4	$9 /$ GR13
CAN01403	-129.20	3	-113.02	51.08	7.47	1.26	162	1	87.4	$9 /$ GR12
CAN01404	-91.20	3	-86.71	50.48	8.58	2.54	178	1	87.4	$9 /$ GR13
CAN01405	-82.20	3	-84.11	50.20	8.31	2.58	1	1	87.4	$9 /$ GR14
CAN01504	-91.20	3	-86.71	50.48	8.58	2.54	178	1	87.4	$9 /$ GR13
CAN01505	-82.20	3	-84.11	50.20	8.31	2.58	1	1	87.4	$9 /$ GR14
CAN01605	-82.20	3	-84.11	50.20	8.31	2.58	1	1	87.4	$9 /$ GR14
CAN01606	-70.70	3	-80.77	5003	7.88	2.53	6	1	874	
CHLCONT5	-106.20	3	-72.23	-35.57	2.60	0.68	55	1	87.4	$9 /$ GR17
CHLPAC02	-106.20	3	-80.06	-3006	1.36	0.68	69	1	87.4	$9 /$ GR17
CLMAND01	-115.20	3	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
CLM00001	-103.20	3	-74.50	5.87	3.98	1.96	118	1	87.4	
CUB00001	-89.20	3	-79.81	21.62	2.24	0.68	168	1	87.4	
EQACAND1	-115.20	3	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
EQAGAND1	-115.20	3	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 / G R 5$
GRD00002	-42.20	3	-61.58	12.29	0.60	0.60	90	1	87.4	
GRD00059	-57.20	3	-61.58	12.29	0.60	0.60	90	1	87.4	
GRLDNK01	-53.20	3	-44.89	66.56	2.70	0.82	173	1	87.4	2
HWA00002	-166.20	3	-109.94	36.86	6.04	1.11	137	1	87.4	$9 /$ GR1
HWA00003	-175.20	3	-116.23	37.50	5.60	0.75	132	1	87.4	$9 /$ GR2

17353,16 MHz (3)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

17367,74 MHz (4)

ALS00002	-165.80	4	- 109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	4	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	4	-63.96	-30.01	386	1.99	48	2	87.4	
ARGNORT5	-54.80	4	-62.85	-29.80	3.24	2.89	47	2	87.4	
B CE311	-63.80	4	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	4	-4026	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	4	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	4	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	4	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	-73.80	4	-59.60	- 11.62	2.86	1.69	165	1	87.4	8 9/GR8
B N0711	-7380	4	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	4	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	-101.80	4	-45.99	- 19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	4	-51.10	-25.64	2.76	1.06	50	2	874	8 9/GR6
B SU112	-44.80	4	-50.76	-25.62	2.47	1.48	56	2	874	8 9/GR9
B SU211	-80.80	4	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	4	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	- 137.80	4	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01201	-137.80	4	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	-72.30	4	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	- 128.80	4	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	- 128.80	4	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	4	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01403	- 128.80	4	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12

17367,74 MHz (4)

1	2	3	4		5		6	7	8	9
CAN01404	-90.80	4	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01405	-81.80	4	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01504	-90.80	4	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01505	-81.80	4	-83.80	50.22	8.35	2.57		2	87.4	9/GR14
CAN01605	-81.80	4	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01606	-70.30	4	-80.64	50.02	7.88	2.52	6	2	87.4	
CHLCONT4	-105.80	4	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	- 105.80	4	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	4	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	4	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ 01	-92.30	4	-88.61	17.26	064	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	4	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	4	- 79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
CYM00001	- 115.80	4	-80.58	19.57	0.60	0.60	90	2	87.4	
DOMIFRB2	-83.30	4	- 70.51	18.79	0.98	0.69	167	2	87.4	
EQAC0001	-94.80	4	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	4	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GUFMGG02	-52.80	4	-56.42	8.47	4.16	0.81	123	2	87.4	27
HWA00002	-165 80	4	- 109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
HWA00003	- 174.80	4	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
JMC00005	-33.80	4	-77.27	18.12	0.60	0.60	90	2	87.4	
LCAIFRB1	-79.30	4	-61.15	13.90	060	0.60	90	2	87.4	
MEX01NTE	-77.80	4	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	- 135.80	4	-107.36	26.32	3.80	1.57	149	2	87.4	1

17367,74 MHz (4)

MEX02SUR	-126.80	4	-96.39	19.88	3.19	1.87	158	2	87.4	1
PRU00004	-85.80	4	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	4	-9385	36.31	8.26	3.55	171	2	87.4	16 9/GR20
PTRVIR02	-109.80	4	-95.47	36.38	8.10	3.45	168	2	87.4	16 9/GR21
SLVIFRB2	-107.30	4	-88.91	13.59	0.60	0.60	90	1	87.4	
USAEH001	-61.30	4	-87.53	3618	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	4	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
USAEH003	- 109.80	4	-9547	36.38	8.10	3.45	168	2	874	16 9/GR21
USAEH004	-118.80	4	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	4	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
USAPSA03	- 174.80	4	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
USAWH101	- 147.80	4	- 111.01	40.67	4.38	2.15	162	2	87.4	
USAWH 102	- 156.80	4	- 113.01	40.71	3.74	1.79	149	2	87.4	
VEN11VEN	- 103.80	4	-66.79	6.90	2.50	1.77	122	2	87.4	

1	2	3	4		5		6	7	8	9
ALS 00002	-166.20	5	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	5	- 116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	5	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGSUR04	-94.20	5	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
B CE311	-64.20	5	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	5	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	5	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-4520	5	-50.71	- 15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	5	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	5	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	5	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B NO811	-74.20	5	-68.76	-4.71	2.37	165	73	2	87.4	8 9/GR8
B SU111	-81.20	5	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	5	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	5	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	5	-44.00	- 16.87	3.20	1.96	58	1	87.4	8 9/GR9
B AHIFRB1	-87.20	5	-76.06	24.16	1.81	0.70	142	1	87.4	
BERBERMU	-96.20	5	-64.77	32.32	0.60	0.60	90	2	87.4	
B ERBER02	-31.00	5	-64.77	32.32	0.60	0.60	90	,	87.4	23
B OLAND01	- 115.20	5	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CAN01101	- 138.20	5	- 114.60	51.08	7.28	1.10	160	1	874	9/GR10
CAN01201	- 138.20	5	- 114.60	51.08	7.28	1.10	160		87.4	9/GR10
CAN01202	-72.70	5	-81.34	50.02	7.96	2.55	5	1	87.4	
CAN01203	- 129.20	5	-113.02	5108	7.47	1.26	162	1	87.4	9/GR12

17382,32 MHz (5)

CAN01303	-129.20	5	-11302	51.08	7.47	1.26	162	1	874	$9 / \mathrm{GR} 12$
CAN01304	-91.20	5	-86.71	50.48	8.58	2.54	178	1	87.4	$9 / \mathrm{GR} 13$
CAN01403	-129.20	5	-113.02	51.08	7.47	1.26	162	1	87.4	$9 / \mathrm{GR} 12$
CAN01404	-91.20	5	-86.71	50.48	8.58	2.54	178	1	87.4	$9 / \mathrm{GR} 13$
CAN01405	-82.20	5	-84.11	50.20	8.31	2.58	1	1	87.4	$9 / \mathrm{GR} 14$
CAN01504	-91.20	5	-86.71	50.48	8.58	2.54	178	1	87.4	$9 / \mathrm{GR} 13$
CAN01505	-82.20	5	-84.11	50.20	8.31	2.58	1	1	87.4	$9 / \mathrm{GR} 14$
CAN01605	-82.20	5	-84.11	50.20	831	2.58	1	1	87.4	$9 / \mathrm{GR} 14$
CAN01606	-70.70	5	-80.77	50.03	7.88	2.53	6	1	87.4	
CHLCONT5	-106.20	5	-72.23	-3557	2.60	0.68	55	1	87.4	$9 / \mathrm{GR} 17$
CHLPAC02	-106.20	5	-80.06	-30.06	1.36	0.68	69	1	87.4	$9 / \mathrm{GR} 17$
CLMAND01	-115.20	5	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
CLM00001	-103.20	5	-74.50	5.87	3.98	1.96	118	1	87.4	
EQACAND1	-115.20	5	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
EQAGAND1	-115.20	5	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
FLKANT01	-57.20	5	-44.54	-60.13	3.54	0.68	12	1	87.4	2
FLKFALKS	-31.00	5	-59.90	-5164	0.60	0.60	90	1	87.4	23
GRD00002	-42.20	5	-61.58	1229	0.60	0.60	90	1	87.4	
HWA00002	-166.20	5	-109.94	3686	6.04	1.11	137	1	87.4	$9 /$ GR1
HWA00003	-175.20	5	-116.23	3750	5.60	0.75	132	1	87.4	$9 / G R 2$
MEX01NTE	-78.20	5	-10581	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	5	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEX02NTE	-136.20	5	-107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	-127.20	5	-96.39	1988	3.18	1.87	157	1	87.4	1

17382,32 MHz (5)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

17396,90 MHz (6)

ALS00002	-165.80	6	- 109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	6	-11610	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	6	-6396	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	- 54.80	6	-62.85	-29.80	3.24	2.89	47	2	87.4	
ATNBEAM1	-52.80	6	-66.44	14.87	1.83	0.68	39	2	87.4	
B CE311	-63.80	6	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	6	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	6	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-4480	6	-50 71	-1530	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	6	-5311	-2.98	2.42	215	107	2	87.4	8 9/GR7
B NO611	-73.80	6	-59.60	- 11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-7380	6	-60.70	-1.78	3.54	178	126	1	87.4	8 9/GR8
B NO811	-7380	6	-68.75	-4.71	2.37	1.65	73	1	874	8 9/GR8
B SE911	-10180	6	-4599	-19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	6	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	6	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	6	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	6	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	- 137.80	6	- 114.10	50.92	7.22	111	160	2	87.4	9/GR10
CAN01201	-137.80	6	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	-72.30	6	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	- 128.80	6	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	- 128.80	6	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	6	-86.57	50.48	8.59	254	178	2	87.4	9/GR13

17396,90 MHz (6)

1	2	3	4		5		6	7	8	9
CAN01403	- 128.80	6	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01404	-90.80	6	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01405	-81.80	6	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01504	-90.80	6	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01505	-81.80	6	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01605	-81.80	6	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01606	-70.30	6	-80 64	50.02	7.88	2.52	6	2	87.4	
CHLCONT4	-105.80	6	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	- 105.80	6	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	6	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	6	-64.76	3213	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	6	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	6	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	6	- 79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
CTR00201	- 130.80	6	-84.33	9.67	0.82	0.68	119	2	87.4	
EQAC0001	-94.80	6	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	6	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GUY00302	-33.80	6	-59.07	4.77	1.43	0.85	91	2	87.4	
HNDIFRB2	-107.30	6	-86.23	15.16	1.14	0.85	8	1	87.4	
HTI00002	-83.30	6	-73.28	1896	082	0.68	11	2	87.4	
HWA00002	-165.80	6	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
HWA00003	- 174.80	6	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
MEX01NTE	-77.80	6	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	-135.80	6	-107.36	26.32	3.80	1.57	149	2	87.4	1

17396,90 MHz (6)

MEX02SUR	-126.80	6	-96.39	19.88	3.19	1.87	158	2	874	1
PRU00004	-8580	6	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	6	-93.85	36.31	8.26	3.55	171	2	87.4	169 9/GR20
PTRVIR02	-10980	6	-95.47	3638	8.10	3.45	168	2	87.4	1699 GR21
TCA00001	-11580	6	-71.79	2153	0.60	060	90	2	874	
USAEH001	-61.30	6	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	6	-9385	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	6	-95.47	36.38	8.10	3.45	168	2	874	$169 /$ GR21
USAEH004	-118.80	6	-96.42	3621	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	6	-109.83	36.82	6.03	1.12	137	2	87.4	$9 /$ GR1
USAPSA03	-174.80	6	-116.10	37.47	5.60	0.76	132	2	874	$9 / G R 2$
USAWH101	-147.80	6	-111.01	40.67	4.38	215	162	2	87.4	
USAWH102	-156.80	6	-113.01	40.71	3.74	1.79	149	2	87.4	
VCT00001	-79.30	6	-61.18	1323	060	060	90	2	87.4	
VEN11VEN	-103.80	6	-66.79	6.90	2.50	1.77	122	2	87.4	

17411,48 MHz (7)

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	7	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	7	- 116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	7	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	7	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	7	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	7	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
ATGSJN01	-79.70	7	-61.79	17.07	0.60	0.60	90	1	87.4	
B CE311	-64.20	7	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	7	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	7	-50.97	- 15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	7	-50.71	- 15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	7	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	7	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	7	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B N0811	-74.20	7	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-8120	7	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	7	-50.75	-25.62	247	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	7	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	7	-44.00	- 16.87	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	7	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	- 115.20	7	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
B OL00001	-87.20	7	-64.61	-16.71	2.52	2.19	85	1	87.4	
B RB00001	-92.70	7	-59.85	12.93	0.60	0.60	90	2	87.4	
CAN01101	- 138.20	7	- 114.60	51.08	7.28	1.10	160	1	87.4	9/GR10

17411,48 MHz (7)

CAN01201	-138.20	7	-11460	51.08	7.28	1.10	160	1	87.4	$9 /$ GR10
CAN01202	-72.70	7	-81.34	50.02	7.96	2.55	5	1	87.4	
CAN01203	-129.20	7	-113.02	51.08	7.47	1.26	162	1	87.4	$9 /$ GR12
CAN01303	-129.20	7	-113.02	51.08	7.47	1.26	162	1	87.4	9/GR12
CAN01304	-91.20	7	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01403	-129.20	7	-113.02	51.08	747	1.26	162	1	87.4	9/GR12
CAN01404	-91.20	7	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01405	-82.20	7	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01504	-91.20	7	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01505	-82.20	7	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01605	-82.20	7	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01606	-70.70	7	-80.77	50.03	7.88	2.53	6	1	87.4	
CHLCONT5	-106.20	7	-72.23	-35.57	2.60	0.68	55	1	87.4	9/GR17
CHLPAC02	-106.20	7	-80.06	-30.06	1.36	0.68	69	1	87.4	9/GR17
CLMAND01	-115.20	7	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CLM00001	-103.20	7	-74.50	5.87	3.98	1.96	118	1	87.4	
CUB00001	-89.20	7	-79.81	21.62	2.24	0.68	168	1	87.4	
EQACAND1	-115.20	7	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	-115.20	7	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
GRD00002	-42.20	7	-61.58	12.29	0.60	0.60	90	1	87.4	
GRD00059	-57.20	7	-61.58	12.29	0.60	0.60	90	1	87.4	
GRLDNK01	-53.20	7	-44.89	66.56	2.70	0.82	173	1	87.4	2
HWA00002	-166.20	7	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
HWA00003	-175.20	7	-116.23	37.50	5.60	0.75	132	1	87.4	$9 /$ GR2

17411,48 MHz (7)

1	2	3	4		5		6	7	8	9
MEX01NTE	-78.20	7	- 105.81	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	7	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEX02NTE	- 136.20	7	- 107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	- 127.20	7	-96.39	19.88	3.18	1.87	157	1	87.4	1
PAQPAC01	- 106.20	7	- 109.18	-27.53	0.60	0.60	90	1	87.4	9/GR17
PRG00002	-99.20	7	-58.66	-23.32	1.45	1.04	76	1	87.4	
PRUAND02	- 115.20	7	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	- 101.20	7	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
PTRVIR02	-11020	7	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
SURINAM2	-84.70	7	-55.69	4.35	1.00	0.69	86	1	87.4	
URG00001	- 71.70	7	-56.22	-32.52	1.02	0.89	11	1	87.4	
USAEH001	-61.70	7	-87.57	36.17	6.42	3.49	12	1	87.4	156
USAEH002	-101.20	7	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
USAEH003	- 110.20	7	-95.23	36.29	827	3.37	168	1	87.4	16 9/GR21
USAEH004	- 119.20	7	-96.45	36.21	8.20	3.12	165	1	87.4	156
USAPSA02	- 166.20	7	-109.94	3686	6.04	1.11	137	1	87.4	9/GR1
USAPSA03	- 175.20	7	- 116.23	37.50	5.60	075	132	1	87.4	9/GR2
USAWH101	- 148.20	7	- 111.02	40.68	4.36	2.15	162	1	87.4	
USAWH102	-157.20	7	-113.07	40.74	3.72	1.78	149	1	87.4	
VENAND03	- 115.20	7	- 71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5

17426,06 MHz (8)

ALS00002	- 165.80	8	- 109.83	36.82	6.03	1.12	137	2	874	9/GR1
ALS 00003	- 174.80	8	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	8	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	- 54.80	8	-62.85	-29.80	3.24	2.89	47	2	87.4	
B CE311	-63.80	8	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	8	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	8	-50.97	- 15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	8	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	8	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	-73.80	8	-59.60	-11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	8	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B N0811	- 73.80	8	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	8	-45.99	-19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	8	-51.10	- 25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	8	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	8	-44.51	-16.94	3.22	1.37	60	2	874	8 9/GR6
B SU212	-44.80	8	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	- 137.80	8	-114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01201	-13780	8	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	-72.30	8	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	- 128.80	8	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	- 128.80	8	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	8	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01403	- 128.80	8	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12

17426,06 MHz
(8)

MEX02SUR	-126.80	8	-96.39	19.88	3.19	1.87	158	2	87.4	1
PRU00004	-85.80	8	-74.19	-839	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	8	-93.85	36.31	8.26	3.55	171	2	87.4	169 9/GR20
PTRVIR02	-109.80	8	-95.47	36.38	8.10	3.45	168	2	87.4	169 9/GR21
SLVIFRB2	-107.30	8	-88.91	13.59	0.60	0.60	90	1	87.4	
USAEH001	-61.30	8	-87.53	3618	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	8	-93.85	3631	8.26	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	8	-95.47	36.38	8.10	3.45	168	2	87.4	$1699 /$ GR21
USAEH004	-118.80	8	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-16580	8	-109.83	36.82	6.03	1.12	137	2	87.4	$9 /$ GR1
USAPSA03	-17480	8	-116.10	37.47	5.60	076	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	8	-111.01	4067	4.38	2.15	162	2	87.4	
USAWH102	-156.80	8	-113.01	40.71	3.74	1.79	149	2	874	
VEN11VEN	-103.80	8	-66.79	6.90	2.50	1.77	122	2	87.4	

IS-V0EdV

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	9	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	9	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	9	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGSUR04	-94.20	9	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
B CE311	-64.20	9	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	9	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	9	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	9	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	9	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B N0611	-74.20	9	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B N0711	-7420	9	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B N0811	-74.20	9	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	9	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	9	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	9	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	9	-44.00	-16.87	3.20	1.96	58	1	87.4	8 9/GR9
B AHIFRB1	-87.20	9	- 76.06	24.16	1.81	0.70	142	1	87.4	
BERBERMU	-96.20	9	-64.77	32.32	0.60	0.60	90	2	87.4	
B ERBER02	-31.00	9	-64.77	32.32	0.60	0.60	90	1	87.4	23
B OLAND01	-115.20	9	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CAN01101	- 138.20	9	-114.60	51.08	7.28	1.10	160	1	87.4	9/GR10
CAN01201	- 138.20	9	- 114.60	51.08	7.28	1.10	160	1	87.4	9/GR10
CAN01202	-72.70	9	-81.34	50.02	7.96	2.55	5	1	87.4	
CAN01203	- 129.20	9	-113.02	51.08	7.47	1.26	162	1	87.4	9/GR12

17440,64 MHz (9)

CAN01303	-12920	9	-11302	51.08	7.47	1.26	162	1	87.4	$9 /$ GR12
CAN01304	-91.20	9	-86.71	50.48	8.58	2.54	178	1	87.4	$9 /$ GR13
CAN01403	-12920	9	-113.02	51.08	7.47	1.26	162	1	87.4	$9 / G R 12$
CAN01404	-91.20	9	-86.71	50.48	8.58	254	178	1	87.4	$9 /$ GR13
CAN01405	-8220	9	-84.11	50.20	8.31	2.58	1	1	87.4	$9 /$ GR14
CAN01504	-91.20	9	-8671	50.48	8.58	2.54	178	1	87.4	$9 /$ GR13
CAN01505	-82.20	9	-84.11	50.20	8.31	2.58	1	1	87.4	$9 /$ GR14
CAN01605	-82.20	9	-84.11	50.20	8.31	2.58	1	1	87.4	$9 /$ GR14
CAN01606	-70.70	9	-80.77	50.03	788	2.53	6	1	87.4	
CHLCONT5	-106.20	9	-7223	-35.57	2.60	0.68	55	1	87.4	$9 /$ GR17
CHLPAC02	-106.20	9	-80.06	-30.06	136	0.68	69	1	87.4	$9 /$ GR17
CLMAND01	-115.20	9	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
CLM00001	-103.20	9	-74.50	5.87	3.98	1.96	118	1	87.4	
EQACAND1	-115.20	9	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
EQAGAND1	-115.20	9	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
FLKANT01	-57.20	9	-44.54	-60.13	3.54	0.68	12	1	87.4	2
FLKFALKS	-31.00	9	-59.90	-51.64	0.60	0.60	90	1	87.4	23
GRD00002	-42.20	9	-61.58	12.29	0.60	0.60	90	1	87.4	
HWA00002	-166.20	9	-109.94	36.86	6.04	1.11	137	1	87.4	$9 /$ GR1
HWA00003	-175.20	9	-116.23	37.50	5.60	0.75	132	1	87.4	$9 /$ GR2
MEX01NTE	-78.20	9	-105.81	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	9	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEXO2NTE	-136.20	9	-107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	-127.20	9	-96.39	19.88	3.18	1.87	157	1	87.4	1

17440,64 MHz (9)

1	2	3	4		5		6	7	8	9
PAQPAC01	- 106.20	9	- 109.18	-27.53	0.60	0.60	90	1	87.4	9/GR17
PRG00002	-99.20	9	-58.66	-23.32	1.45	1.04	76	1	87.4	
PRUAND02	-115.20	9	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	- 101.20	9	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
PTRVIR02	- 110.20	9	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
SPMFRAN3	-53.20	9	-67.24	47.51	3.16	0.79	7	1	87.4	27
TRD00001	-84.70	9	-61.23	10.70	0.60	0.60	90	1	87.4	
URG00001	-71.70	9	-56.22	-32.52	1.02	0.89	11	1	87.4	
USAEH001	-61.70	9	-87.57	36.17	6.42	3.49	12	1	87.4	156
USAEH002	- 101.20	9	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
USAEH003	-110.20	9	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
USAEH004	-119.20	9	-96.45	36.21	8.20	3.12	165	1	87.4	156
USAPSA02	- 166.20	9	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
USAPSA03	-175.20	9	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
USAWH101	- 148.20	9	- 111.02	40.68	4.36	2.15	162	1	87.4	
USAWH102	- 157.20	9	- 113.07	40.74	3.72	1.78	149	1	87.4	
VENAND03	- 115.20	9	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
VRG00001	-79.70	9	-64.37	18.48	0.60	0.60	90	1	87.4	4

17455,22 MHz

ALS00002	-165.80	10	- 109.83	36.82	6.03	1.12	137	2	874	9/GR1
ALS00003	- 174.80	10	-11610	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	10	-63.96	-30.01	386	1.99	48	2	87.4	
ARGNORT5	-54.80	10	-62.85	-29.80	3.24	2.89	47	2	87.4	
ATNBEAM1	-52.80	10	-66.44	14.87	183	0.68	39	2	87.4	
B CE311	-63.80	10	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	10	-40.26	-6.06	344	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	10	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	10	-50 71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	10	-53.11	-2.98	2.42	215	107	2	87.4	8 9/GR7
B NO611	-73.80	10	-5960	-1162	2.86	169	165	1	87.4	8 9/GR8
B NO711	-73.80	10	-60 70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	10	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	-101.80	10	-45.99	- 19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	10	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	10	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	10	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	10	--43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	-137.80	10	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01201	-13780	10	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	-72.30	10	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	-128.80	10	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	-128.80	10	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	10	-86.57	5048	8.59	2.54	178	2	87.4	9/GR13

