This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothéque et des archives de
['Union internationale des télécommunications (UIT) a partir d'un document papier original des collections
de ce service.

Esta version electronica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unidn
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

o34 Aail) 4y 5 KIY) (PDF) gl n sead rasally i sucall o)yl a8 il giaall 5 8 alad¥] dsall VLU (ITU)
D& (e 4855 A8) 5 dlial (ania (3511 38 giall b and KA il giadll

SR TR (PDFRRAS) BRI (ITU) B TR ANRS 58 =R A7 Tz Ak i 4RSS Fl R it

Hacrosmumit snextponnsiii Bapuant (PDF) GBI OATOTOBIICH B OMOIHOTEUHO-aPXUBHOM CITy:KO€E
MeXayHapoJHOTO COI03a AIIEKTPOCBSI3H MyTEM CKaHHUPOBAHUSI HCXOIHOTO IOKYMEHTa B OyMaskHOU dopme 13
OubmoTedHo-apXuBHOH ciry’k061 MCD.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

RED BOOK

VOLUME VI - FASCICLE VL.10

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

RECOMMENDATIONS Z.100-2.104

VIIITH PLENARY ASSEMBLY
MALAGA-TORREMOLINGOS, 8-19 OCTOBER 1984

Geneva 1985

INTERNATIONAL TELECOMMUNICATION UNION

CCITT

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

RED BOOK

VOLUME VI - FASCICLE VL.10

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

RECOMMENDATIONS Z.100-2.104

VIIITH PLENARY ASSEMBLY
MALAGA-TORREMOLINOS, 8-19 OCTOBER 1984

Geneva 1985

ISBN 92-61-02231-6

© LT.U.

Volume 1

Volume II
FASCICLE II.1

FASCICLE 11.2
FASCICLE I1.3
FASCICLE 11.4
FASCICLE 1I1.5
Volume I11
FASCICLE I1I.1
FASCICLE III1.2
FASCICLE I11.3
FASCICLE 1114

FASCICLE IILS

: CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE EIGHTH PLENARY ASSEMBLY (1984)

RED BOOK

— Minutes and reports of the Plenary Assembly.

Opinions and Resolutions. -

Recommendations on:

— the organization and working procedures of the CCITT (Series A);
— means of expression (Series B);
— general telecommunication statistics (Series C).

List of Study Groups and Questions under study.

— (5 fascicles, sold separately)

— General tariff principles — Charging and accounting in international telecommunications

services. Series D Recommendations (Study Group III).

— International telephone service .— Operation. Recommendations E.100-E.323 (Study
Group II). :
— International telephone service — Network management — Traffic engineering. Recom-

mendations E.401-E.600 (Study Group II).

— Telegraph Services - Operations and Quality of Service. Recommendations F.1-F.150

(Study Group I).

— Telematic Services — Operations and Quality of Service. Recommendations F.160-F.350

(Study Group I).

— (5 fascicles, sold separately)

. — General characteristics of international telephone connections and circuits. Recommenda-

tions G.101-G.181 Study Groups XV, XVI and CMBD).

— International analogue carrier systems. Transmission media — characteristics. Recommen-

dations (G.211-G.652 (Study Group XV and CMBD).

— Digital networks — transmission systems and multiplexing equipments. Recommenda-

tions G.700-G.956 (Study Groups XV and XVIII).

— Line transmission of non telephone signals. Transmission of sound-programme and televi-

sion signals. Series H,] Recommendations (Study Group XV).

— Integrated Services Digital Network - (ISDN). Series I Recommendations (Study

Group XVIII).

111

Volume IV

FASCICLE 1V.1
FASCICLE 1V.2
FASCICLE 1V3

FASCICLE 1V.4

Volume V

Volume VI
FASCICLE VI.1
FASCICLE VI.2
FASCICLE VI3
FASCICLE V14
FASCICLE VI.5
FASCICLE VI.6
FASCICLE VI.7
FASCICLE VI.8

FASCICLE VI.9-

FASCICLE VI.10
FASCICLE VL11

FASCICLE VI.12

FASCICLE VI.13

1AY

(4 fascicles, sold separately)

Maintenance; general principles, international transmission systems, international tele-
phone circuits. Recommendations M.10-M.762 (Study Group IV).

Maintenance; international voice frequency telegraphy and fascimile, international leased
circuits. Recommendations M.800-M.1375 (Study Group 1V).

Maintenance; international sound programme and television transmission circuits. Series N
Recommendations (Study Group IV).

Specifications of measuring equipment. Series 0 Recommendations (Study Group IV).
Telephone transmission quality. Series P Recommendations (Study Group XII).

(13 fascicles, sold separately)

General Recommendations on telephone switching and signalling. Interface with the
maritime mobile service and the land mobile services. Recommendations Q.1-Q.118 bis
(Study Group XI).

Spec1ﬁcat10ns of Slgnallmg Systems Nos. 4 and 5 Recommendations Q.120-Q.180 (Study
Group XI).

Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q310Q490 (Study
Group XI).

Digital transit exchanges in integrated digital networks and mixed analogue-digital
networks. Digital local and combined exchanges. Recommendations Q.501-Q.517 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.685 (Study Group XI).

Specifications of Signalling System No. 7. Recommendations Q.701-Q.714 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.721-Q.795 (Study
Group XI).

Digital access signalling system. Recommendations Q.920-Q.931 (Study Group XT).

Functional Specification and Description Language (SDL). Recommendations Z.101-Z.104
(Study Group XI).

‘Functional Specification and Description Language (SDL), annexes to Recommenda-

tions Z.101-Z.104 (Study Group XI).

CCITT ngh Level Language (CHILL) Recommendation Z.200 (Study Group XI).

Man- Machme Language (MML) Recommendatlons Z.301-Z.341 (Study Group XI).

Volume VII

FASCICLE VII1

FASCICLE VIIL.2

FASCICLE VIL3

Volume VIII

FASCICLE VIII1

FASCICLE VIII.2

FASCICLE VIIL3

FASCICLE VIII4

FASCICLE VIILS

FASCICLE VIIIL.6

FASCICLE VIIL.7

Volume IX

Volume X

FASCICLE X.1

FASCICLE X.2

(3 fascicles, sold separately)

Telegraph transmission. Series R Recommendations (Study Group 1X). Telegraph services
terminal equipment. Series S Recommendations (Study Group IX).

Telegraph switching. Series U Recommendations (Study Group IX).

Terminal equipment and protocols for telematic services. Series T Recommendations
(Study Group VIII).

(7 fascicles, sold separately)

Data communication over the telephone network. Series V. Recommendations (Study
Group XVII).

Data communication networks: services and facilities. Recommendations X.1-X.15 (Study
Group VII).

Data communication networks: interfaces. Recommendations X.20-X.32 (Study
Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study
Group VII).

Data communication networks: Open Systems Interconnection (OSI), system description
techniques. Recommendations X.200-X.250 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems. Recommendations X.300-X.353 (Study Group VII).

Data communication networks: message handling systems. Recommendations X.400-X.430
(Study Group VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable, and other elements of outside plant. Series L Recom-
mendations (Study Group VI).

(2 fascicles, sold separately)
Terms and definitions.

Index of the Red Book.

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

TABLE OF CONTENTS OF FASCICLE VI.10 OF THE RED BOOK

Recommendations Z.100 to Z.104

Functional specification and
description language (SDL)

Rec. No. "~ Page
Z.100 Introductionto SDL R I 3
Z.101 Basic SDL e e 16
Z.102 Structural concepts in SDL L L 47
Z.103 Functional extensionsto SDL I I 64
Z2.104 Datain SDL e e 105

PRELIMINARY NOTES

1 The Questions entrusted to each Study Group for the Study Period 1985-1988 can be found in
Contribution No. 1 to that Study Group.

2 In this Fascicle, the expression “Administration” is used for shortness to indicate both a telecommunica-
tion Administration and a recognized private operating agency.

Fascicle VI.L10 — Contents VII

FASCICLE VI.10

Recommendations Z.100 to Z.104

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Recommendation Z.100

INTRODUCTION TO SDL

1 Introduction

This Recommendation is a general explanation of and introduction to the CCITT Specification and
Description Language (SDL). The language is defined in detail in Recommendations Z.101 to Z.104.

1.1 General

The purpose of recommending SDL is to provide a language for unambiguous specification and description
of the behaviour of telecommunications systems. The specifications and descriptions using SDL are intended to be
formal in the sense that it is possible to analyse and interpret them unambiguously.

A system specification consists of a specification of the functional behaviour and a set of general
parameters of the system. SDL aims only to describe the behavioural aspects of a system; the general parameters
describe properties like capacity and weight which have to be described using different techniques.

The terms specification and description are used with the following meaning:

— a specification of a system is the description of its required behaviour, and

— a description of a system is the description of its actual behaviour.

SDL describes the behaviour in a stimulus/response fashion, assuming that both the stimuli and responses
are discrete entities. The approach is based on the concepts of extended finite state machines.

The behaviour of the system as described in SDL is the sequence of responses to any given sequence of
stimuli as seen from outside the system. Any two systems described in SDL having the same behaviour in this
respect are said to be functionally equivalent. The concept of functional equivalence is used to compare systems with
each other, e.g. a specification of a required system with a description of an offered system. The SDL User

Guidelines, which are appended to the Recommendations contain a discussion on the criteria and methods for this
comparison.

SDL also provides structuring concepts which allow a system to be partitioned so that it can be defined,
developed and understood one part at a time.

These concepts are of value both initially in specifying a system, when different aspects can be
independently dealt with, and later in describing a system, when the description structures should match the
System structure.

1.2 Objectives

The general objectives when defining SDL have been to provide a language that:

— 1s easy to learn, use and interpret in relation to the needs of an operating organization;
— provides unambiguous specifications and descriptions for ordering and tendering;

— may be extended to cover new developments;

— is able to support several methodologies of system specification and design, without assuming any one
of these.

1.3 Scope

The main area of application for SDL is the description of the behaviour of aspects of telecommunications
systems. Applications include: . »

— call processing (e.g. call handling, telephony signalling, metering) in SPC switching systems;

— maintenance and fault treatment (e.g. alarms, automatic fault clearance, routine tests) in general
telecommunications systems;

— system control (e.g. overload control, modification and extension procedures);

— data communication protocols.

Fascicle VI.10 — Rec. Z.100 3

SDL can of course also be used for the description of any behaviour capable of being described using a
discrete model, i.e. communicating with its environment by discrete messages.

2 Language survey

The following survey of SDL is intended as an introduction to Recommendations Z.101 to Z.104. The
explanations given here are, except for § 2.1, not formal definitions, but are intended as just tutorial explanations.

2.1 Some basic definitions

Some general concepts and conventions are used throughout Recommendations Z.100 to Z.104. Their
definitions follow here:

Type, definition and instance

In the Recommendations, an entity is strictly separated from its definition. The schema and terminology
defined below and shown in Figure 1/Z.100 are used.

Type
defines
have all the
properties of
- the type
Definition Instances

CCITT-73600

FIGURE 1/Z.100

The Type concept

A rype is defined by its definition, which defines all properties associated with that rype. A type may be
instantiated in any number of instances. Any instance of a particular type, has-all the properties defined for the
type.

The schema applies to several SDL concepts, e.g. we have system definitions and system instances, process
definitions and process instances.

The instances of a typé may be fypes themselves. The properties associated with types are inherited
according to the hierarchical application, e.g. the properties of the generic type system are inherited by all
instances of specific system definitions. ‘

To avoid cumbersome text, the convention used is that whenever it is obvious from context that the
definition or the instance of a type is meant the attribute is omitted. '

4 Fascicle VI.10 — Rec. Z.100

Names

The following naming conventions and terminology are adopted to identify definitions and instances:

All identifiers used in a representation are unique. The identification of an entity consists of two parts:
one name part and one qualifying part:

< System name > < Block name >
< Signal type > V OFFHOOK
T —___—
Qualifying part Name part
IE——

Identification

The qualifying part is derived from the complete hierarchical context the entity is defined in and the fype
of the entity. The name part should be a meaningful name in relation to the purpose or effect of the named entity.

When the identification appears in the concrete syntax, the obvious qualifiers may be implied only;
i.e. when it is not ambiguous only the name part should be used.

Visibility rules

When an identifier is introduced into a specification or description that identifier is visible at the point of
introduction and at levels directly below the point of introduction in the specification or description hierarchy. The
highest level at which the identifier is visible is indicated by the lowest hierarchical level given in the qualifying
part of the identifier. ' ' ton

Specification error

Where properties of an SDL specification are inconsistent or ambiguous, that specification is invalid.
Where the interpretation of an SDL specification violates properties of a specification which is valid, that system
interpretation is in error. An interpretation of a system which leads to an error means that the future behaviour of
the system cannot be predicted from the specification.

2.2 The basic SDL

The dynamic behaviour of an SDL system is generated by process instances, acting concurrently. A process
is modelled as an extended finite state machine. 1t will only act in response to external discrete stimuli, and may
then generate discrete responses back to its environment. Other processes may accept the generated responses as
stimuli.

In SDL a process will wait in a state until it receives a valid signal from its environment. Then it will
perform a transition to another state. During the fransition it may perform actions; these may either be
manipulation of information local to the process or sending signals to other processes or to the external

environment of the system.
1

All processes in a system or in its environment have access to the “absolute time”, and may perform time
measurements and timing.

Process instances may be created and terminated dynamically. Any instance 4 may be created by another
instance or it may exist at system initialization time. A process instance may only be terminated by an explicit stop
‘action performed by itself.

Several signal instances may be waiting to be accepted by a process. In order to handle this signal queue,
an input port is associated with each process instance. The queueing discipline is basically first in first out, but the
process may itself manipulate this by a save-signal-set associated with a state.

Fascicle VI.10 — Rec. Z.100 5

Idle

seize

busy

free

CCITT-85240

FIGURE 2/Z.100

A process definition

Signal instances may carry data values, which will be available to the receiving process instance when the
signal is received. The data values may be stored in, and retrieved from, local variables of the process.

The static structure of an SDL system is described in terms of a system, blocks and channels, as shown in
Figure 3/Z.100.

System

o Channel) Channel
Block <

v

Channel Channel !
' : > Block

A 4

CCiTT-73610

FIGURE 3/Z.100

Static structure of an SDL system

6 Fascicle VI.10 — Rec. Z.100

The system is a composition of blocks, connected to eachother and to the system boundary via channels.
The system boundary separates the system from its environment. The environment is assumed to “behave in an

SDL-like manner”; i.e. it will send signals to the system and accept responses in the form of signals from the
system.

The channels act as the transport media for signals between blocks and between blocks and the system
boundary. Channels are unidirectional. The blocks are containers for the processes, and serve to structure the system
in building blocks.

23 Data in SDL

SDL processes may retain and manipulate data values. The data values are bound to variables, which are
local to a process. However, data values may be sent between processes, and to and from the environment, by
means of signals. Local variables for a process are defined in the process definition.

The data treated is typed. A number of predefined data types are defined in SDL. In addition the user may
define new data types. The predefined data types are: v

— Boolean having the values TRUE and FALSE and the normal logical operations on these values.

— Integer having its normal mathematical meaning.

— Natural having the normal mathematical meaning of natural numbers.

— Real having the normal mathematical meaning of real numbers.

— Character having the normal (as in programming languages) meaning and having the values and
representation as in the CCITT alphabet number 5.

— Array an indexed collection of items which are all of the same data type. This is an extension of
the normal meaning of array as used in programming languages.

— Structure a composition of a number of data types which may be different from one another.
— String a list of items of any data type and of arbitrary length.

— Charstring a list of characters of arbitrary length. Note a charstring is a string of characters formed
from the data type string with the data type character.

— Powerset having the normal mathematical meaning such that a powerset value is an ordered set.

— PId used to identify process instances. ' '

~ Time absolute time.

— Duration the interval between two instants in absolute time.

— Timer the data type used for timers and which defines the operations SET and RESET for
TIMER variables.

The STRUCT concept allows further data types containing composite values composed from a number of
(possibly different) data types to be constructed.

The user-defined data types may be defined in terms of the predefined data types together with restrictions
like range of an integer, or they may be additional abstract data types. Abstract data types are defined using an
“axiomatic” method.

Data types may be generic for a system, or contained in a block definition, a channel definition or in a

process definition. The definition is visible, and thus usable, within the scope of the object they are contained in.

eg Ifa type definition is contained in a block, data items of that type may be used in all processes contained in the
block and in the sub-blocks of the block. »

24 Structural concepts in SDL

Structural covncepts are provided in SDL in order to facilitate descriptions of complex and/or large
systems. The concepts are so defined that they can support:

— the partitioning of large descriptions into modules so that parts can be dealt with and understood
independently;

— the description of a system, or parts of a system, on several levels of abstraction;

— the description of the actual structure of a system.

Fascicle VI.10 — Rec. Z.100 7

When using these structural concepts it should be made clear if they represent the required or actual
structure, or are just used to facilitate the representation. .

In the basic SDL, a system is composed of blocks, channels and processes. These components may be
further structured, i.e. blocks into sub-blocks and sub-channels, channels into blocks and channels, and processes

into sub-processes. A process definition may also be further detailed in a number of steps by using procedures and
macros.

When partitioning blocks into sub-blocks and sub-channels a hierarchical multi-level description of the
system is obtained. The information contained in the upper levels should be contained in the interfaces of the
lower levels. The obtained structure may be illustrated by a block tree diagram as shown in Figure 4/Z.100.

System
i
[1
Block A Block B
1
| 1
Block A.1 Block A.2
CCITT-73620

FIGURE 4/Z.100

A block tree diagram

It may also be described in more detail by a block interaction diagram as shown in Figure 5/Z.100.

SYSTEM |
' 1
| BLOCK A c8 | c2 .
. > BLOCK B
o l |
[+ ‘C ' '
> Al | “ .
] ! l cb Cg! c3 l '
L B] | |
Lo s]
CCITT-73630

FIGURE 5/Z.100

A block interaction diagram

8 Fascicle VI.10 — Rec. Z.100

This latter diagram also shows the channels and sub-channels connecting the structure of blocks and
sub-blocks. Using this block partitioning, it is only necessary, for the description to be meaningful, that the most
detailed sub-blocks (the “leaf-blocks” in the block tree diagram) contain processes.

Partitioning of channels into channels and blocks will also result in a hierarchical structure. A simple
example is given in Figure 6/Z.100.

Block A > Block B
Channel C

a) A system that is not partitioned

C—»
»-
Block C channel ¢3 Block D |
channel ¢ [I channel ¢
b) Channel partitioning channel c4
Block A Block B
y Channel C ' 4 Channel C
Channel C3
Block C i Block D
v l <] CCITT- 73640
¢) A system with a channel partitioned Channel C4 i

FIGURE 6/Z.100

Channel partitioning

The partitioning of a process into a set of sub-processes is related to block partitioning, as the sub-processes
of a process must always be located in the sub-block(s) of the block containing the process. This is shown in
Figure 7/Z.100.

| @ : Process
)

r——""—-—--= e ']L
—_——Ll _———L
r 1 i 1
| . .@ | ' | | Sub-Processes
L_ —1 b | N
CCITT-73650

FIGURE 7/Z.100

Process partitioning

.Fascicle VI.10 — Rec. Z.100 9

The sub-processes of a process represent together an alternative, more detailed, description of the
behaviour described by the process. Thus when having a description as in Figure 7/Z.100, a choice has to be made
if the detailed behaviour, represented by the sub-processes, or the less detailed one, represented by the process,
should be interpreted. In SDL the alternative descriptions are said to support different levels of abstraction.

The partitioning of a process is illustrated by a process tree diagram as shown in Figure 8/Z.100.

Process A "-[Block B
—-{Block B1 ——-[Block B1 -—{Block B2
I Process A.1 i I Process A.2 l Process A.3

CCITT-73660

FIGURE 8/Z.100

A process tree diagram

A process may also be structured and detailed by the use of procedures. A procedure in SDL is similar to
procedures in programming languages. It represents a parameterised and predefined behaviour which may be
invoked by any process having access to its definition. The procedures may be predefined in libraries, or
user-defined.

A procedure is defined as a set of actions and nﬁay include srafes, in a similar manner to a process. An
example of the use of procedures is shown in Figure 9/Z.100.

b

Procedure

Calls)
Connect

Digit-Receiver
(Rec-Ref OUT)

l

Digit Analyze
(Result OUT)

Local External Error
Call Call

CCITT-73670

FIGURE 9/Z.100

Example of use of procedures in a transition

10 Fascicle VI.10 — Rec. Z.100

SDL representations may also be structured by the use of macros. A macro is a syntactical means to ease
the drawing/writing of SDL representations, and to ease the understanding of them. A macro is a named
collection of syntactical items, defined by the user. Whenever a reference to a macro appears in a description, it
can be understood by replacing it with the items it is defined as, i.e. it has no semantics of its own. Macros may

be used in any SDL representation, e.g. for process representations, for structural diagrams, etc. An example of the
use of a macro is shown in Figure 10/Z.100.

Any
device free

y
Any device
free TO
device-handler

Wait for

answer

Yes ' No

Yes No

a) Macro definition

'

Task
Any
device free
l Yes lNo
CCITT-73680

b) Use of the macro in a transition

FIGURE 10/Z.100

Example of the use of a macro

All the structuring concepts in SDL may of course be used in combination with each other.

Fascicle VI.10 — Rec. Z.100 11

25 Composite operations

Composite operations in SDL are standard shorthand notations provided in the language to simplify the

design of SDL processes. They are defined in terms of other SDL operations, and should be interpreted as if they
were replaced by those operations.

Normally, the composite operations imply hidden states and signal interchange with other processes,
which is why sometimes care should be taken of side effects.

The composite operations provided are:
Import/Export of data values

A shorthand notation for accessing values of data items local to the other processes via an implied
signal interchange.

Enabling condition

A shorthand notation for the capacity either to accept a signal as an input or to save the signal
depending on a condition, which may contain imported values. This is modelled as having several
states in which the signal is accepted as input and other in which the signal is saved. The implied state
is chosen after evaluation of the condition. The operation may also imply signal interchange.

Continuous signals

A shorthand notation for leaving a state and entering a transition when a condition, which may use
imported values, becomes true. A continuous signal has lower priority than “normal” signals, and may
be used to stimulate a transition when an external data value changes. The operation implies a
number of states and signal interworking.

By using composite operations, the number of states and transitions in a process definition may be
reduced.

2.6 The concept of option-in SDL

When several similar applications are specified or described by using SDL often the same process
definition may be applicable in several applications if only slightly modified. The OPTION concept makes it
possible to have optional parts in a process definition.

Also, in a specification, it allows the representation of equally acceptable behaviours from the specifier’s
viewpoint. The actual system will implement one of these alternatives..

3 Preliminaries to the language specification

The language specification of SDL is contained in Recommendations Z.101, Z.102, Z.103 and Z.104. In the
following preliminaries the methods and strategles used when deﬁmng the language are explained and guidelines
on how to read the Recommendations are given.

3.1 Strategy used in the language specification

SDL gives a choice of two different syntactic forms to use when representing SDL descriptions; a Graphic
Representation (SDL/GR), and a textual Phrase Representation (SDL/PR). As they both are concrete representa-
tions of the same SDL semantics, they are equivalent from a semantic point of view. In order to ensure that they
are equivalent to each other, and thus transformable into each other, the definition of the semantics of SDL is
strictly separated from the definitions of the different concrete syntaxes. The relations between the semantics
definition of SDL and the concrete syntactical forms may be represented as shown in Figure 11/Z.100.

The semantics of SDL are defined by using an abstract syntax, with no concrete representation, associated
with rules for well-formedness and interpretation. This definition is called the Common Language Model. Each of
the concrete syntactical forms have then a definition of its own syntactical form and of its relationship to the
abstract syntax (i.e. how to transform into the abstract form). Using this approach there is only one definition of
the semantics of SDL; each of the concrete representation forms will inherit the semantics via its relations to the
abstract syntax. The approach also ensures that the concrete syntactical forms are equivalent. As the transforma-
tions work both ways, either representation may be transformed into the other form via the abstract syntax.

12 Fascicle VI.10 —' Rec. Z.100

Mathematical

definition
Common
language
model
Abstract
syntax
Semantics
Concret_e i B) / i) \))))
syntactical
forms SDL/GR SDL/PR
' CCITT-73690

FIGURE 11/Z.100

Structure of SDL language specifications

The interpretation rules of the common language model are defined in an operational manner. i.e. The
definition describes how instances of SDL concepts interpret their definition as an “abstract SDL machine”. In
addition, a mathematical definition of SDL in denotational semantics is also provided (but is not part of the
Recommendations). The mathematical definition is closely related to the abstract syntax. and structure of the
common language model. ‘

Following this strategy in Recommendations there will be, for each SDL concept, first a definition of the
abstract syntax and its rules, then the rules of how to interpret the concept. Finally, the concrete syntactical forms
to represent the concept will be given.

3.2 Terminology

In the Recommendations, for each SDL concept, the same term will be used consistently throughout. To
distinguish occasions when a term refers to an SDL concept from those when a more general sense is meant all
SDL concept terms will be in italics.

A glossary of all SDL terms is appended to the Recommendations as Annex A. The glossary contains a
short explanation of each term, and a reference to where it is defined.

3.3 Definition of the SDL/GR

The SDL/GR is defined following the schema below:

— First the shape and content of the symbols are defined.

— Connectivity rules follow, when appropriate, i.e. what compositions of symbols are allowed.
— Lastly, the relations to the abstract syntax of the common language model are given.

