

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

RED BOOK

VOLUME VI - FASCICLE VI.10

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

RECOMMENDATIONS Z.100-Z.104

V I I I ™ PLENARY ASSEMBLY
MALAGA-TORREMOLINOS, 8-19 OCTOBER 1984

Geneva 1985

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

RED BOOK

VOLUME VI - FASCICLE VI.10

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

RECOMMENDATIONS Z.100-Z.104

VIII™ PLENARY ASSEMBLY
MALAGA-TORREMOLINOS, 8-19 OCTOBER 1984

Geneva 1985

ISBN 9 2 - 6 1 - 0 2 2 3 1 - 6

© I.T.U.

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE EIGHTH PLENARY ASSEMBLY (1984)

Volume I

Volume II

FA SC IC LE II.l

FA SC IC LE II.2

FA SC IC LE II.3

FA SC IC LE II.4

FA SC IC LE II.5

Volume III

F A SC IC LE III .l

FA SC IC LE III.2

FA SC IC LE III.3

FA SC IC LE III.4

FA SC IC LE III .5

RED BOOK

M inutes and reports o f the Plenary Assembly.

O pinions and Resolutions.

R ecom m endations on:
— the organization and w orking procedures o f the C C IT T (Series A);
— m eans o f expression (Series B);
— general telecom m unication statistics (Series C).

List o f Study G roups and Questions under study.

(5 fascicles, sold separately)

— G eneral ta riff principles — Charging and accounting in in ternational telecom m unications
services. Series D R ecom m endations (Study G roup III).

— In ternational telephone service — O peration. R ecom m endations E.100-E.323 (Study
G roup II).

— In ternational telephone service — N etw ork m anagem ent — Traffic engineering. R ecom ­
m endations E.401-E.600 (Study G roup II).

— Telegraph Services — O perations and Quality o f Service. R ecom m endations F.1-F.150
(Study G roup I).

— Telem atic Services — O perations and Quality o f Service. R ecom m endations F.160-F.350
(Study G roup I).

— (5 fascicles, sold separately)

— G eneral characteristics o f in ternational telephone connections and circuits. R ecom m enda­
tions G.101-G.181 Study G roups XV, XVI and CM BD).

— In ternational analogue carrier systems. Transm ission m edia — characteristics. Recom m en­
dations G.211-G.652 (Study G roup XV and CM BD).

— Digital netw orks — transm ission systems and m ultiplexing equipm ents. R ecom m enda­
tions G.700-G.956 (Study G roups XV and XVIII).

— Line transm ission o f non telephone signals. Transm ission o f sound-program m e and televi­
sion signals. Series H, J Recom m endations (Study G roup XV).

— Integrated Services D igital N etw ork (ISD N). Series I R ecom m endations (Study
G roup XVIII).

I l l

Volume IV

FA SC IC LE IV. 1

FA SC IC LE IV.2

FA SC IC L E IV.3

FA SC IC LE IV.4

Volume V

Volume VI

FA SC IC LE V I.l

FA SC IC L E VI.2

F A SC IC LE VI.3

FA SC IC L E V I.4

FA SC IC L E VI.5

FA SC IC LE VI.6

FA SC IC LE VI.7

FA SC IC L E VI.8

FA SC IC L E VI.9

F A SC IC L E VI.10

FA SC IC L E VI. 11

FA SC IC L E VI. 12

FA S C IC L E VI. 13

IV

(4 fascicles, sold separately)

M aintenance; general principles, in ternational transm ission systems, in ternational tele­
phone circuits. R ecom m endations M.10-M.762 (Study G roup IV).

M ain tenance; in ternational voice frequency telegraphy and fascimile, in ternational leased
circuits. R ecom m endations M.800-M.1375 (Study G roup IV).

M ain tenance; in ternational sound program m e and television transm ission circuits. Series N
R ecom m endations (Study G roup IV).

Specifications o f m easuring equipm ent. Series 0 R ecom m endations (Study G roup IV).

Telephone transm ission quality. Series P R ecom m endations (Study G roup X II).

(13 fascicles, sold separately)

G eneral R ecom m endations on telephone switching and signalling. In terface with the
m aritim e m obile service and the land m obile services. R ecom m endations Q .l-Q .l 18 bis
(Study G roup XI).

Specifications Of Signalling Systems Nos. 4 and 5. Recom m endations Q.120-Q.180 (Study
G roup XI).

Specifications o f Signalling System No. 6. R ecom m endations Q.251-Q.300 (Study
G roup XI).

Specifications of Signalling Systems R1 and R2. R ecom m endations Q.310-Q.490 (Study
G roup XI).

Digital transit exchanges in integrated digital netw orks and mixed analogue-digital
networks. D igital local and com bined exchanges. R ecom m endations Q.501-Q.517 (Study
G roup XI).

Interw orking o f signalling systems. R ecom m endations Q.601-Q.685 (Study G roup XI).

Specifications o f Signalling System No. 7. R ecom m endations Q.701-Q.714 (Study
G roup XI).

Specifications o f S ignalling System No. 7. R ecom m endations Q.721-Q.795 (Study
G roup XI).

Digital access signalling system. R ecom m endations Q.920-Q.931 (Study G roup XI).

F unctional Specification and D escription Language (SDL). R ecom m endations Z.101-Z.104
(Study G roup XI).

F unctional Specification and D escription Language (SDL), annexes to R ecom m enda­
tions Z.101-Z.104 (Study G roup XI).

C C IT T High Level Language (CH ILL). R ecom m endation Z.200 (Study G roup XI).

M an-M achine Language (M M L). R ecom m endations Z.301-Z.341 (Study G roup XI).

Volume VII

FA SC IC LE V II.l

FA SC IC LE VII.2

FA SC IC LE VII.3

Volume VIII

FA SC IC LE V III.l

FA SC IC LE VIII.2

FA SC IC LE VIII.3

FA SC IC LE V III.4

FA SC IC LE V III.5

FA SC IC LE VIII.6

FA SC IC LE VIII.7

Volume IX

Volume X

FA SC IC LE X .l

FA SC IC LE X.2

(3 fascicles, sold separately)

Telegraph transm ission. Series R Recom m endations (Study G roup IX). Telegraph services
term inal equipm ent. Series S Recom m endations (Study G roup IX).

Telegraph switching. Series U R ecom m endations (Study G roup IX).

Term inal equipm ent and protocols for telem atic services. Series T R ecom m endations
(Study G roup VIII).

(7 fascicles, sold separately)

D ata com m unication over the telephone network. Series V Recom m endations (Study
G roup XVII).

D ata com m unication networks: services and facilities. Recom m endations X .l-X .l 5 (Study
G roup VII).

D ata com m unication netw orks: interfaces. Recom m endations X.20-X.32 (Study
G roup VII).

D ata com m unication networks: transm ission, signalling and switching, network aspects,
m aintenance and adm inistrative arrangem ents. Recom m endations X.40-X.181 (Study
G roup VII).

D ata com m unication networks: Open Systems Interconnection (OSI), system description
techniques. Recom m endations X.200-X.250 (Study G roup VII).

D ata com m unication netw orks: interw orking between networks, mobile data transm ission
systems. Recom m endations X.300-X.353 (Study G roup VII).

D ata com m unication networks: message handling systems. Recom m endations X.400-X.430
(Study G roup VII).

Protection against interference. Series K R ecom m endations (Study G roup V). C onstruction ,
installation and protection o f cable, and other elements o f outside plant. Series L Recom ­
m endations (Study G roup VI).

(2 fascicles, sold separately)

Terms and definitions.

Index o f the Red Book.

V

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

TABLE OF CONTENTS OF FASCICLE VI.10 OF THE RED BOOK

Recommendations Z.100 to Z.104

Functional specification and
description language (SDL)

Rec. No. Page

Z.100 In troduction to S D L .. 3

Z.101 Basic S D L .. 16

Z.102 Structural concepts in S D L .. 47

Z.103 Functional extensions to S D L .. 64

Z.104 D ata in S D L .. 105

1 The Questions entrusted to each Study G roup for the Study Period 1985-1988 can be found in
C ontribu tion No. 1 to that Study G roup.

2 In this Fascicle, the expression “A dm inistra tion” is used for shortness to indicate both a telecom m unica-

\

P R E L IM IN A R Y NOTES

C ontribu tion No. 1 to that Study G roup.

tion A dm inistration and a recognized private operating agency.

Fascicle VI.10 — Contents VII

FASCICLE VI.10

Recommendations Z.100 to Z.104

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Recommendation Z.100

INTRODUCTION TO SDL

1 Introduction

This R ecom m endation is a general explanation of and in troduction to the C C ITT Specification and
D escription Language (SDL). The language is defined in detail in R ecom m endations Z.101 to Z.104.

1.1 General

The purpose o f recom m ending SDL is to provide a language for unam biguous specification and description
o f the behaviour o f telecom m unications systems. The specifications and descriptions using SDL are intended to be
form al in the sense tha t it is possible to analyse and interpret them unam biguously.

A system specification consists o f a specification o f the functional behaviour and a set o f general
parameters o f the system. SDL aim s only to describe the behavioural aspects o f a sy stem ; the general parameters
describe properties like capacity and weight which have to be described using different techniques.

The term s specification and description are used with the following m eaning:

— a specification o f a system is the description o f its required behaviour, and

— a description o f a system is the description o f its actual behaviour.

SDL describes the behaviour in a stim ulus/response fashion, assum ing tha t both the stimuli and responses
are discrete entities. The approach is based on the concepts o f extended fin ite state machines.

The behaviour o f the system as described in SDL is the sequence o f responses to any given sequence o f
stimuli as seen from outside the system. Any two systems described in SDL having the same behaviour in this
respect are said to be functionally equivalent. The concept o f functional equivalence is used to com pare system s with
each other, e.g. a specification o f a required system with a description o f an offered system. The SDL User
G uidelines, which are appended to the R ecom m endations contain a discussion on the criteria and m ethods for this
com parison.

SDL also provides structuring concepts which allow a system to be partitioned so that it can be defined,
developed and understood one part at a time.

These concepts are o f value both initially in specifying a system, when different aspects can be
independently dealt with, and later in describing a system, when the description structures should m atch the
system structure.

1.2 Objectives

The general objectives when defining SDL have been to provide a language that:

— is easy to learn, use and interpret in relation to the needs o f an operating organization;

— provides unam biguous specifications and descriptions for ordering and tendering;

— may be extended to cover new developm ents;

— is able to support several m ethodologies o f system specification and design, w ithout assum ing any one
o f these.

1.3 Scope

The m ain area o f application for SDL is the description o f the behaviour o f aspects o f telecom m unications
systems. A pplications include:

— call processing (e.g. call handling, te lephony signalling, metering) in SPC switching systems;

— m aintenance and fault treatm ent (e.g. alarm s, autom atic fault clearance, routine tests) in general
telecom m unications systems;

— system control (e.g. overload control, m odification and extension procedures);

— data com m unication protocols.

Fascicle VI.10 — Rec. Z.100 3

SDL can o f course also be used for the description o f any behaviour capable o f being described using a
discrete model, i.e. com m unicating with its environm ent by discrete messages.

2 Language survey

The follow ing survey o f SDL is intended as an introduction to R ecom m endations Z.101 to Z.104. The
explanations given here are, except for § 2.1, not form al definitions, but are intended as just tu torial explanations.

2.1 Som e basic definitions

Some general concepts and conventions are used th roughout R ecom m endations Z.100 to Z.104. Their
definitions follow here:

Type, definition and instance

In the R ecom m endations, an entity is strictly separated from its definition. The schema and term inology
defined below and shown in Figure 1/Z .100 are used.

defines

/

Definition

CCITT-73600

FIGURE 1/Z.100

The Type concept

A type is defined by its definition, which defines all properties associated with that type. A type may be
instantiated in any num ber o f instances. Any instance o f a particular type, has all the properties defined for the
type.

The schem a applies to several SDL concepts, e.g. we have system definitions and system instances, process
definitions and process instances.

The instances o f a type m ay be types themselves. The properties associated with types are inherited
according to the hierarchical app lication , e.g. the properties o f the generic type system are inherited by all
instances o f specific system definitions.

To avoid cum bersom e text, the convention used is that whenever it is obvious from context tha t the
definition o r the instance o f a type is m eant the attribute is omitted.

have all the
properties of
the type

4 Fascicle Vl.10 — Rec. Z.100

Names

The follow ing nam ing conventions and term inology are adopted to identify definitions and instances:

All identifiers used in a representation are unique. The identification of an entity consists o f two parts:
one nam e part and one qualifying p a r t:

< S y s t e m n a m e > < B lo c k n a m e >

< S ignal t y p e > O F F H O O K

I d e n t i f i c a t io n

The qualifying part is derived from the com plete hierarchical context the entity is defined in and the type
o f the entity. The nam e part should be a m eaningful name in relation to the purpose or effect o f the nam ed entity.

W hen the identification appears in the concrete syntax, the obvious qualifiers may be im plied only;
i.e. when it is not am biguous only the nam e part should be used.

Visibility rules

W hen an identifier is in troduced into a specification or description that identifier is visible at the po in t of
in troduction and at levels directly below the point o f introduction in the specification or description hierarchy. The
highest level at which the identifier is visible is indicated by the lowest hierarchical level given in the qualifying
part o f the identifier.

Specification error

W here properties o f an SDL specification are inconsistent or am biguous, that specification is invalid.
W here the in terpretation o f an SD L specification violates properties of a specification which is valid, that system
in terpretation is in error. An in terpretation o f a system which leads to an error m eans that the future behaviour o f
the system cannot be predicted from the specification.

2.2 The basic S D L

The dynam ic behaviour o f an SDL system is generated by process instances, acting concurrently. A process
is m odelled as an extended fin ite state machine. It will only act in response to external discrete stim uli, and may
then generate discrete responses back to its environment. O ther processes may accept the generated responses as
stimuli.

In SDL a process will wait in a state until it receives a valid signal from its environment. Then it will
perform a transition to another state. D uring the transition it may perform actions; these may either be
m anipulation o f inform ation local to the process or sending signals to other processes o r to the external
environment o f the system.

1
All processes in a system or in its environment have access to the “absolute tim e”, and m ay perform tim e

m easurem ents and timing.

Process instances may be created and term inated dynam ically. Any instance 4 may be created by another
instance or it may exist at system in itialization time. A process instance may only be term inated by an explicit stop
action perform ed by itself.

Several signal instances may be waiting to be accepted by a process. In order to handle this signal queue,
an input port is associated with each process instance. The queueing discipline is basically first in first out, but the
process m ay itself m anipulate this by a save-signal-set associated with a state.

Fascicle VI.10 — Rec. Z.100 5

CCITT-85240

FIGURE 2/Z.100

A process definition

Signal instances may carry data values, which will be available to the receiving process instance when the
signal is received. The data values may be stored in, and retrieved from , local variables o f the process.

The static structure o f an SDL system is described in term s o f a system, blocks and channels, as shown in
Figure 3/Z .100.

System

Channel Channel

Channel Channel

CCITT-73610

FIGURE 3/Z.100

Static structure of an SDL system

6 Fascicle VI.10 — Rec. Z.100

The system is a com position o f blocks, connected to eachother and to the system boundary via channels.
The system boundary separates the system from its environment. The environment is assum ed to “behave in an
SDL-like m anner” ; i.e. it will send signals to the system and accept responses in the form o f signals from the
system.

The channels act as the transport m edia for signals between blocks and between blocks and the system
boundary. Channels are unidirectional. The blocks are containers for the processes, and serve to structure the system
in building blocks.

2.3 Data in SD L

SDL processes may retain and m anipulate data values. The data values are bound to variables, which are
local to a process. However, data values may be sent between processes, and to and from the environment, by
m eans o f signals. Local variables for a process are defined in the process definition.

The da ta treated is typed. A num ber o f predefined data types are defined in SDL. In addition the user may
define new data types. The predefined data types are:

— Boolean having the values T R U E and FALSE and the norm al logical operations on these values.

— Integer having its norm al m athem atical m eaning.

— Natural having the norm al m athem atical m eaning o f natural num bers.

— R eal having the norm al m athem atical m eaning of real num bers.

— Character having the norm al (as in program m ing languages) m eaning and having the values and
representation as in the C C ITT alphabet num ber 5.

— Array an indexed collection o f items which are all o f the same data type. This is an extension o f
the norm al m eaning of array as used in program m ing languages.

— Structure a com position o f a num ber o f data types which may be different from one another.

— String a list o f items o f any data type and o f arbitrary length.

— Charstring a list o f characters o f arb itrary length. N ote a charstring is a string o f characters form ed
from the data type string with the data type character.

— Powerset having the norm al m athem atical m eaning such that a powerset value is an ordered set.

— P Id used to identify process instances.

— Time absolute time.

— Duration the interval between two instants in absolute time.

— Timer the data type used for tim ers and which defines the operations SET and RESET for
T IM E R variables.

The STR U CT concept allows further data types containing com posite values com posed from a num ber o f
(possibly different) data types to be constructed.

The user-defined data types m ay be defined in term s o f the predefined data types together with restrictions
like range o f an integer, or they m ay be additional abstract data types. Abstract data types are defined using an
“axiom atic” method.

Data types may be generic for a system, or contained in a block definition, a channel definition or in a
process definition. The definition is visible, and thus usable, within the scope o f the object they are contained in.
e.g. If a type definition is contained in a block, data items o f that type may be used in all processes contained in the
block and in the sub-blocks o f the block.

2.4 Structural concepts in S D L

Structural concepts are provided in SDL in order to facilitate descriptions of com plex a n d /o r large
systems. The concepts are so defined that they can support:

— the partitioning o f large descriptions into m odules so that parts can be dealt with and understood
independently ;

— the description o f a system, or parts o f a system, on several levels o f abstraction;

— the description o f the actual structure o f a system.

Fascicle VI.10 — Rec. Z.100 7

W hen using these structural concepts it should be m ade clear if they represent the required or actual
structure, or are just used to facilitate the representation.

In the basic SDL, a system is com posed o f blocks, channels and processes. These com ponents may be
further structured, i.e. blocks into sub-blocks and sub-channels, channels into blocks and channels, and processes
into sub-processes. A process definition may also be further detailed in a num ber of steps by using procedures and
macros.

W hen partitioning blocks in to sub-blocks and sub-channels a hierarchical multi-level description of the
system is obtained. The inform ation contained in the upper levels should be contained in the interfaces of the
lower levels. The obtained structure may be illustrated by a block tree diagram as shown in Figure 4/Z .100.

FIGURE 4/Z .100

A block tree diagram

It may also be described in m ore detail by a block interaction diagram as shown in Figure 5/Z.100.

CCITT-73630

FIGURE 5/Z .100

A block interaction diagram

8 Fascicle VI.10 — Rec. Z.100

This latter diagram also shows the channels and sub-channels connecting the structure o f blocks and
sub-blocks. Using this block partitioning, it is only necessary, for the description to be m eaningful, that the m ost
detailed sub-blocks (the “ leaf-blocks” in the block tree diagram) contain processes.

Partitioning o f channels in to channels and blocks will also result in a hierarchical structure. A sim ple
exam ple is given in Figure 6/Z .100.

a) A system that is not partitioned

-------►

Block C
W

channel c3 Block D

channel c channel c
------------------------------4-----------------------------

b) Channel partitioning channel c4

c) A system with a channel partitioned Channel C4

FIGURE 6/Z.100

Channel partitioning

The partitioning o f a process into a set o f sub-processes is related to block partitioning, as the sub-processes
o f a process m ust always be located in the sub-block(s) o f the block contain ing the process. This is shown in
F igure 7/Z .100.

CCITT-7 3 650

FIGURE 7/Z.100

Process partitioning

Fascicle VI.10 — Rec. Z.100 9

The sub-processes o f a process represent together an alternative, m ore detailed, description o f the
behaviour described by the process. Thus when having a description as in Figure 7/Z .100, a choice has to be m ade
if the detailed behaviour, represented by the sub-processes, o r the less detailed one, represented by the process,
should be interpreted. In SDL the alternative descriptions are said to support different levels o f abstraction.

The partitioning o f a process is illustrated by a process tree diagram as shown in Figure 8/Z.100.

CCITT-73660

FIGURE 8/Z .100

A process tree diagram

A process may also be structured and detailed by the use of procedures. A procedure in SDL is sim ilar to
procedures in program m ing languages. It represents a param eterised and predefined behaviour which may be
invoked by any process having access to its definition. The procedures may be predefined in libraries, or
user-defined.

A procedure is defined as a set o f actions and may include states, in a sim ilar m anner to a process. An
exam ple o f the use o f procedures is shown in Figure 9/Z .100.

CC1TT-73670

FIGURE 9/Z.100

Example of use of procedures in a transition

10 Fascicle VI.10 — Rec. Z.100

SDL representations may also be structured by the use o f macros. A macro is a syntactical m eans to ease
the d raw ing /w riting o f SDL representations, and to ease the understanding o f them. A macro is a nam ed
collection o f syntactical items, defined by the user. W henever a reference to a macro appears in a description, it
can be understood by replacing it with the items it is defined as, i.e. it has no sem antics o f its own. Macros may
be used in any SDL representation, e.g. for process representations, for structural diagram s, etc. An exam ple o f the
use o f a macro is shown in Figure 10/Z.100.

Yes

Yes

Any
device free

Any device
free TO

device-handier.

Wait for
answer

a) Macro definition

No

No

CCITT-73680
b) Use of the macro in a transition

FIGURE 10/Z.100

Example of the use of a macro

All the structuring concepts in SDL may of course be used in com bination w ith each other.

Fascicle VI.10 — Rec. Z.100 11

2.5 Composite operations

Composite operations in SDL are standard shorthand notations provided in the language to simplify the
design o f SDL processes. They are defined in term s o f other SDL operations, and should be in terpreted as if they
were replaced by those operations.

N orm ally, the composite operations imply hidden states and signal in terchange with other processes,
which is why som etim es care should be taken o f side effects.

The composite operations provided are:

Im port/E xport o f data values

A shorthand nota tion for accessing values o f data items local to the other processes via an im plied
signal interchange.

Enabling condition

A shorthand no ta tion for the capacity either to accept a signal as an input or to save the signal
depending on a condition, which may contain imported values. This is m odelled as having several
states in which the signal is accepted as input and other in which the signal is saved. The im plied state
is chosen after evaluation o f the condition. The operation may also imply signal interchange.

Continuous signals

A shorthand no ta tion for leaving a state and entering a transition when a condition, which may use
imported values, becom es true. A continuous signal has lower priority than “norm al” signals, and may
be used to stim ulate a transition when an external data value changes. The operation implies a
num ber o f states and signal interworking.

By using composite operations, the num ber o f states and transitions in a process definition may be
reduced.

2.6 The concept o f option in S D L

W hen several sim ilar applications are specified or described by using SDL often the same process
definition may be applicable in several applications if only slightly m odified. The O P TIO N concept m akes it
possible to have optional parts in a process definition.

Also, in a specificationf it allows the representation o f equally acceptable behaviours from the specifier’s
viewpoint. The actual system will im plem ent one o f these alternatives.

3 Preliminaries to the language specification

The language specification o f SDL is contained in Recom m endations Z.101, Z.102, Z.103 and Z.104. In the
follow ing prelim inaries the m ethods and strategies used when defining the language are explained and guidelines
on how to read the R ecom m endations are given.

3.1 Strategy used in the language specification

SD L gives a choice o f two different syntactic form s to use when representing SDL descriptions; a G raphic
R epresentation (S D L /G R), and a textual Phrase R epresentation (SD L /P R). As they both are concrete represen ta­
tions o f the same SD L sem antics, they are equivalent from a sem antic po in t o f view. In order to ensure that they
are equivalent to each other, and thus transform able into each other, the definition o f the sem antics o f SDL is
strictly separated from the defin itions o f the different concrete syntaxes. The relations between the sem antics
definition o f SDL and the concrete syntactical form s may be represented as shown in Figure 11 /Z .100.

The sem antics o f SDL are defined by using an abstract syntax, with no concrete representation, associated
with rules for w ell-form edness and interpretation. This definition is called the C om m on Language M odel. Each o f
the concrete syntactical form s have then a definition o f its own syntactical form and o f its relationship to the
abstract syntax (i.e. how to transform into the abstract form). Using this approach there is only one definition o f
the sem antics o f SDL; each o f the concrete representation form s will inherit the semantics via its relations to the
abstract syntax. The approach also ensures that the concrete syntactical form s are equivalent. As the transfo rm a­
tions w ork both ways, either representation may be transform ed into the other form via the abstract syntax.

12 Fascicle VI.10 - Rec. Z.100

Semantics

Concrete
syntactical
forms

F I G U R E 11/Z.100

Structure of SDL language specifications

The in terpretation rules o f the com m on language model are defined in an operational m anner, i.e. The
definition describes how instances o f SDL concepts interpret their definition as an “abstract SDL m achine” . In
addition , a m athem atical definition o f SDL in denotational semantics is also provided (but is not part o f the
R ecom m endations). The m athem atical definition is closely related to the abstract syntax and structure o f the
com m on language model.

Follow ing this strategy in Recom m endations there will be, for each SDL concept, first a definition o f the
abstract syntax and its rules, then the rules o f how to interpret the concept. Finally, the concrete syntactical form s
to represent the concept will be given.

3.2 Terminology

In the Recom m endations, for each SDL concept, the same term will be used consistently throughout. To
distinguish occasions when a term refers to an SDL concept from those when a m ore general sense is m eant all
SDL concept term s will be in italics.

A glossary o f all SDL term s is appended to the R ecom m endations as Annex A. The glossary contains a
short exp lanation o f each term , and a reference to where it is defined.

3.3 Definition o f the S D L /G R

The S D L /G R is defined follow ing the schem a below:
— First the shape and content o f the symbols are defined.
— C onnectivity rules follow, when appropriate , i.e. what com positions o f symbols are allowed.
— Lastly, the relations to the abstract syntax of the com m on language model are given.

3.4 Definition o f the S D L /P R

The S D L /P R is defined using syntax diagrams and additional rules in natural language. The definitions
follow the schema below:

— First the syntax is defined by diagram s and text.
— Then the relations to the abstract syntax o f the com m on language m odel are given.

3.4.1 Syn tax Diagrams

A syntax diagram consists o f term inal and non-term inal symbols connected by flow lines.

A term inal symbol contains a character or a sequence o f characters, and the generation rules are that when
passed in a path those characters should appear in the S D L /P R text.