1	2	3	4		5		6	7	8	9
CAN01403	-128.80	10	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01404	-90.80	10	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01405	-81.80	10	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01504	-90.80	10	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01505	-81.80	10	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01605	-81.80	10	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01606	-70.30	10	-80.64	50.02	7.88	2.52	6	2	87.4	
CHLCONT4	-105.80	10	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	-105.80	10	-73.52	- 55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	10	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	10	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ 01	-92.30	10	-88.61	17.26	064	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	10	-60.07	8.26	4.20	086	115	1	87.4	9/GR18
CRBJMC01	-92.30	10	-79.45	17.97	0.99	068	151	1	87.4	9/GR18
CTR00201	- 130.80	10	-84.33	9.67	0.82	0.68	119	2	87.4	
EQAC0001	-94.80	10	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	10	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GUY00302	-33.80	10	-59.07	4.77	143	0.85	91	2	87.4	
HNDIFRB2	-107.30	10	-86.23	15.16	1.14	0.85	8	1	87.4	
HTIO0002	-83.30	10	-73.28	18.96	0.82	0.68	11	2	87.4	
HWA00002	-165.80	10	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
HWA00003	-174.80	10	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
MEX01NTE	- 77.80	10	- 105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	- 135.80	10	-107.36	26.32	3.80	157	149	2	87.4	1

17455,22 MHz (10)

MEXO2SUR	-12680	10	-9639	19.88	3.19	1.87	158	2	87.4	1
PRU00004	-85.80	10	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	10	-93.85	36.31	8.26	3.55	171	2	87.4	169 9/GR20
PTRVIR02	-109.80	10	-95.47	36.38	8.10	3.45	168	2	87.4	169 9/GR21
TCA00001	-115.80	10	-71.79	21.53	0.60	0.60	90	2	87.4	
USAEH001	-61.30	10	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	10	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	10	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	10	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	10	-109.83	36.82	6.03	1.12	137	2	87.4	$9 / G R 1$
USAPSA03	-174.80	10	-116.10	37.47	5.60	076	132	2	87.4	$9 / G R 2$
USAWH101	-147.80	10	-111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	-156.80	10	-113.01	40.71	3.74	1.79	149	2	87.4	
VCT00001	-79.30	10	-61.18	13.23	0.60	0.60	90	2	87.4	
VEN11VEN	-103.80	10	-66.79	6.90	2.50	1.77	122	2	87.4	

1	2	3	4		5		6	7	8	9
ALS00002	- 166.20	11	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	11	-116.23	37.50	5.60	0.75	132	1	874	9/GR2
ARGINSU4	-94.20	11	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	11	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	11	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	11	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
ATGSJN01	- 79.70	11	-61.79	17.07	0.60	0.60	90	1	87.4	
B CE311	-64.20	11	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	11	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	11	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	11	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	11	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	11	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	11	-60.70	-1.78	3.54	1.78	126	2	874	8 9/GR8
B NO811	-74.20	11	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	11	-51.12	-25.63	276	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	11	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	11	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	11	-44.00	-1687	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	11	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	- 115.20	11	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
B OL00001	-87.20	11	-64.61	- 16.71	2.52	2.19	85	1	87.4	
B RB00001	-92.70	11	-59.85	12.93	0.60	0.60	90	2	87.4	
CAN01101	-138.20	11	-114.60	51.08	7.28	1.10	160	1	87.4	9/GR10

17469,80 MHz (11)

CAN01201	- 138.20	11	- 114.60	51.08	7.28	1.10	160	1	87.4	9/GR10
CAN01202	- 72.70	11	-81.34	50.02	7.96	2.55	5	1	87.4	
CAN01203	- 129.20	11	- 113.02	51.08	7.47	1.26	162	1	87.4	9/GR12
CAN01303	- 129.20	11	- 113.02	51.08	7.47	1.26	162	1	87.4	9/GR12
CAN01304	-91.20	11	-86.71	5048	858	2.54	178	1	87.4	9/GR13
CAN01403	- 129.20	11	-113.02	51.08	747	1.26	162	1	874	9/GR12
CAN01404	-91.20	11	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01405	-82.20	11	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01504	-91.20	11	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01505	-82.20	11	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01605	-82.20	11	-84.11	5020	8.31	2.58	1	1	87.4	9/GR14
CAN01606	-70.70	11	-80.77	5003	7.88	2.53	6	1	87.4	
CHLCONT5	- 106.20	11	-72.23	-35.57	2.60	0.68	55	1	87.4	9/GR17
CHLPAC02	- 106.20	11	-80.06	-30.06	1.36	0.68	69	1	87.4	9/GR17
CLMAND01	- 115.20	11	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CLM00001	- 103.20	11	-74.50	5.87	3.98	1.96	118	1	87.4	
CUB00001	-89.20	11	-79.81	21.62	2.24	0.68	168	1	87.4	
EQACAND1	- 115.20	11	-71.37	-469	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	- 115.20	11	-71.37	-4.69	6.49	257	87	1	87.4	9/GR5
GRD00002	-42.20	11	-61.58	12.29	060	0.60	90	1	87.4	
GRD00059	-57.20	11	-61.58	12.29	060	0.60	90	1	87.4	
GRLDNK01	-53.20	11	-44.89	66.56	2.70	0.82	173	1	87.4	2
GUY00201	-84.70	11	-59.19	4.78	1.44	085	95	1	87.4	
HWA00002	-166.20	11	-109 94	36.86	6.04	1.11	137	1	87.4	9/GR1

17469,80 MHz (11)

1	2	3	4		5		6	7	8	9
HWA00003	-175.20	11	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
MEX01NTE	-78.20	11	- 105.81	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	11	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEX02NTE	-136.20	11	-107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	-127.20	11	-96.39	19.88	3.18	1.87	157	1	87.4	1
PAQPAC01	- 106.20	11	- 109.18	-27.53	0.60	0.60	90	1	87.4	9/GR17
PRG00002	-99.20	11	-58.66	-23.32	1.45	1.04	76	1	87.4	
PRUAND02	-115.20	11	- 71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	- 101.20	11	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
PTRVIR02	- 110.20	11	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
URG00001	-71.70	11	-56.22	-32.52	1.02	0.89	11	1	874	
USAEH001	-61.70	11	-87.57	36.17	6.42	3.49	12	1	87.4	156
USAEH002	-10120	11	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
USAEH003	-110.20	11	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
USAEH004	- 119.20	11	-96.45	36.21	8.20	3.12	165	1	87.4	156
USAPSA02	- 166.20	11	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
USAPSA03	-175.20	11	- 116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
USAWH101	- 148.20	11	- 111.02	40.68	4.36	215	162	1	87.4	
USAWH102	-15720	11	- 113.07	4074	3.72	1.78	149	1	87.4	
VENAND03	-115.20	11	- 71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5

17484,38 MHz (12)

ALS00002	-165.80	12	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	12	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-9380	12	-63.96	-30.01	386	1.99	48	2	87.4	
ARGNORT5	-54.80	12	-62.85	-2980	324	2.89	47	2	87.4	
B CE311	-6380	12	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	12	-40.26	-606	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	12	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-4480	12	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	12	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	- 73.80	12	-59.60	-11.62	286	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	12	-60.70	-1.78	354	1.78	126	1	87.4	8 9/GR8
B N0811	-73.80	12	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	-101.80	12	-4599	-19.09	222	079	62	2	87.4	8
B SU111	-80.80	12	-51.10	-25.64	2.76	1.06	50	2	874	8 9/GR6
B SU112	-44.80	12	-50 76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	12	-4451	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	12	-43.99	- 16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	-137.80	12	-114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01201	- 137.80	12	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	-72.30	12	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	- 128.80	12	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	- 128.80	12	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	12	-86.57	5048	8.59	2.54	178	,	87.4	9/GR13
CAN01403	- 128.80	12	-113.04	5104	7.53	1.26	162	2	87.4	9/GR12

17484,38 MHz (12)

1	2	3	4		5		6	7	8	9
CAN01404	-90.80	12	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01405	-81.80	12	-83.80	5022	8.35	2.57	2	2	87.4	9/GR14
CAN01504	-90.80	12	-86.57	50.48	8.59	2.54	178	2	874	9/GR13
CAN01505	-81.80	12	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01605	-8180	12	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01606	-70.30	12	-80.64	50.02	7.88	2.52	6	2	87.4	
CHLCONT4	-105.80	12	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	-105.80	12	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	12	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	12	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	12	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	12	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	12	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
CYM00001	-115.80	12	-80.58	1957	0.60	0.60	90	2	87.4	
DOMIFRB2	-83.30	12	-70.51	18.79	0.98	0.69	167	2	87.4	
EQAC0001	-94.80	12	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	12	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GUFMGG02	-52.80	12	-56.42	8.47	4.16	0.81	123	2	87.4	27
HWA00002	- 165.80	12	- 109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
HWA00003	-174.80	12	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
JMC00005	-33.80	12	-77.27	18.12	0.60	0.60	90	2	87.4	
LCAIFRB1	-79.30	12	-61.15	13.90	0.60	0.60	90	2	87.4	
MEX01NTE	-77.80	12	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	-135.80	12	-107.36	26.32	3.80	1.57	149	2	87.4	1

17484,38 MHz (12)

MEXO2SUR	-126.80	12	-96.39	19.88	3.19	1.87	158	2	87.4	1
PRUO0004	-85.80	12	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	12	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
PTRVIR02	-109.80	12	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
SLVIFRB2	-107.30	12	-88.91	13.59	0.60	0.60	90	1	87.4	
USAEH001	-61.30	12	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-10080	12	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	12	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	12	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	12	-109.83	36.82	6.03	1.12	137	2	87.4	$9 / G R 1$
USAPSA03	-174.80	12	-116.10	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	12	-111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	-156.80	12	-113.01	40.71	3.74	1.79	149	2	87.4	
VEN11VEN	-103.80	12	-66.79	6.90	2.50	1.77	122	2	87.4	

17498,96 MHz
(13)

CAN01303	- 129.20	13	-113.02	51.08	7.47	1.26	162	1	87.4	9/GR12
CAN01304	-91.20	13	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01403	- 129.20	13	- 113.02	51.08	7.47	126	162	1	87.4	9/GR12
CAN01404	-91.20	13	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01405	-82.20	13	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01504	-91.20	13	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01505	-82.20	13	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01605	-82.20	13	-8411	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01606	-70.70	13	-80.77	50.03	7.88	2.53	6	1	87.4	
CHLCONT5	- 106.20	13	-72.23	-35.57	2.60	0.68	55	1	87.4	9/GR17
CHLPAC02	-106.20	13	-80.06	-30.06	1.36	0.68	69	1	87.4	9/GR17
CLMAND01	- 115.20	13	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CLM00001	- 103.20	13	-74.50	5.87	3.98	1.96	118	1	87.4	
EQACAND1	-115.20	13	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	-115.20	13	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
FLKANT01	-57.20	13	-44.54	-60.13	3.54	0.68	12	1	87.4	2
FLKFALKS	-31.00	13	-59.90	-51.64	0.60	0.60	90	1	87.4	23
GRD00002	-42.20	13	-61.58	12.29	0.60	0.60	90	1	87.4	
HWA00002	-166.20	13	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
HWA00003	-175.20	13	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
MEX01NTE	-78.20	13	- 105.81	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	13	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEX02NTE	-136.20	13	- 107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	- 127.20	13	-96.39	19.88	3.18	1.87	157	1	87.4	1

17498,96 MHz (13)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

17513,54 MHz (14)

ALS00002	- 165.80	14	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	14	- 116.10	3747	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	14	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	14	-62.85	-29.80	324	2.89	47	2	87.4	
ATNBEAM1	-52.80	14	-66.44	14.87	1.83	0.68	39	2	87.4	
B CE311	-63.80	14	-40.60	-6.07	304	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	14	-40.26	-6.06	3.44	209	174	2	87.4	8 9/GR9
B CE411	-6380	14	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	14	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	14	-53.11	-298	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	- 73.80	14	-59.60	-11.62	2.86	1.69	165	1	87.4	8 9/GR8
B N0711	-73.80	14	-60.70	-178	3.54	178	126	1	87.4	8 9/GR8
B N0811	-73.80	14	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	14	-45.99	-19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	14	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	14	- 50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	14	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	14	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	- 137.80	14	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01201	-137.80	14	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	-72.30	14	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	- 128.80	14	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	-128.80	14	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	14	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13

17513,54 MHz (14)

1	2	3	4		5		6	7	8	9
CAN01403	- 128.80	14	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01404	-90.80	14	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01405	-81.80	14	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01504	-90.80	14	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01505	-81.80	14	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01605	-81.80	14	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14
CAN01606	-70.30	14	-80.64	50.02	7.88	2.52	6	2	87.4	
CHLCONT4	-105.80	14	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	- 105.80	14	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	14	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	14	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	14	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	14	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	14	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
CTR00201	- 130.80	14	-84.33	9.67	0.82	0.68	119	2	87.4	
EQAC0001	-94.80	14	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	14	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GUY00302	-33.80	14	-59.07	4.77	1.43	0.85	91	2	87.4	
HNDIFRB2	-107.30	14	-86.23	15.16	1.14	0.85	8	1	87.4	
HTIO0002	-83.30	14	-73.28	18.96	0.82	0.68	11	2	87.4	
HWA00002	-165.80	14	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
HWA00003	- 174.80	14	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
MEX01NTE	-77.80	14	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	-135.80	14	-107.36	26.32	3.80	1.57	149	2	87.4	1

17513,54 MHz (14)

MEXO2SUR	-126.80	14	-96.39	19.88	3.19	1.87	158	2	87.4	1
PRU00004	-85.80	14	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	14	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
PTRVIR02	-109.80	14	-95.47	36.38	8.10	3.45	168	2	874	$1699 /$ GR21
TCA00001	-115.80	14	-71.79	2153	0.60	0.60	90	2	874	
USAEH001	-61.30	14	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	14	-93.85	36.31	826	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	14	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	14	-96.42	36.21	8.20	3.12	165	2	874	156
USAPSA02	-165.80	14	-109.83	36.82	6.03	1.12	137	2	87.4	$9 /$ GR1
USAPSA03	-174.80	14	-116.10	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	14	-111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	-156.80	14	-113.01	40.71	3.74	1.79	149	2	87.4	
VCTOO001	-79.30	14	-61.18	13.23	0.60	0.60	90	2	87.4	
VEN11VEN	-10380	14	-66.79	6.90	2.50	1.77	122	2	87.4	

69- $\forall 0 \varepsilon d \forall$

1	2	3	4		5		6	7	8	9
ALS 00002	-166.20	15	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	15	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	15	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	15	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	15	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	15	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
ATGSJN01	-79.70	15	-61.79	17.07	0.60	0.60	90	1	87.4	
B CE311	-64.20	15	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	15	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	15	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	15	-50.71	- 15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	15	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B N0611	-74.20	15	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	15	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B NO811	-74.20	15	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	15	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	15	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	15	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	15	-44.00	- 16.87	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	15	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	- 115.20	15	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
B OL00001	-87.20	15	-64.61	-16.71	2.52	2.19	85	1	87.4	
B RB00001	-92.70	15	-59.85	12.93	0.60	0.60	90	2	87.4	
CAN01101	-138.20	15	-114.60	51.08	7.28	1.10	160	1	87.4	9/GR10

17528, 12 MHz (15)

CAN01201	- 138.20	15	-114.60	51.08	7.28	1.10	160	1	87.4	9/GR10
CAN01202	-72.70	15	-81.34	50.02	7.96	2.55	5	1	87.4	
CAN01203	- 129.20	15	- 113.02	51.08	7.47	1.26	162	1	87.4	9/GR12
CAN01303	- 129.20	15	- 113.02	51.08	7.47	1.26	162	1	87.4	9/GR12
CAN01304	-91.20	15	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01403	- 12920	15	-113.02	51.08	7.47	1.26	162	1	87.4	9/GR12
CAN01404	-91.20	15	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01405	-82.20	15	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01504	-91.20	15	-86.71	50.48	8.58	2.54	178	1	87.4	9/GR13
CAN01505	-82.20	15	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01605	-82.20	15	-84.11	50.20	8.31	2.58	1	1	87.4	9/GR14
CAN01606	-70.70	15	-80.77	50.03	7.88	2.53	6	1	874	
CHLCONT5	- 106.20	15	-72.23	-35.57	2.60	0.68	55	1	87.4	9/GR17
CHLPAC02	-106.20	15	-80.06	-30.06	1.36	0.68	69	1	87.4	9/GR17
CLMAND01	-115.20	15	- 71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CLM00001	- 103.20	15	-74.50	5.87	3.98	1.96	118	1	87.4	
CUB00001	-89.20	15	-79.81	21.62	2.24	0.68	168	1	87.4	
EQACAND1	-115.20	15	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	- 115.20	15	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
GRD00002	-42.20	15	-61.58	12.29	0.60	0.60	90	1	87.4	
GRD00059	-57.20	15	-61.58	12.29	0.60	0.60	90	1	87.4	
GRLDNK01	-53.20	15	-44.89	66.56	2.70	0.82	173	1	87.4	2
GUY00201	-84.70	15	-59.19	4.78	1.44	0.85	95	1	87.4	
HWA00002	-166.20	15	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1

17528,12 MHz (15)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

ALS00002	-165.80	16	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	16	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	16	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	16	-62.85	-29.80	3.24	2.89	47	2	87.4	
B CE311	-63.80	16	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	16	-40.26	-606	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	16	-50.97	- 15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	16	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	16	-53.11	-298	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	-73.80	16	-59.60	-11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	16	-60.70	-178	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	16	-68.75	-471	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	16	-45.99	-19 09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	16	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	16	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	16	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	16	-43.99	- 16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	-137.80	16	- 114.10	5092	7.22	1.11	160	2	87.4	9/GR10
CAN01201	-137.80	16	- 114.10	50.92	7.22	1.11	160	2	87.4	9/GR10
CAN01202	- 72.30	16	-81.23	50.12	7.99	2.53	5	2	87.4	
CAN01203	-128.80	16	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01303	- 128.80	16	- 113.04	51.04	7.53	1.26	162	2	87.4	9/GR12
CAN01304	-90.80	16	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13
CAN01403	-128.80	16	-113.04	51.04	7.53	1.26	162	2	87.4	9/GR12

17542,70 MHz (16)

1	2	3	4		5		6	7	8		9
CAN01404	-90.80	16	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13	
CAN01405	-81.80	16	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14	
CAN01504	-90.80	16	-86.57	50.48	8.59	2.54	178	2	87.4	9/GR13	
CAN01505	-81.80	16	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14	
CAN01605	-81.80	16	-83.80	50.22	8.35	2.57	2	2	87.4	9/GR14	
CAN01606	-70.30	16	-80.64	50.02	7.88	2.52	6	2	87.4		
CHLCONT4	- 105.80	16	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16	
CHLCONT6	-105.80	16	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16	
CRBBAH01	-92.30	16	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18	
CRBBER01	-92.30	16	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18	
CRBBLZ01	-92.30	16	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18	
CRBEC001	-92.30	16	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18	
CRBJMC01	-92.30	16	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18	
CYM00001	- 115.80	16	-80.58	19.57	0.60	0.60	90	2	87.4		
DOMIFRB2	-83.30	16	-70.51	18.79	0.98	0.69	167	2	87.4		
EQAC0001	-94.80	16	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19	
EQAG0001	-94.80	16	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19	
GUFMGG02	-52.80	16	-56.42	8.47	4.16	0.81	123	2	87.4	27	
HWA00002	-165.80	16	- 109.83	36.82	6.03	1.12	137	2	87.4	9/GR1	
HWA00003	-174.80	16	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2	
JMC00005	-33.80	16	-77.27	18.12	0.60	0.60	90	2	87.4		
LCAIFRB1	-79.30	16	-61.15	13.90	0.60	0.60	90	2	87.4		
MEX01NTE	-77.80	16	-105.80	25.99	2.88	2.07	155	2	87.4	1	
MEX02NTE	-135.80	16	-107.36	26.32	3.80	1.57	149	2	87.4	1	

17542,70 MHz (16)

MEX02SUR	- 126.80	16	-96.39	19.88	3.19	187	158	2	87.4	1
PRU00004	-85.80	16	- 74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	16	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
PTRVIR02	-109.80	16	-95.47	36.38	8.10	3.45	168	2	87.4	16 9/GR21
SLVIFRB2	-107.30	16	-88.91	13.59	0.60	0.60	90	1	87.4	
USAEH001	-61.30	16	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-10080	16	-93.85	36.31	8.26	3.55	171	2	874	16 9/GR20
USAEH003	-109.80	16	-95.47	36.38	8.10	3.45	168	2	87.4	16 9/GR21
USAEH004	- 118.80	16	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	16	- 109.83	36.82	603	1.12	137	2	87.4	9/GR1
USAPSA03	-174.80	16	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
USAWH101	-147.80	16	- 111.01	40.67	438	2.15	162	2	87.4	
USAWH102	-156.80	16	-113.01	40.71	3.74	1.79	149	2	87.4	
VEN11VEN	-103.80	16	-66.79	6.90	2.50	1.77	122	2	87.4	

17557,28 MHz (17)

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	17	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	-175.20	17	- 116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	17	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	17	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	17	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	17	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
B CE311	-64.20	17	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	17	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	17	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	17	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	17	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	17	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	17	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B NO811	-74.20	17	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	17	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	17	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	17	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45 20	17	-44.00	-16.87	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	17	-64.77	32.32	0.60	0.60	90	2	87.4	
B ERBER02	-31.00	17	-64.77	32.32	0.60	0.60	90	1	87.4	23
B OLAND01	- 115.20	17	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CAN01101	- 138.20	17	-125 63	57.24	3.45	1.27	157	1	87.4	9/GR10
CAN01201	- 138.20	17	-112.04	55.95	3.35	0.97	151	1	87.4	9/GR10
CAN01202	-72.70	17	-107.70	55.63	2.74	1.12	32	1	87.4	

17557,28 MHz

CAN01203	- 129.20	17	-111.48	55.61	3.08	1.15	151	1	87.4	9/GR12
CAN01303	- 129.20	17	-102 42	57.12	3.54	0.91	154	1	87.4	9/GR12
CAN01304	-91.20	17	-99.12	5736	1.98	1.72	2	1	87.4	9/GR13
CAN01403	- 129.20	17	-89.75	52.02	4.68	0.78	148	1	87.4	9/GR12
CAN01404	-91.20	17	-84.82	5242	3.10	2.05	152	1	87.4	9/GR13
CAN01405	-82.20	17	-84.00	5239	2.84	2.29	172	1	87.4	9/GR14
CAN01504	-9120	17	- 72.66	5377	3.57	1.67	156	1	87.4	9/GR13
CAN01505	-8220	17	-71.77	53.79	3.30	1.89	162	1	87.4	9/GR14
CAN01605	-82.20	17	-61.50	49.55	2.65	1.40	143	1	87.4	9/GR14
CAN01606	-70.70	17	-61.30	49.55	2.40	1.65	148	1	87.4	
CHLCONT5	- 106.20	17	- 72.23	-35.57	2.60	0.68	55	1	87.4	9/GR17
CHLPAC02	- 106.20	17	-80.06	-30.06	1.36	0.68	69	1	87.4	9/GR17
CLMAND01	- 115.20	17	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CLM00001	- 103.20	17	-74.50	5.87	3.98	1.96	118	1	87.4	
EQACAND1	- 115.20	17	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	- 115.20	17	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
FLKFALKS	-31.00	17	-59.90	-51.64	060	0.60	90	1	87.4	23
HWA00002	- 166.20	17	- 165.79	23.42	4.20	0.68	160	1	87.4	9/GR1
HWA00003	- 175.20	17	- 166.10	23.42	4.25	0.68	159	1	87.4	9/GR2
JMC00002	-92.70	17	-77.30	18.12	0.62	0.62	90	2	87.4	
\$8a1	-78.20	17	-105 81	26.01	2.89	2.08	155	1	87.4	1
MEX01NTE										
MEX01SUR	-69.20	17	-9484	19.82	3.05	209	4	1	87.4	1
MEX02NTE	- 136.20	17	-107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	- 127.20	17	-96.39	19.88	3.18	187	157	1	87.4	1

17557,28 MHz (17)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

17571,86 MHz (18)

