

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

RED BOOK

VOLUME VI - FASCICLE V I.11

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

ANNEXES TO RECOMMENDATIONS Z.100-Z.104

V I I I ™ PLENARY ASSEMBLY
MALAGA-TORREMOLINOS, 8-19 OCTOBER 1984

Geneva 1985

A NOTE FROM ITU LIBRARY & ARCHIVES

Due to technical restrictions, the tem plate of SDL symbols has not been included

in th e scanned version of this docum ent.

* *

En raison de contraintes techniques, le gabarit de symboles du LDS n'a pas e te inclus

dans la version scannee de ce docum ent.

* *

Debido a restricciones d e tecnicas, la plantilla de simbolos del LED no se ha incluido
en la version escaneada de es te docum ento .

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

RED BOOK

VOLUME VI - FASCICLE V I.11

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

ANNEXES TO RECOMMENDATIONS Z.100-Z.104

V I I I ™ PLENARY ASSEMBLY
MALAGA-TORREMOLINOS, 8-19 OCTOBER 1984

Geneva 1985

ISBN 92-61 -02241 -3

© I.T.U.

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE EIGHTH PLENARY ASSEMBLY (1984)

Volume I

Volume II

FASCICLE II.l

FASCICLE II.2

FASCICLE II.3

FASCICLE II.4

FASCICLE II.5

Volume III

FASCICLE III.l

FASCICLE III.2

FASCICLE III.3

FASCICLE III.4

FASCICLE III.5

RED BOOK

— Minutes and reports of the Plenary Assembly.

Opinions and Resolutions.

Recommendations on:
— the organization and working procedures of the CCITT (Series A);
— means of expression (Series B);
— general telecommunication statistics (Series C).

List of Study Groups and Questions under study.

— (5 fascicles, sold separately)

— General tariff principles — Charging and accounting in international telecommunications
services. Series D Recommendations (Study Group III).

— International telephone service — Operation. Recommendations E.100-E.323 (Study
Group II).

— International telephone service — Network management — Traffic engineering. Recom
mendations E.401-E.600 (Study Group II).

— Telegraph Services — Operations and Quality of Service. Recommendations F.1-F.150
(Study Group I).

— Telematic Services — Operations and Quality of Service. Recommendations F.160-F.350
(Study Group I).

— (5 fascicles, sold separately)

— General characteristics of international telephone connections and circuits. Recommenda
tions G.101-G.181 Study Groups XV, XVI and CMBD).

— International analogue carrier systems. Transmission media — characteristics. Recommen
dations G.211-G.652 (Study Group XV and CMBD).

— Digital networks — transmission systems and multiplexing equipments. Recommenda
tions G.700-G.956 (Study Groups XV and XVIII).

— Line transmission of non telephone signals. Transmission of sound-programme and televi
sion signals. Series H, J Recommendations (Study Group XV).

— Integrated Services Digital Network (ISDN). Series I Recommendations (Study
Group XVIII).

I ll

Volume IV — (4 fascicles, sold separately)

FASCICLE IV. 1

FASCICLE IV.2

FASCICLE IV.3

FASCICLE IV.4

Volume V

Volume VI

FASCICLE VI. 1

FASCICLE VI.2

FASCICLE VI.3

FASCICLE VI.4

FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

FASCICLE VI.9

FASCICLE VI. 10

FASCICLE VI. 11

FASCICLE VI. 12

FASCICLE VI. 13

IV

M aintenance; general principles, international transmission systems, international tele
phone circuits. Recommendations M.10-M.762 (Study Group IV).

M aintenance; international voice frequency telegraphy and fascimile, international leased
circuits. Recommendations M.800-M.1375 (Study Group IV).

Maintenance; international sound programme and television transmission circuits. Series N
Recommendations (Study Group IV).

Specifications of measuring equipment. Series 0 Recommendations (Study Group IV).

Telephone transmission quality. Series P Recommendations (Study Group XII).

(13 fascicles, sold separately)

General Recommendations on telephone switching and signalling. Interface with the
maritime mobile service and the land mobile services. Recommendations Q .l-Q .l 18 bis
(Study Group XI).

Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study
Group XI).

Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study
G roup XI).

Digital transit exchanges in integrated digital networks and mixed analogue-digital
networks. Digital local and combined exchanges. Recommendations Q.501-Q.517 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.685 (Study Group XI).

— Specifications of Signalling System No. 7. Recommendations Q.701-Q.714 (Study
Group XI).

— Specifications of Signalling System No. 7. Recommendations Q.721-Q.795 (Study
Group XI).

— Digital access signalling system. Recommendations Q.920-Q.931 (Study Group XI).

— Functional Specification and Description Language (SDL). Recommendations Z.101-Z.104
(Study Group XI).

— Functional Specification and Description Language (SDL), annexes to Recommenda
tions Z.101-Z.104 (Study Group XI).

— CCITT High Level Language (CHILL). Recommendation Z.200 (Study G roup XI).

— Man-Machine Language (MML). Recommendations Z.301-Z.341 (Study Group XI).

FASCICLE VII.l

FASCICLE VII.2

FASCICLE VII.3

Volume VIII

FASCICLE VIII.l

FASCICLE VIII.2

FASCICLE VIII.3

FASCICLE VIII.4

FASCICLE VIII.5

FASCICLE VIII.6

FASCICLE VIII.7

Volume IX

Volume X

FASCICLE X.l

FASCICLE X.2

Volume VII

Telegraph transmission. Series R Recommendations (Study Group IX). Telegraph services
terminal equipment. Series S Recommendations (Study Group IX).

Telegraph switching. Series U Recommendations (Study Group IX).

Terminal equipment and protocols for telematic services. Series T Recommendations
(Study G roup VIII).

(3 fascicles, sold separately)

(7 fascicles, sold separately)

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks: services and facilities. Recommendations X .l-X .l 5 (Study
Group VII).

Data communication networks: interfaces. Recommendations X.20-X.32 (Study
Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study
Group VII).

Data communication networks: Open Systems Interconnection (OSI), system description
techniques. Recommendations X.200-X.250 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems. Recommendations X.300-X.353 (Study Group VII).

Data communication networks: message handling systems. Recommendations X.400-X.430
(Study Group VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable, and other elements of outside plant. Series L Recom
mendations (Study Group VI).

(2 fascicles, sold separately)

Terms and definitions.

Index of the Red Book.

V

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

CONTENTS OF FASCICLE VI. 11 OF THE RED BOOK

Annexes to Recommendations Z.100 to Z.104

Functional specification and
description language (SDL)

Rec. No. Page

Annex A — SDL g lo ssa ry ... 3

Annex B — Abstract syntax su m m ary ... 28

Annex C l — SD L/G R summary 37

Annex C2 — SD L/PR su m m ary ... 49

Annex D — SDL User G u id e lin e s .. 83

PRELIMINARY NOTES

1 The Questions entrusted to each Study Group for the Study Period 1985-1988 can be found in
Contribution No. 1 to that Study Group.

2 In this Fascicle, the expression “Administration” is used for shortness to indicate both a telecommunica-

Contribution No. 1 to that Study Group.

tion Administration and a recognized private operating agency.

Fascicle VI. 11 — Table of Contents VII

Annexes to Recommendations Z.100 to Z.104

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

ANNEX A

(to Recommendations Z.100 to Z.104)

SDL glossary

Any term appearing in the SDL Recommendations Z.100 to Z.104 which is italicized and appears in this
glossary is used strictly with the sense defined in this glossary.

If an italicized phrase, for example procedure identifier, is not in the glossary, then it may be the
concatenation of two terms, in this case the term procedure followed by the term identifier. When a word is
italicized but cannot be located in the glossary if may be a derivative of a glossary term. For example exported
being the past tense of export.

Except where a term is a synonym for another term, after the definition of the term there is a main
reference to the use of the term in the Z.100 series Recommendations. These references are shown in square
brackets [] after definitions. For example [Recommendation Z.100 § 3.2] indicates that the main reference is in
Recommendation Z.100 § 3.2. Since there are often no defining occurrences of terms, these references are only a
guideline.

Annex C contains the graphical representation of symbols and diagrams, the keywords for the textual
phrase representation and the use of these keywords, therefore this information is not repeated in the glossary.

abstract data type

An abstract data type is a type defined by algebraic relationship between values of the type and the
application of operators on these values. [Recommendation Z.100 § 2.3, Recommendation Z.104, § 1.]

abstract syntax

The abstract syntax of SDL is given in Recommendations Z.101, Z.102, Z.103 and Z.104 and summarized
in Appendix B to describe the conceptual structure of an SD L definition as compared with the concrete syntaxes
which exist for each form of SDL, that is SD L/G R , SD L /P R and SD L/PE. [Recommendation Z.100, § 3.1.]

access

The predefined operator implicit with all data types which is applied wherever a variable yields the value
associated with it. [Recommendation Z.104, § 4.5.]

active operator

An operator which requires one or more variables as parameters since it may change the values associated
with these variables. [Recommendation Z.104, § 4.5.]

actual parameter

An actual parameter is a value handed to either a process or a procedure for the corresponding form al
parameter when the process (or procedure) is created (or called respectively). [Recommendation Z.101, § 2.3,
Recommendation Z.103, § 2.1.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 - Annex A 3

actual parameter list

An actual parameter list is the list of values associated with a create request or a procedure call.
[Recommendation Z.101, § 2.3; Recommendation Z.103, § 2.1.]

additional-save-set

An additional-save-set is the set of additional signals saved in a procedure. [Recommendation Z.103, § 2.1.]

allocation symbol

The symbol in a process tree diagram of S D L /G R attached to a process symbol. The process or sub-process
associated with the process symbol is allocated to the block whose name is contained in the allocation symbol.
[Recommendation Z.102, § 2.3.]

annotation

An annotation in S D L /G R is a comment. An annotation in SD L /P R is a comment or & note. Annotations
do not change the meaning of SDL. [Recommendation Z.101, § 3.3, § 4.3.]

arc

An arc is a directed connection between the nodes of a process graph. [Recommendation Z.101, §§ 2.2.]

array

The predefined generator used to introduce the concept of arrays. [Recommendation Z.104, § 5.3.]

assignment statement

An assignment statement is an action which associates a value with a variable. [Recommendation Z.101,
§ 2.2, Recommendation Z.104, § 4.11.]

axiom

A Boolean expression which holds true for all possible values of the variables used in the axiom.
[Recommendation Z.104, § 4.6.]

B’

The SD L /P R keyword introducing a binary denotation of a numerical value. [Recommendation Z.104,
§ 4.8.]

basic SDL

The minimum subset of SD L defined by Recommendation Z.101.

4 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A

behaviour

The behaviour or functional behaviour of a system in SDL is described as discrete responses to discrete
stimuli. [Recommendation Z.101, § 1.]

block *

A block is a synonym for a block instance.

block definition

A block definition defines the structural and connection properties of a named block type. [Recommenda
tion Z.101, § 2.2.]

block interaction diagram

The block interaction diagram of SD L /G R represents the structure of blocks, channels, signal lists, data
lists, processes and signal flow between processes. A block interaction diagram may also show the partitioning of a
system into blocks, sub-blocks, channels and sub-channels. [Recommendation Z.101, § 3.1, Recommendation Z.102,
§ 3.2.]

block substructure

A block substructure for a block is the partitioning of the block into sub-blocks and new channels at lower
levels o f abstraction. [Recommendation Z.102, § 2.2.]

block substructure definition

A block substructure definition is optionally part of a block definition and defines a block substructure.
[Recommendation Z.102, § 2.2.]

block symbol

The block symbol represents the concept o f a functional block in a block interaction diagram of SD L/G R .
[Recommendation Z.101, § 3.1.]

block tree diagram

A block tree diagram is the S D L /G R representation of the partitioning of a system into blocks at lower
levels o f abstraction by means of an inverted tree diagram. [Recommendation Z.102, § 3.1.]

Boolean

The logical data type having the values TRUE and FALSE, and the normal set of logical operators.
[Recommendation Z.104, § 5.4.]

call node

The term call node is a synonym for procedure call node.

Fascicle V I.ll - Rec. Z.100 to Z.104 — Annex A 5

call symbol

The term call symbol is a synonym for procedure call symbol.

channel
i

A channel is the class of entity which conveys signals from one block to another block Channels also
convey signals to and from the environment. Channels are unidirectional, that is they only convey signals in one
direction. [Recommendation Z.101, § 2.1.]

channel definition

A Channel definition defines the properties of a named channel. These properties are the origin block, the
destination block, the set of signals which the channel may convey, and optionally a channel substructure definition.
The destination block may be the environment o f. the system. [Recommendation Z.101, § 2.2, Recommenda
tion Z.102, § 2.2.]

channel substructure

A channel substructure is a partitioning of a channel into a set of channels and blocks at a lower level o f
abstraction. [Recommendation Z.102, § 2.2.]

channel substructure definition

A channel substructure definition is an optional part of a channel definition which defines the channel
substructure. [Recommendation Z.102, § 2.2.]

channel substructure diagram

A channel substructure diagram is the SD L /G R representation of a channel substructure. [Recommenda
tion Z.102, § 3.4.]

Channel symbol

The symbol on a block interaction diagram of S D L /G R representing a channel or sub-channel. The
arrowhead of the symbol points to the destination block and the other end of the symbol identifies the origin
block. The set of signals conveyed by the channel may be represented by an associated signal list symbol.
[Recommendation Z.101, § 3.1.]

Character

The predefined data type for which the literals are charstring literals of length one, and the operators are
equal, not equal, and concatenation to form a charstring value. [Recommendation Z.104, § 5.5.]

charging in progress PE

A pictorial element indicating that charging is currently taking place. [Recommendation Z.103, § 6.1.]

6 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A

Charstring

The predefined data type for which the literals are strings of CCITT No. 5 alphabet characters, and the
operators are those of the string predefined generator instantiated for characters. [Recommendation Z.104, § 5.13.]

combined signalling sender and receiver PE

A pictorial element corresponding to a combined signalling sender and signalling receiver. [Recommenda
tion Z.103, § 6.1.]

comment

Information which is in addition to or clarifies the SD L graph. In S D L /G R comments may be attached by
a single square bracket connected by a dashed line to a flow line of a process diagram or any symbol. In S D L /P R
comments are introduced by the keyword COMMENT. [Recommendation Z.101, § 3.3.]

composite operations

A shorthand notation representing a standard combination of primitive SD L concepts. A composite
operation can be mapped to concepts in the SD L abstract syntax in a systematic way. [Recommendation Z.103,
§3.]

concrete syntactical form

S D L /G R , S D L /P R and SD L /P E are the concrete syntactical forms of SD L which can be mapped one to
another by considering the conceptual underlying mathematical SD L graph. [Recommendation Z.100, § 3.1.]

concrete syntax

The concrete syntax for the various representations of SD L is the actual symbols used to represent SD L
in the SD L /G R , the S D L /P R or the S D L /P E forms. [Recommendation Z.100, § 3.1.]

conditional expression

An expression with a Boolean expression after IF which controls whether the consequence expression after
THEN or the alternative expression after ELSE is interpreted. [Recommendation Z.104, § 4.10.]

connected switching path PE

A pictorial element indicating connectivity between terminal equipment an d /o r signalling devices. [Recom
mendation Z.103, § 6.1.]

connector

A connector is a symbol used in SD L/G R . A connector (a circle) is either an in-connector or an
out-connector. A flow line may be broken by a pair of associated connectors, with the flow assumed to be from the
out-connector to its associated in-connector. [Recommendation Z.101, § 3.1.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A 7

constant value

Either a literal or a synonym. [Recommendation Z.104, § 2.2.]

constant expression

A constant value or an operator with only constant expressions as parameters. [Recommendation Z.104,
§ 2 .2 .]

continuous signal

A continuous signal is a composite operation containing a condition. When the condition becomes true, the
state which has the continuous signal attached is left. [Recommendation Z.103, § 3.3.]

convergence

In a process diagram of S D L /G R when two or more symbols are followed by a single symbol the flow
lines converge on the symbol. Convergence may appear as one flow line flowing into another or as more than one
out-connector associated with a single in-connector or as separate flow lines entering the same symbol. [Recommen
dation Z.101, § 3.3.]

create request action

An action which causes the creation and starting of a new process instance from a specified process
definition. [Recommendation Z.101, § 2.3.]

create request node

A node in a transition in a process graph or a procedure graph where a create request action takes place.
[Recommendation Z.101, § 2.2.]

create symbol

The symbol on a block interaction diagram of SD L /G R connecting the process symbol of the creating
process with the process symbol of the created process. The arrowhead identifies the offspring process and other end
of the create request symbol identifies the parent process. [Recommendation Z.101, § 3.1.]

create request symbol

The symbol on a process diagram of S D L /G R representing a create request. [Recommendation Z.101,
§ 3.3.]

D'

The SD L /P R keyword introducing a decimal denotation of a numerical value. Since this is the default
denotation D ' is optional. [Recommendation Z.104, § 4.8.]

data

The term data is a synonym for data item(s).

8 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A

data item

A data item is either a variable or value.

data type

A data type of data items determine the range, the meaning of values in that range and the valid set of
operators which may be used with items of that data type. (See also predefined data type.) [Recommendation Z.104,
§1.]

data type definition

Defines the name, data values and operators for a data type. [Recommendation Z.104, § 2.2.]

decision

A decision is an action at a decision node within a transition which asks a question to which the answer
can be obtained at that instant and chooses one of the several outgoing arcs from the node to continue the
transition. [Recommendation Z.101, § 2.3]

decision node

A decision node is a node in a transition in a process graph or a procedure graph where a decision takes
place. [Recommendation Z.101, § 2.2.]

decision name

A decision name is the name associated with a decision. The name of a decision must be a question which
is well understood by the interpreter. The names of the decision arcs leading from a decision must constitute all
possible results from the question. [Recommendation Z.101, § 2.3.]

decision symbol

A symbol representing the SDL concept of a decision in a process diagram of SD L/G R . [Recommenda
tion Z.101, § 3.2.]

declare!

The predefined operator implicit with all data types associated with the instantiation of variable instances.
[Recommendation Z.104, § 4.5.]

definition

The term definition is a synonym for type definition.

description

The implementation of the requirements of a system is described in a description of the system.
Descriptions consist of general parameters of the system as implemented and the functional description (FD) of its

. actual behaviour. [Recommendation Z.100, § 1.1.]

Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex A 9

divergence

In SD L /G R where a symbol is followed by two or more symbols, a flow line leading to that symbol may
diverge into two or more flow lines. [Recommendation Z.101, § 3.3.]

Duration

The predefined data type representing the interval between two time instants. [Recommendation Z.104,
§5.11.]

enabling condition

An enabling condition is a composite operation for a method of conditionally accepting for input or
alternatively saving a signal depending on a condition. [Recommendation Z.103, § 3.2.]

enabling condition symbol

The symbol in a process diagram or procedure diagram of SD L /G R representing an enabling condition
(when it follows an input symbol) or a continuous signal (when it follows a state symbol). [Recommendation Z.103,
§ 3.2.]

environment

The term environment is a synonym for the environment o f a system. [Recommendation Z.101, § 2.1.]

environment symbol

The symbol in a process diagram of SD L /G R representing the environment o f a system. [Recommenda
tion Z.101, §§ 3.1.1, 3.1.2.]

environment of a system

The environment o f a system is a part of the system whose behaviour is not shown in SDL but interacts
with the rest of the system by sending signal instances to the system. [Recommendation Z.101, § 2.1.]

equivalent behaviour

The term equivalent behaviour is a synonym for equivalent functional behaviour.

equivalent functional behaviour

Two systems (or blocks or processes) have equivalent functional behaviour if they have the same response
to a given sequence of signal instances as seen from outside the systems (or blocks or processes respectively).
[Recommendation Z.100, § 1.1.]

EXPORT

The syntactic construct EXPORT (variable name) is used both in SD L /G R and S D L /P R to represent the
export of the value o f a variable. [Recommendation Z.103, § 3.1.]

10 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A

export

The term export is a synonym for export operation.

EXPORTED

The SD L /P R keyword indicating in a variable definition that the variable is exported. [Recommenda
tion Z.103, § 3.1.]

exporter

An exporter of a variable is the process instance which owns the variable whose value is exported.
[Recommendation Z.103, § 3.1.]

export operation

An export operation is the composite operation which allows one process to export the values of data
items so that another process can access the values. [Recommendation Z.103, § 3.1.]

expression

An expression is either a value name, a synonym name, a variable name, a conditional expression or an
operator applied to one or more expressions. [Recommendation Z.104, § 4.7.]

extract!

The operator which is implied outside axioms when a variable is immediately followed by bracketed
expressions (except if this is followed by := in which case insert! is implied). [Recommendation Z.104, § 4.5.]

flow line

A flow line connects every symbol to the symbol(s) it follows on a process diagram of SD L/G R .
[Recommendation Z.101, § 3.3.]

formal parameter

A form al parameter is a variable name contained in a process definition or procedure definition for which
actual parameters are assigned to the variables when the process is created or procedure is called respectively.
[Recommendation Z.101, § 2.2, Recommendation Z.103, § 2.1.]

formal parameter list

A list of form al parameters in a process definition or procedure definition. The actual parameters are
matched by position in their respective lists. [Recommendation Z.101, § 2.2, Recommendation Z.103, § 2.1.]

frame (1)

A frame in a block interaction diagram of SD L /G R represents the block whose partitioning is defined by
the block interaction diagram. [Recommendation Z.102, § 3.2.]

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex A 11

frame (2)

A frame in a channel substructure diagram of SD L /G R represents the channel whose partitioning is
defined by the channel substructure diagram. [Recommendation Z.102, § 3.4.]

functional behaviour

(See behaviour.)

functional block

A functional block is an object of manageable size and relevant internal relationship, which has a name, a
set of channels connecting it with other blocks (or the environment), and either internal processes or block
definition. [Recommendation Z.100, § 2.1, Z.102, § 2.1.]

general parameters

The general parameters in both a specification and a description of a system relate to such matters as
temperature limits, construction, exchange capacity, grade of service, etc. [Recommendation Z.100, § 1.1.]

generator

The term generator is a synonym for data type generator.

graphic syntax

(See SD L/G R.)

H'

The S D L /P R keyword introducing a hexadecimal denotation of a numerical value. [Recommenda
tion Z.104, § 4.8.]

identifier

An identifier is a unique name for a type or an instance of a type, and is formed from a qualifying part
and a name part. [Recommendation Z.100, § 2.1.]

implicit transition

In a SD L /G R process diagram, if neither explicit input symbols nor explicit save symbols are shown
attached to a state symbol for one of the valid input signals, then there is an implicit transition which is an input
node connected directly back to the same state. Thus these signals are discarded. [Recommendation Z.101, § 3.3.]

IMPORT

The syntactic construct IM PORT (variable name, process instance) is used both in SD L /G R and SD L /P R
to represent the import of the value from a process instance. [Recommendation Z.103, § 3.1.]

12 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A

import

The term import is a synonym for import operation.

IMPORTED

The S D L /G R keyword indicating in a variable definition that the variable is used to contain values which
are imported. [Recommendation Z.103, § 3.1.]

importer

An importer o f an imported value is the process instance which imports the value. [Recommenda
tion Z.103, § 3.1.]

Import operation

An import operation is the composite operation which allows one process to import and access the values
o f variables owned by another process. [Recommendation Z.103, § 3.1.]

imported value

The value seen by a process for a data item which is imported. [Recommendation Z.103, § 3.1.]

IN

The form al parameter attribute denoting the case when a value is passed to a procedure. [Recommenda
tion Z.103, § 2.3.]

IN/OUT

The form al parameter attribute denoting the case when a form al parameter name is used as a synonym
for the variable. [Recommendation Z.103, § 2.3.]

in-connector

A flow line may be broken by a pair of associated connectors, with the flow assumed to be from the
out-connector to its associated in-connector. [Recommendation Z.101, § 3.3.]

incoming channel

An incoming channel is a new channel formed when a channel is partitioned. An incoming channel
conveys to the new blocks formed by channel partitioning all the signals which the partitioned channel conveys.
[Recommendation Z.102, § 2.1.]

infix operator

One of the predefined dyadic operators o f S D L /P R (= > OR XOR AND I N /= = > < < = > = +
— / / # / MOD REM) which are placed between the two parameters rather than before bracketed parameters, or
one of the monadic prefix operators (+ — NOT). [Recommendation Z.104, § 4.5.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A 13

inlet

An inlet of a macro is the point where a line enters the macro. [Recommendation Z.103, § 4.1.]

input

The term input on its own is a synonym for input action.

input action

An input action is an action which receives and consumes an input signal corresponding to a signal name
and allows the process instance interpreting the input action to access the information contained in the input signal.
[Recommendation Z.101, § 2.3.]

input node

An input node is a node in a process graph or a procedure graph where an input action takes place and has
the same name as the signal which the input action consumes. [Recommendation Z.101, § 2.2.]

input port

The input port of a process receives and retains signals in the order of arrival until the signals are
consumed by an input action. [Recommendation Z.101, § 2.3.]

input signal

An input signal of a process is one of the set of named signals that the process can receive at any of its
state nodes. The set of valid input signals a process can receive is the set of all signal names which appear in any
input node of the process. [Recommendation Z.101, § 2.3.]

input symbol

The symbols in a process diagram in S D L /G R representing the SDL concept of an input. [Recommenda
tion Z.101, § 3.3.]

insert!

The operator which is implied outside axioms when a variable is immediately followed by bracketed
expressions and then : = . [Recommendation Z.104, § 4.5.]

instance

An instance o f a type is a value which has all the properties of the type and can be distinguished from
other instances o f the same type by an identifier. [Recommendation Z.100, § 2.1.]

instantiation

Instantiation is the creation of instance of an entity from a type. [Recommendation Z.100, § 2.1.]

14 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex A

Integer

The integer type is defined by the set of values -(in fin ity), . . - 2 , - 1 , 0 , +1, +2, . . + (infinity) and
their normal mathematical operations, i.e. + , - , multiply, divide, etc. [Recommendation Z.104, § 5.1.]

label

A label is an optional name attached to either an inlet or outlet from a macro. [Recommendation Z.103,
§ 4.2.]

level

The term level is a synonym for level o f abstraction.

level of abstraction

A level o f abstraction is one of the levels o f a block tree diagram. A description of a system is one block at
the highest level o f abstraction and is shown as a single block at the top of a block tree diagram. [Recommenda
tion Z.102, § 3.1.]

literal

A literal denotes a value identity. The literals 12, B'1100, O'14 and H 'C all denote the same Integer value
identity. [Recommendation Z.104, § 4.4.]

macro

A macro is a named collection of syntactic items defined by the SDL user, which replace the use of the
macro name BEFORE the meaning of the SDL representation is considered. [Recommendation Z.103, § 4.]

macro definition

A macro definition in S D L /G R is a named part of any S D L /G R diagram with inlets and outlets
represented by lines indicated as flowing to and from (respectively) the part diagram. These lines may be labelled.
[Recommendation Z.103, § 4.2.]

macro symbol

The symbol used in SD L /G R to denote a reference to a macro definition by name. [Recommenda
tion Z.103, § 4.2.]

name

The term name is a synonym for the name part of an identifier.

name part

The name part of an identifier is a meaningful phrase in natural language which can be used in
combination with a qualifying part of the identifier to identify a type or instance of an entity. [Recommenda
tion Z.100, § 2.1.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A 15

Natural

The natural number type is a range type of the integer type with the values 0, 1, 2, . . . up to infinity.
[Recommendation Z.104, § 5.6.]

newtype

A newtype introduces sets of literals and operators which are distinct from any other literals and
operators (even though they may have the same names so that the different identities have to be resolved by
qualification). The properties of a newtype are defined by the use of the literals and operators in axioms.
[Recommendation Z.104, § 4.3.]

node

A node is a named place on a process graph which is joined to other nodes by arcs. The classes of nodes
in SDL are state nodes, input nodes, task nodes, output nodes, decision nodes, start nodes, stop nodes, procedure
start nodes, procedure call nodes, procedure return nodes, and create request nodes. [Recommendation Z.101, §§ 2.2.]

note

An annotation in SD L /P R which is relevant only to the SD L /P R representation. A note is a text string
enclosed by /* and * /. [Recommendation Z.101, § 4.3.]

O'

The SD L /P R keyword introducing an octal denotation of a numerical value. [Recommendation Z.104,
§ 4.8.]

OFFSPRING

The OFFSPRING of a creating process is a data item which has the same value as the SE LF data item
of the process most recently created by this creating process. If a process has not created any processes then its
OFFSPRING data item is undefined. [Recommendation Z.101, § 2.3.]

operator

An operator when applied to one or more values, delivers a value determined by the use of the operator in
axioms. The symbols + — * / are arithmetic operators. [Recommendation Z.104, § 4.5.]

operator typing

Defines the data types of the data items to which the operator is applied and the data type of the
resultant value (if any). [Recommendation Z.104, § 4.5.]

option

An option is a concrete syntax construct in a process definition allowing different behaviours to be chosen
BEFORE the process graph is interpreted. [Recommendation Z.103, § 5.1.]

16 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex A

option expression

An expression contained in an option which is evaluated to determine which behaviour is to be chosen.
[Recommendation Z.103, § 5.2.]

option symbol

The symbol on a process diagram or procedure diagram of S D L /G R representing an option. [Recommen
dation Z.103, § 5.2.]

out-connector

A flow line may be broken by a pair of associated connectors, with the flow assumed to be from the
out-connector to its associated in-connector. [Recommendation Z.101, § 3.3.]

outgoing channel

An outgoing channel is a new channel formed when a channel is partitioned. An outgoing channel conveys
from the new blocks formed by channel partitioning, all the signals which the partitioned channel conveys.
[Recommendation Z.102, § 2.1.]

outlet

An outlet of a macro is the point where a line leaves the macro. [Recommendation Z.103, § 4.2.]

output

The term output on its own is a synonym for output action.

output action

An output is an action within a transition which generates a signal which in turn acts as an input signal
elsewhere. [Recommendation Z.101, § 2.3.]

output node

A node on a process graph where an output action takes place and has the same name as the signal it
generates. [Recommendation Z.101, § 2.2.]

output symbol

The symbol in a process diagram of S D L /G R representing the SDL concept o f an output. [Recommenda
tion Z.101, § 3.3.]

PARENT

The PA R E N T data item o f a process is the SE LF data item of its parent process, that is the process which
interpreted the create request action which started the process. [Recommendation Z.101, § 2.3.]

Fascicle VI.11 — Rec. Z.100 to Z.104 - Annex A 17

partitioning

Partitioning is the elaboration of behaviour of complex an d /o r large systems into sub-systems to provide a
logical partitioning of the bahaviour of the system and different abstract viewpoints of the same system.
[Recommendation Z.102, § 2.1.]

passive operator

An operator which requires only values as parameters and produces a value as a result. A passive
operator cannot change the values associated with variables. [Recommendation Z.104, § 4.5.]

pictorial element (PE)

One of a number of standardized graphical forms used with state pictures in SD L /P E to represent
switching system concepts. [Recommendation Z.103, § 6.]

PId

The predefined data type used to identify process instances. [Recommendation Z.104, § 5.8.]

predefined data type

i
For simplicity of description the term predefined data type is applied to both predefined names for data

types and predefined names for data type generators. Boolean, Character, Charstring, Duration, Integer, Natural,
PId, Real, Time and Timer are data type names which are predefined. Array, Powerset, and String are data type
generator names which are predefined. [Recommendation Z.104, § 5.]

Powerset

The predefined data type generator generating data types with values which are mathematical ordered sets
o f values. Each powerset value is a set of values of the data type used to parameterize powerset generator.
[Recommendation Z.104, § 5.7.]

procedure

A section of a process graph which can be regarded in isolation. A procedure is defined in one place but
may be referred to several times, even in different processes. The signals and variables affected by interpretation of
a procedure are controlled by param eter passing. [Recommendation Z.103, § 2.]

procedure call

A procedure call is the means of invoking a named procedure for interpretation and passing parameters to
the procedure. [Recommendation Z.103, § 2.1.]

procedure call node

A procedure call node is a node in a process graph or a procedure graph where a procedure call takes
place. [Recommendation Z.103, § 2.1.]

18 Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex A

procedure call symbol

The symbol of SD L /G R representing a procedure call. [Recommendation Z.103, § 2.2.]

procedure definition

A procedure definition defines a section of a process graph. The definition associates the procedure graph
with a procedure name, a form al parameter list, an additional-save-set and optionally further procedure definitions
and data definitions. [Recommendation Z.103, § 2.1.]

procedure diagram

A procedure diagram is the S D L /G R representation of a procedure graph. [Recommendation Z.103, § 2.2.]

procedure graph

A procedure graph is a graph connected by directed arcs to describe the behaviour of a procedure and can
form a section of a process graph. [Recommendation Z.103, § 2.1.]

procedure return

(See return.)

procedure start node

The procedure start node is a node and is a procedure graph where interpretation of the procedure is
commenced by a call of the procedure. [Recommendation Z.103, § 2.1.]

procedure start symbol

The symbol in a procedure diagram of SD L /G R representing a procedure start node. [Recommenda
tion Z.103, § 2.2.]

process

A process performs a function which requires various items of information to perform sub-functions. The
sub-functions performed depend on the order in time that the information becomes available to the process. In the
context of SDL a process is a class of entity, instances of which are either in a state awaiting an input or in a
transition. The term process on its own is a synonym for process instance. [Recommendation Z.101, § 2.1.]

process definition

The behaviour of a type o f the class process is described in a process definition, in terms of a closed
directed graph of inputs, saves, states, transitions, decisions, tasks and outputs. [Recommendation Z.101, § 2.1.]

process diagram

A process diagram is the S D L /G R representation of a process graph. [Recommendation Z.101, § 3.2.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A 19

process graph

A process graph is a graph connected by directed arcs to describe the bahaviour of a process.
[Recommendation Z.101, § 2.2.]

process instance

A process instance is a dynamically created instance of a process. [Recommendation Z.101, § 2.3.]

process substructure

The process substructure of a process is the partitioning of the process into sub-processes and the
allocation of these processes into sub-blocks. [Recommendation Z.102, § 2.2.]

process substructure definition

A process substructure definition is an optional part of a process definition which defines the process
substructure of a process. [Recommendation Z.102, § 2.2.]

process symbol

The symbol on a block interaction diagram or a process tree diagram of SD L /G R representing zero or
more process instances. The process symbol contains the process name, which identifies the process definition, and a
form al parameters list. [Recommendation Z.101, § 3.1, Recommendation Z.102, § 3.3.]

process tree diagram

A process tree diagram of S D L /G R represents the partitioning of a process in a block into sub-processes.
The allocation of the sub-processes to sub-blocks is shown by allocation symbols on the process tree diagram. The
diagram is in the form of an inverted tree. [Recommendation Z.102, § 3.3.]

qualifiers

The term qualifiers is a synonym for the qualifying part of an identifier.

qualifying part

The qualifying part of an identifier is the information which has to be added to the name part of the
identifier to form a unique name. The qualifying part of an identifier may be derived from the context of the use of
the name part. [Recommendation Z.100, § 2.1.]

Real

The real type is defined by the set of ALL values between —(infinity) and + (infinity) and the normal
mathematical operations, i.e. + , —, multiply, raise to power, etc. [Recommendation Z.104, § 5.2,]

20 Fascicle VI.1'1 — Rec. Z.100 tQ Z.104 — Annex A

reserved switching path PE

A pictorial element representing a reserved connection between terminal equipment an d /o r signalling
devices. [Recommendation Z.103, § 6.1.]

RESET

The operator defined for the timer data type which allows timers to be cleared. [Recommendation Z.104,
§ 5.12.]

retained signal

When a signal arrives at a process, it is considered to be received and retained for that process (it is
outside the process hence it is not yet consumed by it). [Recommendation Z.101, § 2.1.]

return

The return of a procedure is the destruction of the variables and synonyms created at the procedure start
followed by the completion of the interpretation of the procedure start. [Recommendation Z.103, § 2.1.]

return node

A return node is the node in a procedure graph where the return from the procedure takes place.
[Recommendation Z.103, § 2.1.]

return symbol

The symbol in a procedure diagram representing a return from the procedure. [Recommendation Z.103,
§ 2 .2 .]

reveal attribute

A variable owned by a process may have a reveal attribute, in which case another process in the same
block can view the value associated with the variable. [Recommendation Z.101, § 2.3.]

save

A save is the postponement of recognition o f a signal when a process is in a particular state in which
input of that signal is not allowed. [Recommendation Z.101, § 2.2.]

save-signal-set

The save-signal-set of a state of a process is the set of saved signal names for that state. [Recommenda
tion Z.100, § 2.2.]

save symbol

A symbol in a process diagram of SD L /G R representing the SDL concept of a save. [Recommenda
tion Z.101, § 3.3.]