3.4 Definition of the SDL/PR

The SDL/PR is defined using syntax diagrams and additional rules in natural language. The definitions
follow the schema below:

— First the syntax is defined by diagrams and text.
— Then the relations to the abstract syntax of the common language model are given.

3.4.1 Syntax Diagrams

A syntax diagram consists of terminal and non-terminal symbols connected by flow lines.

A terminal symbol contains a character or a sequence of characters, and the generation rules are that when
passed in a path those characters should appear in the SDL/PR text.

Fascicle VI.10 — Rec. Z.100 13

A non-terminal symbol is a reference to another syntax diagram, having the name appearing in the
symbol. The generation rules are that when a non-terminal symbol appears in a diagram, the path leads into the
referenced diagram, and the path will not leave the non-terminal symbol until the referenced diagram is left.

All terminal symbols, non-terminal symbols and syntax diagrams have exactly one flow line leading to
them and exactly one flow line leading from them.

The graphic symbols used are shown in Figure 12/Z.100.

] Terminal symbols
(round corners)

Non-terminal symbols
(sharp corners)

Flow line

CCITT - 73701

FIGURE 12/Z.100

Symbols in syntax diagrams

The SDL/PR syntax definition consists, on the “highest” level, of one syntax diagram, the SYSTEM. This
diagram refers further, via non-terminals, to a set of other diagrams. Any path, starting with the flow line leading
into this diagram and coming out of the diagram will on its path generate an SDL/PR text. The text will be
syntactically correct if the SDL syntax rules have been followed.

35 Common syntactic elements for SDL/GR and SDL/PR

For certain syntactic elements, the same concrete syntax is used for both SDL/GR and SDL/PR.

3.6 Structure of the SDL Recommendations
Four Recommendations (Z.101 to Z.104) follow this Recommendation. The intention is to guide users to
select a sub-set of SDL appropriate for their applications and methodology.

SDL may be applied in many fashions, supporting different purposes and methods. The minimum SDL
sub-set which can be chosen is given in the Recommendation Z.101.

Z2.102
Z.100 (Structures)
(Introduction)
Z.103
Z.101 (Procedures,
(Basic SDL) composite operations)
Z.104
({Data)

CCITT-73710

FIGURE 13/Z.100

Structure of SDL Recommendations

14 Fascicle VI.10 — Rec. Z.100

Recommendations Z.102 to Z.104 contain extensions to the minimum sub-set of SDL, and should be

applied when appropriate. The extensions may be applied in any combination.

Examples of the use of the concepts defined in the Recommendations are contained in Annexes. More

comprehensive examples of the use of SDL are also contained in the SDL User Guidelines.

The contents of the following Recommendations may be briefly summarized:

Z.101 Defines the basic concepts of SDL. The Recommendation forms the minimum sub-set of SDL to
be applied. This sub-set of SDL is sufficient for describing the behaviour of systems.

Z.102 Defines additional structural concepts, used to describe large and/or complex systems. They can
be used both for describing the actual structure of a system and to describe the system on several
levels of abstraction.

Z.103 Defines the procedure concept, the composite operations, the macro concept, the option concept
and the state orientated pictorial extensions (SDL/PE). These concepts are defined independ-
ently of each other, and may be applied in any combination.

2.104 Certain data concepts which are considered predefined in Z.101 to Z.103 are defined in Z.104. It
should be noted that data may be used completely informally in SDL.

Z.104 also contains a definition for the SDL abstract data type concept.

In addition to these Recommendations, a set of auxiliary documents is available, describing and

explaining the language without having the status of being a Recommendation. Some of these documents are
annexed to the Recommendations. The auxiliary documents are:

The formal definition of SDL

This document contains the mathematical definition of the semantics of SDL. The definition is
expressed in denotational semantics (VDM, META 1V). It will shortly be available as a separate
document. !

The SDL glossary

This document contains all SDL terms. Each term has a short explanation and reference to where it is
defined in the Recommendations. The document is Annex A to the Recommendations, and appears in
Fascicle VI.11 of the Red Book.

The SDL abstract syntax summary

This document contains a summary of the complete abstract syntax for the language. The abstract
syntax is described in a short BNF-like form. The document is Annex B to the Recommendations,
and appears in Fascicle VI.11 of the Red Book.

The SDL concrete syntax summary

This document contains a summary of all the concrete syntaxes of SDL; i.e. the Graphical Represen-
tation (SDL/GR), the state orientated Pictorial Extension to the graphical form (SDL/PE) and the
textual Phrase Representation (SDL/PR). The document is Annex C to the Recommendations, and
appears in Fascicle VI.11 of the Red Book.

The SDL user guidelines

This document exemplifies and explains the use of SDL (without defining the language). It contains a
number of examples and discussions on different usages of SDL. Some of the concepts defined in the
Recommendations which should be used with special care are also discussed in the User Guidelines.
The document is Annex D to the Recommendations and appears in Fascicle VI.11 of the Red Book.

The SDL course
This document is intended as training in the use of SDL. It is available as a separate document.?

Finally, in the inside back cover of this fascicle, two templates are enclosed for use in drawing the

graphical forms of SDL. They contain all the recommended graphical symbols, in their recommended format.

2)

The formal definition of SDL will be obtainable from the International Telecommunication Union, General Secretariat
— Sales Section, Place des Nations, CH-1211 Genéve 20 (Switzerland).

The SDL course will be available through the International Sharing System for Training, ITU Secretary General —
Technical Cooperation Department, Training Division, Place des Nations, CH-1211 Genéve 20 (Switzerland).

Fascicle VI.16 — Rec. Z.100 15

Recommendation Z.101

BASIC SDL

1 Introduction

This Recommendation defines the basic CCITT Specification and Description Language (SDL). The basis
for SDL is the concept of communicating finite state machines called processes. An SDL system is a set of blocks.
Blocks are connected to each other and to the environment by channels. Within each block there are one or more
processes. These processes communicate with one another by signals and are assumed to execute concurrently.

In defining the SDL, it was found useful to first define a common SDL model. This common model forms
an abstract basis for the concrete syntaxes and ties them together. The concrete syntaxes are just alternate means of
representing the concepts of SDL. Currently, there are two concrete syntaxes: SDL/GR and SDL/PR. Since these
two syntaxes represent the same SDL concepts, it is possible to map a system defined using one form of SDL
concrete syntax to the other concrete syntax.

In this Recommendation, the language is defined by first defining the common language model and then
defining the SDL/GR and SDL/PR concrete syntaxes.

2 Common language model

2.1 An introduction to the common model

In SDL, a system is a set of blocks connected to each other, and to the environment of the system, by
means of channels (see Figure 1/Z.101). The channels are unidirectional.

Environment
- - - - - - - -

Y

v

' Block > Block g Block —’

System

CCITT-73720

FIGURE 1/Z.101

SDL Model -

The behaviour of each block is modelled by one or more processes. A prbcess is defined by a process
definition.

Processes interact with other processes or the environment by means of signals. A signal is a flow of data
conveying information between processes. When a process outputs a signal, the signal will be transported to the
process it is directed to. The transportation mechanism for signals conveyed between processes in the same block is
the same as for signals conveyed between processes in different blocks. Channels represent the transportation route
for signals exchanged between blocks.

When a signal arrives at the process it is directed to, it will be retained outside the process until the
process is ready to receive the input signal. A signal will be consumed when the destination process receives the
signal.

16 Fascicle V.10 — Rec. Z.101

SDL models open systems, this means that the system may interact with its environment. This interaction
takes place solely by means of conveying signals via the channels leading to and from the environment. The
environment is assumed to act in an SDL-like fashion, i.e., the environment can be considered to contain a process

which outputs signals to the channels leading into the system and receives signals from the channels leading out of
the system.

During its lifetime, a process is either in a state (waiting to receive one of a set of signals) or in a
transition (performing a sequence of actions). When in a state only a specified set of signals can be received by a
process. If one of these input signals is retained outside the process, it is received by the process. The receiving of
the input makes the data carried by the signal accessible for the process and starts a transition. During a transition,

the data of the process may be manipulated and signals'may be output. The transition will end with the process
entering a new state or with a stop.

A stop causes the process to cease to exist.

Common to the system and its environment is the concept of absolute time which is the same throughout
the system and the environment.

2.2 Abstract syntax

System definition

A system definition contains a system name, one or more block definitions, a set of channel definitions
and a set of signal definitions.

A system definition contains the signal definition for each signal name contained in the signal list
associated with each channel definition.

Block definition

A block definition contains a block name, one or more process definitions and may contain signal
definitions.

Each block definition contains the signal definition for each type of signal interchanged between
processes within the block.

Channel definition

A channel definition contains a channel name, an origin block definition identifier, a destination block
definition identifier and a signal list. The signal list contains the identifier of each type of signal that
may be conveyed through the channel.

The origin block definition identifier and the destination block definition identifier associated with a
channel definition must be different and each must be the identifier of a block definition in the system
definition or must be the environment.

The signal list associated with the channel definition contains at least one signal identifier.
Signal definition

A signal definition contains a signal name and may contain a list of data type names.
Process definition

A process definition contains a process name, a pair of integers and a process graph and may contain
a formal parameter list, variable definitions and viewing definitions.

Process graph

A process graph is a graph whose nodes are connected by directed arcs. An arc entering a node is
called an incoming arc and an arc exiting the node is called an outgoing arc. A node having an arc as
an incoming arc follows the node having the same arc as an outgoing arc.

The following categories of node exist:

State node

Input node

Task node

Output node
Decision node
Start node

Stop node

Create request node

Fascicle VI.10 — Rec. Z.101 17

18

The following rules define the connectivity of a process graph:

1) Each process graph contains one and only one start node. The start node is followed by a
transition string. The start node does not follow any other node.

2) A transition string can be one of the following:

a) null followed by either a state node or a stop node;
b) an action string followed by a transition string
c) a decision node.

3) An action string can be one of the following:

a) a task node,
b) an output node,
C) a create request node.

4) A decision node is followed by two or more decision arcs.

5) A decision arc is a named arc followed by a transition string.
6) A state node is followed by one or more input nodes.

7) An input node follows one and only one state node.

8) An input node is followed by a transition string.

9) The stop node has no nodes following it.

10) Each process graph has at most one stop node.

11) Each node is reachable from the start node.

State node _

A state node contains a state name and may contain a save-signal-set. State nodes within a process
graph have different names.

Input node

An input node contains a signal identifier and may contain an ordered set of variable identifiers.
Save-signal-set

A save-signal-set contains signal identifiers.
Task node

A task node contains either a sequence of statements or informal text.
Statement

A statement is either a set statement, a reset statement Or an assignment statement.
Set statement

A set statement contains a time expression and a timer identifier.
Reset statement

A reset statement contains a timer identifier.
Assignment statement
An assignment statement contains a variable identifier, an assignment operator and an expression.

Output node

An output node contains a signal identifier, a destination expression and may contain an actual
parameter list.

Decision node

A decision node contains a question and has at least two outgoing ‘arcs. Each outgoing arc has
associated with it a set of one or more answers to the question. Every possible answer to the question
should be associated with one and only one arc. A question is either an expression or informal text. An
answer is either a value identifier or informal text.

Fascicle VI.L10 — Rec. Z.101

Create request node
A create request node contains a process definition identifier and may contain an actual parameter list.
Data type

Predefined data types exist for types: natural, integer, real, character, charstring, Boolean, time,
duration, timer and process instance identifier. They are defined in Recommendation Z.104.

Variable definition

A variable definition contains a variable name and a data type identifier and may contain a reveal
attribute.

Formal parameter list
A formal parameter list is an ordered set of formal parameters.
Formal parameter
A formal parameter contains a formal parameter name and a type identifier.
Actual parameter list
An actual parameter list is an ordered set of actual parameters.
Actual parameter
An actyal parameter is an expression.
View definition ‘
A view definition contains a variable identifier, a data type identifier and a process definition identifier.

The variable must have a reveal attribute in the process definition referred to by the process definition
identifier. The revealing process definition referred to must belong to the same block as the viewing

process definition.
Expression

An expression is either a value identifier or a variable identifier or an operation.
Operation

An operation contains either a viewing expression or an operator and a list of one or more expressions.
Viewing expression |

A viewing expression is composed of a viewing operator plus a variable name and process instance

identifier.
2.3 Interpretation rules
23.1 System

A system is a concrete entity, such as a telephone exchange, and is an instantiation of a system type
defined by a system definition. A system is separated from its environment by a system boundary and contains a set
of blocks. Communication between the system and its environment or between blocks within the system can only
take place using signals. Within a system, these signals.are conveyed on channels. The channels connect blocks to
one another or to the system boundary.

The system possess a parameterless function of rype time called NOW, yielding the current time. The
current time is immediately available throughout the system and its environment. NOW can be used in expressions
in any process in the system.

2.3.2 © Channel

Within the system, there is a channel for each channel definition in the system definition. A channel is a
transportation route for signals. The route is unidirectional. The end points of the channel are either a block or the
system boundary. At least one of the end points of the channel must be at a block. If both end points are at blocks,
the blocks must be different. The channel- definition contains the list of all signals that may be conveyed on the
channel.

Fascicle VI.10 — Rec. Z.101 19

When a signal is output to the channel, the signal is conveyed to the destination block. The order of the
signals output to the channel and the order of the signals received from the channel is the same. If two or more
signals arrive at a channel simultaneously, they are arbitrarily ordered.

2.3.3 Block

Within the system, there is a block for each block definition in the system definition. A block is an object of
manageable size in which one or more processes can be interpreted. There are 2 communication mechanisms
between processes within the same block : signals and shared values. '

When a signal arrives at the block from a channel, the block delivers the signal to the input port of the
process addressed by the process identifier in the signal.

When a signal is output by a process within the block, it is delivered to the process addressed by the
process identifier in the signal. If the addressed process is within the same block, the block delivers the signal to its
input port. If the addressed process is in another block, the block delivers the signal to the channel able to convey
that signal.

Shared values allow a process to view a revealed variable in another process. Only the revealing process is
allowed to change the value of the variable. The viewing process receives the current value of the revealed variable
by using a viewing operator.

234 Signal

A signal is a flow of data conveying information between processes and is an instantiation of a signal
type defined by a signal definition. A signal can be sent by either the system environment or a process and is always
directed to either a process or the environment.

Each signal contains the signal identifier in the signal definition, an origin process instance identifier and a
destination process instance identifier. In addition, other values may be conveyed by variables in a signal In a
signal, there is one variable for each name in the data type list in the signal definition.

2.3.5 Process

A process is a communicating finite state machine and is an instantiation of a process type defined by a
process definition. Within a block there may be zero or more processes for each process definition. Processes can
exist from the time that a system is created or can be created by create request actions and may cease to exist by

performing stop actions. A process executes independently from and concurrently with other processes in the
system. :

All processes in the system possess four predefined variables of process identifier typé called: SELF,
PARENT, OFFSPRING and SENDER. These variables are process instance identifiers for:

— the process (SELF);

— the creating process (PARENT);

— the most recently created process (OFFSPRING);

— the process from which the last input signal has been received (SENDER).

These variables can be used in expressions but cannot explicitly be assigned a value. For all processes

present at system initialization, PARENT is given the same distinct value, which is different from the value of
SELF for any process.

Signals to the process are input signals and signals from the process are output signals. An input signal is
an entity intended to invoke the process and to communicate information to it. An output signal is intended to
invoke another process and to communicate information to it.

The set of signal identifiers that appear attached to input nodes of the process graph denotes the set of
valid input signal identifiers for this process définition. For each state, all input signal identifiers appear in either a
save-signal-set or an input node.

The pair of integers contained in the process definition define the number of instances of the process
which are created when the system is created and the maximum number of simultaneous instances of the same
process type. When a system is created, the initial processes are created in a random order and no acrual
parameters are passed to the process. ’

20 Fascicle VI.10 — Rec. Z.101

When the process is created, it is given an empty input port, and variables are created with undefined
values. Then the process starts by interpreting the start node in the process graph.

When a valid input signal arrives at the process, it is put into the input port of the process. Each process
contains a single input port. The input port may retain any number of input signals so that several input signals are
queued for the process. The set of retained signals are ordered in the queue according to their arrival time. If two
or more signals arrive simultaneously, they are arbitrarily ordered. Attached to the inpur port is a possibly empty
set of timers. Each timer contains a value of the time type.

The process is either waiting in a state or active performing a transition. For each state, there is a
save-signal-set. When waiting in a state, the first input signal whose identifier is not in the save-signal-set is taken
from the queue and received by the process. The input port will continuously compare NOW with the timer, if any
exists, having the lowest value greater than zero. When the value of NOW is greater than or equal to the value of
this timer, a signal with the same name as this timer is placed in the queue and then the timer is given the value of
zero.

When a process is waiting, it is always in a unique state denoted by the corresponding state node in the
process graph. When an input signal is received, the process becomes active, interprets the input node having the
same name as the input signal and performs a transition leading to a new state.

2.3.6 Process graph

A start node is interpreted as a start action. The start action causes the node following the start node to
be interpreted.

An input node is interpreted as an input action which receives and consumes the given signal and then the
node following the input node is interpreted. The consumption of the signal makes the information conveyed by
the signal available to the process. The variables in the input node are assigned the values of the corresponding
variables in the signal. If there is no variable in the input node for a variable in the signal, the value of the variable
is discarded. SENDER in the receiving process is given the value of the origin process instance identifier carried by
the signal.

A task node is interpreted as a task action. The task action is the interpretation of a sequence of
statements or informal text. When the action is complete, the node following the task node is interpreted.

A set statement will cause a reset statement on the timer given in the statement and will assign the given
time value to the timer.

A reset statement will set the time value of the timer to zero. If any signals having the same name as the
timer are present in the input queue, they will be removed from the input queue and will be discarded. All signals
in the queue with the same identifier as the timer signal identifier are removed from the queue and discarded.

An assignment statement is informally interpreted as the value of the variable in the assignment statement
takes on the value of the expression in the assignment statement.

An output node is interpreted as an output action which creates a signal and delivers it to the block. Then
the node following the output node is interpreted. The output signal is an instantiation of a signal type defined by
the signal définition indicated by the signal identifier in the output node. The variables in the signal are assigned the
values of the actual parameters in the output node. If there is no actual parameter in the output node for a variable
in the signal, the variable has undefined value. The origin process instance identifier carried by the signal is assigned
the value of the SELF variable. The destination process instance identifier of the signal is assigned the value of the
destination expression contained in the output node.

A decision node is interpreted as a decision action which answers a question. The arc which matches the
answer to the question is chosen and the node following this arc is interpreted.

A state node is interpreted as the termination of a transition by giving the process a new state as denoted
by the name contained in the node. The input port is informed that the process is now waiting in a stafe and is also
presented the save-signal-set attached to the interpreted state node. After this, the process waits until given a new
input signal.

Fascicle VI.10 — Rec. Z.101 21

A stop node is interpreted as the immediate termination of the process. This means that the input signals

retained in the input port are discarded and that the variables created for the process, the input port and the process
will cease to exist.

A create request node is interpreted as a create request action. The create request action causes the creation
of a process in the same block. The definition of the process is in the same block and is identified by the process
identifier in the create request node. As part of the create request action, the created process’s PARENT variable is
given the value of the creating process’s SELF variable. The created process’s SELF variable and the creating
process’s OFFSPRING variable are both assigned the same unique process instance identifier value. The formal

parameters in the newly created process are assigned the values of the actual parameters contained in the create
request node.

2.3.7 Data type

The predefined data types are used in the normal sense.

2.3.8 Variable

. A variable can be assigned a value. The contents of the value assigned to a variable can be later retrieved

from the variable. A variable also has a data type which restricts the class of values which can be assigned to the
variable.

Within a process, there is a variable for each variable definition in the process definition. The value of a
variable can only be modified by the process that defines the variable. The value of a variable is known only to the
process that defines the variable unless the variable has the reveal attribute. The reveal attribute allows other
processes in the block to view a variable. Variables possess the same lifetime as the declaring process (i.e. they are
created when the declaring process is created and they cease to exist when the declaring process ceases to exist).

Within a signal, there is an anonymous variable for each occurrence of each data type name in the signal
definition. The value of the variable can only be assigned in the output node that created the signal and can only be

known in the input node that receives and consumes the signal. These variables have a lifetime bounded by the
lifetime of the signal.

2.3.9 Expression

An expression is informally interpreted as producing a value.

2.3.10 View definition

A view definition defines a variable name which may only be used in a viewing expression to obtain the
value of a variable owned by another process.

2.3.11 Viewing expression

The value of a viewing expression is the value of the variable identified by the variable name and process
instance identifier in the viewing expression.

3 SDL/GR

A system definition is represented in SDL/GR syntax by:

— a block interaction diagram which contains the system name and the channel definitions and which
identifies the block definitions. The block interaction diagram also identifies the process definitions
which model each block’s behaviour. The block interaction diagram may denote: 1) the lists of signals
that pass between processes in the same block; 2) the lists of signals conveyed by channels between
blocks, and 3) the creation of new process instances by other process instances

— process diagrams which define the behaviour of each process and are the graphic representations of

the process definitions. Process diagrams may contain variable definitions, formal parameters and view
definitions ;

22 Fascicle V.10 — Reec. Z.101

— signal lists which name the signals conveyed by a channel or from one process to another inside the
block. These may be incorporated in the block interaction diagram, using signal list symbols, or
presented as separate lists in whatever form is felt suitable;

— signal definitions which give the data types and order of the data values which can be contained in a
signal, for each signal named in the signal lists. These are specified using SDL/PR syntax.

In a system définition, names and identifiers may be used. Names are specified using SDL/PR syntax.
Identifiers consist of a name together with qualifiers. A qualifier is the entity rype with which the name is
associated, and it represents the hierarchy level of the entity which is being identified. No two or more entities
may have the same identifier. In SDL/GR, the qualifiers of names may be inferred from the context, but whenever
they are used, they are specified using SDL/PR syntax.

31 Block interaction diagrams

The block interaction diagram for a system contains a system name, a set of block symbols, environment
symbols, and a set of channel symbols and signal list symbols.

3.1.1 Symbols

The recommended symbols appear in Figure 2/Z.101 below.

Block symbol (a rectangle)

Process symbol
(a rectangle with corners
clipped at 45 degrees)

Signal list symbol
(square brackets)

.
Environment symbol » Environment
Create symbol ————= -»>
Signal route symbol (arrow) —_— >
Channel symbol —_—
CCITT-73730

FIGURE 2/Z.101

Block interaction diagram symbols

Fascicle VI.10 — Rec. Z.101 23

3.1.2 Relationship between SDL/GR block interaction diagrams and the abstract syntax and the use of symbols

— The environment symbol represents the system environment and may appear a number of times.

— A block symbol contains a name, a nonempty set of process symbols, signal route symbols and may
contain create symbols and signal list symbols.

— A process symbol contains a process name and may contain a formal parameter list symbol. The
process name is the same as the name contained in the process definition which describes the behaviour
of the process. The formal parameter list symbol contains a list of the names of the formal parameters

which are initialized either when the system is created or when the process instance is dynamically
created.

— A pair of integer values may be associated with a process symbol, the first value represents the number
of instances of the process which exist when the system is created, the second value represents the
maximum number of simultaneous instances of this process type. The two values are positioned in the
top right-hand corner of the process symbol.

The default for the first value is one. The default for the second value is infinity. This pair of integers

is specified using the SDL/PR syntax. When one of the integers is not specified, the default value is
chosen for it.

— A channel symbol has a channel name attached to it. The channel symbol has an origin end which is
connected to a block symbol and a destination end which is connected to another block symbol.
Alternatively, either the origin or the destination connection (but not both) may be connected to an
environment symbol instead of a block symbol. A signal list symbol may be placed beside a channel
symbol to identify the signals carried by the channel.

— A signal route symbol in a block is associated with a signal list symbol. A signal route symbol leads
either from one process to another, or from a process to the origin end of a channel (at the block
boundary), or from the destination end of a channel (at the block boundary) to a process.

— A signal list in a block interaction diagram is a list of names, the whole enclosed in the signal list
symbol (i.e., in square brackets). The signal list may itself have a name, which is written above the
symbol. Entries in the list (which are separated by commas and can be put in columns or rows) are the
names of individual signal definitions and the names of other signal lists. Within the list, signal list
names are distinguished from individual signal definition names by enclosing each signal list name in a
further pair of square brackets. If it is decided to include signal lists on the block interaction diagram
using signal list symbols, all signal lists should be included in the diagram. Figure 3/Z.101 shows
examples of signal lists.

_ — [list 1]
signal 1,
signal 5,
signal 2,
signal 6,
signal 3,
signal 7
[list 1], = 9
signal 4

FIGURE 3/Z.101

Examples of signal lists in block interaction diagrams

24 Fascicle V.10 — Rec. Z.101

— Create symbols lead from one process symbol to another process symbol. The former process symbol
represents the “creating” process. The latter process symbol represents the “created” process.

3.1.3 Drawing rules

— Channel symbols are connected to the boundaries of block symbols with which they are associated.
Channel symbols should join block symbol boundaries at 90°. If necessary, channel symbols may
contain 90° bends. A channel symbol includes an arrowhead to show the direction of the flow of
signals along the channel.

— Signal route symbols are connected to the boundaries of block symbols or process symbols with which
they are associated. Signal route symbols join these boundaries preferably at 90°. If necessary, signal
route symbols may contain 90° bends. Several signal route symbols may converge at the origin end of a
channel (at the block boundary). Several signal route symbols may diverge from the destination end of
a channel at the block boundary. A signal route symbol includes an arrowhead at one end to show the
direction of the flow of signals.