ALS00002	- 165.80	18	- 109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	18	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	18	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	18	-62.85	-29.80	3.24	2.89	47	2	87.4	
ATNBEAM1	-52.80	18	-66.44	14.87	1.83	068	39	2	87.4	
B CE311	-63.80	18	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	18	-40.26	-6.06	3.44	209	174	2	87.4	8 9/GR9
B CE411	-63.80	18	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-4480	18	-50.71	-15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	18	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B N0611	-73.80	18	-59.60	- 11.62	2.86	1.69	165	1	87.4	8 9/GR8
B N0711	-73.80	18	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B N0811	-73.80	18	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	-10180	18	-45.99	- 19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	18	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	18	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	18	-44.51	- 16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	18	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
B LZ00001	-115.80	18	-88.68	17.27	0.62	0.62	90	2	87.4	
CAN01101	-137.80	18	- 125.60	57.24	3.45	1.27	157	2	87.4	9/GR10
CAN01201	-137.80	18	-111.92	55.89	3.33	0.98	151	2	87.4	9/GR10
CAN01202	-72.30	18	- 107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	- 128.80	18	- 111.43	55.56	3.07	1.15	151	2	87.4	9/GR12
CAN01303	-128.80	18	-102.39	57.12	3.54	0.92	154	2	87.4	9/GR12

1	2	3	4		5		6	7	8		9
CAN01304	-90.80	18	-99.00	57.33	1.96	1.73	1	2	87.4	9/GR13	
CAN01403	- 128.80	18	-89.70	52.02	4.67	0.79	148	2	87.4	9/GR12	
CAN01404	-90.80	18	-84.78	52.41	3.09	2.06	153	2	874	9/GR13	
CAN01405	-81.80	18	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14	
CAN01504	-90.80	18	-72.68	53.78	3.57	1.67	157	2	874	9/GR13	
CAN01505	-81.80	18	-71.76	53.76	3.30	1.89	162	2	87.4	9/GR14	
CAN01605	-81.80	18	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14	
CAN01606	-70.30	18	-61.32	49.51	2.41	1.65	148	2	87.4		
CHLCONT4	- 105.80	18	-69 59	-23.20	2.21	0.69	68	2	87.4	9/GR16	
CHLCONT6	- 105.80	18	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16	
CRBBAH01	-92.30	18	-7609	24.13	1.83	0.68	141	1	874	9/GR18	
CRBBER01	-92.30	18	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18	
CRBBLZ01	-92.30	18	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18	
CRBEC001	-92.30	18	-60.07	826	4.20	0.86	115	1	87.4	9/GR18	
CRBJMC01	-92.30	18	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18	
CTR00201	- 130.80	18	-84.33	9.67	0.82	0.68	119	2	87.4		
DMAIFRB1	-79.30	18	-61.30	1535	0.60	0.60	90	2	87.4		
EQAC0001	-94.80	18	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19	
EQAG0001	-94.80	18	-90.36	-0 57	094	0.89	99	1	87.4	9/GR19	
HWA00002	-165 80	18	- 165.79	23.32	4.20	0.68	160	2	87.4	9/GR1	
HWA00003	-17480	18	- 166.10	23.42	4.25	0.68	159	2	87.4	9/GR2	
MEX01NTE	-7780	18	-105.80	25.99	2.88	207	155	2	87.4	,	
MEX02NTE	-135.80	18	-107.36	26.32	3.80	1.57	149	2	874	1	
MEX02SUR	- 126.80	18	-9639	19.88	3.19	1.87	158	2	874	1	

17571,86 MHz (18)

NCG00003	-107.30	18	-8499	12.90	1.05	1.01	176	1	87.4	
PRU00004	-85.80	18	-7419	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	18	-93.85	36.31	8.26	3.55	171	2	874	169 9/GR20
PTRVIR02	-109.80	18	-95.47	36.38	8.10	3.45	168	2	87.4	$1699 / G R 21$
USAEH001	-61.30	18	-87.53	36.18	6.41	349	12	2	87.4	156
USAEH002	-100.80	18	-93.85	36.31	826	355	171	2	87.4	$1699 /$ GR20
USAEH003	-10980	18	-9547	3638	8.10	345	168	2	87.4	$1699 / G R 21$
USAEH004	-118.80	18	-9642	3621	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	18	-109.83	36.82	6.03	112	137	2	874	$9 / G R 1$
USAPSA03	-174.80	18	-116.10	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	18	-11101	40.67	4.38	2.15	162	2	87.4	
USAWH102	-156.80	18	-113.01	40.71	3.74	1.79	149	2	87.4	
VEN11VEN	-103.80	18	-66.79	690	2.50	177	122	2	87.4	

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	19	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	19	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	19	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	19	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	19	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	19	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
B CE311	-64.20	19	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	19	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	19	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	19	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	19	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	19	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	19	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B N0811	-74.20	19	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	19	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	19	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	19	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	19	-44.00	-16.87	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	19	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	-115.20	19	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
B OL00001	-87.20	19	-64.61	- 16.71	2.52	2.19	85	1	874	
B RB00001	-92.70	19	-59.85	12.93	0.60	0.60	90	2	87.4	
CAN01101	- 138.20	19	-125.63	5724	3.45	1.27	157	1	87.4	9/GR10
CAN01201	-138.20	19	- 112.04	55.95	3.35	0.97	151	1	87.4	9/GR10

17586,44 MHz (19)

CAN01202	-72.70	19	-107.70	55.63	2.74	1.12	32	1	87.4	
CAN01203	-129.20	19	-111.48	5561	3.08	1.15	151	1	87.4	9/GR12
CAN01303	- 129.20	19	- 102.42	5712	3.54	0.91	154	1	87.4	9/GR12
CAN01304	-91.20	19	-99.12	57.36	1.98	1.72	2	1	87.4	9/GR13
CAN01403	- 129.20	19	-89.75	5202	4.68	0.78	148	1	87.4	9/GR12
CAN01404	-91.20	19	-84.82	52.42	3.10	2.05	152	1	87.4	9/GR13
CAN01405	-82.20	19	-84.00	52.39	2.84	2.29	172	1	87.4	9/GR14
CAN01504	-91.20	19	- 72.66	53.77	3.57	1.67	156	1	87.4	9/GR13
CAN01505	-82.20	19	-71.77	53.79	3.30	1.89	162	1	87.4	9/GR14
CAN01605	-82.20	19	-61.50	4955	2.65	1.40	143	1	87.4	9/GR14
CAN01606	-70.70	19	-61.30	49.55	2.40	1.65	148	1	87.4	
CHLCONT5	- 106.20	19	-72.23	-35.57	260	0.68	55	1	87.4	9/GR17
CHLPAC02	- 106.20	19	-80.06	-30.06	1.36	0.68	69	1	874	9/GR17
CLMAND01	- 115.20	19	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
CLM00001	- 103.20	19	-74.50	5.87	3.98	1.96	118	1	87.4	
CUB00001	-89.20	19	-79.81	21.62	2.24	0.68	168	1	87.4	
EQACAND1	- 115.20	19	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	- 115.20	19	- 71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
GRD00059	-57.20	19	-61.58	12.29	0.60	0.60	90	1	87.4	
GRLDNK01	-53.20	19	-44.89	66.56	2.70	0.82	173	1	87.4	2
GUY00201	-84.70	19	-59.19	4.78	1.44	0.85	95	1	87.4	
HWA00002	-166.20	19	-165.79	23.42	4.20	0.68	160	1	87.4	9/GR1
HWA00003	- 175.20	19	-166.10	23.42	4.25	0.68	159	1	87.4	9/GR2
MEX01NTE	-78.20	19	-105.81	26.01	2.89	2.08	155	1	87.4	1

17586,44 MHz (19)

1	2	3	4		5		6	7	8	9
MEX01SUR	-69 20	19	-94.84	19.82	305	2.09	4	1	87.4	1
MEX02NTE	- 136.20	19	-107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	- 127.20	19	-96.39	19.88	318	1.87	157	1	87.4	1
MSR00001	-79.70	19	-61.73	16.75	0.60	0.60	90	1	87.4	4
PAQPAC01	-106.20	19	- 109.18	-27.53	0.60	0.60	90	1	87.4	9/GR17
PRG00002	-99.20	19	-58.66	-23.32	1.45	1.04	76	1	87.4	
PRUAND02	- 115.20	19	-7137	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	- 101.20	19	-93.94	36.32	8.24	356	171	1	87.4	16 9/GR20
PTRVIR02	- 110.20	19	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
URG00001	-71.70	19	-56.22	-32.52	1.02	0.89	11	1	874	
USAEH001	-6170	19	-87.57	36.17	6.42	3.49	12	1	874	156
USAEH002	- 101.20	19	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
USAEH003	- 110.20	19	-95.23	36.29	8.27	3.37	168	1	874	16 9/GR21
USAEH004	- 119.20	19	-96.45	36.21	8.20	3.12	165	1	874	156
USAPSA02	-166.20	19	-109.94	36.86	6.04	111	137	1	87.4	9/GR1
USAPSA03	-175.20	19	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
USAWH101	- 148.20	19	- 111.02	40.68	4.36	2.15	162	1	87.4	
USAWH102	-15720	19	- 113.07	4074	3.72	1.78	149	1	874	
VENAND03	-115.20	19	- 71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5

17601,02 MHz

ALS00002	-165.80	20	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	-17480	20	- 116.10	37.47	560	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	20	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	20	-62.85	-29.80	324	2.89	47	2	87.4	
B CE311	-63.80	20	-40.60	-6.07	3.04	206	174	2	87.4	8 9/GR7
B CE312	-44.80	20	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	20	-5097	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	20	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	20	-5311	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	- 73.80	20	-59 60	- 11.62	2.86	169	165	1	87.4	8 9/GR8
B NO711	-73.80	20	-60 70	-1.78	3.54	178	126	1	87.4	8 9/GR8
B N0811	-73.80	20	-6875	-4.71	2.37	165	73	1	87.4	8 9/GR8
B SE911	- 101.80	20	-45.99	- 19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	20	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-4480	20	-50.76	-25.62	2.47	148	56	2	87.4	$89 / \mathrm{GR9}$
B SU211	-80.80	20	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	20	-4399	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	- 137.80	20	-125.60	5724	3.45	1.27	157	2	874	9/GR10
CAN01201	-137.80	20	- 111.92	5589	3.33	0.98	151	2	874	9/GR10
CAN01202	-7230	20	- 107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	-128.80	20	-111.43	5556	3.07	1.15	151	2	87.4	9/GR12
CAN01303	-12880	20	-102.39	57.12	354	0.92	154	2	87.4	9/GR12
CAN01304	-90.80	20	-99.00	57.33	1.96	1.73	1	2	87.4	9/GR13
CAN01403	-12880	20	-89.70	52.02	4.67	0.79	148	2	87.4	9/GR12

17601,02 MHz (20)

1	2	3	4		5		6	7	8	9
CAN01404	-90.80	20	-84.78	52.41	3.09	2.06	153	2	87.4	9/GR13
CAN01405	-81.80	20	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14
CAN01504	-90.80	20	-72.68	53.78	3.57	1.67	157	2	87.4	9/GR13
CAN01505	-81.80	20	-71.76	53.76	3.30	1.89	162	2	87.4	9/GR14
CAN01605	-81.80	20	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14
CAN01606	-70.30	20	-61.32	49.51	2.41	1.65	148	2	87.4	
CHLCONT4	-105.80	20	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	- 105.80	20	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	20	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	20	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	20	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	20	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	20	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
EQAC0001	-94.80	20	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	20	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GRD00003	-79.30	20	-61.62	12.34	0.60	0.60	90	2	87.4	
GTMIFRB2	- 107.30	20	-90.50	15.64	1.03	0.74	84	1	87.4	
GUFMGG02	-52.80	20	-56.42	8.47	4.16	0.81	123	2	87.4	27
HWA00002	-165.80	20	- 165.79	23.32	4.20	0.68	160	2	87.4	9/GR1
HWA00003	- 174.80	20	-166.10	23.42	4.25	0.68	159	2	87.4	9/GR2
MEX01NTE	-77.80	20	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	- 135.80	20	-107.36	26.32	3.80	1.57	149	2	87.4	1
MEX02SUR	- 126.80	20	-96.39	19.88	3.19	1.87	158	2	87.4	1
PNRIFRB2	- 121.00	20	-80.15	8.46	1.01	0.73	170	1	87.4	

17601,02 MHz (20)

PRU00004	-85.80	20	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	20	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
PTRVIR02	-109.80	20	-95.47	36.38	8.10	3.45	168	2	87.4	16 9/GR21
USAEH001	-61.30	20	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	20	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
USAEH003	-109.80	20	-95.47	36.38	8.10	3.45	168	2	87.4	16 9/GR21
USAEH004	- 118.80	20	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	20	- 109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
USAPSA03	- 174.80	20	- 116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
USAWH101	- 147.80	20	- 111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	- 156.80	20	-113.01	40.71	3.74	1.79	149	2	87.4	
VEN02VEN	- 103.80	20	-66.79	6.90	2.50	1.77	122	2	87.4	9/GR22
VEN11VEN	-103.80	20	-66.79	6.90	2.50	1.77	122	2	87.4	9/GR22

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	21	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	-175.20	21	- 116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	21	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	21	-44.17	-59.91	3.77	0.70	13	1	874	9/GR4
ARGSUR04	-94.20	21	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	21	-63.68	-43.01	2.54	2.38	152	1	874	9/GR4
B CE311	-64.20	21	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	21	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	21	-50.97	-1527	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	21	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	21	-5310	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	21	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	21	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B NO811	-74.20	21	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	21	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	21	-50.75	- 25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	21	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	21	-44.00	-1687	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	21	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	-115.20	21	-71.37	-4.69	6.49	257	87	,	87.4	9/GR5
CAN01101	-138.20	21	- 125.63	57.24	345	1.27	157	1	87.4	9/GR10
CAN01201	- 138.20	21	-112.04	55.95	335	0.97	151	,	87.4	9/GR10
CAN01202	-72.70	21	-107.70	55.63	2.74	1.12	32	1	87.4	
CAN01203	-129.20	21	-11148	55.61	3.08	1.15	151	1	87.4	9/GR12

17615,60 MHz (21)

CAN01303	-129 20	21	-102 42	57.12	3.54	0.91	154	1	87.4	9/GR12
CAN01304	-91.20	21	-99.12	57.36	1.98	1.72	2	1	87.4	9/GR13
CAN01403	- 129.20	21	-89.75	52.02	4.68	0.78	148	1	87.4	9/GR12
CAN01404	-91.20	21	-84.82	52.42	3.10	2.05	152	1	87.4	9/GR13
CAN01405	-82.20	21	-84.00	52.39	2.84	2.29	172	1	87.4	9/GR14
CAN01504	-91.20	21	- 72.66	53.77	357	1.67	156	1	874	9/GR13
CAN01505	-82.20	21	-71.77	53.79	3.30	1.89	162	1	874	9/GR14
CAN01605	-82.20	21	-6150	49.55	265	1.40	143	1	874	9/GR14
CAN01606	-70.70	21	-61.30	49.55	240	1.65	148	1	87.4	
CHLCONT5	-106.20	21	-72 23	-35.57	2.60	068	55	1	87.4	9/GR17
CHLPAC02	-106.20	21	-80 06	-30 06	1.36	0.68	69	1	87.4	9/GR17
CLMAND01	- 115.20	21	-7137	-4.69	6.49	257	87	1	87.4	9/GR5
CLM00001	- 103.20	21	-7450	587	3.98	1.96	118	1	87.4	
EQACAND1	-115.20	21	-7137	-4.69	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	-115.20	21	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
HWA00002	-166.20	21	-165 79	23.42	4.20	0.68	160	1	87.4	9/GR1
HWA00003	- 175.20	21	- 166.10	23.42	4.25	0.68	159	1	87.4	9/GR2
JMC00002	-92.70	21	-77.30	18.12	0.62	0.62	90	2	874	
MEX01NTE	-78.20	21	- 105.81	26.01	2.89	208	155	1	87.4	1
MEX01SUR	-69.20	21	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEX02NTE	- 136.20	21	- 107.21	26.31	3.84	1.55	148	,	87.4	1
MEX02SUR	- 127.20	21	-96.39	1988	3.18	1.87	157		87.4	1
PAQPAC01	- 106.20	21	- 109.18	-27.53	060	060	90	1	87.4	9/GR17
PRG00002	-99.20	21	-58.66	-23 32	145	104	76	1	87.4	

17615,60 MHz (21)

1	2	3	4		5		6	7	8	9
PRUAND02	-115.20	21	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	- 101.20	21	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
PTRVIR02	- 110.20	21	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
SCN00001	-79.70	21	-62.46	17.44	0.60	0.60	90	1	87.4	
SPMFRAN3	-53.20	21	-67.24	47.51	3.16	0.79	7	1	87.4	27
SURINAM2	-84.70	21	-55.69	4.35	1.00	0.69	86	1	87.4	
URG00001	-71.70	21	-56.22	-32.52	1.02	0.89	11	1	87.4	
USAEH001	-61.70	21	-87.57	36.17	6.42	3.49	12	1	87.4	156
USAEH002	- 101.20	21	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
USAEH003	-110.20	21	-95.23	36.29	8.27	3.37	168	1	87.4	$169 / \mathrm{GR} 21$
USAEH004	-119.20	21	-96.45	36.21	8.20	3.12	165	1	87.4	156
USAPSA02	-166.20	21	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
USAPSA03	-175.20	21	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
USAWH101	-148.20	21	- 111.02	40.68	4.36	2.15	162	1	87.4	
USAWH102	- 157.20	21	-113.07	40.74	3.72	1.78	149	1	87.4	
VENAND03	-115.20	21	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5

17630,18 MHz (22)

ALS00002	-165.80	22	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	22	- 116.10	3747	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	22	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	22	-62.85	-29.80	3.24	2.89	47	2	87.4	
ATNBEAM1	-52.80	22	-66.44	14.87	1.83	0.68	39	2	87.4	
B CE311	-63.80	22	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	22	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	22	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	22	-50.71	- 15.30	3.57	1.56	52	2	874	8 9/GR9
B CE511	-63.80	22	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	-73.80	22	-59.60	- 11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	22	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	22	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	22	-45.99	- 19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	22	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	22	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	22	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	22	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
B LZ00001	-115.80	22	-88.68	17.27	0.62	0.62	90	2	87.4	
CAN01101	-137.80	22	- 125.60	57.24	3.45	1.27	157	2	87.4	9/GR10
CAN01201	-137.80	22	- 111.92	55.89	3.33	0.98	151	2	87.4	9/GR10
CAN01202	-72.30	22	- 107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	- 128.80	22	-111.43	5556	3.07	1.15	151	2	87.4	9/GR12
CAN01303	-128.80	22	-102.39	57.12	3.54	0.92	154	2	87.4	9/GR12

17630,18 MHz (22)

1	2	3	4		5		6	7	8		9
CAN01304	-90.80	22	-99.00	57.33	1.96	1.73	1	2	87.4	9/GR13	
CAN01403	- 128.80	22	-89.70	52.02	4.67	0.79	148	2	87.4	9/GR12	
CAN01404	-90.80	22	-84.78	52.41	3.09	2.06	153	2	87.4	9/GR13	
CAN01405	-81.80	22	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14	
CAN01504	-90.80	22	-72.68	53.78	3.57	1.67	157	2	87.4	9/GR13	
CAN01505	-81.80	22	-71.76	53.76	3.30	1.89	162	2	874	9/GR14	
CAN01605	-81.80	22	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14	
CAN01606	-70.30	22	-61.32	49.51	2.41	1.65	148	2	87.4		
CHLCONT4	-105.80	22	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16	
CHLCONT6	-105.80	22	-73.52	-55.52	3.65	131	39	2	87.4	9/GR16	
CRBBAH01	-92.30	22	-76.09	24.13	1.83	068	141	1	87.4	9/GR18	
CRBBER01	-92.30	22	-64.76	32.13	060	0.60	90	1	87.4	9/GR18	
CRBBLZ01	-92.30	22	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18	
CRBEC001	-92.30	22	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18	
CRBJMC01	-92.30	22	- 79.45	17.97	0.99	0.68	151	1	87.4	9/GR18	
CTR00201	-130.80	22	-84.33	9.67	0.82	0.68	119	2	87.4		
DMAIFRB1	-79.30	22	-61.30	15.35	0.60	0.60	90	2	87.4		
EQAC0001	-94.80	22	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19	
EQAG0001	-94.80	22	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19	
HWA00002	- 165.80	22	- 165.79	23.32	4.20	0.68	160	2	87.4	9/GR1	
HWA00003	- 174.80	22	- 166.10	23.42	4.25	0.68	159	2	87.4	9/GR2	
MEX01NTE	-7780	22	- 105.80	25.99	2.88	2.07	155	2	87.4	1	
MEX02NTE	-135.80	22	-107.36	26.32	3.80	1.57	149	2	87.4	1	
MEX02SUR	- 126.80	22	-96.39	19.88	3.19	1.87	158	2	874	1	

17630, 18 MHz (22)

NCG00003	-107.30	22	-84.99	12.90	1.05	101	176	1	87.4	
PRU00004	-8580	22	-74.19	-839	3.74	245	112	2	87.4	
PTRVIR01	-100.80	22	-9385	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
PTRVIR02	-109.80	22	-95.47	3638	8.10	3.45	168	2	87.4	$1699 /$ GR21
USAEH001	-61.30	22	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	22	-9385	3631	8.26	355	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	22	-9547	3638	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	22	-9642	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	22	-10983	3682	6.03	1.12	137	2	87.4	$9 /$ GR1
USAPSA03	-174.80	22	-116.10	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	22	-111.01	40.67	4.38	215	162	2	87.4	
USAWH102	-156.80	22	-113.01	4071	3.74	179	149	2	87.4	
VEN11VEN	-10380	22	-6679	690	2.50	1.77	122	2	87.4	

£6-v0Ed \forall
$17644,76 \mathrm{MHz}$ (23)

17644, 76 MHz (23)

CAN01202	-72.70	23	- 107.70	5563	2.74	1.12	32	1	87.4	
CAN01203	-129.20	23	- 111.48	55.61	3.08	1.15	151	1	874	9/GR12
CAN01303	- 129.20	23	- 102.42	5712	3.54	091	154	1	87.4	9/GR12
CAN01304	-91.20	23	-99.12	57.36	1.98	1.72	2	1	87.4	9/GR13
CAN01403	- 129.20	23	-89.75	52.02	4.68	078	148	1	87.4	9/GR12
CAN01404	-91.20	23	-84.82	52.42	3.10	2.05	152	1	874	9/GR13
CAN01405	-82.20	23	-84.00	52.39	2.84	2.29	172	1	87.4	9/GR14
CAN01504	-91.20	23	-72.66	53.77	3.57	1.67	156	1	87.4	9/GR13
CAN01505	-82.20	23	-71.77	5379	3.30	1.89	162	1	87.4	9/GR14
CAN01605	-82.20	23	-61.50	49.55	265	1.40	143	1	87.4	9/GR14
CAN01606	-70.70	23	-61.30	49.55	2.40	1.65	148	1	87.4	
CHLCONT5	-106.20	23	-72.23	-35.57	2.60	0.68	55	1	87.4	9/GR17
CHLPAC02	-106.20	23	-80.06	-30.06	1.36	0.68	69	1	87.4	9/GR17
CLMAND01	-115.20	23	-7137	-4.69	6.49	2.57	87	1	87.4	9/GR5
CLM00001	- 103.20	23	-74.50	5.87	3.98	196	118	1	87.4	
CUB00001	-89.20	23	-79.81	21.62	2.24	0.68	168	1	874	
EQACAND1	-115.20	23	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	- 115.20	23	-71.37	-4.69	6.49	2.57	87	1	874	9/GR5
GRD00059	-57.20	23	-61.58	12.29	0.60	0.60	90	1	87.4	
GRLDNK01	- 53.20	23	-44.89	66.56	2.70	0.82	173	1	87.4	2
GUY00201	-84.70	23	-59.19	4.78	1.44	0.85	95	1	87.4	
HWA00002	-166.20	23	- 165.79	23.42	4.20	0.68	160	1	87.4	9/GR1
HWA00003	-175.20	23	- 166.10	23.42	4.25	0.68	159	1	87.4	9/GR2
MEX01NTE	-78.20	23	-105.81	26.01	2.89	2.08	155	1	87.4	1

17644,76 MHz (23)