Fascicle VI. II — Rec. Z.100 tq Z.104 — Annex A 21

SDL/GR

The graphical representation of SDL. [Recommendation Z.100, § 3.1.]

SDL/PR

The textual phrase representation of SDL. [Recommendation Z.100, § 3.1.]

SDL/PE

The pictorial element form of SDL, which is a state oriented extension of SD L/G R . [Recommenda
tion Z.100, § 3.5.]

SELF

The SE LF data item of a process is the unique process instance value which distinguishes it from any
other process instance. [Recommendation Z.101, § 2.3.]

SENDER

The SEN D ER data item of a process is equal to the origin process data item of the most recently
consumed signal. [Recommendation Z.101, § 2.3.]

SET

The operator defined for the Timer data type which allows timers to be set. [Recommendation Z.104,
§ 5.12.]

shared value

A shared value is the value associated with a variable which has the reveal attribute in one process and is
viewed by another. [Recommendation Z.101, § 2.3.]

SIGNAL

The form al parameter attribute for a signal parameter of a procedure. [Recommendation Z.103, § 2.3.]

signal

The term signal on its own is a synonym for signal instance.

signal definition

A signal definition defines a name as being a signal name and associates a list of zero or more data types
with the signal name. [Recommendation Z.101, § 2.2.]

signal instance

A Signal instance is an instance of a signal communicating information to a process instance from either
the output action of another process instance or the environment. Alternatively, a signal instance is used to
communicate information from the output action of a process to the environment. [Recommendation Z.101, § 2.3.]

22 Fascicle V I .ll — Rec. Z.100 to Z.104 — Annex A

signalling receiver PE

A pictorial element representing a signalling receiver. [Recommendation Z.103, § 6.1.]

signalling sender PE

A pictorial element representing a signalling sender. [Recommendation Z.103, § 6.1.]

signal list

The list of names of all the signals which can be conveyed by a channel or internally in a block from one
process to another. [Recommendation Z.101, § 2.2.]

signal list symbol

The symbol on a block interaction diagram of SD L /G R representing a signal list associated with a
channel or signal route symbol. [Recommendation Z.101, § 3.1.]

signal route symbol

The symbol on an interaction diagram of SD L /G R indicating the flow of signals between a process and
either another process in the same block or the channels connected to the block [Recommendation Z.101, § 3.1.]

specification

The requirements of a system are defined in a specification of that system. A specification consists of
general parameters required of the system and the functional specification (FS) of its required behaviour.
[Recommendation Z.100, § 1.1.]

specification and description language (SDL)

The CCITT language used in the presentation of the functional specification and functional description of
the internal logic processes in stored programmed control (SPC) switching systems. [Recommendation Z.100,
§ 1-1.]

start action

The start action of a process is interpreted before any other action. The start action initializes the form al
parameters of the process. [Recommendation Z.101, § 2.3.] ,

start node

The start node in a process graph is the only node which does not follow another node. There is only one
start node in a process graph and interpretation of a process starts at this node. The start node is where an input
action takes place. [Recommendation Z.101, § 2.2.]

start symbol

The symbol in a process diagram of SD L /G R representing a start node. [Recommendation Z.101, § 3.3.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A 23

state

A state is a condition in which the action of a process is suspended awaiting an input signal.
[Recommendation Z.101, § 2.1.]

state node

A node in a process graph or a procedure graph where the process enters a state. [Recommendation Z.101,
§ 2 .2.]

state picture

A state picture is a state symbol incorporating pictorial elements used to extend SD L /G R to SD L/PE.
[Recommendation Z.103, § 6.]

state symbol

A symbol in a process diagram of SD L /G R representing the SDL concept of one or more states.
[Recommendation Z.101, § 3.3.]

stop

An action which terminates a process instance. [Recommendation Z.101, § 2.3.]

stop node

A node in a process graph where the stop takes place. [Recommendation Z.101, § 2.2.]

stop symbol

The symbol on a process diagram of SD L /G R representing a stop. [Recommendation Z.101, § 3.1.]

String

The predefined data type generator generating data types with values which are lists of items of the data
type used to parameterize the string generator. [Recommendation Z.104, § 5.9.]

Struct

A data type definition with Struct implicitly introduces data types for field names and implicit axioms
which define the use of field names with extract! and insert! for partial values of structures. [Recommenda
tion Z.104, § 4.3.]

sub-block

A sub-block is a block contained within another block Sub-blocks are formed when a block is partitioned.
[Recommendation Z.102, § 2.1.]

24 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex A

sub-block definition

A sub-block definition defines a block and forms part of a block substructure definition. [Recommenda
tion Z.102, § 2.2.]

sub-block symbol

The symbol in a block interaction diagram or block tree diagram of S D L /G R which represents a sub-block
and is identical to a block symbol [Recommendation Z.102, § 3.2.]

sub-channel

A sub-channel is a channel formed when a block is partitioned. [Recommendation Z.102, § 2.1.]

sub-process

A sub-process is a process formed when a process is partitioned. [Recommendation Z.102, § 2.3.]

subscriber line PE

A pictorial element representing a subscriber line. [Recommendation Z.103, § 6.1.]

switchboard PE

A pictorial element representing a switchboard piece of terminal equipment. [Recommendation Z.103,
§ 6.1.]

switching module PE

A pictorial element representing a switching module associated with a connected or reserved switching
path. [Recommendation Z.103, § 6.1.]

synonym definition

A definition of a name for a data value. [Recommendation Z.104, § 4.12.]

syntax diagram

Syntax diagrams are diagrams used to define the SD L /P R concrete syntax. [Recommendation Z.100,
§ 3.4.]

syntype

A syntype introduces a set of values which corresponds to a subset of the values of the parent newtype.
Access!, declare! and assign! are the only operators for syntypes since values prior to assignment and after
extraction from syntype variables are always values of the parent newtype. [Recommendation Z.104, § 4.3.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A 25

system

A system is a set of blocks connected to each other and the environment by channels. The term system on
its own is a synonym for system instance. [Recommendation Z.101, § 2.1.]

system boundary

The system boundary is the boundary between the blocks defined in terms of SDL and the environment.
[Recommendation Z.101, § 2.3.]

system definition

A system definition defines the properties of a system. The properties of a system are the blocks, channels,
signals associated with the channels, data types and synonyms of the system. [Recommendation Z.101, § 2.2.]

task

A task is an action within a transition containing either a sequence of assignment statements, set
statements or reset statements or informal text. The interpretation of a task depends on and may act on
information held by the system. [Recommendation Z.101, § 2.2.]

task node

A node in a process graph or a procedure graph where a task takes place. [Recommendation Z.101, § 2.2.]

task symbol

A symbol in a process diagram of S D L /G R representing the SDL concept of a task. [Recommenda
tion Z.101, § 3.3.]

terminal equipment PE

One of a possible six pictorial elements representing the following types of terminal equipment: telephone
on-hook, telephone off-hook, trunk, subscriber line, switchboard, or other. [Recommendation Z.103, § 6.1.]

text extension symbol

The text associated with this symbol is regarded as belonging to the symbol in SD L /G R to which the text
extension symbol is attached. [Recommendation Z.101, § 3.]

Time

The predefined data type representing absolute time. [Recommendation Z.104, § 5.10.]

Timer

The predefined data type used for timers and which defines the operators S E T and R E S E T for timers.
[Recommendation Z.104, § 5.12.]

26 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A

time supervision of a process PE

A pictorial element representing the running of a supervisory timer. [Recommendation Z.103, § 6.1.]

transition

A transition is an action sequence which occurs when a process instance changes from one state to
another in response to an input. [Recommendation Z.101, § 2.2.]

transition string

A transition string is a sequence of zero or more actions between an input node and the following state
node, stop node or procedure return node. [Recommendation Z.101, § 2.2.]

trunk PE

A pictorial element representing a trunk line interface. [Recommendation Z.103, § 6.1.]

type

A type is a set of properties for entities. The classes of types in SDL are blocks, channels, data items,
procedures, processes, signals and systems. A type may be composed from entities of the same class, in which case
these entities are sub-types (e.g. a block composed from sub-blocks). [Recommendation Z.100, § 2.1.]

type definition

A type definition defines the properties of a type. [Recommendation Z.100, § 2.1.]

valid input signal

At each state in a process there is a set of signal names for signals which can either be input. A valid
input signal is a signal name which is a member of any of these sets. [Recommendation Z.101, § 2.3.]

value

A data value of a data type is one of the values which are associated with a variable of that data type,
and which can be used with an operator requiring a value of that data type. [Recommendation Z.104, § 1.]

variable

A variable is an entity owned by a process which can be assigned a value. A variable yields the last value
which was assigned to it when it is accessed. [Recommendation Z.101, § 2.3.]

variable definition

A variable definition defines an instance of a data type. [Recommendation Z.101, § 2.2.]

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex A 27

view

A variable can be viewed if the value associated with the variable is revealed by the process owning the
variable and another ^ ro c m can access the value. [Recommendation Z.101, § 2.3.]

view definition

A view definition is a part of a process definition which defines and which variables are owned by another
process and are only viewed by the process containing the view definition. [Recommendation Z.101, § 2.2.]

viewing expression

A viewing expression is used within an expression to indicate that the latest value of a viewed variable is
obtained. [Recommendation Z.101, § 2.3.]

ANNEX B

(to Recommendations Z.100 to Z.104)

Abstract syntax summary

This summary contains all abstract syntax and associated wellformedness rules that are defined in
Recommendations Z.101, Z.102, Z.103 and Z.104. The syntax is explained using an extended B N F') form as
defined in Recommendation Z.200 and the rules are given in English. As this is a summary, the Recommendations
should be consulted for the exact definitions.

B.l System

(1) < System D efinition> :: =

(Z.101) System — name

(Z.101) [< Block D efinition>] +

(Z.101) [< Channel Definition >]*

(Z.101) [< Signal D efinition>]*

(Z.104) [< D ata Definition >]*

(Z. 103) [< Procedure Definition >]*

Wellformedness

The structure definition must contain a signal definition for each signal name in the signal lists in each of
the also contained channel definitions (Recommendation Z.101).

BNF = Backus Naur Form.

28 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex B

B.2 Block

(2) < Block Definition > :: =

(Z.101) Block-name

(Z.101) [< Process Definition >]*

(Z.101) [< Signal Definition >]*

(Z. 104) [< Data Definition >]*

(Z.103) [< Procedure Definition >]*

(Z.102) [< Block Substructure Definition > !]

Wellformedness

For each of the signal names associated with the input and output operations in the contained processes,
either the block contains a signal definition or is 'a signal definition contained in the enclosing structure.

If a block definition contains block substructure definition, it need not contain process definitions
(Recommendation Z.102).

B.3 Block Sub-structure

(3) < Block Sub-structure Definition > :: =

(Z.102) [< Sub-block Definition >] +

(Z.102) [< Sub-channel Definition >]

(Z.102) [< Channel Definition >] +

(Z.102) [< Process Sub-structure Definition >]*

(Z.102) [< Signal Definition >]*

(Z.104) [< D a ta Definition >]*

(Z.103) [< Procedure Definition >]*

(3.1) < Sub-block Definition > :: =

(Z.102) < block definition >

(3.2) < Sub-channel D efinition> :: =

(Z.102) < Channel Definition >

Wellformedness

For each of the process definitions contained in the enclosing block, the block substructure definition must
contain a process sub-structure definition.

To each of the terminating endpoints of channels to the enclosing block, there must at least be one
sub-channel definition having that endpoint as the originating endpoint, and the reverse must hold for all
originating channel endpoints to the enclosing block. The union of the signal lists of the sub-channel definitions
having the same endpoint as a channel leading to or from the enclosing block must be identical to the signal list
o f that channel. In addition to this, the signal lists of the channel definitions originating from a terminating
endpoint must be disjointed (Recommendation Z.102).

A channel definition contained in the sub-structure must connect sub-blocks to each other. All sub-chan
nels must connect channel endpoints of the enclosing block to sub-blocks.

B.4 Channel

(4) < Channel Definition > :: =

(Z.101) Channel-name

(Z.101) [Origin Block-identifier! ENVIRONMENT]

(Z.101) [Destination Block-identifier! ENVIRONMENT]

(Z.101) < Signal L ist>

(Z.102) [< Channel Sub-structure Definition > !]

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex B 29

(4.1) < Signal List > :: =

(Z.101) [.S7g/m/-name] +

Wellformedness

Only one of the origin block or destination block identifiers may be replaced with a reference to the
environment (Recommendation Z.101).

The origin block identifier and the destination block identifier associated with a channel must be different
and each must be the identifier of a block in the system or sub-block in the block, or must be the
ENVIRONM ENT (Recommendation Z.101).

B.5 Channel sub-structure

(5) < Channel sub-structure D efinition> :: =

(Z.102) < Incoming Channel Definition >

(Z.102) < Outgoing Channel Definition >

(Z.102) [< Channel Definition >]*

(Z.102) [< Block Definition >] +

(Z.102) [< Signal Definition >]*

(Z.104) [< D a ta Definition >]*

(Z.103) [< Procedure Definition >]*

(5.1) < Incoming Channel Definition > :: =

(Z.102) < Channel Definition >

(5.2) < Outgoing Channel D efinition> :: =

(Z.102) < Channel Definition >

Wellformedness

The incoming channel definition has the same origin endpoint as the enclosing channel definition. The
outgoing channel has the same terminating endpoint as the enclosing channel definition. Both the incoming and
the outgoing channel definitions have signal lists identical to the signal list of the enclosing channel definition
(Recommendation Z.102).

B.6 Signal

(6) < Signal D efinition> :: =

(Z.101) Signal-name

(Z.101) [Data-7y/?e-identifier]*

Wellformedness

The used data type identifiers must either be predefined or names of data type definitions in the enclosing
structural entities.

B.7 Process

(7) < Process Definition > :: =

(Z.101) Process-name

(Z.101) < number of instances >

(Z.101) [< Formal Param eter>]*

(Z.104) [< D a ta Definition >]*

(Z.101) [cV iew ing Definition>]*

(Z.103) [< Procedure Definition >]*

(Z.101) < Process Graph >

30 Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex B

(7.1) < number of instances > :: =

< integer value identifier > < integer value identifier >

(7.2) < Viewing Definition > :: =

(Z.101) < variable identifier >

< type identifier >

< process definition identifier >

Wellform edn ess

All type names referred to must either be predefined, defined in the process definition or defined in the
enclosing structural concepts.

B.8 Process sub-structure definition

(8) < Process Sub-structure Definition > :: =

(Z.102) Process-name

(Z.102) [Sub-process-name sub-block-name\ +

Wellformedness

The process name must be a name of a process definition contained in the enclosing block. All contained
sub-process names must be names of sub-processes contained in the sub-block having the associated sub-block
name.

Each signal name in the valid input signal set of the process must appear in exactly one of the valid input
signal sets of the sub-processes. Each signal name attached to an output node of the process must be attached to
at least one output node in one of the sub-processes.

B.9 Process Graph

(9) < Process G raph > :: =

(Z.101) < Process Start N ode> < Process Transition >

(9.1) < Process T ransition> :: =

< Transition String > < State Node >

!< Transition String > < S top N ode>

B.10 Transition String

(10) < Transition String> :: =

(Z.101) <T ask N ode> < Transition String >

(Z.101) !< Output N ode> < Transition String >

(Z.101) !< Decision N ode>

(Z.101) !< Create Request Node > < Transition String >
(Z.103) !< Procedure Call N ode> < Transition String >

(Z.101) !

B .ll Start node

(11) < Start N ode> :: =

B.12 State node

(12) < State N ode> :: =

(Z.101) State-name

(Z.101) <Save Signal Set>

(Z.101) [< Input N ode>] +

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex B 31

(12.1) < S a v e S e t> :: =

(Z.101) [Signa/-identifier]*

B.13 Stop Node

(13) < S top N ode> :: =

B.14 Task Node

(14) <T ask N ode> :: =

(Z.101) [[< Statement >] + ! [< informal test >]*]

B.14.1 Statement

(14.1) < Statement > :: =

(Z.101) < S et statement >

(Z.101) ! < reset statement >

(Z.101) ! < assignment statement >

(14.1.1) < Set statement > : : =

(Z.101) < time expression > timer-identifier

(14.1.2) < Reset statem ent> :: =

(Z.101) f/mer-identifier

(14.1.3) < Assignment statement > : : =

(Z. 101) < Assignment operator >

(Z.101) < variable identifier >

(Z.101) < Expression >

B.15 Output node

(15) < Output N ode> :: =

(Z.101) < S7gna/-identifier>

(Z.101) [< Expression >]*

(Z.101) < Destination >

(15.1) < D estination> :: =

(Z.101) < PId-Expression >

B.16 Input Node

(16) < Input N ode> :: =

(Z.101) Input S7gna/-identifier < Process Transition>

(Z.103) ! Input SignaZ-identifier < Procedure Transition >

Wellformedness

A process transition may only appear in a process definition and procedure transition may only appear
a procedure definition.

B.17 Decision node

(17) < Decision N ode> :: =

(Z.101) < Question >

(Z.101) < answ er> [< an sw er>] +

32 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex B

(17.1) < Question > :: =

(Z.101) < Expression >

! < informal text >

(17.2) < A n sw er> :: =

(Z.101) [< va/i/e-identifier>] +

[< procedure transition > ! < process transition >]

Wellformedness

A decision node must be followed by two or more answers (Recommendation Z.101).

The expressions in the decision name and the answers must be of the same type.

B.18 Procedure call node

(18) < Procedure Call Node > :: =

(Z.103) Procedure-identifiQT

(Z. 103) [< Expression >]*

(Z.103) [-Sig/ia/-identifier]*

(Z.103) < additional save set>

(18.1) < additional save set > :: =

[< Signal name >]*

Wellformedness

Each expression must be of the same type as the corresponding formal parameter in the procedure
definition having the procedure name.

There must be one expression for each formal parameter, of not type signal, in the procedure definition,
and one signal identfier for each formal parameter of type signal.

B.19 Create request node

(19) < Create Request Node > :: =

(Z.101) Process-identifier

(Z. 101) [< Expression >]*

Wellformedness

There must be an expression for each formal parameter in the/by the process identifier referenced process
definition, and each expression must agree in type with the associated formal parameter (Recommendation Z.101).

B.20 Procedure

(20) < Procedure Definition > :: =

(Z.103) Procedure-name

(Z.103) [< D a ta Definition >]*

(Z.104) [< variable definition >]*

(Z.103) [< Procedure Definition >]*

(Z.103) [< Formal Parameter >]*

(Z.103) < Procedure Graph >

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex B 33

Wellformedness

Each signal identifier appearing in the procedure graph must also appear as a formal parameter of type
signal.

B.21 Procedure graph

(21) < Procedure graph > :: =

(Z.103) < Procedure Start Node > < Procedure Transition >

(21.1) < Procedure T ransition> :: =

(Z.103) < Transition String > < State N ode>

(Z.103) !< Transition String > < Return N ode>

B.22 Procedure Start Node

(22) < Procedure Start N ode> ::==

B.23 Return node

(23) < Return Node > :: =

B.24 Data definition

(24) < D ata Definition > :: = .

(Z.104) < D ata Type Definition >

(Z.104) !< Synonym Definition >

B.25 Variable definition

(25) < Variable Definition > :: =

(Z.101) Variable-xvzmt

(Z.101) Ty/ic-identifier

(Z.101) [< reveal attribute > !]

B.26 Identifier

(26) < Identifier > :: =

(Z.100) < Qualifier > Name

B.27 Qualifier

(27) < Qualifier > :: =

(Z.100) < Structural N am e> < Entity Type N am e>

B.28 Structural name

(28) < Structural name > :: =

(Z.100) System -name

(Z.100) [Block-name]* [Channel-name]*

(Z.100) [<Signo/-name]* [Process-name]*

(Z.100) [Procedure-mnne]* [Type-name]*

34 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex B

B.29 Entity type name

(29) < Entity Type Name > :: =

(Z.100) System [Block [Process

(Z.100) [Procedure [Signal [Channel

(Z.100) [Task [Decision [Start

(Z.100) [Stop [Create Request

(Z.100) [Return [Procedure Start

(Z.100) [Call [Variable [Data type

(Z.100) [Operator [Value

B.30 Data type definition

(30) < Data Type Definition > :: =

(Z.104) Data Type-name < D ata Type Description >

(Z.104) \Data Type-name (Syn Type Description>

B.31 Data type description

(31) < Data Type Description > :: =

(Z.104) [Value-name]**

(Z.104) [< Operator Introduction >]+

(Z.104) [Type-Axiom]*

Note 1 — The notation []** means list of zero or more and possibly infinite number of items. Other than
the property that the list may be infinite, it is the same as []*.

Note 2 — Type-Axiom is not further defined in the abstract syntax. There is, however, a concrete syntax
for axioms.

Note 3 — A plus (+) indicates that the group must be present and can be further repeated any num ber.of
times. If syntactic elements are grouped using square brackets ([and]), then the group is optional.

B.32 Operator introduction

(32) < Operator Introduction > :: =

(Z.104) < Universal Operator >
(Z.104) \Operator-name < Operator Typing>

B.33 Universal operator

(33) < Universal Operator > : : =

(Z.104) < Variable Operator >

(Z.104) !< Com parator >

B.34 Variable operator

(34) < Variable Operator > :: =

(Z.104) Assign

(Z.104) [Access

(Z.104) [Declare

B.35 Comparator

(35) < Com parator > :: =

(Z.104) Less than

(Z.104) [Greater than

(Z.104) [Equal

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex B 35

B.36 Operator typing

(36) < Operator Typing > :: =

(Z.104) < D ata Type List> < Result 7>/?e-identifier>

B.37 Data type list

(37) < Data Type List> :: =

(Z. 104) [< Data- 7>pe-identifier >] +

Wellformedness (for 30-37)

All value names must be mutually exclusive in a type description.

All operator names must be mutually exclusive in a type description.

For each operator typing, one of the data type identifiers in the data type list must be the data type
identifier of the type being defined.

B.38 Syn type abstract syntax

(38) < Syn Type description > : : =

(Z.104) < Parent Type Identifier >

[< Ka/«e-identifier>]*

Wellformedness

The value identifiers must all be members of the set of value identifiers o f the parent data type identifier.

B.39 Informal text

(39) < Informal Text> :: =

(Z.104) Well-understood-name

B.40 Expression

(40) < Expression > :: =

(Z.104) < Primary >

(Z.104) !< Operation >

! < Conditional expression >

B.40.1 Operation

(40.1) < Operation > :: =

< operator > [< expression >]*

B.40.2 Conditional expression

(Z.104) < Conditional expression> :: =

(Z.104) < Boolean expression >

(Z.104) < Expression > < Expression >

B.41 Primary

(41) < Primary > : : =

(Z.104) Synonym-identifier

(Z.104) \ Value-identifier

(Z.104) Wariable-identifier

36 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex B

B.42 Operator

(42) < O perator > :: =

(Z.104) Operator-identifier

(Z.104) !< Universal Operator > 7>/?e-identifier

B.43 Synonym definition

(43) < Synonym Definition > :: =

(Z.104) Synonym-name < Constant Expression >

B.44 Constant expression

(44) < Constant Expression > :: =

(Z. 104) < Constant Value >

(Z.104) !< Operator > [< Constant Expression >] +

B.45 Constant value

(45) < Constant Value > : : =

(Z.104) Fa/ue-identifier

(Z.104) ! Synonym-idQntif\Qr

ANNEX Cl

(to Recommendations Z.100-Z.104)

SDL/GR summary

In SD L/G R , a system consists of:
— Block interaction diagram (BID),
— Channel sub-structure diagram,
— Block tree,
— Process Tree,
— Process diagram,
— State overview diagram.

Some of these documents are essential to provide a system specification/description whilst others are
auxiliary documents that may help in an easier understanding of the specification/description.

C l.l Block interaction diagram (BID)

C l.1.1 Symbols

The BID contains a system name, a set of block symbols, environment symbols, a set of channel symbols
and it may contain process symbols.

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C l 37

C l.1.1.1 Frame line

It surrounds the diagram and represents the boundary of the partitioned blocks.

CCITT-74040

C 1.1.1.2 Block symbol

It contains the block name (see Recommendation Z.101, § 3.1.1 and U.G. § D.4.3.2).

CCITT-74040

C l. 1.1.3 Process symbol

It contains the process name (see Recommendation Z.101, § 3,1.1 and U.G. § D.4.3.4) and may contain a
couple of parenthesis containing the list of the formal parameters.

—

\ /

C l .1.1.4 Environment symbol

It is represented only by a keyword (see Recommendation Z.101, § 3.1.1).

ENVIRONM ENT

C l. 1.1.5 Channel symbol

It contains a channel name. The channel symbol has an origin end connected to a block symbol and a
destination end connected to another block symbol. Alternatively, either the origin or the destination end points
(but not both of them) may be connected to an environment symbol instead of a block symbol.

A channel symbol includes an arrowhead in the middle of the line to show the direction of the flow of
signals.

CCITT-74040

C l. 1.1.6 Signal route symbol

A signal route symbol in a block may be associated with a signal list symbol.

A signal route symbol leads either from one process to another, or from a process to the origin end of a
channel (at the block boundary), or from the destination end of a channel (at the block boundary) to a process.

Signal route symbols may converge at the origin end of a channel (at the block boundary) and may
diverge from the destination end of a channel at the block boundary. A signal route symbol includes an
arrowhead at one end to show the direction of the flow of symbols.

CCITT-74040

38 Fascicle V I .ll — Rec. Z.100 to Z.104 — Annex C l

C l. 1.1.7 Signal list symbol

CCITT-74040

The signal list symbol contains a list of names. The signal list itself may have a name, which is written
above the symbol. Entries in the list, which are separated by commas and put in columns or rows, are the names
of individual signals or names of other signal lists. Within the list, signal list names are distinguished from
individual signal names by enclosing each signal list name in a further pair of square brackets.

C 1.1.1.8 Create symbol

 *

CCITT-74040

It is used between process symbols to indicate that a process instance at the arrowhead end is created by a
process instance at the origin end of the dashed line. The create symbol may connect the same process to indicate
the creation of an instance of that process by another instance of the same process.

C l. 1.2 Rules

Each block has a certain number of directed lines to interconnect it with other blocks a n d /o r with the
environment.

If processes are represented in the interaction diagram, the signal lines between processes have to be only
between processes of the same block that communicate with each other.

C l. 1.3 Conventions

Channel symbols and signal lines should respectively join block symbol boundaries and process symbol
boundaries preferably at 90 degrees. If necessary channel symbols may contain 90 degree bends.

Crossing of lines has no meaning.

C l.2 Channel sub-structure diagram

As the components are blocks and channels the diagram resembles a block sub-structure diagram.

C l.2.1 Symbols

The symbols used in this diagram are the same as those used in block sub-structure diagram.

C l.2.2 Rules

The rules for connecting the diagram are the same as for the block sub-structure diagram.

C l.2.3 Conventions

The same graphical conventions, as described for FBID, also apply for the channel sub-structure diagram.

C l.3 Block tree

The block tree diagram contains boxes and “partitioned into” lines.

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex Cl 39

Cl.3.1.1 Box

A box represents a system or a block. The name of the represented object should appear inside the symbol.

C l.3.1 Symbols

_____________________ CCITT-74040

C l.3.1.2 “Partitioned into” lines

They represent the relation that the object above is partitioned into the sub-blocks below.

I I CCITT-74040

C l.3.2 Rules

The symbols are connected to form a hierarchical tree. The rules for the connection of the diagram are:

— There is exactly one root box (top box).

— Any other box must follow one branch of a “partitioned into” line.

— Any box may be followed by one “partitioned into” line.

— A “partitioned into” line must be followed by boxes at all its branches, and must follow a box.

C l.3.3 Conventions

The tree should be so drafted as one partitioning level appears as a consistent level in the representations,
i.e. the “partitioned into” lines should have equal length downwards in the diagram.

C 1.4 Process tree

The process tree contains process symbols and “partitioned into” lines.

C l.4.1 Symbols

• C l.4.1.1 Process symbol

As defined in Recommendation Z.101 (§ 3.1.2), the name of the referred process should appear inside the
symbol. The comment syntax is used to show in which block the process is allocated.

Cl.4.1.2 “Partitioned into” lines

They represent the relation that the process above is partitioned into the sub-processes below, and may be
replaced by these.

CCITT-74040

40 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex Cl

C l.4.2 Rules

The symbols are connected to form a hierarchical tree. The rules for the connection of the diagram are:
— There is exactly one root process symbol (top process), which is followed by one “partitioned into”

line.

- The “partitioned into” line is followed, at each of its branches by a process symbol.

C l.4.3 Conventions

If a process tree diagram is large, it may be suitable to split the diagram into several diagrams. This
splitting should be such that the first diagram is chopped off so that a set of further partitioned processes appears
as not partitioned. In the following diagrams these processes appear as roots.

C l.5 Process diagram

A process diagram is a set of symbols connected by flow lines.

C l.5.1 Symbols

Cl.5.1.1 Start symbol

It contains the process name, of the process it describes (see Recommendation Z.101, § 3.3.1 and U.G.
§§ D.4.3 and D.6.3).

CCITT-74040

C l.5.1.2 State symbol

It contains the state name or an asterisk or an asterisk followed by states names within square brackets
(see Recommendation Z.101, § 3.3.1 and U.G. §§ D.4.3 and D.6.3).

CCITT-74040

C l.5.1.3 Input symbol

It contains the signal names separated by commas or an asterisk (see Recommendation Z.101, § 3.3.1 and
U.G. §§ D.4.3 and D.6.3).

CCITT-74040

Cl.5.1.4 Save symbol

It contains the signal names separated by commas or a star (see Recommendation Z.101, § 3.3.1 and U.G.
§§ D.4.3 and D.6.3).

./ CCITT-74040

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex Cl 41

C l.5.1.5 Decision symbol

It contains the decision name (optional) and a formal or informal text phrase (see Recommendation Z.101,
§ 3.3.2 and U.G. §§ D.4.3 and D.6.3).

C l.5.1.6 Output symbol

It contains the signal names separated by commas (see Recommendation Z.101, § 3.3.1 and U.G. §§ D.4.3
and D.6.3).

C l .5.1.7 Task symbol

It contains the task name (optional and a formal or informal text-phrase (see Recommendation Z.101,
§ 3.3.1 and U.G. §§ D.4.3 and D.6.3).

CCITT-74040

C l.5.1.8 Procedure call symbol

It contains the procedure name and the actual parameters within round brackets (see Recommenda
tion Z.103, § 2.2 and U.G. §§ D.4.3 and D.6.3).

C l.5.1.9 Procedure start symbol

It contains the procedure name and the formal parameters within round brackets (see Recommenda
tion Z.103, § 2.2 and U.G. §§ D.4.3 and D.6.3).

C l.5.1.10 Return symbol

It is a circle with a cross inside (see Recommendation Z.103, § 2.2 and U.G. §§ D.4.3 and D.6.3).

42 Fascicle VI.11 - Rec. Z.100 to Z.104 - Annex Cl

C 1.5.1.11 Macro inlet symbol

It contains the macro name (see Recommendation Z.103, § 4.2 and U.G. §§ D.4.3 and D.6.3).

C l.5.1.12 Macro outlet symbol

It is a circle with a bar inside (see Recommendation Z.103, § 4.2 and U.G. §§ D.4.3 and D.6.3).

o

C l.5.1.13 Create symbol

It contains the process name and the actual parameters within brackets (see Recommendation Z.101,
§ 3.3.1 and U.G. §§ D.4.3 and D.6.3).

C l.5.1.14 Continuous signal symbol

It contains the condition text and then the keyword PRIORITY followed by the priority number
associated (see Recommendation Z.103, § 3.3.3 and U.G. §§ D.4).

\ , ■/

< >

C l.5.1.15 Enabling condition symbol

It contains the condition text (see U.G. §§ D.4).

Z.___

<

___i

>

C l.5.1.16 Alternative symbol

It contains the alternative text (see Recommendation Z.103, § 5.2 and U.G. § D.4).

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex Cl 43

C l.5.1.17 Join or connector symbol

It contains the join name (see Recommendation Z.101, § 3.3.1 and U.G. § D.4).

can-74040

C l.5.1.18 Nextstate symbol

It contains the state name or a hyphen (see Recommendation Z.101, § 3.3.1 and U.G. § D.4).

CCITT-74040

C l.5.1.19 Stop symbol

It is a cross (see Recommendation Z.101, § 3.3.1 and U.G. § D.4).

/ x CCITT-74040

C l.5.2 Rules

— A state has to be connected with one or more input symbols or saves symbols (any connection with
other symbols is wrong).

— A call procedure node can follow any node which is neither a state node, a stop node nor a return
node.

— A call node can be followed by any node except a start node, a procedure start node, an input node,
a return node or a save node.

— Enabling conditions may be attached to any input symbols.

— A continuous signal is attached to a flowline from a state symbol but without an input symbol.

— The macro call symbol may be inserted in any diagram (process diagram, BID, state overview
diagram), and in any place of the diagram. It can have one or more inlets. In the case where more
inlets are present, a label should be associated to each inlet. It can have none, one or more outlets; in
the latter case a label should be associated to each outlet. Inlets are represented with arrows pointing
to the macro symbol; outlets are represented with arrows outgoing from the macro symbol The macro
symbol inlets/outlets are connected to other symbols through flowlines of appropriate type, according
to their meaning.

— Neither the stop symbol nor the return symbol of a procedure and of a macro are followed by any
symbol.

— The create symbol can be put where there can be a task.

— The alternative symbol can be inserted directly in a transition only if the alternative behaviours do not
include states and if they terminate at some point.

— A solid flow line may be broken by a pair of associated connectors, with the flow assumed to be from
the out-connector to its associated in-connector (join symbol).

— Where two or more symbols are followed by a single symbol the flow lines leading to that symbol
converge. This convergence may appear as one flow line flowing into another or more than one
out-connector associated with a single in-connector or as separate flow lines entering the same symbol.

44 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex Cl

Example: convergence

CCITT-74040

— An out-connector is not followed by any other symbol, and no flow line starts from it.

— Where a symbol is followed by two or more other symbols a flow line leading from that symbol may
diverge into two or more flow lines.

Example: divergence

CCITT-74040

— Arrowheads are required whenever two flowlines converge and whenever a flow line enters an
out-connector or a state symbol. Arrowheads are prohibited on flow lines entering input symbols.

— The connect symbol is connected to a symbol or a solid flow line.

C l.5.3 Conventions

— All the symbols of the same type shall preferably be of the same size within any one diagram.
— The preferred orientation of the symbols is horizontal and the preferred ratio of symbols is 2:1.

C l.5.4 General symbols

C l.5.4.1 Text extension symbol

It can be attached to all SD L /G R symbols. The text contained in this symbol is to be regarded as
contained in the symbol to which the text extension symbol is attached.

A ny GR < T ex t th at is associa ted
sym bol w ith th e GR sym b ol >

CCITT-74040

C l.5.4.2 Comment symbol

The comment symbol contains the comment text.

 1 < co m m en t te x t >

CCITT-74040

C l.5.4.3 Macro, inlet and outlet symbols

The macro symbol is the reference to the macro definition. The inlets to and the outlets from the macro
are represented by flow lines leading to and from the symbol. Labels may be optionally attached to the flow lines.
The macro symbol contains the name of the macro definition.

j < Inlet label >

' «---------------< Inlet label >

 *•< O utlet label >

CCITT-74040

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Amfex Cl 45

This diagram represents the sequence of states in the process. It is possible to see which states a certain
state can be reached from (see U.G. §§ D.4.2 and D.4.3).

C l.6.1 Symbols

C 1.6.1.1 State symbol

In this diagram the state symbol is a circle that contains the state name. (See U.G. §§ D.4.2 and D.4.3.)