Fascicle VI.10 — Rec. Z.100 13

A non-term inal symbol is a reference to another syntax diagram, having the nam e appearing in the
symbol. The generation rules are that when a non-term inal symbol appears in a diagram , the path leads into the
referenced diagram , and the path will not leave the non-term inal symbol until the referenced diagram is left.

All term inal symbols, non-term inal symbols and syntax diagrams have exactly one flow line leading to
them and exactly one flow line leading from them.

The graphic symbols used are shown in Figure 12/Z.100.

Terminal symbols
(round corners)

Non-terminal symbols
(sharp corners)

Flow line

▼ CCITT - 7 3 7 0 1

FIGURE 12/Z.100

Symbols in syntax diagrams

The S D L /P R syntax definition consists, on the “highest” level, o f one syntax diagram , the SYSTEM . This
diagram refers further, via non-term inals, to a set o f o ther diagram s. Any path, starting with the flow line leading
into this diagram and com ing out o f the diagram will on its path generate an S D L /P R text. The text will be
syntactically correct if the SDL syntax rules have been followed.

3.5 Common syntactic elements fo r S D L /G R and S D L /P R

For certain syntactic elem ents, the same concrete syntax is used for both S D L /G R and S D L /P R .

3.6 Structure o f the SD L Recommendations

Four R ecom m endations (Z.101 to Z.104) follow this R ecom m endation. The in tention is to guide users to
select a sub-set o f SDL appropria te for their applications and m ethodology.

SD L may be applied in m any fashions, supporting different purposes and methods. The m inim um SDL
sub-set which can be chosen is given in the Recom m endation Z.101.

Z.102
(Structures)

Z.103
(Procedures,

composite operations)

Z.104
(Data)

CCITT-73710

Z.100
(Introduction

Z.101
(Basic SDL)

FIGURE 13/Z.100

Structure of SDL Recommendations

14 Fascicle VI.10 - Rec. Z.100

R ecom m endations Z.102 to Z.104 contain extensions to the m inim um sub-set o f SDL, and should be
applied when appropriate. The extensions may be applied in any com bination.

Exam ples o f the use o f the concepts defined in the R ecom m endations are contained in Annexes. M ore
com prehensive exam ples o f the use o f SDL are also contained in the SDL User Guidelines.

The contents o f the follow ing R ecom m endations may be briefly sum m arized:

Z.101 Defines the basic concepts o f SDL. The R ecom m endation form s the m inim um sub-set o f SD L to
be applied. This sub-set o f SDL is sufficient for describing the behaviour o f systems.

Z.102 Defines additional structural concepts, used to describe large a n d /o r com plex systems. They can
be used both for describing the actual structure o f a system and to describe the system on several
levels o f abstraction.

Z.103 Defines the procedure concept, the composite operations, the macro concept, the option concept
and the state orientated pictorial extensions (S D L /P E). These concepts are defined independ­
ently o f each other, and may be applied in any com bination.

Z.104 C ertain data concepts which are considered predefined in Z.101 to Z.103 are defined in Z.104. It
should be noted tha t data may be used com pletely inform ally in SDL.

Z.104 also contains a definition for the SDL abstract data type concept.

In addition to these R ecom m endations, a set o f auxiliary docum ents is available, describing and
explaining the language w ithout having the status o f being a R ecom m endation. Some o f these docum ents are
annexed to the Recom m endations. The auxiliary docum ents are:

The fo rm a l definition o f S D L

This docum ent contains the m athem atical definition o f the sem antics o f SDL. The definition is
expressed in denotational sem antics (VDM , M ETA IV). It will shortly be available as a separate
d o cu m en t.’)

The S D L glossary

This docum ent contains all SDL terms. Each term has a short explanation and reference to where it is
defined in the R ecom m endations. The docum ent is Annex A to the Recom m endations, and appears in
Fascicle VI. 11 o f the Red Book.

The S D L abstract syntax sum m ary

This docum ent contains a sum m ary o f the com plete abstract syntax for the language. The abstract
syn tax is described in a short BNF-like form. The docum ent is Annex B to the R ecom m endations,
and appears in Fascicle VI. 11 o f the Red Book.

The SD L concrete syntax sum m ary

This docum ent contains a sum m ary o f all the concrete syntaxes of SDL; i.e. the G raphical R epresen­
ta tion (SD L /G R), the state orientated Pictorial Extension to the graphical form (S D L /P E) and the
textual Phrase R epresentation (SD L /P R). The docum ent is Annex C to the R ecom m endations, and
appears in Fascicle V I.11 o f the Red Book.

The SD L user guidelines

This docum ent exemplifies and explains the use o f SDL (without defining the language). It contains a
num ber o f examples and discussions on different usages o f SDL. Some o f the concepts defined in the
R ecom m endations which should be used with special care are also discussed in the User G uidelines.
The docum ent is A nnex D to the R ecom m endations and appears in Fascicle VI. 11 o f the Red Book.

The S D L course

This docum ent is intended as train ing in the use o f SDL. It is available as a separate docum ent.2)

Finally, in the inside back cover o f this fascicle, two tem plates are enclosed for use in draw ing the
graphical form s o f SDL. They contain all the recom m ended graphical symbols, in their recom m ended form at.

The form al defin ition of SD L will be obtainab le from the In ternational T elecom m unication U nion, G eneral Secretariat
— Sales Section, Place des N ations, CH-1211 G eneve 20 (Switzerland).

2) The SD L course will be available through the In ternational Sharing System for T raining, ITU Secretary G eneral —
Technical C ooperation D epartm ent, T rain ing D ivision, Place des N ations, CH-1211 G eneve 20 (Switzerland).

Fascicle VI.10 — Rec. Z.100 15

Recommendation Z.101

BASIC SDL

1 Introduction

This R ecom m endation defines the basic C C IT T Specification and D escription Language (SDL). The basis
for SDL is the concept o f com m unicating finite state m achines called processes. An SDL system is a set o f blocks.
Blocks are connected to each other and to the environment by channels. W ithin each block there are one or m ore
processes. These processes com m unicate with one another by signals and are assum ed to execute concurrently.

In defining the SDL, it was found useful to first define a com m on SDL model. This com m on model form s
an abstract basis for the concrete syntaxes and ties them together. The concrete syntaxes are just alternate m eans o f
representing the concepts o f SDL. C urrently , there are two concrete syn taxes: S D L /G R and S D L /P R . Since these
two syntaxes represent the same SDL concepts, it is possible to m ap a system defined using one form of SDL
concrete syntax to the other concrete syntax.

In this R ecom m endation, the language is defined by first defining the com m on language m odel and then
defining the S D L /G R and S D L /P R concrete syntaxes.

2 Common language model

2.1 An introduction to the common model

In SDL, a system is a set o f blocks connected to each other, and to the environment o f the system, by
m eans o f channels (see Figure 1/Z.101). The channels are unidirectional.

E n v i r o n m e n t

CCITT-7 3 72 0

FIGURE 1/Z.101

SDL Model

The behaviour o f each block is m odelled by one or m ore processes. A process is defined by a process
definition.

Processes in teract with o ther processes or the environment by means o f signals. A signal is a flow o f data
conveying inform ation between processes. W hen a process outputs a signal, the signal will be transported to the
process it is directed to. The transporta tion m echanism for signals conveyed between processes in the same block is
the same as for signals conveyed between processes in different blocks. Channels represent the transporta tion route
for signals exchanged between blocks.

W hen a signal arrives at the process it is directed to, it will be retained outside the process until the
process is ready to receive the input signal. A signal will be consum ed when the destination process receives the
signal.

16 Fascicle VI.10 — Rec. Z.101

SDL m odels open systems, this m eans that the system may in teract with its environment. This in teraction
takes place solely by m eans o f conveying signals via the channels leading to and from the environment. The
environment is assum ed to act in an SDL-like fashion, i.e., the environment can be considered to contain a process
which outputs signals to the channels leading into the system and receives signals from the channels leading out o f
the system.

D uring its lifetime, a process is either in a state (waiting to receive one o f a set o f signals) or in a
transition (perform ing a sequence o f actions). W hen in a state only a specified set o f signals can be received by a
process. If one of these input signals is retained outside the process, it is received by the process. The receiving o f
the input m akes the data carried by the signal accessible for the process and starts a transition. D uring a transition,
the data o f the process m ay be m anipulated and signals may be output. The transition will end with the process
entering a new state o r with a stop.

A stop causes the process to cease to exist.

C om m on to the system and its environment is the concept o f absolute tim e which is the same throughout
the system and the environment.

2.2 Abstract syntax

System definition

A system definition contains a system name, one or m ore block definitions, a set o f channel definitions
and a set o f signal definitions.

A system definition contains the signal definition for each signal nam e contained in the signal list
associated with each channel definition.

Block definition

A block definition contains a block name, one or m ore process definitions and may contain signal
definitions.

Each block definition contains the signal definition for each type o f signal in terchanged between
processes w ithin the block.

Channel definition

A channel definition contains a channel name, an origin block definition identifier, a destination block
definition identifier and a signal list. The signal list contains the identifier o f each type o f signal tha t
m ay be conveyed through the channel.

The origin block definition identifier and the destination block definition identifier associated with a
channel definition m ust be different and each m ust be the identifier o f a block definition in the system
definition or m ust be the environment.

The signal list associated with the channel definition contains at least one signal identifier.

S ignal definition

A signal definition contains a signal nam e and may contain a list o f data type names.

Process definition

A process definition con tains a process name, a pair o f integers and a process graph and may contain
a fo rm a l param eter list, variable definitions and viewing definitions.

Process graph

A process graph is a graph whose nodes are connected by directed arcs. An arc entering a node is
called an incom ing arc and an arc exiting the node is called an outgoing arc. A node having an arc as
an incom ing arc follows the node having the same arc as an outgoing arc.

The following categories o f node exist:

S ta te node
Input node
Task node
Output node
Decision node
Start node
Stop node
Create request node

Fascicle VI.10 - Rec. Z.101 17

The following rules define the connectivity o f a process graph :

1) Each process graph contains one and only one start node. The start node is followed by a
transition string. The start node does not follow any other node.

2) A transition string can be one o f the following:

a) null followed by either a state node or a stop n o d e ;
b) an action string followed by a transition s tr ing ;
c) a decision node.

3) An action string can be one o f the following:

a) a task node,
b) an output node,
c) a create request node.

4) A decision node is followed by two or m ore decision arcs.

5) A decision arc is a nam ed arc followed by a transition string.

6) A state node is followed by one or m ore input nodes.

7) An input node follows one and only one state node.

8) An input node is followed by a transition string.

9) The stop node has no nodes following it.

10) Each process graph has at most one stop node.

11) Each node is reachable from the start node.

S ta te node

A state node contains a state name and may contain a save-signal-set. S ta te nodes w ithin a process
graph have different names.

Input node

An input node contains a signal identifier and may contain an ordered set o f variable identifiers.

Save-signal-set

A save-signal-set contains signal identifiers.

Task node

A task node contains either a sequence o f statem ents or informal text.

S ta tem ent

A statem ent is either a set statement, a reset statem ent or an assignment statement.

Set statem ent

A set statem ent contains a time expression and a timer identifier.

Reset statem ent

A reset statem ent contains a timer identifier.

Assignm ent statem ent

An assignment statem ent contains a variable identifier, an assignment operator and an expression.

Output node

An output node contains a signal identifier, a destination expression and may contain an actual
param eter list.

Decision node

A decision node contains a question and has at least two outgoing arcs. Each outgoing arc has
associated with it a set o f one or m ore answers to the question. Every possible answer to the question
should be associated with one and only one arc. A question is either an expression or informal text. An
answer is either a value identifier or informal text.

Fascicle VI.10 - Rec. Z.101

Create request node

A create request node contains a process definition identifier and may contain an actual param eter list.

D ata type

Predefined data types exist for types : natural, integer, real, character, charstring, Boolean, time,
duration, timer and process instance identifier. They are defined in Recom m endation Z.104.

Variable definition

A variable definition contains a variable nam e and a data type identifier and may contain a reveal
attribute.

Formal param eter list

A fo rm a l param eter list is an ordered set o f fo rm a l parameters.

Formal param eter

A fo rm a l parameter contains a fo rm a l param eter name and a type identifier.

Actual param eter list

An actual param eter list is an ordered set o f actual parameters.

Actual param eter

An actual param eter is an expression.

View definition

A view definition contains a variable identifier, a data type identifier and a process definition identifier.

The variable m ust have a reveal attribute in the process definition referred to by the process definition
identifier. The revealing process definition referred to m ust belong to the same block as the viewing
process definition.

Expression

An expression is either a value identifier or a variable identifier o r an operation.

Operation

An operation contains either a viewing expression or an operator and a list o f one or m ore expressions.

Viewing expression

A viewing expression is com posed o f a viewing operator plus a variable name and process instance
identifier.

2.3 Interpretation rules

2.3.1 System

A system is a concrete entity, such as a telephone exchange, and is an instantiation o f a system type
defined by a system definition. A system is separated from its environment by a system boundary and contains a set
o f blocks. C om m unication between the system and its environment or between blocks w ithin the system can only
take place using signals. W ithin a system, these signals are conveyed on channels. The channels connect blocks to
one another or to the system boundary.

The system possess a param eterless function o f type time called N OW , yielding the current time. The
current time is im m ediately available throughout the system and its environment. N O W can be used in expressions
in any process in the system.

2.3.2 Channel

W ithin the system, there is a channel for each channel definition in the system definition. A channel is a
transporta tion route for signals. The route is unidirectional. The end points o f the channel are either a block o r the
system boundary. At least one o f the end points o f the channel m ust be at a block. If both end points are at blocks,
the blocks m ust be different. The channel definition contains the list o f all signals that may be conveyed on the
channel.

Fascicle VI.10 — Rec. Z.101 19

W hen a signal is output to the channel, the signal is conveyed to the destination block. The order o f the
signals ou tpu t to the channel and the order o f the signals received from the channel is the same. If two or m ore
signals arrive at a channel sim ultaneously, they are arbitrarily ordered.

2.3.3 Block

W ithin the system, there is a block for each block definition in the system definition. A block is an object o f
m anageable size in which one or m ore processes can be interpreted. There are 2 com m unication m echanism s
between processes w ithin the sam e b lock: signals and shared values.

W hen a signal arrives at the block from a channel, the block delivers the signal to the input port o f the
process addressed by the process identifier in the signal.

W hen a signal is ou tpu t by a process w ithin the block, it is delivered to the process addressed by the
process identifier in the signal. If the addressed process is w ithin the same block, the block delivers the signal to its
input port. If the addressed process is in another block, the block delivers the signal to the channel able to convey
tha t signal.

Shared values allow a process to view a revealed variable in another process. Only the revealing process is
allow ed to change the value o f the variable. The viewing process receives the current value o f the revealed variable
by using a viewing operator.

2.3.4 Signal

A signal is a flow o f data conveying in form ation between processes and is an instan tiation o f a signal
type defined by a signal definition. A signal can be sent by either the system environment or a process and is always
directed to either a process or the environment.

Each signal contains the signal identifier in the signal definition, an origin process instance identifier and a
destination process instance identifier. In addition , other values may be conveyed by variables in a signal. In a
signal, there is one variable for each nam e in the data type list in the signal definition.

2.3.5 Process

A process is a com m unicating finite state m achine and is an instantiation o f a process type defined by a
process definition. W ithin a block there may be zero or m ore processes for each process definition. Processes can
exist from the tim e that a system is created or can be created by create request actions and may cease to exist by
perform ing stop actions. A process executes independently from and concurrently with other processes in the
system.

All processes in the system possess four predefined variables o f process identifier type called: SELF,
PA R E N T , O F F S P R IN G and SEN D E R . These variables are process instance identifiers for:

— the process (SELF);

— the creating process (PA R EN T);

— the m ost recently created process (O F FS P R IN G);

— the process from which the last input signal has been received (SEN D ER).

These variables can be used in expressions but cannot explicitly be assigned a value. For all processes
present at system initialization, PA R E N T is given the same distinct value, which is different from the value o f
SELF for any process.

Signals to the process are input signals and signals from the process are output signals. An input signal is
an entity intended to invoke the process and to com m unicate inform ation to it. An output signal is intended to
invoke another process and to com m unicate in form ation to it.

The set o f signal identifiers tha t appear attached to input nodes o f the process graph denotes the set o f
valid input signal identifiers for this process definition. For each state, all input signal identifiers appear in either a
save-signal-set or an inpu t node.

The pair o f integers contained in the process definition define the num ber o f instances o f the process
which are created when the system is created and the m axim um num ber o f sim ultaneous instances o f the same
process type. W hen a system is created, the initial processes are created in a random order and no actual
param eters are passed to the process.

20 Fascicle VI.10 — Rec. Z.101

W hen the process is created, it is given an em pty input port, and variables are created with undefined
values. Then the process starts by interpreting the start node in the process graph.

W hen a valid input signal arrives at the process, it is put into the input port o f the process. Each process
contains a single input port. The input port m ay retain any num ber o f input signals so that several input signals are
queued for the process. The set o f retained signals are ordered in the queue according to their arrival time. If tw o
or m ore signals arrive sim ultaneously, they are arbitrarily ordered. A ttached to the input port is a possibly em pty
set o f timers. Each timer contains a value o f the time type.

The process is either waiting in a state o r active perform ing a transition. For each state, there is a
save-signal-set. W hen waiting in a state, the first input signal whose identifier is no t in the save-signal-set is taken
from the queue and received by the process. The input port will continuously com pare NOW with the tim er, if any
exists, having the lowest value greater than zero. W hen the value o f NOW is greater than or equal to the value o f
this tim er, a signal with the sam e nam e as this tim er is placed in the queue and then the tim er is given the value o f
zero.

W hen a process is waiting, it is always in a unique state denoted by the corresponding state node in the
process graph. W hen an input signal is received, the process becomes active, interprets the input node having the
same nam e as the input signal and perform s a transition leading to a new state.

2.3.6 Process graph

A start node is in terpreted as a start action. The start action causes the node following the start node to
be interpreted.

An input node is interpreted as an input action which receives and consum es the given signal and then the
node following the input node is interpreted. The consum ption o f the signal m akes the inform ation conveyed by
the signal available to the process. The variables in the input node are assigned the values o f the corresponding
variables in the signal. If there is no variable in the input node for a variable in the signal, the value o f the variable
is discarded. S E N D E R in the receiving process is given the value o f the origin process instance identifier carried by
the signal.

A task node is in terpreted as a task action. The task action is the in terpretation o f a sequence of
statem ents or informal text. W hen the action is com plete, the node following the task node is interpreted.

A set statem ent will cause a reset statem ent on the timer given in the statem ent and will assign the given
time value to the timer.

A reset statem ent will set the tim e value o f the tim er to zero. If any signals having the same nam e as the
tim er are present in the input queue, they will be rem oved from the input queue and will be discarded. All signals
in the queue with the same identifier as the tim er signal identifier are rem oved from the queue and discarded.

An assignment statem ent is inform ally in terpreted as the value o f the variable in the assignment statem ent
takes on the value o f the expression in the assignment statement.

A n output node is interpreted as an output action which creates a signal and delivers it to the block. Then
the node following the output node is interpreted. The output signal is an instantiation o f a signal type defined by
the signal definition indicated by the signal identifier in the output node. The variables in the signal are assigned the
values o f the actual parameters in the output node. I f there is no actual param eter in the output node for a variable
in the signal, the variable has undefined value. The origin process instance identifier carried by the signal is assigned
the value o f the SELF variable. The destination process instance identifier of the signal is assigned the value o f the
destination expression contained in the output node.

A decision node is in terpreted as a decision action which answers a question. The arc which m atches the
answer to the question is chosen and the node following this arc is interpreted.

A state node is in terpreted as the term ination o f a transition by giving the process a new sta te as denoted
by the nam e contained in the node. The input port is inform ed that the process is now waiting in a sta te and is also
presented the save-signal-set attached to the interpreted state node. After this, the process waits un til given a new
input signal.

Fascicle VI.10 — Rec. Z.101 21

A stop node is in terpreted as the im m ediate term ination of the process. This means that the input signals
retained in the input port are discarded and tha t the variables created for the process, the input port and the process
will cease to exist.

A create request node is interpreted as a create request action. The create request action causes the creation
o f a process in the sam e block. The definition o f the process is in the same block and is identified by the process
identifier in the create request node. As part o f the create request action, the created process's PA R EN T variable is
given the value o f the creating process's SELF variable. The created process's SELF variable and the creating
process's O F F S P R IN G variable are both assigned the same unique process instance identifier value. The fo rm al
parameters in the newly created process are assigned the values o f the actual parameters contained in the create
request node.

2.3.7 Data type

The predefined data types are used in the norm al sense.

2.3.8 Variable

A variable can be assigned a value. The contents of the value assigned to a variable can be later retrieved
from the variable. A variable also has a data type which restricts the class o f values which can be assigned to the
variable.

W ithin a process, there is a variable for each variable definition in the process definition. The value o f a
variable can only be m odified by the process that defines the variable. The value o f a variable is know n only to the
process that defines the variable unless the variable has the reveal attribute. The reveal attribute allows other
processes in the block to view a variable. Variables possess the same lifetime as the declaring process (i.e. they are
created when the declaring process is created and they cease to exist when the declaring process ceases to exist).

W ithin a signal, there is an anonym ous variable for each occurrence o f each data type nam e in the signal
definition. The value o f the variable can only be assigned in the output node that created the signal and can only be
know n in the input node that receives and consum es the signal. These variables have a lifetime bounded by the
lifetim e o f the signal.

2.3.9 Expression

An expression is inform ally interpreted as producing a value.

2.3.10 View definition

A view definition defines a variable name which may only be used in a viewing expression to obtain the
value o f a variable owned by another process.

2.3.11 Viewing expression

The value o f a viewing expression is the value o f the variable identified by the variable nam e and process
instance identifier in the viewing expression.

3 SDL/G R

A system definition is represented in S D L /G R syntax by:

— a block interaction diagram which contains the system nam e and the channel definitions and which
identifies the block definitions. The block interaction diagram also identifies the process definitions
which model each block’s behaviour. The block interaction diagram may denote: 1) the lists o f signals
that pass between processes in the sam e block ; 2) the lists o f signals conveyed by channels between
blocks, and 3) the creation o f new process instances by other process instances;

— process diagrams which define the behaviour o f each process and are the graphic representations o f
the process definitions. Process diagrams may contain variable definitions, fo rm a l parameters and view
defin itions;

22 Fascicle VI.10 — Rec. Z.101

— signal lists which nam e the signals conveyed by a channel or from one process to another inside the
block. These may be incorporated in the block interaction diagram, using signal list symbols, or
presented as separate lists in whatever form is felt suitable;

- signal definitions which give the data types and order o f the data values which can be contained in a
signal, for each signal nam ed in the signal lists. These are specified using S D L /P R syntax.

In a system definition, nam es and identifiers may be used. Nam es are specified using S D L /P R syntax.
Identifiers consist o f a name together with qualifiers. A qualifier is the entity type with which the nam e is
associated, and it represents the hierarchy level o f the entity which is being identified. No two or m ore entities
m ay have the sam e identifier. In S D L /G R , the qualifiers o f names may be inferred from the context, but whenever
they are used, they are specified using S D L /P R syntax.

3.1 Block interaction diagrams

The block interaction diagram for a system contains a system name, a set o f block symbols, environment
symbols, and a set o f channel symbols and signal list symbols.

3.1.1 Symbols

The recom m ended symbols appear in Figure 2/Z.101 below.

Block symbol (a rectangle)

Process symbol
(a rectangle with corners
clipped at 45 degrees)

Signal list symbol
(square brackets)

Environment symbol Environment

Create symbol

Signal route symbol (arrow)

Channel symbol

CCITT-73730

FIG U R E 2/Z.101

Block interaction diagram symbols

Fascicle VI.10 - Rec. Z.101 23

— The environment symbol represents the system environment and may appear a num ber o f times.

— A block symbol contains a name, a nonem pty set o f process symbols, signal route symbols and may
contain create symbols and signal list symbols.

— A process symbol contains a process name and may contain a fo rm a l param eter list symbol. The
process nam e is the same as the nam e contained in the process definition which describes the behaviour
o f the process. The fo rm a l param eter list symbol contains a list o f the names o f the fo rm a l parameters
which are initialized either when the system is created or when the process instance is dynam ically
created.

— A pair o f integer values may be associated with a process symbol, the first value represents the num ber
o f instances o f the process which exist when the system is created, the second value represents the
m axim um num ber o f sim ultaneous instances o f this process type. The two values are positioned in the
top right-hand corner o f the process symbol.

The default for the first value is one. The default for the second value is infinity. This pair o f integers
is specified using the S D L /P R syntax. W hen one o f the integers is not specified, the default value is
chosen for it.

— A channel symbol has a channel name attached to it. The channel symbol has an origin end which is
connected to a block symbol and a destination end which is connected to another block symbol.
A lternatively, either the origin or the destination connection (but not both) may be connected to an
environment symbol instead o f a block symbol. A signal list symbol may be placed beside a channel
symbol to identify the signals carried by the channel.

— A signal route symbol in a block is associated with a signal list symbol. A signal route symbol leads
either from one process to another, or from a process to the origin end o f a channel (at the block
boundary), or from the destination end o f a channel (at the block boundary) to a process.

— A signal list in a block interaction diagram is a list o f names, the whole enclosed in the signal list
symbol (i.e., in square brackets). The signal list may itself have a name, which is written above the
symbol. Entries in the list (which are separated by com m as and can be put in colum ns or rows) are the
names o f individual signal definitions and the names o f other signal lists. W ithin the list, signal list
names are distinguished from individual signal definition names by enclosing each signal list name in a
further pair o f square brackets. If it is decided to include signal lists on the block interaction diagram
using signal list symbols, all signal lists should be included in the diagram . Figure 3/Z.101 shows
exam ples o f signal lists.

3.1.2 Relationship between S D L /G R block interaction diagrams and the abstract syntax and the use o f symbols

signal 1,

signal 2,

signal 3,

[list 1],

signal 4

[list 1]

signal 5,

signal 6,

signal 7

FIG URE 3/Z.101

Examples of signal lists in block interaction diagrams

24 Fascicle VI. 10 — Rec. Z.101

— Create symbols lead from one process symbol to another process symbol. The form er process symbol
represents the “creating” process. The latter process symbol represents the “created” process.