17659,34 MHz

ALS00002	- 165.80	24	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	24	- 116.10	3747	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	24	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	24	-62.85	-29.80	3.24	2.89	47	2	87.4	
B CE311	-63.80	24	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	24	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	24	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	24	-50.71	-1530	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	24	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B NO611	-73.80	24	-59.60	-11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	24	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	24	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	-101.80	24	-45.99	- 19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	24	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	24	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	24	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	24	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	- 137.80	24	- 125.60	57.24	3.45	1.27	157	2	87.4	9/GR10
CAN01201	-137.80	24	-111.92	55.89	3.33	0.98	151	2	87.4	9/GR10
CAN01202	-72.30	24	-107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	- 128.80	24	-111.43	55.56	3.07	1.15	151	2	87.4	9/GR12
CAN01303	- 128.80	24	- 102.39	57.12	3.54	0.92	154	2	87.4	9/GR12
CAN01304	-90.80	24	-99.00	57.33	1.96	1.73	1	2	87.4	9/GR13
CAN01403	-128.80	24	-89.70	52.02	4.67	0.79	148	2	87.4	9/GR12

1	2	3	4		5		6	7	8	9
CAN01404	-90.80	24	-84.78	52.41	3.09	2.06	153	2	87.4	9/GR13
CAN01405	-81.80	24	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14
CAN01504	-90.80	24	-72.68	53.78	3.57	1.67	157	2	87.4	9/GR13
CAN01505	-81.80	24	-71.76	53.76	3.30	1.89	162	2	87.4	9/GR14
CAN01605	-81.80	24	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14
CAN01606	-70.30	24	-61.32	49.51	241	1.65	148	2	87.4	
CHLCONT4	-105.80	24	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	- 105.80	24	-73.52	-55.52	365	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	24	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	24	-64.76	32.13	060	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	24	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	24	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	24	- 79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
EQAC0001	-94.80	24	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	24	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GRD00003	- 79.30	24	-61.62	12.34	060	0.60	90	2	87.4	
GTMIFRB2	-107.30	24	-90.50	15.64	1.03	0.74	84	1	87.4	
GUFMGG02	- 52.80	24	-56.42	8.47	4.16	0.81	123	2	87.4	27
HWA00002	-165.80	24	- 165.79	23.32	4.20	0.68	160	2	87.4	9/GR1
HWA00003	- 17480	24	- 166.10	23.42	4.25	0.68	159	2	87.4	9/GR2
MEX01NTE	-77.80	24	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	-135.80	24	- 107.36	26.32	3.80	1.57	149	2	87.4	1
MEX02SUR	-126.80	24	-96.39	19.88	3.19	1.87	158	2	87.4	1
PNRIFRB2	- 121.00	24	-80.15	8.46	1.01	0.73	170	1	87.4	

17659,34 MHz (24)

PRU00004	-85.80	24	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	24	-93.85	36.31	8.26	3.55	171	2	87.4	$1699 /$ GR20
PTRVIR02	-10980	24	-95.47	36.38	8.10	3.45	168	2	87.4	169 9/GR21
USAEH001	-61.30	24	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	24	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ 9R20
USAEH003	-109.80	24	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	24	-9642	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	24	-109.83	36.82	6.03	1.12	137	2	87.4	$9 /$ GR1
USAPSA03	-174.80	24	-11610	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	24	-111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	-156.80	24	-113.01	40.71	3.74	1.79	149	2	87.4	
VENO2VEN	-103.80	24	-66.79	6.90	250	1.77	122	2	87.4	9/GR22
VEN1IVEN	-103.80	24	-66.79	6.90	2.50	1.77	122	2	87.4	9/GR22

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	25	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	-175.20	25	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	25	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	25	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	25	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	25	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
B CE311	-64.20	25	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	25	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	25	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	25	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	25	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B N0611	- 74.20	25	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	25	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B N0811	- 74.20	25	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	25	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	25	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	25	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	25	-44.00	-16.87	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	25	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	-115.20	25	-71.37	-4.69	6.49	2.57	87	1	874	9/GR5
CAN01101	-138.20	25	-125 63	57.24	3.45	1.27	157	1	87.4	9/GR10
CAN01201	-138.20	25	- 112.04	55.95	3.35	0.97	151	1	87.4	9/GR10
CAN01202	-72.70	25	-107.70	55.63	2.74	1.12	32		87.4	
CAN01203	- 129.20	25	-111.48	55.61	3.08	1.15	151	1	87.4	9/GR12

17673,92 MHz (25)

CAN01303	-129.20	25	-102.42	57.12	3.54	091	154	1	87.4	$9 /$ GR12
CAN01304	-91.20	25	-99.12	57.36	1.98	1.72	2	1	87.4	$9 /$ GR13
CAN01403	-129.20	25	-89.75	52.02	4.68	0.78	148	1	87.4	$9 /$ GR12
CAN01404	-91.20	25	-84.82	52.42	3.10	2.05	152	1	87.4	$9 /$ GR13
CAN01405	-82.20	25	-84.00	52.39	2.84	2.29	172	1	87.4	$9 /$ GR14
CAN01504	-91.20	25	-72.66	53.77	3.57	1.67	156	1	87.4	$9 /$ GR13
CAN01505	-8220	25	-71.77	53.79	3.30	1.89	162	1	87.4	$9 /$ GR14
CAN01605	-82.20	25	-61.50	49.55	2.65	1.40	143	1	87.4	$9 /$ GR14
CAN01606	-70.70	25	-61.30	49.55	2.40	1.65	148	1	87.4	
CHLCONT5	-106.20	25	-72.23	-35.57	2.60	0.68	55	1	87.4	$9 /$ GR17
CHLPAC02	-106.20	25	-80.06	-30.06	1.36	0.68	69	1	87.4	$9 /$ GR17
CLMAND01	-115.20	25	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
CLM00001	-103.20	25	-74.50	5.87	3.98	1.96	118	1	87.4	
EQACAND1	-115.20	25	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
EQAGAND1	-115.20	25	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
HWA00002	-166.20	25	-165.79	23.42	4.20	0.68	160	1	87.4	$9 /$ GR1
HWA00003	-175.20	25	-166.10	23.42	4.25	0.68	159	1	87.4	$9 /$ GR2
JMCO0002	-92.70	25	-77.30	18.12	0.62	0.62	90	2	87.4	
MEX01NTE	-78.20	25	-105.81	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	25	-94.84	19.82	3.05	2.09	4	1	87.4	1
MEX02NTE	-136.20	25	-107.21	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	-127.20	25	-96.39	19.88	3.18	1.87	157	1	87.4	1
PAQPAC01	-106.20	25	-109.18	-27.53	0.60	0.60	90	1	87.4	$9 /$ GR17
PRG00002	-99.20	25	-58.66	-23.32	1.45	1.04	76	1	87.4	

17673,92 MHz (25)

1	2	3	4		5		6	7	8	9
PRUAND02	-115.20	25	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	-101.20	25	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
PTRVIR02	- 110.20	25	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
SCN00001	-79.70	25	-62.46	17.44	060	0.60	90	1	87.4	
SPMFRAN3	-53.20	25	-67.24	47.51	3.16	0.79	7	1	87.4	27
SURINAM2	-84.70	25	-55.69	4.35	1.00	0.69	86	1	87.4	
URG00001	- 71.70	25	-56.22	-32.52	1.02	0.89	11	1	87.4	
USAEH001	-61.70	25	-87.57	36.17	6.42	3.49	12	1	87.4	156
USAEH002	-101.20	25	-93.94	36.32	8.24	3.56	171	1	87.4	16 9/GR20
USAEH003	-110.20	25	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
USAEH004	-119.20	25	-96.45	36.21	8.20	3.12	165	1	87.4	156
USAPSA02	-166.20	25	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
USAPSA03	-175.20	25	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
USAWH101	- 148.20	25	-111.02	40.68	4.36	2.15	162	1	87.4	
USAWH102	- 157.20	25	- 113.07	40.74	3.72	1.78	149	1	87.4	
VENAND03	-115.20	25	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5

17688,50 MHz (26)

ALS00002	-165.80	26	-109.83	3682	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	26	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	26	-63.96	-30 01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	26	-62.85	-2980	3.24	2.89	47	2	87.4	
ATNBEAM1	-52.80	26	-66.44	1487	1.83	0.68	39	2	87.4	
B CE311	-63.80	26	-40.60	-607	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	26	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	26	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	26	-50.71	-15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	26	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B N0611	-73.80	26	-59.60	-11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	26	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	26	-68.75	-4.71	237	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	26	-45.99	-19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	26	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	26	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	26	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	26	-43.99	-16.97	3.27	1.92	59	2	874	8 9/GR9
B LZ00001	- 115.80	26	-88.68	17.27	0.62	0.62	90	2	87.4	
CAN01101	- 137.80	26	-125.60	57.24	3.45	1.27	157	2	874	9/GR10
CAN01201	-137.80	26	-11192	55.89	3.33	0.98	151	2	874	9/GR10
CAN01202	-72.30	26	-107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	-128.80	26	-11143	55.56	3.07	1.15	151	2	87.4	9/GR12
CAN01303	-128.80	26	-102.39	57.12	3.54	0.92	154	2	87.4	9/GR12

1	2	3	4		5		6	7	8	9
CAN01304	-90.80	26	-99.00	57.33	1.96	1.73	1	2	87.4	9/GR13
CAN01403	- 128.80	26	-89.70	52.02	4.67	0.79	148	2	87.4	9/GR12
CAN01404	-90.80	26	-84.78	52.41	3.09	2.06	153	2	87.4	9/GR13
CAN01405	-81.80	26	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14
CAN01504	-90.80	26	-72.68	53.78	3.57	1.67	157	2	87.4	9/GR13
CAN01505	-81.80	26	-71.76	53.76	3.30	1.89	162	2	87.4	9/GR14
CAN01605	-81.80	26	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14
CAN01606	-70.30	26	-61.32	49.51	2.41	1.65	148	2	87.4	
CHLCONT4	-105.80	26	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	- 105.80	26	- 73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	26	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	26	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	26	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	26	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	26	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
CTR00201	-130.80	26	-84.33	9.67	0.82	0.68	119	2	87.4	
DMAIFRB1	-79.30	26	-61.30	15.35	0.60	0.60	90	2	87.4	
EQAC0001	-94.80	26	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	26	-90.36	-0.57	0.94	0.89	99	,	87.4	9/GR19
HWA00002	- 165.80	26	- 165.79	23.32	4.20	0.68	160	2	87.4	9/GR1
HWA00003	-174.80	26	- 166.10	23.42	4.25	0.68	159	2	87.4	9/GR2
MEX01NTE	-77.80	26	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	- 135.80	26	-107.36	26.32	3.80	1.57	149	2	87.4	
MEX02SUR	-126.80	26	-96.39	19.88	3.19	1.87	158	2	87.4	1

17688,50 MHz (26)

NCG00003	-107.30	26	-84.99	12.90	1.05	1.01	176	1	87.4	
PRU00004	-85.80	26	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	26	-9385	36.31	8.26	3.55	171	2	87.4	$1699 /$ GR20
PTRVIR02	-109.80	26	-95.47	36.38	8.10	3.45	168	2	87.4	$1699 /$ GR21
USAEH001	-61.30	26	-8753	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	26	-93.85	36.31	826	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	26	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	26	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	26	-109.83	36.82	6.03	1.12	137	2	87.4	$9 /$ GR1
USAPSA03	-174.80	26	-11610	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	26	-111.01	40.67	4.38	215	162	2	87.4	
USAWH102	-156.80	26	-113.01	40.71	3.74	1.79	149	2	87.4	
VEN11VEN	-103.80	26	-66.79	6.90	2.50	1.77	122	2	87.4	

17703,08 MHz (27)

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	27	- 109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	27	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	27	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	27	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	27	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	27	-63.68	-43.01	2.54	238	152	1	87.4	9/GR4
B CE311	-64.20	27	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	27	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	27	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	27	-50.71	-15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64 20	27	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	27	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B N0711	-74.20	27	-60.70	-1.78	354	1.78	126	2	87.4	8 9/GR8
B NO811	-74.20	27	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	27	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	27	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	27	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	27	-44.00	- 16.87	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	27	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	- 115.20	27	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
B OL00001	-87.20	27	-64.61	- 16.71	2.52	2.19	85	,	87.4	
B RB00001	-9270	27	-59.85	12.93	0.60	0.60	90	2	87.4	
CAN01101	-138.20	27	-125.63	57.24	3.45	1.27	157	1	87.4	9/GR10
CAN01201	-138.20	27	-112.04	55.95	335	0.97	151	1	87.4	9/GR10

17703,08 MHz

CAN01202	-7270	27	-107.70	55.63	2.74	1.12	32	1	87.4	
CAN01203	- 129.20	27	-111.48	55.61	3.08	115	151	1	87.4	9/GR12
CAN01303	- 129.20	27	- 102.42	57.12	3.54	0.91	154	,	87.4	9/GR12
CAN01304	-91.20	27	-99.12	57.36	1.98	1.72	2	1	874	9/GR13
CAN01403	-129 20	27	-89.75	52.02	4.68	0.78	148	1	87.4	9/GR12
CAN01404	-9120	27	-84.82	52.42	3.10	2.05	152	1	87.4	9/GR13
CAN01405	-8220	27	-84.00	52.39	2.84	2.29	172	1	87.4	9/GR14
CAN01504	-9120	27	-7266	53.77	3.57	1.67	156	1	87.4	9/GR13
CAN01505	-82.20	27	- 71.77	53.79	3.30	1.89	162	1	87.4	9/GR14
CAN01605	-82.20	27	-61.50	49.55	2.65	1.40	143	1	87.4	9/GR14
CAN01606	-70.70	27	-61.30	49.55	2.40	1.65	148	1	87.4	
CHLCONT5	- 106.20	27	-72.23	-35 57	2.60	068	55	,	87.4	9/GR17
CHLPAC02	- 106.20	27	-80.06	-30 06	1.36	0.68	69	1	874	9/GR17
CLMAND01	-115.20	27	-71.37	-469	6.49	2.57	87	1	87.4	9/GR5
CLM00001	- 103.20	27	-74.50	587	3.98	196	118	1	874	
CUB00001	-89.20	27	-79.81	2162	2.24	0.68	168	1	87.4	
EQACAND1	- 115.20	27	-71.37	-469	6.49	2.57	87	1	87.4	9/GR5
EQAGAND1	- 115.20	27	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
GRD00059	-57.20	27	-61.58	1229	0.60	0.60	90	1	87.4	
GRLDNK01	-53.20	27	-44.89	66.56	2.70	0.82	173	1	87.4	2
GUY00201	-84.70	27	-59.19	4.78	1.44	0.85	95	1	87.4	
HWA00002	-166.20	27	-165.79	23.42	4.20	0.68	160	1	87.4	9/GR1
HWA00003	- 175.20	27	- 166.10	23.42	4.25	0.68	159	1	87.4	9/GR2
MEX01NTE	-78.20	27	- 105.81	26.01	2.89	2.08	155	1	87.4	1

17703,08 MHz (27)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

17717,66 M Hz (28)

ALS00002	- 165.80	28	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	28	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	28	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	28	-62.85	-29.80	3.24	2.89	47	2	87.4	
B CE311	-63.80	28	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	28	-40.26	-6.06	3.44	2.09	174	2	874	8 9/GR9
B CE411	-63.80	28	-50.97	- 15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	28	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	28	-53.11	-2.98	2.42	2.15	107	2	87.4	8 9/GR7
B N0611	-73.80	28	-59.60	- 11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	28	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	28	-68.75	-471	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	28	-45.99	- 19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	28	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	28	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	28	-44.51	- 16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	28	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
CAN01101	-137.80	28	- 125.60	57.24	3.45	1.27	157	2	87.4	9/GR10
CAN01201	- 137.80	28	-111.92	55.89	3.33	0.98	151	2	87.4	9/GR10
CAN01202	-72.30	28	-107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	-128.80	28	-111.43	55.56	307	1.15	151	2	87.4	9/GR12
CAN01303	- 128.80	28	-102.39	57.12	3.54	0.92	154	2	87.4	9/GR12
CAN01304	-90.80	28	-99.00	57.33	1.96	1.73	1	2	874	9/GR13
CAN01403	-128.80	28	-8970	52.02	4.67	0.79	148	2	87.4	9/GR12

1	2	3	4		5		6	7	8		9
CAN01404	-90.80	28	-84.78	52.41	3.09	2.06	153	2	87.4	9/GR13	
CAN01405	-81.80	28	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14	
CAN01504	-90.80	28	-72.68	53.78	3.57	1.67	157	2	87.4	9/GR13	
CAN01505	-81.80	28	-71.76	53.76	3.30	1.89	162	2	87.4	9/GR14	
CAN01605	-81.80	28	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14	
CAN01606	- 70.30	28	-61.32	49.51	2.41	1.65	148	2	87.4		
CHLCONT4	-105.80	28	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16	
CHLCONT6	- 105.80	28	- 73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16	
CRBBAH01	-92.30	28	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18	
CRBBER01	-92.30	28	-64 76	32.13	0.60	0.60	90	1	87.4	9/GR18	
CRBBLZ 01	-92.30	28	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18	
CRBEC001	-92.30	28	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18	
CRBJMC01	-92.30	28	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18	
EQAC0001	-94.80	28	-78.31	-152	1.48	1.15	65	1	87.4	9/GR19	
EQAG0001	-94.80	28	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19	
GRD00003	-79.30	28	-61.62	12.34	0.60	0.60	90	2	87.4		
GTMIFRB2	- 107.30	28	-90.50	15.64	1.03	0.74	84	1	87.4		
GUFMGG02	-52.80	28	-56.42	8.47	4.16	0.81	123	2	87.4	27	
HWA00002	- 165.80	28	- 165.79	23.32	4.20	0.68	160	2	87.4	9/GR1	
HWA00003	-174.80	28	- 166.10	23.42	4.25	0.68	159	2	87.4	9/GR2	
MEX01NTE	-77.80	28	-105.80	25.99	2.88	2.07	155	2	87.4	,	
MEX02NTE	-135.80	28	-107.36	26.32	3.80	1.57	149	2	87.4	1	
MEX02SUR	-126.80	28	-96.39	19.88	3.19	1.87	158	2	87.4	1	
PNRIFRB2	- 121.00	28	-80.15	8.46	101	0.73	170	1	87.4		

17717,66 MHz

PRU00004	-85.80	28	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	- 100.80	28	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
PTRVIR02	- 109.80	28	-95.47	36.38	8.10	3.45	168	2	87.4	16 9/GR21
USAEH001	-61.30	28	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	28	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
USAEH003	-109.80	28	-95.47	36.38	8.10	3.45	168	2	87.4	16 9/GR21
USAEH004	-118.80	28	-96.42	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	-165.80	28	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
USAPSA03	-174.80	28	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
USAWH101	- 147.80	28	- 111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	- 156.80	28	-113.01	40.71	3.74	1.79	149	2	87.4	
VEN02VEN	- 103.80	28	-66.79	6.90	2.50	1.77	122	2	87.4	9/GR22
VEN11VEN	-103.80	28	-66.79	6.90	2.50	1.77	122	2	87.4	9/GR22

17732,24 MHz
(29)

CAN01303	-129.20	29	-10242	57.12	3.54	0.91	154	1	87.4	$9 /$ GR12
CAN01304	-91.20	29	-99.12	5736	1.98	1.72	2	1	87.4	$9 /$ GR13
CAN01403	-129.20	29	-89.75	52.02	4.68	0.78	148	1	87.4	$9 /$ GR12
CAN01404	-91.20	29	-84.82	52.42	3.10	2.05	152	1	87.4	$9 /$ GR13
CAN01405	-82.20	29	-84.00	52.39	2.84	2.29	172	1	87.4	$9 /$ GR14
CAN01504	-91.20	29	-72.66	53.77	3.57	1.67	156	1	87.4	$9 /$ GR13
CAN01505	-82.20	29	-71.77	53.79	3.30	1.89	162	1	87.4	$9 /$ GR14
CAN01605	-82.20	29	-61.50	4955	2.65	1.40	143	1	87.4	$9 /$ GR14
CAN01606	-70.70	29	-61.30	49.55	2.40	1.65	148	1	87.4	
CHLCONT5	-106.20	29	-72.23	-35.57	2.60	0.68	55	1	87.4	$9 /$ GR17
CHLPAC02	-106.20	29	-80.06	-30.06	1.36	0.68	69	1	87.4	$9 /$ GR17
CLMAND01	-115.20	29	-7137	-469	6.49	2.57	87	1	87.4	$9 /$ GR5
CLM00001	-103.20	29	-74.50	587	3.98	1.96	118	1	87.4	
EQACAND1	-115.20	29	-7137	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
EQAGAND1	-115.20	29	-71.37	-469	6.49	2.57	87	1	87.4	$9 /$ GR5
HWA00002	-166.20	29	-165.79	23.42	4.20	0.68	160	1	87.4	$9 /$ GR1
HWA00003	-175.20	29	-166.10	2342	425	0.68	159	1	87.4	$9 /$ GR2
JMC00002	-92.70	29	-77.30	18.12	0.62	0.62	90	2	87.4	
MEX01NTE	-78.20	29	-10581	26.01	2.89	2.08	155	1	87.4	1
MEX01SUR	-69.20	29	-94.84	1982	3.05	2.09	4	1	87.4	1
MEX02NTE	-136.20	29	-10721	26.31	3.84	1.55	148	1	87.4	1
MEX02SUR	-127.20	29	-96.39	19.88	3.18	1.87	157	1	874	1
PAQPAC01	-106.20	29	-109.18	-27.53	0.60	0.60	90	1	87.4	$9 /$ GR17
PRG00002	-99.20	29	-58.66	-23.32	1.45	1.04	76	1	87.4	

17732,24 MHz (29)

1	2	3	4		5		6	7	8	9
PRUAND02	- 115.20	29	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
PTRVIR01	- 101.20	29	-93.94	36.32	8.24	3.56	171	1	87.4	$169 / \mathrm{GR} 20$
PTRVIR02	-110.20	29	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
SCN00001	-79.70	29	-62.46	17.44	0.60	0.60	90	1	87.4	
SPMFRAN3	-53.20	29	-67.24	47.51	3.16	0.79	7	1	87.4	27
SURINAM2	-84.70	29	-55.69	4.35	1.00	0.69	86	1	87.4	
URG00001	-71.70	29	-56.22	- 32.52	1.02	0.89	11	1	87.4	
USAEH001	-61.70	29	-87.57	36.17	6.42	3.49	12	1	87.4	156
USAEH002	-101.20	29	-93.94	36.32	8.24	3.56	171	1	87.4	$169 / \mathrm{GR20}$
USAEH003	- 110.20	29	-95.23	36.29	8.27	3.37	168	1	87.4	16 9/GR21
USAEH004	- 119.20	29	-96.45	36.21	8.20	3.12	165	1	87.4	156
USAPSA02	-166.20	29	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
USAPSA03	- 175.20	29	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
USAWH101	- 148.20	29	-111.02	40.68	4.36	2.15	162	1	87.4	
USAWH102	-157.20	29	-113.07	40.74	3.72	1.78	149	1	87.4	
VENAND03	- 115.20	29	- 71.37	-4.69	6.49	257	87	1	87.4	9/GR5

17746,82 MHz (30)

ALS00002	-165.80	30	- 109.83	36.82	6.03	112	137	2	87.4	9/GR1
ALS00003	- 174.80	30	- 116.10	3747	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	30	-63.96	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	30	-62.85	-2980	3.24	2.89	47	2	87.4	
ATNBEAM1	-52.80	30	-66.44	14.87	1.83	0.68	39	2	87.4	
B CE311	-63.80	30	-40.60	-6.07	3.04	2.06	174	2	87.4	8 9/GR7
B CE312	-44.80	30	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	30	-50.97	-15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	30	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	30	-53.11	-2.98	242	2.15	107	2	87.4	8 9/GR7
B NO611	-73.80	30	-59.60	-11.62	2.86	1.69	165	1	87.4	8 9/GR8
B NO711	-73.80	30	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	30	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	30	-45.99	-19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	30	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	30	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	30	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	30	-43.99	-16.97	3.27	1.92	59	2	87.4	8 9/GR9
B LZ00001	- 115.80	30	-88.68	17.27	0.62	0.62	90	2	87.4	
CAN01101	- 137.80	30	-125.60	57.24	3.45	1.27	157	2	87.4	9/GR10
CAN01201	-137.80	30	-111.92	55.89	3.33	0.98	151	2	87.4	9/GR10
CAN01202	-72.30	30	- 107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	-128.80	30	-111.43	55.56	3.07	1.15	151	2	87.4	9/GR12
CAN01303	-128.80	30	- 102.39	57.12	3.54	0.92	154	2	87.4	9/GR12