C l.6.2 Rules

— The states are connected by arcs. The input signal names can be optionally written on the arcs.

C l.7 General conventions

In the graphic syntax there are some drawing conventions valid for all the types of diagrams:
— the aspect ratio and size of symbols are variable at the user’s discretion;
— symbol boundaries must not overlay or cross. An exception to this rule applies for the channel and

signal flow symbols which may cross each other. There is no logical relationship between channel or
signal flow symbols which do cross.

C l.8 Allowable connections o f symbols by flowline in an SD L /G R process diagram

C l.6 State overview diagram

C om m ence

46 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex Cl

C l.9 Examples

C l.9.1 Block interaction diagram

E nvironm ent

C l.9.2 Block interaction diagram

CCITT-73860

C l.9.3 Channel sub-structure diagram

Channel substructure diagram for channel C

Block A Block B
C[1] c 3 [h] C[1]

CCITT 738SO

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex C l

C l.9.4 Block tree

C l.9.5 Process tree

B lo c k B1 id

/ \
p

\ /
- ~ [B lo c k B

/ \

(P1] P2
\ /

B lo c B 21 } - f

] - - { B lo ck B2

j— [B lo c B 22
/ \ / \

P21 P22
\ ... / V /

Another representation of the same process tree (representation useful when the process tree is large.

48 Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex Cl

ANNEX C2

(to Recommendations Z.100 to Z.104)

SD L/PR summary

C2.1 Syntax

Syntax diagrams

SYSTEM DEFINITION

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2 49

BLOCK DEFINITION

- < BLOCK > Block
nam e

-----p end “

signal
de fin ition

process
de fin ition

procedure
de fin ition

data
d e fin ition

b lock
su b s tru c tu re
de fin ition

e n d b l o c k) -
Block
nam e o

CCITT - 76 460

Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex C2

BLOCK SUBSTRUCTURE DEFINITION

ENDSUBSTRUCTURE \ Block y*7
ident

CCITT - 7 6 470

CHANNEL SPLITTING

SPLIT) — >
Channel
ident

— » (INTO y channel
ident T 0

O
SUBBLOCK SPECIFICATION

<
SUBBLOCKSD - 0

Subblock
ident o

o

Fascicle V I.ll - Rec. Z.100 to Z.104 — Annex C2 51

CHANNEL SPECIFICATION

CHANNELS) ------ (T) -
Channel
ident o

o

SIGNAL SPECIFICATION

< signals y ~ o 7fT->
Signal
ident

o

o

PROCESS SUBSTRUCTURE DEFINITION

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex C2

CHANNEL DEFINITION

VARIABLE LIST

Variable
ident

o

SIGNAL LIST

Signal
ident

o

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

SIGNAL DEFINITION

SIGNAL) -----7T-*

TYPE LIST

signal type
listname

o

Type
ident

o

<d

CHANNEL SUBSTRUCTURE DEFINITION

54 Fascicle V I.ll — Rec. Z.100 to Z.104 - Annex C2

INCOMING-OUTGOING CHANNELS

BLOCK SPECIFICATION

 < BLOCKS) K l >
Block
ident

o

o

CCITT - 77 4 2 0

PROCESS DEFINITION

 » (p r o c e s s ')—nprocess
nam e

num ber o f
instances

end

fo rm a l
pa ram e te rs

valid inpu t
signal set

variab le
de fin ition

viewed
de fin ition

data
d e fin ition

im ported
de fin ition

procedure
de fin ition

process
body

process
su b s tru c tu re
de fin ition

ENDPROCESS > f /process
nam e

CCITT - 7 (6 0 1

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex C2 55

VALID INPUT SIGNAL SET

" K D
Signal
ident

o

PROCEDURE DEFINITION

PROCEDURE BODY

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex C2

PROCEDURE VARIABLE DEFINITION

 O -

Variable
N.

Type
name ident

O

O

PROCESS BODY

STATE BODY

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

CONTINUOUS SIGNAL

ENABLING CONDITION

STATE LIST

58 Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

INPUT LIST

— < D -

Signal
ident * © ■

Variable
ident

o

o

< > >

SAVE LIST

« • >

signal
ident

o

VARIABLE DEFINITION

h >(r e v e a le d) - ^

-^EXPORTED

*""9'
Variable Type

name ident

o

o

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

VIEW DEFINITION

—̂ VIEWED y Variable Type N. Process
ident

7
ident

"mmf
ident

o o
O ^

IMPORT DEFINITION

NUMBER OF INSTANCES

o decim al
in teger J o

decim al
in teger o

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex C2

PROCEDURE FORMAL PARAMETERS

■ * (f ?a r) — t — L p >
variable type
ident ident

O

o

o

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

TRANSITION STRING

ACTION STATEMENT

CCITT - 7 (7 9 1

ACTION

PROCEDURE CALL

 ^ CALL)—>procedure actua l
ident param eters

action
sta tem en t

CCITT - 7 (7 7 1

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

TASK
X J *

-» (TASK) — i - * - * sta tem en t

Inform al
text

o
STATEMENT

INFORMAL TEXT

Name
string

C haracte r
s tring

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex C2 63

TERMINATOR STATEMENT

TERMINATOR

-»(n e x t s t a t e)-

- < 5 i 2 L >

— » (r e t u r n) -

o

* :
State
ident

— ^ j o i n y ~ — » label

* >

OUTPUT

END

com m ent

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

CREATE REQUEST

- ^ (c r e a t e) -
Process
ident

actua l---- J
param ete rs

ACTUAL PARAMETERS

<<> expression

O

EXPRESSION

OPERAND 0

Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex C2

Fascicle
VI. 11

-
Rec.

Z.100
to

Z.104
-

Annex
C

2

Os
Os

OPERAND 4 OPERAND 1

OPERAND 3

OPERAND 2

OPERAND 5

Prim ary

CCHT - 76910

PRIMARY

Variable
Ident

Synonym
Ident

Literal

Conditional
Expression

* Operation

<D

Expression

Expression

o

<D

ASSIGNMENT STATEMENT

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

RESET STATEMENT

< E h 5 — < D
\ T im er /) ident \<I>

SET STATEMENT

K SET expression K D l K D
Tim er

EXPORT STATEMENT

Export
opera to r

Expression

EXPORT OPERATOR

— < i >
Variable

; ■>ident < D

68 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex C2

DECISION

OPTION

QUESTION

O H Expression H O
In fo rm al
tex t

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

ANSWER

< D
Value

/ --- "" s
set

In fo rm a l
S

te x t

< 2 >

VIEWING OPERATOR

< ® K 9
Variable

/ * ident
\ PId
/ > expression — < 7)—»

IMPORT OPERATOR

—^ IMPORT) — = > (7)------
Voriable
ident - < v .s > PId

)— * expression - O - *

DATA DEFINITION

SYNONYM DEFINITION

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

INHERITANCE RULE

- (in h e r it s) - * Parent type
Ident

TYPE PROPERTIES

< " T >

<z> O perator
name

Infix
ope ra to r

o

<D

Literals V Operators L> Axioms * >

CONSTANTS

^ COT I - 77OS0— (c o n s t a n t s)- Value set

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

VALUE SET

LITERALS

— ^LITER ALS y

Predefined
Literal

Literal
name

OPERATORS o
— *(OPERATORs)-

OPERATOR

opera tor

O perator
name

Infix
opera to r

o

o

o

Operator
Type list

- * © - L Ty p e
Ident

OPERATOR TYPE LIST
- (o r d e r in g !)-

Type
Ident

o

Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex C2

INFIX OPERATOR

— < = > *GE>
i - o -

- < X O R > -

—i^A N D

^ G D - - O —

- K 3 - - o -

- ^ M C © —

^ 0 —
- ^ R E M ^) —

- ^ N O T > J

- ^ - 1
------------- >------- CCITT - 77 0*1

<D

AXIOMS

- < AXIOMS \ n Axiom "w) ' List

Boolean
expression

QUANTIFICATION

—»(FOR ALL> -f >
Variable
name

o

Type \
Ident

CCITT - 7 7 0 * 0

Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex C2 73

DATA TYPE GENERATOR

< END
Generator \
name

--------------------- 7

can - 77100

GENERATOR INSTANTIATION

Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex C2

CONDITIONAL EXPRESSION

LITERAL PREDEFINED LITERAL

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex C2

CONSTANT

Literal

Synonym
Ident

C onstant
Expression

CCITT - 77140

LABEL

S .
Label

"" — J string
C C in - 7 7 W 0

COMMENT

COMMENT>\ N
C haracter

/ > string ... ?
C C in -7 7 1 S 0

IDENT

Qualifier t ^ Name
can-77i7o

NAME
Name C haracter \t ^s
string string

. ------- ^
C C in - 7 7 1 1 0

Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex C2

j
1) All the punctuation marks (e.g. , . ; ’ : ! = ()) and operation symbols (e.g. + , — < , > . . .) are

lexical units which may take the place of spaces.

2) Two lexical units must be separated by one or more spaces.

3) Keywords belong to the same lexical category as namestring, and they are reserved.

4) Outside lexical units several spaces have the same “meaning” as one space.

5) Tabulation characters (VT, HT, CR, BS . . .) may be considered as spaces.

6) All letters and nationals are always interpreted as if uppercase, except within a charstring.

7) Wherever spaces may occur, comments may be inserted delimited by '/* ' and these comments
have the same meaning as one space. The comment must not contain the special sequence

C2.2 Lexical rules

LABEL STRING

CHARACTER STRING

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex C2 77

NAME STRING

QUALIFIER

s
S tructu ra l

S.
Entity type

name ? name
------------------------^

ccm-mio

STRUCTURAL NAME

< SYSTEM >

BLOCK >

PROCESS >

SIGNAL >

 ^ CHANNEL y
— ^ p r o c e d u r e } -

TYPE >

System
name

Block
name

Process
name

Signal
name

Channel
name

Procedure
name

Type
name

<z>
78 Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex C2

ENTITY TYPE NAME

<
K

SYSTEM

BLOCK

>
>

PROCEDURE

- c PROCESS y

SIGNAL y
 CHANNEL \

>
>
>
>

TASK

DECISION

START

STOP

CREATE
REQUEST

< RETURN >
PROCEDURE

START

- <
CALL >

—< var|able y

S DATA \
\ ty p e J

-^OPERATOR y
>VALUE

DECIMAL INTEGER

Decimal
d ig it

REAL LITERAL

BOOLEAN LITERAL

TRUE) — ?|C----->
< f a l s e > J

Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex C2

DECIMAL DIGIT

LETTER

— *

(^ < ^ (c) (d) (e) (f) (^) (t) (l) (f) (f c) (l) (m)

CCITT-77280

SPECIAL

CCITT - 7 7 2 8 0

NATIONAL

CCITT - 77JOO

N o te - The above referenced positions refer to the positions in the CCITT International
Alphabet No. 5 reserved for national use.

Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex C2

PREDEFINED TYPE NAME

PREDEFINED DATA TYPE NAMES

< INTEGER

- <

- <

- <

- <

- <

- <

K
- <

REAL

NATURAL

BOOLEAN

CHARACTER

PID

DURATION

TIME

>
X
X
X
X
X
X
X

TIMER

- <
CHARSTRING

PREDEFINED GENERATOR NAMES

< ARRAY

STRING

POWERSET

>
>
y

Fascicle VI. 11 - Rec. Z.100 to Z.104 — Annex C2 81

C2.3 Reserved words used in PR

SYSTEM

ENDSYSTEM

BLOCK

ENDBLOCK

SUBSTRUCTURE

ENDSUBSTRUCTURE

SPLIT

INTO

SUBBLOCKS

CHANNELS

SIGNALS

IN

CHA N N EL

FROM

ENV

TO

W ITH

IMPORTEDVALUES

SIGNAL

IN CO M IN G

OUTGOING

BLOCKS

DECISION

ELSE

EN D D ECISIO N

ALTERNATIVE

END ALTERNATIVE

VIEW

EXPORT

IM PORT

CREATEREQUEST

CALL

DATATYPE

PROCESS

ENDPROCESS

PROCEDURE

ENDPROCEDURE

DCL

START

STATE

INPUT

SAVE

PROVIDED

PRIORITY

REVEALED

EXPORTED

VIEWED

IM PORTED

FPAR

EXPO RTED /IM PO RTED

IN /O U T

IN

TASK

NEXTSTATE

JOIN

STOP

RETURN

OUTPUT

CREATE

COM M ENT

RESET

SET

EXPORT

PROCEDURESTART

VARIABLE

OPERATOR

VALUE

Note 1 — The macro call can be put in any diagram using the syntax:

MACRO macro name.

The macro expansion is a piece of an SD L /PR program starting with:

MACRO EXPANSION macro name;

and ending with:

ENDM ACRO macro name.

In the last statement, the macro name is not mandatory.

Note 2 — In the block definition diagram, the following rule is valid:
— if there is no block substructure definition, there must be at least one process definition (that can be

explicitly defined in another module),
— if there is the block substructure definition, there is a process substructure definition for each of the

process definitions contained in the block definition.

82 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex C2

ANNEX D

(to Recommendations Z.100 to Z.104)

SDL User Guidelines

The present User Guidelines can be divided into three parts.

The first part consists o f the table of contents (D.O), the preface (D .l), the introduction (D.2) and the
application areas of SDL (D.3) giving information of SDL, contents and application areas.

The second part consists o f a general explanation and the basic concepts of SDL (D.4) and an SDL
structuring (D.5), giving information on how, and by what concepts, systems can be modelled in SDL. This is a
general part which does not give details o f the concrete forms of SDL.

The last part consists o f guidelines for representing systems using SD L /G R (D.6), guidelines for
representing systems using SD L /PR (D.7), mappings between SD L/G R, SD L/PR and CHILL (D.8) and
application examples of SDL (D.9) giving guidance on the use of the two existing forms of SDL, i.e. SD L /G R
and SD L/PR. Finally a section on tools for SDL is provided (D.10).

TABLE OF CONTENTS

Page

D .l P reface.. 87

D.2 Introduction 87

D.2.1 G e n e r a l .. 87

D.2.2 Syntax forms of S D L ... 88

D.2.3 SDL as based on an Extended Finite-State Machine model ... 88

D.3 Applicability of S D L ... 88

D.4 General explanation and concepts of SDL ... 89

D.4.1 Overview of S D L ... 89

D.4.2 Structuring SDL s y s te m s .. 89

D.4.2.1 G e n e ra l .. 89
D.4.2.2 Criteria for partition ing .. 91
D.4.2.3 Block p a r titio n in g .. 91
D.4.2.4 Process p a rtitio n in g .. 93
D.4.2.5 Channel p a r t i t io n in g ... 94
D.4.2.6 Mutual influence of the partitioning on blocks, processes and channels 95
D.4.2.6.1 Signals .. 95
D.4.2.6.2 S t a t e s ... 97
D.4.2.6.3 D ec is io n s ... 97
D.4.2.6.4 T a s k s 97
D.4.2.6.5 D a ta .. 98
D.4.2.7 System representation in case of p a r ti t io n in g .. 98

D.4.3 Concepts of SDL .. 102

D.4.3.1 System ; ... 102
D.4.3.2 B l o c k ... 102
D.4.3.3 C h a n n e l.. 102

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex D 83

D.4.3.4 P r o c e s s .. 102

D.4.3.4.1 S t a t e s ... 103
D.4.3.4.2 I n p u ts 107

D.4.3.4.3 Saves ... 115
D.4.3.4.4 O u tp u ts .. 118
D.4.3.4.5 Enabling condition and continuous s ig n a l s ... 119

D.4.3.4.6 T a s k .. 120
D.4.3.4.7 D e c is io n s ... 123
D.4.3.5 P ro c e d u re s .. 125
D.4.3.6 Expressing time in S D L ... 126
D.4.3.6.1 Timers and tim e -o u ts 126

D.4.3.6.2 Specifying time consumed by a c tio n s ... 127
D.4.3.6.3 Signal transfer t i m e .. 127

D.4.4 Text associated with SDL c o n s tru c ts 128

D.4.4.1 Formal t e x t .. 128
D.4.4.1.1 N a m e ... 128

D.4.4.1.2 Formal parameters .. 129
D.4.4.1.3 Actual p a ra m e te rs 129
D.4.4.1.4 Statements and expressions.. 129
D.4.4.1.5 Definitions and d ec la ra tio n s... 129
D.4.4.2 Informal t e x t .. 129
D.4.4.3 Comments .. 130

D.4.5 Undefined situations.. 130

D.4.5.1 G e n e ra l .. 130

D.4.5.2 Examples of undefined SDL situa tions.. 131

D.4.6 Guidelines on primitive data in S D L ... 131

D.4.6.1 G e n e ra l .. 131
D.4.6.2 Data handling inside a p r o c e s s .. 133
D.4.6.3 Data handling between p ro c e sse s ... 134
D.4.6.3.1 Reading of shared v a lu es ... 134
D.4.6.3.2 Reading of exportable v a l u e s .. 134
D.4.6.3.3 Example of differences between use of shared and exportable v a lu e s 134

D.4.6.3.4 Shared values... 134

D.4.7 Guidelines on advanced data in S D L ... 139

D.4.7.1 Definition of data types ... 139
D.4.7.1.1 G e n e ra l .. 139
D.4.7.1.2 Introduction to abstract types .. 139
D.4.7.1.3 Data d e fin ition .. 140
D.4.7.2 Examples of data d e f in it io n 141
D.4.7.2.1 Example 1: Definition of a subscriber m e t e r 141
D.4.7.2.2 Example 2: Definition of a generic type “bidimensional array” ... 141
D.4.7.2.3 Example 3: Definition of a type b i t .. 142
D.4.7.2.4 Example 4: Definition of a type byte 143
D.4.7.2.5 Example 5: A simplified definition of a byte t y p e .. 144
D.4.7.2.6 Example 6: Definition of a su b sc r ib e r 144
D.4.7.2.7-8 Examples 7 and 8: A more detailed definition of a su b sc r ib e r .. 145
D.4.7.2.9 Example 9: A procedure for constructing axioms for a N E W T Y P E 145

Page

84 Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex D

D.5

D.5.1

D.5.2

D.5.3

D.5.4

D.5.5

D.5.6

D.5.7

D.6

D.6.1

D.6.2

D.6.3

What is a d o c u m e n t? .. 146

Introduction ... 146

Why do we need d o c u m e n ts ? .. 146

Document s t ru c tu re ... 147

Referencing m echanism ... 147

Types of d o cu m en ts ... 147

Mixing of GR and P R ... 148

Guidelines for representing systems using S D L /G R ... 148

Why graphical s y n ta x ? ... 148

SD L/G R diagrams ... 148

D.6.2.1 General gu idelines.. 148
D.6.2.2 Referencing... 149
D.6.2.3 T e m p la te .. 149

Using the S D L /G R ... 149

D.6.3.1 Expressing structure in S D L /G R .. 150
D.6.3.1.1 Block interaction diagram 150
D.6.3.1.2 Block tree diagram ... 150
D.6.3.1.3 Process tree diagram .. 154
D.6.3.1.4 Channel sub-structure diagram ... 155
D.6.3.2 Signal d e fin itio n ... 155
D.6.3.3 Data d e f in itio n s ... 156
D.6.3.3.1 Data type d e f in itio n s .. 156
D.6.3.3.2 Variable d e f in itio n s ... 156
D.6.3.4 Macro definition d iag ram s.. 156
D.6.3.5 Procedure diagram 157
D.6.3.6 Process d ia g ra m ... 158
D.6.3.6.1 Versions of SD L /G R process d ia g r a m s ... 158
D.6.3.6.2 Symbols and connection r u le s .. 160
D.6.3.6.3 Well structured d ia g ra m s... 160
D.6.3.6.4 Creation of p ro cesse s .. 167
D.6.3.6.5 S t a t e s .. 168
D.6.3.6.6 I n p u ts ... 170
D.6.3.6.7 Saves ... 170
D.6.3.6.8 O u tp u ts .. 170
D.6.3.6.9 Enabling c o n d i t io n .. 173
D.6.3.6.10 Continuous s ig n a l ... 173
D.6.3.6.11 T a s k .. 173
D.6.3.6.12 D e c is io n s ... 174
D.6.3.6.13 M a c ro ... 175
D.6.3.6.14 P ro c e d u re s .. 176
D.6.3.6.15 O p tio n ... 177
D.6.3.6.16 C o n n e c to rs ... 178
D.6.3.6.17 Divergence and convergence... 179
D.6.3.6.18 C o m m e n ts ... 179
D.6.3.6.19 Text extensions... 181
D.6.3.6.20 D a ta 182
D.6.3.6.21 Shorthand n o ta tio n s .. 182
D.6.3.6.22 State pictures 184
D.6.3.6.23 Auxiliary documents ... 187

Page

D ocum entation ... 146

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 85

D.7 Guidelines for representing systems using SD L/PR .. 190

D.7.1 Why P R ? .. 191

D.7.1.1 How close to a program is SD L/PR ? ... 191

D.7.2 Metalanguage to describe the SD L/PR syntax: syntax diagrams ... 192

D.7.3 Using P R .. 192

D.7.3.1 Expressing structure in P R ... 195
D.7.3.2 Signal d e fin itio n ... 203
D.7.3.3 Channel defin ition ... 203
D.7.3.4 Data defin ition ... 204
D.7.3.5 Macro defin itio n .. 209
D.7.3.6 Procedure defin ition .. 209
D.7.3.7 Process d e f in i t io n ... 210
D.7.3.7.1 Creation of p ro c e sse s ... 211
D.7.3.7.2 States and multiple appearances.. 212
D.7.3.7.3 PR statement and use of d a t a ... 214
D.7.3.7.4 State pictures . .. 221
D.7.3.7.5 T im e .. 221
D.7.3.7.6 Enabling c o n d i t io n .. 222
D.7.3.7.7 Continuous s i g n a l s 222
D.7.3.7.8 MACRO c a l l .. 224
D.7.3.7.9 PROCEDURE c a l l .. 224
D.7.3.7.10 Labels (c o n n e c to rs) .. 224
D.7.3.7.11 Statement reachability ... 225
D.7.3.7.12 Use of divergence and convergence... 226
D.7.3.7.13 C o m m e n ts ... 226
D.7.3.7.14 Shorthand n o ta tio n s ... 227

D.8 M a p p in g s ... 229

D.8.1 M apping between SDL and CHILL .. 229

D.8.2 Mapping between GR and P R ... 232

D.9 Application examples of S D L ... 233
D.9.1 Introduction .. 233

D.9.2 Telephone switching s y s t e m .. 234

D.9.2.1 SD L /G R syntactical form in the two v e r s io n s ... 234

D.9.2.2 SD L/PR syntactical form ... 243

D.9.3 Data user part of common channel signalling system ... 246

D.9.4 Class 0 Transport P ro to c o l... 256

D.9.4.1 Overview 256
D.9.4.2 SDL specification of the sy s tem .. 256
D.9.4.3 Operations upon data i t e m s .. 260

D.10 Tools for S D L ... 268

D .l 0.1 In tro d u c t io n .. 268

D .l0.2 Classes of to o ls ... 268

D .l0.3 Document i n p u t .. 268
D .l0.4 Document verification... 269

D .l0.5 Document rep roduction ... 269

D .l0.6 Document g e n e ra tio n .. 270

D .l0.7 System modelling and analysis ... 270

D .l0.8 Code g e n e ra tio n .. 271

D .l0.9 T ra in in g ... 271

Page

86 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

D.l Preface

The CCITT Specification and Description Language, known as SDL, was first defined by Recommenda
tions Z.101 to Z.103 in 1976 (the Orange Book, Volume VI.4), later extended in Recommendations Z.101 to Z.104
in 1980 (the Yellow Book) and further extended and reorganized into Recommendations Z.100 to Z.104 in 1984
(the Red Book, this fascicle).

It is evident to Study Group XI that user guidelines are needed to facilitate the use of the SDL in
application to a wide range of telecommunications switching systems. The aim of the user guidelines is to assist
users in the understanding of the SDL Recommendations and in their application to various areas. It is difficult to
produce a comprehensive set o f user guidelines because the area of application of SDL itself is still evolving.
Consequently, the user guidelines in this fascicle will themselves require improvement and extension during the
following study period 1984-1988, and contributions to the user guidelines based upon practical experience with
SDL will be welcomed by the CCITT.

It is evident now, in 1984, that the SDL is being used more widely by the CCITT and its member
organizations, and that the range of applications of SDL will continue to increase. These user guidelines are
intended to assist people who are considering or starting to use SDL, by supplementing SDL Recommenda
tions Z.100 to Z.104 with useful advice and helpful examples. It is realized that there will be some overlap
between the user guidelines and the Recommendations; this is believed to be desirable, to make the user guidelines
self-sufficient and readable. Nevertheless, it is the Recommendations which are the leading document.

D.2 Introduction

D.2.1 General

SDL can be used both in specification (to specify the required behaviour of a system) and in description
(to describe the actual behaviour of a system). SDL has been designed to suit the specification and description of
behaviour of telecommunications switching systems, but can also be used in other applications. As a matter of
fact, SDL is well-suited to all systems whose behaviour can be effectively modelled by extended finite-state
machines and where the focus is to be placed especially on interaction aspects.

SDL also can be the base for a methodology of documentation to represent completely a system
specification or description. In this context the meaning of specification and description is related to their use in a
system life cycle. Both define the functional properties of a system in an abstract way. The description will usually
include some design dependent aspects (e.g. error handling) and will be more complete with respect to functional
details. Both should be related to the concrete system design in a consistent manner. Thus both serve as
specifications before the system is implemented and as documentation (descriptions) afterwards.

SDL may be used to represent, at various levels of detail, the functional properties of a system, or a
function or facility, in either specifications or descriptions. The functional properties consist o f some structural
properties (block interaction diagrams) as well as behaviour. By “behaviour” is meant the way of reacting upon
received signals (inputs), i.e. doing actions, e.g. sending signals (outputs), asking questions (decisions) and doing
tasks.

Specifications may be very broad and general when an Administration wishes to explore the possibilities
o f updating a system with new features, new services, new technology, etc., while allowing the supplier to offer a
wide range of design solutions. This type of specification is often not very detailed. The other extreme is a
specification in which an Administration is requesting a replacement or addition to an existing exchange. This
specification would probably have a greater level of detail, because of the very detailed specification of interfaces
necessary.

A specification and a description might be identical. In any case it is preferable in new development that
the design is derived from the specification so that compliance is ensured.

In general, descriptions are written by suppliers in response to a specification (although they can be
written to describe systems that the supplier wishes to sell). A description will usually have more levels of detail
than the specification because of the need to describe the detailed behaviour of the system.

It is to be noted also that SDL provides means of describing a system with various degrees of formality.

First, it is possible to describe a system using the SDL constructs with associated natural language. The
resulting description conveys information only to a reader with knowledge of the context but not to a machine.
Very limited checks can be performed automatically.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 87

Second, it is possible to associate with the SDL constructs formal statements consisting of elements of
defined types and operators on these elements. The properties of these elements are not specified: an example is
“Connect A-B” where A and B are of type subscriber and connect is an operation allowed for that type. The
resulting description conveys information to readers who know the meaning of the operators used. A machine can
understand the description to a certain level and can perform checks on it, but it cannot perform complete checks
nor “implement” the system because the properties of the operators are unknown.

Third, it is possible to also provide all the properties of all the operators. In this latter case the description
is completely formal and a machine can perform all the checks and conceptually implement the systems described.

Depending on the goal, the descriptions can be tailored to the user needs using these different levels of
formalism. Of course, the more formal the description the more cumbersome it is to read by a human being.

D.2.2 Syntax form s o f SD L

SDL as defined by Recommendations Z.100 to Z.104 is a unique language which has two different
syntaxes, both based on the same semantic model. One is called SD L/G R (SDL Graphical Representation), being
based on a set of standardized graphical symbols and rules. The other is called SD L/PR (SDL textual Phrase
Representation), being based on program-like statements. Both represent the same SDL concepts.

D.2.3 SD L as based on an Extended Finite-State Machine model

In the application of SDL, the system to be specified is represented by a number of interconnected
abstract machines. A complete specification requires:

1) the definition of the structure of the system in terms of the machines and their interconnections;

2) the dynamic behaviour of each machine in terms of its interactions with the other machines and the
environment; and

3) the operations on the data associated with the interactions.

The dynamic behaviour is described with the aid of models which define the mechanisms for the operation
of the abstract machines and the communication between machines. The abstract machine used in SDL is an
extension of the deterministic Finite-State Machine (FSM). The FSM has a finite internal state memory and
operates with a discrete and finite set o f inputs and outputs. For each combination of input and state, the memory
defines an output and the next state. Transitions from one state to another are usually regarded as taking zero
time.

A limitation of the FSM is that all information which needs storage must be represented as explicit states.
Although it is possible to represent most systems in this way, it will not always be practical. There may be many
values to remember which are significant for the future sequencing but do not contribute greatly to the overall
understanding of the system. This information should not be a part of the explicit state space as it will clutter the
presentation. For such applications, the FSM may be extended with auxiliary storage and auxiliary operation on
that storage. Address information and sequence numbers are examples of information suitable for storage in
auxiliary memory.

The SDL Recommendations define two auxiliary operations which may be included in transitions of the
Extended Finite-State Machine (EFSM), i.e., decisions and tasks. “Decisions” inspect parameters associated with
inputs and information in auxiliary memory when such information is important for the sequencing of the main
machine. “Tasks” perform functions such as counting, operating on auxiliary memory, and manipulating input
and output parameters.

In SDL, the interactions between the machines are represented by signals, i.e., the EFSM ’s receive signals
as input and generate signals as output. The signals are composed of a unique signal identifier and optionally a
set of parameters. The SDL allows for the possibility of non-zero transition time, and defines a first-in first-out
conceptual queueing mechanism for signals which arrive at a machine while it is executing a transition. Signals are
considered one at a time in order of their arrival.

D.3 Applicability o f SD L

Figure D-l shows a range of possible uses of SDL, in the context of the purchase and supply of
telecommunications switching systems.

88 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex D

In this figure, the rectangles illustrate typical functional groups, whose precise names may vary from
organization to organization, but whose activities would be typical of many Administrations and manufacturers.
Each of the directed lines (flow lines) represents a set of documents passing from one functional group to another;
SDL can be used as part of each of these sets of documents. The figure is intended to be merely illustrative and is
neither definitive nor exhaustive.

The areas of applications are the ones effectively modelled by communicating Extended Finite-State
Machines, e.g. telephone, telex, data switching, signalling systems (e.g. Signalling System No. 7), interworking of
signalling systems and data protocols, user interfaces (MML).

When particularly considering SPC switching systems, examples of functions which can be documented
using SDL are: call processing (e.g. call handling, routing, signalling, metering, etc.), maintenance and fault
treatment (e.g. alarms, automatic fault clearing, system configuration, routine tests, etc.), system control (e.g. over
load control) and man-machine interfaces. Application examples of SDL can be found in § D.9.

Specification of protocols using SDL is dealt with in CCITT X-series Recommendations and auxiliary user
guidelines for application of SDL in this field are annexed to these Recommendations.

D.4 General explanation and concepts o f SD L

This paragraph contains the concepts of SDL without giving details of the concrete forms, i.e. SD L /G R
and SD L/PR. These details are described in §§ D.6 and D.7 respectively.

D.4.1 Overview o f SD L

SDL is developed as a means of representing the functional properties as specified and as implemented in
telecommunication system.

A system specification, or description, comprises two broad categories of information. The first category
comprises the functional specification or functional description. The second category comprises the more general
parameters of the system and details such information as the environmental conditions (temperature limits,
humidity, etc.), transmission limits, exchange grade of service, which are not represented in SDL.

One of the major goals in developing SDL was to allow users to be able to take large systems and break
them down into pieces that are small enough to be easily understood by the users of SDL (both the author and
reader). Thus in SDL each system is composed of blocks. The blocks are connected together by channels which
are used to show the communication path between blocks. These blocks and channels can be further subdivided
into channels and blocks.

At the lowest level (and often at higher levels), blocks contain one or more processes. Processes are the
communicating Extended Finite State Machines that are used to model the dynamic behaviour of the system.
Processes may also be large and complex. Procedures allow one to further reduce a process into smaller
manageable pieces.

D.4.2 Structuring SD L systems

D.4.2.1 General

This chapter will discuss some SDL constructs that allow different structures of a system, so that starting
from a broad overview of the system structure, more and more details about the structure can be provided
showing, for each part, its internal structure. The minimum structure of a system in SDL is what is described in
Recommendation Z.101, i.e. a system consists of a set of blocks connected with channels — and the blocks
contain processes (see Figure D-2).

For systems not needing further partitioning the concepts of Z.102 are not necessary. Concepts for
partitioning in several levels of detail are covered by Recommendation Z.102.

Looking globally at the internal structure of all the parts of a system we see different, more or less
detailed, structures of the same system. We say that the system structure is represented at a different level of
details.

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D 89

O ther A d m in istra tion M anufacturer
b o d ie s (C ustom er) (Supplier)

(---------------------A (------------------------------------ ^ ^

CCITT-74 680

A1 A n im p le m e n ta tio n -in d e p e n d e n t and n e tw o r k -in d e p e n d e n t sp e c if ic a tio n o f a facility or fea tu re
A 2 A n im p le m e n ta tio n -in d e p e n d e n t but n e tw o r k -d e p e n d e n t s y s t e m s p e c if ic a tio n , including a d escr ip t io n o f th e s y s te m

en v iro n m en t
A 3 CCITT R e c o m m e n d a tio n s and g u id e lin e s
A 4 C on trib u tion s to th e s y s t e m s p e c if ic a tio n , s h o w in g th e n e tw o r k ad m in istra tion and o p era tio n a l r eq u irem en ts
A 5 O ther R e c o m m e n d a tio n s th a t are relevan t
A 6 D escr ip tio n o f ah im p lem en ta tio n p ro p o sa l
A 7 A p ro ject sp e c if ic a tio n
A 8 A d e ta iled d e s ig n sp e c if ic a tio n
A 9 A c o m p le te s y s te m d e scr ip tio n
A 1 0 A p p rop ria te s y s t e m and e n v iro n m e n t d escr ip t io n d o c u m en ta tio n for s y s t e m sim u lation
A 1 1 A p p rop ria te s y s t e m and e n v iro n m e n t d escr ip t io n d o c u m en ta tio n for s y s t e m te s t in g
A 1 2 Insta llation and o p era tio n m a n u a ls
A 1 3 C on tr ib u tion s to th e s y s t e m sp e c if ic a tio n from sp e c ia liz e d fu n ctio n a l g r o u p s w ith in th e A d m in istra tion

N ote 1 — Iteration is possible at all levels.
N ote 2 — In some circumstances, SDL documentation that is here shown as being internal to one organization, e.g. A l, A7, A8,
could be supplied to another organization.

FIGURE D-l

General scenario for the use of the SDL

90 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D

B1

Q-
N

)

/ \

P2
\ /

B2
/ \

P3
\

CCITT-74691

FIG U R E D -2

Exam ple o f minimal system structure

Note that the internal structure of a system part, provides more details about the structure, not necessarily
more details about the behaviour of the system. Conceptually, it is possible to distinguish the aspect of a more
detailed representation of the behaviour (e.g. the handling of a new signal) from the aspect of a more detailed
structure (e.g. covering both structure of parts and of system behaviour) but in practice the two aspects are usually
merged together, so that with new details about the system structure we also provide new details on the system
behaviour. For clarity, this chapter will address the aspect of structuring only.

D.4.2.2 Criteria fo r partitioning

The technique of starting with a high level view of a system representation and breaking it down into
manageable pieces is called partitioning. This process of partitioning adds structure to a system.

The criteria leading to the partition of the system representation are several, including:

a) to define blocks or processes of intellectually manageable size;

b) to create a correspondance with actual software an d /o r hardware divisions;
c) to follow natural functional subdivisions;

d) to minimize interaction between blocks;

e) to reuse already existing representations (e.g. a signalling system);

f) to map a description with a certain specification.

The actual criteria adopted may depend on whether a specification or a description is being considered
and on the degree of detail required.

Each block can be further partitioned using the same or different criteria.

Since the relationship between levels will depend on the chosen partitioning criteria, it is im portant to state
clearly which criteria have been chosen in order to allow easy comprehension of the representation.