3.1.3 Drawing rules

— Channel symbols are connected to the boundaries o f block symbols with which they are associated.
Channel symbols should jo in block symbol boundaries at 90°. If necessary, channel symbols may
contain 90° bends. A channel symbol includes an arrow head to show the direction o f the flow o f
signals along the channel.

— Signal route symbols are connected to the boundaries of block symbols or process symbols with which
they are associated. Signal route symbols jo in these boundaries preferably at 90°. If necessary, signal
route symbols m ay contain 90° bends. Several signal route symbols m ay converge at the origin end o f a
channel (at the block boundary). Several signal route symbols may diverge from the destination end o f
a channel at the block boundary . A signal route symbol includes an arrow head at one end to show the
d irection o f the flow of signals.

— Create symbols are connected to process symbol boundaries by dotted lines which meet the process
symbol boundaries at 90°. A rrow heads are used on these connecting lines so tha t the “creating”
process symbol points to the “created” process symbol.

— The preferred orientation o f symbols is shown in Figure 2/Z.101.

— The size o f symbols may be chosen by the user.

— Sym bol boundaries m ust no t overlay or cross. An exception to this rule applies for the channel
symbols and signal route symbols which m ay cross each other. There is no logical relationship between
channel symbols or signal route symbols which do cross.

3.2 Signal lists

The union o f all signal nam es in the signal lists associated with signal route symbols connected to a given
process definition equals the set o f valid input signal names for that process.

The union o f all signal nam es in the signal lists associated with signal route symbols connected to the
origin end o f a channel equals the list o f names in the signal route list associated with that channel, and equals the
union o f all signal names in the signal route lists associated with signal symbols (in the channel destination block)
connected to the destination end o f that channel.

3.3 Process diagrams

3.3.1 Symbols

The behaviour o f a process is represented in graphical form by a process diagram. The nam e o f the process
diagram is the same as the process nam e in the process definition which it represents. Figure 4/Z.101 shows the
symbols that are used in the process diagrams o f S D L /G R form.

3.3.2 Relationship between S D L /G R process diagrams and the SD L abstract syntax and the use o f symbols

Each process diagram symbol listed in Figure 4/Z.101 represents the equivalently nam ed node o f
the process graph in the abstract syntax. Flow lines, which connect symbols, represent the directed arcs which
connect nodes. A llow able connections of symbols by flow lines in an SD L-G R process diagram are show n in
Figure 5/Z.101.

The fo rm a l parameters, valid input signal set, variable definitions, view definitions, expressions and viewing
expressions are specified using S D L /P R syntax.

A start symbol represents a start node (see also § 2.2.3.3). The start symbol contains the nam e o f the
process it describes.

A stop symbol represents the stop node.

Fascicle VI.10 — Rec. Z.101 25

S ta r t sy m b o l S to p sy m b o l X

State symbol
Nextstate symbol Input symbol

Task symbol Output symbol

Create request symbol

Decision symbol

Save symbol

Flow line

In-connector

Out-connector

CCITT - 73741

FIGURE 4/Z.101

SD L/G R process diagram symbols

26 Fascicle VI.10 - Rec. Z.101

FIGURE 5/Z.101

Allowable connections of symbols by flowlines in an SD L/G R process diagram

Fascicle VI.10 — Rec. Z.101 27

A state symbol represents one or m ore state nodes and contains one or m ore state names separated by
com m as, or an asterisk, or an asterisk followed by a list o f state names w ithin brackets.

A save symbol represents the set o f saved signals attached to a state node. It contains one or more signal
names, separated by com m as, or an asterisk.

An input sym bol represents one or m ore input nodes. Signal names which are contained in the input symbol
are separated by com m as. Each o f these signal nam es gives the nam e o f one o f the input nodes which this input
sym bol represents.

A task symbol represents a task node. The task symbol contains task name and may contain either a
sequence o f statem ents or inform al text.

A create request symbol represents a create request node. It contains a create request action as specified in
S D L /P R syntax.

A decision symbol represents a decision node. It contains a question and may contain a decision name. Two
or m ore flo w lines lead from the decision symbol to other symbols', each such flow line has attached to it
(i.e., w ritten alongside or inserted in a break in the flow line) its own answer name. The ELSE answer implies an
answer which is for any answer tha t is not covered by any other answer name.

An output symbol represents one or m ore output nodes. Signal names which are contained in the output
sym bol are separated by commas. Each o f these signal names gives the nam e o f an output node which this output
sym bol represents. The destination process instance identifier can optionally be given in the output symbol using the
S D L /P R syntax (that is, a TO keyw ord followed by an expression o f the type process instance identifier, the TO
keyw ord is after the list o f signal nam es). W here the destination process o f a signal cannot be uniquely determ ined
because neither the signal nam e nor the context is sufficient to allow this, the process instance identifier is required.

A nextstate symbol represents an arc connecting the last node in a transition string to the following state
node.

A flo w line connecting two other symbols (representing nodes) represents the arc connecting the
corresponding nodes.

A comment symbol is used to attach informal text to any other symbol.

An in-connector contains a label and represents the continuation o f a flow line from a corresponding
out-connector which contains the sam e label.

3.3.3 Graphical conventions

3.3.3.1 Implicit transitions

The abstract syntax of SDL requires that either a save or an input leading to a transition be specified for
every signal in the valid input signal set o f a process for every state o f the process. S D L /G R provides im plicit
“nu ll” transitions for any signals for which neither transitions nor saves are given explicitly. A null transition is
equivalent to a connection from a state symbol to an input symbol which is then connected back to the same state
symbol. For a given state, S D L /G R thus discards any signals which are not explicitly m entioned in conjunction
with that state. Also the data contained by such signals is discarded.

If no start symbol appears in an S D L /G R process diagram, an im plicit start symbol which is directly
connected to the “starting” state symbol is assumed. The starting state may be identified by im plication from its
name, o r by a comment.

3.3.3.2 Flow lines and connectors

W here two or m ore symbols are followed by a single symbol, the flow lines leading to that symbol
converge. This convergence m ay appear as one flo w line flowing into another or as more than one out-connector
associated with a single in-connector, or as separate flo w lines entering the same symbol.

W here a symbol is follow ed by two or m ore o ther symbols, a flow line leading from tha t symbol may
diverge into two or m ore flow lines.

A rrow heads are required whenever two flo w lines converge and whenever a flow line enters an out-
connector or a state symbol. A rrow heads are p rohibited on flow lines entering input symbols. In all o ther
circum stances, the arrow heads are optional.

28 Fascicle VI.10 — Rec. Z.101

W henever state symbols, o r connector symbols, appear having the sam e name, they are considered to
represent the same sem antic entity. The resulting entity is considered to have the union o f all incom ing and
outcom ing flow lines from all its m ultiple representations. W henever one or m ore stop symbols appear on the same
process diagram, they all represent the stop node.

3.3.3.3 Multiple appearance

3.3.3.4 Shorthand notation

A shorthand notation is provided to allow reference to all, or all other signals, or states, in either the
input, save or state symbol.

An input symbol attached to a state and containing an “ *” (asterisk) indicates that the following transition
applies to all incom ing signals that do not appear otherwise in input symbols or save symbols attached to any
appearance o f that state symbol. Only one input symbol or one save symbol contain ing an is allowed for any
state.

A save sym bol attached to a state and containing an indicates that all signals that do no t appear in
input symbols attached to any appearance of tha t state symbol should be saved.

An “ *” in a state symbol denotes all states in that process and indicates that the following transitions or
saves should be in terpreted in every state. An followed by a list o f state nam es in brackets indicates that the
follow ing transitions or saves should be interpreted in every state except for those listed. Such state symbols m ust
not have any incom ing flow lines.

An “ —” in a nextstate symbol m eans that the following state is the sam e state from which the current
transition was started. The “ —” is not allowed in a nextstate symbol that follows the start symbol.

A nextstate symbol and a state symbol can be merged only if they represent the same state symbol.

3.3.3.5 Miscellaneous
\

All symbols o f the same type shall preferably be o f the same size within any one diagram .

The preferred orien tation o f symbols is horizontal and the preferred aspect ratio of symbols is 2:1.

M irror images o f input and output symbols are allowed.

Flow lines are horizontal or vertical and have sharp corners.

Flow lines that cross do not have a logical relationship.

The text associated with a symbol should be placed within that symbol where practical.

3.3.3.6 SD L template

A tem plate suitable for hand draw ing the basic set o f SDL symbols is enclosed with the SDL user
guidelines.

3.4 Text extension symbol

A text extension symbol may be attached to all S D L /G R symbols. The text contained in this sym bol is to
be regarded as contained in the symbol to which the text extension symbol is attached. The text extension symbol is
shown in Figure 6/Z .101.

Any SDL/GR
symbol

<T ext that is associated
with the SDL/GR symbol >

FIG U R E 6/Z.101

Text extension symbol

Fascicle VI.10 — Rec. Z.101 29

3.5 Comments in S D L /G R

In all S D L /G R diagram s, comments may be inserted wherever the user finds it appropriate. The comments
may be inserted by using either the S D L /G R comment symbol (see Figure 7/Z .101) or the S D L /P R syntax for
comments (see § 4.3.2, lexical rule 7).

< comment text >

FIGURE 7/Z.101

Comment symbol

I comment
j example

FIGURE 8/Z.101

Examples of comments in SDL/G R

4 Linear syntax

4.1 General

This section defines S D L /P R and relates it to the com m on language model (see § 2).

A system definition in the S D L /P R syntax is represented by a sequence o f statem ents bounded by the
words SYSTEM and EN D SY STEM .

The detailed rules for the S D L /P R syntax are contained in the syntax diagrams (see § 4.3).

Reference to a nam ed entity outside its definition is m ade by an identifier. The identifier is com posed o f a
nam e and an op tional qualifying part. The qualifying part must be used when the name alone will not uniquely
determ ine the item being referred to.

4.2 Keywords

S D L /P R uses a num ber o f keywords to express SDL concepts as defined in the abstract syntax. Some of
the keyw ords are used in pairs to reflect the structuring o f SDL into S D L /P R .

30 Fascicle VI.10 - Rec. Z.101

4.2.1 Paired structuring keywords concerned with definitions

The word “em brace” is used with these word pairs to indicate their role as delimiters.

SYSTEM em brace the concept o f system definition (the S D L /P R representation o f a system
EN D SY STEM starts with the keyword SYSTEM and ends with the keyword EN DSY STEM).

BLOCK em brace the concept o f a block definition.
EN D B L O C K

PRO CESS em brace the concept o f a process definition.
EN D PR O C ESS

4.2.2 Single keywords concerned with definitions

The keywords in this paragraph are used to indicate that a definition follows.

D CL

V IEW ED

SIG N A L

C H A N N E L

FPA R

D U R A T IO N
TIM E
T IM E R
N A TU R A L
IN T E G E R
REA L
C H A R S T R IN G
C H A R A C T E R
BOOLEAN
PID

VIEW

SET

RESET

SYSTEM
BLOCK
PROCESS

introduces the representation o f the variable definition. The keyword R EV EA LED
is used within a D CL statem ent to identify revealed variables.

in troduces the representation o f the view definition.

in troduces the representation o f the signal definition.

introduces the representation of the channel definition. The keyword FRO M is used
w ithin the C H A N N E L definition to indicate the origin block o f the channel and
the keyword TO is used to indicate the destination block. The keyword ENV is
used to refer to the environment. The keyword W ITH is followed by the list o f the
signals carried by the channels.

introduces the representation o f the fo rm a l parameter definition.

represent the predefined data types.

introduces the representation of the viewing expression. It is used w ithin an
expression wherever a variable declared as V IEW ED is used.

in troduces the representation of the set statement.

introduces the representation of the reset statement.

in troduce the qualifying part o f an identifier.

4.2.3 Keywords associated with nodes in a process graph

The process graph in the abstract syntax consists o f nodes connected by directed arcs.

Keywords are chosen to correspond to nodes, and the arcs which connect nodes in the abstract syn tax are
represented by the ordering in which the keywords occur (see § 4.2.5).

START represents the start node. If this keyword is not present, the first STATE keyw ord,
follow ing PROCESS, represents the starting state.

STATE introduces the representation o f one or m ore state nodes. The save-signal-set
attached to a state node is represented by the keyword SAVE followed by one or
m ore signal identifiers.

Fascicle VI.10 — Rec. Z.101 31

IN PU T introduces the representation of one or m ore input nodes.

TASK introduces the representation of a task node.

O U TPU T introduces the representation o f one or more output nodes. The destination process
instance identifier can optionally be given by the keyword TO followed by an
expression which yields a process instance identifier value. W here the signal destina­
tion canno t be uniquely determ ined, the keyword TO is required.

D E C ISIO N em brace the concepts of a decision node. The keyw ord ELSE is used to represent
E N D D E C IS IO N the answer for all cases not explicitly nam ed.

C R EA TE introduces the representation o f a create request node.

STOP represents a stop node.

4.2.4 Keywords associated with arcs

JO IN represents an arc between nodes that are not state nodes. The first node is generally
represented by the keyword imm ediately before the keyword JO IN , the second
node is always identified by having the same label identifier as the keyword JO IN .
There are some exceptions to this general explanation as far as the first node is
concerned (see § 4.2.5).

If the second node is another JO IN , the arc is connected with the node that this
JO IN refers to.

If the keyword having the jo in label is N EXTSTATE, the second node is the state
w ith the same nam e (the N EXTSTATE rules are valid).

N EX TSTA TE represents an arc. The first node o f the arc is represented by the
keyword im m ediately before the keyword NEXTSTATE, the second node is the
state with the same name.

4.2.5 Representation o f arcs in S D L /P R

The representation ru le 'o f an arc in S D L /P R is given by the keywords ordering.

There are some exceptions to this general m eaning in case o f keywords such as JO IN and N EX TSTA TE
as it is said in the previous paragraph.

M oreover, when a keyword (associated with a node or an arc) im m ediately follows an answer, the first
node o f the arc is the preceding m atching decision.

If the keyw ord im m ediately before a keyword associated with a node or an arc is E N D D E C IS IO N , the
first nodes o f the arcs are represented by the last keywords in all transition strings o f the decision having no
term inator statements.

The last keyword o f a decision branch represents a node not connected with the keyword that follows the
next result name, but connected with the keyword after the E N D D E C IS IO N . This rule is clearly not valid if the
last keyword of a decision b ranch is a term inator statem ent.

4.3 Reserved words in S D L /P R

Certain words are reserved in S D L /P R and may not be used as names. The list o f reserved words is found
in A nnex C.2 to R ecom m endations Z.100 to Z.104.

32 Fascicle VI.10 - Rec. Z.101

Syn tax diagrams

SYSTEM DEFINITION

BLOCK DEFINITION

Fascicle VI.10 - Rec. Z.101

CHANNEL DEFINITION

CHANNEL)------- >

FROM >

Channel
n a m e

Block
iden t -K§> Block

ident

-s(e n v) ? (to) ------- :>
Block
ident

WITH >
signal

; * list
CCITT - 82 360

SIGNAL LIST

Signal
ident

o

SIGNAL DEFINITION

SIGNAL y Signal type
listn a m e — ? <D

O

Fascicle VI.10 — Rec. Z.101

PROCESS DEFINITION

X PROCESS D H
P r o c e s s
n a m e

n u m b e r of
i n s t a n c e s

end

formal
p a r a m e t e r s

valid input
signal s e t

var iable
definition

viewed
definition

p r o c e s s
body

< ENDPROCESS H 1- *>
P r o c e s s
n a m e

VALID INPUT SIGNAL SET

- G SIGNALSET Signal
ident

o
t < l >

TYPE LIST

PROCESS BODY

Fascicle VI.10 — Rec. Z.101

STATE BODY

s t a t e
list

end

input
list

s end

save
list

N. end

t rans i t ion
string

t e r m i n a t o r
s t a t e m e n t

CCITT - 7 6 651

STATE LIST

INPUT LIST

Fascicle VI.10 — Rec. Z.101

SAVE LIST

o
signal
ident

-o CCITT - 7 6 7 0 0

VARIABLE DEFINITION

— ^ DCL)■

- ^ r ev eal ed) - ?

O

o

variable type

n a m e ident

VIEW DEFINITION

NUMBER OF INSTANCES
 >-----------

<<>
dec imal
in teger o

-------->----------

dec im al
in teger < D

FORMAL PARAMETERS

Variable Type
ident ident

o

<D

O CCITT - 76 760

Fascicle VI.10 — Rec. Z.101

TRANSITION STRING

ac t ion
s t a t e m e n t

CCITT - 7 6 7 7 0

ACTION STATEMENT

ACTION

TASK

TASK ^ — r- s ta tem en t

Informal
text

o* CCITT - 7 6 8 0 0

38 Fascicle VI.10 - Rec. Z.101

STATEMENT

INFORMAL TEXT

Nam e
str ing

C h a r a c t e r
s t ring

CCITT - 7 6 8 2 0

TERMINATOR STATEMENT

TERMINATOR

O

^ (n e x t s t a t e)-

— JOIN ~)-----------*

S ta te
ident

label

\ t

— s t o p y

Fascicle VI.10 - Rec. Z.101

OUTPUT

END

co m m e n t o

CREATE REQUEST

f\ X
Process actual

param ete rs; A ident
-----------7

CCITT - 76870

ACTUAL PARAMETERS

Expression

o

< D

ASSIGNMENT STATEMENT

N Variable
S

ident A Expression

RESET STATEMENT

 P r e s e t) < T) -\
Timer (

J ident
-------- \<2>

Fascicle VI.10 - Rec. Z.101

SET STATEMENT

expression H G H £ ~ K D
CCITT - 769S 0

DECISION

-^DECISION) - Question End

Answer Transition
string

Term ina to r ' /

£ Answer H O

< n > ^ o — *

A

Transition
string

Transition
string

T erm ina to r

^ Te rm ina to r

< ENDDECISION >

QUESTION

ANSWER

— d >
Value
set

Informal
text

x>>
CCITT - 77001

Fascicle VI.10 — Rec. Z.101

VIEWING OPERATOR

X £ >
\ N Variable

ident
Pid

exp res s ion

LABEL

Label
string

CCITT - 77150

COMMENT

— « COMMENT \ S
C haracter

/ > string s
CCITT - 77160

IDENT

Qualifier v Name

NAME

Name Character >f
string string

CCITT - 77110

4.4.1 Lexical units

4.4.1.1 Lexical rules

— All the punctuation m arks [e.g. , . ; ’ : ! = ()] and operation symbols (e.g. + , < , > . . .) are
lexical units which may take the place o f spaces.

— Two lexical units m ust be separated by one or m ore spaces.

— Keyw ords belong to the same lexical category as nam estring, and they are reserved.

— O utside lexical units several spaces have the same “m eaning” as one space.

— T abulation characters (VT, HT, CR, BS . . .) may be considered as spaces.

— All letters and nationals are always interpreted as if uppercase, except with a charstring.

— W herever spaces m ay occur com m ents may be inserted delim ited by ’ / * ’ and these com m ents
have the same m eaning as one space. The com m ent must not contain the special sequence ’* / ’.

42 Fascicle VI.10 - Rec. Z.101

4.4.1.2 Syntax diagrams

LABEL STRING

CHARACTER STRING

- O
Letter

National

Decimal
digit

Special

Lo o

o

CCITT - 7 7 2 4 0

Fascicle VI.10 - Rec. Z.101 43

NAME STRING

QUALIFIER

N.
Structu ra l Entity type

--- } name S name
CCITT - 77 210

STRUCTURAL NAME

SYSTEM) ------ *

BLOCK) ------ >

PROCESS) ------ *

SIGNAL) ------ ^

CHANNEL) ------ >

 <2 >

System
name

Block
name

Process
name

Signal
name

Channel
name

CCITT - 8 2 4 1 0

44 Fascicle VI.10 — Rec. Z.101

ENTITY TYPE NAME

DECIMAL INTEGER

Decimal
digit

CCITT - 77 250

DECIMAL DIGIT

— >

7 (8

Fascicle VI.10 — Rec. Z.101

LETTER

* (A) (|) (C) (D) (E) (F) (G) (^) (|) (J) (K) (^ (^ >

(n) (o) (p) (q) (r) (s) (t) (u) (v) (w) (x) (^) (z)
---------- >

C C in - 7 7260

SPECIAL

CCITT - 77 290

NATIONAL

The above referenced positions
refer to the positions in the CCITT
International Alphabet No. 5
reserved for national use

Fascicle VI.10 - Rec. Z.101

PREDEFINED DATA TYPE NAMES

Recommendation Z.102

ST R U C T U R A L C O N C E P T S IN S D L

1 Introduction

This Recom m endation defines a num ber of concepts needed to handle hierarchical structures in SDL. The
basis for these concepts is the SDL as defined in R ecom m endation Z.101 and the defined concepts are strict
additions to those defined in R ecom m endation Z.101. There is no conflict between the definitions contained in
this R ecom m endation and those contained in Recom m endations Z.103 and Z.104.

The intention with the concepts in troduced in this R ecom m endation is to provide the user o f SDL with
m eans to describe large a n d /o r com plex systems. The SDL as defined in Z.101 is suitable for specifying or
describing relatively small systems which m ay be understood and handled at a single level o f blocks. W hen a
larger, o r com plex system should be represented there is a need to partition the system specification or description
into m anageable units, which m ay be handled and understood independently. It is often suitable to perform the
partition in a num ber o f steps, resulting in a hierarchical structure of units representing the system.

There is also a need to use structural concepts in order to specify or describe the required or actual
structure o f a system.

Fascicle VI.10 - Rec. Z.102 47

This R ecom m endation defines concepts for the partitioning o f :

blocks in to sub-blocks, sub-channels and new channels,

channels in to blocks and channels,

processes in to sub-processes.

The concepts are such that the resulting hierarchical structure, representing the system, will provide the
reader with series o f overviews from which he can gain a general appreciation before descending to a more
detailed description. This m eans also that the concepts will support design technologies aim ing at “stepwise
refinem ent” by adding m ore detailed inform ation in a num ber o f steps.

2 Common language model

2.1 General

In R ecom m endation Z.101 a system is described as com posed o f a set o f blocks connected to each other
and to the system boundary by unidirectional channels. This R ecom m endation introduces concepts for describing
the partitioning o f blocks, channels and processes into sub-com ponents.

Each block, in a system, may be partitioned into one or m ore sub-blocks. In this partitioning, new channels
are introduced to connect the sub-blocks to each o ther; in addition , the channels term inating at and originating
from the partitioned block may be split into sub-channels.

Block A is partitioned into:

FIGURE 1/Z.102

The partitioning of a block

A sub-block, in turn is a block and may be partitioned. This partitioning may be repeated any num ber o f
tim es resulting in a hierarchical structure o f blocks and their sub-blocks. The sub-blocks of a block are said to exist
on the next lower level in the block tree:

C C I T W 3 7 7 0

FIGURE 2/Z.102

A Block-tree

48 Fascicle VI.10 — Rec. Z.102

W hen a block is partitioned into sub-blocks, the rule from R ecom m endation Z.101 that a block definition
should contain one or m ore process definitions is relaxed, and is only valid for a block which is not further
partitioned (i.e. the “ leaV'-blocks in the block tree describing the system m ust contain processes). However, if a
block definition contains process definitions, the sub-block definitions must include at least the sub-process definitions
resulting from the partitioning o f the processes.

The sub-channels resulting from the block partitioning are channels.

Channels may also be partitioned. This results in a set of new blocks, new channels, one incoming channel,
and one outgoing channel:

C [li]

C H A N N E L C is partitioned into:

CHANNEL C

incoming

C2[12]
— *■—

channel
Pi]

(new)
block

(new)
block

C3[13]

outgoing

channel
Pi]

C C I T T - 7 1 7 S 0

FIGURE 3/Z.102

The partitioning of a channel

N ote that the signal list associated with the original channel C is associated with the incoming and outgoing
channels.

Both the partitioning o f blocks and the partitioning of channels leaves unchanged the interfaces o f the
partitioned objects.

A process definition may be partitioned into a set o f sub-process definitions. These two descriptions o f the
behaviour are alternative in the sense that when the system definition is interpreted either the set o f sub-process
definitions or the process definition is interpreted. The process definition is to be considered as an alternative
description with relation to the set o f sub-process definitions.

A sub-process is a process, and may in tu rn be partitioned into sub-processes. The resulting hierarchy o f
processes is represented in a process tree.

FIGURE 4/Z.102

Process — sub-process relation

As sub-processes are processes, the behaviour described by the partitioned process is partitioned in to a set
o f concurrent “sub-behaviours” . M ethods to ensure that this partitioning is correct are necessary bu t no t part o f
the SDL.

Fascicle VI.10 - Rec. Z.102 49

The partitioning o f a block into sub-blocks, and its processes into sub-processes may be done at the same
time. As a process has to be contained in a block, its sub-processes have to be contained in sub-blocks o f the block
con tain ing the partitioned process. The partitioned blocks and processes may be regarded as separate structures
related to each other:

Process

Sub- N
process^

Sub-" ')

FIGURE 5/Z.102

Relation between block and process trees

If a block is partitioned, then any process it contains may also be partitioned, in which case all its
sub-processes must appear in the sub-blocks o f the block. If the process is not partitioned, then it must appear in
one o f the sub-blocks. In order to further describe the behaviour o f the sub-blocks new processes and signals may
also be included in the sub-blocks irrespective o f w hether there were processes in the block. However, the
“ l e a f blocks m ust contain processes.

If, in the to tal partitioning representation o f a system, process definitions appear on m ore than one level,
then several consistent sub-sets o f the representation may be found. A consistent sub-set is a selection o f the block
definitions and process definitions in the to tal representation such that:

a) It contains the highest level in the block tree;
b) If it contains a block it m ust contain its paren t;
c) If it contains a sub-block o f a block, it must also contain all other sub-blocks o f that block;
d) All “ le a f ’- blocks in the resulting structure contain processes.

' H

n

L Z

am 7)tno
 One consistent

sub-set

FIGURE 6/Z.102

A consistent sub-set of a system representation

I f processes appear in a system definition at m ore than one level, then several consistent sub-sets o f the
representations may be found. These sub-sets represent alternative descriptions o f the system, with various degrees
o f detail. They may be used to provide readers with both overviews and detailed descriptions. They may be chosen
so they support the in terpretation o f the system on alternative levels o f abstraction. If several alternative
representations o f the behaviour exist, all but the m ost detailed one are to be considered as overviews o f the
behaviour.