— Create symbols are connected to process symbol boundaries by dotted lines which meet the process
symbol boundaries at 90°. Arrowheads are used on these connecting lines so that the “creating”
process symbol points to the “created” process symbol.

— The preferred orientation of symbols is shown in Figure 2/Z.101.
— The size of symbols may be chosen by the user.

— Symbol boundaries must not overlay or cross. An exception to this rule applies for the channel
symbols and signal route symbols which may cross each other. There is no logical relationship between
channel symbols or signal route symbols which do cross.

3.2 Signal lists
The union of all signal names in the signal lists associated with signal route symbols connected to a given
process definition equals the set of valid input signal names for that process.

The union of all signal names in the signal lists associated with signal route symbols connected to the
origin end of a channel equals the list of names in the signal route list associated with that channel, and equals the
union of all signal names in the signal route lists associated with signal symbols (in the channel destination block)
connected to the destination end of that channel.

33 Process diagrams

33.1 Symbols

The behaviour of a process is represented in graphical form by a process diagram. The name of the process
diagram is the same as the process name in the process definition which it represents. Figure 4/Z.101 shows the
symbols that are used in the process diagrams of SDL/GR form.

3.3.2 Relationship between SDL/GR process diagrams and the SDL abstract syntax and the use of symbols

Each process diagram symbol listed in Figure 4/Z.101 represents the equivalently named node of
the process graph in the abstract syntax. Flow lines, which connect symbols, represent the directed arcs which
connect nodes. Allowable connections of symbols by flow lines in an SDL-GR process diagram are shown in
Figure 5/Z.101.

The formal parameters, valid input signal set, variable definitions, view definitions, expressions and viewing
expressions are specified using SDL/PR syntax.

A start symbol represents a start node (see also § 2.2.3.3). The start symbol contains the name of the
process it describes.

A stop symbol represents the stop node.

Fascicle VI.10 — Rec. Z.101 25

Start symbol @ Stop symbol ><
State symbol
Nextstate symbol C) Input symbol <
Task symbol Output symbol >
Flow line
Create request symbol
In-connector Q
Decision symbol Q
Out-connector @
Save symbol
CCITT - 73741

FIGURE 4/Z.101

SDL/GR process diagram symbols

26 Fascicle VL10 — Rec. Z.101

Beginning __I

4

A 4
Finish
A h 4 v .
<
\
\ 4 l
7 3
(Answer name)
\ 4 \ 4 4 J
CCITT-73750
y
4 >

FIGURE 5/Z.101

'l——— Finish

Allowable connections of symbols by flowlines in an SDL/GR process diagram

Fascicle VI.10 — Rec. Z.101 27

A state symbol represents one or more state nodes and contains one or more state names separated by
commas, or an asterisk, or an asterisk followed by a list of state names within brackets.

A save symbol represents the set of saved signals attached to a state node. 1t contains one or more signal
names, separated by commas, or an asterisk.

An input symbol represents one or more input nodes. Signal names which are contained in the input symbol
are separated by commas. Each of these signal names gives the name of one of the input nodes which this input
symbol represents.

A task symbol represents a task node. The task symbol contains task name and may contain either a
sequence of statements or informal text.

A create request symbol represents a create request node. It contains a create request action as specified in
SDL/PR syntax.

A decision symbol represents a decision node. It contains a question and may contain a decision name. Two
or more flow lines lead from the decision symbol to other symbols; each such flow line has attached to it
(i.e., written alongside or inserted in a break in the flow line) its own answer name. The ELSE answer implies an
answer which is for any answer that is not covered by any other answer name.

An output symbol represents one or more output nodes. Signal names which are contained in the output
symbol are separated by commas. Each of these signal names gives the name of an output node which this output
symbol represents. The destination process instance identifier can optionally be given in the output symbol using the
SDL/PR syntax (that is, a TO keyword followed by an expression of the type process instance identifier, the TO
keyword is after the list of signal names). Where the destination process of a signal cannot be uniquely determined
because neither the signal name nor the context is sufficient to allow this, the process instance identifier is required.

A nextstate symbol represents an arc connecting the last node in a transition string to the following state
node.

A flow line connecting two other symbols (representing nodes) represents the arc connecting the
corresponding nodes. '

A comment symbol is used to attach informal text to any other symbol.

An in-connector contains a label and represents the continuation of a flow line from a corresponding
out-connector which contains the same label.

3.3.3 Graphical conventions

3.3.3.1 Implicit transitions

The abstract syntax of SDL requires that either a save or an input leading to a transition be specified for
every signal in the valid input signal set of a process for every state of the process. SDL/GR provides implicit
“null” transitions for any signals for which neither fransitions nor saves are given explicitly. A null transition is
equivalent to a connection from a state symbol to an input symbol which is then connected back to the same state
symbol. For a given state, SDL/GR thus discards any signals which are not explicitly mentioned in conjunction
with that state. Also the data contained by such signals is discarded.

If no start symbol appears in an SDL/GR process diagram, an implicit start symbol which is directly
connected to the “starting” state symbol is assumed. The starting state may be identified by implication from its
name, or by a comment.

3.3.3.2 Flow lines and connectors

Where two or more symbols are followed by a single symbol, the flow lines leading to that symbol
converge. This convergence may appear as one flow line flowing into another or as more than one out-connector
associated with a single in-connector, or as separate flow lines entering the same symbol.

Where a symbol is followed by two or more other symbols, a flow line leading from that symbol may
diverge into two or more flow lines.

Arrowheads are required whenever two flow lines converge and whenever a flow line enters an out-

connector or a state symbol. Arrowheads are prohibited on flow lines entering input symbols. In all other
circumstances, the arrowheads are optional.

28 Fascicle VI.10 — Rec. Z.101 ’

3.3.3.3 Multiple appearance

Whenever state symbols, or connector symbols, appear having the same name, they are considered to
represent the same semantic entity. The resulting entity is considered to have the union of all incoming and
outcoming flow lines from all its multiple representations. Whenever one or more stop symbols appear on the same
process diagram, they all represent the stop node.

3.3.3.4 Shorthand notation
A shorthand notation is provided to allow reference to all, or all other signals, or states, in either the

input, save or state symbol.

An input symbol attached to a state and containing an “*” (asterisk) indicates that the following transition
applies to all incoming signals that do not appear otherwise in input symbols or save symbols attached to any
appearance of that state symbol. Only one input symbol or one save symbol containing an “*” is allowed for any
state.

‘A save symbol attached to a state and containing an “*” indicates that all signals that do not appear in
input symbols attached to any appearance of that state symbol should be saved.

An “*” in a state symbol denotes all states in that process and indicates that the following transitions or
saves should be interpreted in every state. An “*” followed by a list of state names in brackets indicates that the
following transitions or saves should be interpreted in every state except for those listed. Such state symbols must
not have any incoming flow lines.

An “—" in a nextstate symbol means that the following state is the same state from which the current
transition was started. The “—" is not allowed in a nextstate symbol that follows the start symbol.

A nextstate symbol and a state symbol can be merged only if they represent the same state symbol.

3.3.3.5 Miscellaneous

N
All symbols of the same type shall preferably be of the same size within any one diagram.

The preferred orientation of symbols is horizontal and the preferred aspect ratio of symbols is 2:1.
Mirror images of input and output symbols are allowed.

Flow lines are horizontal or vertical and have sharp corners.

Flow lines that cross do not have a logical relationship.

The text associated with a symbol should be placed within that symbol where practical.

3.3.3.6 SDL template

A template suitable for hand drawing the basic set of SDL symbols is enclosed with the SDL user
guidelines. ’ ‘

34 Text extension symbol

A text extension symbol may be attached to all SDL/GR symbols. The text contained in this symbol is to
be regarded as contained in the symbol to which the text extension symbol is attached. The text extension symbol is
shown in Figure 6/Z.101.

Any SDL/GR : <Text that is associated
symbol with the SDL/GR symbol >

FIGURE 6/Z2.101 ~

Text extension symbol

Fascicle VI.10 — Rec. Z.101 29

35 Comments in SDL/GR

In all SDL/GR diagrams, comments may be inserted wherever the user finds it appropriate. The comments

may be inserted by using either the SDL/GR comment symbol (see Figure 7/Z.101) or the SDL/PR syntax for
comments (see § 4.3.2, lexical rule 7).

- {< comment text >

FIGURE 7/Z.101

Comment symbol

comment
example

) 4

/*comment
example*/

.

FIGURE 8/Z.101

Examples of comments in SDL/GR

4 Linear syntax

4.1 General

This section defines SDL/PR and relates it to the common language model (see § 2).

A system definition in the SDL/PR syntax is represented by a sequence of statements bounded by the
words SYSTEM and ENDSYSTEM.

The detailed rules for the SDL/PR syntax are contained in the synrax diagrams (see § 4.3).
Reference to a named entity outside its definition is made by an identifier. The identifier is composed of a

name and an optional qualifying part. The qualifying part must be used when the name alone will not uniquely
determine the item being referred to.

4.2 Keywords

SDL/PR uses a number of keywords to express SDL concepts as defined in the abstract syntax. Some of
the keywords are used in pairs to reflect the structuring of SDL into SDL/PR.

30 Fascicle VI.10 — Rec. Z.101

4.21

422

423

Paired structuring keywords concerned with definitions

The word “embrace” is used with these word pairs to indicate their role as delimiters.

SYSTEM
ENDSYSTEM

BLOCK
ENDBLOCK

PROCESS

ENDPROCESS

embrace the concept of system definition (the SDL/PR representation of a system
starts with the keyword SYSTEM and ends with the keyword ENDSYSTEM).

embrace the concept of a block definition.

embrace the concept of a process definition.

Single keywords concerned with definitions

The keywords in this paragraph are used to indicate that a definition follows.

DCL

VIEWED
SIGNAL

" CHANNEL

FPAR

DURATION
TIME

TIMER
NATURAL
INTEGER
REAL
CHARSTRING
CHARACTER
BOOLEAN
PID

VIEW

SET
RESET

SYSTEM
BLOCK
PROCESS

introduces the representation of the variable definition. The keyword REVEALED
is used within a DCL statement to identify revealed variables.

introduces the representation of the view definition.
introduces the representation of the signal definition.

introduces the representation of the channel definition. The keyword FROM is used
within the CHANNEL definition to indicate the origin block of the channel and
the keyword TO is used to indicate the destination block. The keyword ENV is
used to refer to the environment. The keyword WITH is followed by the list of the
signals carried by the channels.

introduces the representation of the formal parameter definition.

represent the predefined data types.

introduces the representation of the viewing expression. It is used within an
expression wherever a variable declared as VIEWED is used.

introduces the representation of the set statement.

introduces the representation of the reset statement.

introduce the qualifying part of an identifier.

Keywords associated with nodes in a process graph

The process graph in the abstract syntax consists of nodes connected by directed arcs.

Keywords are chosen to correspond to nodes, and the arcs which connect nodes in the abstract syntax are
represented by the ordering in which the keywords occur (see § 4.2.5).

START

STATE

represents the start node. If this keyword is not present, the first STATE keyword,
following PROCESS, represents the starting state.

introduces the representation of one or more state nodes. The save-signal-set
attached to a state node is represented by the keyword SAVE followed by one or
more signal identifier..

Fascicle VI.10 — Rec. Z.101 31

INPUT introduces the representation of one or more input nodes.
TASK introduces the representation of a task node.

OUTPUT introduces the representation of one or more output nodes. The destination process
instance identifier can optionally be given by the keyword TO followed by an
expression which yields a process instance identifier value. Where the signal destina-
tion cannot be uniquely determined, the keyword TO is required.

DECISION embrace the concepts of a decision node. The keyword ELSE is used to represent
ENDDECISION the answer for all cases not explicitly named.

CREATE introduces the representation of a create request node.

STOP represents a stop node.

4.2.4 Keywords associated with arcs

JOIN represents an arc between nodes that are not state nodes. The first node is generally
represented by the keyword immediately before the keyword JOIN, the second
node is always identified by having the same label identifier as the keyword JOIN.
There are some exceptions to this general explanation as far as the first node is
concerned (see § 4.2.5).

If the second node is another JOIN, the arc is connected with the node that this
JOIN refers to.

If the keyword having the join label is NEXTSTATE, the second node is the state
with the same name (the NEXTSTATE rules are valid).

NEXTSTATE represents an arc. The first node of the arc is represented by the

keyword immediately before the keyword NEXTSTATE, the second node is the
state with the same name. .

4.2.5 Representation of arcs in SDL/PR

The representation rule of an arc in SDL/PR is given by the keywords ordering.

There are some exceptions to this general meaning in case of keywords such as JOIN and NEXTSTATE
as it is said in the previous paragraph.

Moreover, when a keyword (associated with a node or an arc) immediately follows an answer, the first
node of the arc is the preceding matching decision.

If the keyword immediately before a keyword associated with a node or an arc is ENDDECISION, the
first nodes of the arcs are represented by the last keywords in all transition strings of the decision having no
terminator statements.

The last keyword of a decision branch represents a node not connected with the keyword that follows the

next result name, but connected with the keyword after the ENDDECISION. This rule is clearly not valid if the
last keyword of a decision branch is a terminator statement.

4.3 Reserved words in SDL/PR

Certain words are reserved'in SDL/PR and may not be used as names. The list of reserved words is found
in Annex C.2 to Recommendations Z.100 to Z.104.

32 Fascicle VI.10 — Rec. Z.101

44

Syntax diagrams

SYSTEM DEFINITION

SYSTEM

System
name

end

block
definition

]

channel
definition

signal
definition

BLOCK DEFINITION

ENDSYSTEM

System

name

CCITT - 82340

——-———HLOCK Block
name

end

signal
definition

process
definition

ENDBLOCK

Block

name

7

N NN
A

CCITT - 82350

Fascicle VI.L10 — Rec. Z.101

33

34

CHANNEL DEFINITION

CHANNEL ‘

Channel

name

FROM

Block __@
ident ident

Block

Block

@ ident

WITH

signal -
list H(D

SIGNAL LIST

Signal

ident

()
(N7

SIGNAL DEFINITION

SIGNAL

Fascicle VI.10 — Rec. Z.101

v

CCITY - 76540

Signal

name

type

\ 4

CCITY - 822360

list

O

\'4

N
L/

CCITT - 76550

PROCESS DEFINITION

Process _L number
PROCESS -
name

instances

of

end

formal

parameters

valid input
signal set

viewed
’I definition —

variable | process |—
definition body

Process
——aGNDPROCEss)—el S —‘L—)@—-)

VALID INPUT SIGNAL SET

NG N
SIGNALSET 2 >
TYPE LIST
! Type D >
O/ ident \/ -
Xk
U\ CCITT ~ 76560
PROCESS BODY
_ START en.d tro‘nsition terminator
string statement }
Y
state -
body i’

Fascicle VI.10 — Rec. Z.101

35

STATE BODY

Fascicle VI.10 — Rec. Z.101

STATE state | J"end
list
INPUT input end transition terminator | |
list : string statement
SAVE save end
list -
STATE LIST
() () state R
Y (name)@ >
state -
name -
e
u\ CCITT - 76680
INPUT LIST
SO
o/
Signal \/(\ Variable \f)\ R
ident O/ ident AL >
GV
/"
e
U\ CCITT - 76690

SAVE LIST

()

carT - w71

(i)—>

CCITT - 76720

()
4
signal -
ident -7
VAW
U CCITT - 76700
VARIABLE DEFINITION
()
A\
] variable tv)/_P_eg
oet nome dent
N
O
VIEW DEFINITION
)
e varigble type process
_@){ident ident ident
e
N
NUMBER OF INSTANCES
N\ decimal SN decimal VAR -
'k(/ integer / integer ’\)/ w”_mw,
FORMAL PARAMETERS
| Variable Type J: O
_@ ident | ident ‘

()
=/

()
-/

CCITT - 76760

Fascicle VI.10 — Rec. Z.101 37

38

TRANSITION STRING

——>

CCITT - 76780

action .
statement -
CCITY - 76770
ACTION STATEMENT
-—————% label action end
ACTION
task >
output
create
request
decision CCITT - 82380
TASK
I
"
——___9(::EE§EE::} statement S
Informal
text

Fascicle VI.10 — Rec. Z.101

CCITT - 76800

STATEMENT

assignment

v

statement

reset
statement >

set
statement

operation

CCITT - 82390

INFORMAL TEXT

Name Character
string string

Vv

CCITT - 76820

TERMINATOR STATEMENT

—————9{ Label —)@4;)[Terminotor end |———o>
CCITT - 76830

TERMINATOR

\ 4

()
o/
State
 — NEXTSTATE ident
‘ JOIN label
| STOP CCITT - 76841

Fascicle VI.10 — Rec. Z.101

39

signal
TPUT
ouTPU ident

40

QUTPUT

actual
parameters

END

{
AN

comment

v

pid
@ expression

CCITT ~ 76850

>

CREATE REQUEST

CREATE ‘

Process

AL .
CCITT - 76860

actual S
7

ident

ACTUAL PARAMETERS

parameters
CCITT - 76870

——9@ Expression 7‘@ >
e |
u\ CCITT - 76880
ASSIGNMENT STATEMENT
Variable ;
—_— —_ident ‘—e@-_e Expressiont—>
RESET STATEMENT
Timer N\ -
(ident \)/ - -

Fascicle VI.10 — Rec. Z.101

SET STATEMENT

Timer | Timer
SET “ expression () ’ ident () >
CCITT - 76950
DECISION
DECISION Question End
Answer Tro.nsmon Terminator
string
Answer —)@———) Trqnsﬂuon Terminator
string
ELSE o Trqnsﬂuon Terminator
‘ string

'—)C ENDDECISION }——)

CCITT - 76370

Expression —)®-—7(———>

CCTT - 76930

v

QUESTION
>(()
O/
Informal
text
ANSWER
\/('\ Value
O/ set
Informal
text

()

CCITT - 77001

Fascicle VI.10 — Rec. Z.101

41

VIEWING OPERATOR

VIEW Variable
(e O taent

Pid
expression

RO

CCITT - 77010

LABEL

Label
string

—

CCITT - 77150

COMMENT

COMMENT Character |
——>{(CommENT }— G

CCITT - 77160

IDENT

Qualifier Name p—>
CCITT - 77170
NAME
Name - | Character -
. . 7
rin rin
St g St : g CCITT - 77180
4.4.1 Lexical units /
4.4.1.1 Lexical rules
— All the punctuation marks [e.g., . ; * : ! = ()] and operation symbols (e.g. +, —, *, <, > ...) are

lexical units which may take the place of spaces.
— Two lexical units must be separated by one or more spaces.
— Keywords belong to the same lexical category as namestring, and they are reserved.
— Outside lexical units several spaces have the same “meaning” as one space. .
— Tabulation characters (VT, HT, CR, BS ...) may be considered as spaces.
— All letters and nationals are always interpreted as if uppercase, except with a charstring.

— Wherever spaces may occur comments may be inserted delimited by * /*’ and "*/’, these comments
have the same meaning as one space. The comment must not contain the special sequence '*/°.

42 Fascicle VI.10 — Rec. Z.101

4.4.1.2 Syntax diagrams

LABEL STRING

National

)I Letter

Decimal

v

digit

<)
i\

CCITT - 77180

CHARACTER STRING

7

Letter

-0

National

Decimal

digit

Special

O

CCITT - 77240

Fascicle VI.10 — Rec. Z.101

43

44

NAME STRING

Letter

nationa

————)l Letter

decimal
digit

national

CCITY - 77200

2 0EIE

L,

QUALIFIER

| Structural Entity type -

; name name -

CCITY -~ 77210

STRUCTURAL NAME
- | System
—x SYSTEM e
Block
BLOCK — >

name

Process
—>< PROCESS } nome

CHANNEL

C) Signal
SIGNAL
name

N

7

N

7
Channel

N

P
name

nY
L~

Fascicle VL.10 — Rec. Z.101

CCITT - 82410

v

ENTITY TYPE NAME

v

SYSTEM

A0

BLOCK

PROCESS

SIGNAL

CHANNEL

TASK

DECISION

START

STOP

%S
P
m
>
—.{
m
2
m
|'®]
(e
m
w

C“)

CCITT - 82420

DECIMAL INTEGER

Decimal
digit

v

CCITT - 77250

DECIMAL DIGIT

Q000000090

CCITT - 727270

Fascicle VI.10 — Rec. Z.101

LETTER

5500060000000
3000660000600

ROPPRPPPRQRVQ |
eleclelelelelerelelele

CCCCCCCCCCC

SPECIAL

>éé¢¢©@¢@®¢
30000000000 |

77777777

NATIONAL

ﬂ““”

eeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeee
ooooooooooooooooooooooo
eeeeeeeeeeeeeeeeeeeee

PREDEFINED DATA TYPE NAMES

Vv

—aCCHARSTRING —>

Recommendation Z.102

" STRUCTURAL CONCEPTS IN. SDL

1 Introduction

This Recommendation defines a number of concepts needed to handle hierarchical structures in SDL. The
basis for these concepts is the SDL as defined in Recommendation Z.101 and the defined concepts are strict
additions to those defined in Recommendation Z.101. There is no conflict between the definitions contained in
this Recommendation and those contained in Recommendations Z.103 and Z.104.

The intention with the concepts introduced in this Recommendation is to provide the user of SDL with
means to describe large and/or complex systems. The SDL as defined in Z.101 is suitable for specifying or
describing relatively small systems which may be understood and handled at a single level of blocks. When a
larger, or complex system should be represented there is a need to partition the system specification or description
into manageable units, which may be handled and understood independently. It is often suitable to perform the
partition in a number of steps, resulting in a hierarchical structure of units representing the system.

There is also a need to use structural concepts in order to specify or describe the required or actual
structure of a system.

Fascicle VI.10 — Rec. Z.102 47

This Recommendation defines concepts for the partitioning of:
blocks into sub-blocks, sub-channels and new channels,
channels into blocks and channels,

processes into sub-processes.

The concepts are such that the resuiting hierarchical structure, representing the system, will provide the
reader with series of overviews from which he can gain a general appreciation before descending to a more
detailed description. This means also that the concepts will support design technologies aiming at “stepwise
refinement” by adding more detailed information in a number of steps.

2 Common language model

2.1 General

In Recommendation Z.101 a System is described as composed of a set of blocks connected to each other
and to the system boundary by unidirectional channels. This Recommendation introduces concepts for describing
the partitioning of blocks, channels and processes into sub-components.

Each block, in a system, may be partitioned into one or more sub-blocks. In this partitioning, new channels
are introduced to connect the sub-blocks to each other; in addition, the channels terminating at and originating
from the partitioned block may be split into sub-channels.

Block A is partitioned into:

Block A sub-channel

(new) channel

»>-

/ - N\
CHANNEL sm:b— sub- SUD- Su_b’ CAHANNEL
channel block block channel

4

(new) channel

CCIT1-73760

FIGURE 1/Z.102

The partitioning of a block

A sub-block, in turn is a block and may be partitioned. This partitioning may be repeated any number of
times resulting in a hierarchical structure of blocks and their sub-blocks. The sub-blocks of a block are said to exist
on the next lower level in the block tree:

Block A
tevel n-1
Block Block
Al A2 tevel n
[
Block Block
A.2.1 A22 level n + 1

cCIt-73770

FIGURE 2/Z.102

A Block-tree

48 Fascicle VI.10 — Rec. Z.102

When a block is partitioned into sub-blocks, the rule from Recommendation Z.101 that a block definition
should contain one or more process definitions is relaxed, and is only valid for a block which is not further
partitioned (i.e. the “leaf”-blocks in the block tree describing the system must contain processes). However, if a
block definition contains process definitions, the sub-block definitions must include at least the sub-process definitions
resulting from the partitioning of the processes.

The sub-channels resulting from the block partitioning are channels.

Channels may also be partitioned. This results in a set of new blocks, new channels, one incoming channel,

and one outgoing channel:
————

C (]
CHANNEL C is partitioned into:

CHANNEL C Ci[12]

incoming (new) [(new) | outgoing

channel block block | channel

[) I /o ml
Ci[13]

CCH1-723780

FIGURE 3/Z.102

The partitioning of a channel

Note that the signal list associated with the original channel C is associated with the incoming and outgoing
channels.

Both the partitioning of blocks and the partitioning of channels leaves unchanged the interfaces of the
partitioned objects.

A process definition may be partitioned into a set of sub-process definitions. These two descriptions of the
behaviour are alternative in the sense that when the system definition is interpreted either the set of sub-process
definitions or the process definition is interpreted. The process definition is to be considered as an alternative
description with relation to the set of sub-process definitions.

A sub-process is a process, and may in turn be partitioned into sub-processes. The resulting hierarchy of
processes is represented in a-process tree.

Process A.2

CCHIT-73790

FIGURE 4/Z.102

Process — sub-process relation

As sub-processes are processes, the behaviour described by the partitioned process is partitioned into a set
of concurrent “sub-behaviours”. Methods to ensure that this partitioning is correct are necessary but not part of
the SDL.

Fascicle VI.10 — Rec. Z.102 49

The partitioning of a block into sub-blocks, and its processes into sub-processes may be done at the same
time. As a process has to be contained in a block, its sub-processes have to be contained in sub-blocks of the block
containing the partitioned process. The partitioned blocks and processes may be regarded as separate structures
related to each other: - ' : '

ST —————— ~
4 AN
Block . ¥
j' o= -~
[| & .
Sub- Sub- Sub- Sub-
block block process process
® -
\¥ _________________________ J/ CCITI-73800

FIGURE 5/Z.102

Relation between block and process trees

If a block is partitioned, then any process it contains may also be partitioned, in which case all its
sub-processes must appear in the sub-blocks of the block. If the process is not partitioned, then it must appear in
one of the sub-blocks. In order to further describe the behaviour of the sub-blocks new processes and signals may
also be included in the sub-blocks irrespective of whether there were processes in the block. However, the
“leaf”-blocks must contain processes.