1	2	3	4		5		6	7	8	9
CAN01304	-90.80	30	-99.00	57.33	1.96	1.73	1	2	87.4	9/GR13
CAN01403	- 128.80	30	-89.70	52.02	4.67	0.79	148	2	87.4	9/GR12
CAN01404	-90.80	30	-84.78	52.41	3.09	2.06	153	2	87.4	9/GR13
CAN01405	-81.80	30	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14
CAN01504	-90.80	30	-72.68	53.78	3.57	1.67	157	2	87.4	9/GR13
CAN01505	-81.80	30	-71.76	53.76	3.30	1.89	162	2	87.4	9/GR14
CAN01605	-81.80	30	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14
CAN01606	-70.30	30	-61.32	49.51	2.41	1.65	148	2	87.4	
CHLCONT4	- 105.80	30	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	-105.80	30	-73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	30	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	30	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	30	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	30	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-9230	30	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
CTR00201	-130.80	30	-84.33	9.67	0.82	0.68	119	2	87.4	
DMAIFRB1	- 79.30	30	-61.30	15.35	0.60	0.60	90	2	87.4	
EQAC0001	-94.80	30	- 78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	30	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
HWA00002	- 165.80	30	-165.79	23.32	4.20	0.68	160	2	87.4	9/GR1
HWA00003	- 174.80	30	- 166.10	23.42	4.25	0.68	159	2	874	9/GR2
MEX01NTE	- 77.80	30	-105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	-135.80	30	- 107.36	26.32	3.80	1.57	149	2	87.4	1
MEX02SUR	-12680	30	-96.39	19.88	3.19	1.87	158	2	87.4	1

17746,82 MHz (30)

NCG00003	-107.30	30	-84.99	12.90	1.05	1.01	176	1	87.4	
PRU00004	-85.80	30	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-100.80	30	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
PTRVIR02	-109.80	30	-95.47	36.38	8.10	3.45	168	2	87.4	$1699 /$ GR21
USAEH001	-61.30	30	-87.53	36.18	6.41	3.49	12	2	87.4	156
USAEH002	-100.80	30	-93.85	36.31	8.26	3.55	171	2	87.4	$169 /$ GR20
USAEH003	-109.80	30	-95.47	36.38	8.10	3.45	168	2	87.4	$169 /$ GR21
USAEH004	-118.80	30	-96.42	36.21	8.20	312	165	2	87.4	156
USAPSA02	-165.80	30	-109.83	36.82	6.03	112	137	2	87.4	$9 /$ GR1
USAPSA03	-174.80	30	-116.10	37.47	5.60	0.76	132	2	87.4	$9 /$ GR2
USAWH101	-147.80	30	-111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	-156.80	30	-113.01	40.71	3.74	1.79	149	2	87.4	
VEN11VEN	-103.80	30	-66.79	6.90	2.50	1.77	122	2	87.4	

1	2	3	4		5		6	7	8	9
ALS00002	-166.20	31	-109.94	36.86	6.04	1.11	137	1	87.4	9/GR1
ALS00003	- 175.20	31	-116.23	37.50	5.60	0.75	132	1	87.4	9/GR2
ARGINSU4	-94.20	31	-52.98	-59.81	3.40	0.68	19	1	87.4	9/GR3
ARGINSU5	-55.20	31	-44.17	-59.91	3.77	0.70	13	1	87.4	9/GR4
ARGSUR04	-94.20	31	-65.04	-43.33	3.32	1.50	40	1	87.4	9/GR3
ARGSUR05	-55.20	31	-63.68	-43.01	2.54	2.38	152	1	87.4	9/GR4
B CE311	-64.20	31	-40.60	-6.07	3.04	2.06	174	1	87.4	8 9/GR7
B CE312	-45.20	31	-40.27	-6.06	3.44	2.09	174	1	87.4	8 9/GR9
B CE411	-64.20	31	-50.97	-15.27	3.86	1.38	49	1	87.4	8 9/GR7
B CE412	-45.20	31	-50.71	- 15.30	3.57	1.56	52	1	87.4	8 9/GR9
B CE511	-64.20	31	-53.10	-2.90	2.44	2.13	104	1	87.4	8 9/GR7
B NO611	-74.20	31	-59.60	-11.62	2.85	1.69	165	2	87.4	8 9/GR8
B NO711	-74.20	31	-60.70	-1.78	3.54	1.78	126	2	87.4	8 9/GR8
B NO811	-74.20	31	-68.76	-4.71	2.37	1.65	73	2	87.4	8 9/GR8
B SU111	-81.20	31	-51.12	-25.63	2.76	1.05	50	1	87.4	8 9/GR6
B SU112	-45.20	31	-50.75	-25.62	2.47	1.48	56	1	87.4	8 9/GR9
B SU211	-81.20	31	-44.51	-16.95	3.22	1.36	60	1	87.4	8 9/GR6
B SU212	-45.20	31	-44.00	- 16.87	3.20	1.96	58	1	87.4	8 9/GR9
BERBERMU	-96.20	31	-64.77	32.32	0.60	0.60	90	2	87.4	
B OLAND01	-115.20	31	-71.37	-4.69	6.49	2.57	87	1	87.4	9/GR5
B OL00001	-87.20	31	-64.61	-16.71	2.52	2.19	85	1	87.4	
B RB00001	-92.70	31	-59.85	12.93	0.60	0.60	90	2	87.4	
CAN01101	-138.20	31	-125.63	57.24	3.45	1.27	157	1	87.4	9/GR10
CAN01201	-138.20	31	-112.04	55.95	3.35	0.97	151	1	87.4	9/GR10

17761,40 MHz (31)

CAN01202	-72.70	31	-107.70	55.63	2.74	1.12	32	1	87.4	
CAN01203	-129.20	31	-111.48	55.61	3.08	1.15	151	1	87.4	$9 /$ GR12
CAN01303	-129.20	31	-102.42	57.12	3.54	0.91	154	1	87.4	$9 / G R 12$
CAN01304	-91.20	31	-99.12	57.36	1.98	1.72	2	1	87.4	$9 / G R 13$
CAN01403	-129.20	31	-89.75	52.02	4.68	0.78	148	1	87.4	$9 /$ GR12
CAN01404	-91.20	31	-84.82	52.42	3.10	2.05	152	1	87.4	$9 /$ GR13
CAN01405	-82.20	31	-84.00	52.39	2.84	2.29	172	1	87.4	$9 / G R 14$
CAN01504	-91.20	31	-72.66	53.77	3.57	1.67	156	1	87.4	$9 / G R 13$
CAN01505	-82.20	31	-71.77	53.79	3.30	1.89	162	1	87.4	$9 / G R 14$
CAN01605	-82.20	31	-61.50	49.55	2.65	1.40	143	1	87.4	$9 /$ GR14
CAN01606	-70.70	31	-61.30	49.55	2.40	1.65	148	1	87.4	
CHLCONT5	-106.20	31	-72.23	-35.57	2.60	0.68	55	1	87.4	$9 /$ GR17
CHLPAC02	-106.20	31	-80.06	-30.06	1.36	0.68	69	1	87.4	$9 /$ GR17
CLMAND01	-115.20	31	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
CLM00001	-103.20	31	-74.50	5.87	3.98	1.96	118	1	87.4	
CUB00001	-89.20	31	-79.81	21.62	2.24	0.68	168	1	87.4	
EQACAND1	-115.20	31	-71.37	-469	6.49	2.57	87	1	87.4	$9 /$ GR5
EQAGAND1	-115.20	31	-71.37	-4.69	6.49	2.57	87	1	87.4	$9 /$ GR5
GRD00059	-57.20	31	-61.58	12.29	0.60	0.60	90	1	87.4	
GRLDNK01	-53.20	31	-44.89	66.56	2.70	0.82	173	1	87.4	2
GUY00201	-8470	31	-59.19	4.78	1.44	0.85	95	1	87.4	
HWA00002	-166.20	31	-165.79	23.42	4.20	0.68	160	1	87.4	$9 /$ GR1
HWA00003	-175.20	31	-166.10	23.42	4.25	0.68	159	1	87.4	$9 /$ GR2
MEX01NTE	-78.20	31	-105.81	26.01	2.89	2.08	155	1	87.4	1

17761,40 MHz (31)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

17775,98 MHz (32)

ALS00002	-165.80	32	-109.83	36.82	6.03	1.12	137	2	87.4	9/GR1
ALS00003	- 174.80	32	-116.10	37.47	5.60	0.76	132	2	87.4	9/GR2
ARGNORT4	-93.80	32	-6396	-30.01	3.86	1.99	48	2	87.4	
ARGNORT5	-54.80	32	-62.85	-29.80	3.24	2.89	47	2	87.4	
B CE311	-63.80	32	-40.60	-6.07	3.04	2.06	174	2	87.4	$89 / \mathrm{GR} 7$
B CE312	-44.80	32	-40.26	-6.06	3.44	2.09	174	2	87.4	8 9/GR9
B CE411	-63.80	32	-50.97	- 15.26	3.86	1.38	49	2	87.4	8 9/GR7
B CE412	-44.80	32	-50.71	- 15.30	3.57	1.56	52	2	87.4	8 9/GR9
B CE511	-63.80	32	-53.11	-2.98	242	2.15	107	2	87.4	8 9/GR7
B N0611	-73.80	32	-59.60	- 11.62	2.86	1.69	165	1	87.4	8 9/GR8
B N0711	-73.80	32	-60.70	-1.78	3.54	1.78	126	1	87.4	8 9/GR8
B NO811	-73.80	32	-68.75	-4.71	2.37	1.65	73	1	87.4	8 9/GR8
B SE911	- 101.80	32	-45.99	-19.09	2.22	0.79	62	2	87.4	8
B SU111	-80.80	32	-51.10	-25.64	2.76	1.06	50	2	87.4	8 9/GR6
B SU112	-44.80	32	-50.76	-25.62	2.47	1.48	56	2	87.4	8 9/GR9
B SU211	-80.80	32	-44.51	-16.94	3.22	1.37	60	2	87.4	8 9/GR6
B SU212	-44.80	32	-43.99	-16.97	3.27	1.92	59	2	874	8 9/GR9
CAN01101	- 137.80	32	- 125.60	57.24	3.45	1.27	157	2	87.4	9/GR10
CAN01201	- 137.80	32	-111.92	55.89	3.33	0.98	151	2	87.4	9/GR10
CAN01202	-72.30	32	-107.64	55.62	2.75	1.11	32	2	87.4	
CAN01203	- 128.80	32	- 111.43	55.56	3.07	1.15	151	2	87.4	9/GR12
CAN01303	- 128.80	32	- 102.39	57.12	3.54	0.92	154	2	87.4	9/GR12
CAN01304	-90.80	32	-99.00	57.33	1.96	1.73	1	2	87.4	9/GR13
CAN01403	- 128.80	32	-89.70	52.02	4.67	0.79	148	2	87.4	9/GR12

17775,98 MHz (32)

1	2	3	4		5		6	7	8	9
CAN01404	-90.80	32	-84.78	52.41	3.09	2.06	153	2	87.4	9/GR13
CAN01405	-81.80	32	-84.02	52.34	2.82	2.30	172	2	87.4	9/GR14
CAN01504	-90.80	32	-72.68	53.78	3.57	1.67	157	2	87.4	9/GR13
CAN01505	-81.80	32	-71.76	53.76	3.30	1.89	162	2	87.4	9/GR14
CAN01605	-81.80	32	-61.54	49.50	2.66	1.39	144	2	87.4	9/GR14
CAN01606	-70.30	32	-61.32	49.51	2.41	1.65	148	2	87.4	
CHLCONT4	-105.80	32	-69.59	-23.20	2.21	0.69	68	2	87.4	9/GR16
CHLCONT6	-105.80	32	- 73.52	-55.52	3.65	1.31	39	2	87.4	9/GR16
CRBBAH01	-92.30	32	-76.09	24.13	1.83	0.68	141	1	87.4	9/GR18
CRBBER01	-92.30	32	-64.76	32.13	0.60	0.60	90	1	87.4	9/GR18
CRBBLZ01	-92.30	32	-88.61	17.26	0.64	0.64	90	1	87.4	9/GR18
CRBEC001	-92.30	32	-60.07	8.26	4.20	0.86	115	1	87.4	9/GR18
CRBJMC01	-92.30	32	-79.45	17.97	0.99	0.68	151	1	87.4	9/GR18
EQAC0001	-94.80	32	-78.31	-1.52	1.48	1.15	65	1	87.4	9/GR19
EQAG0001	-94.80	32	-90.36	-0.57	0.94	0.89	99	1	87.4	9/GR19
GRD00003	-79.30	32	-61.62	12.34	0.60	0.60	90	2	87.4	
GTMIFRB2	-107.30	32	-90.50	15.64	1.03	0.74	84	1	87.4	
GUFMGG02	-52.80	32	-56.42	8.47	4.16	0.81	123	2	87.4	27
HWA00002	- 165.80	32	-165.79	23.32	4.20	0.68	160	2	87.4	9/GR1
HWA00003	- 174.80	32	- 166.10	23.42	4.25	0.68	159	2	87.4	9/GR2
MEX01NTE	-77.80	32	- 105.80	25.99	2.88	2.07	155	2	87.4	1
MEX02NTE	- 135.80	32	-107.36	26.32	3.80	1.57	149	2	87.4	1
MEX02SUR	-126.80	32	-96.39	19.88	3.19	1.87	158	2	87.4	1
PNRIFRB2	-121.00	32	-80.15	8.46	1.01	0.73	170	1	87.4	

17775,98 MHz
(32)

PRU00004	-85.80	32	-74.19	-8.39	3.74	2.45	112	2	87.4	
PTRVIR01	-10080	32	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
PTRVIR02	- 109.80	32	-95.47	36.38	8.10	3.45	168	2	87.4	$169 / \mathrm{GR} 21$
USAEH001	-61.30	32	-8753	36.18	6.41	3.49	12	2	87.4	156
USAEH002	- 100.80	32	-93.85	36.31	8.26	3.55	171	2	87.4	16 9/GR20
USAEH003	-109.80	32	-9547	36.38	8.10	3.45	168	2	87.4	16 9/GR21
USAEH004	- 118.80	32	-9642	36.21	8.20	3.12	165	2	87.4	156
USAPSA02	- 165.80	32	-109 83	36.82	603	1.12	137	2	874	9/GR1
USAPSA03	- 174.80	32	-11610	37.47	5.60	0.76	132	2	87.4	9/GR2
USAWH101	- 147.80	32	-111.01	40.67	4.38	2.15	162	2	87.4	
USAWH102	- 156.80	32	- 113.01	4071	3.74	1.79	149	2	87.4	
VENO2VEN	-103.80	32	-66.79	6.90	2.50	177	122	2	87.4	9/GR22
VEN11VEN	-103.80	32	-66.79	6.90	2.50	1.77	122	2	87.4	9/GR22

ARTICLE 10

Interference

10.1 The Members of the Union in Region 2 shall endeavour to agree on the action required to reduce harmful interference which might be caused by the application of these provisions and the associated Plan.

ARTICLE 11

Period of Validity of the Provisions and Associated Plan

11.1 For Region 2, the provisions and associated Plan have been prepared in order to meet the requirements for feeder links for the broadcasting-satellite service in the bands concerned for a period extending until at least 1 January 1994.
11.2 In any event, the provisions and associated Plan shall remain in force until their revision by a competent administrative radio conference convened in accordance with the relevant provisions of the Convention in force.

ANNEX 1

Limits for Determining Whether a Service of an Administration Is Considered to Be Affected by a Proposed Modification to the Plan or When It Is Necessary Under This Appendix to Seek the Agreement of Any Other Administration ${ }^{1}$

1. Limits applicable to protect a frequency assignment in the band $17.7-17.8 \mathrm{GHz}$ to an earth station in the fixed-satellite service (space-to-Earth)

An administration shall be considered as being affected if, upon application of the procedures of Section 3 of Annex 4 to this Appendix, that administration is included in the coordination area of the frequency assignment to a transmitting feeder-link earth station.

For this purpose, the parameters of the transmitting feeder-link earth station, as may be modified from those parameters given in Annex 3 to this Appendix, shall be used.
2. Limits applicable to protect a terrestrial station in the band 17.717.8 GHz

An administration shall be considered as being affected if, upon application of the procedures of Appendix 28 to the Radio Regulations, that administration is included in the coordination area of the frequency assignment to a transmitting feeder-link earth station.

For this purpose, the parameters of the transmitting feeder-link earth station, as may be modified from those parameters given in Annex 3 to this Appendix, shall be used.

[^56]3. Limits to the change in the overall equivalent protection margin with respect to frequency assignments in conformity with the Plan ${ }^{1}$

With respect to the modification to the Plan and when it is necessary under this Appendix to seek the agreement of any other administration, except in cases covered by Resolution 42 (Orb-85), an administration shall be considered as being affected if the overall equivalent protection margin ${ }^{2}$ corresponding to a test point of its entry in the Plan, including the cumulative effect of any previous modification to the Plan or any previous agreement, falls more than 0.25 dB below 0 dB , or, if already negative, more than 0.25 dB below the value resulting from:

- the Plan as established by the 1983 Conference; or
- a modification of the assignment in accordance with this Appendix; or
- a new entry in the Plan under Article 4 of this Appendix; or
- any agreement reached in accordance with this Appendix except for Resolution 42 (Orb-85).

[^57]
ANNEX 2

Basic Characteristics to be Furnished in Notices ${ }^{1}$ Relating to Feeder-Link Stations in the Fixed-Satellite Service Operating in the Frequency Band 17.3-17.8 GHz in Region 2^{2}

1. The following information is required in notices relating to transmitting earth stations.
1.1 Country and beam identification.
1.2 Assigned frequency or channel number.
1.3 Assigned frequency band.
1.4 Date of bringing into use.
1.5 Identity of the transmitting feeder-link station.
1.6 Geographical coordinates of a feeder-link earth station transmitting in the band $17.7-17.8 \mathrm{GHz}$.
1.7 Feeder-link service area for a feeder-link earth station transmitting in the band $17.3-17.7 \mathrm{GHz}$ identified by a set of geographical coordinates of the polygon points of the feeder-link service area.

[^58]1.8 Identity of the space station with which communication is to be established.
1.9 Rain-climatic zone ${ }^{1}$.
1.10 Class of emission, necessary bandwidth and description of transmission.
1.11 Power characteristics of the transmission:
a) The following information is required for each assigned frequency:

- transmit power (dBW) supplied to the input of the antenna;
- maximum power density per $\mathrm{Hz}(\mathrm{dB}(\mathrm{W} / \mathrm{Hz})$), averaged over the worst 1 MHz band, supplied to the antenna.
b) Additional information required if power control is used (see Section 3.10 of Annex 3 to this Appendix):
- mode of control;
- range, expressed in dB , above the transmit power used in a) above.
c) Additional information required if site diversity is used (see Section 3.11 of Annex 3 to this Appendix):
- identity of other earth station with which diversity operation is to be employed.
d) Additional information required if depolarization compensation is used (see Section 3.12 of Annex 3 to this Appendix):
- characteristics.

[^59]
1.12 Transmitting antenna characteristics:

a) antenna diameter (metres);
b) gain of the antenna in the direction of maximum radiation referred to an isotropic radiator (dBi);
c) beamwidth in degrees between the half-power points (describe in detail if not symmetrical);
d) the measured radiation diagram of the antenna (taking as a reference the direction of maximum radiation), or the reference radiation diagram to be used for coordination;
e) type of polarization;
f) sense of polarization;
g) the horizon elevation angle in degrees and the antenna gain in the direction of the horizon for each azimuth ${ }^{1}$ around the earth station ${ }^{2}$;
h) altitude of the antenna above mean sea level in metres ${ }^{2}$;
i) minimum elevation angle in degrees ${ }^{2}$.
1.13 Modulation characteristics:
a) type of modulation;
b) pre-emphasis characteristics;
c) TV system;
d) sound-broadcasting characteristics;
e) frequency deviation;
f) composition of the baseband;
g) type of multiplexing of the video and sound signals;
h) energy dispersal characteristics.

1 Every five degrees, in tabular or graphical form.
${ }^{2}$ This information is required for frequency assignments in the band 17.717.8 GHz.
1.14 Regular hours of operation (UTC).
1.15 Coordination.
1.16 Agreements.
1.17 Other information.
1.18 Operating administration or company.
2. The following information is required in notices relating to receiving space stations:
2.1 Country and beam identification.
2.2 Orbital position (xxx.xx degrees from the Greenwich meridian).
2.3 Assigned frequency or channel number.
2.4 Assigned frequency band.
2.5 Date of bringing into use.
2.6 Identity of the space station.
2.7 Class of station.
2.8 Class of emission and necessary bandwidth of the transmission to be received.
2.9 Antenna characteristics:
a) gain of the antenna in the direction of maximum radiation referred to an isotropic radiator (dBi);
b) shape of the beam (circular, elliptical or other);
c) pointing accuracy;
d) type of polarization;
e) sense of polarization;
f) for circular beams, indicate the following:

- half-power beamwidth (degrees);
- co-polar and cross-polar radiation patterns;
- nominal intersection of the antenna beam axis with the Earth;
g) for elliptical beams, indicate the following:
- co-polar and cross-polar radiation patterns;
- rotation accuracy;
- orientation;
- major axis (degrees) at the half-power beamwidth;
- minor axis (degrees) at the half-power beamwidth;
- nominal intersection of the antenna beam axis with the Earth;
h) for beams of other than circular or elliptical shape, indicate the following:
- co-polar and cross-polar gain contours plotted on a map of the Earth's surface, preferably in a radial projection from the satellite onto a plane perpendicular to the axis from the centre of the Earth to the satellite. The isotropic or absolute gain shall be indicated at each contour which corresponds to a decrease in gain of $2,4,6,10$ and 20 dB and thereafter at 10 dB intervals down to a value of 0 dB relative to an isotropic radiator;
- wherever practicable, a numerical equation or table providing the necessary information to allow the gain contours to be plotted;
i) for an assignment in the band $17.7-17.8 \mathrm{GHz}$, the gain in the direction of those parts of the geostationary-satellite orbit which are not obstructed by the Earth. Use a diagram showing estimated gain versus orbit longitude.
2.10 Receiver system noise temperature referred to the output of the antenna.
2.11 Station-keeping accuracy.
2.12 Modulation characteristics:
a) type of modulation;
b) pre-emphasis characteristics;
c) TV system;
d) sound-broadcasting characteristics;
e) frequency deviation;
f) composition of the baseband;
g) type of multiplexing of the video and sound signals;
$h)$ energy dispersal characteristics.
2.13 Regular hours of operation (UTC).
2.14 Coordination.
2.15 Agreements.
2.16 Other information.
2.17 Operating administration or company.
2.18 Range of automatic gain control ${ }^{1}$.

ANNEX 3
 Technical Data Used in Establishing the Provisions and Associated Plan and Which Should Be
 Used for their Application

1. DEFINITIONS

1.1 Feeder link

In the Region 2 broadcasting-satellite service Plan, the term feeder link, as defined in No. 109 of the Radio Regulations is further qualified to indicate a fixed-satellite service link in the frequency band $17.3-17.8 \mathrm{GHz}$ from any earth station within the feeder-link service area to the associated space station in the broadcasting-satellite service.
${ }^{1}$ See Section 3.9 of Annex 3 to this Appendix.

The area delineated by the intersection of the half-power beam of the satellite receiving antenna with the surface of the Earth.

1.3 Feeder-link service area

The area on the surface of the Earth within the feeder-link beam area within which the administration responsible for the service has the right to locate transmitting earth stations for the purpose of providing feeder links to broadcasting-satellite space stations.

1.4 Nominal orbital position

The longitude of a position in the geostationary-satellite orbit associated with a frequency assignment to a space station in a space radiocommunication service. The position is given in degrees from the Greenwich meridian.