50 Fascicle VI.10 - Rec. Z.102

2.2 Abstract syntax

This abstract syntax is based on the abstract syntax given in R ecom m endation Z.101. Only the additions
to the definitions in R ecom m endation Z.101 are given here.

Block definition

A block definition may also contain an internal part block definition, and if it does so it need not contain
process definitions.

Internal part block definitions

The internal part block definition contains one block substructure definition and it contains one process
substructure definition for each o f the process definitions contained in the block definition. It may also
contain signal definitions and data type definitions.

Block substructure definition

A block substructure definition m ay contain one or m ore sub-block definitions and one or m ore channel
definitions.

For each o f the term inating endpoints o f sub-channels o f the enclosing block there m ust be at least one
sub-channel definition having that endpoin t as originating endpoin t, and the reverse m ust hold for all
originating sub-channel endpoin ts o f the enclosing block The union of the signal lists o f the sub-channel
definitions having the same endpoin t as a subchannel leading to or from the enclosing block m ust be
identical to the signal list o f that block, in addition to this signal lists o f the sub-channel definitions
o riginating from a term inating endpoin t m ust be disjoint.

All channel definitions contained in the block substructure definition m ust either connect sub-blocks to
channel endpoints o f the enclosing block or sub-blocks to each other.

Sub-block definition

A sub-block definition is a block definition.

Channel definition

A channel definition may also contain a channel substructure definition.

Sub-channel definition

A sub-channel definition is a channel definition.

Channel substructure definition

A channel substructure definition contains two or m ore channel definitions, one or m ore block definitions,
and may contain signal definitions.

All channel definitions con tained in the block substructure definition m ust connect sub-blocks to each other,
and all sub-channel definitions m ust connect channel endpoin t o f the enclosing block to sub-blocks.

Process substructure definition

A process substructure definition is associated with a process nam e and contains one or m ore process
names, each associated with a sub-block name.

The associated sub-process nam e m ust be the nam e of a process definition contained in the enclosing block
definition. The contained process names m ust be names o f sub-process definitions contained in the block
definition having the associated sub-block name.

Each signal nam e in the valid input signal set o f the associated process m ust appear in exactly one o f the
valid input signal sets o f the sub-process definitions having the contained sub-process names. Each signal
nam e attached to the output node o f the associated process m ust be attached to at least one output node o f
the sub-process definitions having the contained sub-process names.

Sub-process definition

A sub-process definition is a process definition.

2.3 Interpretation

The in terpre tation rules given below are defined as additions to the corresponding set o f rules defined in
R ecom m endation Z.101.

Fascicle VI.10 — Rec. Z.102 51

Channel

If a channel definition contains a channel substructure definition then either the channel may be interpreted,
as defined in R ecom m endation Z.101 or the channel substructure definition may be interpreted.

If the channel substructure definition is interpreted , every signal delivered to the originating endpoint o f the
channel is given to the channel substructure, and every signal delivered by the channel substructure is given
to the term inating endpo in t o f the channel.

Channel substructure

A signal delivered to the channel substructure is given to the incoming channel and a signal delivered by
the terminating endpoint o f the outgoing channel is delivered to the enclosing channel.

Block

If a block definition contains one or m ore process definitions and also contains an internal part block
definition then either the block may be interpreted as defined in R ecom m endation Z.101, or the internal
part block may be interpreted. If the block contains no process definitions, the internal part block m ust be
interpreted.

I f the internal part block is interpreted , all signals delivered to the block will be given to the internal part
block, and all signals delivered by the internal part block will be further delivered to channels leading from
the block in the sam e m anner as if delivered from a process contained in the block.

Internal part block

Each process in the enclosing block is replaced by a process substructure.

If a signal given to the internal part block from the enclosing block is addressed to a process, then the
signal is given to the process substructure, else it is given to the block substructure.

A signal, delivered by the block substructure will be given to the enclosing block. If that signal was sent
from a process appearing as a sub-process o f a process substructure, the sender-attribute o f the signal will be
m odified to the process instance identifier o f the replaced process.

Block substructure

A block substructure contains blocks and channels, according to the block substructure definition, these are
interpreted according to the rules defined for blocks and channels.

Process substructure

A process substructure instance replaces one process instance o f the referenced process definition. It also
denotes a set o f sub-process instances, one instance for each sub-process name in the definition. Each
sub-process is allocated to the block with the associated block name.

Each signal given to the process substructure will be re-addressed to the sub-process which has the signal
nam e in the valid input signal set and given to the block substructure o f the enclosing block.

3 Graphic syntax

The follow ing graphic syntax is an addition to the syntax defined in Recom m endation Z.101. The
additions cover the representation o f the structure and partitioning o f a system.

An overview of the structure o f a system is given by the Block Tree Diagram. The partitioning o f blocks,
processes and channels into sub-com ponents is represented in the Block Interaction Diagram and the Channel
Substructure Diagram.

The set o f docum ents and diagram s describing the system may be large. It is essential that the docum ents
are related to each o ther by references and proper titles, however syntactic m eans for doing this do not form part
o f the SDL graphic syntax.

3.1 Block tree diagram

The block tree diagram is in tended to give an overview o f the structure o f a system, i.e. the partitioning o f
the system in to a hierarchical structure of blocks. Details on how the blocks are connected by channels are given in
the block interaction diagram.

A part o f the d iagram m ay also be used to give an overview o f how a block is partitioned in to sub-blocks.
In this case, the partitioned block is shown as the roo t box.

52 Fascicle VI. 10 — Rec. Z.102

3.1.1 Symbols

The symbol used in a block tree diagram is a box which represents a system or a block. The nam e o f the
represented object should appear inside the box.

Each block (box) is connected dow nw ards to its sub-blocks (boxes) to form a hierarchical tree, as the
exam ple given in Figure 7 /2 .102 below:

0CI1T 73820

F IG U R E 7 /Z .1 0 2

Exam ple o f a block tree diagram

3.1.2 Relationship to the S D L abstract syntax

The structure shown has its equivalence in the system definitions, and in the block substructure definitions o f
the blocks in the system.

3.1.3 Graphical conventions

The tree should preferably be drafted so that the blocks at the same level appear beside each other in the
representation.

As a block tree diagram o f a large system will also be large, it may be suitable to split the diagram into
several diagram s. This splitting should be such that the first diagram , having the system as the root, is chopped o ff
so tha t a set o f further partitioned blocks appears as not partitioned. In the follow ing diagram s these blocks appear
as roots. For exam ple, in Figure 8/Z .102 the diagram from Figure 7/Z .102 is split in two diagram s.

CCITI-73 8 30

F IG U R E 8 /Z .1 0 2

E xam ple o f splitting a block tree diagram into several diagram s

Fascicle VI.10 — Rec. Z.102 53

3.2 Block interaction diagram

This diagram represents the partitioning o f a block into sub-blocks, sub-channels and (new) channels. The
diagram has basically the same form as the block interaction diagram, in troduced in R ecom m endation Z.101,
representing the partition ing o f a system into blocks and channels.

3.2.1 Symbols

The sym bols used to represent a block interaction diagram are shown in Figure 9/Z .102 below:

Frame
This surrounds the diagram and represents
the boundary of the partitioned block or system.

Sub-block symbol
This box represents a sub-block. The name
of the sub-block should appear inside the symbol.

Channel symbol
This symbol represents channel or a sub-channel.
The name of the channel should appear beside the
symbol. An optional signal list can be associated
(see Recommendation Z.101, § 2.2.1).

FIGURE 9/Z .102

Symbols used in a block interaction diagram

In addition to these symbols, signal definitions may appear in the diagram , using the S D L /P R syntax.

The rules for connecting the symbols are the same as for the block interaction diagram (see R ecom m enda­
tion Z.101), with the only exception that in the title o f the diagram , it should be m ade clear that the diagram is a
block interaction diagram for a block. A sim ple exam ple o f a block interaction diagram is given in Figure 10/Z.102
below:

Block interaction diagram for block A

Block Block
B C

C,[1 ,] C2[12] C3I13]

C C I T T - 7 1 S S 0

FIGURE 10/Z.102

Example of a block interaction diagram

3.2.2 Relationship to the S D L abstract syntax

A block interaction diagram represents a block substructure definition. The definitions contained in the block
substructure definitions are represented by the block and channel symbols together with signal definitions given in
S D L /P R .

< n a m e >
[<signal list n a m e >]

C C I T T - 7 3 8 4 0

< n a m e >

54 Fascicle VI.10 — Rec. Z.102

3.2.3 Graphical conventions

The same graphical conventions described for the interaction diagram, defined in R ecom m endation Z.101
apply to the block interaction diagram.

In addition to this, it is often useful to describe several levels o f block partitioning in one diagram . This is
ob ta ined by replacing a block symbol, in a d iagram , by the block interaction diagram for that block. An exam ple of
this is given in F igure 11/Z.102 below:

ccnwmo

FIGURE 11/Z.102

Example of a nested block interaction diagram

3.3 Process tree diagram

A process tree diagram describes the partitioning o f a process into sub-processes and where these
sub-processes are allocated.

3.3.1 Symbols

The symbols used to com pose a process tree diagram are shown below in Figure 12/Z.102:

/ N Process symbol
< n a m e> The symbol represents a process, whose

name should appear inside the symbol.

< n a m e > Allocation symbol
The comm ent symbol is used to indicate
where the process, or sub-process, is
allocated. The name in the comment
should be the name of the block to which
the process is allocated.

FIGURE 12/Z.102

Symbols used in process tree diagram

Fascicle VI.10 — Rec. Z.102 55

Each process is connected dow nw ards to its sub-processes to form a hierarchical tree, as in
Figure 13/Z.102 below:

C C IT T '73880

FIG URE 13/Z.102

Example of a process tree diagram

3.3.2 Relationship to the S D L abstract syntax

The diagram represents a process substructure definition. The nam e in the root symbol is the associated
process name, and the nam es in the leaf symbols are the contained sub-process names. The block nam es in the
allocation symbols are the associated sub-block names.

3.3.3 Graphical conventions

The tree should preferably be drafted so that processes at the same partitioning level appear beside each
other in the diagram .

If a processes tree diagram is large, it may be suitable to split the diagram into several diagram s. This
splitting should be such that the First diagram is chopped off so that a set o f further partitioned processes appears
as not partitioned. In the following diagram s these processes appear as roots. For exam ple, in Figure 14/Z.102 the
diagram from Figure 12/Z.102 is split into two diagram s.

CCITT '7 3 8 9 0

FIGURE 14/Z.102

Example of splitting a process tree diagram into several diagrams

56 Fascicle VI.10 — Rec. Z.102

3.4 Channel substructure diagram

This diagram represents the partitioning o f a channel into sub-com ponents. As the com ponents are blocks
and channels the diagram resembles a block interaction diagram.

3.4.1 Symbols

The symbols used to represent a channel substructure diagram are shown below in Figure 15/Z.102.

Frame
This surrounds the diagram and represents
the partitioned channel

Block symbol
This represents a block. The name of
the block should appear inside the symbol.

Channel symbol

T h is s y m b l o re p r ese n ts a sub-channel or a n e w
channel. T h e name o f t h e channel s h o u l d a p p e a r
b e s id e t h e s y m b o l . A n o p t io n a l signal list can
b e a s s o c ia t e d (see R e c o m m e n d a t i o n Z . 1 0 1 , § 2 . 2 . 1) .

FIGURE 15/Z.102

Symbols used in the channel substructure diagram

In addition to these symbols, signal definitions may appear in the d iagram , using the S D L /P R syntax.

The rules for connecting the diagram are the same for the interaction diagram (see R ecom m enda­
tion Z.101), with the only exception that the title o f the diagram should m ake it clear that the diagram is a channel
substructure diagram.

A sim ple exam ple of a channel substructure diagram is given in Figure 16/Z.102 below:

Channel substructure diagram for channel C

Block A Block B
C[1] C3[i 3] c m

C C I T T 7 m o

FIGURE 16/Z.102

Example of a channel substructure diagram

3.4.2 Relationship to the S D L abstract syntax

A channel substructure diagram represents a channel substructure definition. The definitions contained in
the channel substructure definition are represented by the block and channel symbols together with the definitions in
S D L /P R syntax.

The channel leading from the fram e into the diagram represents the incoming channel and the channel
term inating at the fram e, represents the outgoing channel.

< n a m e>

< n am e>
[<signal list n a m e >]
 »---------

C C l T T - 7 3 f i i O

Fascicle VI. 10 - Rec. Z.102 57

3.4.3 Graphical conventions

The same graphical conventions as described for the interaction diagram in R ecom m endation Z.101 apply
to the channel substructure diagram.

4 SDL/PR

The follow ing S D L /P R syntax is an addition to the syntax defined in R ecom m endation Z.101. The
additions cover the representation o f the structure and partitioning o f a system.

N ote that in the exam ples, S D L /P R keywords appear in capital letters.

4.1 Block definition

The block definition in S D L /P R is extended to optionally include the non-term inal “ Block substructure
definition

4.1.1 Syntax

BLOCK DEFINITION

 f BLOCK) -------
Block
n a m e

^ end

signal
definition

p r o c e s s
defini tion

block
s u b s t r u c t u r e
definition

e n d b l o c k) -
Block
n a m e

CCITT - 7 7 3 2 0

FIGURE 17/Z.102

Syntax diagram for block

4.2 Block substructure definition

The block substructure definition represents the partitioning o f a block in to sub-blocks, sub-channels and
new channels.

58 Fascicle VI.10 — Rec. Z.102

4.2.1 Syn tax

BLOCK SUBSTRUCTURE DEFINITION

SUBSTRUCTURE (/Block \
ident 0

s ubb lock
speci f ica t ion

channe l
speci f ica t ion

signal
speci f ica t ion

p r o c e s s
s u b s t r u c t u r e
definition

block
definition

channe l
definition

signal
definition

channe l
split ting

ENDSUBSTRUCTUREo -
Block
ident 0

CCITT - 7 7 3 3 0

FIG URE 18/Z.102

Syntax diagram for block substructure diagram

CHANNEL SPLITTING

- < SPLIT
Channel
ident

ch a n n e l
iden t t O

o

SUBBLOCK SPECIFICATION

■^(SUBBLOCKS) (7̂ Subblock
iden t

o

0

Fascicle VI.10 - Rec. Z.102 59

CHANNEL SPECIFICATION

f CHANNELS) ------(f)----- jp H J
Channel
ident

CCITT - 7 7 3 6 0

SIGNAL SPECIFICATION

CCITT - 7 7 3 7 0CCITT - 7 7 3 7 0

Exam ple:

BLOCK b:

SU B STR U C TU R E b;
SUBBLO CKS b l , b2, b3;
C H A N N E L S c l , c2, d l , d2, e;
SIG N A LS s i , s2, s3;

SPLIT c IN TO c l , c2;
SPLIT d IN TO d l , d2;

/* C hannel definitions * /
/* Block definitions * /
/* Signal definitions * /

E N D SU B S TR U C T U R E ;

EN D B L O C K b;

4.2.2 Relationship to the S D L abstract syntax

The syntax represents the block substructure definition and the internal part block definition in the abstract
syntax. The nam es o f blocks, signals and channels are references to the contained block definitions, signal definitions
and channel definitions.

4.3 Process substructure

This syntax represents the partitioning o f a process into sub-processes, and the allocation o f these into
sub-blocks. The partitioning may be shown both in the process definition and the block substructure definition.

60 Fascicle VI.10 - Rec. Z.102

THE PROCESS DEFINITION IS EXTENDED AS FOLLOWS:

4.3.1 Syntax

PROCESS
Process
name

I number of
instances

end

formal
parameters

f N valid input
signal set

variable
definition

viewed
definition

process
body

process
substructure
definition

ENDPROCESS
Process /""N

J name

THE PROCESS SUBSTRUCTURE DEFINITION IS A FOLLOWS:

< SUBSTRUCTURE \ fProcess \
ident o

Process
ident

K i

Block
ident

o

ENDSUBSTRUCTURE
Process
ident

v

o

The following exam ple shows the process substructure as a part o f a process defin ition :

Exam ple:

SUB STR U C TU R E p i ;
p2 IN b2;
p3 IN b l ;

EN D SU B STR U C T U R E ;

E N D PR O C E SS p i ;

Fascicle VI. 10 - Rec. Z.102

The next example shows the process substructure as a part o f a block substructure definition:

Exam ple:

SU B STR U C TU R E b;

SU B STR U C TU R E p;
p i IN b2;
p2 IN b l ;

EN D SU B STR U C T U R E

EN D SU B STR U C T U R E ;

EN D B LO C K b;

4.3.2 Relationship to the SD L abstract syntax

The syntax construction represents the process substructure definition in the abstract syntax. The associated
process nam e is the nam e in the starting clause and the contained set o f process names, each associated with a
block name, are the names separated by the “ IN ” keyword.

4.4 Channel substructure

This syntax represents the partitioning o f a channel into a set o f channels and blocks.

4.4.1 Syntax

The syntax for a channel is extended to contain the non-term inal ''''channel substructure” as an optional
part.

CHANNEL DEFINITION

CCITT - 77 390

FIGURE 19/Z.102 (1 of 4)

Syntax diagrams for channel substructure

62 Fascicle VI.10 - Rec. Z.102

CHANNEL SUBSTRUCTURE DEFINITION

FIGURE I9/Z .102 (2 o f 4)

Syntax diagrams for channel substructure

INCOMING-OUTGOING CHANNELS

FIGURE 19/Z.102 (3 o f 4)

Syntax diagrams for channel substructure

Fascicle VI.10 — Rec. Z.102

BLOCK SPECIFICATION

■ f BLOCKS) f f } -
Block
ident o

o CCITT - 7 7 4 2 0

FIGURE 19/Z.102 (4 o f 4)

Syntax diagrams for channel substructure

The channel substructure is a set o f references to the com ponents and additional definitions o f the
substructure.

Exam ple:

C H A N N E L c FROM b TO d;
SU B STR U C TU R E

IN C O M IN G TO e;
O U T G O IN G FRO M f;
BLOCKS: e,f;
C H A N N E L cl FRO M e TO f W ITH sl,s2,s3;
BLOCK e;

E N D B LO C K e;
BLOCK f;

E N D B L O C K f;
E N D S U B STR U C T U R E ;

4.4.2 Relationship to the SD L abstract syntax

The syntax represents the channel substructure definition in the abstract syntax. The block, channel, signal
and data identifiers given in the syntax are references to the contained definitions.

Recommendation Z.103

FUNCTIONAL EXTENSIONS TO SDL

1 Introduction

This R ecom m endation defines a num ber o f additional concepts and shorthand notations in the SDL. The
basis for these additions are the basic SDL, as defined in the R ecom m endation Z.101. The intention with these
additions is to provide the users o f SDL with convenient concepts and shorthand notations.

The following concepts and shorthand notations are defined in this R ecom m endation:

Procedures

These give a way to represent a portion o f a process graph by one element, which may be referred to
several times. The detailed behaviour o f the procedure is defined elsewhere, inside or outside the process
graph. Procedures may be used to support the use of structured-design m ethods with SDL, by perm itting
the decom position o f a process graph into a hierarchy o f sections. The concept is sim ilar to the procedure
concept norm ally appearing in program m ing languages.

64 Fascicle VI.10 - Rec. Z.103

This is a shorthand no ta tion for the signal interw orking between process instances when they are to share
a value o f a variable owned by one o f the processes.

Enabling condition

This is a shorthand no ta tion to avoid «state explosion» when the reception or saving o f a set o f signals is
conditional.

Continuous signal

This is a shorthand no ta tion to represent the signal interw ork when a continuous condition , external to
the process, is observed.

Macro

This is a syntactic m ethod for the user to define a shorthand notation. A macro is the definition o f a
com posite syntax elem ent in term s o f o ther syntax elements already defined. A macro has no sem antics o f
its own.

Option

This is a syntactic facility to represent several, alternative behaviours in one diagram , or linear text. It has
to be decided, before the diagram or linear text is interpreted, which alternative offered by an option
should be chosen.

This R ecom m endation also defines an extension graphic syntax o f SDL, that is the use o f pictorial
elem ents in state symbols.

Import and Export o f values

2 Procedures

A procedure is a m eans o f giving a nam e to an assembly o f items and representing this assembly by a
single reference. The rules for procedures im pose a discipline upon the way, in which the assembly o f items is
chosen, and lim it the scope o f the nam e of data items and signals.

Procedures are intended to:

a) perm it the structuring o f a process graph into several levels o f detail;

b) m aintain ing the com pactness o f specifications by allowing a com plex assembly o f items which may be
regarded in isolation to be represented by a single item;

c) allow com m only used assemblies o f items to be pre-defined and used repeatedly.

Procedures are defined by m eans o f procedure definitions. The procedure is invoked by m eans o f a
procedure call referencing to the procedure definition. Param eters are associated with a procedure call: these are
used both to pass values, and also to control the scope o f data and signals for the procedure execution. W hich
signals and data items are affected by the in terpretation o f a procedure is controlled by the param eter passing
m echanism .

2.1 Common Language M odel

The definitions following are to be considered strictly as additions to what is defined in the R ecom m enda­
tion Z.101.

2.1.1 An Introduction to the Common M odel

A procedure is a section o f a process graph which may be regarded in isolation. It has a single entry po in t
and a single exit point. A procedure call m ay appear wherever a task may appear in a process graph or a procedure
graph. A procedure may contain states. All data items used in a procedure m ust be defined w ithin the procedure
definition. If a data item is defined as a fo rm al parameter, it uses values of data items in the calling environm ent
a n d /o r will give values to data items in the calling environm ent, otherwise the item is local to the procedure, and
has to be defined in the procedure definition.

A procedure is interpreted only when a process instance calls it, and is interpreted by tha t process instance.
W hen a procedure call is interpreted, the procedure graph m ust be interpreted before continuing the in terpretation
o f the transition in which the call appears. This m eans that the calling process instance’s input port and valid input
signal set is used whilst interpreting the procedure. All signals referenced within a procedure m ust be nam ed as
fo rm a l parameters o f the procedure. All signals in the valid input signal nam e set o f the calling environment which

Fascicle VI.10 - Rec. Z.103 65

are not referenced w ithin the procedure m ust also be nam ed as parameters o f the procedure, i.e. the additional-save-
set. This allows the procedure to autom atically save any other signals which may arrive in the input port. If this
were not done the in troduction into a transition o f a procedure call to a procedure containing a state would have
hidden side effects o f losing signals (by im plicit «null transitions))) which arrived while a process instance was
interpreting a procedure.

A procedure definition is given by a procedure graph, and may appear wherever a data type definition may
appear.

A procedure graph follows the same rules as a process graph, with the follow ing exceptions:

— a start node is replaced by a procedure start n o d e ;

— a stop node is replaced by a return n o d e ;

— only the data items, fo rm a l parameters and signal names which are declared w ithin the procedure are
visible to the process instance while interpreting the procedure, i.e. a procedure cannot refer to any data
item or signal which is outside the procedure unless it is declared as a fo rm a l param eter (signals
necessarily belong to the calling environm ent o f the procedure, and all signals which are input, saved
or output in the procedure m ust be declared);

— the sam e signal nam e actual param eter may not be m apped onto m ore than one signal nam e fo rm a l
param eter;

— in the abstract syntax the set o f signals to be saved is passed as parameters o f the procedure call.
However, in the concrete syntax, all state nodes contained w ithin a procedure have an im plicit save
signal set contain ing all input signals which are not declared as fo rm a l parameters in the procedure.

2.1.2 Abstract Syn tax

To the abstract syntax defined in Z.101 the follow ing additions are m ade:

System Definition

A system definition may also contain one or m ore procedure definitions.

Block Definition

A block definition may also contain one or m ore procedure definitions.

Process Definition

A process definition may also contain one or m ore procedure definitions.

Process Graph

A process graph may also contain a procedure call node.

A transition string may also be a procedure call node followed by a transition string.

A procedure call node contains a procedure identifier and an actual param eter list.

Procedure Definition

The procedure definition is associated with a procedure name and contains a fo rm a l param eter list, an
additional-save-set, and a procedure graph, and may contain procedure definitions and data definitions.

The fo rm a l param eter list may be empty. Each fo rm a l parameter in the list m ust be attributed with one of
the attributes IN , IN /O U T or SIG N A L.

The names o f the fo rm a l parameters a ttributed with IN or IN /O U T may not be used in variable
definitions contained in the procedure defin ition ; and the set o f fo rm a l parameters names a ttributed with
S IG N A L m ust contain all the signal names referenced in the procedure graph.

Procedure Graph

A procedure graph is a graph whose nodes are connected by directed arcs. An arc entering a node is
called an incom ing arc and an arc exiting the node is called an outgoing arc. A node having an arc as
incom ing arc follows the node having the same arc as an outgoing arc.

The follow ing types o f nodes are allowed on a procedure graph:

State node
In p u t node
Task node
O utput node

66 Fascicle VI.10 — Rec. Z.103

Decision node
Procedure Call node
Procedure Start node
Return node
Create Request node

Every node o f the graph has a nam e and a type. S ta te nodes within a procedure graph have different
names.

The following rules define the connectivity o f a procedure graph :

— Each procedure graph contains one and only one procedure start node. The procedure start node is
followed by a transition string. The start node does not follow any other node.

— A transition string can be one o f the following:

a) null followed by either a sta te node or a return node,
b) an action string followed by a transition string,
c) a decision node.

— An action string can be one o f the following:

a) a task node,
b) an output node,
c) a create request node.

— A decision node is followed by two or more decision arcs.

— A decision arc is a nam ed arc followed by a transition string.

— A state node is followed by one or m ore input nodes.

— An input node is follow ed by a transition string.

— The return node has no nodes following it.

— Each graph has at m ost one return node.

— Each node is reachable from the procedure start.

A call node contains a procedure identifier, an additional-save-list and an actual param eter list. In this list
there m ust be one actual param eter for each o f the fo rm a l parameters in the referenced procedure definition. Each
actual param eter m ust m atch the type o f the corresponding fo rm a l parameter. Any signal actual param eter nam e
may no t appear m ore than once in the actual param eter list.

Each actual param eter for which the corresponding fo rm a l param eter has the attribute I N /O U T m ust be a
variable name.

The additional-save-set is a possibly em pty set o f signal identifiers.

2.1.3 Interpretation

The following additions are m ade to the in terpretation rules o f R ecom m endation Z .101:

Process

A call node is in terpreted as the in terpretation o f the procedure start node o f the procedure definition
referenced by the nam e o f the node, then the node following the call node is interpreted.