If, in the total partitioning representation of a system, process definitions appear on more than one level,
then several consistent sub-sets of the representation may be found. A consistent sub-set is a selection of the block
‘definitions and process definitions in the total representation such that:

a) It contains the highest level in the block tree;

b) If it contains a block it must contain its parent;

c¢) If it contains a sub-block of a block, it must also contain all other sub-blocks of that block
d) All “leaf”-blocks in the resulting structure contain processes. A

R S _ |
[_‘_L—ﬁ) r_l_l ! cwn o

L One consistent
| sub-set

FIGURE 6/Z.102

A consistent sub-set of a system representation

If processes appear in a system definition at more than one level, then several consistent sub-sets of the
representations may be found. These sub-sets represent alternative descriptions of the system, with various degrees
of detail. They may be used to provide readers with both overviews and detailed descriptions. They may be chosen
so they support -the interpretation of the sysrem on alternative levels of abstraction. If several alternative
representations of the behaviour exist, all but the most detailed one are to be considered as overviews of the
behaviour. ‘

50 Fascicle VI.10 — Rec. Z.102

2.2 Abstract syntax

This abstract syntax is based on the abstract syntax given in Recommendation Z.101. Only the additions
to the definitions in Recommendation Z.101 are given here.

Block definition

A block definition may also contain an internal part block definition, and if it does so it need not contain
process definitions.

Internal part block definitions

The internal part block definition contains one block substructure definition and it contains one process
substructure definition for each of the process definitions contained in the block definition. 1t may also
contain signal definitions and data type definitions.

Block substructure definition

A block substructure definition may contain one or more sub-block definitions and one or more channel
definitions.

For each of the terminating endpoints of sub-channels of the enclosing block there must be at least one
sub-channel definition having that endpoint as originating endpoint, and the reverse must hold for all
originating sub-channel endpoints of the enclosing block. The union of the signal lists of the sub-channel
definitions having the same endpoint as a subchannel leading to or from the enclosing block must be

identical to the signal list of that block, in addition to this signal lists of the sub-channel definitions
originating from a terminating endpoint must be disjoint.

All channel definitions contained in the block substructure definition must either connect sub-blocks to
channel endpoints of the enclosing block or sub-blocks to each other.

Sub-block definition
A sub-block definition is a block definition.

Channel definition
A channel definition may also contain a channel substructure definition.

Sub-channel definition

A sub-channel definition is a channel definition.

Channel substructure definition

A channel substructure definition contains two or more channel definitions, one or more block definitions,
and may contain signal definitions.

All channel definitions contained in the block substructure definition must connect sub-blocks to each other,
and all sub-channel definitions must connect channel endpoint of the enclosing block to sub-blocks.

Process substructure definition

A process substructure definition is associated with a process name and contains one or more process
names, each associated with a sub-block name.

The associated sub-process name must be the name of a process definition contained in the enclosing block

definition. The contained process names must be names of sub-process definitions contained in the block
definition having the associated sub-block name.

Each signal name in the valid input signal set of the associated process must appear in exactly one of the
valid input signal sets of the sub-process definitions having the contained sub-process names. Each signal
name attached to the output node of the associated process must be attached to at least one output node of
the sub-process definitions having the contained sub-process names.

Sub-process definition

A sub-process definition is a process definition.

2.3 Interpretation

The interpretation rules given below are defined as additions to the corresponding set of rules defined in
Recommendation Z.101. :

Fascicle VI.10 — Rec. Z.102 51

Channel

If a channel definition contains a channel substructure definition then either the channel may be interpreted,
as defined in Recommendation Z.101 or the channel substructure definition may be interpreted.

If the channel substructure definition is interpreted, every signal delivered to the originating endpoint of the
channel is given to the channel substructure, and every signal delivered by the channel substructure is given
to the terminating endpoint of the channel.

Channel substructure

A signal delivered to the channel substructure is given to the incoming channel and a signal delivered by
the terminating endpoint of the outgoing channel is delivered to the enclosing channel.

Block

If a block definition contains one or more process definitions and also contains an internal part block
definition then either the block may be interpreted as defined in Recommendation Z.101, or the internal

part block may be interpreted. If the block contains no process definitions, the internal part block must be
interpreted.

If the internal part block is interpreted, all signals delivered to the block will be given to the internal part
block, and all signals delivered by the internal part block will be further delivered to channels leading from
the block in the same manner as if delivered from a process contained in the block.

Internal part block
Each process in the enclosing block is replaced by a process substructure.

If a signal given to the internal part block from the enclosing block is addressed to a process, then the
signal is given to the process substructure, else it is given to the block substructure.

A signal, delivered by the block substructure will be given to the enclosing block. If that signal was sent
~from a process appearing as a sub-process of a process substructure, the sender-attribute of the szgnal will be
modified to the process instance identifier of the replaced process.

Block substructure

A block substructure contains blocks and channels, according to the block substructure definition, these are
interpreted according to the rules defined for blocks and channels.

Process substructure

A process substructure instance replaces one process instance of the referenced process definition. It also
denotes a set of sub-process instances, one instance for each sub-process name in the definition. Each
sub-process is allocated to the block with the associated block name.

Each szgnal given to the process substructure will be re-addressed to the sub-process which has the signal
name in the valid input signal set and given to the block substructure of the enclosing block.

3 Graphic syntax

The following graphic syntax is an addition to the syntax defined in Recommendation Z.101. The
additions cover the representation of the structure and partitioning of a system.

An overview of the structure of a system is given by the Block Tree Diagram. The partitioning of blocks,
processes and channels into sub-components is represented in the Block Interaction Diagram and the Channel
Substructure Diagram.

The set of documents and diagrams describing the sysrem may be large. It is essential that the documents
are related to each other by references and proper titles, however syntactic means for doing this do not form part
of the SDL graphic syntax.

3.1 Block tree diagram

The block tree diagram is intended to give an overview of the structure of a system, i.e. the partitioning of
the system into a hierarchical structure of blocks. Details on how the blocks are connected by channels are given in
the block interaction diagram.

A part of the diagram may also be used to give an overview of how a block is partitioned into sub-blocks.
In this case, the partitioned block is shown as the root box.

52 Fascicle VI.10 — Rec. Z.102

3.1.1 Symbols
The symbol used in a block tree diagram is a box which represents a system or a block. The name of the
represented object should appear inside the box.

Each block (box) is connected downwards to its sub-blocks (boxes) to form a hierarchical tree, as the
example given in Figure 7/Z.102 below:

System
A
|
1
Block Block
B (o8
Block Block
D E

CCIIT-73820

FIGURE 7/Z.102

Example of a block tree diagram

3.1.2 Relationship to the SDL abstract syntax

The structure shown has its equivalence in the system definitions, and in the block substructure definitions of
the blocks in the system.

3.1.3 Graphical conventions

The tree should preferably be drafted so that the blocks at the same level appear beside each other in the
representation.

As a block tree diagram of a large system will also be large, it may be suitable to split the diagram into
several diagrams. This splitting should be such that the first diagram, having the system as the root, is chopped off
so that a set of further partitioned blocks appears as not partitioned. In the following diagrams these blocks appear
as roots. For example, in Figure 8/Z.102 the diagram from Figure 7/Z.102 is split in two diagrams.

: System
First diagram ';\
[
Block Block
B C
Block
Second diagram T
I
Biock Block
D E

CCIT1-73830

FIGURE 8/Z.102

Example of splitting a block tree diagram into several diagrams

Fascicle VI.10 — Rec. Z.102 53

3.2 Block interaction diagram

This diagram represents the partitioning of a block into sub-blocks, sub-channels and (new) channels. The
diagram has basically the same form as the block interaction diagram, introduced in Recommendation Z.101,
representing the partitioning of a system into blocks and channels.

3.2.1 Symbols

The symbols used to represent a block interaction diagram are shown in Figure 9/Z.102 below:

Frame
This surrounds the diagram and represents
the boundary of the partitioned block or system.

Sub-block symbol
<name> This box represents a sub-block. The name
of the sub-block should appear inside the symbol.
<name> Channel symbol
[<signal list name>] This symbol represents channel or a sub-channel.
> The name of the channel should appear beside the

carrnew symbol. An optional signal list can be associated
(see Recommendation Z.101, § 2.2.1).

FIGURE 9/Z.102

Symbols used in a block interaction diagram

In addition to these symbols, signal definitions may appear in the diagram, using the SDL/PR syntax.

The rules for connecting the symbols are the same as for the block interaction diagram (see Recommenda-
tion Z.101), with the only exception that in the title of the diagram, it should be made clear that the diagram is a

block interaction diagram for a block. A simple example of a block interaction diagram is given in Figure 10/Z2.102
below:

Block interaction diagram for block A

_ Block Block
B Cc

\ 4

A 4

Ci[n] Co[12] Cs[14)

cotr-7ieso

FIGURE 10/Z2.102

Example of a block interaction diagram

322 Relationship to the SDL abstract syntax

A block interaction diagram represents a block substructure definition. The definitions contained in the block

substructure definitions are represented by the block and channel symbols together with signal definitions given in
SDL/PR.

54 Fascicle VI.10 — Rec. Z.102

3.2.3 Graphical conventions

The same graphical conventions described for the interaction diagram, defined in Recommendation Z.101
apply to the block interaction diagram.

In addition to this, it is often useful to describe several levels of block partitioning in one diagram. This is
obtained by replacing a block symbol, in a diagram, by the block interaction diagram for that block. An example of

this is given in Figure 11/Z.102 below:

Block interaction diagram for block A

Block C
Cs[1s]
D — >
Ca[12] Cs[14]
> B >
Ci[1] \ C[1,] ‘ Y Celle]
< - —— E
Cs[1a] Cy[13]
CCITT-73860

FIGURE 11/Z.102

: Example of a nested block interaction diagram

33 Process tree diagram

A process tree diagram describes the partitioning of a process into sub-processes and where these

sub-processes are allocated.

33.1 Symbols

The symbols used to compose a process tree diagram are shown below in Figure 12/Z.102:.

Process symbol
<name> The symbol represents a process, whose
name should appear inside the symbol.

_____ { <name> Allocation symbol

ccIT-13870 The comment symbol is used to indicate
where the process, or sub-process, is
allocated. The name in the comment
should be the name of the block to which
the process is allocated.

FIGURE 12/Z.102

Symbols used in process tree diagram

Fascicle VI.10 — Rec. Z.102

55

Each process is connected downwards to its sub-processes to form a hierarchical tree, as in
Figure 13/Z.102 below:

-{ Block B

Block B1 }- -{ Block B2

n

Bloc B21 }-- -{ Bloc B22

P21 P22

CCIT1-73880

FIGURE 13/Z.102

Example of a process tree diagram

3.3.2 Relationship to the SDL abstract syntax

, The diagram represents a process substructure definition. The name in the root symbol is the associated
process name, and the names in the leaf symbols are the contained sub-process names. The block names in the
allocation symbols are the associated sub-block names.

3.3.3 Graphical conventions

The tree should preferably be drafted so that processes at the same partitioning level appear beside each
other in the diagram.

If a processes tree diagram is large, it may be suitable to split the diagram into several diagrams. This
splitting should be such that the first diagram is chopped off so that a set of further partitioned processes appears
as not partitioned. In the following diagrams these processes appear as roots. For example, in Figure 14/Z.102 the
diagram from Figure 12/Z.102 is split into two diagrams.

First diagram
Process P |-{Block B

-{ Block B2

-{Block B1

Process P2

Second diagram
Process P2 [--{ Block B2

-{Block B22

Process P1

-{Block B21

Process P21

FIGURE 14/Z.102

Process P22

CCITT-73890

Example of splitting a process tree diagram into several diagrams

56 Fascicle VI.10 — Rec. Z.102

34 Channel substructure diagram

This diagram represents the partitioning of a channel "into sub-components. As the components are blocks
and channels the diagram resembles a block interaction diagram.

34.1 Symbols

The symbols used to represent a channel substructure diagram are shown below in Figure 15/Z.102.

Frame
This surrounds the diagram and represents
the partitioned channel

Block symbol

<name> This represents a block. The name of
the block should appear inside the symbol.

<name> Channel symbol
[<signal list name>] This symblo represents a sub-channel or a new
»> channel. The name of the channel should appear

COITT 73800 beside the symbol. An optional signal list can
be associated {see Recommendation Z2.101, § 2.2.1).

FIGURE 15/Z.102

Symbols used in the channel substructure diagram

In addition to these symbols, signal definitions may appear in the diagram, using the SDL/PR syntax.

The rules for connecting the diagram are the same for the interaction diagram (see Recommenda-
tion Z.101), with the only exception that the title of the diagram should make it clear that the diagram is a channel
substructure diagram.

A simple example of a channel substructure diagram 1is given in Figure 16/Z.102 below:

Channel substructure diagram for channel C

Block A > Block B
Csl1s] . c

ey 4

]]

CCITT . 738%0

FIGURE 16/Z.102

Example of a channel substructure diagram

3.4.2 Relationship to the SDL abstract syntax

A channel substructure diagram represents a channel substructure definition. The definitions contained in
the channel substructure definition are represented by the block and channel symbols together with the definitions in
SDL/PR syntax.

The channel leading from the frame into the diagram represents the incoming channel and the channel
terminating at the frame, represents the outgoing channel. :

Fascicle VI.10 — Rec. Z.102 57

3.43 Graphical conventions

The same graphical conventions as described for the mteracnon dzagram in Recommendation Z.101 apply
to the channel substructure diagram.

4 SDL/PR

The following SDL/PR syntax is an addition to the syntax defined in Recommendation Z.101. The
additions cover the representation of the structure and partitioning of a system.

Note that in the examples, SDL/PR keywords appear in capital letters.

4.1 Block definition

The block definition in SDL/PR is extended to optionally include the non-terminal “Block substructure
definition™. .

41.1 Syntax

BLOCK DEFINITION

BLOCK Block end
‘ name

signal
definition

process
definition

block
substructure
1def|nlt|on

| ENDBLOCK)l Block ——\L—a@——a
name

CCITT - 77320

FIGURE 17/Z.102

Syntax diagram for block

4.2 Block substructure definition

The block substructure definition represents the partitioning of a block into sub-blocks, sub-channels and
new channels.

58 Fascicle VI.10 — Rec. Z.102

421 Syntax

BLOCK SUBSTRUCTURE DEFINITION

Block 7\
TRUCTURE) : ;
—>(SUBSTRUCTURE) o)
subblock I ' block J
specification definition
channel channel
specification definition
signql' . sigr.wc.l. s
specification definition |
process channel
substructure splitting
definition

N\ Block
——9@NDSUBSTRUCTUREJ -

CCITT - 77330

FIGURE 18/Z.102

Syntax diagram for block substructure diagram

CHANNEL SPLITTING

Ch l |
SPLIT 220 L s INTO) channel :
/ ident ident f

)
u CCITT - 77340
SUBBLOCK SPECIFICATION
Subblock ~ .
U CCITT - 77350

Fascicle VI.10 — Rec. Z.102

CHANNEL SPECIFICATION

v

- | Channel 7\
CHANNELS : -)

()
—u CCITT - 77360

SIGNAL SPECIFICATION

SIGNALS (D)
(_stenaLs))

v

CCiTT - 77370

Example:

BLOCK b:

SUBSTRUCTURE b;
SUBBLOCKS bl, b2, b3;
CHANNELS cl, c¢2, d1, d2, e;
SIGNALS sl, s2, s3;

SPLIT ¢ INTO ci, ¢2; . :
SPLIT d INTO d1, d2; :)

/* Channel definitions */

/* Block definitions */

/* Signal definitions */
ENDSUBSTRUCTURE;

ENDBLOCK b:

4.2.2 Relationship to the SDL abstract syntax

The syntax represents the block substructure definition and the internal part block definition in the abstract
syntax. The names of blocks, signals and channels are references to the contained block definitions, signal definitions
and channel definitions.

4.3 Process substructure

This syntax represents the partitioning of a process into sub-processes, and the allocation of these into
sub-blocks. The partitioning may be shown both in the process definition and the block substructure definition.

60 Fascicle VI.10 — Rec. Z.102

43.1 Syntax

THE PROCESS DEFINITION IS EXTENDED AS FOLLOWS:

Process
PROCESS
name

number of
instances

end

4

formal
parameters

valid input
signal set

variable
definition

viewed
definition

—7

process %—-
body

> |

process
substructure
definition

-

Process
7FX:ENDPROCESSZ}——4;;;;;“

THE PROCESS SUBSTRUCTURE DEFINITION IS A FOLLOWS:

——>{(SUBSTRUCTURE)

o
3§\

Process
ident

Block

Process
ident

ident

O &

ENDSUBSTRUCTURE}

Process

ident

CCITT - 77380

The following example shows the process substructure as a part of a process definition

Example:

SUBSTRUCTURE pl;
p2 IN b2;
p3 IN bl;
ENDSUBSTRUCTURE;

ENDPROCESS pt;

Fascicle VI.10

— Rec. Z.102

CCITT - 82440

61

The next example shows the process substructure as a part of a block substructure definition :
Example:

SUBSTRUCTURE b;

SUBSTRUCTURE p;
pl IN b2;

- p2 IN bi;

ENDSUBSTRUCTURE

ENDSUBSTRUCTURE:
ENDBLOCK b:

4.3.2 Relationship to the SDL abstract syntax

The syntax construction represents the process substructure definition in the abstract syntax. The associated
process name is the name in the starting clause and the contained set of process names, each associated with a
block name, are the names separated by the “IN™ keyword.

4.4 Channel substructure

This syntax represents the partitioning of a channel into a set of channels and blocks.

441 Syntax

The syntax for a channel is extended to contain the non-terminal “channel substructure” as an optional
part.

CHANNEL DEFINITION

hannel
CHANNEL - Channel
name

Block Block

FROM _—ident —>(TO } _—_ident
Block

——(EWV) O et [

WiTH - signal channel R
- list O substructure -

CCITT - 77390

FIGURE 19/Z.102 (1 of 4)

Syntax diagrams for channel substructure

62 Fascicle VI.10 — Rec. Z.102

CHANNEL SUBSTRUCTURE DEFINITION

N Channel
—)(SUBSTRUCTUREJ ent
Sy
block channel
specification] ~ definition
channel block s
specification| - definition
signal signal
specification | definition
incoming— y
outgoing
channels

ENDSUBSTRUCTURE) Channel >O——>
v ident ’

CCITT - 7740¢

FIGURE 19/Z.102 (2 of 4)

‘Syntax diagrams for channel substructure

INCOMING—OUTGOING CHANNELS

——>(INCOMING - T0 , Block
ident

——Coumomc}—a@or@—e %‘gff—

CCITT - 77411

FIGURE 19/Z.102 (3 of 4)

Syntax diagrams for channel substructure

Fascicle VI.10 — Rec. Z.102

BLOCK SPECIFICATION

) Block N\ -
. BLOCKS N ident O -

()
N

CCITT - 77420

FIGURE 19/Z.102 (4 of 4)

Syntax diagrams for channel substructure

The channel substructure is a set of references to the components and additional definitions of the
substructure.

Example:

CHANNEL ¢ FROM b TO d;
SUBSTRUCTURE
INCOMING TO e;
OUTGOING FROM f;
BLOCKS: e,f;
CHANNEL c1 FROM e TO f WITH s1,s2,s3;
BLOCK e;

ENDBLOCK e:
BLOCK f:

ENDBLOCK f:
ENDSUBSTRUCTURE:

442 Relationship to the SDL abstract syntax

The syntax represents the channel substructure definition in the abstract syntax. The block, channel, signal
and data identifiers given in the syntax are references to the contained definitions.

Recommendation Z.103

FUNCTIONAL EXTENSIONS TO SDL

1 Introduction

This Recommendation defines a number of additional concepts and shorthand notations in the SDL. The
basis for these additions are the basic SDL, as defined in the Recommendation Z.101. The intention with these
additions is to provide the users of SDL with convenient concepts and shorthand notations.

The following concepts and shorthand notations are defined in this Recommendation:

Procedures

These give a way to represent a portion of a process graph by one element, which may be referred to
several times. The detailed behaviour of the procedure is defined elsewhere, inside or outside the process
graph. Procedures may be used to support the use of structured-design methods with SDL, by permitting
the decomposition of a process graph into a hierarchy of sections. The concept is similar to the procedure
concept normally appearing in programming languages.

64 Fascicle VI.10 — Rec. Z.103

Import and Export of values

This is a shorthand notation for the signal interworking between process instances when they are to share
"a value of a variable owned by one of the processes.

Enabling condition

This is a shorthand notatlon to avoid «state explosion» when the reception or saving of a set of signals is
conditional.

Continuous signal

This is a shorthand notation to represent the signal interwork when a continuous condition, external to
the process, is observed.

Macro
This is a syntactic method for the user to define a shorthand notation. A macro is the definition of a
composite syntax element in terms of other syntax elements already defined. A macro has no semantics of
its own.

Option

This is a syntactic facility to represent several, alternative behaviours in one diagram, or linear text. It has
to be decided, before the diagram or linear text is interpreted, which alternative offered by an option
should be chosen.

This Recommendation also defines an extension graphic syntax of SDL, that is the use of pictorial
elements in state symbols.

2 Procedures

A procedure is a means of giving a name to an assembly of items and representing this assembly by a
single reference. The rules for procedures impose a discipline upon the way, in which the assembly of items is
chosen, and limit the scope of the name of data items and signals.

Procedures are intended to:
a) permit the structuring of a process graph into several levels of detail;

b) maintaining the compactness of specifications by allowing a complex assembly of items which may be
regarded in isolation to be represented by a single item;

c) allow commonly used assemblies of items to be pre-defined and used repeatedly.

Procedures are defined by means of procedure definitions. The procedure is invoked by means of a
procedure call referencing to the procedure definition. Parameters are associated with a procedure call: these are
used both to pass values, and also to control the scope of data and signals for the procedure execution. Which
signals and data items are affected by the interpretation of a procedure is controlled by the parameter passing
mechanism.

2.1 Common Language Model

The definitions following are to be considered strictly as additions to what is defined in the Recommenda-
tion Z.101.

2.1.1 ' An Introduction to the Common Model

A procedure is a section of a process graph which may be regarded in isolation. It has a single entry point
and a single exit point. A procedure call may appear wherever a task may appear in a process graph or a procedure
graph. A procedure may contain states. All data items used in a procedure must be defined within the procedure
definition. 1f a data item is defined as a formal parameter, it uses values of data items in the calling environment
and/or will give values to data items in the calling environment, otherwise the item is local to the procedure, and
has to be defined in the procedure definition.

A procedure is interpreted only when a process instance calls it, and is interpreted by that process instance.
When a procedure call is interpreted, the procedure graph must be interpreted before continuing the interpretation
of the transition in which the call appears. This means that the calling process instance’s input port and valid input
signal set is used whilst interpreting the procedure. All signals referenced within a procedure must be named as
Sformal parameters of the procedure. All signals in the valid input signal name set of the calling environment which

Fascicle VI.10 — Rec. Z.103 65

are not referenced within the procedure must also be named as parameters of the procedure, i.e. the additional-save-
set. This allows the procedure to automatically save any other signals which may arrive in the input port. 1f this
were not done the introduction into a transition of a procedure call to a procedure containing a state would have

hidden side effects of losing signals (by implicit «null transitions») which arrived while a process instance was
interpreting a procedure.

appear.

A procedure definition is given by a procedure graph, and may appear wherever a data type definition may

A procedure graph follows the same rules as a process graph, with the following exceptions:

a start node is replaced by a procedure start node;
a stop node is replaced by a return node;

only the data items, formal parameters and signal names which are declared within the procedure are
visible to the process instance while interpreting the procedure, i.e. a procedure cannot refer to any data
item or signal which is outside the procedure unless it is declared as a formal parameter (signals
necessarily belong to the calling environment of the procedure, and all signals which are input, saved
or output in the procedure must be declared),

the same signal name actual parameter may not be mapped onto more than one signal name formal
parameter;

in the abstract syntax the set of signals to be saved is passed as parameters of the procedure call.
However, in the concrete syntax, all state nodes contained within a procedure have an implicit save
signal set containing all input signals which are not declared as formal parameters in the procedure.

Abstract Syntax

To the abstract syntax defined in Z.101 the following additions are made:

System Definition

A system definition may also contain one or more procedure definitions.

Block Definition

A block definition may also contain one or more procedure definitions.

Process Definition

A process definition may also contain one or more procedure definitions.

Process Graph

A process graph may also contain a procedure call node.
A transition string may also be a procedure call node followed by a transition string.

A procedure call node contains a procedure identifier and an actual parameter list.

Procedure Definition

The procedure definition is associated with a procedure name and contains a formal parameter list, an

additional-save-set, and a procedure graph, and may contain procedure definitions and data definitions.

The formal parameter list may be empty. Each formal parameter in the list must be attributed with one of

the attributes IN, IN/OUT or SIGNAL.

The names of the formal parameters attributed with IN or IN/OUT may not be used in variable
definitions contained in the procedure definition; and the set of formal parameters names attributed with

SIGNAL must contain all the signal names referenced in the procedure graph.

Procedure Graph

66

A procedure graph is a graph whose nodes are connected by directed arcs. An arc entering a node is
called an incoming arc and an arc exiting the node is called an outgoing arc. A node having an arc as

incoming arc follows the node having the same arc as an outgoing arc.