1.5 Adjacent channel

The RF channel in the broadcasting-satellite service frequency Plan, or in the associated feeder-link frequency Plan, which is situated immediately higher or lower in frequency with respect to the RF reference channel.

1.6 Second adjacent channel

The RF channel in the broadcasting-satellite service frequency Plan, or in the associated feeder-link frequency Plan, which is situated immediately beyond either of the adjacent channels.

1.7 Overall carrier-to-interference ratio

The overall carrier-to-interference ratio is the ratio of the wanted carrier power to the sum of all interfering RF powers in a given channel including both feeder links and down links. The overall carrier-to-interference ratio due to interference from the given channel is calculated as the reciprocal of the sum of the reciprocals of the feeder-link carrier-to-interference ratio and the down-link carrier-to-interference ratio referred to the satellite receiver input and earth station receiver input, respectively ${ }^{1}$.

1.8 Overall co-channel protection margin

The overall co-channel protection margin in a given channel is the difference in dB between the overall co-channel carrier-to-interference ratio and the co-channel protection ratio.

1.9 Overall adjacent channel protection margin

The overall adjacent channel protection margin is the difference, in dB , between the overall adjacent channel carrier-to-interference ratio and the adjacent channel protection ratio.

1.10 Overall second adjacent channel protection margin

The overall second adjacent channel protection margin is the difference in dB between the overall second adjacent channel carrier-tointerference ratio and the second adjacent channel protection ratio.

[^60]
1.11 Overall equivalent protection margin

The overall equivalent protection margin M is given in dB by the expression:

$$
\begin{equation*}
M=-10 \log \left(\sum_{t=1}^{5} 10^{\left(-M_{t} / 10\right)}\right) \tag{dB}
\end{equation*}
$$

where:
$M_{1} \quad=$ overall co-channel protection margin, in dB (as defined in 1.8),
$M_{2}, M_{3}=$ overall adjacent channel protection margins for the upper and lower adjacent channels respectively, in dB (as defined in 1.9),
$M_{4}, M_{5}=$ overall second adjacent channel protection margins for the upper and lower second adjacent channels respectively, in dB (as defined in 1.10).

The adjective "equivalent" indicates that the protection margins for all interference sources from the adjacent and second adjacent channels as well as co-channel interference sources have been included.

2. RADIO PROPAGATION FACTORS

The propagation loss on an earth-space path is equal to the freespace path loss plus the atmospheric absorption loss plus the rain attenuation exceeded for 1% of the worst month.
(Rev. 1986)

2.1 Atmospheric absorption

The loss due to atmospheric absorption (i.e. clear sky attenuation) is given by:

$$
A_{a}=\frac{92.20}{\cos \theta}\left(0.020 F_{o}+0.008 \rho F_{w}\right) \quad \text { (dB) } \quad \text { for } \theta<5^{\circ}
$$

where:

$$
\begin{aligned}
& F_{o}=\left\{24.88 \tan \theta+0.339 \sqrt{1416.77 \tan ^{2} \theta+5.51}\right\}^{-1} \\
& F_{w}=\left\{40.01 \tan \theta+0.339 \sqrt{3663.79 \tan ^{2} \theta+5.51}\right\}^{-1}
\end{aligned}
$$

and:

$$
A_{a}=\frac{0.0478+0.0118 \rho}{\sin \theta} \quad \text { (dB) } \quad \text { for } \theta \geqslant 5^{\circ}
$$

where:
$\theta=$ the elevation angle (degrees),
$\rho=$ the surface water vapour concentration, g / m^{3}, with $\rho=10 \mathrm{~g} / \mathrm{m}^{3}$ for rain-climatic zones A to K and $\rho=20 \mathrm{~g} / \mathrm{m}^{3}$ for rain-climatic zones M to P (see Figure 1).

2.2 Rain attenuation

For circularly polarized signals, the rain attenuation A_{p} exceeded for 1% of the worst month at 17.5 GHz is calculated using the method outlined in Section 2.4.2 of Annex 5, Appendix 30 (Orb-85) by substituting the relation:

$$
\begin{equation*}
\gamma=0.0521 R^{1.114} \tag{dB/km}
\end{equation*}
$$

for the one given in that Section.
(Rev. 1986)

Rain climatic zones (Region 2)

Figure 2 presents plot of rain attenuation of circularly polarized signals exceeded for 1% of the worst month at 17.5 GHz , as a function of earth station latitude and elevation angle for each of the rain-climatic zones in Region 2.

2.3 Rain attenuation limit

In the analysis of the Plan, a maximum rain attenuation on the feeder link of 13 dB was considered assuming that other means would be used at the implementation stage to protect for larger rain attenuation on the feeder links.

2.4 Depolarization

Rain and ice can cause depolarization of radio frequency signals. The level of the co-polar component relative to the depolarized component is given by the cross-polarization discrimination (XPD) ratio. For the feeder link, the XPD ratio, in dB , exceeded for 99% of the worst month is given by:

$$
\mathrm{XPD}=30 \log f-40 \log (\cos \theta)-23 \log A_{p} \quad(\mathrm{~dB}) \quad \text { for } 5^{\circ} \leqslant \theta \leqslant 60^{\circ}
$$

where $A_{p}(\mathrm{~dB})$ is the co-polar rain attenuation exceeded for 1% of the worst month, f is the frequency in GHz and θ is the elevation angle. For values of θ greater than 60°, use $\theta=60^{\circ}$ in the previous equation.
2.5 Procedure for calculating the carrier-to-interference ratio at a space station receiver input

The calculation of the feeder-link carrier-to-interference ratio (exceeded for 99% of the worst month) at a space station receiver input used to obtain the overall equivalent protection margin at a test point assumes a rain attenuation value exceeded for 1% of the worst month on the wanted feeder-link path.

For the interfering feeder-link signal path, clear sky propagation (i.e. including atmospheric absorption only) is assumed.

3. BASIC TECHNICAL CHARACTERISTICS

3.1 Translation frequency and guard bands

The feeder-link Plan is based on the use of a single frequency translation of 5.1 GHz between the 17 GHz feeder-link channels and the 12 GHz down-link channels. Other values of the translation frequency may be used, provided that the corresponding channels have been assigned to the space station of the administration concerned.

With a single value frequency translation between the feeder-link frequency band (17.3-17.8 GHz) and the down-link frequency band (12.212.7 GHz), the guard bands present in the down-link Plan result in corresponding bandwidths of 12 MHz at the upper and lower feeder-link band edges. These feeder-link guard bands may be used for transmissions in the space operation service.

3.2 Carrier-to-noise ratio

Section 3.3 of Annex 5 to Appendix 30 (Orb-85) provides guidance for planning and the basis for the evaluation of the carrier-to-noise ratios of the feeder-link and down-link Plans.

As a guidance for planning, the reduction in quality in the downlink due to thermal noise in the feeder link is taken as equivalent to a degradation in the down-link carrier-to-noise ratio of approximately 0.5 dB not exceeded for 99% of the worst month.

Section 3.4 of Annex 5 to Appendix 30 (Orb-85) provides guidance for planning for the contribution of the feeder-link co-channel interference to the overall co-channel carrier-to-interference ratio. However, the feederlink and down-link Plans are evaluated on the overall equivalent protection margin which includes the combined down-link and feeder link contributions. Definitions $1.7,1.8,1.9,1.10$ and 1.11 of this Annex and the protection ratios given in Section 3.4 of Annex 5 to Appendix 30 (Orb-85) are used in the analysis of the Plans.

For the adjacent channels, the Plan is based on an orbital separation of 0.4° between nominally co-located satellites having cross-polarized adjacent channel assignments.

For the second adjacent channels, the Plan is based on a 10 dB improvement on the feeder-link carrier-to-interference ratio due to the satellite receive filtering.

3.4 Transmitting antenna

3.4.1 Antenna diameter

The feeder-link Plan is based on an antenna diameter of 5 metres.

The minimum antenna diameter permitted in the Plan is 2.5 metres. However, the feeder-link carrier-to-noise ratio and carrier-to-interference ratio resulting from the use of antennas with diameters smaller than 5 metres would generally be less than those calculated in the Plan.

The use of antennas larger than 5 metres, with corresponding values of on-axis e.i.r.p. higher than the planned value (indicated in Section 3.4.3) but without augmented off-axis e.i.r.p., is permitted if the orbital separation between the assigned orbital location of the administration and the assigned orbital location of any other administration is greater than 0.5°.

Antennas with diameters larger than 5 metres can also be implemented if the above orbital separation is less than 0.5° and if the e.i.r.p. of the desired feeder-link earth station does not exceed the planned value of e.i.r.p.

If the above orbital separation is less than 0.5° and if the e.i.r.p. of the desired feeder-link earth station exceeds the planned value, agreement between administrations is required.

3.4.2 Reference patterns of transmitting antennas

The co-polar and cross-polar reference patterns of transmitting antennas used for planning in Region 2 are given in Figure 3.

3.4.3 Antenna efficiency

The Plan is based on an anteniaa efficiency of 65%. The corresponding on-axis gain for an antenna having a 5 -metre diameter is 57.4 dBi at 17.55 GHz , and the corresponding value of e.i.r.p. used for planning purposes is 87.4 dBW .

3.4.4 Pointing accuracy

The Plan has been developed to accommodate a loss in gain due to earth station antenna mis-pointing of 1 dB . Under no circumstances shall the Plan allow for a mis-pointing angle greater than 0.1°.

3.5 Transmit power

The maximum transmit power delivered to the input of the antenna of the feeder-link earth station is 1000 watts per 24 MHz television channel. This level of power can only be exceeded under certain conditions specified in Section 3.10 of this Annex.

FIGURE 3
Reference patterns for co-polar and cross-polar components for transmitting antennas for Region 2
(Rev. 1986)

Curve A: Co-polar component (dBi)

$36-20 \log \varphi$	for	$0.1^{\circ} \leqslant \varphi<0.32^{\circ}$
$51.3-53.2 \varphi^{2}$	for	$0.32^{\circ} \leqslant \varphi<0.54^{\circ}$
$29-25 \log \varphi$	for	$0.54^{\circ} \leqslant \varphi<36^{\circ}$
-10	for	$\varphi \geqslant 36^{\circ}$

Curve B: Cross-polar component (dBi)

$$
\begin{array}{ll}
G_{\max }-30 & \text { for } \quad \varphi<\left(\frac{0.6}{D}\right)^{\circ} \\
9-20 \log \varphi & \text { for } \quad\left(\frac{0.6}{D}\right)^{\circ} \leqslant \varphi<8.7^{\circ} \\
-10 & \text { for } \quad \varphi \geqslant 8.7^{\circ}
\end{array}
$$

where:
$\varphi \quad=$ off-axis angle referred to the main-lobe axis (degrees);
$G_{\text {max }}=$ on-axis co-polar gain of the antenna (dBi);
$D \quad=$ diameter of the antenna in metres $(D \geqslant 2.5)$.

Note 1: In the angular range between 0.1° and 0.54°, the co-polar gain must not exceed the reference pattern.

Note 2: In the angular range between 0° and $(0.6 / D)^{\circ}$, the cross polar gain must not exceed the reference pattern.

Note 3: At the larger off-axis angles and for 90% of all side-lobe peaks in each of the reference angular windows, the gain must not exceed the reference pattern. The reference angular windows are 0.54° to $1^{\circ}, 1^{\circ}$ to $2^{\circ}, 2^{\circ}$ to $4^{\circ}, 4^{\circ}$ to $7^{\circ}, 7^{\circ}$ to $10^{\circ}, 10^{\circ}$ to $20^{\circ}, 20^{\circ}$ to $40^{\circ}, 40^{\circ}$ to $70^{\circ}, 70^{\circ}$ to 100° and 100° to 180°. The first reference angular window for evaluating the cross-polar component should be $(0.6 / D)^{\circ}$ to 1°.

3.6 Receiving antenna

3.6.1 Cross-section of receiving antenna beam

Planning has been based on beams of elliptical or circular crosssection. When the assignments are implemented, or when the Plan is modified, administrations may use non-elliptical or shaped beams.

If the cross-section of the receiving antenna beam is elliptical, the effective beamwidth φ_{0} is a function of the angle of rotation q between the plane containing the satellite and the major axis of the beam cross-section and the plane in which the beamwidth is required.

The relationship between the maximum gain of an antenna and the half-power beamwidth can be derived from the expression:

$$
G_{m}=27843 / a b
$$

or

$$
G_{m}(\mathrm{~dB})=44.44-10 \log a-10 \log b
$$

where:
a and b are the angles (in degrees) subtended at the satellite by the major and minor axes of the elliptical cross-section of the beam.

An antenna efficiency of 55% is assumed.

3.6.2 Minimum beamwidth

A minimum value of 0.6° for the half-power beamwidth of the receiving antenna has been agreed on for planning.

3.6.3 Reference patterns

The reference patterns for the co-polar and cross-polar components of the satellite receiving antenna used in preparing the Plan are given in Figure 4.

Where it was necessary to reduce interference, the pattern shown in Figure 5 was used; this use will be indicated in the Plan by an appropriate symbol. This pattern is derived from an antenna producing an elliptical beam with fast roll-off in the main lobe. Three curves for different values of φ_{0} are shown as examples.

FIGURE 4
Reference patterns for co-polar and cross-polar components
for satellite receiving antenna in Region 2

Curve A: Co-polar component (dB relative to main beam gain)

$$
\begin{array}{lll}
-12\left(\varphi / \varphi_{0}\right)^{2} & \text { for } & 0 \leqslant\left(\varphi / \varphi_{0}\right) \leqslant 1.45 \\
-\left(22+20 \log \left(\varphi / \varphi_{0}\right)\right) & \text { for } & \left(\varphi / \varphi_{0}\right)>1.45
\end{array}
$$

after intersection with Curve C : as Curve C

Curve B: Cross-polar component (dB relative to main beam gain)
-30 for $0 \leqslant\left(\varphi / \varphi_{0}\right) \leqslant 2.51$
after intersection with Curve A: as Curve A

Curve C: Minus the on-axis gain (Curve C in this figure illustrates the particular case of an antenna with an on-axis gain of 46 dBi)

FIGURE 5
Reference patterns for co-polar and cross-polar components for satellite receiving antennas with fast roll-off in the main beam
for Region 2

Curve A: Co-polar component (dB relative to main beam gain)

$$
\begin{array}{lll}
-12\left(\varphi / \varphi_{0}\right)^{2} & \text { for } & 0 \leqslant \varphi / \varphi_{0} \leqslant 0.5 \\
-33.33 \varphi_{0}^{2}\left(\varphi / \varphi_{0}-x\right)^{2} & \text { for } & 0.5<\varphi / \varphi_{0} \leqslant \frac{0.87}{\varphi_{0}}+x \\
-25.23 & \text { for } & \frac{0.87}{\varphi_{0}}+x<\varphi / \varphi_{0} \leqslant 1.413 \\
-\left(22+20 \log \left(\varphi / \varphi_{0}\right)\right) & \text { for } & \frac{\varphi}{\varphi_{0}}>1.413
\end{array}
$$

after intersection with Curve C : as Curve C

Curve B: Cross-polar component (dB relative to main beam gain)
-30 for $0 \leqslant \varphi / \varphi_{0}<2.51$
after intersection with Curve A: as Curve A

Curve C : Minus the on-axis gain (Curves A and C represent examples for three antennas having different values of φ_{0} as labelled in Figure 5. The on-axis gains of these antennas are 37,43 and 49 dBi , respectively).
where:

$$
\varphi=\text { off-axis angle (degrees) }
$$

$\varphi_{0}=$ dimension of the minimum ellipse fitted around the feeder link service area in the direction of interest (degrees)
$x=0.5\left(1-\frac{0.6}{\varphi_{0}}\right)$.

3.6.4 Pointing accuracy

The deviation of the receiving antenna beam from its nominal pointing direction must not exceed 0.1° in any direction. Moreover, the angular rotation of the receiving beam about its axis must not exceed $\pm 1^{\circ}$; this latter limit is not necessary for beams of circular cross-section using circular polarization.

3.7 System noise temperature

The Plan is based on a value of 1500 K for the satellite system noise temperature.

3.8 Polarization

3.8.1 In Region 2, for the purpose of planning the feeder links, circular polarization is used.
3.8.2 In the cases where there are polarization constraints, use of polarization other than circular is permitted only upon agreement of administrations that may be affected.

3.9 Automatic gain control

3.9.1 The Plan is based on the use of automatic gain control on board satellites to maintain a constant signal level at the satellite transponder output.
3.9.2 The dynamic range of automatic gain control is limited to 15 dB when satellites are located within 0.4° of each other and operate on cross-polarized adjacent channels serving common or adjacent feeder-link service areas.
3.9.3 The 15 dB limit of automatic gain control does not apply to satellites other than those specified in paragraph 3.9.2 above.
(Rev. 1986)

3.10 Power control

The Plan has been developed without the use of power control.
The use of transmit power levels higher than those given in Section 3.5 is permitted only when rain attenuation exceeds 5 dB at 17 GHz . In such cases, the transmit power may be increased by the amount that the instantaneous rain attenuation exceeds 5 dB at 17 GHz up to the limit given in Table I.

TABLE I

Transmit radio frequency power (delivered to the imput of the feeder-link earth station antenna) permitted in excess of 1000 watts as a function of elevation angle

Elevation angle of feeder-link earth station antenna (degrees)	Transmit power permitted in excess of 1000 watts (dB)
0 to 40	0
40 to 50	2
50 to 60	3
60 to 90	5

3.11 Site diversity

Site diversity refers to the alternate use during rain of two or more transmitting earth stations which may be separated by sufficient distance to ensure uncorrelated rainfall conditions.

The use of site diversity is permitted and is considered to be an effective technique for maintaining high carrier-to-noise ratio and carrier-tointerference ratio during periods of moderate to severe rain attenuation. However, the Plan is not based on the use of site diversity.

3.12 Depolarization compensation

The Plan is developed without the use of depolarization compensation. Depolarization compensation is permitted only to the extent that interference to other satellites does not increase by more than 0.5 dB relative to that calculated in the feeder-link Plan.

3.13 Minimum separation between satellites

Figure 6 illustrates two adjacent clusters of satellites separated by 0.9° between the centres of the clusters. A η identifies a satellite of administration η. A cluster is formed by two or more satellites separated by 0.4° and located at two nominal orbital positions as specified in the Plan; one position for right-hand polarized channels and the other position for left-hand polarized channels.

3.13.1 Satellites of the same cluster

The Plan is based on an orbital separation of 0.4° between satellites having cross-polarized adjacent channels (i.e. satellites located at $+0.2^{\circ}$ and -0.2° from the centre of the cluster). However, satellites within a cluster may be located at any orbital position within the cluster, requiring only the agreement of the other administrations having satellites sharing the same cluster. Such orbital positioning of satellites within a cluster is illustrated in Figure 6 by some of the satellites A5, A6 and A7.

The station-keeping tolerance of $\pm 0.1^{\circ}$ indicated in Section 3.11 of Annex 5 to Appendix 30 (Orb-85) must be applied to satellites located at any position within the 0.4° wide cluster.

3.13.2 Satellites of different clusters

In the Plan, the orbital separation between the centres of adjacent clusters of satellites is at least 0.9°. The value of 0.9° is also the minimum orbital separation to provide flexibility in the implementation of feeder links indicated in Section 3.4.1 of this Annex without the need for an agreement (see Section 3.13.1 of this Annex).

FIGURE 6
Exploded view of geostationary satellite orbit

ANNEX 4

Criteria for Sharing Between Services in Region 2

1. Threshold values for determining when coordination is required between a transmitting space station in the fixed-satellite service and a receiving space station in the feeder-link Plan in the frequency band 17.7-17.8 GHz

With respect to paragraph 7.1, Article 7 of this Appendix, coordination of a transmitting space station in the fixed-satellite service with a broadcasting-satellite in the Region 2 Plan is required, for inter-satellite geocentric angular separations less than 10° or greater than 150°, when the power flux-density arriving at the receiving space station of a broadcastingsatellite feeder-link station of another administration would cause an increase in the noise temperature of the feeder-link space station which, calculated in accordance with the method given in Appendix 29, exceeds a threshold value of $\Delta T / T$ corresponding to 10%. The above provision does not apply when the geocentric angular separation, between a transmitting space station in the fixed-satellite service and a receiving space station in the feeder-link Plan, exceeds 150° of arc and the free-space power flux-density of the transmitting space station in the fixed-satellite service does not exceed a value of $-123 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2} / 24 \mathrm{MHz}\right)$ on the Earth's surface at the equatorial Earth limb.
2. Not used.
3. Method for the determination of the coordination area around a feeder-link transmitting earth station of the Region 2 Plan with respect to receiving earth stations in the fixed-satellite service in Region 2 in the frequency band $17.7-17.8 \mathrm{GHz}$

3.1 Introduction

In the frequency band $17.7-17.8 \mathrm{GHz}$, which is allocated to the fixed-satellite service, in both the Earth-to-space direction (for broadcasting-
satellite service feeder links only), and the space-to-Earth direction, emissions from transmitting feeder-link earth stations may cause interference at receiving earth stations in the fixed-satellite service.

Electromagnetic coupling of an emission originating at a feeder-link earth station into a receiving earth station may occur through two propagation mechanisms or "modes":

Propagation mode (1): coupling along a great circle tropospheric interference horizon path;

Propagation mode (2): coupling through scatter from hydrometeors.

The determination of whether emissions from a feeder-link earth station may cause unacceptable interference in a receiving earth station is by means of coordination contours drawn around a feeder-link earth station on a map. When a receiving earth station is located within either or both coordination contours, i.e., within the coordination area, there is a possibility of unacceptable interference.

The procedure for the determination of the coordination area for a feeder-link earth station in relation to a receiving earth station in the fixed-satellite service is similar to that described in Appendix 28 but differs from it in the details described below.

3.2 Determination of the coordination contour for propagation mode (1)

The distance at which a signal of power $P_{r^{\prime}}(\mathrm{dBW})$ applied to the antenna terminals of a feeder-link earth station will produce a received power $P_{r}(p)$ at the antenna terminals of a receiving earth station, for propagation mode (1), is given by:

$$
\begin{equation*}
d_{1}=\left(P_{t^{\prime}}+G_{r^{\prime}}+G_{r}-P_{r}(p)-A_{0}-A_{h}\right) / \beta \quad(\mathrm{km}) \tag{1}
\end{equation*}
$$

as derived from equations (2) and (8) of Appendix 28,
where:
$P_{t^{\prime}} \quad=$ maximum RF power (dBW) in any 1 MHz band applied to the antenna terminals of a feeder-link earth station;
$G_{t^{\prime}} \quad=$ gain (dB) of the feeder-link earth station antenna towards the physical horizon on the azimuth to the receiving earth station;
$G_{r} \quad=$ gain (dB) of the receiving earth station antenna towards the physical horizon on the azimuth to the feeder-link earth station;
$P_{r}(p)=$ permissible interfering RF power (dBW) in any 1 MHz band to be exceeded for no more than $p \%$ of the time at the antenna terminals of the receiving earth station;
$A_{0}=$ constant equal to 145.0 dB ;
$A_{h}=$ sum (dB) of available site shielding at the feeder-link earth station, $A_{h t^{\prime}}$, and at the receiving earth station, $A_{h r}$, on the respective azimuth towards the other earth station (both in dB);
$\beta=$ rate of attenuation along the interference path ($\mathrm{dB} / \mathrm{km}$), a function of the radio-climatic zone and of p as used in $P_{r}(p)$ above.

To determine the coordination contour for propagation mode (1) for a feeder-link earth station, equation (1) is solved for all azimuths around the earth station site (in suitable increments; e.g., every 5°), and the resulting distances plotted for all azimuths on a map of suitable scale from the earth station site. The connection of the so marked distance points constitutes the coordination contour for the feeder-link earth station.

3.3 Determination of parameters used in equation (1)

The parameters used in equation (1) are determined as follows:

3.3.1 Determination of $G_{t^{\prime}}$ and G_{r}

The determination of $G_{\prime^{\prime}}$ follows the procedure set forth in Annex II to Appendix 28 using the notified feeder-link earth station antenna pattern.

For the receiving earth station, a minimum main beam elevation angle of 5° is assumed for which the reference antenna radiation diagram of paragraph 4 of Annex II to Appendix 28 yields, in the absence of site shielding, a horizon antenna gain of $G_{r}=14.5 \mathrm{~dB}$.