The additional-save-set is given the value o f all signal identifiers in the valid input signal set o f the calling
process, which do not appear as actual parameters o f the node.

Procedure

W hen a process in terprets a call node referencing the procedure definition containing the procedure graph,
the procedure graph is interpreted. The nodes o f the procedure graph are interpreted in the sam e m anner as
the equivalent nodes o f the process graph, with the following exceptions and additions:

— Each fo rm a l param eter a ttributed with IN denotes a typed variable. This variable is local to the
procedure and is created when the procedure start node is in terpreted and ceases to exist when the
return node is interpreted.

— Each fo rm a l param eter a ttributed with IN /O U T denotes a synonym name for the variable which is
given as actual parameter. This synonym name is used throughout the in terpretation o f the procedure
graph when referring to the value o f the variable or when assigning a new value to 'th e variable.

Fascicle VI.10 - Rec. Z.103 67

Procedure start node

— A local variable is created for each fo rm a l parameter attributed with IN, having the name and data
type o f the fo rm a l parameter. The variable is assigned the value o f the actual parameter, which may be
undefined.

— Each variable nam e given in the fo rm a l parameters attributed with IN /O U T is used as a synonym
nam e for the variable nam e given as actual parameter. The variable represented by the synonym name
is evaluated once only at the procedure start node, and not at each use of the fo rm a l param eter in the
procedure.

— Each signal nam e given in the fo rm a l parameters attributed with S IG N A L is used as a synonym name
for the signal identifier given as actual parameter.

— The node following the procedure start node is interpreted.

Sta te node

The state node is in terpreted in the sam e way as in a process graph with the exception that the
save-signal-set presented to the input port is union o f the additional-save-set and the save-signal-set o f the
process or procedure which called the current procedure.

The interpretation o f a procedure start node involves:

2.2 S D L /G R

The addition o f the procedure concept into SDL causes the addition o f one new sym bol in the process
d iagram : the call symbol.

The procedure definition, is in the graphic syntax represented by a procedure diagram. This diagram is
sim ilar to the process diagram, except for the procedure start symbol and the return symbol.

In the following only the additions, required by in troducing procedure, to the graphic syntax as defined in
R ecom m endation Z.101, are given.

2.2.1 Process diagram

2.2.1.1 Sym bols

The following symbol is used to represent the procedure call:

The symbol may appear in a
process diagram wherever a
task symbol is allowed.

The procedure name and the
actual parameters are given
using the SDL/PR syntax.

FIGURE 1/Z.103

The procedure call symbol

2.2.1.2 Relationship to the S D L abstract syntax

The procedure call symbol represents the procedure call node in a process graph.

The actual parameters given in the symbols represents the actual parameters attached to the procedure call
node. A ny valid input signal not given as actual param eter is a m em ber o f the additional-save-set for the procedure
call node, denoting tha t tha t signal should be saved th roughout the procedure execution.

< procedure
n a m e >

< actual
parameters >

68 Fascicle VI.10 - Rec. Z.103

Return node

The in terpretation o f the return node involves:

— all variables created by the interpretation o f the procedure start node will cease to exist;

— all synonym names established by the interpretation o f the procedure start node will cease to exist;

— interpreting the return node com pletes the interpretation o f the procedure start node.

2.2.2 Procedure diagram

A procedure diagram is sim ilar to a process diagram, the only differences being tha t the start symbol is
replaced by the procedure start symbol, and the stop symbol is replaced by the return symbol.

In the following only the additional syntax is defined.

2.2.2.1 Symbols

In Figure 2/Z .103 below two additional symbols are defined:

Procedure start symbol
The procedure name and
format parameters are
given using the SDL/PR
syntax.

Return symbol

FIGURE 2/Z.103

Additional symbols for procedure diagram

2.2.22 Relationship to the SD L abstract syntax

The procedure diagram represents the procedure definition in the SDL abstract syntax.

The symbols com m on with the process diagram have the same relations to the abstract syn tax as when
appearing in a process diagram. The additional procedure start symbol and the return symbol represent respectively
the procedure start node and the return node.

The param eters attached to the procedure start symbol represents the fo rm a l parameters attached to the
procedure start node.

2.2.23 Graphical conventions

G enerally the same graphic conventions as for the process diagram apply. The conventions for the
procedure start symbol and for the return symbol are the same as for the process start symbol and the stop symbol
respectively.

W herever a return symbol appears it represents the return node (m ultiple appearance o f a return sym bol).

2.3 S D L /P R

S D L /P R syntax for a procedure definition is given below. The procedure definition m ay appear wherever
a data type definition may appear in the syntax. The syntax is sim ilar to that o f the process definition.

Below is given only the additions to the syntax already defined in R ecom m endation Z.101.

Fascicle VI.10 — Rec. Z.103 69

2.3.1

2.3.1.

System

1 Syntax

The syntax o f procedure definitions is added to the syntax o f sy s tem :

SYSTEM DEFINITION

 f SYSTEM) ---------
System
name

end

block
definition

channel
definition

signal
definition

procedure
definition

^ (endsystem } -
System >f >J
name o

CCITT - 78 450

FIG URE 3/Z.103

Syntax diagram for system

70 Fascicle VI.10 — Rec. Z.103

2.3.2 Block

2.3.2.1 Syntax

The syntax o f procedure definitions is added to the syntax o f block:

BLOCK DEFINITION

FIGURE 4/Z .103

Syntax diagram for block

Fascicle VI.10 - Rec. Z.103 71

2.3.3 Process

2.3.3.1 Syntax

The syntax o f procedure definition is added to the syntax o f process, and the syntax o f procedure call
added to the syntax o f a transition string:

PROCESS DEFINITION

PROCESS >
Process
name

number of
instances

end

formal
parameters

valid input
signal set

variable
definition

viewed
definition

imported
definition

procedure
definition

process
body

< ENDPROCESS>
Process
name

CCITT - 82 450

FIGURE 5/Z.103

Syntax diagram for process

72 Fascicle VI.10 — Rec. Z.103

ACTION

FIGURE 6/Z.103 (1 of 2)

Syntax diagram for action

PROCEDURE CALL

- » Q a l P H i ^procedure actual
parametersident

------- ^

CCiTT - 7BS90

FIGURE 6/Z.103 (2 of 2)

Syntax diagram for procedure call

Fascicle VI.10 — Rec. Z.103 73

2.3.3.2 Relationship to the SDL abstract syntax

The procedure call in a transition L represents the call node in the abstract syntax, and the actual parameters
represent the actual parameters attached to the call node.

Each actual param eter given has to conform with the data type o f the corresponding fo rm a l param eter in
the referenced procedure definition.

2.3.4 Procedure

2.3.4.1 Syn tax

PROCEDURE DEFINITION

FIGURE 7/Z.103 (1 of 5)

Syntax diagrams for procedure

74 Fascicle VI.10 - Rec. Z.103

PROCEDURE FORMAL PARAMETERS

- ^ f p a r) ^ s ig na l)-
signal
ident

o

- ^ E / P O R T E D ^ ^ ^ N / O U ^ ^ ^

■^Im p o r t e d) - *

^ e x p / im p) —

r ® - 11— O

variable
ident

type
ident

O

o

FIGURE 7/Z.103 (2 o f 5)

Syntax diagrams for procedure

PROCEDURE VARIABLE DEFINITION

- f DCL y

o
variable type
name ident

o

< D

FIGURE 7/Z.103 (3 of 5)

Syntax diagrams for procedure

Fascicle VI. 10 - Rec. Z.103

PROCEDURE BODY

state
body

transition
string

FIGURE 7/Z.103 (4 of 5)

Syntax diagrams for procedure

TERMINATOR

-»(nextstate)-

o

* T
state
ident

JOIN) ---------- >| label

— s t o p y

— < r ™ >
CCITT-78610

FIGURE 7/Z.103 (5 o f 5)

Syntax diagrams for procedure

2.3.4.2 Relationship to the S D L abstract syntax

The procedure syntax diagram represents the procedure definition o f the abstract syntax. The fo rm a l
param eters in the syntax diagram represent the fo rm a l parameters attached to the procedure start node.

The syntactic constructs allowed w ithin a procedure and com m on with those allowed in a process have the
sam e relations to the abstract syn tax as when they appear in a process. The procedure start node is im plied and is
follow ed by the First syntactic construct o f the procedure, and the return statem ents, represent the return node.

76 Fascicle VI.10 — Rec. Z.103

A composite operation is a standard shorthand notation for assemblies o f SDL concepts. The composite
operations are defined in term s o f already present SDL concepts and do not add to the sem antics o f the language.
Thus they do not change the abstract syntax on its interpretation. They are introduced for the convenience o f the
users o f SDL.

The composite operations defined here provide some alternative m ethods o f com m unication between SDL
process instances. W hile they appear significantly different from the norm al signal exchange m echanism of SDL to
the user, they are in fact based upon the norm al SDL semantics.

The composite operations provide:

a) sharing values o f data items between processes, even if they are allocated in different blocks ;

b) the capacity to tem porarily enable or disable the reception of particu lar signals w ithout the need to
show this exactly with separate s ta te s ;

c) continuous signals, for which transitions are caused by a change o f a value o f the signal.

Each of the composite operations is given a syntax o f its own and are defined in term s o f “norm al” SDL
concepts. Thus the com posite operations involve for the user im plied or hidden states, signals and procedures. The
composite operations are defined in §§ 3.1 to 3.3 using illustrative nam es for the norm al SDL symbols. W hen any
composite operation is used in an SDL representation , the im plied SDL symbols have unique im plied names. These
im plied nam es are so chosen that there are no clashes between different occurrences o f the composite operation or
other nam es in the SDL representation. The SDL user is thus free to em ploy these nam es for o ther purposes
should he wish to do so.

As the composite operations are defined in other SDL term s they may in some situations lead to side
effects, these are discussed in the SDL User Guidelines.

3.1 Im ported and exported values

In SDL a variable is always owned by, and local to, a process instance. N orm ally the variable is visible
only to the process instance which owns it, though it may be declared as a shared value (see R ecom m enda­
tion Z.101) which allows other process instances in the same block to view the value of the variable. If a process
instance in another block needs to view a variable, a signal interchange with the process instance owning the
variable is needed.

The following paragraphs describe a standard m ethod, and a shorthand notation for doing this. The
technique will be called imported values, since com m unication is by m eans o f copies o f the value o f the variable,
only the owning process instance having access to the variable itself. The technique may also be used to export
values to o ther process instances w ithin the same block, in which case it provides an alternative to the use o f shared
values. This alternative is necessary when either it is likely tha t the block will be decom posed such th a t the process
instances concerned are in different sub-blocks or when the values are used in enabling conditions (see § 3.3).

The process instance which owns a variable whose values are m ade available to other process instances is
called the exporter o f the variable. O ther process instances which use the variable are known as importers o f the
variable.

Access to the value o f the variable is obtained by an exchange o f signals. The importer sends a signal to
the exporter, and waits for the reply. In response to this signal the exporter sends a signal back to the importer with
the value the variable had when the last export operation was made.

The variables whose values are imported and exported are defined as such in their variable definitions.
These variables are also identified by definitions in the channels carrying the im plied signal interchange.

The definition o f a variable as exported produces an im plicit definition o f a copy o f it to be used in the
import and export operations.

The process instance discloses the value o f a variable defined as exported by m eans o f the statem ent:

E X P O R T (x) where x is the nam e o f the variable.

The EX PO R T (x) causes the storing o f the current value o f x into the im plicit copy and the sending o f
signals to process instances aw aiting an enabling condition (§ 3.2) or continuous signals (§ 3.3).

The EX PO R T operation can be m ade in conjunction with the m anipulation o f the variable o r independ­
ently o f it, e.g:

E X PO R T (x): = < expression > ;

or

EX PO R T (x);

3 Composite operations for communication between SDL processes

Fascicle VI. 10 - Rec. Z.103 77

The construct may only appear in a task.

The access from another instance may only be done by m eans o f the syntactic construct:

/ M P O R T (x,Pid) where x is the nam e o f the variable , and Pid is a reference to the owning process
instance.

This construct may appear in a task and in a decisions.

3.1.1 Definition

3.1.1.1 Import operation by importer

The import operation is m odelled in the importer’s process graph by the following sequence o f nodes :

— an output node, by nam e X Q U ER Y , carrying a reference to the nam e o f the variable whose value
should be accessed, and addressed to the process instance which owns the variable (the exporter)-,

— a state node with a save signal set including all signals except X R E P L Y ;

— an input node for the signal X R EPLY returning the value o f the value of the requested variable ;

— an im plicit variable o f the same type as the exported variable is assigned the value associated to the
X R EPLY signal. This im plicit variable nam e replaces the import operation. At each occurrence o f the
construct operation , a new im plicit variable is used.

The sequence o f operations defining the import operation is explained below using the graphic SDL
syntax. The IM PO R T (x,pid) statem ent will correspond to the following transition string.

x q u e r y \
(x,pid) /

1

^ XWAIT

\ XREPLY

? (I M PO R T -x)

IMPORT-x

N ote - This diagram is explanatory . A user o f the im port operation w ould only write: IM PO R T (x, pid).

F IG U R E 8/Z.103

Import operation explained in SD L/G R

3.1.1.2 Import operation by the exporter

As the import operation implies actions perform ed by the exporter the following im plied transition is
added to every state o f the exporter (including all im plicit states):

— an input node for the signal X Q U E R Y ;

— an output node by the nam e X REPLY , returning the value im plicit copy of the requested variable to
the requesting process instance;

— a return to the state from which the transition originated.

78 Fascicle VI.10 - Rec. Z.103

(It should be noted that the exporter is also m odified with other transitions if the exported values are used
in enabling conditions a n d /o r continuous signals, see §§ 3.2 and 3.3.)

The im plied transition using the graphical syntax o f SDL is shown in Figure 9/Z.103.

XQUERY
(< n a m e >)

I
X REPLY
(< im p lic it-
c o p y -n a m e >)
T O S E N D E R

I
>

CCITT-7J920

N o te — This diagram is explanatory only. Since the transition is im plied the user does not write anything.

F IG U R E 9/Z .103

Import operation by the exporter explained in SD L/G R

3.1.1.3 Export operation

The export operation is the m eans by which the owner o f an exported variable disclose to im porters the
current value o f the variable. As a result o f the export operation, the im plicit copy o f the variable is given the
current value o f the variable. In the absence of enabling conditions or continuous signals the operation itself is
m odelled as a task node, assigning the value to the variable. However, the export operation interacts with the
m odels for enabling condition and for continuous signal, see §§ 3.2 and 3.3.

3.1.2 Rules fo r using imported values

— All imported values m ust be defined as IM P O R T E D in the importer and as E X P O R T E D in the
exporter. The export a ttribute in a variable definition makes the variable identifier visible throughout the
system.

— The source and destination o f the import operation is shown by including the nam e o f the imported
value in a signal list attached to a channel or to a signal path within a block. The source and
destination m ay be in different blocks o r in the same block.

— A process instance which imports values may also export values, but it must not import values o f its
own variables.

— An imported value < n a m e > is imported by using the statem ent:

IM P O R T (< nam e > , < pid >)

in a task, decision or enabling condition. The < n a m e > is the nam e of the im ported item and the
< p id > is the process instance identifier o f the ow ning process instance. All o ther references in the
process to < n a m e > will be in terpreted as references to the local copy o f the value o f < n a m e > .

— The disclosure o f the value o f an exported variable is m ade through the statem ent:

E X P O R T {< n a m e >) :— < expression >

or

EX PO R T (< n a m e >)

contained in a task.

Fascicle VI. 10 - Rec. Z.103 79

Imported values are referenced at three points in process definition. The syntax for these is the same in
both the S D L /P R and the S D L /G R .

3.1.3.1 In variable definitions and import definitions the keywords IM P O R T E D and E X PO RTED identify the use
to be m ade o f the declared variable.

3.1.3 Concrete syn tax

VARIABLE DEFINITION

FIGURE 10/Z.103 (1 of 2)

Syntax diagram for variable definition and import definition

IMPORT DEFINITION

FIGURE 10/Z.103 (2 o f 2)

Syntax diagram for variable definition and import definition

3.1.3.2 In signal lists in S D L /G R an imported value is distinguished from a signal by enclosing the nam e o f the
imported value in round brackets.

Signal-name-1
(Variable nam e)
Signal-nam e-2

80 Fascicle VI.10 — Rec. Z.103

The syntax in S D L /P R is:

CHANNEL DEFINITION

- < c h a n n e l) -

K FROM)

channel
n a m e

block
iden t - K ™ >

block
ident

block
ident

WITH) \ xl s ignal
/ list A o

-- s---------«---------------

jT\ m p o r t e d A
VALUES J variable

list

CCITT-78470

FIGURE 11/Z.103 (1 o f 2)

Syntax diagram for channel definition and variable list

VARIABLE LIST

variable
ident

o CCITT-78480

FIGURE 11/Z.103 (2 o f 2)

Syntax diagram for channel definition and variable list

Fascicle VI.10 — Rec. Z.103

3.1.3.3 The statem ent E X P O R T (< n a m e >) may be used in a task n a m e 4, sim ilarly, the statem ent
IM PO R T (< nam e > , < pid >) may be used in task, decision and enabling condition names.

STATEMENT

FIGURE 12/Z.103 (1 o f 3)

Syntax diagram for export statement

EXPORT STATEMENT

(D - *
CCITT-78620

Export
o p e r a t o r « © •

Express ion

FIGURE 12/Z.103 (2 o f 3)

Syntax diagram for export statement

EXPORT OPERATOR

-KeEED— < D\ s Variable) ' ident

FIGURE 12/Z.103 (3 o f 3)

Syntax diagram for export statem ent

82 Fascicle VI.10 — Rec. Z.103

IMPORT OPERATOR

X X
CCITT-78640

F IG U R E 13/Z .103

Syntax diagram for import statem ent

3.2 Enabling condition

A reduction in the num ber o f states in a process graph can often be achieved by having m eans of
attaching conditions to the com m encem ent o f transitions. The conditions are assertions involving variable, and are
know n as enabling conditions. I f the condition is true and the associated input signal is retained, the transition
proceeds norm ally. If the enabling condition is not true, the transition is inhibited and the input signal is instead
saved.

In norm al SDL such conditional execution o f transitions would need to be m odelled with separate states
for each value o f the enabling condition. The concise notation provided by enabling conditions is useful in
sim plifying a process graph.

Enabling conditions may be expressed using both local a n d /o r imported values. Shared values m ust no t be
used.

The enabling condition is described in term s o f basic SDL concepts (see Recom m endation Z.101). An
enabling condition is used in a process graph and is attached to an input symbol or an input statem ent. It is an
assertion involving data values which are either local or imported values. The condition m ust be a Boolean
expression, hence returning the values T R U E or FALSE. Each state which is followed by transitions controlled by
enabling conditions in fact represents a set o f states, one for each possible com bination o f the enabling condition.
The conditions are evaluated before one o f the appropiate m em ber o f the set o f states is selected as the next state.

The in terpretation of an enabling condition depends on the data values used in the condition. If an
enabling condition contains only values which are local to the process it needs only to be evaluated once. If it
contains imported values (see § 3.1), the condition must be evaluated each tim e one o f the imported values changes:
the evaluation is invoked by im plied signal interchange between the importer and exporter(s) o f the values.

Enabling conditions which use imported values m ake use o f further hidden signals, in addition to the
X Q U ER Y defined in § 3.1, which are X A TTA CH and Z D ETA C H . These are requests for the exporter to add or
rem ove the importer from a list o f those process instances which need to be inform ed o f changes in the exported
value. The exporter m aintains such an im plicit list, XLIST, for each value it exports. A further signal, X W A K E, is
sent by the exporter to each m em ber o f the list whenever it m akes an export operation on the corresponding data
item.

3.2.1 Definition

3.2.1.1 Single enabling condition based on local values

W hen only one of the inputs following a state has an attached enabling condition, and tha t condition
contains only local values, the in terpretation is as follows.

The state, the following inputs and saves are replaced by:
— a decision node which evaluates the enabling condition ;

— the “T R U E ” branch o f the decision is followed by a state node with the same save-signal-set as the
original state and follow ed by the same set o f inputs as the original state (the input to which an
enabling condition was attached appears as an input node)',

— the “ FA LSE” branch o f the decision is followed by a state node having the save-signal-set o f the
original state extended with the signal nam e o f the input having the enabling condition attached;

— each o f the input nodes are followed by the same transitions as in the original graph.

- < IMPORT X D variable
; > ident

Pid
exp res s ion

Fascicle VI.10 - Rec: Z.103 83

In the follow ing figure the definition o f the Simple Enabling Condition based on local values only are
shown using the graphic syntax o f SDL:

Note — The user writes this:

Note — This diagram is explanatory only.

F IG U R E 14/Z .103

Single enabling condition using local values only explained in S D L /G R

3.2.1.2 Single enabling condition containing imported values

W hen only one o f the inputs following a state has an attached enabling condition, which contains at least
one imported value, the in terpretation will lead to an im plied signal interchange with the owners o f the imported
values.

As the variables holding the imported values are handled by other process instances, w orking concurrently ,
the value o f the enabling condition may change while the process instance is w aiting in a state. Any such change
should lead to a new evaluation o f the condition. W hen entering an enabling condition construct the owners o f the
imported values are inform ed that this instance should be notified if any changes o f the value occurs. Thus when
an imported value is changed also a signal is sent to all processes that need inform ing, so that they evaluate the
conditions again.

The definition is as follows:

The valid input signal set o f the process which contains the enabling condition is extended by the im plicit
signal X W AKE. The state and the set o f inputs and saves following it are replaced by:

— a sequence o f output nodes for the signal X A TTA CH (one for each o f the imported values used in the
enabling condition);

— the attach sequence is followed by a decision and two state nodes, as in § 3.2.1.1;

— the decision, because it contains imported values, is itself expanded as in § 3.1.1.2, so that it is preceded
by import operations for each imported value it uses;

— in addition to the expansion defined in § 3.2.1.1 the two state nodes are also followed by an input
node for the signal X W A K E, with the follow ing transition leading back to the decision evaluating the
condition ;

— also in addition to the expansion defined in § 3.2.1.1 each input node, except for the X W A K E, are
followed by a sequence o f output nodes for the signal X D ETA C H (one for each o f the imported values
used in the enabling condition) and the sequence is then followed by the same transition as in the
original construct.

84 Fasciclfe VI.10 — Rec. Z.103

Note — The user draws this:

CC ITT-7J940

Note — This diagram is for explanatory purpose only.

F IG U R E 15/Z .103

Single enabling condition using imported values explained using S D L /G R

3.2.1.3 Actions by the exporter when imported values are used in enabling conditions

W hen an exported value is used in an enabling condition the exporter has the following im plied properties
in addition to those defined in §§ 3.1.1.2 and 3.1.1.3.

To invoke the revaluation o f enabling conditions using imported values the exporter im plicitly m aintains a
list, X LIST, o f process instances to be inform ed if the values change. Process instances will enter that list by
sending the signal X A TTA CH , and will rem ove themselves from the list by sending the signal X D ETA C H .

W henever a new value is exported by m eans o f the export operation all process instances in the X LIST
will be inform ed o f this new value by the signal XW AKE.

The definitions o f the addition are:

Each process which exports values is extended by:

a) adding the im plicit signals X A TTA CH and X D ETA C H to the valid input signal set;

b) defining a list XLIST. < nam e > for each value which is exported. The lists will hold process instance
identifiers.

Fascicle VI.10 — Rec. Z.103 85

To each state o f the process, including all im plied sta tes, is added two im plied transitions, in addition to
the im plied transition defined in § 3.1.1.2. The first o f these transitions consists of:

— an input node for the signal X A TTA CH ;

— a task which adds the process instance identifier o f the sender o f the signal XATTA CH to the X LIST
corresponding to the variable nom inated in the signa l; whose value is exported ;

— a return to the state from which the transition originated.

The second im plied transition consists of:

— an input node for the signal X D ET A C H ;

— a task which removes the process instance identifier o f the sender o f the signal X D ET A C H from the
X LIST nom inated in the signal-,

— a return to the state from which the transition originated.

The additional im plied transitions o f each state o f the exporter is shown below using the graphical syntax
o f SDL:

XATTACH

< n a m e >

XDETACH

< n a m e >

I n c l u d e
s e n d e r in

XLIST. < n a m e >

R e m o v e
s e n d e r f r o m

XLIST. < n a m e >

N ote — This diagram is for explanatory purpose only.
All transitions are implied.

FIGURE 16/Z.103

Implied transitions o f the exporting process explained in SD L/G R

The follow ing im plied transition is added to the definition of the export operation, § 3.1.1.3:

— follow ing a task including an export operation is a sequence o f output nodes for the signal X W A K E
conveying the disclosed value. There will be one X W A K E signal sent to each process instance currently
included in the X LIST for the corresponding variable which was disclosed the value.

The addition to the export operation is shown below using the graphic syntax o f SDL:

The user writes:

EXPORT(< name >) : =
< expression >

< implici t -
c o p y - n a m e > : =
< e x p r e s s i o n >

XWAKE to
pid

XWAKE to
pid

One output to
each process in
XLIST. < nam e>

N ote — This diagram is for explanatory purpose only.

FIG URE 17/Z.103

Im plied actions by the export operation explained in SD L/G R

86 Fascicle VI.10 — Rec. Z.103

3.2.1.4 Multiple enabling conditions

H aving several enabling conditions following a state is known as m ultiple enabling conditions.

If n o f the inputs nodes follow ing a state have enabling conditions attached to them , then the definitions
o f single enabling conditions will be extended as:

a) the state and the follow ing inputs and saves are represented by a decision node for a com plex
condition whose value is an n-tuple with elements the value o f the elem entary enabling conditions. This
is followed by 2**n state nodes, each followed by the transition processing which is approp ia te to the
particu lar values o f the enabling conditions which nam ed the arc leading to that state n o d e ;

b) if any o f the enabling conditions refer to imported values, the definitions in § 3.2.1.2 also applies.

The user writes this:

F IG U R E 18/Z .103

M ultip le enabling conditions explained using the S D L /G R

Fascicle VI.10 - Rec. Z.103 87

3.2.2 Rules fo r using enabling condition

1) Enabling conditions may be attached to any input signal.

2) There m ay be only one input following a state contain ing a given input signal, regardless o f whether
o r not the input has an enabling condition attached.