The following types of nodes are allowed on a procedure graph:

State node
Input node
Task node
Output node

Fascicle VI.10 — Rec. Z.103

Decision node
Procedure Call node
Procedure Start node
Return node

Create Request node

Every node of the graph has a name and a type. State nodes within a procedure graph have different
names.
The following rules define the connectivity of a procedure graph :

— Each procedure graph contains one and only one procedure start node. The procedure start node is
followed by a transition string. The start node does not follow any other node.

— A transition string can be one of the following:

a) null followed by either a state node or a return node,
b) an action string followed by a transition string,
¢) a decision node. -

— An action string can be one of the following:

a) a task node,
b) an output node,
c) a create request node.

— A decision node is followed by two or more decision arcs.

- A decision arc is a named arc followed by a transition string.

— A state node is followed by one or more input nodes.

— An input node is followed by a transition string.

— The return node has no nodes following it.

— Each graph has at most one return node.

— Each node is reachable from the procedure start.

A call node contains a procedure identifier, an additional-save-list and an actual parameter list. In this list
there must be one actual parameter for each of the formal parameters in the referenced procedure definition. Each

actual parameter must match the type of the corresponding formal parameter. Any signal actual parameter name
may not appear more than once in the actual parameter list.

Each actual parameter for which the corresponding formal parameter has the attribute /IN/OUT must be a
variable name. ’

The additional-save-set is a possibly empty set of signal identifiers.

2.1.3 Interpretation

The following additions are made to the interpretation rules of Recommendation Z.101:

Process

A call node is interpreted as the interpretation of the procedure start node of the procedure definition
referenced by the name of the node, then the node following the call node is interpreted.

The additional-save-set is given the value of all signal identifiers in the valid input signal set of the calling
process, which do not appear as actual parameters of the node.

Procedure

When a process interprets a call node referencing the procedure définition containing the procedure graph,
the procedure graph is interpreted. The nodes of the procedure graph are interpreted in the same manner as
the equivalent nodes of the process graph, with the following exceptions and additions:

— Each formal parameter attributed with IN denotes a typed variable. This variable is local to the
procedure and is created when the procedure start node is interpreted and ceases to exist when the
return node is interpreted.

— Each formal parameter attributed with IN/OUT denotes a synonym name for the variable which is
given as actual parameter. This synonym name is used throughout the interpretation of the procedure
graph when referring to the value of the variable or when assigning a new value to'the variable.

Fascicle VI.10 — Rec. Z.103 67

Procedure start node

The interpretation of a procedure start node involves:

— A local variable is created for each formal parameter attributed with IN, having the name and data

type of the formal parameter. The variable is assigned the value of the actual parameter, which may be
undefined.

— Each variable name given in the formal parameters attributed with IN/OUT is used as a synonym
name for the variable name given as actual parameter. The variable represented by the synonym name

is evaluated once only at the procedure start node, and not at each use of the formal parameter in the
procedure.

— Each signal name given in the formal parameters attributed with SIGNAL is used as a synonym name
for the signal identifier given as actual parameter.

— The node following the procedure start node is interpreted.
State node
The state node is interpreted in the same way as in a process graph with the exception that the

save-signal-set presented to the input port is union of the additional-save-set and the save-signal-set of the
process or procedure which called the current procedure.

22 SDL/GR

The addition of the procedure concept into SDL causes the addition of one new symbol in the process
diagram: the call symbol.

The procedure definition, is in the graphic syntax represented by a procedure diagram. This diagram is
similar to the process diagram, except for the procedure start symbol and the return symbol.

In the following only the additions, required by introducing procedure, to the graphic syntax as defined in
Recommendation Z.101, are given.

2.2.1 Process diagram

2.2.1.1 Symbols

The following symbol is used to represent the procedure call:

< procedure The symbol may appear in a

name> process diagram wherever a
<actual task symbol is allowed.
parameters >

TS0 The procedure name and the

actual parameters are given
using the SDL/PR syntax.

FIGURE 1/Z.103

The procedure call symbol

2.2.1.2 Relationship to the SDL abstract syntax

The procedure call symbol represents the procedure call node in a process graph.
The actual parameters given in the symbols represents the actual parameters attached to the procedure call

node. Any valid input signal not given as actual parameter is a-member of the additional-save-set for the procedure
call node, denoting that that signal should be saved throughout the procedure execution.

68 Fascicle VI.10 — Rec. Z.103

Return node

The interpretation of the return node involves:

— all variables created by the interpretation of the procedure start node will cease to exist;
— all synonym names established by the interpretation of the procedure start node will cease to exist;
— interpreting the return node completes the interpretation of the procedure start node.

2.2.2 Procedure diagram
A procedure diagram is similar to a process diagram, the only differences being that the start symbol is
replaced by the procedure start symbol, and the stop symbol is replaced by the return symbol.

In the following only the additional syntax is defined.

2.2.2.1 Symbols

In Figure 2/Z.103 below two additional symbols are defined:

< procedure Procedure start symbol
name > The procedure name and
;fa"r’n"e‘f;rs> formal parameters are

given using the SDL/PR
syntax.

® Return symbol

CCITY- 73900

FIGURE 2/Z.103

~

- Additional symbols for procedure diagram

2.2.2.2 Relationship to the SDL abstract syntax

The procedure diagram represents the procedure definition in the SDL abstract syntax.

The symbols common with the process diagram have the .same relations to the abstract syntax as when
appearing in a process diagram. The additional procedure start symbol and the return symbol represent respectively
the procedure start node and the return node.

The parameters attached to the procedure start symbol represents the formal parameters attached to the
procedure start node.

2.2.2.3 Graphical conventions

Generally the same graphic conventions as for the process diagram apply. The conventions for the

procedure start symbol and for the return symbol are the same as for the process start symbol and the stop symbol
respectively.

Wherever a return symbol appears it represents the return node (multiple appearance of a return symbol).

23 SDL/PR

SDL/PR syntax for a procedure definition is given below. The procedure definition may appear wherever
a data type definition may appear in the syntax. The syntax is similar to that of the process definition.

Below is given only the additions to the syntax already defined in Recommendation Z.101.

Fascicle VI.10 — Rec. Z.103 69

2.3.1 System

2.3.1.1 Syntax

The syntax of procedure definitions is added to the syntax of system:

SYSTEM DEFINITION

block
definition

channel
definition

signal
definition

SYSTEM al System end
name
F
>

i

procedure
definition

ENDSYSTEM)| System >@——>
name CCITT - 78450

FIGURE 3/Z.103

7

O

Syntax diagram for system

70 Fascicle VI.10 — Rec. Z.103

2.3.2 Block

2.3.2.1 Syntax

The syntax of procedure definitions is added to the syntax of block:

BLOCK DEFINITION

BLOCK)‘ Block end
name

I signal)T

definition >T

process
definition

procedure
definition

CCITT - 78460

| ENDBLOCK sl Block —L@———)
name

FIGURE 4/Z.103

Syntax diagram for block

Fascicle VI.10 — Rec. Z.103 71

2.3.3 Process

23.3.1 Syntax

The syntax of procedure definition is added to the syntax of process, and the syntax of procedure call is
added to the syntax of a transition string:

PROCESS DEFINITION
Process number of _‘L)E
name instances

K
formal valid input
parameters signal set

variable
definition

process -

body
viewed |
definition
imported
definition [

procedure

definition

Process
%ENDPROCESS } name CCITT - 82450

FIGURE 5/Z.103

Syntax diagram for process

72 Fascicle VI.10 — Rec. Z.103

ACTION

]

output

v

create
request

decision |—

option

procedure
call

i

FIGURE 6/Z.103 (1 of 2)

Syntax diagram for action

PROCEDURE CALL

- CCAL:L) Procedure actual :l:
ident parameters

CCITT - 78590

FIGURE 6/Z.103 (2 of 2)

Syntax diagram for procedure call

Fascicle VI.10 — Rec. Z.103

73

2.3.3.2 Relationship to the SDL abstract syntax

The procedure call in a transition represents the call node in the abstract syntax, and the actual parameters
represent the actual parameters attached to the call node.

Each actual parameter given has to conform with the data type of the corresponding formal parameter in
the referenced procedure definition.

2.3.4 Procedure

23.4.1 Syntax

PROCEDURE DEFINITION

procedure q
PROCEDURE name en

procedure
procedure variable procedure
formal . | definition body
arameters
P procedure
definition
Y

CCITT-78500

™ procedure
——(ENDPROCEDURE) Bt

FIGURE 7/Z.103 (1 of 5)

Syntax diagrams for procedure

74 Fascicle VI.10 — Rec. Z.103

PROCEDURE FORMAL PARAMETERS

ignal
FPAR SIGNAL 2gng’
ident

)
U/

AR variable
EXPORTED IN/OUT dent

AR
IMPORTED ()
EXP/IMP

()
NN

FIGURE 7/Z.103 (2 of 5)

Syntax diagrams for procedure

PROCEDURE VARIABLE DEFINITION

CCITT - 78580

type

()
-/

FIGURE 7/Z.103 (3 of 5)

Syntax diagrams for procedure

/
oL . variable J o
name ident N/ -

Fascicle VI.10 — Rec. Z.103

T s
ident ’

75

PROCEDURE BODY

transition state
string body

v

CCITT - 78610

FIGURE 7/Z.103 (4 of 5)

Syntax diagrams for procedure

TERMINATOR

v

T state
—_— NEXTSTATE ident x
JOIN label e

STOP . 3

—>(RETURN }

CCITT-78610

FIGURE 7/Z.103 (5 of 5)

Syntax diagrams for procedure

2.3.4.2 Relationship to the SDL abstract syntax

The procedure syntax diagram represents the procedure definition of the abstract syntax. The formal
parameters in the syntax diagram represent the formal parameters attached to the procedure start node.

The syntactic constructs allowed within a procedure and common with those allowed in a process have the

same relations to the abstract syntax as when they appear in a process. The procedure start node is implied and is
followed by the first syntactic construct of the procedure, and the return statements, represent the return node.

76 Fascicle VI.10 — Rec. Z.103

3 Composite operations for communication between SDL processes

A composite operation is a standard shorthand notation for assemblies of SDL concepts. The composite
operations are defined in terms of already present SDL concepts and do not add to the semantics of the language.

Thus they do not change the abstract syntax on its interpretation. They are introduced for the convenience of the
users of SDL.

The composite operations defined here provide some alternative methods of communication between SDL
process instances. While they appear significantly different from the normal signal exchange mechanism of SDL to
the user, they are in fact based upon the normal SDL semantics.

The composite operations provide:
a) sharing values of data items between processes, even if they are allocated in different blocks ;

b) the capacity to temporarily enable or disable the reception of particular signals without the need to
show this exactly with separate states;

¢) continuous signals, for which transitions are caused by a change of a value of the signal.

Each of the composite operations is given a syntax of its own and are defined in terms of “normal” SDL
concepts. Thus the composite operations involve for the user implied or hidden states, signals and procedures. The
composite operations are defined in §§ 3.1 to 3.3 using illustrative names for the normal SDL symbols. When any
composite operation is used in an SDL representation, the implied SDL symbols have unique implied names. These
implied names are so chosen that there are no clashes between different occurrences of the composite operation or
other names in the SDL representation. The SDL user is thus free to employ these names for other purposes
should he wish to do so.

As the composite operations are defined in other SDL terms they may in some situations lead to side
effects, these are discussed in the SDL User Guidelines.

3.1 Imported and exported values

In SDL a variable is always owned by, and local to, a process instance. Normally the variable is visible
only to the process instance which owns it, though it may be declared as a shared value (see Recommenda-
tion Z.101) which allows other process instances in the same block to view the value of the variable. 1f a process
instance in another block needs to view a variable, a signal interchange with the process instance owning the
variable is needed.

The following paragraphs describe a standard method, and a shorthand notation for doing this. The
technique will be called imported values, since communication is by means of copies of the value of the variable,
only the owning process instance having access to the variable itself. The technique may also be used to export
values to other process instances within the same block, in which case it provides an alternative to the use of shared
values. This alternative is necessary when either it is likely that the block will be decomposed such that the process
instances concerned are in different sub-blocks or when the values are used in enabling conditions (see § 3.3).

The process instance which owns a variable whose values are made available to other process instances is
called the exporter of the variable. Other process instances which use the variable are known as importers of the
variable.

Access to the value of the variable is obtained by an exchange of signals. The importer sends a signal to
the exporter, and waits for the reply. In response to this signal the exporter sends a signal back to the importer with
the value the variable had when the last export operation was made.

The variables whose values are imported and exported are defined as such in their variable definitions.
These variables are also identified by definitions in the channels carrying the implied signal interchange.

The definition of a variable as exported produces an implicit definition of a copy of it to be used in the
import and export operations.

The process instance discloses the value of a variable defined as exported by means of the statement:
EXPORT (x) where x is the name of the variable.

The EXPORT (x) causes the storing of the current value of x into the implicit copy and the sending of
signals to process instances awaiting an enabling condition (§ 3.2) or continuous signals (§ 3.3).

The EXPORT operation can be made in conjunction with the manipulation of the variable or independ-
ently of it, e.g:

EXPORT (x): = <expression> ;
or

EXPORT (x);

Fascicle VI.10 — Rec. Z.103 77

The construct may only appear in a task.

The access from another instance may only be done by means of the syntactic construct:

IMPORT(x,Pid) where x is the name of the variable, and Pid is a reference to the owning process
instance.

This construct may appear in a task and in a decisions.

3.1.1 Definition

3.1.1.1 Import operation by importer

The import operation is modelled in the importer’s process graph by the following sequence of nodes :

an output node, by name XQUERY, carrying a reference to the name of the variable whose value
should be accessed, and addressed to the process instance which owns the variable (the exporter);

a state node with a save signal set including all signals/ except XREPLY;
an input node for the signal XREPLY returning the value of the value of the requested variable ;

an implicit variable of the same type as the exported variable is assigned the value associated to the
XREPLY signal This implicit variable name replaces the import operation. At each occurrence of the
construct operation, a new implicit variable is used.

The sequence of operations defining the import operation is explained below using the graphic SDL
syntax The IMPORT (x,pid) statement will correspond to the following transition string.

XQUERY
(x,pid)

XWAIT

XREPLY
(IMPORT-x)

IMPORT-x

CCITT- 73910

Note — This diagram is explanatory. A user of the import operation would only write: IMPORT (x, pid).

FIGURE 8/Z.103

Import operation explained in SDL/GR

3.1.1.2 Import operation by the exporter

As the import operation implies actions performed by the exporter the following implied transition is
added to every srate of the exporter (including all implicit states):

78

an input node for the signal XQUERY;

an output node by the name XREPLY, returning the value implicit copy of the requested variable to
the requesting process instance;

a return to the state from which the transition originated.

Fascicle VI.10 — Rec. Z.103

(It should be noted that the exporter is also modified with other transitions if the exported values are used
in enabling conditions and/or continuous signals, see §§ 3.2 and 3.3.)

The implied transition using the graphical syntax of SDL is shown in Figure 9/Z.103.

XQUERY
(< name>>})

XREPLY

(< implicit-
copy-name>)
TO SENDER

CCITT-73920

Note — This diagram is explanatory only. Since the transition is implied the user does not write anything.

FIGURE 9/Z.103

Import operation by the exporter explained in SDL/GR

3.1.1.3 Export operation

The export operation is the means by which the owner of an exported variable disclose to importers the
current value of the variable. As a result of the export operation, the implicit copy of the variable is given the
current value of the variable. In the absence of enabling conditions or continuous signals the operation itself is
modelled as a task node, assigning the value to the variable. However, the export operation interacts with the
models for enabling condition and for continuous signal, see §§ 3.2 and 3.3.

3.1.2 Rules for using imported values

— All imported values must be defined as IMPORTED in the importer and as EXPORTED in the
exporter. The export attribute in a variable definition makes the variable identifier visible throughout the
system.

— The source and destination of the import operation is shown by including the name of the imported
value in a signal list attached to a channel or to a signal path within a block. The source and
destination may be in different blocks or in the same block.

— A process instance which imports values may also export values, but it must not import values of its
own variables.

— An imported value <name> is imported by using the statement:
IMPORT (< name>,<pid>)

in a task, decision or enabling condition. The <name> is the name of the imported item and the
<pid> is the process instance identifier of the owning process instance. All other references in the
process to <name> will be interpreted as references to the local copy of the value of <name>.

— The disclosure of the value of an exported variable is made through the statement:
EXPORT(<name>):= <expression>
or
EXPORT (<name>)

contained in a task.

Fascicle VI.10 — Rec. Z.103 79

3.1.3 Concrete syntax

lmpbrted values are referenced at three points in process definition. The syntax for these is the same in
both the SDL/PR and the SDL/GR.

3.1.3.1 In variable definitions and import definitions the keywords IMPORTED and EXPORTED identify the use
to be made of the declared variable.

VARIABLE DEFINITION

()
—/

DCL){ variable

name

()
REVEALED L
EXPORTED

FIGURE 10/Z.103 (1 of 2)

ident ’

CCITT-78560

Syntax diagram for variable definition and import definition

IMPORT DEFINITION

e
/"

variable type . [process :<)) 5
| T ;
MPORTED {ident ident ident

. CCITT-78570

FIGURE 10/Z.103 (2 of 2)

Syntax diagram for variable definition and import definition

3.1.3.2 In signal lists in SDL/GR an imported value is distinguished from a signal by enclosing the name of the
imported value in round brackets.

Signal-name-1
(Variable name)
Signal-name-2

80 Fascicle VI.10 — Rec. Z.103

The syntax in SDL/PR is:

CHANNEL DEFINITION

CHANNEL channel
name

s (FROM > {)/ock s (TO) p/ock
ident ident

;. s . block
@ @ | ident
signal
WITH ; g
ist
IMPORTED
VALUES

Syntax diagram for channel definition and variable list

CCITT-78470

variable
list

FIGURE 11/Z.103 (1 of 2)

1

VARIABLE LIST

variable S
7 ident -
(e
\ A CCITT-78480

FIGURE 11/Z.103 (2 of 2)

Syntax diagram for channel definition and variable list

Fascicle VI.L10 — Rec. Z.103

81

3.1.3.3 The

statement EXPORT(<name>) may be used in a task name; similarly,

IMPORT (<name>,<pid>) may be used in task, decision and enabling condition names.

82

STATEMENT

assignment
statement

reset
statement

set |
>

statement

export
statement

import
operctor

CCITT - 76810

FIGURE 12/Z.103 (1 of 3)

Syntax diagram for export statement

EXPORT STATEMENT

Export

Expression
operator

I

FIGURE 12/Z.103 (2 of 3)

Syntax diagram for export statement

EXPORT OPERATOR

— GO

FIGURE 12/Z.103 (3 of 3)

" Variable
ident

—

CCITT-78620

Syntax diagram for export statement

Fascicle VI.10 — Rec. Z.103

the

statement

IMPORT OPERATOR

variable
ident

Pid
expression () E

CCITT-78640

IMPORT

FIGURE 13/Z.103

Syntax diagram for import statement

32 Enabling condition

A reduction in the number of states in a process graph can often be achieved by having means of
attaching conditions to the commencement of transitions. The conditions are assertions involving variable, and are
known as enabling conditions. If the condition is true and the associated input signal is retained, the transition

proceeds normally. If the enabling condition is not true, the fransition is inhibited and the input signal is instead
saved. ‘

In normal SDL such conditional execution of transitions would need to be modelled with separate states
for each value of the enabling condition. The concise notation provided by enabling conditions is useful in
simplifying a process graph.

Enabling conditions may be expressed using both local and/or imported values. Shared values must not be
used.

The enabling condition is described in terms of basic SDL concepts (see Recommendation Z.101). An
enabling condition is used in a process graph and is attached to an input symbol or an input statement. It is an
assertion involving data values which are either local or imported values. The condition must be a Boolean
expression, hence returning the values TRUE or FALSE. Each state which is followed by transitions controlled by
enabling conditions in fact represents a set of states, one for each possible combination of the enabling condition.
The conditions are evaluated before one of the appropiate member of the set of stafes is selected as the next state.

The interpretation of an enabling condition depends on the data values used in the condition. If an
enabling condition contains only values which are local to the process it needs only to be evaluated once. If it
contains imported values (see § 3.1), the condition must be evaluated each time one of the imported values changes:
the evaluation is invoked by implied signal interchange between the importer and exporter(s) of the values.

Enabling conditions which use imported values make use of further hidden signals, in addition to the
XQUERY defined in § 3.1, which are XATTACH and ZDETACH. These are requests for the exporter to add or
remove the importer from a list of those process instances which need to be informed of changes in the exported
value. The exporter maintains such an implicit list, XLIST, for each value it exports. A further signal, XWAKE, is
sent by the exporter to each member of the list whenever it makes an export operation on the corresponding data
item. '

3.2.1 Definition

3.2.1.1 Single enabling condition based on local values

When only one of the inputs following a state has an attached enabling condition, and that condition
contains only local values, the interpretation is as follows.

The state, the following inputs and saves are replaced by:

— a decision node which evaluates the enabling condition ;

— the “TRUE” branch of the decision is followed by a state node with the same save-signal-set as the
original state and followed by the same set of inputs as the original state (the input to which an
enabling condition was attached appears as an input node);

— the “FALSE” branch of the decision is followed by a state node having the save-signal-set of the
original state extended with the signal name of the input having the enabling condition attached;

— each of the input nodes are followed by the same transitions as in the original graph.

Fascicle VI.10 — Rec: Z.103 83

In the following figure the definition of the Simple Enabling Condition based on local values only are
shown using the graphic syntax of SDL:

Note — The user writes this:

|
<Cond.>

|

é CCiTT-73830

Note — This diagram is explanatory only.

FIGURE 14/Z.103

Single enabling condition using local values only explained in SDL/GR

3.2.1.2 Single enabling condition containing imported values

When only one of the inputs following a state has an attached enabling condition, which contains at least

one imported value, the interpretation will lead to an implied signal interchange with the owners of the imported
values.

As the variables holding the imported values are handled by other process instances, working concurrently,
the value of the enabling condition may change while the process instance is waiting in a state. Any such change
should lead to a new evaluation of the condition. When entering an enabling condition construct the owners of the
imported values are informed that this instance should be notified if any changes of the value occurs. Thus when

an imported value is changed also a signal is sent to all processes that need informing, so that they evaluate the
conditions again. :

The definition is as follows:
The valid input signal set of the process which contains the enabling condition is extended by the implicit
signal XWAKE. The state and the set of inputs and saves following it are replaced by:

— a sequence of output nodes for the signal XATTACH (one for each of the imported values used in the
enabling condition);

— the attach sequence is followed by a decision and two state nodes, as in § 3.2.1.1;

— the decision, because it contains imported values, is itself expanded as in § 3.1.1.2, so that it is preceded
by import operations for each imported value it uses;

— in addition to the expansion defined in § 3.2.1.1 the two state nodes are also followed by an input
node for the signal XWAKE, with the following transition leading back to the decision evaluating the
condition;

— also in addition to the expansion defined in § 3.2.1.1 each input node, except for the XWAKE, are
followed by a sequence of output nodes for the signal XDETACH (one for each of the imported values
used in the enabling condition) and the sequence is then followed by the same transition as in the
original construct.

34 Fascicle VI.10 — Rec. Z.103

Note — The user draws this:

XATTACH(x)
To pid

I False
,pid)..>
(X P!) - True
=
L
L
L
L
—
[| 1
> A j B >XWAKE

XDETACH(x)
To pid

XDETACH(x)
To pid

° GO

TS S
® O

CCITT-73940

Note — This diagram is for explanatory purpose only.

FIGURE 15/Z2.103

Single enabling condition using imported values explained using SDL/GR

3.2.1.3 Actions by the exporter when imported values are used in enabling conditions

When an exported value is used in an enabling condition the exporter has the following implied properties
in addition to those defined in §§ 3.1.1.2 and 3.1.1.3.

To invoke the revaluation of enabling conditions using imported values the exporter implicitly maintains a
list, XLIST, of process instances to be informed if the values change. Process instances will enter that list by
sending the signal XATTACH, and will remove themselves from the list by sending the signal XDETACH.

Whenever a new value is exported by means of the export operation all process instances in the XLIST
will be informed of this new value by the signal XWAKE.

The definitions of the addition are:

Each process which exports values is extended by:
a) adding the implicit signals XATTACH and XDETACH to the valid input signal set;

- b) defining a list XLIST.<name> for each value which is exported. The lists will hold process instance
identifiers.

Fascicle VI.10 — Rec. Z.103 85

To each state of the process, including-all implied states, is added two implied transitions, in addition to
the implied transition defined in § 3.1.1.2. The first of these fransitions consists of:

— an input node for the signal XATTACH;

— a task which adds the process instance identifier of the sender of the signal XATTACH to the XLIST
corresponding to the variable nominated in the signal; whose value is exported

— a return to the state from which the transition originated.
The second implied transition consists of:
— an input node for the signal XDETACH;

— a task which removes the process instance identifier of the sender of the signal XDETACH from the
XLIST nominated in the signal;

— a return to the state from which the transition originated.

The additional implied rransitions of each state of the exporter is shown below using the graphical syntax
of SDL:

[]
XATTACH XDETACH
<name> <name >

[[

Inciude * |Remove

sender in sender from

XLIST. <name> XLIST. <name >
CCITT- 73950

Note — This diagram is for explanatory purpose only.
All transitions are implied.