The partitioning criteria depend upon the user but some limitations exist to ensure a correct representation
in SDL. These will be discussed in the following paragraphs.

D.4.2.3 Block partitioning

A block can be partitioned into a set of blocks and channels in almost the same way that a system is
partitioned into blocks and channels (see Figure D-3).

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 91

In the partitioning process there are some important rules to remember:

1) The subchannels (e.g. C l.l and C1.2 in Figure D-3) connected to an incoming channel (e.g. C l) must
contain no new signals in their signal lists and their signal lists must contain all the signals in the
original channel. Thus for the example shown in Figure D-3, L l.l and LI.2 contain all the signals in
LI. In addition, no signal contained in L l.l can appear in LI.2.

2) The subchannels (e.g. C3.1 and C3.2) connected to an outgoing channel (e.g. C3) must contain no new
signal names in their signal lists and their signal lists must contain all the signal names in the original
channel. Thus L3.1 and L3.2 contain all the signal names in L3. Unlike the subchannels connected to
an incoming channel, L3.1 and L3.2 may contain the same signal names.

3) If the new channels (e.g. C4, C5 and C6) have signal names in their signal lists that were not known
to the original block, these new signals have to be defined in the internal part definition of the
original block (B).

4) If the original block contains processes, three options are available. First, each process can be
assigned directly to one of the new subblocks. Second the original processes can be discarded and be
replaced by new processes in the subblocks. Third, they can be partitioned using the partitioning rules
for process partitioning (see § D.4.2.4).

C1 [L1]

a) Original block interaction diagram

CCITT-74701

c) Block tree diagram

FIG U R E D-3

Block partitioning

Fascicle VI.11 - Rec. Z.100 to Z.104 — Annex D

5) Data definitions in the parent block are available to its subblocks, so that each of them can use a data
type defined in the parent block without having to redefine it.

6) If a type defined in the parent block is redefined in a subblock, the new definition applies to the
defining subblock while the old one holds for the other subblocks. A redefinition made just for the
sake of characterizing a subblock should be discouraged, because it can be overlooked by a reader
who will assume the old definition as valid. In some cases of redefinition should be made, particularly
when a refinement in the behaviour is involved. Care should be taken to emphasize this redefinition
by appropriate annotations.

D.4.2.4 Process partitioning

Processes are the means o f representing (part of) the functional behaviour o f a block.

Looking at this behaviour it may be considered necessary to partition it into sub-behaviours. This is
equivalent to say that we partition a process into sub-processes.

The resulting sub-processes should represent (all together) the same behaviour as the behaviour of the
parent process. Each signal received by the parent process should be received by one and only one sub-process,
and each signal generated by the parent process should be generated by at least one of the sub-processes.

The partition of a process may be a consequence of the partitioning of the block containing the parent
process or may be independent o f the partitioning of any other construct, i.e. can be made on its own.

D.4.2.4.1 A process can be partitioned as a consequence of a block partitioning. First of all it should be clear
that the partitioning of a block does not imply necessarily the partitioning of the process(es) representing its
behaviour. It may be the case that a process represents the behaviour (or part of the behaviour) o f one of the
subblocks. In this case the process does not need to be partitioned (see Figure D-4).

FIGURE D-4

Partition of a block with no partition
induced on the processes o f the block

In cases where the behaviour represented by the process corresponds to the behaviour of two or more
subblocks then the process must be partitioned into as many processes as required by the rule that each process
can represent the behaviour of (part of) a single block only.

If the block has been partitioned into “n” subblocks each of the processes associated to that block can be
partitioned into “m” subprocesses where “m” can be any number > 0 independently of “n”. In addition it should
be noted that each of the processes associated to the block is partitioned independently of the others, so that the
partition of one may result into 2 subprocesses, another may result into 4 subprocesses and a third one into one
subprocess.

If a process is partitioned into one subprocess only, from the structure viewpoint, the subprocess is equal
to the parent process.

D.4.2.4.2 A process can be partitioned independently of the blocks to which it is associated. In this case the
sub-processes resulting from the partitioning of the parent process replace it in the same block to which it was
associated.

D.4.2.4.3 The reasons behind the partitioning of the process in parallel with the partitioning of the block can be
to represent the behaviour of the various subblocks. The reason for partitioning a process independently of the
block can be to simplify the representation by isolating particular aspects of the behaviour.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 93

Note that if these aspects are considered as subbehaviours (such as frequency validation or digit
recognition) it would be much better to represent them by means of procedures and macros.

On the contrary if the behaviours isolated are “main” behaviours all having the same dignity (importance)
they are better represented by subprocesses. In the former case the subbehaviours may handle the same input
signals of the main process whilst in the latter case each subprocess has a set of input signals that is disjointed
from the sets of input signals of the other subprocesses.

Examples of this latter case may be the partitioning of the “call handling process” into the “subscriber
handling subprocess” the “routing subprocess” and the “junction handling subprocess” (see Figure D-5).

In partitioning a process, there are some important rules to remember:

1) The partitioning of a process induces a partitioning on the set of the incoming signals, so that a
certain subset of signals will be received by a certain subprocess, another subset by another subprocess
and so on. The subsets are disjointed and globally contain the signal set received by the parent
process. They may also contain other signals produced by the partitioning; these signals are used to
transfer information between the subprocesses.

2) Data definitions by the parent process are usable by the sub-processes without having to be redefined.
If a data type defined in the parent process is redefined in a sub-process, the new definition applies to
the defining sub-process only, and the old one holds for the other sub-processes.

3) All variables have to be redefined in the sub-processes. Procedures defined in the parent process or in
the block associated to the parent process are visible to the sub-processes.

4) For each process definition, it is possible to have a variable number of process instances. When a
process is partitioned into subprocesses, a create request for the process causes the creation of one
instance of each of the subprocesses listed in the process substructure definition. Each of these
subprocesses is a process and possesses all the characteristics of any SDL process.

CCITT-74720

FIG U R E D-5

Exam ple o f process partitioning

D.4.2.5 Channel partitioning

A channel can be partitioned independent of the blocks it connects. This allows the representation of the
behaviour of the channel when conveying signals. To get an exact representation of the way through which a
signal is conveyed, in some cases it may be necessary to represent the channel behaviour. This is made by
considering the channel as an item of its own having as environment the two blocks it connects as shown in
Figure D-6.

94 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D

a) Original channel

CCITT-74730

b) Partitioned channel

FIG URE D-6

Exam ple o f partitioning a channel

Looking at a channel in this way, we can show its structure (the blocks into which it is structured) and for
each block its interconnection with the other blocks and the processes representing the behaviour of the blocks.

In the partitioning channel the incoming and outgoing channels are not split into multiple subchannels but
must connect to only 1 block. With the exception of this restriction, the partitioned channel has the same
attributes as a partitioned block. The blocks and channels contained in the channel interaction diagram may be
further partitioned as well.

D.4.2.6 Mutual influence o f the partitioning on blocks, processes and channels

So far we have considered the partitioning of blocks, processes and channels independently of each other.
In reality these activities have closed relations. As has been seen the partitioning of a block usually induces a
partitioning on the interconnecting channels and on the processes associated.

Conversely, the partitioning of a process singles out particular behaviours that are usually handled by
specific parts of a system (each one mappable onto the concept of block).

The driving force behind the partitioning of a system representation may differ, as explained in § D.4.2.2
but the result is the partitioning of all the entities into which a system is represented.

This is discussed in more detail in the following sub-chapters. The partitioning of blocks, processes and
channels should be self-evident, when facing aspects such as complexity, management or mirroring the actual
system structure.

The SDL Recommendations provide constructs, rules and notations for the partitioning of these entities,
but users will have to face the fact, that other SDL entities are involved in the partitioning and the consequent
aspect of relating the various entities one to the other.

D.4.2.6.1 Signals

A signal conveys information from a process to another (the environment behaviour can be modelled by
one or more SDL processes). This information can be very complex and is conveyed at a certain time in the life
of the system, i.e. when the sending process interprets a certain transition and after that when the receiving
process reaches a certain state.

Partitioning a process into subprocesses may require that the information “packed” in a signal has to be
distributed to more than one subprocess.

This can be solved in two ways. In the first way the signal is not affected, it will be received by one
subprocess and the subprocess will generate the signals necessary to convey the part of the information the other
subprocesses may need. The second way affects the signal. In this case it is partitioned into a number of signals,
one for each of the subprocesses requiring the information.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 95

The two mechanisms are shown in Figure D-7.

y—
P,

— V.
S i q _ A \

/ —

P ,
\ __ (L 2) /

k________
a) Original case signal sending

/ —
p

— s.
S ig _ A '

k.
r i

__^
(1,2) ,

b) Case 1 for signal sending after partitioning

/ —
P21

\ _ ___ /
/ -- —V.

P22
\ _

21

S i q _ A 1 \
/ -------- -------- V.

p
/ " \ ___ __L11 /

21
k /

S i q _ A 2 \ r — S
P

(2) / 22
k J CCITT-74740

c) Case 2 for signal sending after partitioning

FIG U R E D -7

M echanism of signal sending when process partitioning occurs

The two mechanisms explained seem equivalent and it would seem that the second can always be mapped
into the first but there is a difference in that the former performs a sequential transfer of information, the latter
performs a potentially parallel transfer of information. Also in the second case the sending process is not identical
to the process in the original case because the two processes send different signals.

Apart from the above consideration there is a case in which the second mechanism is the only one that
can be used. Imagine that at a high level of description we use a powerful signal with several types of information
packed together.

When partitioning the system representation (thus giving more details on the structure) we can be in the
situation where the information packed within the signal cannot be packed any longer due to the fact that they are
not available in the same place o r/an d at the same time. This can be the result of the partitioning being the
information located into different blocks (different signal origin) or available at different times. An example of
this latter case may be the signal “called party selection” at the high level becoming at the lower level a sequence
of the signals “digit”. Note that we could imagine a packing procedure that accumulates all the “digits” and then
sends the “called party selection” but this may be a distorted representation or even worse could be an impossible
representation in case where we want to show that a release back may occur from the outgoing junction after each
digit.

An example of the former situation may be the signal “line set up completed” that at a lower level is
partitioned into a set of signals originated by different subblocks each one keying a part of the total set up.

As shown by the examples, there are several cases in which a signal should be partitioned as result of the
partitioning of the system.

The SDL Recommendations do not recommend any particular notation even though some of these were
proposed and discussed by the group defining the SDL.

It is advisable to annotate in SDL representations with various levels those signals which result from the
partitioning of a signal at an upper level. This greatly increases the readability of the representation bridging
together the various levels.

The annotation should state the parent signal for a certain signal when this signal is defined. Also a
forward reference indicating for each signal the signals resulting from its paritioning.

96 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex D

Note that the partitioning of a signal affects both the sender and the receiver, as well as the channel which
now contains new signal names. In a situation where several signals are partitioned the benefits deriving from
maintaining the old channel, adding to its extremities subchannels, are lost and in a sense this representation
becomes disadvantageous being now necessary to redefine part of the old channel. The extent of this redefinition
depends on the number of signals partitioned.

The second approach indicated in Figure D-7, to substitute the old channel with new ones, is more
attractive in this case for its simplicity considering that both the sender and receiver are affected anyhow.

D.4.2.6.2 States

The partitioning of a process into subprocesses can also be considered on its components, i.e. states,
decisions, tasks and data (inputs and outputs are affected by the partitioning of the signal).

A state should be the representation of a logical situation of a process, e.g. the conversation, phase or the
testing phase. The partitioning of the process into subprocesses causes the partitioning of the logical states into a
set of states over several subprocesses (not necessarily over the totality of the subprocesses).

This has effects both on the human interpretation and on the machine interpretation of the correlation
between levels.

Increasing the number of details, there is a tendency in the human beings to lose the grip on the general
situation and this may lead to undesired effects (compare how many times an updating to a program which was
supposed to be perfect, generates undesired effects in the global system!).

The spreading of details logically grouped, has an even more deleterious effect on the capacity of
understanding a global situation. The SDL organization of a representation on several levels strives to avoid this
problem, but it is essential to correlate the various levels to one another.

The correlation can be achieved by appropriate notations referring to the more abstract representation
giving the overview (the upper level) and by referencing the other parts that have to be considered together.

The aspect of machine interpretation is completely different from human interpretation. The machine does
not have any overview, i.e. all the items are taken into account, each being considered with the same attention as
the others, and they are taken into account one at the time, one relation at the time. For this reason the spreading
of information each one being related to the other does not affect the machine interpretation (let us forget about
time consumption in the interpretation). The problem with the machine is the one of formalizing the partitioning
of the process, so that the machine can understand that what was previously referred to as “idle” is now a set of
“idle” states spread over several subprocesses and so on.

The only possibilities for making a machine aware of this correspondence is by declaring it explicitly
(most unefficient and seldom safe for the high chances of forgetting some declarations) or by formalizing the rules
of partitioning a process into subprocesses.

This issue is tackled (and solved) by methodologies and is something that is not intentionally, dealt with
by SDL Recommendations.

D.4.2.6.3 Decisions

Decisions may be affected by the partitioning of a process if the data upon which the decision is made
have been partitioned. If a data is no longer available to a subprocess which has to make a decision upon it, a
signal has to be sent to require the value of the data and the subprocess must wait for the answer. The mechanism
of signal sending (request) and reception (answer) can be hidden by declaring the data as imported and actuating
the decision on the imported data.

Note that as sub-processes usually are allocated in different blocks, the viewing mechanism of shared data
is not usable.

D.4.2.6.4 Tasks

The task is the representation of a set of actions not having a direct effect outside the process. When the
process is partitioned the set of actions performed by a task can also be partitioned in such a way that some parts
are performed in a subprocess, others in different sub-processes and so on.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 97

Note that the splitting takes place only in the subprocesses of that process. If a certain set o f actions was
performed in a given process the same set is performed by the totality of the subprocesses of that process. In this
case there is a slight difference with the state, whose partitioning may depend on the partitioning of other
processes, because a state of a process is part of a logical status which may include more processes.

Coming back to the task, the partitioning of the actions performed over several subprocesses will usually
require the introduction of new signals to trigger the execution of a subset of actions in a subprocess upon the
termination of the actions performed by another subprocess.

The partitioning of a task is usually a side effect of the partitioning of the data associated to a process.
Again a design/representation methodology may provide formal notations to trace the partitioning of a set of
actions over several subprocesses.

The same advice given for the annotation of signals to help the reader are applicable to task partitioning.

D.4.2.6.5 Data

Data are associated to a process. When we partition a process we also partition its data. There is no
formal way in SDL to indicate this partitioning. Each of the subprocesses needs to define its variables and the
new synonyms and types if any.

Note that the partitioning of data affects not only the actions of the process (a certain output carrying an
information cannot be sent if the information is no longer available to that subprocess, a task operating on that
information cannot be performed etc.) but also the partitioning of data may affect other processes if exported or
revealed data are involved.

The importing processes should be notified of the partitioning in the exporter, so that they can address the
new subprocess to get the information. A data which was viewed may not be viewed any longer if the subprocess
owning it is allocated in a different subblock of the viewer and therefore its value should be im ported/exported or
explicit signal interchange may be performed.

D.4.2.7 System representation in case o f partitioning

In the cases where a system is represented as a set of blocks interconnected by channels, and where the
behaviour of each block is expressed by one or more processes, we have a single level representation. This means
that we can see all the representation elements at the same level. When we introduce the partitioning, we insert a
hierarchial relation between the various documents. We will have a document containing the representation of the
structure of the system where the system is composed of “n” blocks.

A different document may present the system as composed by a different set of blocks some being derived
from the blocks contained in the previous document (some blocks in the previous document have been substituted
by the subblocks obtained by the partition of the blocks). This latter document must be related to the previous
one.

It is not just a matter of relating the documents to each other to obtain a complete representation of the
system, but also they should be organized in such a way that it is possible to access the system representation by
levels, starting with a general overview and moving to more and more detailed representations. This implies the
grouping of the various documents so that they form various levels of system representation.

Not all the levels should contain the same elements. At a first level the system representation may consist
of the block and channel representations without including the processes describing the behaviour of each block.
At a lower level we may wish to include the representation of the behaviour of some blocks but not the one of
others, or we may even wish to represent part of the behaviour of a block but not the complete behaviour, which
will be provided only at a lower level. The lowest level of representation (the more detailed one) should include
the complete representation of the behaviours of all the blocks, i.e. the complete set of processes expressing this
behaviour.

The first side effect of this type of representation by levels is that we have to indicate the association of
process to block. The partitioning of the system (considered as a single block) generates a tree structure; the
partitioning of the “n” processes representing the behaviour of the system generates “n ” trees and each of the
processes of these trees should be associated to a block shown in the block tree. In addition we may have new
processes introduced at a certain level and possibly further partitioned from that level on. Each of these, if
partitioned, generates a tree structure and again each process in the structure should be associated to a block in
the block tree as shown in the Figure D-8.

98 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

b

a) Block tree

CZJ D CD CD CZD CD
\ r

B1 J B2 J I D1 D2

B21 B22 1 f D21 J f D 2 2 j

CCITT-74750

b) P ro cess tre es

N ote — Blocks b and bl do not have associated processes.
Block b2 contains two processes (E, F).
Block b321 contains process C which appears at that level only.

FIG U R E D -8

Allocation of processes to the blocks

Looking at the block tree we can make several considerations.

First of all the tree always has one and only one root, the system block. This is so, even in the cases where
a system is represented from the beginning as composed of several blocks. In the block tree these blocks will be
represented at, for instance, level 1. The root block may consist of the system name only. The channels definitions
may be given for the blocks at level 1 even though this is not required unless the blocks have associated processes.

A second point comes up looking at the leaves of the tree: not all of them are at the same level. This is the
result o f a different number of partitioning on the blocks of the tree'. The number of partitioning depends on
several aspects, most of which are under the subjective judgement of the specifier/designer.

The SDL only requires that leave blocks can stay without being further partitioned only if their behaviour
is completely specified (i.e. the processes definitions associated are sufficient to represent its behaviour).
Consequently a leaf block must contain at least one associated process.

When a system representation is given on several abstraction levels, we can select any of these levels to
represent the system. The selection of a certain level implies the consideration of the blocks at that level, of their
associated processes and of all the blocks which are leave blocks at upper levels together with their associated
processes (see Figure D-9).

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex D 99

Level 0

Level 1

Level 2

Level 3

Level 4

« §

CCITT-74760

FIG URE D -9

Representation

A system representation at a certain level may be incomplete in the sense that some of the blocks at that
level do not have associated processes of that those associated are not completely representing their behaviour.

The reasons for talking about representation levels and of selecting a certain level of representation are
that:

— We may have reached in our design a certain “level” of detail, which is represented by that level of
representation (in this case the blocks at that level are leave blocks and they are not complete because
further work is needed!).

— We want to look at the system representation at a certain level of detail; and therefore we select that
level of representation which corresponds in the best way to the abstractions we are looking for. Note
that in some cases a certain representation level may consist of documents having different levels of
abstraction. A part of the system may be represented in a very detailed way at level 2, whilst another
part may be still abstract at level 4. This means that when we select a representation at level three we
can have very detailed parts together with parts that can only be considered as overview.

— The representation/design methodology can be such that each level has a precise meaning, e.g. level
one corresponds to the specification, level two provides the overall system structure, level three
provides the module structure (racks, software functions), level four provides the detailed structure
(printed boards, procedures, software modules). In this case the selection of a certain level corres
ponds to a certain reader’s need; in this case it should be noted that the methodology will avoid the
situation of discrepancies in the level of details of part composing a certain representation level.

In addition to the total system representation and to the one given by levels, SDL has the concept of
“consistent system representation” (see Figure D-10).

We define with that any representation of the system considering it, as a single level representation where
all the blocks can be taken from any level of the system structure given that:

— A block can be chosen to be part of the consistent system representation if it can be considered as a
leaf block (either it is a leaf block or it has associated all the processes required to represent its
behaviour).

— If a block is chosen all the blocks obtained from the partitioning of its parent block should be
included either directly or by including their sons.

— All the documents defining the signal flowing on the channel connecting a block in the representation
should be provided. This may imply, depending on the partitioning strategy chosen, that once a block
has been taken, its parent should also be taken at least for the parts defining the data and the signals.

100 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex D

V,
A

o

o

o
~ r ~

V, o o

o o o

CCITT-74770

FIG U R E D -10

Exam ple o f fcfyiffffiyfytj system representation

In cases where some channels have been partitioned considering them as systems, the respresentation of
each of these “systems” has to be provided.

The representation has the same type of documents as the usual system representation. N otation should be
added to relate these systems to the main system. In a sense we may consider these systems as inner systems with
respect to the “main system”. Each of these systems can have several levels of representation and may also have
inner systems if some of the channels contained in them are further dealt with as a system of its own (see
Figure D -ll).

L1 -h z > h :
A

L2 L1

S ystem C 1 1 H

L2

S ystem C 12

FIG U R E D - l l

Channel partitioning as virtual system representation

101

D.4.3 Concepts o f SD L

This § will present each of the SDL concepts and will give some general guidelines on how to use each of
them. For the examples, SD L /G R will mostly be used. The same guidelines apply for the SD L/PR as well.

D.4.3.1 System

As has been stated earlier, SDL models systems. Thus the system is what an SDL specification or
description is defining. As such, an SDL system may model a part of a telephone system (or exchange) or a
complete network of telephone systems or parts of a multiplicity of telephone exchanges (e.g. the trunk controllers
at both ends of a trunk). The key thing is that from an SDL point of view, the SDL system contains everything
the specification or description is trying to define. The environment is outside the specification and is not defined
in SDL.

The system interfaces with the environment through channels. In theory, only a single incoming and a
single outgoing channel are required to interface with the environment. In practise, channels are usually defined
for each logical interface to the environment.

Each system is composed of a number of blocks connected together by channels. Each block is
independent from every other block. The only means of communication between processes in two different blocks
is by sending signals over the channels.

D.4.3.2 Block

As was shown in the chapter on structuring in SDL, a block can contain a structure of 1 or more
processes. The complete definition of a block requires that the blocks at the bottom of the block tree diagram
contain 1 or more process definitions.

Within a block, processes can communicate with one another either by signals or shared values. Thus the
block provides not only a convenient mechanism for grouping processes, but also, a boundary for the visibility of
data. For this reason, care should be taken when defining blocks to ensure that the grouping of processes within a
block is a reasonable functional grouping. In most cases it is useful to break the system (or block) into functional
units first and then define the processes that go into the block.

D.4.3.3 Channel

Channels are the means of communication between blocks. Normally, a channel is a functional entity that
may be used to denote a specific information path. In fact, through the partitioning of channels, it is possible to
formally specify the behaviour of each channel.

Channel definitions contain a signal list that lists all the signals that can be carried by the channel. This
signal list is provided as a means of ensuring that every signal sent by a process at one end of the channel can be
received by the process in the block at the other end of the channel. Thus the channel definition becomes part of
the interface definition for each block. In large multi-person projects, early agreement on the signals in a channel
and on the definition of those signals reduces the probability that two processes will not be able to communicate
with one another.

D.4.3.4 Process

A process is an extended finite state machine and defines the dynamic behaviour of a system. Processes
basically are in a state awaiting signals. When a signal is received, the process responds by performing the specific
actions that are specified for each type of signal that the process can receive. Processes contain many different
states to allow the process to perform different actions when a signal is received. These states provide the memory
of the actions that have occurred previously. After all the actions associated with the receipt of a particular signal
have occurred, a new state is entered and the process waits for another signal.

Processes can either exist at the time the system is created or they can be created as the result of a create
request from another process. In addition, processes can live forever or they can stop by performing an internal
stop action. Some im portant attributes of process creation are:

1) After the system is created, processes can only be created by another process in the same block. One
means of allowing creation of processes in other blocks, is to have a special process in every block
that will cause the creation of a process when it receives a signal from a process in another block. In
many instances, this special process is some sort of “operating system” process.

102 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex D

2) Once created processes have a lifetime of their own. Processes die only when they perform a stop
action during a transition. One way to model systems where outside process kill operations are
allowed, is to have a special kill signal. When the kill signal is received, the process performs a stop
action.

3) When created, a process knows its own identity and the identity of its parent. W ithout being given
any other information, it cannot communicate with any other processes. There are two ways to solve
this problem. First, one or more of the process parameters contains the identity of the processes that
this process will communicate with. Second, it can receive a signal that contains a process instance
identifier as one of its actual parameters.

D.4.3.4.1 States

A state is a point in the process where no actions are being performed but where the input queue is
monitoring for the arrival of incoming signals. Based on the signal identifier given in the input signal, the arrival
of the signal will cause the process to leave the state and perform a specific sequence of actions. A signal which
has arrived and caused a transition has been “consumed” and ceases to exist. During a transition, a process does
not know explicitly which input signal caused the transition. This can only be inferred from context (i.e. this
transition can only occur if a particular signal had been received). In Figure D-12, task T1 is performed only if II
is received. However, task T2 will be performed if either 12 or 13 are received. However, task T2 will be
performed if either 12 or 13 are received. If it is im portant for T2 to know which input was received, then it is
better to design the process as shown in Figure D-13.

S1

12 13

T1 T 2

S 2 S 3

CCITT- 74790

FIGURE D-12

Performing a task dependant o f two out
of three received signals but independant of which one

S1

> 1

T 1

f

CMCO

12 13

T 2 T 3

S 3 S 3

CCITT-74800

FIGURE D-13

Performing a task dependant on the received signal

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 103

Usually the author of an SDL diagram has some flexibility available in the approach when defining the
states of a process. He may require a strategy enabling him to identify the states of the process and this strategy
can be informal or formal. Good judgement (obtained through practice) is required in order to produce SDL
diagrams which are neither unnecessarily complicated through the identification of too many distinct states or
which fail to exploit the inherent advantages of SDL through having an artificially reduced number of states.
Before the author starts to draw the diagram, necessary preliminaries (discussed in § D.4.2) must have been
completed, for example:

— the structuring of the system in functional blocks;
— the representation of the functional blocks by means of one or more SDL processes per block;
— the choice of input and output signals;
— the use of data in the process.

All the above factors have a crucial effect in determining the states of each process. The effect of the
“choice” of input signals upon the number of states in an SDL diagram is shown by the two examples in
Figure D-14.

D.4.3.4.1.1 Determination o f the required states

Start

B _d ig it_
num ber

(d)

m
C ontinue

T h e sign a l
"B digit
n u m b er” h a s
” d" a s data ,
d c o n ta in s
8 d ig its.

CCITT-74810

a) b)

Note — Examples a) and b) represent the same function with different levels of details. As a consequence the number of states varies.

FIGURE D-14

Reception of an 8-digit telephone number

D.4.3.4.1.2 Reduction in the number o f states

Having used a strategy for identifying the states of a process, the author of an SDL diagram may feel that
“too many states” have been used. The number of states is important because the size and complexity of an SDL
diagram is often closely related to the number of states. There may be some means available for reducing the
number of states, but the fact that an SDL diagram is complex is not, by itself, a reason for changing it, as the
complexity of the diagram may simply be a reflection of the inherent complexity of the process which it defines.
In general the set of states should be chosen to give maximum clarity to the sequential interaction between the
process and its environment. Such clarity is in general not achieved by minimizing the number of states. The
number of independent sequences handled by a process has a multiplicative effect on the number of states. It is
therefore desirable to treat independent sequences in separate processes as this will reduce the number of states
and increase clarity.

104 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

The number of states can be reduced by separation of common functions, by merging states or by using
the procedure concept. Particular data structures can also lead to a reduced number of states. Alternative
representation can benefit from the use of macros.

D.4.3.4.1.3 Separation o f common functions

It may become clear when planning an SDL diagram, that to define a particular and repetitive aspect of a
process will require the representation of repetitive states. In Figure D-15 part o f a line-signalling process SDL
diagram is shown which illustrates the requirement that a line signalling tone must be present for a particular
length of time before the line signal is considered to have been detected.

To specify this an intermediate state is required between the state No _ line _ signal _ detected and the state
Conversation. Let us assume that in a complete diagram, such a common function would have to be repeated at
every point where the signal is detected. An alternative way is to define a separate process which is responsible for
monitoring the line signalling tone and detecting signals on the basis of the specified recognition time. The
existence of this new process would enable the diagram shown in Figure D-15 to be drawn as shown in
Figure D-16. (In a given context, the figures can be made equivalent, at the expense of introducing a new signal
Valid _ line _ signal.)

N o _ l in e _
s i g n a l -

d e t e c t e d

'f = line s ignalling t o n e on

f = line s ignalling t o n e o ff 1 - 5

S e t (NOW
+ 8 0 m s , 1 1)

I
V a l id -
s i g n a L

c h e ck in g

t1 I I
S tart_

m eter ing

I
^Conversation^

RESET
(t 1)

CCITT-74820

FIG U R E D -15

Exam ple of an S D L diagram for a composite call-handling
and line signal detection

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D 105

f A w a i t _ \
I s ig n a l l in g -)
\ t o n e J

SET (NOW
+ 8 0 m s , t1)

V a l id -
s i g n a l -

c h e c k in g

RESET
(t1)

V a l id -
line_

signal

A w a i t -
s ignalling.

t o n e

T o call
handling

_ p r o c e s s

N o _ l in e _
s i g n a l -

d e t e c t e d

V a l id -
line—

signal

S t a r t -
m eter ing

Conversation

From line signal
d e te c t io n p r o c e s s

CCITT-74830

a) Line signal detection p ro cess b) Call handling p ro cess

F IG U R E D -16

Exam ple o f the segregation of a common function (line signal detection) to avoid repetitive states such
V alid_signal_checking (compare with Figure D-15)

CCITT-74840

FIG U R E D -17

The exam ple o f Figure D-16 with the use o f macros

Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex D

The process in Figure D-15 starts metering immediately upon reception of the tl whilst the call handling
process (process b) in Figure D-16) starts metering upon the reception of the valid _ line _ signal and this is
generated and sent upon reception of the t l by the process a) of Figure D-16. This implies that in this second case
the metering starts after tl + signal generation, sending and reception time. In addition there may be other
signals that have been queued in the time it takes to generate and send the valid _ line _ signal.

A second aspect to be noted is that this separation of a subfunction would not be possible, if the signal to
be received by the subfunction has to be received by the main function as well, because a signal is always directed
to one process only.

If in the example the same signal f has to be received in another state, where it is not required to validate
it for time tl it would not have been possible to separate the validation subfunction into another process.

In general, the solutions with separate processes are useful in cases where signals are to be processed in a
manner which is independent of the states in the main process. In this case pre- and post-processes can handle the
detailed sequences and relieve a main process of the details. This will often provide a useful modularity too
because particularities of e.g. signalling systems can be isolated from the more service oriented main process.

A different solution to this problem would be to use the MACRO notation as shown in Figure D-17. In
this case we obtain the desired compactness in the diagram without altering in the slightest the semantics of the
original one. Furthermore the MACRO can be called from several states, if the logic of the process should require
it.

The slight difference between the process shown in Figure D-15 and the two shown in Figure D-16 should
be noted.

D.4.3.4.1.4 Merging o f states

If in an SDL diagram the future of two states is the same, then, irrespective of their history, they can be
merged into one without affecting the logic of the diagram.

Figure D-18 shows part of an SDL diagram with two states which differ in their history but whose futures
are “identical”. In Figure D-19 the two states have been combined to form one state. This is a fairly trivial
example where the reduction in complexity is small but the technique can be used to obtain significant
simplification. The SDL semantics do not allow a decision following a state to determine the history of the
process before the state (i.e. for this example, was A6 or B4 sent?) unless this information had been explicitly
stored prior to entry into the state. Note that naming of data in an input causes the value to be stored.

A state should have a clear relation with the possible logical situations of the process, and therefore it is
not advisable to merge different logical situations in one state.

Care should be taken when a merged diagram is changed later on. The user should investigate whether the
intended change effects the original two (or more) branches of flow in the same way or not.

D.4.3.4.2 Inputs

Paragraph D.4.3.4.2 has been written to explain the input concept and the use of inputs in SDL diagrams
without the save concept. The save concept and the use of inputs and saves together in an SDL diagram is
covered in § D.4.3.4.3.

D.4.3.4.2.1 General

An input symbol attached to a state means that if the signal named within the input symbol arrives while
the process is in this state the transition which follows the input symbol should be interpreted. When a signal has
triggered the interpretation of a transition, the signal no longer exists and is said to have been consumed.

A signal may have associated data. For example, a signal named “digit” serves not only to trigger the
execution of a transition by the receiving process, but also to carry with it the value of the digit (0-9), data which
can be used by the receiving process.

To make these data items available to the process, they must be named in the input symbols within
parentheses. By doing so the data is available during the transition in action. If the data is not explicitly stored it
will not be accessible in another transition afterwards.

One item of data is separated from the others by commas. Examples of the data reception from inputs are
shown in Figures D-20, D-21 and D-22.

Fascicle VI. 11 — Rec. Z.100 to Z.104 - Annex D 107

A fte r _ s e n d in g _
A 6 , _ a w a i t _

fo r w a r d _ s ig n a l

Forwards
signal

A f te r _ s e n d in g _
B 4 , _ a w a i t _

fo r w a r d _ s ig n a l

Forw ard.
signal

CCITT-74850

FIG U R E D -18

Exam ple o f part o f an S D L diagram before merging states

(A w a i t _ e n d _ o f _ \
fo r w a r d _ s ig n a l)

CCITT-74860

/ A f t e r _ s e n d i n g _
(A 6 _ o r _ B 4 _ a w a i t _
V fo r w a r d _ s ig n a l

Forward-
signal

FIG U R E D -19

Exam ple of a part o f an S D L diagram with merged states

108 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex D

Named data becomes available to the receiving process when the input is interpreted.

Figure D-20 shows reception of the signal o ff_ hook. The signal o ff_ hook has associated data
(subscriber _ number) with the value 9269. This signal may be received in three ways as shown in a-c of the figure.

Figure D-22 shows how to send and receive several data items in one signal. Each item must be separated
from the next by a comma. In Figure D-22 c) we show how to ignore unwanted data items by leaving a gap in the
item list.

Note that in the output signal we could write expressions for E l, E2 or E3, but in the input signal we
must use variables to receive the values sent.

In SDL it is unnecessary to draw input symbols to represent signals whose arrival would necessitate a null
transition (i.e. transition containing no actions and which leads back to the same state). The convention is that for
any signal not shown in an explicit input symbol at a particular state, there exists at that state an implicit input
symbol and null transition. By this convention, the two diagrams shown in Figure D-23 are logically equivalent
and either can be used.

I
n. Off_hook

y (su b sc rib e r-
/ number)

 I-------
N ote — The value 9269 is stored in a variable called subscriber_number.

a)

N - O f f - h o o k
/ (A)

 1--------
Note — The value 9269 is stored in a variable called A.

b)

O ff_ h o o k

CCITT-74870

N ote I — There is no data name and the value 9269 is lost and is not
available to the receiving process.
N ote 2 — The signal name (oflLhook) must correspond to the output
signal name but data names can be chosen either to correspond or not.

c)

FIGURE D-20

Example of data reception in a process

Fascicle VI. 11 — Rec. Z.100 to Z.104 - Annex D 109

A w a i t _
f i r s t -
digit

y Digit (D)

ELSE
Invalid

0 . . . 9 digit (i.e. o u t s id e th e range 0 t o 9)
Valid
digit

A w a i t -
n e x t
digit

Digit
- (

In th is input s y m b o l th e a s
s o c ia t e d data is n o t n a m e d
and is los t

ELSE
Invalid
digit

a) S h ow s an incorrect version b) S h o w s a correct version

Note 1 — In a) the second decision will use the value of D obtained from the first digit.
Note 2 — In b) the value of D will be that of the current digit. Values of previous digits will be overwritten.
N ote 3 — As D is declared as a formal parameter to digit, the value of D is automatically stored.