3.2.3 Concrete syntax

3.2.3.1 S D L /G R

Enabling conditions are show n in the S D L /G R by an enabling conditions symbol follow ing an input
symbol. The elem ent is a pair o f angle brackets em bracing a Boolean condition. The graphical syntax is show n in
Figure 19/Z.103:

U_ J No arrowhead here
< Boolean l
condition >

FIGURE 19/Z.103

SD L/G R syntax for the enabling condition

FIGURE 20/Z.103

Example of use of SD L /G R enabling condition syntax

88 Fascicle VI.10 — Rec. Z.103

3.2.3.2 S D L /P R

In S D L /P R the syntax o f the input statem ent is m odified by adding the P R O V ID E D phrase. The
P R O V ID E D phrase contains a Boolean expression. The syntax diagram for the m odified input statem ent is given
in Figure 21/Z .103:

STATE BODY

FIGURE 21/Z.103 (1 of 2)

Syntax diagram for the input statement including the PROVIDED phrase

ENABLING CONDITION

■^(p r o v id e d)-
boolean s. end N.I ? exp res s ion s

CCITT-78550

F IG U R E 21/Z .103 (2 o f 2)

Syntax diagram for the input statement including the PROVIDED phrase

Fascicle VI.10 - Rec. Z.103 89

3.3 Continuous signal

In describing systems with SDL, the situation frequently arises where a user w ould like to show a
transition as being caused by a change in the value o f a variable external to the process. The value might, as an
exam ple be a high or low voltage on a line or a num ber in a status register. The norm al way to achieve this in
SDL w ould be to arrange that a signal is generated when the change in the value occurs and to base the transition
upon the reception o f that signal. The necessity to explicitly define, generate and receive such signals may
com plicate the process graphs. The composite operation know n as a continuous signal allows a change in the value
o f a condition to directly initiate a transition.

An enabling condition represents a decision before entry to a state. W hen imported values are used the
enabling conditions provides exits from a state by m eans o f the im plicit X W A K E signal. It m ay also be used
w ithout an associated input signal when it becomes a continuous signal.In this case, the enabling condition does not
represent an extra, im plied state but instead defines a circum stance in which there is an escape from the state
from which the enabling condition follows. This circum stance has a priority lower than the retained signals.

Several continuous signals m ay lead from the same state and these may be such that m ore than one is true
at the sam e time. Each continuous signal is associated with a priority which determ ines the relative order in which
continuous signals are tested.

A continuous signal which uses only local values gives a m eans o f conditionally exiting from a state if no
signals are waiting in the input port at the tim e o f entry. A continuous signal which uses imported values adds to
this the capacity to revaluate the condition when there is a change in one o f the imported values used in the
condition.

3.3.1 Definition

The follow ing definition is based upon the definitions of import and export o f values, see § 3.1, and
enabling conditions, see § 3.2.

The in terpretation o f a state which is follow ed by continuous signals is presented as a general m odel in
which there are several continuous signals which collectively reference several imported values. If there are no
imported values used, the m odel is sim plified by the elim ination of X A TTA CH and X D ETA C H outputs and the
X W A K E input.

The state and the set o f inputs and saves following it, together with the continuous signals are replaced
by:

1) a sequence o f output nodes for the signal X A TTA CH , one for each o f the imported values used in the
continuous signal condition ;

2) a task which creates a unique value to be used in the EM PTY Q signal, used in 3);

3) an output node for a signal EM PTYQ which is sent to the process instance identity o f the sender,
i.e. to its own input p o r t ;

4) a state node as in the original process graph or procedure g raph , followed by a set o f input nodes
which includes the original set and two o ther input nodes',

5) each input node is follow ed by a sequence o f output nodes for the signal X D ETA C H , one for each of
the imported values used in the continuous signal conditions. This sequence is then followed by the
transition processing which originally follow ed the input n o d e ;

6) the state node in 4) is also followed by an input node for the signal X W A K E, this initiates the
transition in 7);

7) a sequence o f task nodes to import each o f the imported values used in the continuous signal
conditions;

8) a sequence o f decision nodes for each o f the continuous signal conditions, the first decision evaluated
being that for the highest priority continuous signal (the lowest num ber in the concrete syntax);

9) the FALSE branch o f each decision leads to a decision node for the continuous signal condition o f
next low er priority. The FALSE branch o f the lowest priority continuous signal decision leads back to
the sta te in 4);

10) the T R U E branch o f each decision leads to a sequence o f output nodes for the signal X D ET A C H ,
one for each o f the imported values used in the continuous signal conditions, followed by the transition
processing corresponding to the continuous signal condition tested in the decision ;

11) the state node in 4) is also followed by an input node for the signal EM PTYQ, in tu rn followed by a
decision node which tests that the signal carries the value given to it in 2), i.e. that it is the same signal
sent in 3), and no t an earlier, unprocessed EM PTY Q signal. The T R U E branch o f this decision leads
to the continuous signal processing in 7), and the FALSE branch leads back to the state node o f 4).

90 Fascicle VI.10 — Rec. Z.103

The valid input signal set o f the process containing continuous signals using imported values is extended by
the im plicit signal X W AKE. The valid input signal sets o f any process contain ing continuous signals are extended
by the im plicit signal EM PTYQ.

The user writes this:

N o te - This diagram is for explanatory purposes only.

FIGURE 22/Z.103

Continuous signal explained in SD L/G R

3.3.2 Rules fo r using continuous signals

1) Continuous signal may follow any state.

2) Continuous signal condition m ay be based on local values a n d /o r imported values.

3) N o two continuous signals following the same state may have the same priority num ber.

Fascicle VI.10 - Rec. Z.103 91

3.3.3 Concrete syn tax

3.3.3.1 S D L /G R

In S D L /G R a continuous signal is indicated by an enabling condition symbol which directly follows a
state symbol, i.e. the transition is no t headed by an input symbol. The symbol contains, as well as the continuous
signal condition, the keyword P R IO R IT Y followed by a priority num ber (natural num ber). The sm aller the
num ber, the higher is the priority o f the continuous signal.

<< Continuous signal condition >
PRIORITY < n u m b e r>

FIGURE 23/Z.103

SD L/G R symbol for the continuous signal

FIGURE 24/Z.103

Example of the use of SD L /G R continuous signal

If only one continuous signal is following a s ta te , the PR IO R ITY clause may be om itted. I f the clause is
om itted the priority num ber “ 1” is im plied.

3.3.3.2 S D L /P R

In S D L /P R a PR O V ID ED statem ent, followed by a transition string, represents the continuous signal. The
statem ent contains a PR IO R IT Y clause. The sm aller the num ber, in the PR IO R IT Y clause, the higher is the
priority o f the continuous signal.

CONTINUOUS SIGNAL

* >
CCITT - 7 8 5 4 0

FIGURE 25/Z.103

Syntax diagram for continuous signal

- ^ p r i o r i t y) -
dec im al
digit end

92 Fascicle VI.10 — Rec. Z.103

4 Macros

A M acro is a shorthand notation , defined by the user, that can be included in one or m ore places in the
concrete SDL representation o f a system. It represents a reference to a definition in a docum ent elsewhere. A
macro is only a part o f the concrete syntax, and has to be substituted by the body o f its definition in order to
in terpret the SDL representation in which it appears.

4.1 Definition

A macro may represent any collection o f syntactic items, however, it m ay not be recursive for obvious
reasons (infinite expansion!).

The macro can ' have zero or m ore inlets and zero or m ore outlets. In case o f m ore than one inlet there
should be a label attached to each inlet corresponding to the inlet label in the macro definition, in case o f a single
inlet the label m ay be om itted. The sam e applies for the outlets.

There is no scope or visibility associated to the macro concept as such. The in terpretation o f a macro
reference m ay only be obtained when the macro is substituted by its definition.

4.2 Concrete syntax

4.2.1 S D L /G R

4.2.1.1 Syn tax

The reference to a macro definition is shown by the macro symbol in the S D L /G R .

inlets
< inlet label >

m a c r o n a m e > or

outlets' •v0" 1®*
/ label >

< m a c r o n a m e > < inlet
label >

< outlet
label >

FIGURE 26/Z.103

The macro symbol in SD L/G R

The inlets to and outlets from the macro is represented by flow lines leading to /fro m the symbol. Labels
may optionally be attached to the flow lines.

The macro symbol contains the name o f the macro definition it refers to, and a comment may be attached
to the symbol.

The macro definition is entitled:

< nam e > M A CRO D E F IN IT IO N

where the < n a m e > is the name o f the m acro, and which is used in a macro symbol.

The macro definition contains the graphical representation which replaces the macro symbol before
in terpretation takes place. The inlets to and the outlets from the definition are represented by flow lines leading to
and from the sym bols in the definition respectively. Both the inlets and the outlets may have labels attached to
them.

4.2.1.2 Symbols

In Figure 27/Z.103 two additional symbols are defined:

< a >) Macro inlet symbol
< a > inlet label

(< b> j Macro outlet symbol
< b > outlet label

CCITT - 7 4 0 4 0

FIGURE 27/Z.103

Additional symbols for macro

Fascicle VI.10 - Rec. Z.103 93

4.2.1.3 Rules fo r using macros in the S D L /G R

The macro symbol may be inserted at any place in a diagram , and may represent any collection S D L /G R
symbols.

There must be the same num ber o f inlets in a macro symbol as there are inlets in the referenced macro
definition. The set o f labels on the inlets in the macro symbol must be the same as the set o f labels on the inlets in
the macro definition. The same rule applies for outlets and outlet labels.

In lets/outlets may te rm inate /o rig ina te from any side o f the symbol.

As the sem antic o f a macro is obtained by substituting the reference by the collection o f symbols in the
defin ition , all graphic conventions apply to the diagram in which all m acro appearances have been substituted.
This may lead to unexpected consequences due to rules as for exam ple the m ultiple appearance o f states. This is
fu rther discussed in the SDL User G uidelines.

4.2.2 S D L /P R

4.2.2.1 Syntax

The m acro call can be put in any diagram using the syntax:

M A C R O m acro nam e;

The m acro expansion is a piece o f an S D L /P R program starting with:

M A C R O E X PA N SIO N m acro nam e;

and ending with:

E N D M A C R O m acro nam e;

in the last statem ent, the m acronam e is not m andatory.

This definition m ust be placed im m ediately after the SYSTEM , BLOCK or PROCESS construct respec­
tively depending on where the macro is referenced. The macro definition m ay contain any character and its
correctness can only be evaluated after it has replaced the macro statement.

4.2.2.2 Rules fo r using macros in the S D L /P R

The same rules and concerns as when macros are used in the S D L /G R also applies for the S D L /P R .

5 Options

W hen several sim ilar applications are specified or described using SDL often the same process definition
can be used in the different systems if it is slightly m odified. The O P TIO N facility in SDL provides m eans for
defining processes generic for several applications by introducing alternative op tional parts o f the descriptions.

5.1 Definition

An option is the selection o f alternative parts o f a process defin ition , according to the evaluation o f an
option expression. The selection is m ade before the process definition is interpreted.

The option facility is only part o f the concrete syntax, and should be considered as a shorthand no ta tion
•providing one generic description for several applications rather than having one specific description for each
application .

94 Fascicle VI.10 — Rec. Z.103

5.2 Concrete syntax

5.2.1 S D L /G R

5.2.1.1 Symbols

The follow ing symbol is used in the S D L /G R to represent option

< option
alternative >

I

< option
alternative >

I

FIGURE 28/Z.103

The option symbol in SDL/G R

5.2.1.2 Rules fo r using options in the S D L /G R

The option symbol may follow a task symbol, a decision symbol outlet, an output sym bol or a procedure
symbol in a process diagram. The option symbol may be followed by a state symbol, a task symbol, a decision
symbol, an output symbol or a procedure sym bol

The < option expression > contained in the symbol is an expression such that one of the < option
alternative> follow ing the symbol is uniquely chosen after evaluation, and such that it can be evaluated before
in terpreting the process. Each option alternative m ust be a value o f the same type as the option expression. W hen the
resulting process is interpreted the unreachable parts o f the process definition should be considered as deleted.

5.2.2 S D L /P R

5.2.2.1 Syn tax

The option is represented in the S D L /P R by the following syntax:

OPTION

■^(a l t e r n a t iv e) - £ question £ end

answer trans it ion
string

te rm in a to r
s ta tem en t

<ENDALTERNATiVEo -

CCITT-78630

FIG URE 29/Z.103

Syntax diagram for option

Fascicle VI.10 — Rec. Z.103 95

5.2.2.2 Rules fo r using options in the S D L /P R

The < option expression > contained in the statem ent is an expression such that one o f the < option
alternative>% can be uniquely chosen after evaluation, and such tha t it is evaluated before interpreting o f the
process. Each option alternative m ust be a value o f the same type as the option expression. W hen the resulting
process is interpreted the unreachable parts o f the process definition should be considered as deleted.

6 Pictorial elements in SDL/G R

W hen the graphical syntax o f SDL is used to represent process definitions the use o f pictorial elements to
form a state picture within a sta te symbol is an op tional part o f the S D L /G R .

Such state pictures can provide advantages when applied to certain system definitions, resulting in m ore
com pact and less verbal process diagrams. The state picture describes, in term s o f pictorial elements and qualifying
text, the actual status o f the process when in that state. Also the assum ed status o f the environm ent o f the process
may be described in the state picture. W hen using state pictures the actions to be perform ed in transitions between
the states is im plied, by the difference o f the described status.

W hen using pictorial elem en ts , the syntax and sem antics as defined elsewhere in the R ecom m enda­
tion Z.101 apply. However, these sem antics and syntax are extended as defined in the following.

6.1 Sem antics o f state pictures

W hen using pictorial elements a state node is represented by a state symbol. The state symbol is identified
by its name, and contains a state picture consisting of pictorial elements, values o f variables, input variables and
qualifying text.

A state picture can represent:

1) using pictorial elements and qualifying text, the values, in that state, in a selected subset o f the total
set o f variables associated with that process. The selected subset may include variables which serves
purely as proxy for variables associated with other processes. These “proxy” variables carry the value
o f variables associated with other processes. These values are obtained either by viewing or importing
the value,

2) using the values o f input variables, the input actions with respect to the valid input signals for that
state.

The repertoire o f pictorial elements is in principle unlim ited, since new pictorial elements can be invented
to suit any new application of the SDL. However, in applications to telecom m unications switching and signalling
functions, the follow ing repertoire o f pictorial elements has been found to have considerable versatility:

— process boundary (left or right),

— term inal equipm ent (various),

— signalling receiver,

— signalling sender,

— com bined signalling sender and receiver,

— tim er supervision process,

— switching path (connected, reserved),
— switching m odule,

— charging in progress,

— control elem ent,

— uncertain ty symbol.

S tandard sym bols for these pictorial elements are recom m ended in § 6.3.

6.2 Rules o f interpretation

1) Input variables are Boolean variables and each input variable corresponds to one and only one signal
from the set o f valid input signals for the process. A change in the value of an input variable between
state pictures always represents the consum ption o f a signal by an input o f a process. Therefore, input
variables can be used to represent those conditions o f a process which, if changed, will result in the
process perform ing a transition. The values o f an input variable can be associated with pictorial
elements.

96 Fascicle VI.10 — Rec. Z.103

2) The presence o f pictorial elements in a state picture indicates specific values for a subset o f variables
while tha t process is in tha t state. The values of additional variables, particularly ones associated with
this initial subset can be indicated by the qualification o f the pictorial elements by qualifying text.
Q ualifying text is not an input variable; changes in the qualifying text DO N O T represent the
consum ption o f an input signal by an input action o f the process.

3) Positioning:

a) The positioning o f any pictorial elements (other than a process boundary) relative to a process
boundary determ ines w hether the pictorial elements is “in ternal” or “external” to the process. An
in ternal pictorial elements represents variables which are ow ned by the process. An external
pictorial element represents variables which are owned by another process so that the viewing and
import m echanism s must be used to access these variables.

b) Rule a) also applies to the distinction between internal and external qualifying text, by
substituting the term “qualifying text” for pictorial elements in this rule.

4) C ardinal rule:

The to tal processing involved when going from one state to the follow ing state is th a t required to
effect the changes in the state pictures, together with the processing indicated in any decisions, outputs
or tasks appearing in the transition between the states. Thus:

a) The change from the appearance o f an internal pictorial element in one state to the absence of
that pictorial element in the following state, or vice versa, corresponds to a change in the values
o f some variables which can be equivalently represented by the use o f a task in the transition
between the states.

b) The change from the appearance o f an external pictorial element in one state to the absence o f
tha t pictorial element in the following state, or vice versa, corresponds to a change in variables
ow ned by another process. This change can be equivalently represented either by an output signal
to tha t other process or sim ply by the input signal from that process.

c) Rules (a) and (b) also apply to the appearance or d isappearance in the state picture o f qualifying
text, by substituting the term “qualifying text” for pictorial elements in those rules.

5) For a given process d ia g ra m , particu lar pictorial elements (or a particu lar com bination o f pictorial
elements and qualifying text) is positioned uniquely within the state picture so tha t the presence or
absence of this pictorial element (or com bination) in a state symbol can be quickly determ ined by
com paring the state picture with o ther state pictures in the process diagram.

6) W hen a signalling sender appears in a state picture, its qualifying text identifies a signal which has
been output p rior to, or (in the case o f a continuous signal controlled by the process) prior to and
during this state.

6.3 Recom m ended symbols fo r pictorial elements

W hen using pictorial e lem en ts, each state is represented by a state symbol containing a state picture with
the form at shown in Figure 30/Z .103:

A basic set o f pictorial elements has been standardized for use in the S D L /G R with application to the
system description o f telecom m unications call handling processes, including signalling protocols, netw ork services
and signalling interw orking processes. M any o f these pictorial elements are capable o f being applied in
applications of the S D L /G R beyond call handling processes, and their application to o ther processes in
telecom m unications, where appropriate , is encouraged.

The recom m ended symbols for the basic set o f pictorial elements is shown in Figure 31./Z.103 below:

The choice o f pictures for pictorial elements has been based upon the considerations and general selection
criteria presented in Annex A to this R ecom m endation, which should be consulted before developing additional
pictorial element symbols for wider applications o f the S D L /G R .

The recom m ended p roportions for pictorial element symbols are shown in Annex B to this R ecom m enda­
tion.

The tem plate which is enclosed in the inside back cover of this fascicle and which is suitable for hand
draw ing the basic set o f S D L /G R symbols, includes in this basic set the pictorial element sym bols shown in
Figure 31/Z.103.

Fascicle VI. 10 - Rec. Z.103 97

State number

State
picture

FIGURE 30/Z.103

Recommended format of a state symbol with state picture

1) F u n c t i o n a l b l o c k
b o u n d a r y

2) T e r m i n a l
e q u i p m e n t (a) t e l e p h o n e o n - h o o k

t e l e p h o n e o f f - h o o k

(b) t r u n k

(c) s u b s c r i b e r l i n e

(d) s w i t c h b o a r d

(e) o t h e r

3) S w i t c h i n g (a) co n n e ct ed
p a t h

(b)rese rved

[

s

A

□

4) S i g n a l l i n g r e c e i v e r

5) S i g n a l l i n g s e n d e r

6) C o m b i n e d s i g n a l l i n g s e n d e r
a n d r e c e i v e r

7) T i m e r s u p e r v i s i n g o f
a p r o c e s s

8) C h a r g i n g in p r o g r e s s

9) S u b s c r i b e r o f t e r m i n a l
c a t e g o r y

1 0) U n c e r t a i n t y s y m b o l

1 1) S w i t c h i n g m o d u l e

1 2) C o n t r o l e l e m e n t

c
d

©
D

1

C
CCITT-34100

FIGURE 31/Z.103

Recommended symbols for the basic set of pictorial elements concepts

6.4 Special conventions and interpretations used in the state oriented extension o f S D L /G R

A num ber o f special conventions and in terpretations have been defined in this section with regard to the
state oriented extensions o f S D L /G R . These include:

— The special in terpretation required o f process diagrams according to the so-called C A R D IN A L R U L E
(see § 6.2, rule 4).

— The unique positioning o f pictorial elements (or pictorial elements and qualifying text) w ithin a state
picture tha t is required when using pictorial elements (see § 6.2, rule 5).

— The special in terpretation required for the variables represented by external pictorial elements and
external qualifying text, as proxy variables for other variables associated with other processes.

98 Fascicle VI.10 - Rec. Z.103

A N N E X A '
(to R ecom m endation Z.103)

Examples of the use of the basic set of pictorial elements

N o. P ic to r i a l e l e m e n t C o m m e n t E x a m p l e s

Functional block (FB) boundary T o d i s t i n g u i s h e l e m e n t s i n s i d e a n d o u t s i d e
t h e FB b o u n d a r y . O n l y t h e s t a t e s o f e l e ­
m e n t s w i t h i n t h e b o u n d a r y c a n b e c h a n g e d
d i r e c t l y b y t h i s p r o c e s s .

1 .1 A h a n d s e t o u t s i d e t h e FB b o u n d a r y c o n n e c t e d t o a d i g i t r e c e i ­
v e r i n s i d e t h e FB b o u n d a r y

e x t e r i o r i n t e r i o r
i

1 . 2 A t r u n k o u t s i d e t h e FB b o u n d a r y c o n n e c t e d vi a a t w o - s t a g e
s w i t c h i n g u n i t t o a s w i t c h b o a r d o u t s i d e t h e FB b o u n d a r y

Terminal equipm ent It c a n b e u s e f u l t o s h o w t e r m i n a l e q u i p m e n t
(e .g . t e l e p h o n e s e t a n d s w i t c h b o a r d e q u i p ­
m e n t) o u t s i d e t h e FB b o u n d a r y , t o i m p r o v e
u n d e r s t a n d i n g o f t h e p r o c e s s i n g w o r k .

a) T e l e p h o n e s e t

o n - h o o k

o f f - h o o k

b) T r u n k

zs

s
2.1
A o n - h o o k

2.2
B o f f - h o o k

2 . 3 I n c o m i n g d e c a d i c t r u n k j u n c t o r (f r o m a s p a c e d i v i s i o n s w i t c h ­
i n g e x c h a n g e)

I n c o m i n g
d e c a d i c

2 . 4 O u t g o i n g s u b s c r i b e r l i n e t o a p a r t y l i n e

c) S u b s c r i b e r l i n e [e x c e p t a)]

d) S w i t c h b o a r d

e) O t h e r

□
2 . 5 PBX s w i t c h b o a r d

2 . 6 M o d e m

C C IT T -2 0 8 8 0

Fascicle VI.10 — Rec. Z.103 99

No. P ic to ria l e le m e n t C o m m e n t E x am p les

Switching path

a) c o n n e c t e d

b) r e s e r v e d

T o s h o w c o n n e c t i v i t y b e t w e e n t e r m i n a l
e q u i p m e n t a n d / o r s i g n a l l i n g d e v i c e s
i n v o l v e d in t h e p r o c e s s .

3 .1 S u b s c r i b e r l i n e c o n n e c t e d t o a d i a l - p u l s e d i g i t r e c e i v e r a n d a
m o d e m w i t h a r e s e r v e d p a t h t o a c e n t r a l p r o c e s s i n g u n i t
(C PU)

Signalling receiver T o s p e c i f y a s i g n a l r e c e p t i o n p r o c e s s , a n d
t o i n d i c a t e t h e n a t u r e o f t h e s i g n a l s r e c e i v ­
e d , e s p e c i a l l y t h o s e c r o s s i n g t h e f u n c t i o n a l
b l o c k b o u n d a r y .

4 . 1 M u l t i - f r e q u e n c y c o d e s i g n a l l i n g r e c e i v e r

- i
M F C

4 . 2 M F C / d e c a d i c s i g n a l l i n g r e c e i v e r

M F C / D E C

Signalling sender T o s p e c i f y a s i g n a l s e n d i n g p r o c e s s , a n d t o
i n d i c a t e t h e n a t u r e o f t h e s i g n a l s s e n t ,
e s p e c i a l l y t h o s e r e q u i r e d t o c r o s s t h e f u n c ­
t i o n a l b l o c k b o u n d a r y .

5.1 D e c a d i c s i g n a l l i n g s e n d e r w i t h a b a c k w a r d s i g n a l " B 2 " b e i n g
s e n t

<
D e c a d i c

"B2"

Combined signalling sender
and receiver

5

T h i s c o n v e n i e n t l y c o m b i n e s t h e f u n c t i o n s
o f a s i g n a l l i n g s e n d e r a n d s i g n a l l i n g r e c e i ­
ver .

6 .1 M F C s e n d e r - r e c e i v e r

- a M F C

Timer supervising
a process

o

T i m e r s a f f e c t t h e s u b s e q u e n t b e h a v i o u r o f
t h e p r o c e s s .

7 .1 T i m e r t 3 is r u n n i n g

Note T h e r e l a t e d i n p u t s y m b o l i n d i c a t i n g
t i m e o u t expi ry, m a y b e s h o w n a s t,.

7 . 2 G e n e r i c t i m e r t s is r u n n i n g
©
o

w h e r e s = 1, 2 , . . . n d e f i n e d i f f e r e n t s e r v i c e t o n e s .

C C IT T -2 0 8 9 0

100 Fascicle VI.10 — Rec. Z.103

No. P ic to ria l e le m e n t C o m m e n t E xam ples

Charging in progress (and which
customer is being charged)

T h e c h a r g i n g p o l i c y is s i g n i f i c a n t t o t h e
A d m i n i s t r a t i o n , t h e m a n u f a c t u r e r a n d t h e
c u s t o m e r .

8 .1 S u b s c r i b e r A is c u r r e n t l y b e i n g c h a r g e d

D
Subscriber or terminal category
(and identity information)

C h a n g e s in t h e s u b s c r i b e r o r t e r m i n a l c a t e ­
g o r y , f o r e a c h p a r t y in a m u l t i - p a r t y cal l , c a n
a f f e c t t h e b e h a v i o u r o f t h e p r o c e s s .

9 .1 T h e A p a r t y h a s t r u n k a c c e s s b a r r e d

A
9 . 2 T h e C p a r t y h a s o r i g i n a t i n g c a t e g o r y N o . 2

O r i g i n a t i n g
c a t e g o r y

No . 2

10. Uncertainty sym bol

*

T h i s s u b s t i t u t e s f o r d e l i b e r a t e l y u n d e f i n e d
i n f o r m a t i o n t h a t is s h o w n u n a m b i g u o u s l y
in o t h e r s t a t e p i c t u r e s . In c e r t a i n c a s e s , t w o
o r m o r e s t a t e s m a y b e s a f e l y m e r g e d i n t o
o n e , w i t h a n e t g a i n in t h e i n t e l l i g i b i l i t y o f
t h e d i a g r a m , b y u s i n g t h e u n c e r t a i n t y
s y m b o l .