FIGURE 16/Z.103

Implied transitions of the exporting process explained in SDL/GR

The following implied transition is added to the definition of the export operation, § 3.1.1.3:

— following a task including an export operation is a sequence of output nodes for the signal XWAKE
conveying the disclosed value. There will be one XWAKE signal sent to each process instance currently
included in the XLIST for the corresponding variable which was disclosed the value.

The addition to the export operation is shown below using the graphic syntax of SDL:

The user writes:

b

<implicit-
copy-name> : =
< expression>

EXPORT({<name>):=
< expression >

XWAKE to
pid One output to
v XLIST. < name >
XWAKE to
pid

I
|
|
|
‘ ---| each process in
|
|

CCITT-7396¢

Note — This diagram is for explanatory purpose only.

FIGURE 17/2.103

Implied actions by the export operation explained in SDL/GR

86 Fascicle VI.10 — Rec. Z.103

32,14 Mitltiple enabling conditions

Having several enabling conditions. following a state is known as multiple enabling conditions.

If n of the inputs nodes following a state have enabling conditions attached to them, then the definitions
of single enabling conditions will be extended as:

a)

b)

the siate and the following inputs and saves are represented by a decision node for a complex
condition whose value is an n-tuple with elements the value of the elementary enabling conditions. This
is followed by 2**n state nodes, each followed by the transition processing which is appropiate to the
particular values of the enabling conditions which named the arc leading to that state node:;

if any of the enabling conditions refer to imported values , the definitions in § 3.2.1.2 also applies.

The user writes this:

XATTACH imported
A | > B <name>> value used

in the
conditions
< Condition < Condition
CA> CB> J CA.CB

to pid

|
|

——

$.00 Not CA,
Not CB
1

AV YEVE

CA,
Not CB

S.01 Not CA,
i cB
1

< XWAKE Z
0

CA,
cB
1

XWAKE< For each imported value used
in the conditions

@_m_

CCITT-739%

s

N

XDETACH XDETACH
<name> <name>
To pid To pid

I T

Note — This diagram is for explanatory purposes only.

FIGURE 18/Z.103

Multiple enabling conditions gxplained using the SDL/GR

Fascicle VI.10 — Rec. Z.103 - 87

3.2.2 Rules for using enabling condition

1) Enabling conditions may be attached to any input signal.

2) There may be only one input following a state containing a given input signal, regardless of whether
or not the input has an enabling condition attached.

3.2.3 Concrete syntax

3.23.1 SDL/GR

Enabling conditions are shown in the SDL/GR by an enabling conditions symbol following an input
symbol. The element is a pair of angle brackets embracing a Boolean condition. The graphical syntax is shown in
Figure 19/Z.103:

< Boolean
condition>
CCITT-73980

FIGURE 19/Z.103

SDL/GR syntax for the enabling condition

I | |

S2 < S3 < S4 <
[[
<X>5> <Import(y,p2)=0>

CCITY- 73990

FIGURE 20/Z.103

Example of use of SDL/GR enabling condition syntax

88 Fascicle VI.10 — Rec. Z.103

3.23.2 SDL/PR

In SDL/PR the syntax of the input sfatement is modified by adding the PROVIDED phrase. The

PROVIDED phrase contains a Boolean expression. The syntax diagram for the modified input statement is given
in Figure 21/Z.103:

STATE BODY

STATE state end
list

A

<
.~

; input : —
INPUT npu N enobf@g ¥ tro'nsmon
list condition string

continuous
signal

terminator
statement

v
v

SAVE save LS end
list

FIGURE 21/Z.103 (1 of 2)

CCITT-78530

Syntax diagram for the input statement including the PROVIDED phrase

ENABLING CONDITION

boolean
expression

PROVIDED

end jf———— >

CCITT-78550

FIGURE 21/Z.103 (2 of 2)

Syntax diagram for the input statement including the PROVIDED phrase

Fascicle VI.10 — Rec. Z.103 89

33 Continuous signal

In describing systems with SDL, the situation frequently arises where a user would like to show a
transition as being caused by a change in the value of a variable external to the process. The value might, as an
example be a high or low voltage on a line or a number in a status register. The normal way to achieve this in
SDL would be to arrange that a signal is generated when the change in the value occurs and to base the transition
upon the reception of that signal The necessity to explicitly define, generate and receive such signals may
complicate the process graphs. The composite operation known as a continuous signal allows a change in the value
of a condition to directly initiate a transition.

An enabling condition represents a decision before entry to a state. When imported values are used the
enabling conditions provides exits from a state by means of the implicit XWAKE signal. It may also be used
without an associated input signal when it becomes a continuous signalIn this case, the enabling condition does not
represent an extra, implied stafe but instead defines a circumstance in which there is an escape from the state
from which the enabling condition follows. This circumstance has a priority lower than the retained signals.

Several continuous signals may lead from the same sfate and these may be such that more than one is true
at the same time. Each continuous signal is associated with a priority which determines the relative order in which
continuous signals are tested.

A continuous signal which uses only local values gives a means of conditionally exiting from a state if no
signals are waiting in the input port at the time of entry. A continuous signal which uses imported values adds to

this the capacity to revaluate the condition when there is a change in one of the imported values used in the
condition.

3.3.1 Definition

The following definition is based upon the definitions of import and export of values, see § 3.1, and
enabling conditions, see § 3.2.

The interpretation of a state which is followed by continuous signals is presented as a general model in
which there are several continuous signals which collectively reference several imported values. If there are no

imported values used, the model is simplified by the elimination of XATTACH and XDETACH outputs and the
XWAKE input.

The state and the set of inputs and saves following it, together with the continuous signals are replaced
by:

1) a sequence of output nodes for the signal XATTACH, one for each of the imported values used in the
continuous signal condition;

2) a task which creates a unique value to be used in the EMPTYQ signal, used in 3);

3) an output node for a signal EMPTYQ which is sent to the process instance identity of the sender,
i.e. to its own input port;

4) a state node as in the original process graph or procedure graph, followed by a set of input nodes
which includes the original set and two other input nodes ;

5) each input node is followed by a sequence of output nodes for the signal XDETACH, one for each of
the imported values used in the continuous signal conditions. This sequence is then followed by the
transition processing which originally followed the input node;

6) the state node in 4) is also followed by an input node for the signal XWAKE, this initiates the
transition in 7);

7) a sequence of task nodes to import each of the imported values used in the continuous signal
conditions;

8) a sequence of decision nodes for each of the continuous signal conditions, the first decision evaluated
being that for the highest priority continuous signal (the lowest number in the concrete syntax);

9) the FALSE branch of each decision leads to a decision node for the continuous signal condition of

next lower priority. The FALSE branch of the lowest priority continuous signal decision leads back to
the state in 4);

10) the TRUE branch of each decision leads to a sequence of output nodes for the signal XDETACH,
one for each of the imported values used in the continuous signal conditions, followed by the transition
processing corresponding to the continuous signal condition tested in the decision;

11) the state node in 4) is also followed by an input node for the signal EMPTYQ, in turn followed by a
decision node which tests that the signal carries the value given to it in 2), i.e. that it is the same signal
sent in 3), and not an earlier, unprocessed EMPTYQ signal. The TRUE branch of this decision leads
to the continuous signal processing in 7), and the FALSE branch leads back to the state node of 4).

90 Fascicle VI.10 — Rec. Z.103

The valid input signal set of the process containing continuous signals using imported values is extended by
the implicit signal XWAKE. The valid input signal sets of any process containing continuous signals are extended
by the implicit signal EMPTYQ.

The user writes this:

[

< Condition < Conditio

A

®

3.3.2 Rules for using contin

B

n c
PRIORITY 1> PRIORITY 2>

®

XATTACH
<name >

To pid

For all imported
values used in the
continuous signal

conditions
Form new
unique “n”
S
[]
>EM(';T)Y° QXWAKE > c

No

For all imported
values used in the
continuous signals

For all imported
values used in
the continuous
signals

Note — This diagram is for explanatory purposes only.

-4

XDETACH

IMPORT
"1 (<name> pid)

Yes

y

Yes

4

XDETACH

2

FIGURE 22/7.103

Continuous signal explained in SDL/GR

uous signals

1) Continuous signal may follow any state.

A 4

XDETACH

CCITT-74 000

2) Continuous signal condition may be based on local values and/or imported values.

3) No two continuous signals following the same state may have the same priority number.

Fascicle VI.10 — Rec. Z.103 91

3.3.3 Concrete syntax

3.3.3.1 SDL/GR

In SDL/GR a continuous signal is indicated by an enabling condition symbol which directly follows a
state symbol, i.e. the transition is not headed by an input symbol. The symbol contains, as well as the continuous
signal condition, the keyword PRIORITY followed by a priority number (natural number). The smaller the
number, the higher is the priority of the continuous signal.

< Continuous signal condition >
PRIORITY <number>

FIGURE 23/7.103

SDL/GR symbol for the continuous signal

)
|

<y =2 <y=3 Cc
PRIORITY 2> PRIORITY 1>

CCiTT- 74010

FIGURE 24/Z.103

Example of the use of SDL/GR continuous signal

If only one continuous signal is following a state, the PRIORITY clause may be omitted. If the clause is
omitted the priority number “1” is implied.

33.3.2 SDL/PR

In SDL/PR a PROVIDED statement, followed by a transition string, represents the continuous signal. The
statement contains a PRIORITY clause. The smaller the number, in the PRIORITY clause, the higher is the
priority of the continuous signal.

CONTINUOUS SIGNAL

boolean
PROVIDED , end
expression .

decimal
PRIORITY] digit end —%—>

CCITT - 78540

FIGURE 25/Z.103

Syntax diagram for continuous signal

92 Fascicle VI.10 — Rec. Z.103

4 Macros

A Macro is a shorthand notation, defined by the user, that can be included in one or more places in the
concrete SDL representation of a system. It represents a reference to a definition in a document elsewhere. A
macro is only a part of the concrete syntax, and has to be substituted by the body of its definition in order to
interpret the SDL representation in which it appears.

4.1 Definition

A macro may represent any collection of syntactic items, however, it may not be recursive for obvious
reasons (infinite expansion!).

The macro can’ have zero or more inlets and zero or more outlets. In case of more than one inlet there
should be a label attached to each inlet corresponding to the inlet label in the macro definition, in case of a single
inlet the label may be omitted. The same applies for the outlets.

There is no scope or visibility associated to the macro concept as such. The interpretation of a macro
reference may only be obtained when the macro is substituted by its definition.

4.2 Concrete syntax

42.1 SDL/GR

42.1.1 Syntax

The reference to a macro definition is shown by the macro symbol in the SDL/GR.

inlets

o . l<in|et label >
‘ AY
i< macro name > ,95, «——{ [<macro name>! <inlet
’
outlets <l:>utlet label >
_______ label> <outlet
label >
L—

CCITT- 24020

FIGURE 26/Z.103

The macro symbol in SDL/GR

The inlets to and outlets from the macro is represented by flow lines leading to/from the symbol. Labels
may optionally be attached to the flow lines.

The macro symbol contains the name of the macro definition it refers to, and a comment may be attached
to the symbol.

The macro definition is entitled:
< name > MACRO DEFINITION
where the <name> is the name of the macro, and which is used in a macro symbol.

The macro definition contains the graphical representation which replaces the macro symbol before
interpretation takes place. The inlets to and the outlets from the definition are represented by flow lines leading to
and from the symbols in the definition respectively. Both the inlets and the. outlets may have labels attached to
them. ’ ’

4.2.1.2 Symbols

In Figure 27/Z.103 two additional symbols are defined:
‘ <a> Macro inlet symbol
<a> inlet label
@ Macro out/et symbol
 outlet label

CCITT - 74040

FIGURE 27/Z.103

Additional symbols for macro

Fascicle VI.10 — Rec. Z.103 93

4.2.1.3 Rules for using macros in the SDL/GR

The macro symbol may be inserted at any place in a diagram, and may represent any collection SDL/GR
symbols.

There must be the same number of inlets in a macro symbol as there are inlets in the referenced macro
definition. The set of labels on the inlets in the macro symbol must be the same as the set of labels on the inlets in
the macro definition. The same rule applies for outlets and outlet labels.

Inlets/outlets may terminate/originate from any side of the symbol.

As the semantic of a macro is obtained by substituting the reference by the collection of symbols in the
definition, all graphic conventions apply to the diagram in which all macro appearances have been substituted.
This may lead to unexpected consequences due to rules as for example the multiple appearance of states. This is
further discussed in the SDL User Guidelines.

422 SDL/PR

4221 Syntax

The macro call can be put in any diagram using the syntax:

MACRO macro name;
The macro expansion is a piece of an SDL/PR program starting with:

MACRO EXPANSION macro name;

and ending with:

ENDMACRO macro name;
in the last statement, the macroname is not mandatory.

This definition must be placed immediately after the SYSTEM, BLOCK or PROCESS construct respec-
tively depending on where the macro is referenced. The macro definition may contain any character and its
correctness can only be evaluated after it has replaced the macro statement.

4.2.2.2 Rules for using macros in the SDL/PR

The same rules and concerns as when macros are used in the SDL/GR also applies for the SDL/PR.

5 Options

When several similar applications are specified or described using SDL often the same process definition
can be used in the different systems if it is slightly modified. The OPTION facility in SDL provides means for
defining processes generic for several applications by introducing alternative optional parts of the descriptions.

5.1 Definition

An option is the selection of alternative parts of a process definition, according to the evaluation of an
option expression. The selection is made before the process definition is interpreted.

The option facility is only part of the concrete syntax, and should be considered as a shorthand notation

.providing one generic description for several applications rather than having one specific description for each
application.

94 Fascicle VI.10 — Rec. Z.103

5.2 Concrete syntax

521 SDL/GR

5.2.1.1 Symbols

The following symbol is used in the SDL/GR to represent option :

<option
Expression>
| I
< option <option

alternative > alternative >

CCITT- 2030

FIGURE 28/Z.103

The option symbol in SDL/GR

5.2.1.2 Rules for using options in the SDL/GR

The option symbol may follow a task symbol, a decision symbol outlet, an output symbol or a procedure
symbol in a process diagram. The option symbol may be followed by a state symbol, a task symbol, a decision
symbol, an output symbol or a procedure symbol.

The <option expression > contained in the symbol is an expression such that one of the < option
alternative> following the symbol is uniquely chosen after evaluation, and such that it can be evaluated before
interpreting the process. Each option alternative must be a value of the same type as the option expression. When the
resulting process is interpreted the unreachable parts of the process definition should be considered as deleted.

522 SDL/PR

5.2.2.1 Syntax _
The option is represented in the SDL/PR by the following syntax:

OPTION

ALTERNATIVE question end

: ransition i
onswer t . terminator
:l () string statement
A
TN

CCITT-78630

—-)@N DALTERNAT]V@——-——?

FIGURE 29/Z7.103

Syntax diagram for option

Fascicle VI.10 — Rec. Z.103 95

5.2.2.2 Rules for using options in the SDL/PR

The < option expression > contained in the statement is an expression such that one of the <option
alternative>s can be uniquely chosen after evaluation, and such that it is evaluated before interpreting of the
process. Each option alternative must be a value of the same type as the option expression. When the resulting
process is interpreted the unreachable parts of the process definition should be considered as deleted.

N

6 Pictorial elements in SDL/GR

When the graphical syntax of SDL is used to represent process definitions the use of pictorial elements to
form a state picture within a state symbol is an optional part of the SDL/GR.

Such state pictures can provide advantages when applied to certain system definitions, resulting in more
compact and less verbal process diagrams. The state picture describes, in terms of pictorial elements and qualifying
text, the actual status of the process when in that state. Also the assumed status of the environment of the process
may be described in the state picture. When using state pictures the actions to be performed in transitions between
the srates is implied, by the difference of the described status.

When using pictorial elements, the syntax and semantics as defined elsewhere in the Recommenda-
tion Z.101 apply. However, these semantics and syntax are extended as defined in the following.

6.1 Semantics of state pictures

When using pictorial elements a state node is represented by a state symbol. The state symbol is identified
by its name, and contains a state picture consisting of pictorial elements, values of variables, input variables and
qualifying text.

A state picture can represent:

1) using pictorial elements and qualifying text, the values, in that state, in a selected subset of the total
set of variables associated with that process. The selected subset may include variables which serves
purely as proxy for variables associated with other processes. These “proxy” variables carry the value
of variables associated with other processes. These values are obtained either by viewing or importing
the value;

2) using the values of input variables, the input actions with respect to the valid input signals for that
state.

The repertoire of pictorial elements is in principle unlimited, since new pictorial elements can be invented
to suit any new application of the SDL. However, in applications to telecommunications switching and signalling
functions, the following repertoire of pictorial elements has been found to have considerable versatility:

— process boundary (left or right),

— terminal equipment (various),

— signalling receiver,

— signalling sender,

— combined signalling sender and receiver,
— timer supervision process,

— switching path (connected, reserved),

— switching module,

— charging in progress,

— control element,

— uncertainty symbol.

Standard symbols for these pictorial elements are recommended in § 6.3.

6.2 Rules of interpretation

1) Input variables are Boolean variables and each input variable corresponds to one and only one signal
from the set of valid input signals for the process. A change in the value of an input variable between
state pictures always represents the consumption of a signal by an input of a process. Therefore, input
variables can be used to represent those conditions of a process which, if changed, will result in the

process performing a transition. The values of an input variable can be associated with pictorial
elements. ’

96 Fascicle VI.10 — Rec. Z.103

2) The presence-of pictorial elements in a state picture indicates specific values for a subset of variables
while that process is in that state. The values of additional variables, particularly ones associated with
this initial subset can be indicated by the qualification of the pictorial elements by qualifying text.
Qualifying text is not an input variable; changes in the qualifying text DO NOT represent the
consumption of an input signal by an input action of the process.

3) Positioning:

a) The positioning of any pictorial elements (other than a process boundary) relative to a process
boundary determines whether the pictorial elements is “internal” or “external” to the process. An
internal pictorial elements represents variables which are owned by the process. An external
pictorial element represents variables which are owned by another process so that the viewing and
import mechanisms must be used to access these variables.

b) Rule a) also applies to the distinction between internal and external qualifying text, by
substituting the term “qualifying text” for pictorial elements in this rule.

4) Cardinal rule:

The total processing involved when going from one state to the following state is that required to
effect the changes in the state pictures, together with the processing indicated in any decisions, outputs
or tasks appearing in the transition between the states. Thus:

a) The change from the appearance of an internal pictorial element in one state to the absence of
that pictorial element in the following state, or vice versa, corresponds to a change in the values
of some variables which can be equivalently represented by the use of a task in the transition
between the states.

b) The change from the appearance of an external pictorial element in one state to the absence of
that pictorial element in the following state, or vice versa, corresponds to a change in variables
owned by another process. This change can be equivalently represented either by an output signal
to that other process or simply by the input signal from that process.

¢) Rules (a) and (b) also apply to the appearance or disappearance in the state picture of qualifying
text, by substituting the term “qualifying text” for pictorial elements in those rules.

5) For a given process diagram, particular pictorial elements (or a particular combination of pictorial
elements and qualifying text) is positioned uniquely within the state picture so that the presence or
absence of this pictorial element (or combination) in a state symbol can be quickly determined by
comparing the state picture with other state pictures in the process diagram.

6) When a signalling sender appears in a state picture, its qualifying text identifies a signal which has
been output prior to, or (in the case of a continuous signal controlled by the process) prior to and
during this state.

6.3 Recommended symbols for pictorial elements

When using pictorial elements, each state is represented by a state symbol containing a state picture with
the format shown in Figure 30/Z.103:

A basic set of pictorial elements has been standardized for use in the SDL/GR with application to the
system description of telecommunications call handling processes, including signalling protocols, network services
and signalling interworking processes. Many of these pictorial elements are capable of being applied in
applications of the SDL/GR beyond call handling processes, and their application to other processes in
telecommunications, where appropriate, is encouraged.

The recommended symbols for the basic set of pictorial elements is shown in Figure 31/Z.103 below:
The choice of pictures for pictorial elements has been based upon the considerations and general selection
criteria presented in Annex A to this Recommendation, which should be consulted before developing additional

pictorial element symbols for wider applications of the SDL/GR.

The recommended proportions for pictorial element symbols are shown in Annex B to this Recommenda-
tion.

The template which is enclosed in the inside back cover of this fascicle and which is suitable for hand
drawing the basic set of SDL/GR symbols, includes in this basic set the pictorial element symbols shown in
Figure 31/Z.103.

Fascicle VI.10 — Rec. Z.103 97

State
picture

State number
' State title

AT\
[\

FIGURE 30/Z.103

.

<

~ Y
o

F o

@©

o

Y

CCITT-34071

Recommended format of a state symbol with state picture

1} Functional block . . .
boundary 4) Signalling receiver
5) Signalling sender
2) Terminal E)Sig 9
equipment (a) telephone on-hook
7~
6) Combined signalling sender
and receiver
telephone off-hook
7) Timer supervising of
(b} trunk a process !
8) Charging in progress
(c) subscriber line [:I) ging inprog
9) Subscriber of terminal
category
(d) switchboard
10) Uncertainty symbol
11) Switching module
3) Switching (a) connected
path .
(b) reserved —_————
12) Control element
FIGURE 31/Z.103
Recommended symbols for the basic set of pictorial elements concepts
6.4 Special conventions and interpretations used in the state oriented extension of SDL/GR

A number of special conventions and interpretations have been defined in this section with regard to the

state oriented extensions of SDL/GR. These include:

— The special interpretation required of process diagrams according to the so-called CARDINAL RULE

(see § 6.2, rule 4).

— The unique positioning of pictorial elements (or pictorial elements and qualifying text) within a state

picture that is required when using pictorial elements (see § 6.2, rule 5).

— The special interpretation required for the variables represented by external pictorial elements and

Nt-Joe0LC

CCITT-34100

external qualifying text, as proxy variables for other variables associated with other processes.

98 Fascicle VI.L10 — Rec. Z.103

ANNEX A

(to Recommendation Z.103)

Examples of the use of the basic set of pictorial elements

No. Pictorial element Comment Examples
1. Functional block (FB) boundary To distinguish elements inside and outside 1.1 Ahandset outside the FB boundary connected to adigitrecei-
the FB boundary. Only the states of ele- ver inside the FB boundary
ments within the boundary can be changed
directly by this process.
~N
exterior interior
1.2 Atrunk outside the FB boundary connected via a two-stage
switching unit to a switchboard outside the FB boundary
A B
[i
| 1
2. Terminal equipment It can be useful fo showterminal equipment -
(e.g. telephone set and switchboard equip-
ment) outside the FB boundary, to improve
understanding of the processing work.
a) Telephone set
2.1 _
on-hook A on-hook h
N
N
2.2
off-hook B off-hook hg
2.3 Incomingdecadictrunkjunctor (fromaspacedivision switch-
b} Trunk ing exchange)
Incoming
decadic
2.4 Outgoing subscriber line to a party line
c) Subscriber line [except a)]
Outgoing
JE— party
line
.5 Pl i
d) Switchboard 2.5 PBX switchboard
Z PBX
B M
e) Other 2.6 Modem
D— Modem [
CCITT-20880
Fascicle VI.10 — Rec. Z.103 99

No. Pictorial element

Comment

Examples

3. Switching path

a) connected

b) reserved

To show connectivity between terminal
equipment and/or signalling devices
involved in the process.

(CPU)

Y o |

Modem II———--_...;____ CPU

4. Signalling receiver

-

To specify a signal reception process, and
to indicate the nature of the signals receiv-
ed, especially those crossing the functional
block boundary.

4.1 Multi-frequency code signalling receiver

‘5 MEFC

4.2 MFC/decadic signalling receiver

‘5 MFC/DEC

5. Signalling sender

]

To specify a signal sending process, and to
indicate the nature of the signals sent,
especially those required to cross the func-
tional block boundary.

sent

Decadic
Y

6. Combined signalling sender
and receiver

Q

This conveniently combines the functions
of a signalling sender and signalling recei-
ver.

6.1 MFC sender-receiver

MFC

7. Timer supervising
a process

O

Timers affect the subsequent behaviour of
the process.

Note The related input symbol indicating
timeout expiry, may be shown as t,.

7.1 Timer ty is running

7.2 Generic timer t, is running

where s = 1, 2, ... n define different service tones.

100 Fascicie VI.10 — Rec. Z.103

CCITT-20890

3.1 Subscriber line connected to a dial-pulse digit receiver and a
modem with a reserved path to a central processing unit

5.1 Decadic signalling sender with abackward signal “B2" being

No.

Pictorial element

Comment

Examples

8. Charging in progress (and which The charging policy is significant to the 8.1 Subscriber A is currently being charged
¢ustomer is being charged) Administration, the manufacturer and the
customer.
9. Subscriber or terminal category Changes in the subscriber or terminal cate- 9.1 The A party has trunk access barred
(and identity information) gory, for each partyin amulti-party call, can
affect the behaviour of the process.
Bar
trunk
access
A
9.2 The C party has originating category No. 2
' Originating
category
No. 2
C
10. Uncertainty symbol This substitutes for deliberately undefined 10.1 Handset either on-hook or off-hook
information that is shown unambiguously
in other state pictures. In certain cases, two
or more states may be safely merged into
one, with a net gain in the intelligibility of
the diagram, by using the uncertainty F 3
symbol. o
%k

10.2 Subscriber category either “bar trunk access” or not, in this

state of the process

Trunk
access

10.3 An undefined MFC signal is being sent in this state

MFC

Fascicle VI.10 — Rec. Z.103

CCITT-20900

101

No.