F I G U R E D -21

Part of a digit-receiving process

Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex D

'E l = 10
E2 = 2 0
E3 = 3 0 '

S(E1 ,E2,E3)

Note — The output signal S has three variables called El, E2 and E3. These items
bind to three values, say, currently 10, 20 and 30.

a)

S(A,C,B)

'A = 10
B = 3 0

L C = 2 0 '

N ote — The corresponding input signal S in the receiving process names these
items A, C and B respectively.

b)

S(A , ,B)

'A = 10
B = 3 0 ' CCITT-74890

N ote — This input signal only names two variables. The middle data value is
lost.

c)

FIGURE D-22

A signal with several items of associated data

{Explicit null
transit ion
for signal B

S t a t e _ 1

^^SignaLA--------- A s a b o v e , but w ith implicit null transit ion

CCITT-74901

b) Implicit “null" transition

N ote — If data is associated with signal B, it is lost in both cases. If however a data name is shown
(e.g. SignaLB (x)) in case a), the data value is kept. In this case the two cases are no longer identical.

FIGURE D-23

Explicit and implicit representation of a “null” transition

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 1 11

Where a number of inputs lead to the same transition, all the relevant signal names may be placed within
one input symbol. Figure D-24 illustrates this point and the diagrams in the figure are logically equivalent. If all
the signal names are mentioned they must be separated by commas.

a) Example of multiple inputs
using individual input sym bols

S t a t e _ 1

^ S t a t e - 1 ^

S ig n a L A ,
S ign a l_B ,
S ig n a L C

b) Example o f multiple inputs
using one input sym bol

T h e * s t a n d s for all inputs
n ot explicit ly m e n t io n e d in
o th er inputs or s a v e s a s
s o c ia t e d w ith that s t a t e

CCITT-74910

c) Example o f multiple inputs using asterisk notation

FIG U R E D -24

Alternative representation of multiple inputs

D.4.3.4.2.2 Implicit queuing mechanism

One or more signals may be waiting for consumption when a process reaches a new state. This means that
signals must be queued in some way, or they will be lost. When a signal arrives to the destination block it is given
to the input queue of the receiving process. The SDL semantics define a first-in first-out conceptual queuing
mechanism for each process where signals are considered for consumption by a process in the order of their
arrival at that process. When the process reaches a state, it is given one and only one signal from the queue. This
means that if the queue is not empty, the process consumes the first signal from the queue. If the queue is empty,
the process waits in the state until a signal arrives to the queue, whereafter it is consumed by the process.

Figure D-25 uses the conceptual queue to explain the operation of the depicted SDL process where
transition times are non-zero. It should be noted that:

— The save concept is not used and therefore the signals are consumed in the order in which they arrive.

— The sequence of signal arrival is important. Had “C ” arrived before “B” in the transition between
State 1 and State 2, the state sequence would have been 1, 2, 3 instead of 1, 2, 4.

— Because the queue is not empty when the process arrives at both State 2 and State 4, the process does
not wait at either of the states.

— It is not possible to assign any priority to a signal.

If transition times are zero, then every signal will be consumed at the time it arrives at a process, unless
the save operation is used (§ D.4.3.4.3).

1 1 2 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

SDL P r o c e s s Event
Q u eu ein g
Order o f arrival

FIG U R E D -25

Exam ple of the operation of the im plicit queueing mechanism

D.4.3.4.2.3 Reception o f signals not normally occurring

In each state all possible signals must be shown implicitly or explicitly. Exceptions (unexpected but
theoretically possible signals, undefined signals or logically wrong signals at that place etc.) can occur in almost
all states. Normally the author does not show such possibilities, with the effect that such a signal will be discarded
if it arrives. If the author however wants to include exceptions in his diagram all states must be expanded with an
extra input.

Another possibility is to make use of multiple appearances of a state (see § D.6.3.6.5.1) together with the
“all” symbol (*) (§ D.6.3.6.21). For example if the signal A ON-HOOK can be received in all states and if the
subsequent actions are identical, the method shown in Figure D-26 might be used.

D.4.3.4.2.4 Simultaneous arrival o f signals

The Recommendation Z.101 covers the possibility that signals can arrive simultaneously at a process and
states that they will be ordered arbitrarily.

If a user designs a process which may get simultaneous signals, he should take care that the order of
arrival cannot upset the desired operation of the process.

SDL do not recommend priority of signals, i.e. that simultaneous arrival of signals means that one is
chosen indeterministicly.

If several signals are available when the process enters a state, only one signal is presented to the process
and thus recognized as an input. The SDL semantics implies that the other signals are in fact retained.

Fascicle V I.ll — Rec. Z.100 to Z.104 - Annex D 1 1 3

All states in
main diagram

\ A_
/ ON_

OOX
1

'DO X'

' f

C “ D
CCITT-74930

FIGURE D-26

Exam ple of handling of signals to appear in several states

D.4.3.4.2.5 External versus internal inputs

An external signal is a signal between processes of different functional blocks; an internal signal is a
signal between processes in the same functional block. Semantically there is no diffrence between external and
internal signals. In the previous recommendations of SDL, however, a distinction has been made syntactically.
These differences in syntax have been removed, and today internal and external signals have identical syntaxes.
The previous GR syntax for an internal signal (two vertical lines in the symbol) is no longer used. Old diagrams
using internal signals are allowed but the internal signals are interpreted in the same way as external signals.

D.4.3.4.2.6 Sender identification

Each signal carries with it the process instance identifier of the sending process. When a signal is received,
a process variable called SENDER takes on the value of the sending process’s process instance identifier that is
contained in the signal. Figure D-27 shows an example of how this may be used.

FIGURE D-27

U se of SE N D E R variable

114 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D

D.4.3.4.3 Saves

The save concept allows the consumption of a signal to be delayed until one or more other signals, which
arrive subsequently, have been consumed. As discussed in § D.4.3.4.2 unless the save concept is used, signals are
consumed in the order in which they arrive.

The concept of save can be used to simplify processes in cases where the relative arrival order of some
signals are not im portant and the actual arrival order is indeterministic.

At every state, every signal is treated in one of the following ways:

— it is shown as an input symbol or;

— it is shown as a save symbol or;

— it is covered by an implicit input leading to an implicit null transition.

The operation of the implicit queuing mechanism, introduced in § D.4.3.4.2, also applies to the save
concept. On arrival, signals enter the queue and when the process reaches a state, the signals in the queue are
reviewed one at a time and in the order in which they arrived. A signal covered by an explicit, or implicit, input
symbol is consumed and the related transition executed. A signal shown in a save symbol is not consumed and
remains in the queue in the same sequential position and the next signal in the queue is considered.

Figure D-28 shows an example of an SDL process which incorporates a save symbol. It should be noted
that signals S and R are consumed in the order R, S — the reverse order to that in which they were received. A
single save symbol can save a signal only while the process is at the state where the symbol appears, and saves it
for the duration of the transition to the next state. At the next state, the signal will be consumed via an explicit or
implicit input (as shown in Figure D-28, unless either the save symbol with the signal name is repeated, or there
happens to be another saved signal available for consumption ahead of it in the implicit queue (as shown in
Figure D-29).

SDL P r o c e s s Event
Q u eu e in g

Order o f arrival

FIG U R E D -28

Exam ple of an SD L diagram with save symbol
showing operation of implicit queueing mechanism

Fascicle V I.ll - Rec. Z.100 to Z.104 — Annex D 115

I p
T

^ S t a t e _ 5 6 ^

2

^ S t a t e - 6 0 ^

i -

SDL P r o c e s s Event
Q u eu ein g
Order o f arrival

(S t a t e _ 5 5 j

C D - / C / " “ [r e m i

 s

arrives, e n t e r s th e q u e u e and
rem ains in th e q u e u e

"B" arrives, e n te r s th e q u eu e and
rem ains in th e q u e u e

I "A " arrives and is c o n s u m e d ;
| transit ion t o S t a t e _ 5 6 is tr iggered

B {
On arrival at S t a t e _ 5 6 , " C ” is c o n s u m e d
and transit ion t o S t a t e _ 6 0 is tr iggered . -
" B ” rem ains in th e q u e u e

 j On arrival at S t a t e _ 6 0 , "B" is c o n s u m e d _
and th e fo l lo w in g transit ion is tr iggered “

L CCITT-74960

FIG URE D -29

Second exam ple of the use o f the save symbol

A saved signal becomes available to a process only through a corresponding input symbol (explicit or
implicit). In particular no questions about a saved signal may be asked in a decision prior to its recognition as an
input; nor is its associated data available.

At a state where more than one signal is to be saved, either a save symbol may be given for each signal, or
they may all be shown within one save symbol.

If several signals are to be saved, the semantics of the save symbol implies that the order of their arrival is
preserved.

A third example of the use of the save is given in Figure D-30 with a description of the operation of the
conceptual queuing mechanism in Figure D-31.

The save can be used to simplify diagrams. For example by saving a signal it is possible to avoid receiving
it and having to store its associated data until the next state.

Although the save can be used at every level o f description, at lower levels it may be necessary to describe
the actual mechanism which implements the save concept.

If the save is not used with care, the queue of saved signals may grow very big or may remember signals
too long so that an old signal is consumed where a fresh one was needed.

116 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D

FIG U R E D -30

Exam ple o f a more complex SD L diagram
with numerous inputs and saves

Current s t a t e Event Q u e u e i n g

S t a t e 1

S t a t e 2

S t a t e 2

S t a t e 3

S t a t e 3

S t a t e 3

S t a t e 3

S t a t e 4

S t a t e 4

S t a t e 5

(Process arrives at State 1 w ith signals "A " , "B " , "C ", "D " , "E " in queue)
The f irs t signal in queue, "A " , is consum ed (exp lic it input) and tran s ition to State 2 is triggered.

Order o f a rrival

A B C D E

The f irs t signal in queue, "B " , appears in a save sym bol and remains in queue.

The second signal, "C ", is consum ed (exp lic it input) and tran s ition to State 3 is triggered.

The f irs t signal in queue, "B " , is consum ed (im p lic it input) and null trans ition is triggered.

"F " arrives and enters queue.

(On reaching State 3 again) th e firs t signal in queue, "D " , appears in save sym bol and remains in
queue.

The second signal, "E ", appears in save sym bol and remains in queue.

The th ird signal, "F ", in consum ed (exp lic it input) and tran s ition to S tate 4 is triggered.

The f irs t signal in queue, "D " , appears in a save sym bol and remains in queue.

The second signal, "E ", is consum ed (exp lic it input) and tran s ition to State 5 is triggered.

T h e firs t (and only) s ignal in queue, "D " , is consum ed (exp lic it input) and tran s ition to State 1 is
triggered.

CCITT-39510

F IG U R E D-31

Operation of conceptual queueing mechanism

Fascicle VI. 11 — Rec. Z.100 to Z.104 - Annex D 117

D.4.3.4.4 Outputs

An output symbol represents the sending of a signal from one process to another. Because control over the
reception and consumption of the signal is associated with the receiving process (see § D.4.3.4.2) the semantics
directly relating to the output symbol is relatively simple. From the point of view of the sending process an output
can often be regarded as an instantaneous action which, once completed, has no further direct effect on the
sending process, which will not be directly aware of the fate of the signal.

If the author has difficulty in deciding whether an action should be represented as an output or a task,
§ D.4.3.4.6 should be consulted. An output action represents the sending of a signal and the association of data
values if any. Data values may be associated with an output signal by placing values in parentheses, or by placing
expressions having values in parentheses (see Figure D-32 and Figure D-22).

Each output must be directed to a specific process instance. Since it is usually impossible to know the
process instance identifier for any process at the time a specification or description is produced, the normal
method of addressing signals is to use a variable or expression in the TO symbol or keyword. Figures D-33, D-34
and D-35 show some examples. In Figure D-33 the process parameter output _ to is given the value of a process
instance identifier at the time the process is created. Output _ to is then used within the process as the link
between this process and its connected process. In designing the system, care should be taken to ensure that the
type of the process indicated by output _ to is able to receive the signals being sent. In Figure D-34 the built-in
process variable is used to send a signal back to the process that sent the signal that was just received. In
Figure D-35, the signal is addressed to the process’s most recently created offspring process.

N ote — Signal S has three values, 10, 20 and 30 associated with it.
a)

'x = 7 "
y = 10 ■
z = 3 1 ' _

N ote — On interpreting S; x, y and z have (in this example) the values 7, 10, 31
respectively. S sends the values 10, 20, 30.

b)

' y = 1 0 '] -------------------1

| CCITT-74990

N ote — On interpreting S, y has (in this example) the value 10. S sends the
values 10 <jnd an undefined value and 30.

c)

FIGURE D-32

Output with associated data

118 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D

PROCESS X ; (output_to PID);

O UTPUT SIGNAL TO o u t p u t _ t o ;

FIG URE D -33

Addressing signals using formal parameters

SIGNAL — •[TO SENDER

FIG URE D -34

Addressing signals back to SE N D E R

SIGNAL - - [T O OFFSPRING

CCITT-75000

FIG U R E D -35

Addressing a signal to an offspring process

D.4.3.4.5 Enabling condition and continuous signals

Enabling conditions allow conditional reception of signals based on the specified enabling condition. If
the condition is true, the signal is received and the transition is interpreted. If the condition is false, the signal is
saved and the process remains in the state until either another signal arrives or until the condition changes from
being false to being true. This can be illustrated by the example in Figure D-36. The process starts in state SI.
Over in process P2, the value of X is 9. When signal B arrives, the value of X is compared with 10. Note that
since this is a value in another process, the import operation is required to determine its present value. Since X is
not 10, the process remains in SI until either another input is received or until P2 sends a new value of X. In this
example, A arrives and causes a transition to S2. During the transition, X changed to 11 and thus now the
condition attached to signal B, in state S2, is true. Since B is the first signal in the queue, the transition following
it is performed and the process ends in state S3.

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D 119

Some im portant attributes of enabling conditions are:

1) The enabling condition is tested only when the process arrives at a state. Thus if the value of X had
changed from 9 to 11 and then to 12 while executing the transition following the reception of A, the
process would have remained in S2.

2) Enabling conditions can only be based on expressions containing IM PORTED or local variables and
not VIEW ED variables. The reason for this is based on the underlying mechanism to implement the
enabling condition. The enabling condition works using signals to determine when a value in the
enabling condition has changed. For local variables, the condition is checked before entering the state.
Since the values are local to the process, they cannot change while the process is in the state. Thus the
condition need not be continuously monitored. For IM PORTED variables, SDL uses signals for
changes to IM PORTED variables as a trigger to know when to check the enabling condition.
VIEW ED variables access the value of the variable directly. Since there is no sending of signals, once
the process entered a state, there would be no way for the process to check the value of the variable.

3) While it is possible to use more than one enabling condition per state, it is not allowed that more than
one enabling condition is used for the same signal. Thus the condition shown in Figure D-37 is not
allowed. If multiple conditions are required for a given signal, they can be combined in one Boolean
expression as shown in Figure D-38. This eliminates the ambiguity that occurs when two or more
conditions are true at the same time. In Figure D-38 the user has decided that the condition on X has
a higher priority than the condition on Y. So if both were true, the C l path would have been
followed. Once again the reason for this is that the underlying SDL system does not have priorities
attached to signals.

Continuous signals have the same basic properties as the enabling condition except that no signal is
attached to it. Thus when entering the state with no signals in the queue which can cause a transition, the
continuous signals are checked and if one is true, the transition following it is performed. This can be illustrated
by the example in Figure D-39. Initially, the process is in state SI, and the value of X is 9. When signal A arrives,
it causes the transition to S2. During the transition, X changed to 11. Since there were no other signals in the
queue, the transition to S3 is performed.

Some im portant attributes of continuous signals are:

1) as with enabling conditions, the value of the condition is checked only on arriving at a state;

2) again, only IM PORTED and local variables can be used in the continuous signals;

3) multiple continuous signals are allowed for each state. When more than one continuous signal is
attached to a state, the continuous signal with the lowest priority number will be tested first. No two
continuous signals may have the same priority number. In all cases, the priority of the continuous
signal is lower than that of any other signal. The use of priorities on continuous signals is the only
place where priorities are used in SDL. Once again, this is caused by the underlying system of SDL;
however, the way that continuous signals are modelled in SDL by using the signals sent when
importing variables, allows priorities to be allowed for continuous signals and in fact makes it
necessary to prevent ambiguity, when more than one continuous signal is present. This is illustrated in
Figure D-40. Initially, the process is in state SI, and its local variables have the values of 10 for X
and 11 for Y. Since both continuous signals are true, the one with the higher priority (lower priority
number) is chosen and the transition to S2 is performed. In S2, the condition on Y is no longer true
and so even though the priority of the continuous signal for X is lower than the one for Y, the
transition following it is performed and the process arrives at state S3.

D.4.3.4.6 Task

A task is used to represent operations on data performed on a transition, with the exception of output
signal generation and decisions. Data can only be changed by the process which owns the data in question. The
nature of the tasks appearing in any diagram will be determined by the nature of the process being described and
the level of detail required. Examples of action which may be covered by tasks are:

a) hardware actions such as send_ busy_ tone;

b) the m anipulation of data.

1 2 0 Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D

GD

S1

<IM P0RT(X,P2) = 1 0 >

i n 2

<IM P0RT(X,P2) = 1 1 >

G D
CCITT-75010

a) Part o f p r o c e s s P 1

Value of X

9

9

Queueing order
of arrival

11

b) The value o f the
variable X in
p r o c e s s P2

c) The signal queue
o f p r o c e s s P 1

FIG U R E D -36

Enabling condition

CCITT-75020

FIG U R E D -37

Illegal enabling condition

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 1 21

Tim
e

in
queue

cy>
S

<IM P O R T (X ,P 2) = 1 0 | IM P0RT(Y,P3) = 1 1 >

F I G U R E D - 3 8

Correct solution for Figure D-37

G D

/ l M P O R T (X , P 2) = 1 0
\ Priority 1

G D

IMPORT(X,P2) = 1 1
Priority 1

Value o f
X

11

Q u eu e in g
o rder o f
■arrival

T im e

a) Part o f p r o c e s s P 1

G D
CCITT-75040

b) The value c) The signal
o f X in queue o f
p r o c e s s P2 p r o c e s s P 1

F I G U R E D - 3 9

Continuous signals

1 2 2 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

CD Value o f V alue o f
X Y

10 11

/ X = 1 0
\ P r i o r i t y 2

/ Y = 1 1 \
\ P r i o r i t y 1/

Y = 1 1 \
Priority 1 /

Y: = 1 0

r

S 2

/ X = 1 0
\ lP r i o r i t y 2

CD
CCITT-75050

10

FIG U R E D -40

Continuous signals with priority

SDL users may occasionally have difficulty in deciding whether some aspects of the system being defined
should be represented by a task or a separate process. Consider the process shown in Figure D-41; should
“connect_ switch _ path” be represented as a task or as a separate process? If a separate switch path control
process has not been identified, then the task symbol would be appropriate (see Figure D-41 a)). If a separate
switch path control process is identified, then signals communicating with the control process must be used (see
Figure D-41 b)).

D.4.3.4.7 Decisions

A decision is an action within a transition which asks a question regarding the value of data items
available to the process at the instant of executing the action. The process proceeds to one of the two or more
paths following the decision according to the answer. SDL diagram authors should ensure that processes are
defined so that they cannot attempt to execute decisions for which the,answ er (or data) is not available; such
decisions would make the diagram invalid and could cause considerable confusion.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 123

C o n n e c t .
s w i t c h _

path

a) Solution, using
on e p r o c e s s

C o n n e c O
s w i t c h -

path

A c k n o w
le d g e m e n

)

C o n n e c t -
s w i t c h -

path

C o n n e c t -
s w i t c h -

 Pa*h

A c k n o w
le d g e m e n t

CCITT-75060

b) Solution, using tw o p r o c e s s e s ;

FIG URE D-41

Two possible solutions for ‘connect_switch_path’

Some examples of use of decisions are shown in Figure D-42. The variable X in the examples may have
the values 1, 2 or 3.

d) Valid

ELSE

e) Valid f) N ot valid g) N ot valid

FIG U R E D -42

Exam ples o f use o f decision

124 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

Alternative c) is not valid as the decision is not followed by at least two paths. The e) alternative is valid
as in SDL it is a convention that if the choice of alternative is undecidable it will be interpreted as an implicit
alternative leading directly to a stop symbol. Alternative f) is not valid as one of the alternatives is out o f range.
The g) alternative is not valid as the conditions on the alternatives contain variables and thus they are not possible
statically to evaluate.

If an answer is leading back to the decision in the same transition some actions must be performed which
influence the question in the decision. However, even with this rule deadlocks might be created as shown in
Figure D-43. Care should therefore always be taken when having answers leading back to a decision in the same
transition.

FIG U R E D -43

Example o f a legal use of a decision which creates a deadlock

Decisions can be made using any values currently available to the process. This includes:

— data stored by a task;

— data received by an input;

— data set when the process was created (data passed as an actual parameter);

— shared data.

The question in a decision may ask for the value of an expression and the expression can include
constants and any of the above kinds of data values.

D.4.3.5 Procedures

Procedures are one technique for adding structure to processes. In may ways, procedures in SDL are
similar to procedures in programming languages. The user is advised, however, that there are some major
differences and that caution is advised. With that in mind, it is possible to begin a discussion on procedures.

Syntactically, a procedure is very similar to a process. The procedure graph has a procedure start node
which differs slightly from the process start node and it has a return node instead of a stop node. Semantically, it
is quite different, although identical nodes of processes and procedures may have the same meaning.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 125

Procedure calls may occur wherever a task node is allowed in either a process or procedure graph. In some
sense, a procedure can be interpreted as a task with the following exceptions:

1) A procedure can contain states and thus will receive signals. Thus a part of the procedure definition
provides an additional-save-set which lists the signals that are to be saved when the procedure is
called. Since procedures may be defined at the system level, it is im portant to list all the signals that
must be saved in any of the processes that call the procedure.

2) A procedure can send output signals, the originating process instance identifier is the process instance
identifier of the process which called the procedure.

3) A procedure has its own local variables and does not have access to any of the process variables
unless the variables were passed to the procedure as IN /O U T parameters.

4) To allow the procedure to be called in a number of places, SIGNAL parameters are allowed to create
synonyms for the actual signal names for the calling process and the signal names used in the
procedure.

When a procedure is called, the procedure environment is created and the procedure begins to be
interpreted. Interpretation of the procedure continues until the return node is reached. While the procedure is
being interpreted all signals addressed to the process are either saved or received by the procedure. The procedure
does not have its own input queue, but uses the input queue of the process that called it. This is why it is
im portant to have the proper additional-save-set for a procedure. The additional save-set is constructed dynam i
cally when the procedure is called, and consists o f all valid input signals of the calling procedure that are not
given as parameters to the call. If the signal is not in either that set or in the normal save-signal-set for the state
node in the procedure graph, the signal will be discarded.

An example of the use of procedures can be found in § D.9. The example shows the use of procedure for
protocol specifications.

D.4.3.6 Expressing time in SD L

There are several places in SDL where the time representation may be needed:

a) the activation of a process at a certain time (absolute time or relative time);

b) the time consumed in executing transition actions;

c) the time taken to transfer a signal from one process to another process, which may involve a channel.

D.4.3.6.1 Timers and timeouts

The need to measure time and request timeouts in a system is met by timers and a set o f operations
performed upon them.

“Timer” is a predefined type, and all use of timers in a process must be declared. The operations “SET”
and “RESET” may be performed on timers. The SET operation requests a timeout to occur at a specified time,
and the RESET operation cancels any requested timeout. (Note that a SET operation includes implicitly a RESET
operation of any not expired timings on the Timer.)

DCL T1 Timer;

SET (NOW + 20 s, T1);

RESET (T1).

F IG U R E D -44

Exam ple o f declaration and operation o f a timer

126 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

In the SET operation an absolute time must be specified. Relative time is transformed to an absolute time
value by adding the operation “NOW ”, which yields the current time. For example, 20 seconds from now is
expressed: NOW + 20 s.

Timers are only monitored when the process is in a state. A signal is put into the input queue of the
process when a timer is checked and found equal to, or less than, the current time. The timer is then implicitly
reset.

The timeout signal has the same name as the timer and carries no data values.

SET (NOW
+ 20 ms,T1)

T

RESET (T1)

T1

CCITT-75090

FIG URE D -45

Example of use o f timers

D.4.3.6.2 Specifying time consumed by actions

When using SDL to simulate the performance of systems the time consumed in transitions must be
specified. The current SDL does not cater for this, however the following guidelines are provided.

In such cases a time value (the length of time consumed in executing a given action) is associated, as a
parameter, to the name of the action. This optional parameter can be identified by a keyword (e.g. TIM E
CONSUM ED = time value).

CONNECT_A-B
(TIME CONSUMED

= 32 ms)

TASK CONNECT_A-B
TIME CONSUMED = 32 ms

CCITT-75100

a) A n action w hich ta k es
3 2 m s is re p re se n te d b y a
ta sk s y m b o l w hich includes
tim e con su m ption

b) The sa m e action re p re se n te d
in SDL/PR

FIG U R E D -46

Indication of transition time

The indication of time as a parameter associated with the name, instead of a comment, is because the
comment should provide explanation for human beings and does not have to be understood by a machine.

D.4.3.6.3 Signal transfer time

The time elapsing from the generation (output) to the consumption (input) of a signal is very complex to
express because it depends on several factors.

There may be an absolute time consumed by the action of transporting the signal from one block to
another and this part may be expressed (if the channel is explicitly represented) as the sum of times consumed by
the actions performed by the channel.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 127

There is a relative time consumption depending on the system load and on the signal handling strategy.
Also the time spent in the activation of the receiving process depends on the operating system features and on
process priority, system load, concurrent events, etc. This time can only be guessed and is relevant only in system
capacity studies.

Another time which cannot be statically determined is the one spent in queues awaiting the consumption
of the preceding signals.

Normally, time is not easily representable statically and it is of relevance for simulation and capacity
studies only.

However, providing that all actions at the more detailed level of system description have the indication of
time consumption and that the description contains a representation of channels (operating system), it is possible
to simulate the system and to evaluate it from the capacity view-point with various techniques.

D.4.4 Text associated with SD L constructs

The conventions for text associated with SDL constructs as described in the following, apply both to G R
and PR.

Text in SDL may either be:
— formal text;

— informal text;
— comments.

Formal text is text that may be formally interpreted. Informal text may only be informally interpreted.
Comments are only annotations and may not be interpreted. The meaning of a diagram should be the same with
or without comments.

D.4.4.1 Formal text ‘

Formal text is represented using the SD L /PR syntax. In SD L/PR the permitted combinations of text are
defined in the syntax. In SD L /G R the formal text associated with a graphical construct should either be contained
in that symbol or in a connected text extension symbol (see § D.6.3.6.19).

In formal text upper and lower case letters may be freely mixed. There is no difference if a name is
represented in upper or lower case. However, a consistent use of upper and lower case letters is recommended.

D.4.4.1.1 Name

A name represents the identification of the entity to which it is associated within the context. A name is
required for:

BLOCK, PROCESS, SIGNAL, CHANNEL, STATE, SAVE, INPUT, OUTPUT, MACRO, CREATE,
START, PROCEDURE and CONNECTOR.

A name must begin with a letter and may contain letters, digits, national characters and underscores. Note
that spaces are not allowed.

Examples of legal names are:

CALL _ HANDLER
R IN G IN G _ TONE

Examples of illegal names are:

START C H A RG IN G (it contains a space)
1982 (it starts with a digit)

The IN PU T name identifies the received SIGNAL and vice versa the OUTPUT name identifies the sent
SIGNAL, so that OUTPUT — SIGNAL — IN PU T bind the same name. Connectors (JOINs in PR) have an
associated name. This name may begin with a digit. Connectors are also peculiar in the fact that they do not have
an associated text string.

All keywords in SD L/PR are reserved words, and may not be used as names. All reserved keywords are
given in the SD L /PR summary.

128 Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex D

Formal parameters are used in statements or in process and procedure start symbols.

Formal parameters are indicated by the keyword “FPAR”.

D.4.4.1.2 Formal parameters

P1 J " { FPAR A<C,B INT '

"4
CCITT-75110

FIG U R E D -47

Exam ple o f formal parameters

See § D.4.3.5 on the use of formal parameters.

D.4.4.1.3 Actual parameters

Actual parameters are used in constructs such as create request, procedure call, output, etc. Actual
parameters are delimited by a pair of parentheses.

OUTPUT digits (a,b,c,d);

F IG U R E D -48

Exam ple o f actual parameters in an output

D.4.4.1.4 Statements and expressions

The text in tasks and decisions follow the SD L/PR syntax for statements and expressions.

D.4.4.1.5 Definitions and declarations

Signal definitions, data type definitions and variable declarations are always represented by the SD L /PR
syntax for those constructs.

D.4.4.2 Informal text

Informal text associated with GR symbols or PR statements may only be informally interpreted. The
SD L /PR syntax for text strings is used for informal text, i.e. the text is enclosed by a pair o f apostrophes.

Examples of text strings are:

‘Is subscriber free’

‘a2 + 2ab + b2’

Note that any character is allowed within the text string with the exception of ’(apostrophe). If required ’
can be represented by a couple ”.

Example:

John’s house. — ‘ John”s house’

If only informal text is used throughout the SDL representation the apostrophes may be omitted. If this is
the case it should be indicated in the beginning of the SDL representation.

Informal text may have any form suitable to convey information. In this case the writer assumes some
common basis of understanding between himself and the reader. Note that the reader can be a machine. In this
sense informal text must be sufficiently formal in the reader’s understanding in order to be unequivocally
understood (Figure D-49).

Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex D 129

Examples of informal texts are:

- TASK'do while x < 5'

- INPUT x 'contains s u b s _ identity'

- DECISION 'subscriber busy?'

- (busy):

F IG U R E D -49

Exam ples o f inform al text

CHILL text associated with SDL statements is one example of “informal” text from an SDL point of view,
though it is a very formal way of representing actions.

There is a very clear distinction between informal text and comments.

Comments are introduced to help readers in understanding the representation, their absence or presence
does not alter the representation.

The informal text is part of the representation itself, so that we cannot understand it without considering
the associated text (both formal and informal).

D.4.4.3 Comments

Comments in SDL do not have any formal or informal meaning. They are just introduced to help readers
better understand the GR-diagram or PR-text.

In SD L /G R comments may be inserted anywhere in a diagram. Comments are recognized either by being
associated with a comment symbol or by being delimited by */*’ and **/’ (see Figure D-50).

CCITT-75120

FIG U R E D -50

Exam ples o f comments in GR

In PR, comments are either identified by the keyword “COM M ENT” or delimited by */*’ and **/’.

TASK A: = 2 COMMENT this is a task;

or

TASK A: = 2 / * this is a task */;

F IG U R E D-51

Exam ple o f com ments in PR

D.4.5 Undefined situations

D.4.5.1 General

In the lifetime of systems, from initiation to removal from service, failures normally occur. Some of these
(and for software systems, most of these) are due to undefined situations in the specification. It is therefore
im portant to check an SDL specification to find as many of these as possible before implementation. Afterwards,
when a specification has been implemented and a description has been provided, it should be checked that the
description describes the system 100% — not more or less!

130 Fascicle VI. 11 - Rec. Z.100 to Z.104 - Annex D

SDL
Sp ec if ica t ion -» ^ysterr^«-

SDL
De

scrip-
t ion

CCITT-75130

F I G U R E D -5 2

One to one correlation between specification, system and description

D.4.5.2 Examples o f undefined SD L situations

D.4.5.2.1 A data object which tries to assign a value outside its range, or a value not belonging to its type. For
example, the variable SUBSCRIBER _ NO has the type INTEGER _ RANGE (100000 : 999999) and tries to
assign the value FALSE, 1 000000, 87 or BUSY.

D.4.5.2.2 A signal is sent to a non-existent process.

D.4.5.2.3 A signal sent to a (newly) dead process instance. Flowever, it might not be an error of the
system — but in the SDL specification/description it is an undefined situation, which must be treated by the
underlying system/simulation program.

D.4.5.2.4 A signal addressed to a non-existent channel.

D.4.5.2.5 An error in the behaviour of the physical system will also be present in the SDL description if a
one-to-one correlation has been obtained.

D.4.5.2.6 Directing signals to a channel or to a process without having declared the signals, channel or the
process properly.

D.4.5.2.7 A decision for which the answer or data is not available when the process attempts to execute the
decision.

D.4.5.2.8 A try to instantiate a process for which the maximum number of instances has already been reached.

D.4.6 Guidelines on primitive data in SD L

The advanced data concept is treated in § D.4.7.

D.4.6.1 General

In SDL, communication between processes takes place by use of signals, by shared values and by
exported/im ported values.

A signal is initiated by a process with the use of an output. The signal is a flow of data conveying
information to another particular process. If the receiving process recognizes this signal, by means of an input, the
data associated with this signal becomes available to this process.

A process can read a data value of another process if it belongs to the same block and if that data is
declared as a shared value.

In addition, a process can reveal a data item by declaring it exportable. All other processes with a
corresponding import declaration are given copies of the data value upon request.

From the point of view of a particular process, and at a particular time, there are two major and
complementary categories of data:

1) data available to this process;
2) data not available to this process. (This second category includes data retained but not yet available to

this process in the form of an arriving signal.)

Only available data can be used by a process in performing any of its actions: decisions, tasks or outputs.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 131

When used in a decision or output the data itself, at this level of abstraction, is not modified. A special
task, however, can create, store, modify or destroy data.

Examples of treatment of data are shown in Figure D-53 (for a decision), in Figure D-54 (for an output)
and in Figure D-55 (for a task).

FIG U R E D -53

Q uestioning of data with inputs by means o f a decision

Z = X+Y

S(Z)

\ f

CCITT-75150

N ote — S is the signal name. Z is the associated data.

FIG U R E D -54

Sending data by means o f an output

132 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

N ote — S and K are signal names. Z and X are the associated data.

FIG URE D -55

Storing incoming data for future use by means of a task

The concepts of shared values and im ported/exported values are available as alternatives to signals as a
means of interchanging information.

D.4.6.2 Data handling inside a process

Three possible ways of interprocess communication exist; namely via SIGNALS, SHARED VALUES or
IM PO RTED /EX PO RTED VALUES. These three techniques differ substantially. For example, an IM PORTER of
certain data items cannot have the same data items revealed as SHARED VALUES.

Data is local to a process instance, which means that all data have one and only one owning process
instance.

The owner process instance can change, the actual value of the data.

Example: If data items a and d are integers and local to process P, the examples in Figure D-56 of
sequence of actions are legal inside P.

FIG U R E D -56

Exam ple on actions upon local data in a process

Fascicle VI. II — Rec. Z.100 to Z.104 — Annex D 133

D.4.6.3 Data handling between processes

Two processes can exchange data otherwise than by means of signals. A process can read a data value of
another' process if it belongs to the same block and if that data is declared as a “shared value” (§ D.4.6.3.1). In
addition, a process can read a data value of another process if that data is declared as an “exportable value”
(§ D.4.6.3.2). The process that does not own the data cannot modify the data value, but can make a local copy
which can be manipulated like all other local data items.

A data item cannot be both imported and shared.

D.4.6.3.1 Reading o f shared values

A process can reveal some or all of its data values by declaring them as “shared values”, which has the
effect that all other processes (belonging to the same block as the revealing process) have the possibility of reading
the shared value in the same manner as if this shared value was a local value. This means that the value which a
viewing process is seeing is always the same value as that seen by the revealing process.

There are some limitations to what can be revealed.

D.4.6.3.2 Reading o f exportable values

A process can declare some or all of its data as “exportable data”, which has the effect that all other
processes with a corresponding “importable data definition” are allowed to get a copy of the data value upon
request time. This means that the copy of the data value, given to an importing process upon request, remains
constant even if the actual data value is changed later by the exporting owner process.

D.4.6.3.3 Example o f differences between use o f shared and exportable values

In the example of Figure D-57 there exists only one instance of process 1. If more than one instance can
occur, some means of uniquely identifying the relevant data item d must be provided.

D.4.6.3.4 Shared values

D.4.6.3.4.1 General

The SDL user may find that the definition of shared data permits an easy way of specifying communica
tion between two processes. However, a number of problems arise in implementing systems so specified, and this
section is intended to guide users in avoiding and overcoming such problems. Describing systems in SDL which
have implemented shared data is less likely to prove difficult, because the problems will have been overcome in
the implementation and it should be possible to map the solution chosen onto SDL.

In the remainder of this section it is supposed that a process A owns data which it reveals to a process B
which views it.