3.3.2 Determination of $A_{h t^{\prime}}$ and $A_{h r}$

The calculation of $A_{h r^{\prime}}$ requires the determination of the horizon elevation angle θ (degrees) for all azimuths around a feeder-link earth station site. With these horizon elevation angles and the frequency of $f=17.75 \mathrm{GHz}, A_{h^{\prime}}$ is then calculated for each azimuth from equation (7a) of Appendix 28 for $\theta>0^{\circ}$, and it should be taken as equal to 0 dB for $\theta<0^{\circ}$.

For the fixed-satellite receiving earth station, the assumption must be made that no site shielding is available; hence, $A_{h r}=0 \mathrm{~dB}$.

3.3.3 Determination of $P_{r}(p)$ and p

The maximum permissible interfering RF power in any 1 MHz band is taken, under nominal conditions, to be limited to 15% of the total noise received at an earth station, or about 20% of the thermal noise of the receiving system. This corresponds to a value of -7 dB for the parameter J of Appendix 28. For percentages of time of less than 0.003%, a permissible increase in the interference by 5 dB is assumed (parameter $M(p)$ of Appendix 28). Considering further that the band $17.7-17.8 \mathrm{GHz}$ is also
shared with terrestrial services, the assumption is made that up to three equivalent entries of interference may be present which, however, produce their maximum interference during periods uncorrelated in time, thus allowing each to produce the maximum permissible value of interfering RF power during $p=0.001 \%$ of the time.

Therefore, according to equation (3) of Appendix 28:

$$
\begin{equation*}
P_{r}(p)=10 \log (k T B)-2 \quad(\mathrm{~dB}(\mathrm{~W} / \mathrm{MHz})) \tag{2}
\end{equation*}
$$

which, with

$$
\begin{aligned}
& k=\text { Boltzmann's constant, } \\
& B=1 \mathrm{MHz}, \text { and }
\end{aligned}
$$

$T=$ receiving system noise temperature, assumed to be 200 K
yields:

$$
P_{r}(p)=-147.6(\mathrm{~dB}(\mathrm{~W} / \mathrm{MHz})),
$$

with $\quad p=0.001 \%$ of the time.

3.3.4 Determination of β

The rates of attenuation for a percentage of time of 0.001%, for the three radio-climatic zones as defined in paragraph 3.1 of Appendix 28 at 17.75 GHz , are the following:

Zone A: $\quad \beta_{\mathrm{A}}=0.198 \mathrm{~dB} / \mathrm{km}$
Zone B: $\quad \beta_{\mathrm{B}}=0.06 \mathrm{~dB} / \mathrm{km}$

Zone C: $\quad \beta_{C}=0.074 \mathrm{~dB} / \mathrm{km}$

3.3.5 Graphical method

Figure 1 provides curves by means of which d_{1} may be determined when only a single radio-climatic zone is involved. The three curves shown are for the three radio-climatic zones as defined in Appendix 28. The abscissa is given in terms of the parameter P as defined below:

$$
\begin{equation*}
P=P_{r^{\prime}}+G_{r^{\prime}}+G_{r}-P_{r}(p)-A_{0}-A_{h} \tag{dB}
\end{equation*}
$$

3.4 Mixed zone contours

When the solution of equation (1) yields a distance d_{1}, which, on the azimuth under consideration, produces a point which lies in a different radio-climatic zone from that in which the feeder-link earth station is located, it is necessary to determine a mixed-zone coordination distance for that azimuth. Thus, if the feeder-link earth station is located in a radioclimatic zone identified by the suffix " a " and the solution of equation (1) produces a distance which ends in another radio-climatic zone, identified by the suffix " b " (a and b referring to any one of the zones A, B or C, with $a \neq b$), the coordination distance is calculated from:

$$
\begin{equation*}
d_{1}=\frac{P-d_{a} \beta_{a}}{\beta_{b}}+d_{a} \tag{3}
\end{equation*}
$$

where d_{a} is the distance (km) from the feeder-link earth station site to the boundary between the two climatic zones.

For the rare case where more than two radio-climatic zones are involved, the applicable equation would be:

$$
\begin{equation*}
d_{1}=\frac{P-d_{a} \beta_{a}-d_{b} \beta_{b}}{\beta_{c}}+d_{a}+d_{b} \tag{km}
\end{equation*}
$$

where the subscript " c " denotes the zone farthest away from the feeder-link earth station site within which the coordination distance ends.

FIGURE 1
Coordination distance as a function of parameter P. Propagation mode(1); $17.75 \mathrm{GHz} ; p=0.001 \%$ of the time

3.5 Determination of the coordination contour for propagation mode (2)

In the case of scattering from hydrometeors, the high main beam e.i.r.p. from a transmitting feeder-link earth station antenna and the expected high sensitivity of a fixed-satellite service receiving earth station suggest that interference from a feeder-link earth station into a fixed-satellite earth station may be unacceptable only when either earth station can see the main beam of the other, below the maximum altitudes from which significant hydrometeor scatter reflectivity prevails.

Accordingly, to avoid such mutual visibility conditions, the rain scatter distance d_{r} is to be that distance at which the receiving earth station's horizon intersects the maximum expected rain scatter altitude $h_{5}{ }^{1}$.

3.5.1 Rain scatter distance d_{r}

For an assumed horizon elevation angle of zero degree at the fixed-satellite receiving earth station, d_{r} is given by:

$$
\begin{equation*}
d_{r}=130 \sqrt{h_{s}} \quad(\mathrm{~km}) \tag{5}
\end{equation*}
$$

in a 4/3 earth radius reference atmosphere, with

$$
\begin{equation*}
h_{s}=5.1-2.15 \log \left(1+10^{(\varphi-27) / 25}\right) \tag{km}
\end{equation*}
$$

where φ is the latitude (North or South) of the feeder-link earth station site (degrees).

[^61]The rain scatter distance d_{r} so calculated yields the rain scatter coordination contour for the feeder-link earth station by the procedure described in paragraph 4.5 of Appendix 28.

3.5.2 Graphical method

Figure 2 provides a curve by means of which the rain scatter distance d_{r} may be read directly for a given feeder-link earth station latitude ζ.

3.6 Minimum coordination distance

The minimum coordination distance for a feeder-link earth station shall be 100 km .

3.7 Coordination area

The coordination area for a feeder-link earth station is the total area contained within the combined coordination contours for propagation modes (1) and (2).

FIGURE 2
Rain scatter distance d_{r} as a function of feeder-link earth station site latitude ζ

Call Sign Series	Allocated to
HOA-HPZ	Panama (Republic of)
HQA-HRZ	Honduras (Republic of)
HSA-HSZ	Thailand
HTA-HTZ	Nicaragua
HUA-HUZ	El Salvador (Republic of)
HVA-HVZ	Vatican City State
HWA-HYZ	France
HZA-HZZ	Saudi Arabia (Kingdom of)
H2A-H2Z	Cyprus (Republic of)
H3A-H3Z	Panama (Republic of)
H4A-H4Z	Solomon Islands
H6A-H7Z	Nicaragua
H8A-H9Z	Panama (Republic of)
IAA-IZZ	Italy
JAA-JSZ	Japan
JTA-JVZ	Mongolian People's Republic
JWA-JXZ	Norway
JYA-JYZ	Jordan (Hashemite Kingdom of)
JZA-JZZ	Indonesia (Republic of)
J2A-J2Z	Djibouti (Republic of)
J3A-J3Z	Grenada
J4A-J4Z	Greece
J5A-J5Z	Guinea-Bissau (Republic of)
J6A-J6Z	Saint Lucia
J7A-J7Z	Dominica
KAA-KZZ	United States of America
LAA-LNZ	Norway
LOA-LWZ	Argentine Republic
LXA-LXZ	Luxembourg
LYA-LYZ	Union of Soviet Socialist Republics
LZA-LZZ	Bulgaria (People's Republic of)
L2A-L9Z	Argentine Republic
MAA-MZZ	United Kingdom of Great Britain and Northern Ireland
NAA-NZZ	United States of America
OAA-OCZ	Peru
ODA-ODZ	Lebanon
OEA-OEZ	Austria
OFA-OJZ	Finland
OKA-OMZ	Czechoslovak Socialist Republic
ONA-OTZ	Belgium
OUA-OZZ	Denmark
PAA-PIZ	Netherlands (Kingdom of the)
PJA-PJZ	Netherlands Antilles
PKA-POZ	Indonesia (Republic of)
PPA-PYZ	Brazil (Federative Republic of)

AP42-4

Call Sign	
Series	
PZA-PZZ	Allocated to
P2A-P2Z	Puriname (Republic of)
P3A-P3Z	Cyprus (Republic of)
P4A-P4Z	**
P5A-P9Z	Democratic People's Republic of Korea
QAA-QZZ	(Service abbreviations)
RAA-RZZ	Union of Soviet Socialist Republics
SAA-SMZ	Sweden
SNA-SRZ	Poland (People's Republic of)
SSA-SSM	Egypt (Arab Republic of)
SSN-STZ	Sudan (Democratic Republic of the)
SUA-SUZ	Egypt (Arab Republic of)
SVA-SZZ	Greece
S2A-S3Z	Bangladesh (People's Republic of)
S6A-S6Z	Singapore (Republic of)
S7A-S7Z	Seychelles (Republic of)
S9A-S9Z	Sao Tome and Principe (Democratic Republic of)
TAA-TCZ	Turkey
TDA-TDZ	Guatemala (Republic of)
TEA-TEZ	Costa Rica
TFA-TFZ	Iceland
TGA-TGZ	Guatemala (Republic of)
THA-THZ	France
TIA-TIZ	Costa Rica
TJA-TJZ	Cameroon (United Republic of)
TKA-TKZ	France
TLA-TLZ	Central African Republic
TMA-TMZ	France
TNA-TNZ	Congo (People's Republic of the)
TOA-TQZ	France
TRA-TRZ	Gabon Republic
TSA-TSZ	Tunisia
TTA-TTZ	Chad (Republic of the)
TUA-TUZ	Ivory Coast (Republic of the)
TVA-TXZ	France
TYA-TYZ	Benin (People's Republic of)
TZA-TZZ	Mali (Republic of)
T2A-T2Z	Tuvalu
T3A-T3Z	Kiribati Republic
T4A-T4Z	Cuba
T5A-T5Z	Somali Democratic Republic
T6A-T6Z	Afghanistan (Democratic Republic of)
UAA-UQZ	Union of Soviet Socialist Republics
URA-UTZ	Ukrainian Soviet Socialist Republic
	Union of Soviet Socialist Republics

** Note by the General Secretariat: The call sign series P4A-P4Z, previously allocated to Netherlands Antilles, has now been released for use by Aruba.

Call Sign Series	Allocated to
6VA-6WZ	Senegal (Republic of the)
6XA-6XZ	Madagascar (Democratic Republic of)
$6 \mathrm{YA}-6 \mathrm{YZ}$	Jamaica
6ZA-6ZZ	Liberia (Republic of)
7AA-7IZ	Indonesia (Republic of)
7JA-7NZ	Japan
70A-70Z	Yemen (People's Democratic Republic of)
7PA-7PZ	Lesotho (Kingdom of)
7QA-7QZ	Malawi (Republic of)
7RA-7RZ	Algeria (Algerian Democratic and Popular Republic)
7SA-7SZ	Sweden
7TA-7YZ	Algeria (Algerian Democratic and Popular Republic)
7ZA-7ZZ	Saudi Arabia (Kingdom of)
8AA-8IZ	Indonesia (Republic of)
8JA-8NZ	Japan
80A-8OZ	Botswana (Republic of)
8PA-8PZ	Barbados
8QA-8QZ	Maldives (Republic of)
8RA-8RZ	Guyana
8SA-8SZ	Sweden
8TA-8YZ	India (Republic of)
8ZA-8ZZ	Saudi Arabia (Kingdom of)
9AA-9AZ	**
9BA-9DZ	Iran (Islamic Republic of)
9EA-9FZ	Ethiopia
9GA-9GZ	Ghana
9HA-9HZ	Malta (Republic of)
9IA-9JZ	Zambia (Republic of)
9KA-9KZ	Kuwait (State of)
9LA-9LZ	Sierra Leone
9MA-9MZ	Malaysia
9NA-9NZ	Nepal
90A-9TZ	Zaire (Republic of)
9UA-9UZ	Burundi (Republic of)
9VA-9VZ	Singapore (Republic of)
9WA-9WZ	Malaysia
9XA-9XZ	Rwanda (Republic of)
9YA-9ZZ	Trinidad and Tobago

** Note by the General Secretariat: The call sign series 9AA-9AZ, previously allocated to the Republic of San Marino, has now been released.

Note by the General Secretariat

The following call sign series were allocated by the Secretary-General on a provisional basis between the end of the WARC-79 and 29 January 1985:

Call Sign Series	
	Allocated to
J8A-J8Z	Saint Vincent and the Grenadines
P4A-P4Z	Aruba
T7A-T7Z	San Marino (Republic of)
V2A-V2Z	Antigua
V3A-V3Z	Belize
V4A-V4Z	Saint Christopher and Nevis
V8A-V8Z	Brunei
Z2A-Z2Z	Zimbabwe (Republic of)

(Rev. 1986)

APPENDIX 43

Mob-83

Maritime Mobile Service Identities

1. General

1.1 Maritime mobile service identities are formed of a series of nine digits which are transmitted over the radio path in order to uniquely identify ship stations, ship earth stations, coast stations, coast earth stations and group calls.
1.2 Ship station identities shall be in accordance with relevant CCIR and CCITT Recommendations.
1.3 These identities are formed in such a way that the identity or part thereof can be used by telephone and telex subscribers connected to the general telecommunications network to call ships automatically in the shore-to-ship direction.
1.4 There are three kinds of maritime mobile service identities:
i) ship station identities,
ii) group call identities,
iii) coast station identities.
1.5 In this Appendix, the word "country" is used with the meaning attributed to it in No. 2246 of the Radio Regulations.

2. Maritime Identification Digits (MID)

Table 1 gives the Maritime Identification Digits (MID) allocated to each country. In accordance with No. 2087, the Secretary-General is responsible for allocating Maritime Identification Digits to countries not included in this table. No. 2087A authorizes the Secretary-General to allocate additional MIDs to countries in accordance with Resolution 320 (Mob-83).

3. Ship Station Identities

The 9 -digit code constituting a ship station identity is formed as follows:

$$
M_{1} I_{2} D_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}
$$

wherein

$$
\mathrm{M}_{1} \mathrm{I}_{2} \mathrm{D}_{3}
$$

represent the Maritime Identification Digits and X is any figure from 0 to 9 .

4. Group Call Identities

Group call identities for calling simultaneously more than one ship are formed as follows:

$$
0_{1} M_{2} I_{3} D_{4} X_{5} X_{6} X_{7} X_{8} X_{9}
$$

where the first figure is zero and X is any figure from 0 to 9 .
The particular MID reflects only the country allocating the group call identity and so does not prevent group calls to fleets containing more than one ship nationality.

5. Coast Station Identities

Coast station identities are formed as follows:

$$
0_{1} 0_{2} M_{3} I_{4} D_{5} X_{6} X_{7} X_{8} X_{9}
$$

where the first two figures are zeros and X is any figure from 0 to 9 .
The MID reflects the country in which the coast station or coast earth station is located.

Note by the General Secretariat

The following blocks of selective call numbers for ship stations and selective call numbers for groups of ship stations were supplied to Administrations by the Secretary-General between the end of the WARC-79 and 2 June 1986:

Blocks* of selective call numbers for ship stations and selective call numbers for groups of ship stations	Supplied to
02300-02399	Saint Vincent and the Grenadines
02400-02499	Cook Islands
02500-02599	Niue Island
02600-02699	Western Samoa (Independent State of)
04100-05049	Denmark
05051-05199	Denmark
05400-05899	Denmark
06000-06059	Denmark
06061-06299	Denmark
07000-07069	Denmark
07071-08079	Denmark
08081-08399	Denmark
08500-09089	Spain
09090*	Spain
09091-09499	Spain
10101* $11400-11899$	Spain
$\begin{aligned} & 11400-11899 \\ & 12121^{*} \end{aligned}$	United States of America United States of America
14200-14299	France
15600-16160	France
16162-16699	France
18700-18999	Honduras (Republic of)
20800-21211	Italy
21213-21299	Italy

* The numbers formed by the same digit repeated five times, or by two different digits repeated alternately, are reserved for calling predetermined groups of ship stations, and are to be considered as not included in the blocks of call numbers for ship stations supplied to administrations.
(Rev. 1986)

Blocks* of selective call numbers for ship stations and selective call numbers for groups of ship stations	Supplied to
$22600-22699$ $22900-22999$ $23000-23231$ 23232^{*} $23233-23299$ $24100-24199$ $25800-25999$ $2700-27271$ 27272^{*} $27273-27999$ 28282^{*} $28400-29291$ 29292^{*} $29293-30302$ 30303^{*} $30304-31299$ $31300-31312$ 31313^{*} $31314-31399$ $32100-32322$ $32324-32399$ $34500-35352$ $35354-35999$ 36363^{*} $41500-41899$ $42200-42423$ $42425-42499$ $44100-44399$	Kuwait (State of) Indonesia (Republic of) Chile Chile Chile Colombia (Republic of) Sweden Japan Japan Japan Japan Norway Japan Norway Japan Norway Morocco (Kingdom of) Morocco (Kingdom of) Morocco (Kingdom of) Norway Norway Norway Norway Japan Germany (Federal Republic of) Panama (Republic of) Panama (Republic of) Sweden

* The numbers formed by the same digit repeated five times, or by two different digits repeated alternately, are reserved for calling predetermined groups of ship stations, and are to be considered as not included in the blocks of call numbers for ship stations supplied to administrations.
(Rev. 1986)

Blocks* of selective call numbers for ship stations and selective call numbers for groups of ship stations	Supplied to
44500-45453	Sweden
45455-45499	Sweden
46900-47473	United Kingdom of Great Britain and Northern Ireland
47475-47899	United Kingdom of Great Britain and Northern Ireland
50300-50399	United Kingdom of Great Britain and Northern Ireland
51500-51514	Switzerland (Confederation of)
51516-51599	Switzerland (Confederation of)
51800-51999	Portugal
56600-56699	Thailand
57575*	Yugoslavia (Socialist Federal Republic of)
57600-57699	Uruguay (Eastern Republic of)
58300-58399	Costa Rica
58900-58999	Sri Lanka (Democratic Socialist Republic of)
59000-59099	Ecuador
59200-59299	Iran (Islamic Republic of)
60700-60999	Pakistan (Islamic Republic of)
61400-61499	Bahamas (Commonwealth of the)
61616*	Bahamas (Commonwealth of the)
62100-62625	Germany (Federal Republic of)
62627-62999	Germany (Federal Republic of)
63700-64599	Germany (Federal Republic of)
64800-65599	Germany (Federal Republic of)
74300-74499	Austria
74800-75499	Germany (Federal Republic of)
76000-76599	Germany (Federal Republic of)
76700-76766	Philippines (Republic of the)
76767*	Philippines (Republic of the)
76768-76799	Philippines (Republic of the)

[^62]| Blocks* of selective call
 numbers for ship
 stations and selective
 call numbers for groups
 of ship stations | |
| :--- | :--- |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| $78200-78299$ | Singapore (Republic of) |
| $79500-79599$ | Senegal (Republic of) |
| $7990-80807$ | Netherlands (Kingdom of the) |
| $80009-81799$ | Netherlands (Kingdom of the) |
| $81800-81817$ | Czechoslovak Socialist Republic |
| $81818 *$ | Czechoslovak Socialist Republic |
| $81819-81899$ | Czechoslovak Socialist Republic |
| $81900-81999$ | Djibouti (Republic of) |
| $8200-82799$ | Germany (Federal Republic of) |
| $82900-83799$ | France |
| $83900-84799$ | France |
| $84800-84847$ | Netherlands (Kingdom of the) |
| $84849-84899$ | Netherlands (Kingdom of the) |
| $84900-85799$ | Denmark |
| $8590-86799$ | Denmark |
| $86900-87799$ | Denmark |
| $87900-88799$ | Germany (Federal Republic of) |
| $88900-89799$ | Germany (Federal Republic of) |
| $90000-90908$ | Norway |
| 9091091918 | Norway |
| $91920-92928$ | Norway |
| $92930-93938$ | Norway |
| $93940-94899$ | Norway |
| $95000-95899$ | Sweden |
| $96000-96899$ | Sweden |
| $97000-97899$ | France |
| $98000-98599$ | France |
| $99400-99998$ | Germany (Federal Republic of) |
| | |
| | |

[^63](Rev. 1986)

Part II. Table of Blocks
 of Coast Station Identification Numbers Supplied to Administrations

Blocks of coast station identification numbers	Supplied to
0100-0119	Argentine Republic
0270-0279	Algeria (Algerian Democratic and Popular Republic)
0330-0339	Australia
0480-0489	Belgium
0580-0589	Canada
0810-0819	Bulgaria (People's Republic of)
0830-0899	Denmark
0990-1089	Spain
1090-1109	United States of America
1590-1609	Finland
1630-1669	France
1780-1789	Greece
1860-1889	Chile
1920-1929	Ghana
1980-1989	Ireland
2010-2019	China (People's Republic of)
2070-2109	Italy
2130-2149	Iraq (Republic of)
2180-2189	Kuwait (State of)
2280-2289	Libya (Socialist People's Libyan Arab Jamahiriya)
2300-2339	India (Republic of)
2480-2489	Malta (Republic of)
2500-2509	Monaco
2510-2519	Cuba
2550-2599	Norway
2740-2749	Iceland
2770-2779	Netherlands (Kingdom of the)
2830-2849	Germany (Federal Republic of)
2930-2949	Poland (People's Republic of)
2950-2959	Sweden
3200-3259	United Kingdom of Great Britain and Northern Ireland
3450-3459	Israel (State of)
3500-3509	Switzerland (Confederation of)
3620-3769	Union of Soviet Socialist Republics
3800-3809	Malaysia
3850-3859	Yugoslavia (Socialist Federal Republic of)
3910-3919	Venezuela (Republic of)
4330-4349	South Africa (Republic of)
4360-4369	Turkey
4400-4599	Union of Soviet Socialist Republics
4600-4619	German Democratic Republic
4620-4629	Singapore (Republic of)

Blocks of coast station identification numbers	Supplied to
$\begin{aligned} & 4630-4639 \\ & 4640-4649 \\ & 4650-4659 \\ & 4660-4669 \\ & 4690-4699 \\ & 4710-4719 \\ & 4810-4819 \\ & 4820-4829 \\ & 4830-4839 \\ & 4900-4939 \\ & 4980-4999 \\ & 5010-5019 \end{aligned}$	United Kingdom of Great Britain and Northern Ireland Sierra Leone Bahrain (State of) Seychelles (Republic of) Qatar (State of) United Arab Emirates Yemen (People's Democratic Republic of) Egypt (Arab Republic of) Saudi Arabia (Kingdom of) Mexico Syrian Arab Republic Oman (Sultanate of)

Note by the General Secretariat

The following blocks of coast station identification numbers were supplied to Administrations by the Secretary-General between the end of the WARC-79 and 20 June 1986:

Blocks of coast station identification numbers	
	Supplied to
$0180-0189$	Cyprus (Republic of) $0770-0799$ $1110-1119$ $1820-1859$
Colombia (Republic of)	
$2200-2209$	United States of America
$2360-2409$	Chile
$2450-2459$	Indonesia (Republic of)
$2890-2899$	Japan
	Morocco (Kingdom of)

Blocks of coast station identification numbers	
$3170-3179$	Supplied to
$3560-3579$	Maldives (Republic of)
$3810-3819$	Portugal
$3830-3839$	Malaysia
$3870-3879$	Thailand
$3950-3959$	Sudanay (Eastern Republic of)
$4010-4029$	New Zealanocratic Republic of the)
$4050-4069$	Pakistan (Islamic Republic of)
$4150-4159$	Philippines (Republic of the)
$4670-4679$	Czechoslovak Socialist Republic
$4680-4689$	Djibouti (Republic of)
$4750-4759$	Ecuador
$4800-4809$	Zaire (Republic of)
$4860-4869$	Suriname (Republic of)
$5100-5109$	Senegal (Republic of)

Note by the General Secretariat

The Resolutions are arranged in order and numbered along the lines of the grouping and numbering system below. As some Resolutions in one group have direct relationship to Resolutions in other groups, this has been reflected, as far as possible, to facilitate consultation.