Pictorial element

Comment

Examples

11. Switching module To show what switching modules are 11.1 A path connected through one switching module
involved in the process.
LLN = Line link network
Note ~ The horizontal line is the pictorial
. element for aswitching path, which may be
__.'__ connected or reserved. The vertical line can
be used torepresent eitheracomplete swit-
or ching module (when the internal structure 1
of the module is not required) or else one of 1
—_— .I_ - = the switching stages within a switching
module.
11.2 Paths connected and reserved through two switching
modules
R S
icT | 0GT
I~
N\
J \
Module R N\
AN
Reserved path N\
N MFC
Established path
Module S
ICT - Incoming trunk
OGT - Outgoing trunk
MFC - Multi-frequency code
Note —Inthis example, ICT is connected to OGT, but ICT is not con-
nected to the MFC sender/receiver.
11.3 A path connected through a three-stage switching module
RSN
111
LA
11.4 A path reserved through a three-stage switching module
HHH
ABC
11.5 A path connected through a folded network
! ————
12. Controf element To show what control equipment is invol-

(assigned to a process)

—

ved in the process (especially modules that
must be dimensioned). This symbol can be
used to indicate that particular software
elements have been assigned to the pro-
cess.

12.1 Call register buffer

102

Fascicle VI.10 — Rec. Z.103

CCITT-20910

ANNEX B

(to Recommendation 7.103)

Selection criteria for pictorial elements

B.1 General

The choice of symbols for PEs has been based upon the following considerations and general selection
criteria, which should be consulted before developing additional PE symbols for wider applications of the SDL.

B.2 Typical readers

It is expected that the SDL diagrams using PEs will be read by both technical and non-technical people in
the following contexts: marketing new facilities; specifying new facilities; developing hardware and software from
a specification; project management; operation and maintenance of an exchange; traffic engineering; education
and training courses in telephony. It is expected that SDL diagrams will serve as common documentation:

a) between Administrations and manufacturers,

b) between different departments within these organizations,

¢) as telephone exchange documentation, and

d) in training manuals and textbooks.

It is not expected that SDL diagrams (as diagrams) will be directly read by machines. Instead it is expected

that the SDL/PR form of the SDL (including PE information) will be read by machines which will draw diagrams
(see b) and c¢) of § B.3). .

B.3 Typical drawing methods

It is expected that SDL diagrams using PEs will usually be drawn by technical people, including
draftsmen, either:

a) by hand, using a template as a drawing aid, and/or
b) displaying the diagram electronically on a graphics visual display unit, and/or
~¢) by using an electronically controlled plotter.

B.4 Methods of reproduction

The typical methods of reproduction are expected to be:

a) the dye-line or blue-print methods, as in conventional drafting;
b) photocopying by office machines, including photo-reduction;
c) photo-printing in general. ‘

B.5 Ease of reproduction

In order to permit convenient reproduction of SDL diagrams using the dye-line or blue-print methods of
reproduction as well as photocopying and photo-printing, PE symbols should consist of clear lines without
shading.

B.6 . Ease of drawing

The following criteria reflect the assumption that the primary drawing technique will be to draw by hand
using a template, and the secondary techniques will be displaying a diagram on an electronically controlled
screen, and drawing the diagram with an electronically controlled pen:

a) each PE symbol should be easy to draw with pen or pencil, either free-hand or using a stencil;
‘b) all PE symbols should be drawn using the same thickness of lines;

¢) PE symbols should be created by synthesis of very simple geometric lines and curves in order to
permit easy electronic generation of PE symbols.

Fascicle VI.10 — Rec. Z.103 103

B.7 Ease of comprehension

This is the most important consideration of all, since it is characteristic of SDL documentation that the
readers are much greater in number than the drawers (or authors). This requirement is expressed by the following
criteria concerning PE symbols:

a) Appropriateness — The shape of each symbol should be appropriate to the concept that the symbol
represents.
b) Distinctiveness — When choosing a basic set of symbols, care should be taken to permit each symbol
to be readily distinguishable from others in the set.
c) Affinity — The shapes of PEs representing different but related functions, e.g. receivers and senders,
should be related in some obvious way.
d) Association of abbreviated text with symbols — In some cases it is expected that abbreviated text will
be associated with a PE in order to indicate the class of PE; e.g. the letters MFC associated with a
receiver symbol to indicate that multi-frequency coded signals are to be received. In these cases, the
PEs should incorporate enclosed space to permit the use of a very small number of alphanumerical
characters. .
e) Limited set — The total number of symbols should be kept to a minimum in order to permit easy
learning of the pictorial method.
ANNEX C
(to Recommendation Z.103)
Recommended proportions for the basic sets of pictorial elements
Terminal equipment Signalling receiver Charging
a) Telephone set ¢) Subscriber line
5a
4
7'y 2 3 y
g LGy !
" " 3 2
v v ——
—2 » L_h_,
- On-hook
Signalling sender Subscriber or terminal
% dJ Switchboard category a
a PN
2
d 3 N [ry
o > - “
: y v v
—3 ‘ 23 . e 2a R ‘ b R
— Off-hook b/a any value > 1
e) Other Combined signalling sender- Control element
receiver .
2 a
10 2
b) Trunk >He Hl ‘
. . \
7'y Y (:5/?‘ [A
" [- < o o
iy
A4 A 4 . 4
«— b > < b b ‘ + 22 > l‘—‘—’b
b/a any value > 1 b/a any value > 1 b/a any value > 1
CCITT-34110
104 Fascicle VI.10 — Rec. Z.103

Recommendation Z.104

DATA IN SDL

1 Introduction

This Recommendation defines the data concept in SDL; the SDL data terminology, the use of pre-defined
data types, and the facility to define new data types.

The main occurrences of data in SDL are in data type definitions, expressions, the application of operators,
variables, values, constants and literals.

Data type definitions

Data in SDL is principally concerned with data types. A data type defines a set of values, a set of
operators which can be applied to these values, and a set of axioms defining the behaviour when these operators
are applied to the values. The values, operators and axioms collectively define the properties of data types. These
properties are defined by data type definitions.

SDL allows the definition of any needed data type, including structuring mechanisms (composite types),
subject only to the requirement that such a definition can be formally specified. By contrast for programming
languages there are implementation considerations which require that the set of available data types and, in
particular, the structuring mechanisms provided (array, structure, etc.) be limited.

Expressions and operators

Expressions allow for the manipulation of values (by applying appropriate operators), to return new
values.

Variables

Variables are objects which can be associated with a value by explicit or implicit assignment. When the
variable is accessed, the value is returned..

Values, constants and literals

All data types have at least one value. For most data types there are literal (syntactic) forms to denote the
constant values of the data type (for example for Integers). Data types for which there are literals to denote values
are said to have denotable constants. There may be more than one literal to denote the same constant value (for
example 12 and H'C both denote the same Integer constant), and the same literal denotation may be used for
more than one data type. Some types do not have denotable constants. For example, values of the data type Stack
can only be generated by the application of operators which return stack values.

In a specification language, it is essential to allow data types to be formally described in terms of their
behaviour, rather than by composing them from provided primitives, as in a programming language. The latter
approach invariably involves a particular implementation of the data type, and hence restricts the freedom
available to the implementor to choose appropriate representations of the data type. The SDL approach allows
any implementation providing that it is feasible and correct with respect to the SDL.

In SDL, all data types are abstract data types. Examples of these are given in § 5 where the pre-defined
data types of the language are defined.

Although all data types are abstract, and the pre-defined data types may be re-defined by the user, some
effort has been made in SDL to provide pre-defined data types which are familiar in both their behaviour and
syntax. These are:

Array, Boolean, Character, Charstring, Duration, Integer, Natural, Powerset, PId, Real, String, Time and
Timer. '

Composite types can be formed by the use of Struct data types.

Fascicle VI.10 — Rec. Z.104 105

1.1 The SDL data formalism

In SDL, data is modelled by a type algebra. A type algebra is a set of domains, a designated domain,1 and
a set of functions mapping between the domains. Each domain is the collection of all the possible values for a

data type. The designated domain is the data type currently being described. The functions represent the operations
of the data type.

The domain and operations, together with the behaviour (specified by the axioms) of the data type, form
the properties of the data type.

Introduction of a syntype creates a subset of the values of an already defined type. Introduction of a
newtype creates a distinct new data type, with properties inherited from the parent, but with different identifiers for
these properties. In the concrete syntax, these names need not be distinct, and this ambiguity must be resolved by
context.

A generator type is an incomplete fype description; before it assumes the status of a data type, it must be
instantiated by providing this missing-information.

The functions which map between the domains of a data type are normally partitioned into two classes.
The generator functions, which map onto the designated domain, and so produce (possibly new) values of the data
type. All other functions are semantic functions and ascribe meaning to the fype by mapping onto other defined
types. The semantic functions include the predicates which map onto the Boolean domain.

2 Common language model

2.1 General

In Recommendation Z.104, the concepts of variables, pre-defined data types, values, expressions and
informal expressions are used. This Recommendation rigorously defines variables, pre-defined data types, values

and expressions, and also extensions to the Recommendations Z.101, Z.102 and Z.103 which allow the introduc-
tion of new data types.

2.2 Abstract syntax

This abstract syntax extends that defined by Recommendations Z.101, Z.102 and Z.103.

Data definition

A data definition is a data type definition or a synonym definition.

System definition

A system definition may contain data definitions.

Block definition

A block definition may contain data definitions.

Internal part block definition

An internal part block definition may contain data type definitions.

Channel substructure definition

A channel substructure definition may contain data definitions.

 Process definition

A process definition may contain data definitions and variable definitions.

Procedure definition

A procedure definition may contain data definitions and variable definitions.

Input node

A variable mentioned in an input node must be defined in a variable definition and must have the same
data type as the corresponding data type in the signal definition.

106 Fascicle VI.10 — Rec. Z.104

Data type definition

A data type definition contains a type name and either a newtype description or a syntype description.

‘Newtype description

A newtype description contains a possibly empty set of value names, a set of one or more operator
introductions and a possibly empty set of data type axioms.

All value names in the data type description must be unique within the data type.
All operator names in the data type description must be mutually exclusive.

All data type names in the same context must be unique.

Operator introduction

An operator introduction either introduces one of the universal operators which it is permissible to
introduce with any data type, or introduces an operator name together with the operator typing.

Operator

An operator is either a universal operator with a data type identifier or is a user-defined operator identifier
with a data type identifier. In either case the data type identifier allows the data type definition which defined the
operator to be established.

Operator typing

An operator typing contains the list of data type identifiers of the parameters to the operator and the data
type identifier of the result of applying the operator.

At least one of the data type identities in the list, or the result, must be that of the data type being defined.

The result type must not be a syniype.

Axioms

Axioms are statements of truth which hold under all conditions for the type 'being defined, and thus
specify the behaviour of types.

Assignment statement

An assignment statement contains an assignment operator, a variable identity and an expression. The
assignment operator is either the universal operator for assign qualified with the data type identity of the data type
of the variable or the user defined insert operator.

Syntype description

A syntype description contains a syntype name, the parent data type identity and the set of value identities
of the parent data type which are valid for the syn data type.

Expression

An expression is either a primary, or an operation.

Operation

An operation contains an operator and a list of one or more expressions. There are as many expressions
contained in the operation as there are data types defined for the parameters of the operator.

Primary

A primary is one of the following:
- a synonyrh identity,

— a value identity,

— a variable identity, or

— a conditional expression.

Fascicle VI.10 — Rec. Z.104 107

Conditional expression

A conditional expression is a Boolean expression, and a list of two expressions of the same data type.

Variable definition

A variable definition consists of a variable name list and a data type identifier.

Universal operation

A universal operator is either a variable operator or a comparator.

. . [l . . - . .
A variable operator is declare, assignment or access. Declare is used to declare variables; assignment is
used for assigning to variables and access is used whenever a variable identity is interpreted as a value.

A comparator is either one of the ordering operators or an equality operator. An ordering operator is either
less than or greater than.

All the universal operators include the data type to which they are relevant as a qualifier .so that different
data types introduce different operators. For example, the two data types square and cube introduce two operator
identities for assign, square!lassign and cube!assign.

For a data type D, the operator typing for comparators is:
D, D - > Boolean

For a data type D, the assign operator requires a variable identity of data type D and value of
data type D. ‘

For a data type D, the access operator requires a variable identifier of data type D and delivers a value of
data type D.

For a data type D, the declare operator requires a variable identifier.
Synonym definition
A synonym definition contains a synonym name and a constant expression.

Constant expression

A constant expression is either a constant value or an operation all of whose parameters are constant
expressions.

Constant value

A constant value is either a value identifier or a synonym identifier. A synonym may not be recursively
defined.

23 Interpretation rules

2.3.1 Process

Instantiation of process takes place before the start node is interpreted, and causes a declare operation to
be applied to every variable name which appears in a variable definition in the process definition. As a result of the
declare operator, the variables declared become associations from variable identities to an initial value (which will
be undefined value unless otherwise specified in the axioms for the data types of the variables). The variable
identities declared when instantiating a process contain the variable name, the process instance identity and the data
type identity from the variable definition.

2.3.2 Procedure start node

Calling a procedure causes variables defined within the procedure to be created for a procedure in a
similar way to instantiating a process.

2.3.3 Process graph

The interpretation of an output node causes each of the expressions in the output node to be interpreted in
the sequence specified, and the resulting values to be assigned to anonymous implicit variables which are associated
with the signal. These variables are considered to be declared when the output node is interpreted. Each of these
variables has the data type of syn data type associated with the corresponding position in the signal definitions. The
values which are assigned to these variables are the values conveyed by the signal.

108 Fascicle VI.10 — Rec. Z.104

The interpretation of a decision node causes the expression contained in the decision node to be interpreted
followed by the choosing of the arc which is associated with the valie delivered by the expression.

Create request

The interpretation of a create request node causes each of the expressions in the create request node to be
interpreted in the sequence specified.

The instantiation of the process being created then takes place together with the declaration of the formal
parameter of the process and the assignment of the corresponding resulting value of each expression in the create
request node to each formal parameter. The created process then executes separately from (but concurrently with)
other processes.

Call node

A call node causes expressions used as formal parameters attributed with IN to be interpreted before the
interpretation of the start node of the procedure. Each of the expressions assigns its value to the corresponding
actual parameter.

2.34 Procedure

A formal parameter attributed with IN/OUT is interpreted as the variable identifier of the corresponding
actual parameter in the context of the procedure call. A formal parameter attributed with SIGNAL is interpreted as
the signal identifier of the corresponding actual parameter in the context of the procedure call.

2.3.5 Assignment statement

The assignment statement is interpreted as combining the old value of the variable with the value of an
expression and binding the variable identity to this new value.

The assignment operator determines the rules for combining the old value of the variable with the value
of the expression. These rules are determined by the use of the assignment operator in data type axioms of the data
type. If the assignment operator is the universal operator for assignment, then the variable is bound to the value of
the expression.

The value of the expression must be one of the values of the data type of the variable of the assignment
operator. For the universal operator for assignment the data type of the parameter is that of the variable.

2.3.6 Expression and primary

An expression is interpreted as the primary which forms the expression. The primary is either an operation,
a synonym, a value identifier, or a variable identifier, and is so interpreted.

2.3.6.1 Operation
An operation is interpreted as an application of the operator to the list of values obtained by interpreting

the list of expressions. The interpretation of the operation is determined by the use of the operator in the data type
axioms of the data type.

2.3.6.2 Synonym identifier

A synonym identifier is interpreted as the constant expression defined in the synonym definition. The
constant expression is interpreted in the same way as an expression.

2.3.6.3 Value identifier

A value identifier is interpreted as the value it denotes.

The semantics of the value which a value identifier denotes is determined by the use of the value identifier
in the data type axioms of the data type.

2.3.6.4 Variable identifier

A variable identifier is interpreted in one of the two ways depending on context. Within an expression a
variable identifier is interpreted as an access. In the context of an assignment statement a variable identifier is
interpreted as a variable, which is the binding of the variable identifier to a value. Access to a variable is intepreted
as the value to which the variable is bound, except that access to the undefined value is interpreted and an error.

Fascicle VI.10 — Rec. Z.104 109

2.3.6.5 Conditional expression

A conditional expression is interpreted as the first or second expression in the list, depending on whether
interpretation of the Boolean expression yields true or false.

2.3.7 Data type definitions

These are not interpreted.

3 SDL/GR

The standard SDL specification of the behaviour of tasks, decisions, etc. (i.e. the internal structure of these
nodes) is the SDL/PR form. Thus there is no specific graphic syntax for data.

Where the data definitions (for data types, variables or synonyms) are included, they should be defined
with or referenced by the diagram which includes them.

4 SDL/PR

4.1 Addition to syntax

Data definitions are added to the syntax as defined in Recommendations Z.101, Z.102 and Z.103.

Data definitions may appear where a signal definition appears in a system definition, block definition, block
substructure definition or a channel substructure definition. A data definition may also appear where a variable

definition may appear in a process definition where a procedure variable definition may appear in a procedure
definition.

SYSTEM DEFINITION

SYSTEM System end
name

block
definition

channel
definition

signal
definition

procedure
definition

data
definition

System -
ENDSYSTEM ;
name

CCITT - 76 450

110 Fascicle VI.10 — Rec. Z.104

BLOCK DEFINITION

BLOCK)l ock end
name

—
signal
definition >T
‘ pro'ce.sts —_—
definition
pro-c?c?ure ‘
definition
data
definition
block
substructure
definition

—>(ENDBLOCK)- Block O——)
i name

CCITT - 76460

BLOCK SUBSTRUCTURE DEFINITION

' Block , O\
—>(SUBSTRUCTURE }—1] - :
> J ident U/
7\ x <

subblock block
specification definition
channel channel
specification " | definition
signal signal
specification definition
process data
substructure definition
definition

channel

splitting

—>(ENDSUBSTRUCTURE 13 £ o ,‘C)—>
/) ident ’

CCITT - 76470

Fascicle VI.10 — Rec. Z.104

111

CHANNEL SUBSTRUCTURE DEFINITION

™~ Channel -
—>(SUBSTRUCTURE) ont > ;)——1
< \Y
block channel
specification definition
channel block
specification definition
signal signal
specification definition
data NE
definition
procedure
definition
incoming-—
outgoing
channels
Channel
ENDSUBSTRUCTURE) : S —>
-/ ident

112 Fascicle VL.10 — Rec. Z.104

comy - 76571

PROCESS DEFINITION .

CROCESS *process 4hurnber of end
name instances

formal valid input variable process
parcmeters signal set definition body
viewed
definition
‘data
definition
Y
imported
definition
procedure
definition
process 1
process _
substructure \{ENDPROCESSU — O——>
definition

CCITY - 76601

The syntax of data type is extended to include user defined data type identifiers.

The syntax for assignment statements and expressions is given. (Note expressions and assignment
statements are mentioned in Recommendation Z.101 but not defined.)

4.2 Data definition

4.2.1 Syntax

DATA DEFINITION

Data type
Definition

Data type
Generator

Synonym
Definition CCITT - 77031

Fascicle VI.10 — Rec. Z.104 113

4.2.2 Semantics

A data definition is used to introduce the names and properties of data types, data type generators or
synonyms.

4.2.3 Relationship to SDL Abstract Syntax

A data definition in SDL/PR represents a data definition in the abstract syntax. If the data definition is a

data type generator then there is no direct correspondence with abstract syntax, as the data type generator serves
only to define text which is considered to be textually expanded on generator instantiation.

43 Data type definition

43.1 Syntax

ﬁGEWTYPED—) Type name DATA TYPE DEFINITION

Type
Properties

Inheritance
|
Rule .

Generator @ Type constants
Instantiation Properties l ‘

Field Type Type
—>(sTrRucT } e ot - —>

Properties

n
_/

QGYNTYPE}-) Type name ——-@-ﬁ Zc;rr:etnt type constants |—>

<
~

END Type name >

7
CCITT - 78710

114 Fascicle VI.10 — Rec. Z.104

INHERITANCE RULE

->{ ALL }
Parent type N Operator
ldent (name @J
Infix
operator
()
TYPE PROPERTIES —/
Literals Operators Axioms >
CONSTANTS
—L{CONSTANTS)- Value set >
VALUE SET
' e
constant —-)Q constaont >
A

CCITT-78730

Fascicle VI.10 — Rec. Z.104

115

CONSTANT

\ 4

iteral

Synonym

fdent

Constant

xpression
E p CCITT-78810

4.3.2 Semantics

The name given in a data type definition is a data type name.

43.2.1 NEWTYPE

A NEWTYPE data type deﬁnition introduces a new data type.

If no inheritance rule is specified then the new data type is not based on any other type. The type
properties are used to introduce any literals for that type, the operators applicable to the rype and (optionally) the
properties of the type by stating axioms which hold true for the type.

A new type may be based on another fype by using NEWTYPE in combination with inheritance rules In
this case, the value set of the new data type is disjoint from the value set of the parent type. Although the values
and operators of the new data type are distinct from those of the parent data type, the literals and names of the
operators for the new type will be overloaded, that is they will be the same literals and names as for the parent type
and whether a literal or name is appropriate to the new type or parent data type will have to be decided either by
qualification or by context. If the binding of a literal or operator name to a type cannot be determined then the
SDL specification is ambiguous and hence invalid. When ALL is given for an inheritance rule then all the operator
names are overloaded for the new data type. Otherwise the operator names specified in the inheritance rule must be

operator names of the parent type and these names are defined for the new rype. The axiom set and literal set of the
parent data type is inherited. ’

As well as the inherited literals, operator names and axioms, a new data type may have additional literals,

operators and axioms specified as type properties after the keyword ADDING. These literals, operator names and
axioms must not conflict with those inherited.

A data definition of the form:

NEWTYPE X/* details */
CONSTANTS /* constant list */
END X; ’

is equivalent to

NEWTYPE Anon /* details */
END Anon;

followed by

SYNTYPE X = Anon
CONSTANTS /* constant list */
END X;

The use of a constant restriction on a NEWTYPE implicitly declares an anonymous NEWTYPE (Anon
above) without that restriction, which is then used as the parent of a SYNTYPE with the constant restriction. To
enforce the anonymity, the parent name is stated to be distinct from all other names denoted in -the SDL
specification outside of the particular ‘implicit declaration.

116 Fascicle VI.10 — Rec. Z.104

4322 SYNTYPE

A data type may also be defined to have a subset of the values of the parent data type by using
SYNTYPE. In this case the value set is either specified after the keyword CONSTANTS, or all the values of the

parent data type have corresponding values in the SYNTYPE. Variables declared with a SYNTYPE may only be
assigned the values specified.

Accessing a variable with a SYNTYPE yields a value of the parent data type. These operations of declare,
assignment and access are the only operations allowed for SYNTYPES.

The values specified for a SYNTYPE data type must all be values of the parent data type. The parent of a
Syntype is the second type nominated in the Syntype definition provided that Type is a Newtype. Otherwise the
parent is the parent of the nominated type.

4.3.2.3 Generator instantiation

A generator instantiation is equivalent to the text of the generator with the formal parameters textually
replaced by the actual parameters. Wherever the generator name is used in the text of the generator, it is replaced
by the name of the data type or generator calling the generator instantiation. The equivalent text must complete a
valid NEWTYPE data type definition. This data type definition formed by the textual expansion then defines the
properties of the data type name.

4.3.2.4 Struct

A data type definition which includes a Struct implies data types for each field name. For a given
structure type S, for each field name F; and corresponding type identifier T, the following axioms are implicitly
introduced (subject to strengthening ; see below):

— the single axiom : extract!(insert!(S,Fi,Iy, Fi) =

— the axiom set : extract!(insert!(S,Fi,I)’,Fj)
= Extract(S,Fj);
~ /* for all distinct Fi, Fj */-

Where there are N field names in a structure, there will be N * N axioms of this form implicitly
introduced. To guarantee resolution of ambiguity, SDL requires that field names within a given structure be unique.

Associated with the structure S is a set of types, one for each field, with type name S!Fi, the single literal
Fi, and no other properties. This type becomes the carrier for the field name used in Insert! and Extract!
operations.

The effect of a Struct definition is to create a (programming-language like) structure or record, although
the definition may include additional axioms to strengthen the behaviour of the rype. Where additional axioms
explicitly introduced by the user conflict with the implicit default axiom set for that Struct, the inconsistency is
resolved by discarding implicit axioms. Introduction of explicit axioms into a Struct requires great care.

4.3.3 Relationship to abstract syntax

A data type definition represents a data type definition in the abstract syntax. The type name represents the
type name in the abstract syntax.

4331 NEWTYPE

* The keywords NEWTYPE and END embrace the abstract syntax concept of a data type description. The
value name set, operator introductions and type axiom set in the abstract syntax are represented as follows:

a) Value name set

The set of literals given by the literals in the type properties combined with the set of literals for the
parent data type if INHERITS is specified.

b) Operator introduction set
The set of operators given by the operators in the type properties combined with the set of operators
of the parent data type if INHERITS is specified.

c) Type axiom set

The set of axioms (if any) given by the axioms in the data type proﬁerties combined with the set of
axioms of the parent data type if INHERITS is specified. If the axiom set is omitted, or is incomplete,
then at least some operations can only be interpreted informally.

Fascicle VI.10 — Rec. Z.104 117

43.3.2 SYNTYPE

value set in the abstract syntax.

4.3.3.3 Generator instantiation

in § 4.3.2.3 so that it has the same relationship with the abstract syntax as the equivalent text.