D.4.6.3.4.2 Creation problems

The result of an attempt to view data in a process before the process and the data is created is an SDL
error. The user may avoid this problem in two ways. Either:

- ensure that the revealing process instance A is created and has initialized the relevant data before the
viewing process instance B, or

— ensure that B does not enter transitions which use shared data until A has been created and has
initialized the relevant data.

A simple way to achieve the former case is to make A the parent (or an ancestor) of B, or to let A be
created at the same time as the system (implied creation). In the latter case it may be arranged that the relevant
transition in B can only be triggered by a signal from A.

134 Fascicle VI.I1 — Rec. Z.100 to Z.104 — Annex D

P r o c e s s 1 P r o c e s s 2 P r o c e s s 3

Value o f d

N ote — Process 1 is the owner process of d. d is shared with process 2 and made exportable. Process 3 has d as an importable value.

FIGURE D-57

Exam ple o f differences between use o f shared and exportable values

D.4.6.3.4.3 Process stop problems

The process A will no longer be able to reveal data after it reaches a stop symbol. Any attempt to view
data would then be an SDL error. The user may avoid this problem in two ways. Either:

— do not use a stop symbol in A at all. In Figure D-58 process A is shown in a dorm ant state with
shared data visible, but not capable of further change, or

— ensure that B is aware that A is about to stop and does not make any further attempts to view the
relevant data. An example using signals is shown in Figure D-59.

The first solution has the disadvantage for the implementor that A has not released the data storage it was
using.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 135

Note — Process A has data X which is revealed.

FIGURE D-58

A process having a dormant state,
still able to reveal data but not to change it

N ote — Process A has data X which it reveals to process B.

FIGURE D-59

Process A notifies B and gets agreement before it stops

D.4.6.3.4.4 Problems due to multiple instances o f B

If the process B has several instances simultaneously alive, say B l, B2, B3 . . . all viewing A’s data,
solutions to the earlier problems in § D.4.6.3.4.2 need a slight modification.

The easiest way to avoid any instance of B attempting to view A before A exists and initialized the
relevant data, will be if A is the parent of all the B’s.

Alternatively if A has to signal to each B it can only do so after being notified by the parent (B) of the
existence and process identifier of each B.

There also has to be a slight modification to the process stop solution in § D.4.6.3.4.3. Clearly the dorm ant
state solution in Figure D-58 is still correct.

136 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

The solution in Figure D-59 is no longer satisfactory. A solution on the following lines could be
constructed.

a) A exists before B’s parent.

b) A is informed by B’s parent sending a signal, each time a new B is created.
c) A is informed by each B sending a signal when it is going to stop — or at any rate when it will not

view A’s data again.

d) A keeps count of how many Bs are alive and viewing or potentially viewing.

e) A sends a signal to B’s parent to stop the creation of more Bs and gets an acknowledgement that no
more will be created.

f) When the count of Bs potentially viewing reaches zero, A can stop.

This is shown in Figure D-60 concerning the A process.

FIG U R E D -60

Two diagrams of process A

D.4.6.3.4.5 Problems due to multiple instances o f A

If the process A has several instances simultaneously alive, say A l, A2 . . . and B wishes to view data,
then B has to specify which A holds the relevant data. This means that B must know the process identity of the
relevant A, and must be certain that the A whose data is to be viewed exists.

A possible solution to the problems can be constructed as follows.
a) A’s parent sends a signal to B containing the process identifier of one of its offspring (say A6)

holding the data B wishes to view.

b) B views the data.
c) A6 sends a signal to B to inform B that A6 is about to stop and that data should be viewed no more.

d) B acknowledges by replying to A6 with a signal.

e) A6 stops.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 137

The most likely practical case concerning multiple instances of both process A and B, is when the data
sharing relation is between pairs of As and Bs. Problems in § D.4.6.3.4.2 and § D.4.6.3.4.3 may be avoided by the
following:

a) As soon as a new instance of A, say Ai is created, it creates a new instance of B, say Bj. Ai will then
know, the process identity of Bj as offspring, and Bj will know Ai as parent.

b) Bj views the data.
c) When Bj has finished viewing the data for the last time it sends a signal to its parent Ai and stops (or

continues with other transitions).
d) Ai stops.

D.4.6.3.4.6 Problems due to multiple instances o f A and B

D.4.6.3.4.7 Sharing several items o f data

Consider the case in which A owns several items of data, say X I, X2 and X3 which are all to be viewed
by B. For simplicity suppose there is only one instance of process A and one of process B.

If A updates X I, X2 and X3 while B is trying to view them, it may happen that B gets a mixture of new
and old values, i.e. an inconsistent set.

In some systems, consistency is more im portant than having up-to-date values, and in such cases means to
enforce consistency should be applied. Two possibilities are discussed here:

a) Instead of sharing X I, X2, X3 we define a composite structure X which has X I, X2, X3 as fields
an d /o r substructures.
X is revealed by A and viewed by B.

A now obtains updated values for X I, X2, X3 and when all are updated, assigns all new subfields
to X in a single assignment (assuming that SDL takes assignment as atomic).
In this way an inconsistent set is never viewable.

However the problem has not really been solved — merely passed on to the implementor since in most
implementations assignments are only atomic if the fields are in one machine word.

b) In order to solve the problem as posed, we need to specify some form of lock in SDL. A simple
deadlock free example is shown in Figure D-61 which requires the introduction of two markers Ml
and M2.

a) P ro c e ss A
U pdating X I , X 2 , X 3 . The
im portan ce o f th e se q u e n c e ,
first M 2, then th e X s , then M 1
is e m p h a s ize d b y using
s e p a ra te ta sk s

CCITT-75210

b) P ro c e ss B
Reading X 1, X 2 , X 3 . Tries
again if it finds th a t M 1 differs
from M 2

Note — Process A reveals M l, X I, X2, X3, M2 to Process B. M l and M2 are o f type IN TEG ER and initially set to zero.

FIG URE D-61

A lock to ensure consistent values

138 Fascicle VI.11 — Rec. Z.100 to Z.104 — Annex D

The markers must be implemented so that they can be atomically modified (i.e. in one word).

The implementor should examine the frequency and time taken for an update and investigate the
probability of repeated attempts and ensure that he gets his required performance.

D.4.6.3.4.8 Conclusions

The above paragraphs reveal some problems in specifying systems using shared data, and give some
examples of ways of avoiding them. Neither the problems nor the solutions given are exhaustive, and users may
find other ways of avoiding the problems as well as other problems to avoid. In any event it is desirable to select
solutions which harmonize with other aspects of the system being designed, so as to reduce complexity. Users are
advised to analyse the behaviour of systems employing shared data with care.

Finally it is perhaps worth pointing out that most of these problems are avoided by using signals to send
data.

In SDL, data values are regarded as “indivisible”, i.e. a data object either has one value or another in its
range. When implementing data objects, an implementation may modify only one part of a complex object at a
time. When such objects are shared, the implementor should provide mechanisms for ensuring consistency
(e.g. locks, etc.).

Note — This problem is normally avoided by exportable data since the owning process will not be able to
reply to a request at a time of data changing (when the data may be inconsistent). A data value is changed totally
in one transition and as the process can only be interrupted in a state the data will be consistent. “M utual
exclusion” is thus ensured.

D.4.7 Guidelines on advanced data in SD L

D.4.7.1 Definition o f data types

D.4.7.1.1 General

SDL provides a number of pre-defined data types. It is possible, however, for users to define new data
types. Once defined, these types may be used when declaring variables, signals, etc. in the same way as the
pre-deflned types.

As with most SDL concepts, the type definition mechanism can be used at a num ber of levels of
abstraction, ranging from informal definitions of the basic syntax, to a fully formal definition of type syntax and
semantics.

Types may be “parameterized”, thus providing “building blocks” from which an even wider class of types
may be created. These are known as type generators and, like SDL processes, must be instantiated to create one or
more similar types with slightly different properties. The built-in type Array is an example of this since its
“contents” are supplied only when it is used.

The facility to define new data types should be used whenever a highly rigorous, unambiguous specifica
tion is essential. Often, just stating the name of a type does not allow all readers of a specification to determine
the exact properties of this type, even for types which are quite familiar. In these cases the advanced SDL data
concepts should be used.

D.4.7.1.2 Introduction to abstract types

All data types in SDL are defined as abstract types. A type defines a set of values and a set of operations
which may be performed on these values. For example, the set of values for type Boolean are True and False and
the operations are the traditional Boolean operations, Not, And, Or, etc. Although seemingly restrictive at first
glance, the abstract type concept is widely accepted in modern language theory, and allows the user to define any
data type required. The data structures in traditional programming languages are merely a subset o f abstract types.
The behaviour of the operations can be defined informally, via “comment” text, or by a formal set o f axioms.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 139

This scheme allows definition of types in a way totally independent of their implementation, and thus the
use of data types in SDL does not influence the final choice of implementation techniques.

D.4.7.1.3 Data definition

Data definitions are divided into three distinct categories: data type definitions, data type generators and
synonym definitions.

D.4.7.1.3.1 Synonym definition

Synonym definitions allow a name to be equivalenced to the value yielded by an expression (which is
dependent on context). “Strong typing” requires the type of the expression to be unambiguously determinable, if
not, the type must be explicitly stated (e.g. the expression ‘4’ is ambiguous since it may belong to type Real or
type Integer).

Synonym definitions would normally be used as a “shorthand” notation where an expression is used in a
number of places or to provide a centralized point for easy modification of a frequently accessed constant.

Example:

S Y N S i n g l e I n te g e r = 1

S Y N B l o c k S i z e = 5 1 2 * B i t s P e r B y t e

S Y N L e g s = (4 * D o g s) + (2 ' B irds)

D.4.7.1.3.2 Data type definition

The data type definition mechanism represents the principal technique for formally defining new types in
SDL. Two alternatives are provided, newtype and syntype.

A syntype type defines a type which represents a subset of the values of some already existing type
(known as the parent type), typically used like a programming language “range restriction” to allow tighter
control over the values a variable may take.

This allows “structural equivalence” among types, i.e. types are compatible if they have the same
underlying structure (parent type) even though they have different names.

Example:

SY N T Y PE D ig i t = I n te g e r

C O N S T A N T S 0:9

END D ig i t

SY N T Y PE W a r m C o l o u r s = C o lo u r s

C O N S T A N T S Y e l lo w , O r a n g e , R ed

END W a r m C o l o u r s

A newtype type introduces a totally new data type, that may or may not be based on an existing type. New
literals and operator names can only be introduced via newtype definitions.

Newtype definitions provide for “name equivalence” among types, i.e. variables are only considered to
have the same type if their declared types have textually the same name.

A newtype may be defined independently of all other types, as an extension to an existing type, or as an
instantiation of a type generator or the built-in type generator provided for STRUCT. In the first two cases an
im portant feature is the ability to define properties of the type as formal axioms. These optional axioms define the
semantics of the operations defined for the type by stating the effect of combining operations. Thus all operations
are defined in terms of each other. The type Boolean is used as the basis for definition of all abstract types,
providing the nucleus of the total set of axioms for all types (although Boolean need not appear in the axioms for
a particular type, recursively examining types will ultimately show that all types are defined in terms of Boolean).

Construction of these axioms requires care on the part of the SDL user to avoid two significant pitfalls:
incompleteness and inconsistency. Both result in a potentially ambiguous SDL specification. In the first case,
unfortunately, the set of axioms is, perhaps, insufficient to completely characterize the type being defined. In the
second case the axioms conflict with each other, clearly invalidating the specification. Unfortunately, detection of
these problems must be left to the SDL user: SDL provides no automated techniques for detection of
incompleteness of inconsistency in algebraic type definitions; the user must rely on intuitive evaluation of a given
set of axioms.

140 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

D.4.7.1.3.3 Data type generator

Informally a data type generator is a “template” from which any number of new types can be created. The
generator parameters are textually replaced throughout a textual copy of the original generator and this new
generator can then be interpreted as part of the type definition in which the generator instantiation is found.

Clearly this avoids redundant duplication of type definitions in cases where a number of types are required
which are identical except for a part of the type which does not affect the basic axioms.

D.4.7.2 Examples o f data definition

In the following, some examples of data definitions are given. They are not exhaustive; their only purpose
is to provide a flavour of the power of the data definition mechanism adopted by SDL.

Beside the type definitions, examples of declarations of data objects of those types and of operations on
them performed, are given.

Accordingly to the SDL form used, declarations and operations will be contained (GR form) or not (PR
form) in graphical symbols retaining however the same syntax.

D.4.7.2.1 Example 1: Definition o f a subscriber meter

Here a possible definition of a subscriber meter is given. The subscriber meter is defined by relying on the
general properties of the natural type and restricting the set of allowable operations to only addition.

D E F IN ITIO N

NEWTYPE S U B _ METER

INHERITS NATURAL (" + ")
END SU B _ METER

EXAM PLE OF USE

DCL A METER SU B METER;

A METER : = A METER + 1 0

D.4.7.2.2 Example 2: Definition o f a generic type “bidimensional array ”

Here a bidimensional array is defined. The definition is general and not providing any restriction on the
ranges of the two indexes, nor on the components of the array. This allows this type to be instantiated using
whichever range and component type.

Three distinct operations are allowed (besides the implicit one which is the assignment operation); declare,
insert, extract.

It is possible to declare new objects of that type, insert a new value in a selected position of the array and
to extract a value from a selected position in the array respectively.

Accordingly to the syntax of the data definition for each allowed operator the domains and codomain of
the operator is given in the OPERATO RS part o f the definition1). The axioms part gives the semantics of the
operators.

Each operator name which is followed by an exclamation mark (in this case all of them) indicates that this
name is used in the definition and a different name is used in the concrete syntax when using objects of that type.

W hen no result type is stated (after the arrow) the result is a replacem ent in the param eters w hich are prim ed.

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D 141

D EFIN ITIO N

G EN ER A TO R B I D I _ A R R A Y (TYPE i n d e x l , TYPE in d ex 2 , TYPE A _ T Y P E) ;

O P E R A T O R S

INSERT! : B ID I _ A R R A Y', i n d e x l , in d ex 2 , A t y p e ;

EXTRACT! : B ID I _ ARR A Y', i n d e x l , in d e x 2 - A _ t y p e ;

A X I O M S

EXTRACT!(DECLARE!(v) , l1(l2) = Error!;

E X T R A C T !(IN S E R T !(A ,lp 1 , Ip2, E1) , lp r , lp c) =

if I p r = l p 1 a n d Ipc = lp2 t h e n E1 e l s e

E xtract ! (A , lp r , lp c) f i ;

END BIDI A R R A Y

EXAM PLE OF USE

S Y N T Y PE INDEX = INTEGER

C O N S T A N T S 1:20

END INDEX

NEW TYPE

A R R A Y 2 B I D I _ A R R A Y (INDEX; INDEX; S U B _ METER);

E ND A R R A Y 2

DCL D O U B COL A R R A Y 2;

DCL A S U B METER;

A : = D O U B _ C O L (5,16)

D O U B _ C O L (5 , 1 6) : = A

D.4.7.2.3 Example 3: Definition o f type bit

The newtype bit is defined as having only the values 0 and 1. The flip operator is introduced to set/reset
the value of a bit (the codomain is missing) and all other operations (Not, And, Or, “ + ”) return a value.

D E FIN ITIO N

NEW TYPE bit

L iterals (0 ,1);

O P E R A T O R S

N O T : bit — bit;

A N D : b it ,b it -► bit;

OR : b it ,b it -+ bit;

" + b it ,b it -»■ bit;

FLIP : bit' - ;

A X I O M S

Flip (0)' = 1 ;

Flip (1)' = 0;

N o t (1) = 0;

N o t (0) = 1;

A n d (A ,B) = if A = 0 t h e n 0 e l s e B fi;

Or (A ,B) = if A = 1 t h e n 1 e l s e B fi;

" + " (A ,B) = if A = 0 t h e n B e l s e if B = 1 t h e n 0 e l s e 1 fi;

END bit

142 Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D

EXAM PLE OF USE

DCL C N T R L _ B I T BIT;

DCL T M P _ B I T , D U M _ B IT B IT ;

T M P _ B I T : = N O T (C N T R L _ B I T)

D U M _ BIT : = O R (T M P _ B I T , CNTRL BIT)

FLIP(CNTRL BIT)

D.4.7.2.4 Example 4: Definition o f type byte

A byte type has been defined as being an array of bits (newtype bitarray) as an array it inherits all the
properties of arrays. Other operations allowed are; Shr, Shi, And-Mask providing shift to left n positions
(0 < n < 7) , shift to right n posiions (0 < n < 7) and the AND operation with another byte respectively.

D EFIN ITIO N

NEW TYPE bitarray (in te g e r , bit) E ND bitarray;

NEW TYPE b y t e INHERITS bitarray ALL

A D D IN G O P E R A T O R S

s h r : b y t e ' , i n t e g e r ;

sh l : b y t e ' , i n t e g e r -► ;

A n d — M a s k : b y te ' , b y t e ->• ;

A X I O M S

e x t r a c t ! (s h r (B ,1) ' , J) = if J < 0 or J > 7 t h e n Error!

e l s e if J = 7 t h e n 0 e l s e e x tr a c t !

(B ,J + 1) ' f i

fi;
e x tr a c t ! (S h l (B ,1)' ,J) = if J < 0 or J > 7 t h e n Error!

e l s e if J = 0 t h e n 0

e l s e e x t r a c t (B ,J — 1)! .

fi

fi;
sh r (B ,n) ' = i f n < 0 o r n > 7 t h e n Error!

e l s e if n = 0 t h e n B

e l s e s h r (sh r (B ,1) ' ,n — 1)'

fi

fi;

s h l (B , n) ' = if n < 0 or n > 7 t h e n Error!

e l s e if n = 0 t h e n B

e l s e shl (shl(B,1)',n — 1)'

fi

fi;

FOR ALL i IN INTEGER (e x tr a c t ! (A n d — M a sk (B ,M B) ' , i)

= IF i < 0 OR i > 7 THEN error!

ELSE

a n d (e x tr a c t ! (B , i) , ex t r a c t ! (M B , i)) FI;

/* W h e n t w o b y t e s a re a d d e d t o g e t h e r , e a c h bit in t h e r e s u l t in g b y t e is e q u a l
t o a d d in g t o g e t h e r t h e c o r r e s p o n d i n g b i t s in t h e or ig inal b y t e s */

e n d b y te

Fascicle V I.ll — Rec. Z.100 to Z.104 — Annex D 143

DCL F BYTE, S BYTE, T BYTE BYTE;

DCL T M P _ BIT BIT;

EXAM PLE OF USE

sh r (F _ BYTE, Z)

s h l (S _ B Y T E , 3)

A n d - M a s k (F _ BYTE, S _ BYTE)

T M P _ B I T : = F _ BYTE (7)

D.4.7.2.5 Example 5: A simplified definition o f a byte type

SDL data definitions allow users to define “informally” data types. Such a facility may be very useful,
especially when a stepwise refinement method is wanted for defining the system. This example shows a way of
“inform ally” defining the same byte type as defined in example 4. (Note — the definition of the type bitarray is
assumed.)

D E F IN ITIO N

N EW TYPE b y t e INHERITS bitarray ALL

A D D I N G O P E R A T O R S

s h r : b y t e ' , i n t e g e r -► ;

sh l : b y t e ' , i n t e g e r ->• ;

A n d — M a s k : b y t e ' , b y t e -► ;

I* S h r p r o v i d e s s h i f t n p o s i t i o n s , w i th 0 < n < 7 , t o w a r d s r ight */

/* S h l p r o v i d e s s h i f t n p o s i t i o n s , w i th 0 < n < 7 , t o w a r d s l e f t */

/* A n d — M a s k p r o v i d e s t h e and o p e r a t io n o n c o r r e s p o n d i n g b i t s in t w o d i f f e r e n t b y t e s ; t h e r e s u l t is s t o r e d in
t h e f ir s t o p e r a n d */

e n d b y t e

D.4.7.2.6 Example 6: Definition o f a subscriber

A very simple example of the definition of a subscriber is given. Up to this point a subscriber is a
structure (record in many programming languages; or more formally a collection of several fields each of which
may have a different type and may be selected when needed) containing a number field (the telephone number of
the subscriber) and a status field (the status of the subscriber). These two fields are previously defined.

The only operations allowed on a subscriber object are connect and disconnect; they have the effect of
setting the status of a subscriber to busy, or to free, respectively.

D E F IN ITIO N

NEW TYPE d ig i t s t r in g s t r in g (d ig i t) END d ig i t s t r in g ;

N EW TYPE s t a t u s _ id L IT ER AL S(free , b u s y) E ND s t a t u s _ id;

N EW TYPE s u b s c r i b e r

S T R U C T n u m b e r d ig i t s t r in g ;

s t a t u s s t a t u s _ id;

O P E R A T O R S

c o n n e c t : s u b s c r ib e r ' , s u b s c r ib e r " -► ;

d i s c o n n e c t : s u b s c r ib e r ' , s u b s c r ib e r " ->• :

144 Fascicle V I.ll - Rec. Z.100 to Z.104 - Annex D

S = c o n n e c t (S 1 , S 2) ' = > S1 (s t a t u s) = b u sy ;

S = c o n n e c t (S 1 , S 2) " = > S 2 (s t a t u s) = b u s y ;

S = d i s c o n n e c t (S 1 , S 2) ' = > S 1 (s t a t u s) = f r e e ;

S = d i s c o n n e c t (S 1 , S 2) " = > S 2 (s t a t u s) = f r e e ;

e n d s u b s c r i b e r

EXAM PLE OF USE

DCL S U B EX, CALD S U B S U B S C R I B E R ;

DCL N U M DIG ITSTRING;

S U B EX (S T A T U S) : = FREE

N U M : = S U B _ E X (N U M B E R)

C O N N E C T (S U B EX, CALD S U B)

AXIOMS

D.4.7.2.7-8 Examples 7 and 8: A more detailed definition o f a subscriber

Here two other examples of informally defined data types are given. They refer to the possibility of
structuring. Each new type is defined as containing as a field the old one. Such a feature allows the user to
concentrate on particular aspects of the data type, deferring to a more detailed level other aspects.

D E F IN ITIO N

NEW TYPE s u b s c r i b e r _ r e v 1

ST R U C T f i r s t _ a p p s u b s c r i b e r ;

c o u n t e r s u b _ m e t e r ;

END s u b s c r i b e r _ rev1

T h is d e f in i t io n a d d s t h e m e t e r i n g fa c i l i ty t o a s u b s c r ib e r , h e r e c a l l e d s u b s c r i b e r _ R E V 1 .

NEW TYPE s u b s c r i b e r _ R E V 2

S T R U C T o l d _ s u b s u b s c r i b e r _ r e v 1 ;

e n a b l i n g T h r e e _ c o n d ;

END s u b s c r i b e r _ r e v 2

T h is a d d s e n a b l i n g c o n d i t i o n s t o a s u b s c r i b e r (f ie ld e n a b l i n g) ; T h e T h r e e _ c o n d t y p e m a y b e d e f i n e d as:

NEW TY P E T h r e e _ c o n d LITERALS (LOCAL A B , LONG A B , INT A B) END T h r e e _ c o n d ;

- D.4.7.2.9 Example 9: A procedure fo r constructuring axioms fo r a NEW TYPE

When introducing new data types it is essential to set up enough axioms, which means that:

— each operator appears at least once in the set of axioms;

— true statement (other than the axioms) are proveable;

— no inconsistency can be detected,

in order to fulfil the requirements of the new data type.

Fascicle VI. 11 — Rec. Z.100 to Z.104 — Annex D 145

CCITT-82800

D.5 Documentation

D.5.1 What is a document?

A document is defined by ISO as “a limited and coherent amount of information stored on a medium in a
retrievable form”. It should therefore be considered as a logical unit which is strictly delimited. Documents are
used for conveying all information relating to a system which is specified or described using SDL.

When paper is used as the physical medium for storing a document, the term document is often incorrectly
applied to the sheets of paper rather than their logical contents. With the growing use of magnetic storage media,
the term is being returned to its original meaning.

D.5.2 Introduction

This § D.5 discusses documentation aspects. It is concerned with the logical organization of documents
rather than their physical organization. This is left to the users discretion. The similarity in requirements of both
the logical and physical organization of documents means that some useful hints may be offered in the following
text to aid a user in setting up a physical organization for documents.

D.5.3 Why do we need documents?

By splitting the information relation to a system into a number of documents, the system can be made
more readable and manageable. Since SDL has no formal concept of a document, the user is forced to use an
informal mechanism or to borrow one from another language (preferably CHILL). It is only when specifying or
describing a complete system as a single textstring using the PR-form, that it is not necessary to split the system
into separate documents.

146 Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

D.5.4 Document structure

The set of documents covering the whole system definition can be considered as a set of structures.

A document structure, where documents refer to sub-documents, is attached to each block in the system
structure including the system level. See Figure D-62.

S u b d o c u m e n t s

D.5.5 Referencing mechanism

All documents must be precisely related to each other. Particularly since updates to one can have an
impact on the others.

Each document must have a unique identification and its boundary must be clearly specified. The
boundary could be indicated by giving the page numbers for sheets belonging to the same document. For a one
page document, such as a block interaction diagram, the frame symbol could indicate the boundary.

The same document can appear as a sub-document to more than one block in the same system.

§ D.9, “Examples”, gives two approaches for referencing. One approach is based on PR-syntax, the other
uses the comment mechanism in GR-diagrams. For more details see § D.9.

D.5.6 Types o f documents

The different types of diagrams, which are introduced in the GR-syntax are generally documents according
to the given definition. They should also include an indication of their boundary. The documents, which together
cover all definitions introduced in a block definition should, as already stated, form a document structure. In this
structure at least the process definitions should be placed in different documents. If a block interaction diagram is
used, the channel definitions are also covered in the same document. The signal definitions and data definitions
should preferably be grouped together in separate documents.

The procedure definitions and macro definitions should similarly form sub-documents to the process
document.

The definitions for those signals forming a signal list can be placed in separate documents called: Signal
list X, Y, Z, etc. A possible document structure for a block is given in Figure D-63 below:

F IG U R E D -63

A possible document structure for a block

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 147

D.5.7 Mixing o f GR and PR

The process definition can be partially defined using the GR-form. The process graph is covered either by
the process diagram (in GR) or by the process body (in PR). To be able to mix the definition o f the process graph
given in GR with the rest given in PR, the process graph definition should form a document of its own.

A system or block definition can also be partially defined using the GR-form. The block interaction
diagram should then form a document. Since the block interaction diagram covers only parts of a system or block
definition, the remaining parts should be given in separate documents.

When mixing GR and PR, the PR representation has to be split into several documents. Unfortunately, the
PR syntax does not allow for this, so the splitting must be performed in an informal way.

Methods of forming syntactically connect parts of a PR repesentation are discussed in § D.7.

D .6 Guidelines fo r representing systems using SD L /G R

Chapter D .6 of the SDL User Guidelines explains the use of the graphical syntax representation of SDL,
the SD L/G R.

D.6.1 Why graphical syntax ?

A graphical language has the advantage that it clearly shows the structure of a system and allows the
control flow to be easily visualized. As a design tool SDL should be in a form which allows the user to clearly
and concisely express his ideas. The graphical syntax allows this and is more in line with the traditional
representation of extended finite state machines, whereas the textual phrase representation is best suited for
machine use.

The graphical representation syntax of SDL (SD L/G R) is the original form of SDL. It was devised during
1973 to 1976 and first appeared in the 1976 version of the Z. 100-series of Recommendations.

The graphical representation syntax was derived from the graphical languages developed by different
organizations for their own use.

D.6.2 SD L /G R diagrams

The diagrams explained in this § are:
Block interaction diagram which describes the internal structure of a system or a block;

Block three diagram which describes the partitioning of a system in terms of blocks and sub-blocks;
Process tree diagram which defines the partitioning of a process in sub-processes;

Channel sub-structure diagram which defines the internal structure of a channel;
Macro definition diagram which defines a set of symbols. Each appearance of a reference to the macro
definition should be replaced with the definition before it is interpreted;

Procedure diagram which defines the behaviour of a procedure execution;
Process diagram which defines the behaviour of all process instances of that process definition.

Signal definitions and data definitions are defined using the SD L/PR syntax (see § D.7.3.2), and are
referenced to from the diagrams in which the information is used.

D.6.2.1 General guidelines

General guidelines for drafting graphical diagrams are:
— they should be drafted so that the normal sequence of reading is top-down/left-right;
— diagrams should not contain too many details; it is often suitable to partition large diagrams into

sub-diagrams covering different parts or aspects;
— preferably a connected segment of a diagram should be able to be contained on one page;
— comments may be inserted anywhere in a diagram, either using the GR comment symbol or the PR

comment syntax;

— text should preferably be placed in the symbol the text is associated with, if this is not practical, the
text may be placed in a text extension symbol connected to the symbol.

148 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

In the current set o f SDL Recommendations there are no means provided to make references between G R
diagrams themselves, between definitions in SD L/PR or between GR diagrams and PR definitions. Both in order
to make a complete SDL representation of a system, and to structure the documentation of a system, it is
necessary to have a mechanism for referencing.

A referencing mechanism may be devised in several ways. It depends on the peferred organization of
documentation and methodologies. As there is no mechanism provided in the Recommendations it is left to the
user’s discretion to choose a mechanism.

An example of the use of references in the GR syntax is to use notes or the comment syntax as shown in
Figure D-64.

D.6.2.2 Referencing

Part o f a c c t t-7 5 2 4 0
p r o c e s s t r e e

F IG U R E D -64

Exam ple o f using notes or com ments as references

Several other methods are possible, other examples are found in the examples in § D.9.

D.6.2.3 Template

A template for the symbols of the SDL graphical representation has been provided in the inside back
cover o f this fascicle. A schematic design for the template is given in Figure D-65.

In the figure the symbols for Input, Output, Decision, Alternative, Process, Start, Task, State, Save,
Connector and Stop are shown directly, in three sizes, i.e. 20 x 40 mm, 20/]/2 x 40 /]/2 mm and 10 x 20 mm.
The internal ratios are also shown for the largest size.

The symbols for Procedure Call, Macro and Create can be constructed from the task symbol by drawing
the indicated extra horizontal or vertical line(s).

The symbols for Procedure Definition and Macro Inlet can be constructed from the Start Symbol by
drawing the indicated extra vertical line(s).

The symbol for Macro Outlet can be constructed from the Connector symbol by drawing the indicated
extra vertical line.

The return symbol is the combination of the Connector and the End Process symbol.

The Comment symbol is drawn using either end of the Task symbol.

The Enabling Condition symbol can be drawn by using the Stop symbol.

The All “symbol” (asterisk) is not included in the template because it should be printed with the text
associated with the symbols.

The symbol for a Channel and the line to the text expansion symbol is a solid line.

The signal line and the line to a Comment symbol is a dashed line with the ratio 1:1.

All the recommended symbols can be seen in Figures D-209 and D-210.

D.6.3 Using the S D L /G R

For a description of all used symbols in the SD L /G R see the graphical syntax summary (Annex C to the
Recommendations Z.100 to Z.104).

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 149

D.6.3.1 Expressing structure in SD L /G R

The partitioning of a system into blocks and channels, and the optional further partitioning of the blocks
and channels, is explained in this section.

It should be noted that when a system is partitioned into several levels of increasing detail it may contain
alternative diagrams (see Recommendation Z.102). When there are two alternatie descriptions the less detailed
description is to be considered as an overview.

D.6.3.1.1 Block interaction diagram

The Block interaction diagram shows the internal structure of a system or a block in terms of channels and
blocks. The set of processes contained in blocks may be represented.

The processes which may create other processes may also be represented.

The diagram is composed of:

— the frame symbol (mandatory for blocks but optional if used around a system)

— block symbol

— channel symbol

— signal lists

and optionally

— process symbol

— signal route symbol

— request symbol

— environment symbol.

Figure D-66 is a simple example of a block interaction diagram representing a small system (S). It consists
o f two blocks (B1 and B2). Note that for a system the enclosing frame symbol is optional.

Following the top-down/left-right convention, names should preferably be placed in the upper left corner
of, or besides, the named object. Referenced definitions may be placed outside the diagram, as for the signal
list Li in the example.

Signal definitions and data definitions, which are described in PR-syntax, may either be put in the
diagram, then preferably in the upper left corner, or outside the diagram. If definitions are placed outside the
diagram, and it is not obvious where to find them, the diagram should contain a reference to where they are to be
found.

In the block symbol the contained processes may be shown, as indicated in Figure D-67.

In order to make more readable diagrams, the diagrams may be partitioned so that the interior of blocks
are shown separately. For example, the segment shown in the Figure D-67 may form a sub-diagram, shown
separately, to the block interaction diagram.

It is often useful to show several levels of structure in the same block interaction diagram. This is done by
replacing a block symbol in a diagram by the block interaction diagram for that block. This is exemplified in
Figure D-68.

This may be repeated any number of times.

In order to have a well structured, and readable diagram, the following should be noted:
— the diagrams should not be made too complex to be contained in one page;

— use of the possibility of partitioning the diagram into sub-diagrams reduces the amount of detail and
makes the diagram more readable;

— the macro may be used as a tool to reduce the complexity of large diagrams.

D.6.3.1.2 Block tree diagram

A block tree diagram represents the structure of a system in terms of blocks and sub-blocks. The intention
with the diagram is to give the reader an overview of the total structure of a system.

The diagram is a hierarchical tree of block symbols and “partitioned into” lines.

150 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

Fascicle
VI. 11

—
Rec.

Z.101
to

Z.104
—

Annex
D

Note 2 - Three sizes sh ow n i.e. length 40 m m , 28 m m and 20 m m . 40 m m/i/2 = 28 m m ; 28 mm/]/2 = 20 m m , etc.
This perm its p h otoredu ction from A3 to A 4 paper w ith com p atib le sym bol sizes.

F IG U R E D -65

Schem atic design o f the S D L tem plate

r i ~

k [m i]

L .

B1
Tsig 11
L®iO 2 J

B2

c 3 r s-9Lsig 4J
r sig 1 "I
Lsig 5J |

CCITT-73610

F IG U R E D -66

E xam ple o f block interaction diagram representing a system

CCITT-75261

F IG U R E D -67

Segm ent o f a block interaction diagram

CCITT-73860

F IG U R E D -68

Exam ple o f representing several levels o f structure

152 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

CCITT-75270

F IG U R E D -69

Exam ple o f block tree diagram

The diagram should preferably be drawn with all the block symbols having a uniform size. This allows the
blocks at the same level o f partitioning to appear as a uniform level in the diagram. If the diagram is so large that
it requires more than one page it should be partitioned into “partial” block tree diagrams as shown in
Figure D-70.

It is often useful to partition a block tree diagram into partial diagrams.

The splitting into several partial diagrams is done so that the first diagram, having the system as root, is
chopped off so that a set of further partitioned blocks appear as not partitioned. The blocks, where the original
diagram was chopped off, appear as roots in diagrams showing the further partitioning.

a) N o t partitioned diagram

CCITT-75280
b) Partitioned diagram s

F IG U R E D -70

E xam ple o f partial b lock tree diagram s

If partial diagrams are used, and it is not obvious that a block is further partitioned a n d /o r where to find
the continuing diagrams, references should be inserted using the comment symbol.

Fascicle VI. II — Rec. Z.101 to Z.104 - Annex D 153

D.6.3.1.3 Process tree diagram

A process tree diagram describes the partitioning of a process into sub-processes, and shows where the
processes are allocated. The diagram is a hierarchical tree of process symbols and “partitioned in to” lines. The
allo9ation of the processes is described using the comment symbol.

CCITT-75290

F IG U R E D-71

E xam ple o f process tree diagram

To be complete the root should be a process which is not a sub-process of any other process. Also, all of
the leaf-processes should not be further partitioned. Preferably, the diagram should be drawn with all the process
symbols having a uniform size, so that all the sub-processes of the same level of partitioning appear as a
consistent level in the diagram.

If the diagram becomes so large that it may not be contained on one page, or for purpose of readability,
the diagram may be split into partial diagrams. A set of partial diagrams is obtained by letting a set of further
partitioned processes appear as not partitioned in the original diagram. These processes appear as roots in other
diagrams describing the further partitioning.

a) N o t partitioned diagram

b) Partitioned diagram s
CCITT-75300

F IG U R E D -72

E xam ple o f partial process tree diagram s

If partial diagrams are used, and it is not obvious that a process is further partitioned or where to find the
continuing diagram, references should be inserted using comment symbols.