Numbers
RESOLUTIONS OF GENERAL APPLICATION 1-99

- Principles, general procedures and cooperation 1-20

See also: Nos 35, 36, 37, 39, 90

- Specıfic procedures . 30-43

See also \quad Nos. 1, 6, 7, 8, 9
Nos. 100, 101. 102
Nos. 200, 201, 202, 203
Nos. 318, 321
Nos. 502, 503. 504, 506, 507
Nos. 700. 701

- Technıcal matters . 60-69

FIXED SERVICE/FIXED-SATELLITE SERVICE 100-199
See also Nos. 8. 9
Nos. 31, 32, 33, 34, 40, 41, 42, 43
Nos. 502, 503, 504, 506, 507
Nos. 700, 701
MOBILE SERVICE/MOBILE-SATELLITE SERVICE
$\left.\qquad \begin{array}{l}\text { See also: } \quad \begin{array}{l}\text { No. } 38 \\ \\ \text { Nos. } 315,318\end{array}\end{array}\right)$.
MARITIME MOBILE SERVICE/MARITIME MOBILE-SATELLITE SERVICE . 300-399
See also: Nos. 200. 201, 206

AERONAUTICAL MOBILE SERVICE/AERONAUTICAL MOBILE-SATEL-
LITE SERVICE . 400- 499

BROADCASTING SERVICE/BROADCASTING-SATELLITE SERVICE 500-599
See also: \quad Nos. $31,32,33,34,40,41,42,43$
Nos 100, 101, 102
Nos. 700, 701

OTHER SERVICES . 600-699
RELATING TO MORE THAN ONE SERVICE 700-799
See also. Nos. 31, 32, 33, 34, 40, 41, 42, 43
Nos 100, 101, 102
Nos. 502, 503, 504, 506, 507

In this respect, see also the Analytical Index.

Relating to the Recording in the Master International Frequency Register of the Assignments for Region 2 Contained in Appendix 30 (Orb-85) and Appendix 30A

The World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It (First Session - Geneva, 1985),
considering
that the provisions and associated Plans adopted by the Regional Administrative Conference for the Planning of the Broadcasting-Satellite Service In Region 2, Geneva, 1983, with the appropriate modifications have been incorporated in the Radio Regulations in Appendix 30 (Orb-85) and Appendix 30A;
resolves
that, on the date of signature of the Finals Acts of the First Session of the World Administrative Radio Conference on the Use of the Geosta-tionary-Satellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, the frequency assignments in the Plans will be entered in the Master Register. The date of signature of these Finals Acts will be entered, together with an appropriate symbol, in Column 13c opposite these assignments.

RESOLUTION No. 41 (Orb-85)

Relating to the Provisional Application of the Partial Revision of the Radio Regulations as Contained in the Final Acts of the WARC Orb-85 Prior to its Entry into Force

The World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It (First Session - Geneva, 1985),

considering

a) that the present session has decided to incorporate in the Radio Regulations the provisions and associated Plans for the broadcastingsatellite service in the band $12.2-12.7 \mathrm{GHz}$ and the fixed-satellite service for feeder links in the band 17.3-17.8 GHz in Region 2;
b) that during the period preceding the date of entry into force of the partial revision of the Radio Regulations, as contained in the Final Acts of the First Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It (WARC Orb-85), administrations of countries of Region 2 may wish to bring into use assignments appearing in the Region 2 Plans or to modify them or to bring them into use as an interim system;
c) that there is a need to apply the interregional sharing criteria developed by this session for all Regions;
further considering
that there is a need for procedures to be applied by all administrations and the IFRB during the interim period referred to in b) above;
resolves

1. that during the period preceding the date of entry into force of the partial revision of the Radio Regulations, as contained in the Final Acts of the WARC Orb-85, administrations and the IFRB shall apply the said partial revision on a provisional basis;
2. that on the date of entry into force of the partial revision of the Radio Regulations, as contained in the Final Acts of the WARC Orb-85, the IFRB shall publish the modifications to the Plans introduced in application of resolves 1 above, in a Special Section of its weekly circular in order to enter them into the appropriate Regional Plan.

RESOLUTION No. 42 (Orb-85)

Relating to the Provisional Application for Region 2 of Resolution No. 2 (Sat-R2)

The World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It (First Session - Geneva, 1985),

considering

a) that the 1983 Conference adopted Resolution No. 2 (Sat-R2) with the intention of enabling the administrations of Region 2 to implement the assignments in the Plans of that Conference according to a phased approach and with due regard for the protection of the services of other administrations;
b) that assignments in conformity with Resolution No. 2 (Sat-R2) may be implemented only if they are in conformity with the Convention and with the relevant provisions of the Radio Regulations;
c) that conformity with Resolution No. 2 (Sat-R2) requires the agreement of all affected administrations;
d) that those affected administrations are to be determined in accordance with the limits in Annex 1 to Appendix 30 (Orb-85) and Annex 1 to Appendix 30A;
e) that Resolution 43 (Orb-85) also contains provisions concerning systems operating in accordance with Resolution No. 2 (Sat-R2);
f) that the question of the long-term application of the provisions of Resolution No. 2 (Sat-R2) should be studied further;

1. that the IFRB shall apply the provisions of the annex to Resolution No. 2 (Sat-R2) and shall examine the notifications of the administrations of Region 2, as appropriate, for conformity with that Resolution on a provisional basis until the subject is reviewed by the Second Session of the World Administrative Radio Conference on the Use of the GeostationarySatellite Orbit and the Planning of Space Services Utilizing It (WARC Orb(2)) and a definitive decision is taken on the matter;
2. that in the application of the annex to Resolution No. 2 (Sat-R2), the references to annexes to Part I and Part II shall be replaced by references to the appropriate annexes to Appendix 30 (Orb-85) and Appendix 30A respectively;

invites the Administrative Council

to place on the agenda of WARC $\operatorname{Orb}(2)$ an item calling for the review of the possibility of the long-term applicability of Resolution No. 2 (Sat-R2), and for a definitive decision to be taken on this matter.

Relating to Orbital Position Limitations for the BroadcastingSatellite Service in Regions 1 and 2 in the Band 12.2 - $\mathbf{1 2 . 5} \mathbf{~ G H z}$ and for the Fixed-Satellite Service (Feeder-Link Stations) in Region 2 for the Band 17.3 - $17.8 \mathbf{G H z}$

The World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It (First Session - Geneva, 1985),
considering
a) that there is currently no feeder-link plan for the broadcastingsatellite service in Region 1, operating in the band $11.7-12.5 \mathrm{GHz}$, and that in the absence of such a plan, the usual approach to sharing cannot be applied;
b) that the 1983 Conference adopted Plans for Region 2 for the Broadcasting-Satellite Service in the band $12.2-12.7 \mathrm{GHz}$ and their associated feeder links in the band $17.3-17.8 \mathrm{GHz}$;
c) that this session has recommended in a draft agenda for the second session the planning of the feeder links for the Regions 1 and 3 Broad-casting-Satellite Service at the Second Session of the World Administrative Radio Conference on the Use of the Geostationary-Satellite Orbit and the Planning of Space Services Utilizing It (WARC Orb(2)), including the band 17.3-18.1 GHz;
d) that some interaction is possible between the Region 2 Feeder-Link Plan and the Feeder-Link Plan to be established for Regions 1 and 3 at WARC Orb(2);
e) that there is a need to ensure that any modifications to the Plan for the Regions 1 and 3 Broadcasting-Satellite Service and the Region 2 Broadcasting-Satellite Service and Feeder-Link Plans will not hamper the development of the Regions 1 and 3 Feeder-Link Plan before its incorporation into the Radio Regulations;
resolves

1. that until the incorporation of the Regions 1 and 3 Feeder-Link Plan into the Radio Regulations, any administration seeking to modify the Region 2 Plans or to introduce an interim system operating in accordance with Resolution 42 (Orb-85) and involving an orbital position further east than $47^{\circ} \mathrm{W}$ shall obtain the agreement of all administrations having orbital assignments in the Regions 1 and 3 Plan within plus or minus ten degrees of the proposed orbital position;
2. that until the incorporation of the Regions 1 and 3 Feeder-Link Plan into the Radio Regulations, any administration seeking a modification to the Regions 1 and 3 Plan for the Broadcasting-Satellite Service in the band 12.2 to 12.5 GHz involving an orbital position further west than $28^{\circ} \mathrm{W}$ shall obtain the agreement of all administrations having orbital assignments in the Region 2 Plans within plus or minus ten degrees of the proposed orbital position;
3. that when the Regions 1 and 3 Feeder-Link Plan is considered for incorporation into the Radio Regulations and recording in the Master International Frequency Register at WARC Orb(2), it will have the same status as the Region 2 Feeder-Link Plan and that the Feeder-Link Plans shall be modified as required to make them compatible.

RESOLUTION No. 312

Relating to the Introduction of New Calling Procedures for HF A1A Morse Telegraphy ${ }^{1}$

The World Administrative Radio Conference, Geneva, 1979,

considering

a) that there is a need for more effective utilization of the radio frequency spectrum and of the time of operational personnel on board ships;
b) that it is desirable to improve the effectiveness of calling in the HF A1A Morse telegraphy bands;
c) that the World Maritime Administrative Radio Conference, Geneva, 1974 adopted a new calling procedure for the HF A1A Morse telegraphy bands (Article 60 and Appendix 34);
d) that the effectiveness of the new calling procedure requires agreement between administrations with respect to the groups specified in Appendix 34 in accordance with a planned distribution of coast stations on a regional and traffic basis;
e) that the administrations at the 1974 Conference agreed to the Distribution Plan of Coast Stations (annexed to this Resolution) arranged by countries and areas into four groups to ensure a better distribution of calls;

[^64]
invites

administrations which are providing an international public correspondence service to indicate for publication in the List of Coast Stations the periods of service during which watch will be maintained on the common, and if necessary the group, channel or channels;

invites further

administrations which wish to enter into a group in the Distribution Plan, or administrations included in the Plan wishing to make a modification in the Plan, to coordinate as far as possible their proposed changes with other interested and affected administrations which are designated in the group concerned. An administration which has decided to enter into a group or change from a designated group in the Distribution Plan shall inform the Secretary-General of its decision and it shall be published in the Annex to the List of Coast Stations;

instructs the Secretary-General

1. to circulate this Resolution to all administrations which are responsible for coast stations in countries or areas designated in the Distribution Plan in order to obtain their agreement to the Plan or an adjustment of the Plan to meet their needs;
2. in the light of the foregoing consultation with the administrations concerned, to update the Distribution Plan which is annexed to the List of Coast Stations;
3. that, in advance of the publication of any revision of the Distribution Plan in the List of Coast Stations, any variation in the Plan should be notified through the Operational Bulletin.

RESOLUTION No. 315

Relating to the Eventual Abolition of Mobile Station Charges for Public Correspondence in the Maritime Mobile Service

The World Administrative Radio Conference, Geneva, 1979,

considering

a) that the VIth Plenary Assembly of the CCITT, Geneva, 1976, adopted a draft Recommendation relating to charging, accounting and refunds in the maritime mobile service with the exception of the points relating, inter alia, to mobile station charges for public correspondence in the maritime mobile service;
b) that the above draft Recommendation was subsequently amended, in the light of the decision of the VIth Plenary Assembly of the CCITT, Geneva, 1976, regarding mobile station charges and that this draft Recommendation has been approved by letter ballot;
c) that the amended Recommendation includes the following provisions ${ }^{1}$:
"Mobile station charges may be applied in the radiotelegram, radiotelephone, and radiotelex services, in the MF and HF bands. They shall not be applied in any of the VHF services, nor in any of the mobile-satellite services, nor in any service with automatic operation; however, mobile station charges may also be applied for radiotelegrams transmitted via VHF."

[^65]
RES315-2

"Mobile station charges shall be abolished for traffic exchanged after 2359 hours GMT 31 December, 1987.";
resolves
to adopt this recommended date for the abolition of mobile station charges for public correspondence in the maritime mobile service.

[^0]: * Published separately.

[^1]: * Abrogated by Resolution 90 (Mob-83).

[^2]: * Abrogated by Resolution 90 (Mob-83).

[^3]: * Abrogated by Resolution 90 (Mob-83).

[^4]: * Abrogated by Resolution 90 (Mob-83).

[^5]: * Abrogated by Resolution 90 (Mob-83).

[^6]: * These Recommendations are of a general nature and are not limited to interregional sharing and interference.

[^7]: * These Recommendations are of a general nature and are not limited to interregional sharing and interference.

[^8]: * This IFRB Handbook flowchart is at present under revision and has not been reproduced in the "Notes" section of the Radio Regulations.

[^9]: * This IFRB Handbook flowchart is at present under revision and has not been reproduced in the "Notes" section of the Radio Regulations.

[^10]: * This IFRB Handbook flowchart is at present under revision and has not been reproduced in the "Notes" section of the Radio Regulations.

[^11]: * Note by the General Secretariat: The following provisions: 4, $26,36,110,112$ and 163 contain definitions identical to those in the International Telecommunication Convention (Nairobi, 1982).

[^12]: ${ }^{1}$ The full definition is contained in CCIR Recommendation 460-2.

[^13]: * Note by the General Secretariat: Appendix 30 has been revised by the First Session of the World Administrative Radio Conference on the Use of the GeostationarySatellite Orbit and the Planning of Space Services Utilizing It, Geneva, 1985, and becomes Appendix 30 (Orb-85).

[^14]: * Note by the General Secretariat: See Note relating to No. 838.

[^15]: ${ }^{1}$ For the coordination of frequency assignments to stations in the broadcasting-satellite service and other services in the frequency bands $11.7-12.2 \mathrm{GHz}$ (in Region 3), 11.7-12.5 GHz (in Region 1) and $12.2-12.7 \mathrm{GHz}$ (in Region 2) as well as the coordination of frequency assignments to feeder-lınk stations utilizing the fixed-satellite service (Earth-to-space) in the frequency band $17.3-17.8 \mathrm{GHz}$ (in Region 2) and other services in these bands in Region 2, see also Article 15 and Article 15A respectively.

 2 These procedures may be applicable to stations on board satellite launching vehicles.

[^16]: ${ }^{2}$ See Resolution 103.

[^17]: ' The expression frequency assignment, wherever it appears in this Article, shall be understood to refer either to a new frequency assignment or to a change in an assignment already recorded in the Master International Frequency Register (hereinafter called Master Register).
 ${ }^{2}$ For notification and recording of frequency assignments to stations in the broadcasting-satellite service and other services in the frequency bands 11.7 . 12.2 GHz (in Region 3), $11.7-12.5 \mathrm{GHz}$ (in Region 1) and $12.2-12.7 \mathrm{GHz}$ (in Region 2), as well as the notification and recording of frequency assignments to feeder-link stations in the fixed-satellite service (Earth-to-space) in the frequency band $17.3-17.8 \mathrm{GHz}$ (in Region 2) and other services in these bands in Region 2, see also Article 15 and Article 15A respectively.

[^18]: ${ }^{1}$ The notifying administration shall take this limit into account when deciding, where appropriate, to initiate the coordination procedure(s).

[^19]: ${ }^{1}$ The level of accepted interference shall be fixed by agreement between the administrations concerned, using the relevant CCIR Recommendations as a guide.

[^20]: ${ }^{1}$ The level of accepted interference shall be fixed by agreement between the administrations concerned, using the relevant CCIR Recommendations as a guide.
 ${ }^{2}$ The shielded zone of the Moon comprises the area of the Moon's surface and an adjacent volume of space which are shielded from emissions originating within a distance of 100000 km from the centre of the Earth.
 ${ }^{3}$ The level of harmful interference is determined by agreement between the administrations concerned, with the guidance of the relevant CCIR Recommendations.

[^21]: ${ }^{1}$ Normally aircraft stations transmit distress and urgency messages on the working frequency in use at the time of the distress or urgency incident.

[^22]: 3046A. 1 Mob-83
 ${ }^{1}$ For additional information see the relevant provisions of the International Convention for the Safety of Life at Sea.

[^23]: ${ }^{1}$ For the use of some of the frequencies in these sub-bands by ship and coast stations for distress and safety purposes, see Article 38.

[^24]: * Note by the General Secretariat: See No. 1314 and Resolution 400.

[^25]: * Note by the General Secretariat: Changes to the Frequency Allotment Plan adopted by the World Maritime Administrative Radio Conference, Geneva, 1974, resulting from the application of the procedures prescribed in Article 16 are indicated on pages AP25-97 and following.

[^26]: ${ }^{1}$ In Region 2, such stations may also be used for transmissions in the fixed-satellite service (space-to-Earth) in accordance with No. 846 of the Radio Regulations.

[^27]: ${ }^{1}$ The intention not to employ energy dispersal in accordance with paragraph 3.18 of Annex 5 shall be treated as a modification and thus subject to the appropriate provisions of this Article.
 ${ }^{2}$ The expression "frequency assignment to a space station", wherever it appears in this Article, shall be understood to refer to a frequency assignment associated with a given orbital position. See also Annex 7 and Resolution 43 (Orb-85) for the orbital limitations.

[^28]: 1 Where appropriate, the notifying administration shall initiate the procedure for modifying the Plan concerned in sufficient time to ensure that this limit is observed. For Region 2, see also Resolution 42 (Orb-85) and paragraph B of Annex 7.

[^29]: 1 These procedures do not replace the procedures prescribed for terrestrial stations in Articles 11 and 12 of the Radio Regulations.

[^30]: ${ }^{1}$ The criteria to be employed in evaluating interference levels shall be based on the relevant CCIR Recommendations or, in the absence of such Recommendations, shall be agreed between the administrations concerned.

[^31]: 1 The attention of administrations is specifically drawn to the provisions of Section I of this Article.

[^32]: 1 These provisions do not replace the procedures prescribed in Articles 11 and $\mathbf{1 3}$ of the Radio Regulations when stations other than those of the broadcastingsatellite service are involved.

[^33]: ${ }^{1}$ The criteria to be employed in evaluating interference levels shall be based upon the technical information contained in this Appendix or upon relevant CCIR Recommendations and shall be agreed between the administrations concerned.

[^34]: 1 The attention of administrations is specifically drawn to the application of paragraph 7.2.1 above.

[^35]: ${ }^{1}$ The notifying administration shall take this limit into account when deciding, where appropriate, to initiate the coordination procedure(s).

[^36]: ${ }^{1}$ See Annex 5 (section 3.2) of this Appendix.

[^37]: （GI）zHW Zl＇8てtてし

[^38]: See Annex 5, paragraph 3.2.3.

[^39]: ${ }^{1}$ The World Broadcasting-Satellite Administrative Radio Conference, Geneva, 1977.

[^40]: 1 With respect to this Annex, except for section 2 and sub-section $8 b$), the limits relate to the power flux-density which would be obtained assuming free-space propagation conditions.

 With respect to sub-section $8 b$) of this Annex, the limits relate to the power flux-density which would be obtained assuming clear-sky propagation conditions using the method contained in Annex 5.

 With respect to section 2 of this Annex, the limit specified relates to the overall equivalent protection margin calculated in accordance with section 2.4.4 of Annex 5.
 ${ }^{2}$ Final Acts of the 1977 Conference, which entered into force on 1 January 1979.

[^41]: ${ }^{1}$ For the definition of the overall equivalent protection margin, see section 1.14 of Annex 5 to this Appendix.

[^42]: ${ }^{1}$ See section 3.18 of Annex 5
 ${ }^{2}$ In the band 12.5-12.7 GHz in Region 1, these limits are applicable only to the territory of administrations mentioned in Nos. $\mathbf{8 4 8}$ and $\mathbf{8 5 0}$ of the Radio Regulations.
 ${ }^{3}$ See Resolution 34.

[^43]: ${ }^{1}$ In the band $12.5-12.7 \mathrm{GHz}$ in Region 1, these limits are applicable only to the territory of administrations mentioned in Nos. 848 and $\mathbf{8 5 0}$ of the Radio Regulations.
 ${ }^{2}$ Final Acts of the 1977 Conference, which entered into force on 1 January 1979.

[^44]: ${ }^{1}$ Final Acts of the 1985 Conference.

[^45]: ${ }^{1}$ Final Acts of the 1977 Conference, which entered into force on 1 January 1979.
 ${ }^{2}$ Final Acts of the 1985 Conference.

[^46]: 1 The Board shall develop and keep up-to-date forms of notice to meet fully the statutory provisions of this Annex.
 ${ }^{2}$ In Region 2, only those notices relating to frequency assignments for space stations used for telemetry and tracking purposes associated with the Region 2 Plan shall be furnished in accordance with Appendix 3 to the Radio Regulations.

[^47]: 1 There are a total of five overall carrier-to-interference ratios used in the analysis of the Plan for the broadcasting-satellite service in Region 2, namely, co-channel, upper and lower adjacent channels, and upper and lower second adjacent channels.

[^48]: ${ }^{1} M_{4}$ and M_{5} are applicable only for Region 2.

[^49]: ${ }^{1}$ The definitions in sections $1.10,1.11,1.12,1.13$ and 1.14 of this Annex apply to these calculations.
 ${ }^{2}$ See Annex 6 for the protection ratio template for Regions 1 and 3.

[^50]: ${ }^{1}$ Sections 1 and 2 of this Annex are applicable when the services of Regions 1 or 3 are involved. Section 3 is applicable to all Regions.

[^51]: ${ }^{1}$ Impairment grade on a 5 -point scale as defined in CCIR Recommendation 500.

[^52]: ${ }^{1}$ Final Acts of the 1977 Conference, which entered into force on 1 January 1979.

[^53]: 1 The expression "frequency assignment for reception to a space station", wherever it appears in this Article, shall be understood to refer to a frequency assignment associated with a given orbital position.

[^54]: 1 Where appropriate, the notifying administration shall initiate the procedure of Article 4 of this Appendix for modifying the Plan in sufficient time to ensure that this limit is observed.

[^55]: ${ }^{1}$ See Annex 3 (Section 3.8) to this Appendix.

[^56]: ${ }^{1}$ Except for Section 3, the limits specified in this Annex relate to the power flux-densities which would be obtained assuming free space propagation conditions.

[^57]: 1 With respect to Section 3 the limit specified relates to the overall equivalent protection margin calculated in accordance with Section 2.5 of Annex 3 to this Appendix.
 ${ }^{2}$ For the definition of the overall equivalent protection margin, see Section 1.14 of Annex 5 to Appendix 30 (Orb-85).

[^58]: 1 The Board shall develop and keep up-to-date forms of notice to meet fully the statutory provisions of this Annex and related decisions of the 1983 Conference. The Board is further invited to consider the feasibility of a single notice for feeder-link earth stations operating within more than one feeder-link service area.
 ${ }^{2}$ Only those notices relating to frequency assignments for space stations and earth stations used for telecommand and tracking purposes associated with the Plan shall be furnished in accordance with Appendix 3.

[^59]: ${ }^{1}$ This information as defined in Appendix 28 is required for frequency assignments in the band $17.7-17.8 \mathrm{GHz}$.

[^60]: 1 There are a total of five overall carrier-to-interference ratios used in the analysis of the Plan, namely, co-channel, upper and lower adjacent channels, and upper and lower second adjacent channels.

[^61]: ${ }^{1}$ The maximum scatter height h_{s} is similar to the maximum rain height h_{R} of Section 2.4.2 of Annex 5, Appendix 30 (Orb-85), used in the calculation of effective path-length for the determination of rain attenuation, except that the factor " c " of Section 2.4.2 of Annex 5, Appendix 30 (Orb-85), is omitted.

[^62]: * The numbers formed by the same digit repeated five times, or by two different digits repeated alternately, are reserved for calling predetermined groups of ship stations, and are to be considered as not included in the blocks of call numbers for ship stations supplied to administrations.

[^63]: * The numbers formed by the same digit repeated five times, or by two different digits repeated alternately, are reserved for calling predetermined groups of ship stations, and are to be considered as not included in the blocks of call numbers for ship stations supplied to administrations.

[^64]: ${ }^{1}$ Replaces Resolution No. Mar2 - 5 of the World Maritime Administrative Radio Conference, Geneva, 1974.

[^65]: ${ }^{1}$ See CCITT Recommendation D.90/F. 111 (paragraphs K12 and K13).