4334 STRUCT

44

44.1

118

LITERALS
Syntax
LITERALS Predefined
Literal
—>(LITERALS) Literl
name
')
/
LITERAL
alifier Boolean -
qv © Literal -

CCITT - 78741

Decimal

Integer

Character

string

Real

Literal

Literal

Ident

Fascicle VI.10 — Rec. Z.104

Boolean

The keywords SYNTYPE and END embrace the abstract syntax concept of a syntype description. The
parent type identifier represents the parent data type identifier in the abstract syntax. The value set represents the

A generator instantiation denotes the text which would be obtained by textually expanding the generator as

A Struct denotes the text obtained by explicitly nominating all relevant properties and thus (as for a
generator) has the same relationship to the abstract syntax as the text so denoted.

O

PREDEFINED LITERAL

Literal

Decimal

v

Integer

Character

string

Real

Literal

CCITT - 78800

REAL LITERAL

] Decimal |} a() Decimal
Integer Integer

BOOLEAN LITERAL

D

CCITT-78820

442 Semantics
The literals which are used to denote the values of a data type are either predefined (for predefined data
types or data types based on predefined data types) or are introduced by the list of denotations for the literals of a

data type after the keyword LITERALS. Where a type includes the Ordering! operations, the literals should be
conventionally nominated in ascending order.

4.43 Relationship with abstract syntax

The literal names introduced by the literals part of data type properties represents the value names of a
data type description in the abstract syntax. '

4.5 Operators

45.1 Syntax
OPERATORS
—>(OPERATORS) operator O >
operaTOR —(»
Operator) Operator J Type . .
name l I ' [Type list O ‘ Ident -
Infix ’
K operator
—~ ORDERING!)
OPERATOR TYPE LIST
Type 5

Ident ’[_@J | L®_’|‘

"
NN

CCITT - 78742

Fascicle VI.10 — Rec. Z.104 119

INFIX OPERATOR

XOR

:
e

AND

pzd

2rrrd

MO

REM

NOT

CCITT - 78751

4.5.2 Semantics

The operators of data type properties introduce the names for operators and the parameterization of these
operators. The parameterization determines the number of parameters required and the data type of each parameter
and also the data type of any values returned. :

4.5.2.1 Operator names

The ordering operators are specified by including Ordering! in the operators. This is shorthand notation for
introducing the following operators for a data type D.

“<” :D,D —> Boolean
“>” : D, D —> Boolean
“<=":D,D -~ > Boolean
“>=":D, D —> Boolean

The names of infix operators e.g. +, AND, OR, are enclosed in quotes in the operators. They may be used
as prefix operators by using this quoted form, that is:

“47(a2)
is equivalent to a + 2.
An operator name may be optionally followed by an exclamation mark, which denotes that the operator

identity may only be referred to directly in data type definitions. The exclamation mark forms part of the name of
the operator and so must always be given when the operator is used.

120 Fascicle VI.L10 — Rec. Z.104

113

The names Assign!, Declare!, Access!, “=" and “/=" are defined implicitly as operators for all data
types with the implied typing for a data type D.

Assign! : D'*, D— >
Declare! : D'* — >

Access! : D —>;

“=7 : D, D —> Boolean;

“/=" : D', D — > Boolean;

The Assign operator is the infix operator, “:=". There is no Declare operator as its application is implied
from declarations. The Access operator is implied whenever a variable is mentioned in a context which requires a
value. The equals and not equals operators are the infix operators “=" and “/ =" respectively.

4.5.2.2 Operator typing

The list of data type identifiers after the colon and before the symbol (— >) is called an operator type list.
This operator type list specifies the data types of values which the operator requires. If one or more data type
identifiers has a prime attribute, then the operator is an active operator otherwise it is a passive operator. An active
operator can change the values associated with variables, whereas a passive operator is purely functional and so
cannot change the values associated with variables.

For a passive operator all type identities in the type list specify that actual parameters of the operator have
to be interpreted as expressions. Each of those expressions must yield a value, which is a member of the set of
values of the data type of the corresponding position in the data type list.

For a passive operator there must be a data type identifier after the symbol (— >). This data type identifier
specifies that the operator when applied, will yield a value of this data type. For an active operator some of the
data type identities in the operator type list are followed by primes (*).

A prime specifies that the operator requires a variable of the given data type as a parameter, and the
value associated with the variable may be changed. No two data type identifiers may be followed by the same
number of primes in the input data type list.

The number of primes distinguishes one primed parameter from another when an active operation is used
with priming to denote the value associated with a variable given as a parameter (this is permissible only in
axioms). For example:

OPERATORS SwapAndAdd: Int’, Int” — > int
/* fragment of data type definition */
AXIOM SwapAndAdd (a,b)' = b;
/* axiom stating the first parameter receives the value of the second parameter */
SwapAndAdd (a,b)” = a;
/* axiom for second parameter */

SwapAndAdd (a,b) = a+b;
/* result axiom */

If a primed parameter is followed by an asterisk, then the initial value of the variable is not accessed

when the operation is used. (Note that the axioms must be consistent with this, otherwise the SDL specification is
invalid))

If the data type identifier after the symbol (— >) is omitted for an active operator, the operator may not
be used within an expression. There may be both primed and unprimed parameters in an input data type list.

There is syntactic ambiguity between a data type name followed by a quoted character string in a name
string, and a primed data type identifier in a data type list. These ambiguities arise when a prime after a type name
in a fype list is followed by a prime, a comma or a minus sign (part of —>). In all cases the prime is taken as
priming of the data type identifier and not as starting a quoted character string.

4.5.2.3 Insert! and Extract! operators

To allow the axiomatic definition of arrays and structures, there are two predefined operator names, which
have a special denotation outside data type definitions. These operators are Insert! and Extract!. Insert! is an
active operator and must be defined with the data type identities such that the first data type is primed and the
other types are unprimed.

Fascicle VI.10 — Rec. Z.104 121

To apply Insert! outside data type definitions, the first parameter (which must be a variable) is written,
followed by an open parenthesis, all the remaining parameters except the last, then a closing parenthesis and
“:=", and finally the last parameter.

Thus with A a variable the data type of which has Insert! defined and i1, i2 and e express:ons approriate
to Insert! for this data type.

Insert!(A, il, i2, e)
is written as
A(l,12) :=

Since Insert! can be defined for more than one data type; the appropriate Insert! is determined from the
type of the variable. Insert! must be defined with at least two parameters and must return the same data type as
the first parameter.

Extract! is a passive operator which requires a variable as the first parameter for semantic reasons. To
apply Extract! the first parameter is written followed by all the other parameters in parenthesis.

Thus,

Extract!(A, i, i2)
is written as

A(il, i2)

The application of Extract! is determined by the fype of the variable.

4.5.3 Relationship to abstract syntax

For a passive operator an operator name or infix operator represents an operator name in the abstract
syntax. For a passive operator the input type list represents the list of type identities of parameters in the abstract
syntax. The data type identifier after the symbol (— >) represents the data type tdennty of the result of applying
the operator.

An active operator is related to the abstract syntax by re-writing into passive operators. This also defines
the ordering behaviour of the operation. For each primed parameter there is an implicit passive operator which
returns the value required by the axiom set. For each primed parameter without an asterisk there is an implicit
variable in each process instance using the operator with the same data type as the parameter which receives the
initial value of the parameter.

The list of data type identities of parameters in the abstract syntax for each implicit passive operator is
represented by the input data type list ignoring any asterisked parameters. There are as many implicit passive
operators as there are primed parameters in the input data type list and each primed parameter data type is used as
the data type identity of the result of applying one of these operators. For example:

OPERATORS
complex: Integer’, Integer”, Integer, Integer’”” * — > Bool

/* swaps first two parameters, puts the sum of the first three parameters in the fourth parameter
and returns true if the second and third parameters were equal */

AXIOMS
complex (a,b,c,d) =
complex (a,b,c,d)” = a;
complex (a,b,c,dy” = a+b+c;
complex (a,b,c,d)- = (b+c¢);
/*see § 4.9.2 for the use of primes in axioms */.

The implicit operators are: \
implied1!: Integer, Integer, Integer — > Integer
implied2!: Integer, Integer, Integer — > Integer

implied3!: Integer, Integer, Integer — > Integer
implied4!: Integer, Integer, Integer — > Boolean

122 Fascicle VI.10 — Rec. Z.104

If the implied variables are V1, and V2, an application of complex in a statement is equivalent to:
VI :=a; V2 := b;

followed by the statement, but with V1 substituted for a, V2 substituted for b, and 1mplled4' substituted for
complex, followed by

a:=implied1! (V1,V2.c);
b:=implied2! (V1,V2,c);
d:=implied3! (V1,V2,0);

Where more than one active operator is present, in a statement, they are substituted in the order in which
they would be interpreted.

4.6 Axioms

4.6.1 Syntax

AXIOMS

—
AXIOMS om oL 5
List

AXIOM LIST

()
(N

)i Axiom
. . Axiom
Quantification —-@—) .
List

Boolean
..._____.____5, e ._.....______._.§>
expression

Q
]

AXIOM

QUANTIFICATION

Variable Type |
FOR ALL name IN Ident

CCITT-78760

)
o/

4.6.2 Semantics

The axioms are a set of Boolean expressions which hold true for all values of the variables in the axioms.

Within an axiom a “variable” is never the name for a process or procedure variable, which has a value
" associated with it, but is used to denote that all values of a speciﬁc type may be substituted for the variable and
the axiom is still true. When considering this substitution a given variable name always represents the same value
in one axiom. For example in:

OPERATORS even: Integer — > Boolean

AXIOMS even (0) = True; /* axiom 1 */
even (1) = NOT even (i+1); /* axiom 2*/

The axiom 2 must hold for i=2, i=3, i=4 etc., that is,

even (2) = NOT even 2+ 1)
even (3) = NOT even (3+1)
even (4) = NOT even (4+1)

Fascicle VI.10 — Rec. Z.1044 123

Usually the data type of a variable in an axiom can be determined by context e.g., in the above example
it is required to be of data type int by the operator syntax.

Sometimes because of overloading of names and symbols (such as “+”) in SDL, it is not possible to
determine the data type of an axiom variable by context, so that the optional quantification is needed.
Quantification forces a variable to be of particular fype. It the use of a variable within one axiom is ambiguous or
inconsistent then the SDL/PR is invalid.

Quantification also allows a variable name to represent the same substitution in more than one axiom.

The variable names chosen for variables in axioms must be distinct from literals appropriate to the
context where the variable is used.

3

Since the operators
implied :

“/="(ab) = NOT (“=" (a,b))

25 ag)

% » (a,b) AND " (b,C) => o __ " (a’c);
& — ” (a’b) = > “ = " (b,a); -

=" and “/=" are implied for all data types, the following axioms are always

Whenever Ordering! is specified, the following axioms are implied:

“<” (a,b) => NOT “>" (a,b);

“>" (a,b) => NOT “<” (a,b);

“<” (a,b) AND “<” (b,ec) => “<” (a,c);
NOT “<” (a,a);

“<="(ab) => “<” (a,b) OR “=" (a,b)
“>="(ab) => “>"(a,b) OR “="(a,b)

4.6.3 Relationship to abstract syntax

The axioms represent the data type axioms in the abstract syntax. Each axiom represents an axiom in the
abstract syntax. :

Quantification represents quantification in the abstract syntax, except that there is implies quantification in
the concrete syntax for all axiom variables whose data type is determined by context.

47 Expressions
471 Syntax

EXPRESSION

Operand O

A 4

=>
Operand O
OPERAND O
Operand 1 >
OR (XOR
Operand 1

CCITT-78650

124 Fascicle V.10 — Rec. Z.104

OPERAND 1

OPERAND 4
—*Operond 5} —> >
MOD)\ REM
Operon 2
OPERAND 3

{Oerana 4]

v

OPERAND 2
(Gorond 3

[
>

<

209005

CCITT-78660

OPERAND 5

‘/—-\ Primar S
AN d 670

CCITT-78670

NOT

4.7.2 Semantics

An expression is either a primary or is the application of a number of “infix” operators.

The order of application of operators is determined by their appearance in the syntax in a similar way to
programming languages such as CHILL (see Recommendation Z.200). However, SDL also allows the Boolean
implication operator (= >), which has lower precedence than any other operator. This has the value FALSE for
Boolean operands if the left hand operand is TRUE and the right hand operand is FALSE. Otherwise for Boolean
operands the implies operation has the value TRUE.

Normally all operators will have the same properties and validity as defined in programming languages,
but it should be noted that in SDL the user may define new meanings for these operators by including them in
data type definitions. Nevertheless, the precedence of “infix” operators may not be changed.

The value yielded by a valid operation is determined by the axioms in data type definitions.

_Fascicle VI.10 — Rec. Z.104 125

4.7.3 Relationship to abstract syntax

An expression represents. an expression_in the abstract syntax.

An “infix” operator can be overloaded and may represent any one of a number of operators in the
abstract syntax. The overloading is resolved in two ways: either by the number and fype of parameters or, in the
case where the parameters themselves are overloaded, by the data type required in the context in which the
operation is used.

4.8 Primary
48.1 Syntax

PRIMARY

Variable

ldent ‘

A 4

()
N\

Synonym- .
ldent

Literal |

Conditional
Expression

Operation

<3;> Expression

)
W

CCITT - 78681

4.8.2 Semantics

A primary is a variable identity or a literal or a synonym identity or a conditional expression or an
operation or a bracketed expression.

4.8.3 Relationship to abstract syntax

A variable identity or literal or synonym identity or conditional expression or bracketed expression

represent a variable identity access, value identity, synonym identity, conditional expression or expression respectively
in the abstract syntax.

When a variable identity is referred to in an axiom it represents an axiomatic variable rather than a

reference to an access to a variable declared for a process or procedure. The data type of an axiomatic variable is
determined by context.

126 Fascicle VI.IO — Rec. Z.104

49 Operation

49.1 Syntax

OPERATION

Operator 7 F—)O :lEX ression <\ >
ident (P ’Q/

VR

u CCITT - 78791

pr
—> Qualifier Infix -
Operator

4.9.2 ° Semantics

An operation is the application of an operator defined in a type definition. The number and fype of the
expressions used as actual parameters must be consistent with the definition of the operator identity. These
parameters may be used to determine which operator is being applied if the operator name is overloaded.

If the operator is being applied in an axiom then if the name is defined with an exclamation mark then
this exclamation mark must be repeated in the axioms.

An operator defined with an exclamation mark may not be used outside a type definition.

The primes after the closing bracket of the operator may only be used in an axiom and denote that the
operation has the resultant value of the parameter defined with that number of primes. For example:-

OPERATORS
example: ti’, 2" — >

AXIOMS
example: (v1,v2)" =. vl
/*value of vl put in v2 */

When the typing of a parameter of an operator is specified with primes, the actual parameter must be a
variable, except in the context of an axiom.

493 Relationship to abstract syntax

A passive operator identifier represents an operator in the abstract syntax. For a passive operation, the
expression list represents the expression list in the abstract syntax for that operation.

An active operation represents assignment to implicit variables which are then used as arguments to implicit
passive operations, whose values are assigned back into variables given as actual parameters (see § 4.5.3). Within an
axiom an active operation represents an application of the appropriate implicit passive operation determined by the
number of primes appended to the operation.

Fascicle VI.10 — Rec. Z.104 127

410 Conditional expression

4.10.1 Syntax

CONDITIONAL EXPRESSION

THEN Expression

<
~

ELSE Expression

Boolean
-expression

(FI) ——>
U CCITY - 78792

4.10.2 Semantics

The conditional expression is interpreted by interpreting the expression after THEN if the Boolean
expression is true, and yields the value of the expression after ELSE otherwise.

Within an axiom each branch of the conditional expression need only be valid for the conditions under
which it is selected. For example since log(x) is not defined for negative number, in

IFr > 0 THEN log(r) ELSE 0.0 FI

if does not matter that for r < = 0, 1og(r)‘is undefined.

4.10.3 Relationships to abstract syntax ’

A conditional expression represents a conditional expression in the absiract syntax.

411 Assignment statement
4.11.1 Syntax

ASSIGNMENT STATEMENT

Variable Ve -
- 1=)—-——) Expression
ident ' _ P
@ Expression . @ CCITT - 78691
L\
)
4.11.2 Semantics -

128

An assignment statement allows a value to be associated with a variable.

The value yielded by the expression on the right hand side is assigned to the variable or an element of
the variable on the left hand side.

Fascicle VI.10 — Rec. Z.104

4.11.3 Relationship to abstract syntax

An assignment statement represents the application of either 'an Assign! operator or as an Insert! operator.
There is a mapping between the syntax of an assignment and the application of the appropriate operator.

Where no brackets are used on the left hand side of an assignment then the assignment represents the use
of Assign!, such that

V : = e represents Assign!(V,e)

When a single pair of brackets is used, such an assignment represents Insert! such that

a(i) : = e represents Insert! (a,i,e)
and
a(i,j) : = e represents Insert! (a,i,j,e)
When multiple brackets are used an assignment ié represented be recursive substitution such that
ai)g): = e
represents
vi:=af(i);
Insert!(vi,j,e);
a(i): =vi;

where vi is an implicit variable whose type is the same as a(i). The implied Insert! operations are active operations,
which are represented in the abstract syntax in the normal way for active operators (see § 4.9.3).

412 Synonym definition

4.12.1 Syntax

SYNONYM DEFINITION

SYN Synonym Type B | Constant -
name ident expression i

CCITT - 77032

4.12.2 Semantics
The synonym is equivalent to the constant expression. If the rype of the expression cannot be determined
by either the constant or the context of the synonym definition then a rype must be specified otherwise the value

and type of the constant expression and hence the value of the synonym), is determined by the context in which the
synonym definition appears.

4.12.3 Relationship to abstract syntax

A synonym represents a synonym definition in the abstract syntax. If the data type is omitted, then it is
implied by context.

413 Data type generator

4.13.1 Syntax

4.13.2 Semantics

" The name given in a Data Type Generator is a Data Type Generator name. The properties supplied in a
generator form a partial specification of a data type. When a generator is used in a Type Definition or another
Data Type Generator, the parameters to the generator are textually substituted in the generator definition and

Fascicle VI.1¢ — Rec. Z.104 129

(together with any properties added in a Type Definition) then must form a complete Type Definition or another
Data Type Generator. Where a Data Type Generator is defined in terms of a generator instantiation, the generator

parameters may have the same name as those supplied to the instantiation. Such a generator is a Partial
Instantiation. For example:

GENERATOR Stack (TYPE Component, CONSTANT Maxsize)
/* details */
END Stack; '

GENERATOR IStack(CONSTANT Max) Stack(Integer, Max)
END IStack;

/* A stack of integers, maximum size not specified */

4.13.3 Relationship to abstract syntax

The Data Type Generator has no counterpart in the abstract syntax. Usage of a generator Instantiation in
a Data Type Definition will denote the text formed by parametri¢ substitution.

DATA TYPE GENERATOR

- genergtor generator |
GENERATOR name parameters

type
properties

generator
instantiation

generator
END name >
) CCITT-78770
GENERATOR PARAMETERS
generotor.
—(O formal rame T X

CONSTANTS

CONSTANT

"
GENERATOR INSTANTIATION

generator C(| Type)

ident Ident C

-—al Value set —
—-)l Constant p—

(e
S

CCITT-78780

130 Fascicle VI.10 — Rec. Z.104

5 Pre-defined data types

5.1 Integer

NEWTYPE Integer
/* Literals according to integer literal syntax */

OPERATORS
“+7: Integer, Integer — > Integer;
“—"": Integer, Integer — > Integer;
—: Integer, Integer — > Integer;
“/” Integer, Integer — > Integer;
Float: Integer — > Real;
Fix: Real — > Integer;

AXIOMS
/* inherited from mathematical integers, adding: */
Fix(Float(r)) = r;
r — 1 < Float(Fix(r)) < =r;
i/j = Fix(Float(i)/Float(j))

@

END Integer;

5.2 Real

NEWTYPE Real
/* Literals of the form specified in ’real literal’ */

OPERATORS
“—": Real, Real — > Real;
“+” Real, Real — > Real;
“*”. Real, Real — > Real;
“/”. Real, Real — > Real;
“—7: Real — > Real;

/* Axioms are inherited from the mathematical reals; this work needs further study to be more
formally specified here */ ‘

END Real;

53 Array

GENERATOR Array(Typelndex, TYPEItem);

OPERATORS »
Insert!: Array’, Index, Item — >
Extract!: Array, Index — > Item;

AXIOMS
Extract! (Declare!(V)’,]) = Error!;
Extract!(Insert!(A, IPos, It), EPos =
If Epos = Ipos Then It Else Extract(A, EPos) FI;

End Array;

5.4 Boolean

NEWTYPE Boolean;
LITERALS True, False:

OPERATORS
“NOT”: Boolean —' Boolean;
“AND”: Boolean, Boolean — > Boolean;
“OR”: Boolean, Boolean — > Boolean;
“=": Boolean, Boolean — > Boolean;

Fascicle VI.10 — Rec. Z.104 131

5.5

5.6

5.7

5.8

132

AXIOMS
“NOT”(True) = False;
“NOT”(False) = True;
“AND” (A, B) = If A = False Then False Else B;
“OR”(A, B) = If A Then True Else B;
“=>"(A, B) = If A = True And B = False Then False Else True;

END Boolean;

Character

NEWTYPE Character

LITERALS/* character strings of length 1, where the characters are those of the CCITT alphabet
number 5 */;

OPERATORS
Ordering!;

END Character;

Natural

SYNTYPE Natural Integer Constants > = 0 END Natural;

Powerset

GENERATOR Powerset(TYPE Item);
LITERALS Empty;

OPERATORS
“IN”: Item, Powerset — > Boolean;
Incl: Item, Powerset’ — > ;
Del: Item, Powerset’ — > ;
Ordering!;

AXIOMS;
Declare(v)’ = Empty;
I IN Empty = False;
I IN Incl(12, S) = IF I = 12 THEN True ELSE I IN S FI;
Del(I, Incl(12, S)) = IF I = 12 THEN Del(1,S) ELSE Incl(I2, Del(1,S)) FI;
For all S1, S2 in powerset (for all I in Item (S1 < S2 => (I IN S1 => I IN S2)));
NOT(Iin S) => Del(I, S) = S;

END Powerset;

Pld

NEWTYPE PId
LITERALS Null;

OPERATORS
Create! : — > PId;

AXIOMS;
Declare!(v)’ = Null;
Create! /= Create!;
/* A weak way of stating that all Creates yield unique values */
Create! /= Null;

/* PId values are returned by the interpretation of a create request node (they are denoted as
being generated by the Create! function above). Every create request interpretation generates a
unique PId value which is not Null. Every process instance implicitly declares three PId
variables, named “Parent”, “Self” and “Offspring”.

Interpretation of a Create request node generates a new and unique PId value, and assigns it to
the Offspring for the creating task. The Self identifier of the created task is assigned this same
value, while Parent of the created task is assigned the value of self of the creator. The length of
Offspring in the created task is set to zero. .

*/ END PId;

Fascicle VI.10 — Rec. Z.104

59 String

GENERATOR String (TYPE Item);
/* Literals specified by Charstring literals, */
/* only if generator is instantiated with Character */

OPERATORS
Declare!(v)’ : — > String;
“//” : String, String — > String;
Length : String — > Natural;
First : String — > Item;
Last : String — > Item;
Extract! : String, Natural — > Item;
Insert : String’, Natural, String — > ;
Insert! : String’, Natural, Item — >;
AXIOMS

Length(Declare!(v)')=0;
Length (S1 // S2) = Length(S1) + Length(S2);
First(S1) = Extract!(S1, 1);
Last(S1) = Extract!(S1, Length(S1));
Extract!(Insert(S1,1,S2),)) =
IF j< 1 THEN Error! ELSE
IF j<= I THEN Extract!(S1,j) ELSE
IF j<= Length(S2) + I THEN Extract!(S2,j-I)) ELSE
IF j< = Length (S1) + Length(S2) THEN
Extract!(S1,J — Length(S2)) ELSE Error!
FI
FI
FI
FI;
S1 /7 S2 = Insert(S1, Length(S1), S2);
Extract!(Insert!(S1, I, It),.J) =
IF 1 = J Then It Else Extract!(S1, J) FI;

END String;

510 Time

NEWTYPE Time Inherits Real

ADDING
Operators
Now: — > Time /* the ‘real’ time */;

END Time;

5.11 - Duration

NEWTYPE Duration Inherits Real (“+7, “ =", “*” «/™)

ADDING
Operators
“+7”: Time, Duration — > Time;
“+7”: Duration, Time — > Time;

e ”»

—”: Time, Duration — > Time;
CONSTANTS > = 0.0

END Duration;

Fascicle- VI.L10 — Rec

. 2.104

133

5.12 Timer

NEWTYPE Timer

OPERATORS
" Set: Time, Timer’ *— > |
Reset: Timer' — >;
Active: Timer — > Boolean;

AXIOMS
Active (Set(Tm, Tmr)') = Tm > Now ();
Active(Reset(Tmr)) = False;
/* Note that an active timer sends a signal to the process when it becomes inactive. This signal
is named with the same name as the timer variable in the Set call */

END Timer;

5.13 Charstring

NEWTYPE Charstring String (Character)
Adding LITERALS /* character string literals */

END Charstring;

134 - Fascicle VI.10 — Rec. Z.104

Printed in Switzerland — ISBN 92-61-02231-6

	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE EIGHTH PLENARY ASSEMBLY (1984)
	TABLE OF CONTENTS OF FASCICLE VI.10 OF THE RED BOOK
	Recommendations Z.100 to Z.104 - Functional specification and description language (SDL)
	Z.100 - Introduction to SDL
	Z.101 - Basic SDL
	Z.102 - Structural concepts in SDL
	Z.103 - Functional extensions to SDL
	Z.104 - Data in SDL