154 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

D.6.3.1.4 Channel substructure diagram

A channel sub-structure diagram describes how a channel is partitioned into sub-components. The diagram
resembles the block interaction diagram. All the guidelines given in § D.6.3.1.1 are also valid for the channel
sub-structure diagram.

In the block interaction diagram where the partitioned channel appears there should be a reference to the
channel sub-structure diagram describing the partitioning. See Figures D-73 and D-74.

/ * S e e c h a n n e l s u b s t r u c t u r e
d i a g r a m in d o c u m e n t ... *J

F IG U R E D -73

Segm ent o f a block interaction diagram containing a partitioned channel

C h a n n e l s u b - s t r u c t u r e d ia g r a m fo r c h a n n e l C

C| M
B lo c k B lo c k

cf. 1 * B1
 ̂ r i

B2 of, 1LLiJ c<kJ
CCITT-75310

F IG U R E D -74

Exam ple o f channel sub-structure diagram

If it is obvious that the channel is partitioned and it is also obvious where to find the sub-structure
diagram, the reference may be omitted.

D.6.3.2 Signal definition

There is no special graphic syntax for signal definitions. In the SD L /G R diagrams that use signal
definitions the SD L /PR syntax is used (see § D.7.3.2). The PR text may be inserted into the diagrams but
preferably the text should only be referenced to from the diagrams.

The diagrams that may reference signal definitions are:
- block interaction diagrams
— channel sub-structure diagrams.
When the definitions appear in the diagram they should preferably appear in the upper right o f the

diagram, as shown in Figure D-75.

S y s t e m A S i g n a l S (Int, Int) ;

clsf*

CCITT-75330

F IG U R E D -75

Segm ent o f a block interaction diagram containing a signal definition

Large volumes of PR text in a diagram will decrease the readability o f the diagram.

It is preferable to replace this PR text with a reference to the ideation o f the PR text, e.g.:

/* F o r signal, type and procedure definitions see document .. * * /

Fascicle VI. 11 - Rec. Z.101 to Z.104 — Annex D 155

There is no special graphical syntax for data definitions in SD L/G R. When data definitions are needed in
GR, the PR syntax is used (see § D.7.3.4).

There are two types of data definitions:
— data type definitions
— variable definitions.

As for signal definitions the PR text is preferably referenced to from the G R diagrams.

D.6.3.3.1 Data type definitions

Data type definitions may be referenced in the following SD L /G R diagrams:
— block interaction diagrams
— channel sub-structure diagrams
— macro definition diagrams
— process diagrams
— procedure diagrams.

The same guidelines as for inserting signal definitions also apply for data type definitions.

D.6.3.3.2 Variable definitions

Variable definitions may be contained in the following SD L /G R diagrams:
— process diagrams
— procedure diagrams.

The same guidelines as for inserting signal definitions apply for variable definitions.

D.6.3.4 Macro definition diagrams

A macro definition diagram defines the set of symbols that each reference of that macro should be
replaced with before interpretation.

The diagram can have one or more inlet symbols, followed by a flow line leading into the diagram, and
one more outlet symbols, following a flow line leading out from the diagram. Apart from that, a macro definition
diagram may contain any set of graphic symbols and text in any combination. The correctness and meaning of the
macro can only be decided after that replacement has taken place.

D.6.3.3 Data definitions

a) T he m acro defin ition

b) A m acro reference in context

c) A fter replacem ent

F IG U R E D -7 6

E xam ple o f use o f macro

The general guidelines for well structured diagrams apply for the macro definition diagram as well.

156 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

M MACRO DEFINITION
is an

"This M exam ple"

"This is an exam ple"

CCITT-75340

The procedure diagram defines the behaviour to be performed at each call of that procedure. Procedures in
SDL are similar to procedures in CHILL and other programming languages. Procedures are intended to:

a) permit the structuring of a process graph into several levels of detail;
b) m aintain the compactness of specifications by allowing a complex assembly of items which may be

regarded in isolation, to be represented by a single item;
c) allow commonly used assemblies of items to be pre-defined and used repeatedly.

As procedure definitions may be contained in system definitions, block definitions, process definitions and
procedure definitions, the same procedure may be called from several processes. The use of common procedure
libraries is allowed.

The diagram defining the procedure is similar to a process diagram. The differences are that the start
symbol of the process diagram is replaced by the procedure start symbol and the stop symbol is replaced by the
return symbol.

The same guidelines as for process diagrams are also applicable for procedure diagrams (see § D.6.3.6). An
example of a procedure diagram is shown in Figure 'D-ll.

D.6.3.5 Procedure diagram

F IG U R E D -ll

E xam ple o f procedure diagram

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D 157

D.6.3.6 Process diagram

A process diagram defines the behaviour of a process using SD L/G R. Auxiliary overview documents are
often useful as leading documents when the processes described are large or complex. At the end of this section
some examples of such documents are given.

D.6.3.6.1 Versions o f SD L /G R process diagrams

If in an SD L /G R diagram, transitions are described exclusively by explicit action symbols, this is called
the transition-oriented version of SD L/G R.

If, on the other hand the states are described using state pictures and the difference in state pictures is
used to imply transition actions, this is called the state-oriented version of SD L/G R.

A combination of both versions is called the combined version.

Examples of these three versions are given in Figures D-78 to D.80.

The transition-oriented version is suitable when the sequence of actions is important and detailed state
descriptions are less important.

The state-oriented version is suitable when the sequene of actions within each transition is not important,
when pictorial explanation is desirable, and when compact representation is desirable. It is available for
applications for which suitable pictorial elements are defined (see § D.6.3.6.22).

The combined version is suitable when the redundancy implied is helpful.

R in g in g

I
B o f f -

h o o k

S t o p r ingin g

S t o p r ing_
t o n e

R E SE T_ (T4)

'C o n n e c t A -B '

S ta rt
c h a r g e _ A

C o n v e r s a t i o n

CCITT-39801

F IG U R E D -78

Transition-oriented version

158 Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

F IG U R E D -79

State-oriented version

F IG U R E D -80

Combined version

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 159

D.6.3.6.2 Symbols and connection rules

The symbols allowed in a process diagram and how they are to be connected can be found in Annex C to
the Recommendations Z.100 to Z.104.

D.6.3.6.3 Well structured diagrams

The following is a set o f general guidelines for drafting well structured diagrams.

D.6.3.6.3.1 Starting and ending o f a diagram

Process instances may be explicitly created, and in this case the process diagram should be drawn to begin
with the start symbol. For processes which have no explicit instance creation, there is a starting state, identified by
its position at the top in the process diagram.

It is normally preferable to draw an SDL diagram with the flow from the top to the bottom of the page.

A diagram may be split into several pages. And flow from one page to another can only be made by
connectors (§ D.6.3.6.16) or by multiple appearances of the same state (§ D.6.3.6.5).

D.6.3.6.3.2 Alternative arrangements o f a diagram

The suspension of a process is represented by the state symbol. Whether suspensions should be emphasized
(by disconnecting the diagrams at each state) or not, is left to the SDL-user. According to the SDL rules there are
three possible methods:

Method A

The diagram is interrupted at every state symbol and will continue again with that state symbol.

Using Method A, the complete SDL diagram consists o f a set of n diagrams where n is the number of
states of the process. Each diagram begins with a different state, shows all transitions from that state and ends
with the states of those transitions. The same state can appear in several diagrams.

Examples are shown in Figure D-81.

Note that the transitions, together with the inputs, are only indicated by directed lines.

If the process has a start, the start symbol and starting transition will also be shown as a separate diagram
(see Figure D-81 b)). Similarly if the process has a stop, states and transitions leading to stop symbols will be
separately shown (see Figure D-81 c)).

Method B

The diagram is uninterrupted.

In method B the complete diagram is drawn as a fully connected graph. The example of Figure D-81 is
redrawn in Figure D-82 as a fully connected graph.

M ethod C

The diagram is interrupted as some state symbols.

If the complete SDL diagram is only interrupted at some state symbols there are several equivalent ways
of redrawing the Figure D-81. One of these, consisting of two diagrams, is shown in Figure D-83.

In Method C some states will appear in several diagrams. Using this method it is of course advisable to
draw connections between those parts of the diagram which belong logically together. For instance, it is very
common that a relatively small part of the process represents the behaviour of most usual situations. This part
could be suitably drawn as a separate diagram.

160 Fascicle V I .ll — Rec. Z.101 to Z.104 — Annex D

n S r 1(S 2 J I S3

C?D

) C

I I

(j D

Id cS 3

a)

O

C E D b)

CD

c) J .

I

LED
I

X
CCITT-75390

F IG U R E D-81

Fully separated graphs

Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D 161

F IG U R E D -82

Fully connected graph

1 6 2 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

(S 3 , S 4 ^

<

\ /

CCITT-75411

D ia g r a m

F IG U R E D-83

Partly connected graphs

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D 163

Comparison o f the three methods

The advantage of Method A lies in the minimal time spent deliberating how to draw a diagram, and in the
ease o f modification and the ease of information retrieval.

The advantage of Method B lies in the total process overview, whereas Method C leads to the structuring
of the process according to the predetermined criteria as to which parts o f the process are of greatest interest.

Clarity o f diagrams

Since SDL diagrams are a medium of communication between the authors and readers, it is highly
desirable that the diagrams are clear. The clarity of the diagram depends not only on the method of arranging the
diagram but also on the complexity of the process, (e.g. the number of states, inputs and decisions) which in turn
is a function of structuring.

layout.
As diagrams should be easy to read and comprehend, some care should be taken to achieve a suitable

In search for the clearest method of representation, the author should be aware of different methods of
using SDL. The examples shown in a), b) and c) o f Figure D-84 can be considered to be alternative ways of
representing a part o f the process. As no tasks or outputs are performed (except for the artificial task of setting or
resetting the variable X) the 3 examples are indeed logically identical.

Alternative c) is considered to be the clearest representation.

a) E xam ple o f an S D L diagram b) A lternative S D L diagram
incorporating a d ecision

1
^ S t a t e , 1 ^

XZH LZ7
^ S t a t e _ 2 ^

CO

^ S t a t e , 4 ^

CCITT-75420

c) A lternative SD L diagram using a save

F IG U R E D -84

The three diagram s show the process going from state 1 to 4 on receiving input A and B in random order

164 Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

D.6.3.6.3.3 SD L /P R text in process diagrams

When describing a process definition in SD L/G R data type definitions and variable declarations are
described in SD L /PR syntax. This text may be either included directly in the diagram or in a separate document.
When the text is not included directly in the diagram there must be a reference to the document where it is
contained. See Figures D-85 and D-86.

F IG U R E D -85

Exam ple o f included S D L /P R text in a process diagram

F IG U R E D -86

Exam ple o f references to definitions contained elsewhere

The method chosen is dependent on the amount of text to be included or referenced. Large amounts of
included PR text may destroy the clarity of a diagram, on the other hand: if the volume of text is small it may be
more readable to have the text included in the diagram.

Fascicle -VI. 11 — Rec. Z.101 to Z.104 — Annex D 165

When procedures are defined local to processes, the procedure diagrams may be either included in the
process diagrams or referenced.

When procedure diagrams are included it is im portant that the graph defining the procedure is separated
from the graph defining the process. One way of doing this is to form chapters or sections within the process
diagram, as can be seen in Figure D-87.

D.6.3.6.3.4 Procedure definitions

F IG U R E D -87

E xam ple o f including procedure definitions in a process diagram

D.6.3.6.3.5 Text in symbols

Normally text associated with a symbol should be placed inside that symbol. This is, however, not always
practical due to the amount of text an d /o r the size of the symbols.

If necessary, the text may be placed outside the symbol. If this alternative is chosen it must be made clear
that the text placed outside the symbol is associated with the symbol and that it is not a comment. This is made
using the text extension symbol as shown in Figure D-88.

C o n n e c t C o n n e c t (A, B, S T A T U S . . .

a) E xam ple o f using the text extension sym bol
for deferred form al text

1 f
„ r\ 7

ICCITT-75460

b) E xam ple o f using a ‘n o te’ — m echanism
to associate in form al text

F IG U R E D -88

166 Fascicle V I.ll - Rec. Z.101 to Z.104 - Annex D

D.6.3.6.4 Creation o f processes

D.6.3.6.4.1 Create request

The creation of a new process instance is described by the create request symbol. It should be noted that
process instances may only be created within the same block as the creating instance.

Local call
h a n d l in g

 T S e e p r o c e s s d ia g r a m
[o n p a g e xx

I CCITT-75470

F IG U R E D -89

Exam ple o f use o f the create request sym bol

A reference to the process diagram of the created process, should be inserted, as a comment, to make the
diagram clearer. When actual parameters are required they should be supplied using the SD L/PR syntax.

D.6.3.6.4.2 Start

The start symbol of a process diagram describes the starting point of the behaviour of a process instance
when it is created. The formal parameters of the process should be associated with the symbol.

S u b s c r i b e r —
p r o c e s s

FPAR S U B S C _
N O INT; ^

T h e f ir s t s t a t e o f t h e p r o c e s s
t o b e e n t e r e d

CCITT-75480

F IG U R E D -90

Exam ple o f the use o f the start sym bol

In order not to invalidate old SDL-diagrams the required start symbol may be implied; it is then assumed
to appear before the “first” state symbol in the process diagram, where “first” means the first state symbol
appearing at the top of the first page of the diagram.

.CCITT-75490

a) A s the diagram appears b) A s the diagram is interpreted

F IG U R E D-91

Im plied start symbol

The start symbol should appear as the first symbol of a diagram; hiding it inside the diagram may confuse
the reader.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 167

D.6.3.6.5 States

A state is represented by a state symbol and has associated input symbols and may also have save
symbols. An example of a state is shown in Figure D-92.

F IG U R E D -92

E xam ple o f use o f state

D.6.3.6.5.1 Multiple appearances and nextstate symbols

For convenience, to simplify drawing or as an aid to better understanding, the same state may appear a
number of times in an SDL diagram. Where this is done, the diagram is considered to be completely equivalent to
the diagram which would result from merging all multiple appearances of the same state. Figures D-93 and D-94
give examples of this. In Figure D-93 b) a state symbol is used as a connector to the main state having the same
name, when referred to in a nextstate symbol. In Figure D-94 a state is represented by multiple symbols each with
only a subset of the inputs (or saves).

In Figure D-93 diagrams a) and b) are logically equivalent. Diagram a) contains only a single appearance
of each state whilst diagram b) uses multiple appearances. In diagram b) the state has one main appearance where
all of its related input (and save) symbols are shown. Where this state can be reached from other points in the
diagram (as the terminating point of a transition) it is shown as a state without any associated inputs or saves. A
comment referencing to the state symbol from the nextstate symbol will improve clarity, particularly when the
appearances are on different pages.

Figure D-94 uses multiple appearances of a state to build up the total set of inputs (and saves). Each
occurrence of the state is shown with only a subset of these.

F IG U R E D -93

A com plete diagram

168 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

State_ 1

S ta te 2

T

S ta te 3

S ta te 3

S ta te _ 1

CCITT-75520

b)

F IG U R E D-93b

D iagram a) with main states and subsequent states
used as connectors to the states

F IG U R E D-94

M ultip le appearances o f a state for when a ll o f the inputs can not clearly be drawn
from the sam e symbol

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D 169

This approach has been successfully used where states have a relatively large number of input or saves but
may have the danger that readers misinterpret the diagram if they are unaware that there are multiple
appearances. To avoid this misunderstanding, the states showing only a subset of the inputs/saves should be
annotated with a comment giving reference to the other states with their associated inputs and saves as shown in
Figure D-94.

Multiple appearance may conveniently be used to focus the attention of the reader on certain aspects
(e.g. the normal sequence of signals processed) deferring other aspects to other pages (e.g. alarm situation
handling).

D.6.3.6.6 Inputs

The input symbol, connected to a state symbol, represents the input concept.

When data is conveyed by the signal to be received by the input, the list of local variables to share the
values in it are given in the symbol using the SD L /G R syntax. If no date is conveyed the list may be omitted. If
data is conveyed and the list is omitted it should be interpreted as that the values will be discarded when received.
See the example of Figure D-95.

N ote — There should be no arrowhead
on the line leading to the input symbol

FIGURE D-95

E xam ple o f use o f input symbol

If several signals may initiate the same transition after a state, all the inputs may be
same input symbol combining a signal list. In the signal list all the names of the signals
variables) appears separated by commas.

In earlier versions of SDL a distinction was made between external and internal inputs,
that external inputs received signals sent from outside the block, in which the process was contained. As there is
no semantic difference between signals originating from inside and outside the block these concepts have been
removed. The special symbol earlier used to represent an internal input, if found in diagrams, is to be interpreted
as an input symbol. (See Figure D-97.)

D.6.3.6.7 Saves

The save symbol represents the save-signals list of a state. The signals to be saved should be mentioned by
name inside the symbol. If several symbols are used connected to one state symbol they are to be considered as
one save symbol containing the list o f names being the union of the names mentioned in all the symbols.

The names in the name lists should be separated by commas. There is also a short hand representation
using the “asterisk notation” explained in § D.6.3.6.21.

D.6.3.6.8 Outputs

An output, sending a signal and providing it with values to be conveyed, is represented by the output
symbol. The list of values to be conveyed is specified using the SD L/PR , and the list should preferably be
contained in the symbol. The symbol must also contain the address of the process instance the signal is sent to.
See examples in Figure D-99.

represented by the
(and their lists of

The difference was

170 Fascicle VI.1I — Rec. Z.101 to Z.104 — Annex D

using individual input symbols using one input symbol

^ S ta te , 1

T h e * stands for all inputs not
* ___ explicitly mentioned in other inputs

or saves associated with that state'
 See § D.6.3.6.21

CCITT-75550

c) Example of multiple inputs using asterisk notation

FIGURE D-96

Alternative representation o f m ultiple inputs

should be cons idered a s :

a) Old symbol
CCITT-75560

b) New symbol

FIGURE D-97

Equivalence o f external and internal input

| CCITT-75570

b)

FIGURE D-98

D ifferent representations o f the sam e save list

Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D 171

Note — Signal S has three values, 10, 20 and 30 associated w ith it.

a)

x = 7
y = 10
z = 31 S (x + 3?

2*y, z - 1)
TO X

Note — O n interpreting S ; x, y and z have (in this exam ple) the values 7,
10 and 31 respectively. S sends the values 10, 20 and 30.

b)

y - io } — -I
S (y. , 3 0) \

TO X /

CCITT-75580

Note — On interpreting S, y has (in this exam ple) the values 10.
S sends the values 10, an u n d efin ed value and 30.

c)

F IG U R E D -99

Output with associated data

In older versions of SDL a distinction was made between external and internal outputs in the same
m anner as for inputs. Any old internal output symbol found in diagrams should be interpreted as an output
symbol. See Figure D-100.

CCITT-75590

a) O ld sym bol b) N ew sym bol

F IG U R E D -100

Equivalence o f external and internal output

172 Fascicle V I .ll — Rec. Z.101 to Z.104 — Annex D

D.6.3.6.9 Enabling condition

The enabling condition is represented by the enabling condition symbol which is a combination of the
input symbol and a graphical syntax representing the Boolean condition.

The combination should be considered as one symbol, which is why there should be no arrowhead on the
line connecting the two parts. See Figure D-101.

D.6.3.6.10 Continuous signal

The continuous signal is represented by the continuous signal symbol.
The contained expression should be Boolean.

F IG U R E D -102

E xam ple o f enabling conditions

The priority clause is m andatory if there is more than one enabling condition associated to a state.

D.6.3.6.11 Task

A task is represented by a task symbol. The description of the task, either in SD L/PR text on informal
text should preferably be contained in the task symbol.

a) b) c)

F IG U R E D -103

E xam ples o f task sym bols

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 173

In diagrams containing both formal statements and informal text, the informal text should be enclosed
between apostrophes.

D.6.3.6.12 Decisions

A decision is represented by a decision symbol.

The text of a question related to a certain decision is placed in the decision symbol. The questions need
not contain question marks, but just the expression to be evaluated, e.g. no., A + B, Z. The symbol must have two
or more branches. The answer to the question is placed directly beside and to the right of or on the top of the
corresponding branch. The branches must together contain all possible answers. Each answer can be shown with
either the value of the answer (e.g. 17, 12) or with an operator as a prefix (e.g. >18, 9*=34, =25). Some possible
formats are shown in Figure D-104.

a) b) c)

F IG U R E D -104

Som e possible form ats for the decision symbol

Many questions are related to one specific condition in which the only possible answers are “Yes” or
“N o”, i.e. TRUE or FALSE.

For example:
B subscriber busy
telephone set “on-hook”
digit 2 received
Z = 1

An example of this is given in Figure D-105.

F IG U R E D -105

Formatting o f a sim ple binary decision

174 Fascicle VI.11 — Rec. Z.101 to Z.104 — Annex D

In the case of more than two answers, the formats in Figure D-106 are possible, assuming Z to be a
positive integer. The ELSE answer means any answer not covered by the other answers, i.e. values different from
the set (1, 2, 3, 9, 10, 11, 12, 13, 14, 15).

F IG U R E D -106

Formatting o f questions and answers

D.6.3.6.13 Macro

Macro symbols can be placed anywhere in a diagram. The correctness of the diagram can only be
determined after the macro symbol is replaced by the contents of its definition. However, the preferred use of
macros is in process diagrams where a task symbol could occur.

CCITT-75660

F IG U R E D -107

U se o f macro sym bol

When using macros it is useful in the macro symbol to provide a reference of where to find the definition
(Figure D-107 shows an example).

When using macros the user should be aware that macros may hide side effects. As a macro normally
appears in the place of a task symbol, readers may assume the semantics of a task.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 175

CD
I

>

C D

§
C D

a) D iagram with
m acro call

c) D iagram a) after rep lacem ent has
turned it in to tw o d iagram s CD

CCITT-75670

F IG U R E D -108

Exam ple o f not recommended use o f macros

In Figure D-108 is shown how the replacement of a macro call may change the sequence in the diagram.
When macros contain states it should be noted that the transition, containing the reference, may be split into
several transitions.

When macros contain several inlets an d /o r outlets they should be clearly identified by labels, preferably
placed on the right o f the in-on outgoing flow lines.

C o n n e c t

T o i < D Failure»
CCITT-75681

F IG U R E D -109

M acro with several outlets

D.6.3.6.14 Procedures

The procedure call symbol represents the call of a procedure. The parameters provided with the call should
preferably be placed in the symbol, if this is not possible or practical they may be placed in a text extension
symbol at the side.

176 Fascicle V I .ll — Rec. Z.101 to Z.104 — Annex D

F IG U R E D -110

Exam ple o f use o f the procedure ca ll sym bol

The symbol may occur wherever a task symbol may be placed.

The procedure is a tool to reduce the complexity of a diagram, and to make use of standard solutions.

D.6.3.6.15 Option

The option symbol is used to describe several alternative process behaviours with one diagram. This is a
useful facility if several process behaviours only differ in small parts. The symbol contains an option expression.
This expression should be such that it can be evaluated before the process is interpreted, i.e. it must not be a
dynamic condition. The expression should also be such that the evaluation leads to a discrete set of alternatives,
which the outgoing flowlines can be labelled with.

<

<

Local
' e x c h a n g e
| N o Y e s

CCITT-75700

F IG U R E D -l 11

E xam ple o f use o f options

The option alternatives should preferably be placed to the right of the outgoing flowlines.

The diagram may not be interpreted until all option expressions are evaluated, and the diagram should
then be considered as if all of the non-reachable branches following options were deleted.

A n s w e r
= N o

~ r
CCITT-75710

F IG U R E D -l 12

Interpretation o f options

Fascicle VI. II — Rec. Z.101 to Z.104 — Annex D 177

D.6.3.6.16 Connectors

General

In drawing a large SDL diagram, it may also be necessary to split the diagram due to the lack of space.
Connectors are used for this purpose.

Connectors should also be used to avoid the crossing of flowlines which would make diagrams somewhat
unclear. It is normally preferable to draw an SDL diagram with the flow from the top to the bottom of the page.

Use o f connectors to show implied flowlines

Any flowline may be broken by a pair of associated connectors, with the flow assumed to be from the
out-connector to the in-connector. Each connector has a name. Associated connectors have the same name. For
each name only one in-connector exists but there may be one or more out-connectors.

It is desirable that the page reference for the appropriate in-connector should be given next to each
out-connector, and that the page reference(s) for the appropriate out-connector(s) should be given next to each
in-connector. See Figure D-l 13. It is also desirable to have a connector reference column in the margin of the
page indicating the horizontal place and the order of the connectors.

Note — A n alternative and equally acceptab le, m ethod o f draw ing page references is to use com m ents, as show n
in figure D - l 14.

F IG U R E D - l 13

M ethod o f drawing page references and connectors references

p a g e m

4 'From
v - ' p a g e n'

CCITT-75730

F IG U R E D - l 14

Alternative method o f drawing page references

178 Fascicle VI. 11’ — Rec. Z.101 to Z.104 — Annex D

Connectors can only be used for applying connections within the same process.

If major flow paths exist, attention can be concentrated on them by not breaking them up with connectors
except at the top and bottom of pages. A minor flow path within an SDL diagram can instead be broken with an
out-connector, the associated in-connector being placed on some other suitable page, such as a page following the
end of the major flow paths.

D.6.3.6.17 Divergence and convergence

Divergence

Divergence within a transition of an SDL diagram may only occur:

a) between a state symbol and its associated input and save symbols, or;
b) immediately after a decision symbol.

Some examples of divergence are shown in Figure D-l 15.

b) Exam ple 2 c) E xam ple 3

F IG U R E D -l 15

E xam ples o f divergence

Convergence

The point of convergence cannot occur between a state symbol and an input or save symbol, but may
occur at any other point in an SDL diagram.

Convergence may appear in any of the ways shown in Figure D -l 16.

The use of convergence can reduce the number of symbols in an SDL diagram where a sequence of
symbols and any associated text is repeated within the same SDL diagram as shown in Figure D -l 17.

D.6.3,6.18 Comments

Comments may be added to an SDL diagram to clarify some part of the diagram. Comments are to help
the reader and have no effect on the interpretation of the SDL diagram, Comments should therefore neither
contradict nor add anything to the semantics of the diagram.

A comment is attached to a flowline or an SDL symbol by a single square bracket connected by a dashed
line to the flowline or symbol. See Figure D-l 18.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 179

a) O ne flow line flo w in g in to another

1
T a s k 2'

S t a t e 4
> -

C o n t i n u e s
f r o m m a in
s t a t e 4

i
b) M ore than on e out-connector associated

with an in -conn ector

T a s k 3'

I
S t a t e 4

C o n t i n u e s
f r o m m a in
s t a t e 4

c) N extstate sym bol

^ S t a t e _

ln p u t _ 1

I CCITT-75750

F IG U R E D - 116

E xam ples o f convergence

a) E xam ple a)

Note — E xam ple b) is equ ivalent to E xam ple a)

b) E xam ple b)

F IG U R E D -l 17

U se o f convergence

Fascicle V I .ll — Rec. Z.101 to Z.104 — Annex D

M a k e p u l s e :
33 m s (n o m in a l)
B re a k p u l s e :
6 6 m s (n o m in a l)

 I__
B ackw ard

b) A-1_ MFC
S ignal

U p t o th i s p o in t , d ig i t
s e n t b y o r ig in a t in g
e x c h a n g e is o n line.
A-1 a s k s fo r m o r e d ig i t s
f r o m o r ig in a t in g e x c h a n g e

B1 — B -p a r ty idle
B2 — B -p a r ty b u s y
B3 — N o t i m e o u t b e f o r e a n s w e r
B 4 — C o n g e s t i o n
B5 — B -p a r ty idle, n o c h a r g i n g

From t h e s y s t e m
r e c o v e r y p r o c e s s

e)

J ____

Retry

"I----

S e n d e r
s y s t e m _ r e c o v e r y

CCITT-75770

F IG U R E D - l 18

E xam ples o f use o f comments

Comments may also be inserted using SD L /PR syntax (/ * * /) as can be seen in Figure D -l 19.

IXYZ (A, B)
/* D i s c o n

n e c t */

I
CCITT-75780

F IG U R E D -l 19

E xam ple o f use o f S D L /P R comment syntax in S D L /G R

D.6.3.6.19 Text extensions

Normally the text associated with a graphical symbol should be placed inside that symbol. However, this is
often not possible or practical. An alternative is to place the text in a text extension symbol connected to the
associated symbol. See Figure D -l20.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 181

A - s u b - c a t
B - s u b - c a t

J C o n n e c t - A - B
L(X, Y, Z, Q, R)

' CCITT-75790

F IG U R E D - l 20

Exam ple o f use o f the text extension symbol

As the syntax is similar to the comment syntax it is im portant that the connecting line is drawn solid, in
contrast to the dashed line of the comment symbol.

If informal text is used in text extension symbols it should be enclosed within apostrophes.

D.6.3.6.20 Data

Generally, the SD L/PR syntax is used for data constructs in SD L/G R. When using data in tasks, outputs,
decisions or inputs, the appropriate SD L /PR text is associated with the symbol.

D ata type definitions and variable declarations are either contained in separate documents and referred to,
or contained in the process diagram. These definitions should be associated with the start symbol of the diagram.

^ S u b s c r i b e r }~

r

FPAR / "
S u b - N o I N T ; (S u b s c r i b e r }—
DCL X, Y I N T ; V

T
/ * S e e p a g e
n u m b e r n */

CCITT-75800

F IG U R E D -121

E xam ples o f data definitions in an S D L /G R process diagram

The association to the symbol is made using the text extension symbol as can be seen in Figure D-121.

D.6.3.6.21 Shorthand notations

In order to make diagrams more readable and to avoid long name lists the following shorthand notations
are introduced. The symbols used are the asterisk (*) and the hyphen (-). Generally, “*” has the meaning of “all”
or “all but”, and the the meaning of “the same”.

The shorthand notations may be used in the STATE, INPUT, SAVE and NEXTSTATE symbols.

In the state symbol an asterisk may be used either alone, or combined with a state name list enclosed in
brackets.

(IDLE)

~ T ~
CCITT-75810

a) b)

F IG U R E D - l 22

E xam ples o f “ * "notation in states

182 Fascicle V l.l l — Rec. Z.101 to Z.104 — Annex D

The asterisk in Figure D-122 should be interpreted as “all states” for a) and combination b) as “all states
except ID LE”. The notation is using the multiple appearance facility of state symbols (see § D.6.3.6.5).

In inputs an asterisk may only be used in one of the inputs connected to a state, provided it does not
appear in a save symbol connected to the same state.

F IG U R E D - l 23

U se o f an asterisk in an input symbol

The interpretation of the asterisk in Figure D -l23 is “all signals but the signals mentioned in other inputs
or saves, i.e. SI, S3 and S5”.

The use of an asterisk in a save symbol is similar. It may only appear in one of the saves connected to a
state, provided it does not appear in any input connected to the same state.

F IG U R E D - l 24

U se o f an asterisk in a save symbol

In Figure D-124 the interpretation of the asterisk is “all signals except SI, S2 and S3”.

In a nextstate symbol a hyphen “-” may be used to represent “the same state as the one the transition
originated from”.

R eport

— r
A n sw er
(A,B,C)

to sender.
3

CCITT-75840

F IG U R E D - l 25

U se o f hyphen in a nextstate sym bol

Fascicle VI.ll- — Rec. Z.101 to Z.104 — Annex D 183

The interpretation of Figure D -l25 is that in any state of the process, the signal “REPORT” can be
received. The reception will cause the sending of signal “ANSW ER” and the transition will terminate in the state
it originated from.

In combination with the multiple appearance facility these shorthand notations have great expressive
power. Note that simple additions to a diagram, using “*” and may change the meaning of a diagram in an
unexpected way.

As an example, the addition to the diagram shown in Figure D -l26 will have the effect that in all states
there will be no implicit transitions.

CCITT(75850

FIGURE D-l26

An effect o f the diagram is that is not allowed in any input,
state or save sym bol throught the diagram

D.6.3.6.22 State pictures

D.6.3.6.22.1 State picture option

If the state picture option is chosen, it is useful to consider each state picture as consisting of the three
types of elements shown in Figure D -l27 a).

These three types are often combined to form a composite pictorial element that can be understood in
isolation from the rest of a state picture. For example Figure D -l27 b) gives the meaning of a multi-frequency
code receiver that is awaiting a forward signal.

Note that the recommended pictorial element symbol for time supervising of a process incorporates the
relevant input variable t;. \ '

1) Pictoria l e l e m e n t s , e .g .) I (m e a n i n g a s ig n a l l in g r e c e i v e r) ;

2) Input v a r ia b le s , e .g . f (m e a n i n g th a t a fo r w a r d s i g n a l h a s y e t t o b e r e c o g n i z e d) ; a n d

3) Q u a l i fy in g te x t , e .g . MFC (m e a n i n g m u l t i - f r e q u e n c y c o d e) .

a) The content o f a state picture

J MFC f

CCITT-75860

b) A com p osite p ictorial elem ent

F IG U R E D - l 27

Construction o f p ictorial elem ents

D.6.3.6.22.2 Input variables

Input variables are a valuable way of representing those conditions associated with the process which, if
changed, will result in a transition by the process. Input variables should be shown using lower-case letters, in
order to distinguish them readily from qualifying text (which should be shown using upper-case letters). (Changes
in input variables correspond to input signals, which cause the process to leave its current state; changes in
qualifying text do not correspond to input signals.)

184 Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

D.6.3.6.22.3 Qualifying text

Qualifying text should be heavily abbreviated, and where possible should be placed inside appropriate
pictorial elements. It is then quite obvious which pictorial elements are being qualified.

D.6.3.6.22.4 Completeness o f state pictures

Sufficient pictorial elements should be assigned to each state picture in order to show:
a) what resources are being considered by this process during the current state. Examples of resources

are: switching paths, signalling receivers, signalling senders and switching modules;
b) whether one or more timers are currently supervising this process;
c) in the case that this process concerns call-handling, whether call charging is currently in progress or

not, and which subscribers are being charged during this state of the call;
d) the current categories (or status) of equipment allocated to this process, where this information affects

the behaviour of this process;
e) the status of those input variables which are monitored by the process during the current state.

D.6.3.6.22.5 Example

An example of the application of the principle expressed above is illustrated by the state picture in
Figure D -l28. It will be seen that during this state:

a) that the resources considered by the process consist of a subscriber’s handset, a digit receiver, a dial
tone sender and switching paths connecting these items;

b) that a timer T0 (whose current condition is t0) is currently supervising this process;
c) that no charging of the call is in progress;
d) that the subscriber has been identified as an A-party, but no other category information is taken into

account;

e) that the following input variable conditions apply: hA (i.e. the handset is off-hook, d (i.e. the digit
receiver is awaiting a digit) and t0 (i.e. the supervising timer T0 is running).

F IG U R E D - l 28

E xam ple o f a state in a call-handling process

D.6.3.6.22.6 Consistency checking feature o f SD L diagrams with pictorial elements

If the principle expressed in § D.6.3.6.22.4 e) is followed, it is always possible to deduce the set of inputs
which will cause the process to leave each of its states, simply by looking at the input variable shown in the state
picture. For example, by looking at the state picture in Figure D -l28, one can deduce that three different inputs
will cause the process to leave this state: the handset condition changing to on-hook (input hA), the arrival of a
digit (input d), or expiry of timer T0 (input t0). In this way, some “surprise transitions” can be avoided when
implementing systems from very complex SDL specifications.

It is clear that the pictorial is more compact and in a certain sense puts more information under the eyes
of the readers; but at the same time one has to look very closely to the pictorial to work out the exact set of
actions performed in the transition.

In addition it is not possible to tell, lo.oking at the pictorial diagram alone, whether an action is performed
through an output or a task (§ D.6.3.6.22.8).

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 185

D.6.3.6.22.7 Use o f the block boundary symbol

Pictorial elements shown outside the block boundary symbol imply elements that are not directly
controlled by the given process, and pictorial elements shown within the block boundary symbol imply elements
that are directly controlled by the given process. For example, the call process that is partially specified in
Figure D -l29 can connect or disconnect ring current, and start or stop timer T4, but it cannot change either
subscriber’s handset condition.