1 0 . 1 H a n d s e t e i t h e r o n - h o o k o r o f f - h o o k

1 0 . 2 S u b s c r i b e r c a t e g o r y e i t h e r " b a r t r u n k a c c e s s " o r n o t , in t h i s
s t a t e o f t h e p r o c e s s

1 0 . 3 A n u n d e f i n e d M F C s i g n a l is b e i n g s e n t in t h i s s t a t e

- c
M F C

*

C C IT T -2 0 9 0 P

Fascicle VI. 10 — Rec. Z.103 101

No. P icto ria l e le m e n t C o m m e n t E xam ples

Switching module T o s h o w w h a t s w i t c h i n g m o d u l e s a r e
i n v o l v e d in t h e p r o c e s s .

Note - T h e h o r i z o n t a l l i n e is t h e p i c t o r i a l
e l e m e n t f o r a s w i t c h i n g p a t h , w h i c h m a y b e
c o n n e c t e d o r r e s e r v e d . T h e v e r t i c a l l i n e c a n
b e u s e d t o r e p r e s e n t e i t h e r a c o m p l e t e s w i t ­
c h i n g m o d u l e (w h e n t h e i n t e r n a l s t r u c t u r e
o f t h e m o d u l e is n o t r e q u i r e d) o r e l s e o n e o f
t h e s w i t c h i n g s t a g e s w i t h i n a s w i t c h i n g
m o d u l e .

1 1 .1 A p a t h c o n n e c t e d t h r o u g h o n e s w i t c h i n g m o d u l e

LLN = Li ne l i nk n e t w o r k

1 1 . 2 P a t h s c o n n e c t e d a n d r e s e r v e d t h r o u g h t w o s w i t c h i n g
m o d u l e s

R S

ICT O G T
\ *

M o d u l e R ___

\
\

t ' '
\

n c d c i v c u j j a u i ____j

E s t a b l i s h e d p a t h ___

\
\

-------- Q M F C

M o d u l e S ____ i

ICT - I n c o m i n g t r u n k
O G T - O u t g o i n g t r u n k
M F C - M u l t i - f r e q u e n c y c o d e

Note - In t h i s e x a m p l e , ICT is c o n n e c t e d t o O G T , b u t ICT is n o t c o n ­
n e c t e d t o t h e M F C s e n d e r / r e c e i v e r .

1 1 . 3 A p a t h c o n n e c t e d t h r o u g h a t h r e e - s t a g e s w i t c h i n g m o d u l e
R S N

+++
RSN

1 1 . 4 A p a t h r e s e r v e d t h r o u g h a t h r e e - s t a g e s w i t c h i n g m o d u l e
A B C

 + H - —
A B C

1 1 . 5 A p a t h c o n n e c t e d t h r o u g h a f o l d e d n e t w o r k

12. Control elem ent
(assigned to a process)c

T o s h o w w h a t c o n t r o l e q u i p m e n t is i n v o l ­
v e d in t h e p r o c e s s (e s p e c i a l l y m o d u l e s t h a t
m u s t b e d i m e n s i o n e d) . T h i s s y m b o l c a n b e
u s e d t o i n d i c a t e t h a t p a r t i c u l a r s o f t w a r e
e l e m e n t s h a v e b e e n a s s i g n e d t o t h e p r o ­
c e s s .

1 2 .1 Cal l r e g i s t e r b u f f e r

£ C RB

CCITT-20910

102 Fascicle VI.10 - Rec. Z.103

Selection criteria for pictorial elements

B.l General

The choice o f symbols for PEs has been based upon the following considerations and general selection
criteria, which should be consulted before developing additional PE symbols for wider applications o f the SDL.

B.2 Typical readers

It is expected tha t the SDL diagram s using PEs will be read by both technical and non-technical people in
the following contexts: m arketing new facilities; specifying new facilities; developing hardw are and softw are from
a specification; project m anagem ent; operation and m aintenance o f an exchange; traffic engineering; education
and train ing courses in telephony. It is expected that SDL diagram s will serve as com m on docum entation:

a) between A dm inistrations and m anufacturers,

b) between different departm ents within these organizations,
c) as telephone exchange docum entation , and

d) in train ing m anuals and textbooks.

It is no t expected tha t SDL diagram s (as diagram s) will be directly read by machines. Instead it is expected
that the S D L /P R form o f the SDL (including PE inform ation) will be read by m achines which will draw diagram s
(see b) and c) o f § B.3).

B.3 Typical drawing methods

It is expected that SDL diagram s using PEs will usually be draw n by technical people, including
draftsm en, either:

a) by hand , using a tem plate as a draw ing aid, a n d /o r

b) displaying the diagram electronically on a graphics visual display unit, a n d /o r

c) by using an electronically controlled plotter.

B.4 M ethods o f reproduction

The typical m ethods o f reproduction are expected to be:

a) the dye-line or blue-prin t m ethods, as in conventional drafting;

b) photocopying by office m achines, including photo-reduction;

c) photo-prin ting in general.

B.5 Ease o f reproduction

In order to perm it convenient reproduction o f SDL diagram s using the dye-line or b lue-prin t m ethods o f
reproduction as well as photocopying and photo-prin ting , PE symbols should consist o f clear lines w ithout
shading.

B.6 - Ease o f drawing

The following criteria reflect the assum ption tha t the prim ary draw ing technique will be to draw by hand
using a tem plate, and the secondary techniques will be displaying a diagram on an electronically contro lled
screen, and draw ing the diagram with an electronically controlled pen:

a) each PE symbol should be easy to draw with pen or pencil, either free-hand or using a stencil;

b) all PE symbols should be draw n using the same thickness o f lines;

c) PE sym bols should be created by synthesis o f very sim ple geom etric lines and curves in order to
perm it easy electronic generation o f PE symbols.

A N N E X B

(to Recom m endation Z.103)

Fascicle VI.10 — Rec. Z.103 103

This is the m ost im portan t consideration o f all, since it is characteristic o f SDL docum entation that the
readers are much greater in num ber than the draw ers (or authors). This requirem ent is expressed by the following
criteria concerning PE symbols:

a) Appropriateness — The shape o f each symbol should be appropriate to the concept that the symbol
represents.

b) Distinctiveness — W hen choosing a basic set o f symbols, care should be taken to perm it each symbol
to be readily distinguishable from others in the set.

c) Affin ity — The shapes o f PEs representing different but related functions, e.g. receivers and senders,
should be related in som e obvious way.

d) Association o f abbreviated text with symbols — In some cases it is expected that abbreviated text will
be associated with a PE in order to indicate the class of PE; e.g. the letters M FC associated with a
receiver symbol to indicate that m ulti-frequency coded signals are to be received. In these cases, the
PEs should incorporate enclosed space to perm it the use o f a very small num ber o f alphanum erical
characters.

e) Lim ited set — The to tal num ber o f symbols should be kept to a m inim um in order to perm it easy
learning o f the pictorial method.

B.7 Ease o f comprehension

ANNEX C

(to Recom m endation Z.103)

Recommended proportions for the basic sets of pictorial elements

Terminal equipment

a) Telephone set

b) Trunk

b/a any value > 1

c) Subscriber line

d) Switchboard

i

■*—--- 2a------„

e) Other

b/a any value > 1

Signalling receiver

2a

Signalling sender

w
n»

v

2 a — ►

Combined signalling sender-
receiver

* “i — TO

<------ 2a------^

Charging

5 a

Subscriber or terminal
category

b/a any value > 1

Control element

/
n>|c

TO
i f

b

b/a any value > 1

CC ITT-34110

104 Fascicle VI. 10 — Rec. Z.103

Recommendation Z.104

D A T A IN S D L

1 Introduction

This R ecom m endation defines the data concept in SDL; the SDL data term inology, the use o f pre-defined
data types, and the facility to define new data types.

The m ain occurrences o f data in SDL are in data type definitions, expressions, the application o f operators,
variables, values, constants and literals.

Data type definitions

D ata in SD L is principally concerned with data types. A data type defines a set o f values, a set o f
operators which can be applied to these values, and a set o f axioms defining the behaviour when these operators
are applied to the values. The values, operators and axioms collectively define the properties o f data types. These
properties are defined by data type definitions.

SDL allows the definition o f any needed data type, including structuring m echanism s (com posite types),
subject only to the requirem ent tha t such a definition can be form ally specified. By contrast for program m ing
languages there are im plem entation considerations which require that the set o f available data types and, in
particu lar, the structuring m echanism s provided (array, structure, etc.) be limited.

Expressions and operators

Expressions allow for the m anipulation o f values (by applying appropriate operators), to return new
values.

Variables

Variables are objects which can be associated with a value by explicit or implicit assignment. W hen the
variable is accessed, the value is returned.

Values, constants and literals

All data types have at least one value. For m ost data types there are literal (syntactic) form s to denote the
constant values of the data type (for exam ple for Integers). Data types for which there are literals to denote values
are said to have denotable constants. There may be m ore than one literal to denote the same constant value (for
exam ple 12 and H 'C both denote the same Integer constant), and the same literal denotation m ay be used for
m ore than one data type. Some types do not have denotable constants. For exam ple, values o f the data type Stack
can only be generated by the application o f operators which return stack values.

In a specification language, it is essential to allow data types to be form ally described in term s o f their
behaviour, rather th an by com posing them from provided prim itives, as in a program m ing language. The latter
approach invariably involves a particu lar im plem entation o f the data type, and hence restricts the freedom
available to the im plem entor to choose appropriate representations o f the data type. The SDL approach allows
any im plem entation providing that it is feasible and correct with respect to the SDL.

In SDL, all data types are abstract data types. Exam ples of these are given in § 5 where the pre-defined
data types o f the language are defined.

A lthough all data types are abstract, and the pre-defined data types m ay be re-defined by the user, some
effort has been m ade in SDL to provide pre-defined data types which are fam iliar in both their behaviour and
syntax. These are:

A rray, Boolean, C haracter, C harstring , D uration , Integer, N atural, Powerset, P id , Real, String, Tim e and
Timer.

C om posite types can be form ed by the use o f Struct data types.

Fascicle VI.10 — Rec. Z.104 105

1.1 The SD L data formalism

In SDL, data is m odelled by a type algebra. A type algebra is a set o f domains, a designated domain, and
a set o f functions m apping between the domains. Each domain is the collection o f all the possible values for a
data type. The designated domain is the data type currently being described. The functions represent the operations
o f the data type.

The domain and operations, together with the behaviour (specified by the axiom s) o f the data type, form
the properties o f the data type.

In troduction o f a syntype creates a subset o f the values o f an already defined type. In troduction o f a
newtype creates a distinct new data type, with properties inherited from the parent, but with d ifferent identifiers for
these properties. In the concrete syntax, these names need not be distinct, and this am biguity m ust be resolved by
context.

A generator type is an incom plete type description ; before it assumes the status o f a data type, it m ust be
instantiated by providing this m issing in fo rm ation .

The functions which m ap between the dom ains o f a data type are norm ally partitioned into two classes.
The generator functions, which m ap onto the designated domain, and so produce (possibly new) values o f the data
type. All other functions are sem antic functions and ascribe m eaning to the type by m apping onto other defined
types. The sem antic functions include the predicates which m ap onto the Boolean domain.

2 Common language model

2.1 General

In R ecom m endation Z.104, the concepts o f variables, pre-defined data types, values, expressions and
inform al expressions are used. This R ecom m endation rigorously defines variables, pre-defined data types, values
and expressions, and also extensions to the Recom m endations Z.101, Z.102 and Z.103 which allow the in troduc­
tion o f new data types.

2.2 Abstract syntax

This abstract syntax extends that defined by R ecom m endations Z.101, Z.102 and Z.103.

Data definition

A data definition is a data type definition or a synonym definition.

System definition

A system definition may contain data definitions.

Block definition

A block definition may contain data definitions.

Internal part block definition

An internal part block definition may contain data type definitions.

Channel substructure definition

A channel substructure definition may contain data definitions.

Process definition

A process definition m ay contain data definitions and variable definitions.

Procedure definition

A procedure definition m ay contain data definitions and variable definitions.

Input node

A variable m entioned in an input node m ust be defined in a variable definition and m ust have the sam e
data type as the corresponding data type in the signal definition.

106 Fascicle VI.10 - Rec. Z.104

A data type definition contains a type nam e and either a newtype description or a syntype description.

Newtype description

A newtype description contains a possibly em pty set o f value names, a set o f one or m ore operator
in troductions and a possibly em pty set o f data type axioms.

All value nam es in the data type description must be unique within the data type.

All operator names in the data type description m ust be m utually exclusive.

All data type nam es in the sam e context m ust be unique.

Operator introduction

An operator in troduction either introduces one o f the universal operators which it is perm issible to
introduce with any data type, or introduces an operator nam e together with the operator typing.

Operator

An operator is either a universal operator with a data type identifier o r is a user-defined operator identifier
with a data type identifier. In either case the data type identifier allows the data type definition which defined the
operator to be established.

Operator typing

An operator typing contains the list o f data type identifiers of the parameters to the operator and the data
type identifier o f the result o f applying the operator.

At least one o f the data type identities in the list, or the result, must be that o f the data type being defined.

The result type m ust not be a syntype.

A xiom s

Axiom s are statem ents o f tru th which hold under all conditions for the type being defined, and thus
specify the behaviour o f types.

Assignm ent statem ent

An assignment statem ent contains an assignment operator, a variable identity and an expression. The
assignment operator is either the universal operator for assign qualified with the data type identity o f the data type
o f the variable or the user defined insert operator.

Syntype description

A syntype description contains a syntype name, the parent data type identity and the set o f value identities
o f the parent data type which are valid for the syn data type.

Expression

An expression is either a primary, or an operation.

Operation

An operation contains an operator and a list o f one or m ore expressions. There are as m any expressions
contained in the operation as there are data types defined for the parameters o f the operator.

Primary

A prim ary is one o f the following:

— a synonym identity,
— a value identity,

— a variable identity, or

— a conditional expression.

Data type definition

Fascicle VI.10 - Rec. Z.104 107

Conditional expression

A conditional expression is a Boolean expression, and a list o f two expressions o f the same data type.

Variable definition

A variable definition consists o f a variable nam e list and a data type identifier.

Universal operation

A universal operator is either a variable operator or a comparator.

A variable operator is declare, assignment o r access. Declare is used to declare variables', assignment is
used for assigning to variables and access is used whenever a variable identity is interpreted as a value.

A comparator is either one o f the ordering operators or an equality operator. An ordering operator is either
less than or greater than.

All the universal operators include the data type to which they are relevant as a qualifier so that different
data types in troduce different operators. For exam ple, the two data types square and cube introduce two operator
identities for assign, square lassign and cu b e’.assign.

For a data type D, the operator typing for com parators is:

D , D — > Boolean

For a data type D, the assign operator requires a variable identity o f data type D and value o f
data type D.

For a data type D , the access operator requires a variable identifier o f data type D and delivers a value o f
data type D.

For a data type D, the declare operator requires a variable identifier.

Synonym definition

A synonym definition contains a synonym nam e and a constant expression.

Constant expression

A constant expression is either a constant value or an operation all o f whose param eters are constant
expressions.

Constant value

A constant value is either a value identifier or a synonym identifier. A synonym may no t be recursively
defined.

2.3 Interpretation rules

2.3.1 Process

Instantiation o f process takes place before the start node is interpreted, and causes a declare operation to
be applied to every variable nam e which appears in a variable definition in the process definition. As a result o f the
declare operator, the variables declared becom e associations from variable identities to an initial value (which will
be undefined value unless otherw ise specified in the axioms for the data types o f the variables). The variable
identities declared when instantiating a process contain the variable name, the process instance identity and the data
type identity from the variable definition.

2.3.2 Procedure start node

C alling a procedure causes variables defined within the procedure to be created for a procedure in a
sim ilar way to instantiating a process.

2.3.3 Process graph

The interpretation of an output node causes each o f the expressions in the output node to be interpreted in
the sequence specified, and the resulting values to be assigned to anonymous implicit variables which are associated
with the signal. These variables are considered to be declared when the output node is interpreted. Each o f these
variables has the data type o f syn data type associated with the corresponding position in the signal definitions. The
values which are assigned to these variables are the values conveyed by the signal.

108 Fascicle VI.10 — Rec. Z.104

The interpretation o f a decision node causes the expression contained in the decision node to be interpreted
follow ed by the choosing o f the arc which is associated with the value delivered by the expression.

Create request

The interpretation o f a create request node causes each o f the expressions in the create request node to be
interpreted in the sequence specified.

The instantiation o f the process being created then takes place together with the declaration o f the fo rm a l
param eter o f the process and the assignment o f the corresponding resulting value o f each expression in the create
request node to each fo rm a l parameter. The created process then executes separately from (but concurrently with)
o ther processes.

Call node

A call node causes expressions used as fo rm a l parameters attributed with IN to be interpreted before the
interpretation of the start node o f the procedure. Each o f the expressions assigns its value to the corresponding
actual parameter.

2.3.4 Procedure

A fo rm a l param eter attribu ted with IN /O U T is interpreted as the variable identifier of the corresponding
actual param eter in the context o f the procedure call. A form al param eter attributed with S IG N A L is interpreted as
the signal identifier o f the corresponding actual param eter in the context o f the procedure call.

2.3.5 Assignm ent statem ent

The assignment statem ent is interpreted as com bining the old value o f the variable with the value o f an
expression and b inding the variable identity to this new value.

The assignment operator determ ines the rules for com bining the old value o f the variable with the value
o f the expression. These rules are determ ined by the use o f the assignment operator in data type axiom s o f the data
type. If the assignment operator is the universal operator for assignment, then the variable is bound to the value o f
the expression.

The value o f the expression m ust be one o f the values o f the data type o f the variable o f the assignment
operator. For the universal operator for assignment the data type o f the param eter is tha t o f the variable.

2.3.6 Expression and primary

An expression is interpreted as the primary which form s the expression. The primary is either an operation,
a synonym, a value identifier, or a variable identifier, and is so interpreted.

2.3.6.1 Operation

A n operation is interpreted as an application o f the operator to the list o f values obtained by interpreting
the list o f expressions. The interpretation o f the operation is determ ined by the use o f the operator in the data type
axiom s o f the data type.

2.3.6.2 Synonym identifier

A synonym identifier is interpreted as the constant expression defined in the synonym definition. The
constant expression is interpreted in the same way as an expression.

2.3.6.3 Value identifier

A value identifier is interpreted as the value it denotes.

The sem antics o f the value which a value identifier denotes is determ ined by the use o f the value identifier
in the data type axioms o f the data type.

2.3.6.4 Variable identifier

A variable identifier is interpreted in one o f the two ways depending on context. W ithin an expression a
variable identifier is interpreted as an access. In the context o f an assignment statem ent a variable identifier is
interpreted as a variable, which is the binding o f the variable identifier to a value. Access to a variable is intepreted
as the value to which the variable is bound, except that access to the undefined value is interpreted and an error.

Fascicle VI.10 — Rec. Z.104 109

2.3.6.5 Conditional expression

A conditional expression is interpreted as the first or second expression in the list, depending on whether
in terpretation o f the Boolean expression yields true or false.

2.3.7 Data type definitions

These are no t interpreted.

3 SDL/G R

The standard SDL specification o f the behaviour o f tasks, decisions, etc. (i.e. the internal structure o f these
nodes) is the S D L /P R form . Thus there is no specific graphic syntax for data.

W here the data definitions (for data types, variables or synonym s) are included, they should be defined
with or referenced by the diagram which includes them.

4 SD L /PR

4.1 Addition to syntax

D ata definitions are added to the syntax as defined in R ecom m endations Z.101, Z.102 and Z.103.

Data definitions may appear where a signal definition appears in a system definition, block definition, block
substructure definition or a channel substructure definition. A data definition may also appear where a variable
definition may appear in a process definition where a procedure variable definition may appear in a procedure
definition.

SYSTEM DEFINITION

110 Fascicle VI.10 — Rec. Z.104

BLOCK DEFINITION

BLOCK SUBSTRUCTURE DEFINITION

ENDSUBSTRUCTURE
Block v^7
ident

CCITT - 7 6 470

Fascicle VI.10 - Rec. Z.104

CHANNEL SUBSTRUCTURE DEFINITION

Fascicle VI.10 - Rec. Z.104

The syntax o f data type is extended to include user defined data type identifiers.

The syntax for assignment statem ents and expressions is given. (N ote expressions and assignm ent
statem ents are m entioned in R ecom m endation Z.101 but not defined.)

4.2 D ata definition

4.2.1 Syntax

DATA DEFINITION

Fascicle VI.10 - Rec. Z.104 113

4.2.2 Semantics

A data definition is used to introduce the names and properties o f data types, data type generators or
synonyms.

4.2.3 Relationship to S D L Abstract Syn tax

A data definition in S D L /P R represents a data definition in the abstract syntax. If the data definition is a
data type generator then there is no direct correspondence with abstract syntax, as the data type generator serves
only to define text which is considered to be textually expanded on generator instantiation.

4.3 Data type definition

4.3.1 Syn tax

114 Fascicle VI.10 — Rec. Z.104

INHERITANCE RULE

CONSTANTS

-(CQNSTANTS)- Value set

VALUE SET

Fascicle VI.10 - Rec. Z.104

CONSTANT

4.3.2 Semantics

The nam e given in a data type definition is a data type name.

4.3.2.1 N E W T Y P E

A N E W T Y P E data type definition in troduces a new data type.

If no inheritance rule is specified then the new data type is not based on any other type. The type
properties are used to introduce any literals for that type, the operators applicable to the type and (optionally) the
properties o f the type by stating axiom s which hold true for the type.

A new type may be based on another type by using N E W T Y P E in com bination with inheritance rules In
this case, the value set o f the new data type is disjoint from the value set o f the parent type. A lthough the values
and operators o f the new data type are distinct from those o f the parent data type, the literals and names o f the
operators for the new type will be overloaded, that is they will be the same literals and names as for the parent type
and w hether a literal or nam e is appropria te to the new type or parent data type will have to be decided either by
qualification or by context. If the binding o f a literal or operator nam e to a type cannot be determ ined then the
SD L specification is ambiguous and hence invalid. W hen A L L is given for an inheritance rule then all the operator
nam es are overloaded for the new data type. O therw ise the operator nam es specified in the inheritance rule m ust be
operator names o f the parent type and these names are defined for the new type. The axiom set and literal set o f the
parent data type is inherited.

As well as the inherited literals, operator nam es and axioms, a new data type may have additional literals,
operators and axiom s specified as type properties after the keyword AD D IN G . These literals, operator names and
axiom s m ust not conflict with those inherited.

A data definition o f the form :

N EW TY PE X /* details V
CO N STA N TS /* constant list * /
E N D X;

is equivalent to

N EW TY PE A non /* details * /
E N D A non;

follow ed by

SY N TY PE X = A non
C O N STA N TS /* constan t list V
E N D X;

The use o f a constant restriction on a N E W T Y P E implicitly declares an anonymous N E W T Y P E (A non
above) w ithout tha t restriction, which is then used as the parent o f a S Y N T Y P E with the constant restriction. To
enforce the anonymity, the parent nam e is stated to be distinct from all o ther names denoted in the SDL
specification outside o f the particu lar implicit declaration.

116 Fascicle VI.10 — Rec. Z.104

4.3.2.2 S Y N T Y P E

A data type may also be defined to have a subset o f the values o f the parent data type by using
SY N TY P E . In this case the value set is either specified after the keyword C O N ST A N T S, o r all the values o f the
parent data type have corresponding values in the SYN TYP E . Variables declared with a S Y N T Y P E may only be
assigned the values specified.

Accessing a variable with a SY N T Y P E yields a value o f the parent data type. These operations o f declare,
assignment and access are the only operations allowed for SY N TY P E S.

The values specified for a S Y N T Y P E data type m ust all be values o f the parent data type. The parent o f a
Syntype is the second type nom inated in the Syntype definition provided that Type is a Newtype. O therwise the
parent is the parent o f the nom inated type.

4.3.2.3 Generator instantiation

A generator instantiation is equivalent to the text o f the generator with the fo rm al parameters textually
replaced by the actual parameters. W herever the generator name is used in the text o f the generator, it is replaced
by the nam e of the data type o r generator calling the generator instantiation. The equivalent text m ust com plete a
valid N E W T Y P E data type definition. This data type definition form ed by the textual expansion then defines the
properties o f the data type name.

4.3.2.4 Struct

A data type definition which includes a Struct implies data types for each fie ld name. For a given
structure type S, for each fie ld nam e F, and corresponding type identifier Ts, the following axioms are im plicitly
in troduced (subject to strengthening', see below):

— the single axiom : extract!(insert!(S ,Fi,I)’, Fi) = I

— the axiom set : extract!(insert!(S ,Fi,I)’,Fj)
= Extract(S ,Fj);

/* for all distinct Fi, Fj * /

W here there are N fie ld names in a structure, there will be N * N axioms o f this form implicitly
introduced. To guarantee resolution o f ambiguity, SDL requires that fie ld names within a given structure be unique.

A ssociated with the structure S is a set o f types, one for each field , with type nam e S!Fi, the single literal
Fi, and no other properties. This type becomes the carrier for the fie ld nam e used in In ser t! and E xtra c t!
operations.

The effect o f a Struct definition is to create a (program m ing-language like) structure or record, although
the defin ition may include additional axioms to strengthen the behaviour o f the type. W here additional axioms
explicitly in troduced by the user conflict with the im plicit default axiom set for tha t Struct, the inconsistency is
resolved by discarding im plicit axioms. In troduction of explicit axioms into a. Struct requires great care.

4.3.3 Relationship to abstract syntax

A data type definition represents a data type definition in the abstract syntax. The type nam e represents the
type nam e in the abstract syntax.

4.3.3.1 N E W T Y P E

The keywords N E W T Y P E and EN D em brace the abstract syntax concept o f a data type description. The
value nam e set, operator introductions and type axiom set in the abstract syntax are represented as follows:

a) Value nam e set
The set o f literals given by the literals in the type properties com bined with the set o f literals for the
parent data type if IN H E R IT S is specified.

b) Operator introduction set

The set o f operators given by the operators in the type properties com bined with the set o f operators
o f the parent data type if IN H E R IT S is specified.

c) Type axiom set

The set o f axioms (if any) given by the axioms in the data type properties com bined with the set o f
axioms o f the parent data type if IN H E R IT S is specified. I f the axiom set is om itted, or is incom plete,
then at least some operations can only be interpreted informally.

Fascicle VI.10 — Rec. Z.104 117

4.3.3.2 SY N T Y P E

The keywords S Y N T Y P E and EN D em brace the abstract syntax concept o f a syntype description. The
parent type identifier represents the parent data type identifier in the abstract syntax. The value set represents the
value set in the abstract syntax.

4.3.3.3 Generator instantiation

A generator instantiation denotes the text which would be obtained by textually expanding the generator as
in § 4.3.2.3 so that it has the sam e relationship with the abstract syntax as the equivalent text.

4.3.3.4 ST R U C T

A Struct denotes the text obtained by explicitly nom inating all relevant properties and thus (as for a
generator) has the sam e relationship to the abstract syn tax,as the text so denoted.

4.4 L IT E R A L S

4.4.1 Syn tax

LITERALS

LITERALS y

Predef ined
Literal

Literal
n a m e o

o

LITERAL PREDEFINED LITERAL

CCITT - 78B00

118 Fascicle VI.10 - Rec. Z.104

REAL LITERAL

Decimal
Integer

2k. o Decimal
Integer

BOOLEAN LITERAL

< t r u T >

FALSE >

4.4.2 Sem antics
CCITT-78820

The literals which are used to denote the values o f a data type are either predefined (for predefined data
types o r data types based on predefined data types) o r are introduced by the list o f denotations for the literals o f a
data type after the keyword L IT E R A L S . W here a type includes the Ordering! operations, the literals should be
conventionally nom inated in ascending order.

4.4.3 Relationship with abstract syntax

The literal names in troduced by the literals p art o f data type properties represents the value nam es o f a
data type description in the abstract syntax.

4.5 Operators

4.5.1 Syn tax

OPERATORS

Fascicle VI.10 — Rec. Z.104 119

INFIX OPERATOR

0 AII

Y

- < ° r y -0
—/ x O R) — 00
—S ^A N D } — 00
- v ■' y A3
000
-O - MOD

rAZA REM

- o -
A^- - 0 / NOT

o

4.5.2 Semantics

The operators o f data type properties in troduce the names for operators and the parameterization o f these
operators. The parameterization determ ines the num ber o f parameters required and the data type o f each param eter
and also the data type o f any values returned.

4.5.2.1 Operator names

The ordering operators are specified by including O rdering! in the operators. This is shorthand nota tion for
in troducing the follow ing operators for a data type D.

<
> ”
< = '
> =

D, D — > Boolean
D, D — > Boolean
D, D - > Boolean
D, D — > Boolean

The nam es o f infix operators e.g. + , A N D , O R, are enclosed in quotes in the operators. They may be used
as prefix operators by using this quoted form , that is:

“ + ” (a,2)

is equivalent to a + 2.

An operator nam e may be optionally followed by an exclam ation m ark, which denotes that the operator
identity may only be referred to directly in data type definitions. The exclam ation m ark form s part o f the nam e o f
the operator and so m ust always be given when the operator is used.

1 20 Fascicle VI. 10 - Rec. Z.104

The nam es A ss ig n !, D eclare!, Access'., “ = ” and “/ = ” are defined im plicitly as operators for all data
types with the implied typing for a data type D.

Assign! : D '*, D - >
Declare! : D '* — > ;
Access! : D ' — > ;
“ = ” : D, D — > Boolean;
“ / = ” : D ', D — > Boolean;

The Assign operator is the infix operator, There is no Declare operator as its application is im plied
from declarations. The Access operator is im plied whenever a variable is m entioned in a context which requires a
value. The equals and not equals operatorsare the infix operators “ = ” and “ / = ” respectively.

4.5.2.2 Operator typing

The list o f data type identifiers after the colon and before the symbol (— >) is called an operator type list.
This operator type list specifies the data types o f values which the operator requires. If one or m ore data type
identifiers has a prim e attribute, then the operator is an active operator otherwise it is a passive operator. An active
operator can change the values associated with variables, whereas a passive operator is purely functional and so
canno t change the values associated with variables.

For a passive operator all type identities in the type list specify tha t actual parameters o f the operator have
to be interpreted as expressions. Each o f those expressions must yield a value, which is a m em ber o f the set o f
values o f the data type o f the corresponding position in the data type list.

For a passive operator there m ust be a data type identifier after the symbol (— >). This data type identifier
specifies that the operator when applied , will yield a value o f this data type. For an active operator some o f the
data type identities in the operator type list are followed by primes (’).

A prim e specifies that the operator requires a variable o f the given data type as a parameter, and the
value associated with the variable m ay be changed. N o two data type identifiers may be followed by the same
num ber o f primes in the input data type list.

The num ber o f primes distinguishes one prim ed parameter from another when an active operation is used
with prim ing to denote the value associated with a variable given as a param eter (this is perm issible only in
axiom s). For exam ple:

O PER A TO R S Sw apA ndA dd: In t', Int" - > int
/* fragm ent o f data type definition * /

A X IO M Sw apA ndA dd (a ,b) '= b;
/* axiom stating the first param eter receives the value o f the second param eter * /

Sw apA ndA dd (a,b)" = a;
/* axiom for second param eter * /

Sw apA ndA dd (a,b) = a + b;
/* result axiom * /

If a prim ed parameter is followed by an asterisk, then the initial value o f the variable is no t accessed
when the operation is used. (N ote that the axioms m ust be consistent with this, otherwise the SDL specification is
invalid.)

If the data type identifier after the symbol (— >) is om itted for an active operator, the operator m ay not
be used within an expression. There m ay be both prim ed and unprimed parameters in an input data type list.

There is syntactic am biguity between a data type name followed by a quoted character string in a nam e
string, and a prim ed data type identifier in a data type list. These am biguities arise when a prim e after a type nam e
in a type list is followed by a prime, a com m a or a m inus sign (part o f — >). In all cases the prim e is taken as
prim ing o f the data type identifier and not as starting a quoted character string.

4.5.2.3 Insert! and Extract! operators

To allow the axiomatic definition o f arrays and structures, there are two predefined operator names, which
have a special denotation outside data type definitions. These operators are In ser t! and Extract'.. In ser t! is an
active operator and m ust be defined with the data type identities such that the first data type is prim ed and the
other types are unprimed.

Fascicle VI.10 - Rec. Z.104 121

To apply Insert I outside data type definitions, the first parameter (which must be a variable) is written,
follow ed by an open parenthesis, all the rem aining parameters except the last, then a closing parenthesis and

and finally the last param eter.

Thus with A a variable the data type o f which has In sert! defined and i 1, i2 and e expressions approriate
to In ser t! for this data type.

Insert!(A , i l , i2, e)

is w ritten as

A (i l , i 2) : = e

Since In ser t! can be defined for m ore than one data types the appropria te In sert! is determ ined from the
type o f the variable. In ser t! m ust be defined with at least two parameters and must return the same data type as
the first parameter.

E xtra c t! is a passive operator which requires a variable as the first param eter for sem antic reasons. To
apply E xtra c t! the first param eter is w ritten follow ed by all the o ther parameters in parenthesis.

Thus,

Extract!(A , i l , i2)

is w ritten as

A (il, i2)

The application o f E xtra c t! is determ ined by the type o f the variable.

4.5.3 Relationship to abstract syntax

For a passive operator an operator nam e or infix operator represents an operator nam e in the abstract
syntax. For a passive operator the inpu t type list represents the list o f type identities o f parameters in the abstract
syntax. The data type identifier after the symbol (- >) represents the data type identity o f the result o f applying
the operator. -

An active operator is related to the abstract syntax by re-writing into passive operators. This also defines
the ordering behaviour o f the operation. For each prim ed param eter there is an im plicit passive operator which
returns the value required by the axiom set. For each prim ed param eter w ithout an asterisk there is an implicit
variable in each process instance using the operator w ith the same data type as the param eter which receives the
initial value o f the parameter.

The list o f data type identities o f parameters in the abstract syntax for each implicit passive operator is
represented by the inpu t data type list ignoring any asterisked param eters. There are as m any implicit passive
operators as there are prim ed parameters in the inpu t data type list and each prim ed param eter data type is used as
the data type identity o f the result o f applying one o f these operators. For exam ple:

O PER A TO R S
com plex: Integer', Integer", Integer, In teger'" * - > Bool

/* swaps first two param eters, puts the sum of the first three param eters in the fourth param eter
and returns true if the second and th ird param eters were equal * /

AX IO M S
com plex (a,b ,c ,d)' = b;
com plex (a,b,c,d)" = a;
com plex (a ,b ,c ,d)'" = a + b + c;
com plex (a,b,c,d)- = (b + c);

/* see § 4.9.2 for the use o f prim es in axiom s */.

The im plicit operators are: ^

im p lied l!: Integer, Integer, Integer — > Integer
im plied2!: Integer, Integer, Integer - > Integer
im plied3!: Integer, Integer, Integer - > Integer
im plied4!: Integer, Integer, Integer — > Boolean

122 Fascicle VI.10 — Rec. Z.104

If the implied variables are V I, and V2, an application o f com plex in a statem ent is equivalent to:

VI := a; V2 := b;

followed by the statem ent, but with VI substituted for a, V2 substituted for b, and implied4! substituted for
com plex, followed by

a: = im plied 1! (V l,V 2,c);
b: = im plied2! (V l,V 2,c);
d: = im plied3! (V l,V 2,c);

W here m ore than one active operator is present, in a statem ent, they are substituted in the order in which
they w ould be interpreted.

4.6 Axiom s

4.6.1 Syntax

AXIOMS

AXIOM

4.6.2 Semantics

The axioms are a set o f Boolean expressions which hold true for all values o f the variables in the axioms.

W ithin an axiom a “ variable” is never the nam e for a process o r procedure variable, which has a value
associated with it, bu t is used to denote th a t all values o f a specific type may be substituted for the variable and
the axiom is still true. W hen considering this substitution a given variable nam e always represents the same value
in one axiom. F or exam ple in:

O PER A TO R S even: Integer — > Boolean
A X IO M S even (0) = True; /* axiom 1 * /

even (1) = N O T even (i+ 1) ; /* axiom 2 * /

The axiom 2 m ust hold for i = 2, i = 3, i = 4 etc., tha t is,

even (2) = N O T even (2 + 1)
even (3) = N O T even (3 + 1)
even (4) = N O T even (4 + 1)

Fascicle VI.10 — Rec. Z.104 123

Usually the data type o f a variable in an axiom can be determ ined by context e.g., in the above exam ple
it is required to be o f data type int by the operator syntax.

Sometimes because o f overloading o f nam es and symbols (such as “ + ”) in SDL, it is not possible to
determ ine the data type o f an axiom variable by context, so that the optional quantification is needed.
Quantification forces a variable to be o f particu lar type. It the use o f a variable w ithin one axiom is ambiguous or
inconsistent then the S D L /P R is invalid.

Quantification also allows a variable nam e to represent the same substitution in m ore than one axiom.

The variable names chosen for variables in axioms must be distinct from literals appropria te to the
context where the variable is used.

Since the operators “ = ” and “/ = ” are implied for all data types, the follow ing axioms are always
im plied :

“/ = ” (a ,b) = N O T (“ = ” (a,b))
“ = ” (a,a);
“ = ” (a,b) A N D “ = ” (b,c) = > “ = ” (a,c);
“ = ” (a,b) = > “ = ” (b,a);

W henever O rdering! is specified, the follow ing axioms are im plied:

“ < ” (a,b) = > N O T “ > ” (a,b);
“ > ” (a,b) = > N O T “ < ” (a,b);
“ < ” (a,b) A N D “ < ” (b,c) = > “ < ” (a,c);
N O T “ < ” (a,a);
“ < = ” (a,b) = > “ < ” (a,b) O R “ = ” (a,b)
“ > = ” (a,b) = > “ > ” (a,b) O R “ = ” (a,b)

4.6.3 Relationship to abstract syntax

The axioms represent the data type axiom s in the abstract syntax. Each axiom represents an axiom in the
abstract syntax.

Quantification represents quantification in the abstract syntax, except that there is implies quantification in
the concrete syntax for all axiom variables whose data type is determ ined by context.

4.7 Expressions

4.7.1 Syntax

EXPRESSION

OPERAND 0

124 Fascicle VI.10' - Rec. Z.104

OPERAND 4
OPERAND 1

OPERAND 3

OPERAND 2

OPERAND 5

~ < N0T >

£ Primary
CCITT-78670

4.7.2 Semantics

An expression is either a primary or is the application o f a num ber o f “in fix” operators.

The order o f application o f operators is determ ined by their appearance in the syntax in a sim ilar way to
program m ing languages such as C H IL L (see R ecom m endation Z.200). However, SDL also allows the Boolean
implication operator (= >) , which has lower precedence than any other operator. This has the value F A L S E for
Boolean operands if the left hand operand is TRU E and the right hand operand is FALSE. O therw ise for Boolean
operands the implies operation has the value TR UE.

N orm ally all operators will have the sam e properties and validity as defined in program m ing languages,
but it should be noted that in SDL the user may define new m eanings for these operators by including them in
data type definitions. Nevertheless, the precedence o f “in fix” operators may no t be changed.

The value yielded by a valid operation is determ ined by the axioms in data type definitions.

Fascicle VI.10 — Rec. Z.104 125

4.7.3 Relationship to abstract syntax

An “in fix” operator can be overloaded and may represent any one o f a num ber o f operators in the
abstract syntax. The overloading is resolved in two ways: either by the num ber and type o f parameters or, in the
case where the parameters them selves are overloaded, by the data type required in the context in which the
operation is used.

An expression represents an expression in the abstract syntax.

4.8 Primary

4.8.1 Syntax

PRIMARY

4.8.2 Sem antics

A primary is a variable identity or a literal or a synonym identity or a conditional expression or an
operation or a bracketed expression.

4.8.3 Relationship to abstract syntax

A variable identity or literal or synonym identity or conditional expression or bracketed expression
represent a variable identity access, value identity, synonym identity, conditional expression or expression respectively
in the abstract syntax.

W hen a variable identity is referred to in an axiom it represents an axiomatic variable rather than a
reference to an access to a variable declared for a process or procedure. The data type o f an axiomatic variable is
determ ined by context.

126 Fascicle VI.10 — Rec. Z.104

4.9 Operation

4.9.1 Syntax

OPERATION

4.9.2 ' Semantics

An operation is the application o f an operator defined in a type definition. The num ber and type o f the
expressions used as actual parameters m ust be consistent with the defin ition o f the operator identity. These
param eters may be used to determ ine which operator is 1?eing applied if the operator nam e is overloaded.

I f the operator is being applied in an axiom then if the nam e is defined with an exclam ation m ark then
this exclam ation m ark must be repeated in the axioms.

An operator defined with an exclam ation m ark may not be used outside a type definition.

The primes after the closing bracket o f the operator may only be used in an axiom and denote tha t the
operation has the resultant value o f the param eter defined w ith that num ber o f primes. For exam ple:

OPER A TO RS
exam ple: t i \ t2" — >

AXIOM S
exam ple: (vl,v2)" = vl
/*va lue o f vl put in v2 * /

W hen the typing o f a param eter o f an operator is specified with primes, the actual param eter m ust be a
variable, except in the context o f an axiom.

4.9.3 Relationship to abstract syntax

A passive operator identifier represents an operator in the abstract syntax. For a passive operation, the
expression list represents the expression list in the abstract syntax for that operation.

An active operation represents assignment to implicit variables which are then used as arguments to implicit
passive operations, whose values are assigned back into variables given as actual parameters (see § 4.5.3). W ithin an
axiom an active operation represents an application o f the appropriate implicit passive operation determ ined by the
num ber o f primes appended to the operation.

Fascicle VI.10 - Rec. Z.104 127

4.10 Conditional expression

4.10.1 Syntax

CONDITIONAL EXPRESSION

4.10.2 Semantics

The conditional expression is interpreted by interpreting the expression after T H E N if the Boolean
expression is true, and yields the value o f the expression after E L S E otherwise.

W ithin an axiom each branch o f the conditional expression need only be valid for the conditions under
which it is selected. For exam ple since log(x) is not defined for negative num ber, in

IF r > 0 T H E N log(r) ELSE 0.0 FI

if does not m atter that for r < = 0, log(r) is undefined.

4.10.3 Relationships to abstract syntax

A conditional expression represents a conditional expression in the abstract syntax.

4.11 Assignm ent statem ent

4.11.1 Syntax

ASSIGNMENT STATEMENT

4.11.2 Semantics

An assignment statem ent allows a value to be associated with a variable.

The value yielded by the expression on the right hand side is assigned to the variable or an elem ent o f
the variable on the left hand side.

128 Fascicle VI.10 - Rec. Z.104

An assignment statem ent represents the application o f either an Assign! operator or as an Insert! operator.

There is a m apping between the syntax o f an assignment and the application o f the app rop ria te operator.

W here no brackets are used on the left hand side o f an assignment then the assignment represents the use
o f Assign!, such that

V : = e represents Assign !(V,e)

W hen a single pair o f brackets is used, such an assignm ent represents Insert! such that

a(i) : = e represents Insert! (a,i,e)

and

a(i,j) : = e represents Insert! (a,i,j,e)

W hen m ultiple brackets are used an assignment is represented be recursive substitution such that

a(i)G) : = e

represents

vi: = a(i);
Insert !(vi,j,e);
a(i): = vi;

where vi is an implicit variable w hose type is the sam e as a(i). The im plied Insert! operations are active operations,
which are represented in the abstract syntax in the norm al way for active operators (see § 4.9.3).

4.12 Synonym definition

4.12.1 Syn tax

4.11.3 Relationship to abstract syntax

SYNONYM DEFINITION

4.12.2 Semantics

The synonym is equivalent to the constant expression. If the type o f the expression canno t be determ ined
by either the constant or the context o f the synonym definition then a type m ust be specified otherw ise the value
and type o f the constant expression and hence the value o f the synonym), is determ ined by the context in which the
synonym definition appears.

4.12.3 Relationship to abstract syntax

A synonym represents a synonym definition in the abstract syntax. If the data type is om itted, then it is
im plied by context.

4.13 Data type generator

4.13.1 Syn tax

4.13.2 Sem antics

The nam e given in a D ata Type Generator is a Data Type Generator name. The properties supplied in a
generator form a partia l specification o f a data type. W hen a generator is used in a Type Definition o r ano ther
D ata Type Generator, the param eters to the generator are textually substituted in the generator definition and

Fascicle VI.10 — Rec. Z.104 129

(together with any properties added in a Type Definition) then m ust form a com plete Type Definition or another
Data Type Generator. W here a Data Type Generator is defined in term s o f a generator instantiation, the generator
parameters may have the sam e nam e as those supplied to the instantiation. Such a generator is a Partial
Instantiation. For exam ple:

G E N E R A T O R Stack (TYPE C om ponent, C O N ST A N T M axsize)
/* details * /
E N D Stack;

G E N E R A T O R IStack(C O N ST A N T M ax) S tack(Integer, Max)
E N D I Stack;
/* A stack o f integers, m axim um size not specified * /

4.13.3 Relationship to abstract syntax

The D ata Type G enerator has no counterpart in the abstract syntax. Usage o f a generator Instan tiation in
a D ata Type D efinition will denote the text form ed by param etric substitution.

DATA TYPE GENERATOR

GENERATOR INSTANTIATION

130 Fascicle VI.10 — Rec. Z.104

Pre-defined data types

Integer

N EW TY PE Integer
/* Literals according to integer literal syntax * /

O PER A TO RS
“ + Integer, Integer — > Integer;
“ — Integer, Integer — > Integer;
“ — Integer, Integer — > Integer;
“/ ” Integer, Integer — > Integer;
F loat: Integer — > Real;
Fix: Real — > Integer;

A XIOM S
/* inherited from m athem atical integers, adding: * /
Fix(Float(r)) = r;
r — 1 < Float(Fix(r)) < = r;
i / j = F ix(F loat(i)/F loat(j))

EN D Integer;

R eal

N EW TY PE Real
/* Literals o f the form specified in ’real literal’ * /

O PER A TO R S
“ — Real , Real — > Real;
“ + ” Real, Real — > Real;
“ *” : Real, Real — > Real;
“ / ” : Real, Real — > Real;
“ — Real — > Real;

/* Axioms are inherited from the m athem atical reals; this work needs further study to be
form ally specified here * /

E N D Real;

Array

G E N E R A T O R A rray(TypeIndex, TY PEItem);

O PER A TO RS
Insert!: A rray ', Index, Item — > ;
Extract!: A rray, Index — > Item ;

AXIO M S
Extract! (Declare!(V)',]) = E rror!;
E xtract !(Insert!(A, IPos, It), EPos =

If Epos = Ipos Then It Else Extract(A , EPos) F I;

End A rray;

Boolean

N EW TY PE Boolean;

LITERALS True, False;

O PER A TO RS
“N O T ” : Boolean —' Boolean;
“A N D ” : Boolean, Boolean — > Boolean;
“O R ” : Boolean, Boolean — > Boolean;
“ = ” : Boolean, Boolean — > Boolean;

Fascicle VI.10 - Rec. Z.104

A X IO M S
“ N O T ”(True) = False;
“ N O T ’(False) = True;
“A N D ” (A, B) = If A = False Then False Else B;
“O R ”(A, B) = If A Then True Else B;
“ = > ”(A, B) = If A = True A nd B = False Then False Else True;

E N D Boolean;

5.5 Character

N EW TY PE C haracter

L IT E R A L S /* character strings o f length 1, where the characters are those o f the C C IT T alphabet
num ber 5 * /;

O PER A TO R S
O rdering!;

E N D C haracter;

5.6 Natural

SY N TY PE N atural Integer C onstan ts > = 0 E N D N atural;

5.7 Powerset

G E N E R A T O R Powerset(TYPE Item);

LITER ALS Em pty;

O PER A TO R S
“ IN ” : Item , Powerset — > Boolean;
Inch Item , Powerset' — > ;
Del: Item , Powerset' — > ;
O rdering!;

A X IO M S;
Declare(v)' = E m pty; ;
I IN Em pty = False;
I IN Incl(12, S) = IF I = 12 T H E N True ELSE I IN S FI;
Del(I, Incl(I2, S)) = IF I = 12 T H E N Del(I,S) ELSE Incl(I2, Del(I,S)) F I;
F or all S I, S2 in pow erset (for all I in Item (SI < S2 = > (I IN SI = > I IN S2)));
N O T(I in S) = > D el(I, S) = S;

E N D Powerset;

5.8 P id

N EW TY PE P id

LITER ALS N ull;

O PER A TO R S
Create! : — > P id ;

A X IO M S;
D eclare !(v)' = N ull;
Create! / = C reate!;
/* A weak way o f stating that all Creates yield unique values * /
Create! / = N ull;

/* P id values are returned by the in terpretation o f a create request node (they are denoted as
being generated by the Create! function above). Every create request in terpretation generates a
un ique P id value which is not Null. Every process instance im plicitly declares three P id
variables, nam ed “ P aren t” , “S e lf ’ and “O ffspring”.

In terp reta tion o f a Create request node generates a new and unique P id value, and assigns it to
the O ffspring for the creating task. The Self identifier o f the created task is assigned this sam e
value, while Parent o f the created task is assigned the value o f self o f the creator. The length o f
O ffspring in the created task is set to zero.

* / E N D P id ;

132 Fascicle VI.10 — Rec. Z.104

5.9 String

G E N E R A T O R String (TY PE Item);
/* Literals specified by C harstring literals, * /
/* only if generator is instantiated with C haracter * /

O PER A TO R S
D eclare !(v)' : — > String;
“ / / ” : String, String — > String;
Length : String — > N atural;
First : String — > Item ;
Last : String — > Item ;
Extract! : String, N atural — > Item ;
Insert : S tring ', N atural, String — > ;
Insert! : S tring', N atural, Item - > ;

AX IO M S
Length(D eclare !(v)') = 0;
Length (SI / / S2) = Length(S l) + Length(S2);
F irst(S l) = E xtract !(S1, 1);
L ast(S l) = Extract !(S1, Length(Sl));
Extract !(Insert(S l, I,S2),j) =

IF j < 1 T H E N Error! ELSE
IF j < = I T H E N Extract!(S l,j) ELSE

IF j < = Length(S2) + I T H EN E xtract!(S2,j-I» ELSE
IF j < = Length (SI) + Length(S2) TH EN

Extract!(S 1,J — Length(S2)) ELSE Error!
FI

FI
FI

FI;
SI / / S2 = In sert(S l, Length(S l), S2);
Extract ’(Insert !(S1, I, It)', J) =

IF I = J Then It Else Extract!(S1, J) F I;

E N D String;

5.10 Time

N EW TY PE Tim e Inherits Real

A D D IN G
O perators

N ow : — > Tim e /* the ‘real’ tim e * /;

E N D Time;

5.11 Duration

N EW TY PE D uration Inherits Real (“ + ” , “ — ”, “ / ”)

A D D IN G
O perators

“ + Time, D uration — > Time;
“ + D uration , Tim e — > Time;
“ — Ti me, D uration — > Time;

C O N STA N TS > = 0.0

E N D D uration ;

Fascicle VI.10 — Rec. Z.104 133

Timer

N EW TY PE Tim er

O PER A TO R S
Set: Time, T im er' * — > ; .
Reset: T im er' — > ;
Active: T im er — > Boolean;

A X IO M S
Active (Set(Tm, Tm r)') = Tm > Now ();
Active(Reset(Tmr)) = False;
/* N ote that an active tim er sends a signal to the process when it becomes inactive. This signal
is nam ed with the sam e nam e as the tim er variable in the Set call * /

E N D Tim er;

Charstring

N EW TY PE C harstring String (C haracter)
Adding LITERALS /* character string literals * /
E N D C harstring;

Fascicle VI.10 — Rec. Z.104

	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE EIGHTH PLENARY ASSEMBLY (1984)
	TABLE OF CONTENTS OF FASCICLE VI.10 OF THE RED BOOK
	Recommendations Z.100 to Z.104 - Functional specification and description language (SDL)
	Z.100 - Introduction to SDL
	Z.101 - Basic SDL
	Z.102 - Structural concepts in SDL
	Z.103 - Functional extensions to SDL
	Z.104 - Data in SDL