In designing logic from an SDL specification with pictorial elements, only those pictorial elements shown
inside the block boundary will affect the processing actions performed during transition sequences. The composite
pictorial elements shown outside the block boundary are normally included in a state picture:

a) because they indicate input variables which must be monitored by the process during the given state;
an d /o r

b) to improve the intelligibility of the diagram.

F IG U R E D - l29

Example o f a transition between two states, where all processing
actions are implied by the differences in the state pictures

D.6.3.6.22.8 Task or output

The interpretation of a processing action as either a task or an output sometimes appears to be arbitrary.
In fact the decision to interpret the appearance or disappearance of a pictorial element within the functional block
boundary as either a task or an output can only be resolved by consulting the process signal list.

D.6.3.6.22.9 Use o f the timer symbol

Whether or not pictorial elements are used, the interruption of the supervised process upon expiry of a
timer is always represented by an input.

The presence of a timer symbol in a state picture implies that a timer is running during that state.
Following the general principle stated in the Recommendations, the starting, stopping, restarting and expiry of
timers is shown using pictorial elements in the following manner:

a) To show that a timer is started during a given transition, the timer symbol should appear in the state
picture corresponding to the end of that transition but not in the state picture corresponding to the
start of that transition.

b) To show that a timer has been stopped during a transition, the timer symbol should appear in the
state picture corresponding to the start o f that transition but not in the state picture corresponding to
the end of that transition.

186 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

c) To show that a timer has been restarted during a transition, an explicit task symbol should be shown
in that transition. (Two examples are shown in Figure D -l30).

d) The expiry of a particular timer is shown by an input symbol associaed with a state in which the state
picture includes the corresponding timer symbol. O f course more than one timer may concurrently
supervise the same process if required, as shown in Figure D-131.

No. 10

©

No. 20

©

Before

20 ms

SET (N O W +
20 ms, Ti)

A fte r

a) Restart of a timer following expiry
of the timer

b) Restart of a timer when the timer has not
yet expired

N ote — Each timer T has two mutually exclusive conditions t and t .

FIGURE D-130

E xam ples showing the restart o f a timer

D.6.3.6.23 Auxiliary documents

To aid the reading and understanding of large process diagrams, auxiliary documents giving overviews are
helpful. These documents are informal and serve only to give overviews and to be “lead-in” documents to the
SDL diagrams. The users are free to find their own suitable syntax.

In this chapter examples are given for two types of auxiliary documents; the state overview diagram and
the state/signal matrix.

D.6.3.6.23.1 State overview diagram

The intention with the state overview diagram is to give an overview of the states of a process and what
transitions between these are possible. As the intention is to give an overview, unim portant states or transitions
may be omitted.

The diagrams are composed of state symbols, directed arcs representing transitions, and optionally start
and stop symbols.

The state symbol should contain the name of the referred state. The symbol may contain several state
names and an asterisk (*) may be used as notation for all states.

To each of the directed arcs the name of the signal, or set of signals causing the transition can be given.

The use of the start and the stop symbol is optional.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 187

Tim er TQ supervises the arrival o f the first d igit,
w hereupon dial tone is rem oved from the call
and tim er TQ is stopped . T im er Tj con tinu es supervising
the arrival o f su ffic ien t d igits to perm it routing o f the call.

F IG U R E D-131

E xam ple o f the use o f two supervising timers in the sam e state

F IG U R E D - l 32

E xam ple o f a state overview diagram

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

A state overview diagram for a process may be separated into several diagrams each covering different
aspects, e.g. “normal case”, fault-handling, etc.

^ D IS C A R D

CCITT-75930

F IG U R E D - l 33

E xam ple o f a separated state overview diagram

In order to be well-structured and easy to read, state overview diagrams should preferably:
— conform to the normal reading directions — top-down/left-right;
— be contained on one page.

D.6.3.6.23.2 State/signal matrix

The state/signal matrix is intended to be a “lead-in” document to a large process diagram. It gives
references to where in the diagram a combination of a state and a signal is found.

The diagram consists o f a two-dimensional matrix indexed on one axis by all the states of a process, and
on the other by all valid input signals for a process. In each of the matrix elements a reference is given to where
to Find the combination given by the indices, if it exists.

F IG U R E D - l 34

E xam ple o f state/signal matrix

The matrix may be separated into sub-parts contained on different pages. The references are the normal
references used by the user in the documentation.

Preferably signals and states should be grouped together, so that each part of the matrix covers one aspect
of the process behaviour, e.g. the “normal case”, the “exception handling”, the “maintenance part”, etc. should all
be found in different sub-groups.

D.6.3.6.23.3 Sequence charts

The sequence chart may be provided as a supplement to the interaction diagram to show allowed
sequences of signals interchanged between one or more processes and their environment.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 189

The chart is intended to give an overview appreciation of the signal interchange between parts o f the
system. The complete signal interchange or only parts of it may be shown depending on what aspects are to be
highlighted.

The column in the chart indicates the environment (usually placed at the edges .of the diagram) and the
various processes or blocks.

Their interactions are represented by the set of diagonal directed lines, each one representing a signal or a
set of signals. When the set of signals represented by a line is flowing in both directions it is suggested to have the
line drawn horizontally (an example may be “connection set up”) with arrowheads at both ends.

EN VIR O N M E N T P r o c e ss
A

P r o c e ss
B

p i M T O N E
-------►

---------- .------P / G /T S
--------►

O N H n n w
►

SEIZE

ACKN

CLEAR

CCITT-75950

F IG U R E D -135

E xam ple o f sequence chart

Each sequence may be annotated so that it is clear what set of information is interchanged. Each line is
annotated with the information involved (signal names or procedures).

A decision symbol can be placed at the arrival of a line to indicate that the sequence following is valid if
the indicated condition is true. Usually in this case the decision symbol appears several times indicating the
different sequences resulting from the different values of the condition.

This diagram can show completely all the sequences of signals interchanged or only a meaningful subset.

A useful application of this diagram is the representation of the mutual interaction of subprocesses
resulting from the partitioning o f a process. In this case the environment of the subprocesses is the partitioned
process environment.

D.7 Guidelines fo r representing systems using SD L /P R

Paragraph D.7 of the User Guidelines explains the textual phrase representation of SDL, named PR, which
has a strong resemblance with a programming language.

The first section (§ D.7.1) contains general comments on SD L/PR ; on its suitability for use as input to a
machine, its similarity to a program, and its differences.

The second section (§ D.7.2) explains how SD L/PR is defined throughout the Recommendations, where
the “Syntax Diagrams” are used.

The third section (§ D.7.3) is the most im portant from the user’s perspective. It explains pragmatics about
SDL use. In particular, the peculiarities and the expressive power of the textual phrase representation is
considered, mentioning aspects such as the order of states, the ordering of transitions within a state, the
multiplicity of states, the procedures, macros, labels and shorthand notations.

190 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

D.7.1 Why PR?

The textual phrase representation of SDL, SDL/PR, was devised during the 1977-1980 study period; in
1980 it was decided to attach its definition as an Annex to the Recommendations, since it was felt that some
refinement was needed before it should be recommended. This refinement was accomplished in the following
study period and now SD L/PR is one of the recommended concrete syntaxes of SDL.

At first, SD L/PR was intended to be used as an easy way to input SDL documents into a machine,' since
the GR form is more difficult to input. (Graphical peripherals are needed to handle it.) For this reason, emphasis
was on a one-to-one mapping between the PR and GR form. The evolution in graphic terminals (increase of
capabilities and decrease of cost) has since led to the acceptability of the GR form as suitable for input into a
machine. This does not diminish the importance and the use of the PR form because some users find it more to
their liking, especially those working with programming languages.

D.7.1.1 How close to a program is SD L /P R ?

This evolution led to a looser correlation between GR and PR, so that we can still (easily) map one onto
the other, but each language has its own peculiarities. At first glance, the PR form strongly resembles a
programming language (see Figure D -l36).

STATE a w _ o f f h o o k ;

INPUT o f f _ h o o k ;

T A S K 'a c t iv a t e c h a r g in g ' ;

T A S K ' c o n n e c t ' ;

O U T P U T ' r e s e t t im er ';

NEXTSTATE c o n v e r s a t i o n .

F IG U R E D - l 36

Exam ple o f S D L /P R

In fact, it all depends on what characterizes a text as a programming language.

If we assume a program is defined as a set of information interpretable by a machine, then not only PR
but also GR are “programs”. Restricting the definition to a set of information and directives interpretable and
executable by a machine, we find the first difference: it is not essential that a PR representation should be
executable by a machine (though it is not forbidden); what is essential is its capability of conveying precise
information from one human being to another human being.

What may be considered as “wrong PR”, if we look at it as a program (because of incompleteness of
informal text), is perfectly valid PR if considered as a representation of the functional requirements of a system.

A further difference is in the “style” of a PR representation compared with the usual representation o f a
program.

Since PR is intended to aid communication between human beings, care has been taken to allow different
layouts so that the PR layout can be used to guide the reader to focus on certain aspects which are considered
more im portant than others. This is, of course, unim portant to a program which is supposed to be interpreted by
a machine. The machine does not focus on any particular aspect, but has to consider equally the whole, nor is the
machine trying to “understand” the program.

Fascicle VI. 11 - Rec. Z.101 to Z.104 — Annex D 191

For its similarity to a program (which is more a psychological likeness since the GR form is “semanti
cally” just as similar to a program as the PR is), the PR is preferred by some programmers who will probably use
CHILL to implement the requirements expressed in PR. There is therefore a strong tem ptation to find a
one-to-one mapping from PR to CHILL, so that the requirements expressed in PR can be automatically
transformed into CHILL code. The reverse is also of interest because it would allow the derivation of a PR
description from a CHILL program.

In § D.8, possible ways of mapping SDL to CHILL are illustrated.

D.7.2 Metalanguage to describe the SD L /P R syntax: syntax diagrams

A syntax diagram consists o f terminal and non-terminal symbols interconnected by flow-lines.

A non-terminal symbol represents another syntax diagram with the same name. It is a shorthand symbol
for more complex structures used in different places (structures that consist of terminal and non-terminal symbols
again).

There is an ad hoc notation to insert comments.

Each symbol, that is, each diagram, has to have only one inlet and one outlet.

Flow lines are unidirectional and an arrow indicates the flow.

Terminal symbols are indicated by rectangles in which the vertical edges have been substituted with half
circles. A non-terminal symbol is indicated by a rectangle.

C om m ent

Terminal

Non-terminal
CCITT - 75960

FIGURE D - l37

Graphic symbols in syntax diagrams

D.7.3 Using PR

In SD L/G R the complete system is described in many documents, this makes it easier to handle the
information. The Block Interaction Diagram represents the system structure and the communication among blocks
and among processes via channels and signals, while the processes diagrams are represented in other documents.

In PR, the system structure and its communication can be represented by a splitting of the complete PR
program o f the system in different modules, each of them describing the structure of one or more processes. In
this way, each module can be handled more easily.

Between these modules there can be a reference mechanism as explained in § D.5.

The PR version consists o f a set of statements, each terminated by a (semicolon). It begins with the
statement

SYSTEM name;

and ends with the statement

ENDSYSTEM name;

In this closing statement the “name” is optional.

The PR representation does not consist of just a single set of statements embedded in the SYSTEM-
ENDSYSTEM statements. We can have several sets each beginning with a SYSTEM statement and terminating
with an ENDSYSTEM statement. They belong to the same SYSTEM representation if and only if they have the
same name (Figure D -l38). Each process module must be in only one set; it may not be split between two sets.

192 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

SYST EM A SYSTEM A SYST EM A

Part 1 Part 2 Part 3

E N D S Y S
TEM A

E N D S Y S
TEM A

E N D S Y S
TEM A

SYST EM A

Part 1

Part 2

Part 3

E N D S Y S
TEM A CCITT - 75970

FIGURE D - l38

Separation o f one system representation into three

We can group the statements contained between the SYSTEM and ENDSYSTEM in Block modules and
Signal, Channel, D ata type, Macro and Procedure definitions, as can be seen in Figure D -l39.

SYSTEM

Signal definit ions

Channel definitions

Data ty p es definitions

M acro definitions

P rocedure definitions

BLOCK.. .

ENDBLOCK
Block module

BLOCK.. .

ENDBLOCK
Block m odule

ENDSYSTEM . .

F IG U R E D - l39

Grouping o f statem ents contained in a SY ST E M M odule

Fascicle VI.11 - Rec. Z.101 to Z.104 - Annex D 193

Each block module is embedded between the BLOCK and ENDBLOCK statement. Like a system
representation, a block representation may be split into two parts. In turn, we can consider each BLOCK module
as a set o f PROCESS modules plus signal, data, procedure, and macro definitions. Each process module is
embedded between the PROCESS and ENDPROCESS statement. The PROCESS module cannot be further
subdivided. This is illustrated in the examples of Figure D -l40, where a system is divided into two parts, i.e. one
part containing Block b l with Process p2, Block b2 with Process p4 and Block b3 with Process p5 (Figure D-
140 a)) and one part containing Block b l with Process p i and p3, and Block b3 with Process p6 (Figure D-l40 b)).
A global representation of these two parts is shown in Figure D -l40 c).

S Y S T E M a; S Y S T E M a; S Y S T E M a;

BLOCK b 1 ; BLOCK b 1 ; t o BLOCK b1 ;

P R O C E S S p2; P R O C E S S p1; P R O C E S S p i ;

E N D P R O C E S S p2;

E N DB L O C K b1 ;

BLOCK b2;

P R O C E S S p4;

E N D P R O C E S S p4;

E N DB L O C K b2;

BLOCK b3;

P R O C E S S p5;

E N D P R O C E S S p5;

E N D B L O C K b3;

E N D S Y S T E M a;

E N D P R O C E S S p i ;

P R O C E S S p3;

E N D P R O C E S S p3;

E N DB L O C K b 1 ;

BLOCK b3;

P R O C E S S p6;

E N D P R O C E S S p6;

E N DB L O C K b3;

E N D S Y S T E M a;

E N D P R O C E S S p i;

P R O C E S S p2;

E N D P R O C E S S p2;

P R O C E S S p3;

E N D P R O C E S S p3;

E N DB LO C K b1;

BLOCK b2;

P R O C E S S p4;

E N D P R O C E S S p4;

EN DB L O C K b2;

BLOCK b3;

P R O C E S S p5;

E N D P R O C E S S p5;

P R O C E S S p6;

E N D P R O C E S S p6;

E N DB L O C K b3;

E N D S Y S T E M a;

a) Part 1 b) Part 2 c) G lob a l

F IG U R E D - l40

Block representation

194 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

Useful documents in GR are the Block Tree, the Process Tree and the Channel Substructure Diagram. It is
possible to obtain equivalent representations in PR, using blocks and channel substructures as explained in
Recommendation Z.102.

In PR, the Block Tree, the Process Tree and the Block Interaction Diagram are mixed together. The
obtained structure also contains the process statements, that is, it represents the complete system.

The direct correspondence with these documents is given by the list of subblocks, channels and signals that
can be put in the block substructure part, while the structure of the system is given by the block nesting
definitions.

Figure D-141 and Figure D -l42 show the GR Block Tree and Process Tree which the PR examples of
Figure D 143 refer to.

D.7.3.1 Expressing structure in PR

FIGURE D-141

Block tree

' pi H bi

P11 J — [B11 P12 J — [b 11 P13 — I B12

P112 — B112
CCITT - 75 990

FIGURE D - l42

Process Tree

Fascicle VI.11. - Rec. Z.101 to Z.104 - Annex D 195

SYSTEM J;

BLOCK B1 ;

S U B S T R U C T U R E B1;

S U B B L O C K S : B 11, B12;

BLOCK B11;

S U B S T R U C T U R E B 11;

S U B B L O C K S : B i l l , B l 12;

BLOCK B 111;

E N DBL O C K B111;

BLOCK B l 12;

E N DB L O C K B l 12;

E N D S U B S T R U C T U R E B 11;

E N DB L O C K B11;

BLOCK B12;

E N DB L O C K B12;

E N D S U B S T R U C T U R E B1;

E N DB LO C K B1;

E N D S Y S T E M J;

F IG U R E D - l43

Exam ple o f the block nesting definitions

Fascicle VI. 11 - Rec. Z.101 to Z.104 — Annex D

In PR, the processes and their structure are represented inside their blocks. There are two possible ways to
show the process substructure: at the upper level block substructure or inside each upper level process.
Figures D -l44 and D -l45 show these two possibilities.

S Y S T E M s;

BLOCK b1 ;

P R O C E S S p1 ;

E N D P R O C E S S p1;

S U B S T R U C T U R E b1;

S U B B L O C K S : b 11 , b12;

S U B S T R U C T U R E p i ;

p11 in b11 ,

p 12 in b12 ,

E N D S U B S T R U C T U R E p1;

BLOCK b l l ;

P R O C E S S p 11;

E N D P R O C E S S p11;

S U B S T R U C T U R E b l 1 ;

S U B B L O C K S : b i l l , b 1 12;

S U B S T R U C T U R E p11;

p 1 11 in b i l l ,

p i 12 in b 1 12,

E N D S U B S T R U C T U R E p11;

BLOCK b i l l ;

P R O C E S S p i 11 ;

E N D P R O C E S S p i 11;

E N DBL O C K b i l l ;

BLOCK b 1 12;

P R O C E S S p 1 12;

E N D P R O C E S S p i 12;

E N DBLO C K b 1 12;

E N D S U B S T R U C T U R E b l 1 ;

E N DB LO C K b11;

BLOCK b l 2;

P R O C E S S p i 2;

E N D P R O C E S S p12;

E N DB L O C K b12;

E N D S U B S T R U C T U R E b l ;

E N DB LO C K b1 ;

E N D S Y S T E M s;

F IG U R E D - l44

System representation with process substructure
at block substructure level

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 197

SYSTEM s;

BLOCK b 1 ;

P R O C E S S p1 ;

S U B S T R U C T U R E p1;

p11 in b l l ,

p 12 in b12 ,

E N D S U B S T R U C T U R E p i ;

E N D P R O C E S S p 1 ;

S U B S T R U C T U R E b1 ;

S U B B L O C K S : b l l , b12;

' BLOCK b11 ;

P R O C E S S p11;

S U B S T R U C T U R E p11;

p 1 11 in b 1 11;

p i 12 in b1 1 2 ;

E N D S U B S T R U C T U R E p i 1;

E N D P R O C E S S p i 1 ;

S U B S T R U C T U R E b l 1 ;

S U B B L O C K S : b i l l , b 1 12;

BLOCK b i l l ;

P R O C E S S p 1 11;

E N D P R O C E S S p 111;

E N DB L O C K b l 11;

BLOCK b 1 12;

P R O C E S S p i 12;

E N D P R O C E S S p 1 12;

E N DB L O C K b 1 12;

E N D S U B S T R U C T U R E b11;

E N DB L O C K b l 1 ;

BLOCK b12;

P R O C E S S p12;

E N D P R O C E S S p12;

E N DB L O C K b12;

E N D S U B S T R U C T U R E b 1 ;

E N DB L O C K b1;

E N D S Y S T E M s;

F IG U R E D - l 45

System representation with process substructure
inside the process definition

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

The channels that interconnect the subblocks obtained by the partitioning are defined in the block
substructure definition.

It is felt better to have the channel definition before the definition of the subblocks, because there are so
many blocks contained in the system (see Figure D -l46).

The signals of these channels are defined in the signal definition part.

Figure D -l47 refers to the GR representation of Figure D -l46.

ch1 [La]

bl

03 [03] „ a [u s] . 0 5 D-5] _ ch 2 [Lb] ^C1 Ll 'E bll b12 b13------------------------------------► ---------------► w

C2 [L2] t
CCITT -7 6 0 0 1

La

L1

[a]
t o

L 3 =

Lb = [a]
L2 = f 2]

L4 =

- [a]

FIGURE D -l46

A two-level system representation using the Block Interaction Diagram

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 199

SYSTEM s;
CHANNEL ch1

FROM ENV TO b1
WITH s1 , s2;

CHANNEL ch2
FROM b1 TO ENV
WITH s3, s4;

BLOCK b1 ;

SUBSTRUCTURE b1 ;
SUBBLOCKS: b l l . b12, b13;
CHANNELS: Cl. C2, C3, C4, C5

SPLIT ch1 INTO C1, C2;
SPLIT ch2 INTO C5;

CHANNEL C1
FROM ENV TO b11
WITH s 1 ;

CHANNEL C2
FROM ENV TO b12
WITH s2;

CHANNEL C3
FROM b11 TO b12
WITH s5, s6;

CHANNEL C4
FROM b12 TO b13
WITH s7; s8;

CHANNEL C5
FROM b13 TO ENV
WITH s3; s4;

SIGNAL---------------;
BLOCK b11;

ENDBLOCK b l 1;
BLOCK b12;

ENDBLOCK b12;
BLOCK b13;

ENDBLOCK b13;
ENDSUBSTRUCTURE b1 ;
ENDSYSTEM s;

FIGURE D-l47

Two-level system representations showing the use o f channels

200 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

The channel definitions are either at system level (for the definition of channels between the blocks
composing the system) or in the block substructure definition (for the definition of channels between the
subblocks). In GR, the diagram describing the decomposition of a channel is the Channel Substructure Diagram;
in PR, this corresponds to a description within the channel definition, and also the definition of the blocks and
channels that define it at the lower level.

Figure D -l48 shows an example of a channel between two blocks seen at two different levels (the second
one lower and more detailed).

bl b2

ch

L1 = [s 5]

L2 = [s6]

L3 = [s7]

L4 = [.8]

FIGURE D-148

Channel representation with blocks and channels

In the lower figure of this example, blocks b l and b2 are not further decomposed, but the channel ch seen
as a system at the higher level, shows its internal structure in the lower level representation. It is better to show
the channel decomposition at the time when the system blocks cannot be further decomposed, otherwise the
interaction between the blocks of the channels and respectively the subblocks of the blocks has to be shown. This
increases the difficulty of representing the structure.

Figure D -l49 shows the PR representation of the channel decomposition in Figure D-148.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 201

CH A N N EL c h

FROM b1 TO b2

WITH s 1 , s2 , s3 , s4 ;

S U B S T R U C T U R E c h ;

BLOCKS: c b 1 , c b 2 , c b 3 , c b 4 ;

C H A N N E L S : C1, C2, C3, C4;

INC O M IN G c h TO c b 1 ;

O U T G O IN G c h FROM c b 3 ;

C H A N N E L C1

FROM cb1 TO c b 2

WITH s 5 ;

CH A N N E L C2

FROM c b 2 TO c b 3

WITH s 6 ;

C H A N N E L C3

FROM c b 3 t o c b 4

WITH s 7 ;

CH A N N E L C4

FROM c b 4 TO cb1

WITH s 8 ;

S IG N A L

BLOCK cb1 ;

E N DBL O C K c b 1 ;

BLOCK c b 2 ;

EN DBLO C K c b 2 ;

BLOCK c b 3 ;

EN DB L O C K c b 3 ;

BLOCK c b 4 ;

EN DBLO C K c b 4 ;

E N D S U B S T R U C T U R E c h ;

BLOCK b1 ;

EN DB LO C K b1 ;

BLOCK b2;

EN DB L O C K b2;

E N D S Y S T E M s;

SYSTEM s;

F IG U R E D - l 49

Exam ple o f a channel partitioning

202 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

In all of the examples presented here, it is possible to use the macro notation to describe the blocks, the
processes, the channels somewhere else if they are too long or complex. In the place where the description is
supposed to be, all that is needed is just a macro call. The macro definition then contains the information.

D.7.3.2 Signal definition

Signals can be defined at system level, block level, or in the internal part of a process definition. Signals
defined at system level represent signals interchanged with the environment and between system blocks. Signals
defined at block level represent signals interchanged between processes of the same block.

In Figure D -l50, the signals SIG1, SIG2 are listed in a channel connecting blocks b l and B2 or in a
channel connecting one of these blocks with the environment. Signals s i, s2, s3 declared in block 1 are used by
the processes belonging to this block. Signals s i, s2, s4, s5 declared in block B2 are different from those declared
in b l and they can be used by the processes of block B2.

In a structured system, there can be at block levels signals defined which represent signal interchange
between blocks of the lower level (§ D.7.3.1). In the channel definition, there can be the definition of the signals
of the lower level channels, which are generated by partitioning of the considered channel (§ D.7.3.1). The signal
sets of the subchannels have to be disjointed.

S Y S T E M a;

S IG N A L SIG1 (t y l , ty2) , S IG 2(ty2 , ty3);

BLOCK b l ;

S IG N A L s ! (t l , t 2 , t 3) , s 2 , s 3 (t 4 , t 2) ;

E NDBL O CK b1;

BLOCK B2;

SIG N A L Sl(t1,t2,t3),s2,s4,s5(t4,t2);

ENDB LO CK B2;

E N D S Y S T E M a;

F IG U R E D - l 50

Exam ple o f signal definitions at various levels

D.7.3.3 Channel definition

The channels can be defined at system levels, or, if the system is structured, also at block level. Finally, the
channel can be defined within a channel definition. Channels defined at system level represent the channels
between system blocks and between these blocks and the environment.

In Figure D-151, channels c l and c2 are used by block b l for its communication with the environment.

If the system is structured, each block can contain the definition of the channels that allow communication
between the blocks generated by the partitioning of the considered block and between these blocks and the
environment (§ D.7.3.1).

In the channel definition, there can be channel definitions of the lower level channels obtained with the
decomposition of the lower level channel (§ D.7.3.1). The channel definition contains the list of the signals o f that
channel that have to be defined in the signal definition section.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 203

SYSTEM a;

C H A N N EL c1 FRO M b1 TO ENV

W ITH s 1 , s 2 , s 3

REFINEM ENT C H A N N EL S: c 1 .1 , c 1 .2 ;

C H A N N E L c 2 FR O M ENV TO b1

WITH s 4 , s 5

REFINEMENT C H A N N EL S: c 2 .1 , c 2 . 2 ;

E N D S Y S T E M a;

F IG U R E D-151

Exam ple o f channel definitions

D.7.3.4 Data definition

According to Recommendation Z.101, SDL has predefined data types that are available to every system.
They are integer, real, character, string, Boolean, process instance identifier, time, duration. They do not need a
declaration and can be used in a variable definition with their predefined names, i.e. IN TEG ER, REAL,
CHARACTER, STRING, BOOLEAN, PID, TIME, DURATION.

The variables definition is in a process or in a procedure definition. Any variables that must be
EXPORTED, IM PORTED, REVEALED or VIEWED must be declared with these properties.

Each data is owned by a process instance. Data are defined in the process definition (thus all the process
instances of a process have copies of the data definition given at process level).

In case of revealing in the declare (DCL) section, it is only necessary to add the keyword REVEALED
before the variable type name.

The VIEW ED declaration is outside the DCL section and it is syntactically formed by the keyword
VIEW ED followed by the variable name, the type o f this variable, and finally the identifier of the process that
reveals it.

In Figure D-152, there is an example of a VIEW ED and REVEALED variable “digit” declaration in
processes p i and p2 respectively. These belong to block b l. In this example, process p i is the owner of the
variable “digit” and process p2 can view it.

204 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

SYSTEM a;

BLOCK b1 ;

P R O C E S S p1 ;

DCL

REVEALED d ig i t INT,

c o u n t e r , a larm n u m b e r INT,

a , b ,c , BOOL;

E N D P R O C E S S p 1 ;

P R O C E S S p2;

()
DCL d , e , f , BOOL;

VIEW ED d ig i t p i .

E N D P R O C E S S p2;

EN DBL O C K b1;

E N D S Y S T E M a;

F IG U R E D - l 52

Exam ple o f visibility o f data
between processes o f the sam e block

Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

In Figure D-153, all the instances of the process p i can view the variable “digit”, as it is declared as
REVEALED and VIEWED.

S Y S T E M a;

BLOCK b l ;

P R O C E S S p1;

DCL

REVEALED d ig i t INT;

VIEW ED d ig i t INT p1;

END P R O C E S S p1;

END BLOCK b 1 ;

END S Y S T E M a;

F IG U R E D -153

Exam ple o f visibility between process instances
o f the sam e process definition

When it has to be indicated that the viewing operation is required, the keyword VIEW is used followed by
the name of the variable to be viewed and the process instance identity owner of the variable. The variable name
is separated from the process instance identity by a comma and both are enclosed by round parentheses. Omitting
the view keyword causes the process instance to look for a variable having that name in its local data
(Figure D -l54).

206 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

SYSTEM s;

BLOCK b1 ;

P R O C E S S p1 ;

DCL

REVEAL d ig i t INT,

E N D P R O C E S S p 1 ;

P R O C E S S p2;

DCL

' t INT,

VIEW ED d ig i t INT p i .

T A S K t: = 5*VIEW (dig it ,p1);

E N D P R O C E S S p2;

E NDBL O CK b 1 ;

E N D S Y S T E M s ;

F IG U R E D - l 54

Exam ple o f use o f a viewing variable

Variables which can be exported must have the attribute EXPORTED in their definitions in the exporting
process.

The importing process declares the variables it intends to import in an imported section using the keyword
IM PORTED followed by the names of the variables to be imported, their types and the identifier o f the exporting
process.

A variable can be declared as IMPORTED and EXPORTED at the same time. This allows a process
instance to export a variable to the other instances of the same process and to import that variable from the other
instances. In this case, care should be taken to avoid name clashes: the assignment

v: = IMPORT (v,PID)

will result in the replacement of one’s v with the Pid instance “v”.

As it is possible to see in the example in Figure D -l55, every import operation requires the keyword
IM PORT preceeding the variable name and the process instance identifier, the former separated from the latter by
a comma and both bracketed by round parentheses.

If a variable is exported and revealed, the attribute REVEALED should be added to the EXPORTED
attribute in the declaration (see Figure D -l55). Remember that the revealing is valid only to process instances of
the same block.

In the example of Figure D -l55, the variable “counter” owned by the process p2 in block b2 is exported
and revealed. It is exported for the process p i and revealed for the process p3 in the same block b2.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 207

SYSTEM a;

BLOCK b1 ;

P R O C E S S p1 ;

DCL

EXPORTED d ig i t INT,

IMPORTED c o u n t e r INT BLOCK b 2 ,p 1 ;

E N D P R O C E S S p i ;

E N DBL O C K b1 ;

BLOCK b2;

P R O C E S S p2;

DCL

EXPORTED,REVEALED c o u n t e r INT,

E N D P R O C E S S p2;

P R O C E S S p3;

DCL

VIEW ED c o u n t e r P R O C E S S p2,

E N D P R O C E S S p3;

E N DB L O C K b2;

E N D S Y S T E M a;

F IG U R E D - l 55

E xam ple o f visibility o f data between processes
belonging to different blocks

Fascicle VI. II — Rec. Z.101 to Z.104 — Annex D

D.7.3.5 Macro definition

The macro construct is a means to handle repetitiveness. In PR programs it is possible to have a macro
cutting the stream o f statements, replacing them by the macro call (§ D.7.3.7.8 and Figure D -l56 b)).

The macro definition must be given at the beginning of the system, block, process, procedure definition
(Figure D -l56 a)), depending on whether it can be called from all processes, from those in a block, from only a
process or from only a procedure. Note that in PR the macro always has one inlet and one outlet, so that it is
necessary to use labels and joins to represent in PR a GR diagram with more than one inlet or outlet respectively.

The example in Figure D -l56 represents a macro (Figure D -l56 a)) with two outlets a and b. This means
that in the main program (Figure D -l56 b)) there are two corresponding labels a and b.

M A C R O E X P A N S I O N a;

INPUT r e g i s t e r a larm ;

JO I N a;

INPUT t o n e ;

J O I N b;

E N D M A C R O a;

a) M a c r o d e f in i t io n b) M a c r o cal l

F IG U R E D - l 56

E xam ple o f use o f a macro

D.7.3.6 Procedure definition

Procedures may be defined at various levels in the hierarchy of SDL constructs, i.e. at system, block,
process or procedure level.

Depending upon where a procedure is defined, it is either visible to all processes and procedures in the
system (definition at system level), to all processes and procedures of a block (definition at block level), or only to
the process (procedure) into which it is defined.

The formal parameter definition starts with the keyword FPAR. The variables listed as formal parameters
can have the attributes IN , IN /O U T , or SIGNAL if the corresponding actual parameter is a signal.

A parameter with the keyword IN is passed by value. With the keyword IN /O U T , a param eter is passed
by reference (see also § D.7.3.7.9). A procedure has only one outlet, but there can be one or more RETURN
statements. After the interpretation of the keyword RETURN, the next statement will be the one following the
procedure call in the main program (Figure D -l57).

The visibility schema is very close to the data type definition schema. The only exception is that there are
no predefined procedures so that any procedure should be defined in such a way that its caller may see it.
Figure D -l57 shows an example of a procedure definition. In the first part of the example, the formal parameters
are correct. In the second procedure definition statement, there is an error because the type of the formal
parameters are not in the right order compared to the actual parameters in the procedure call.

A

M A C R O a;

a:

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 209

SIGNAL sig1 (int,bool,int),

DCL n u m b e r INTEGER, c o n n e c t e d B OOLEAN;

P R O C E D U R E p r o d

FPAR

S I G N A L s ig ,

in n u m INTEGER,

I N /O U T c o n n B O O L EA N ;

E N D P R O C E D U R E ;

T h is p r o c e d u r e d e f in i t io n s t a t e m e n t is c o r r e c t a c c o r d i n g t o t h e p r o c e d u r e call , bu t

PR O C E D U R E p r o d

FPAR

IN n u m INTEGER,

S IG N A L s ig ,

I N /O U T c o n n B O O L EA N ;

is WRONG!!!!!! !!! !! !! !! !!! !!! !! !! !!

CALL p r o c 1 (s i g 1 ,n u m b e r ,c o n n) ;

F IG U R E D - l 57

Exam ples o f use o f procedures

D.7.3.7 Process definition

The process definition is embedded, as seen before, between the statements PROCESS and EN D PRO
CESS. A name has to be associated to the PROCESS keyword. This name (having the implicit process
qualification), with the name of the embedding block and the system name, forms the identifier of the process.

If there are any formal parameters, they must be declared after the process statement.. The keywords
FPAR, as seen in Figure D -l58, precedes the parameters.

The actual parameters are in the CREATE statement (see § D.7.3.7.1).

P R O C E S S p r o c e s s n a m e :

FPAR

v a r ia b le n a m e t y p e ;

F IG U R E D -158

Formal parameters definition

210 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

Instance numbers, which must be enclosed in brackets, are optional.

The instance number is a couple of integers separated by a comma, the first indicating how many process
instances are present at system initialization, and the second indicating the maximum number of process instances
that may exist during the system life cycle. If the first number is omitted, there is one instance at the system
initialization. If all instance numbers are omitted, there is one process instance throughout all of the system life
cycle (Figure D -l59).

a) P R O C E S S p1 (5 ,18); t h e r e ar e f iv e i n s t a n c e s a t t h e
in it ia l ization a n d a m a x i m u m
o f 18 in t h e s y s t e m life c y c l e

b) P R O C E S S p2(,5); is e q u iv a l e n t t o P R O C E S S p 2(1 ,5) ;

c) P R O C E S S p3; is e q u iv a l e n t t o P R O C E S S p 3(1 ,1) ;

d) P r o c e s s m i s t a k e (5 ,3); W R O N G !! !

F IG U R E D - l 59

Exam ples o f processes

Obviously the maximum number of instances (second number) should be equal to or greater than the
number of instances existing at system initialization (Figure D -l59 d)).

After the statement PROCESS, we must define the data owned by the process, and after these, the
procedures and macros local to that process (see §§ D.7.3.5 and D.7.3.6).

The representation of the behaviour begins after these definitions. This is indicated either by a START
statement followed by a transition string, or by a STATE statement.

If there is no START statement, each PROCESS instance starts its existence at the first STATE statement
(Figure D -l60 b)).

P R O C E S S

= D e c la r a t io n s e c t i o n

S T A R T <- s ta r t in g p o in t

a) b)

P r o c e s s with a S T A R T s t a t e m e n t P r o c e s s w ithout a ST A R T s t a t e m e n t

F IG U R E D - l 60

Starting o f a process

D.7.3.7.1 Creation o f processes

A process instance can create other instances of the same process or of different processes of the same
block, issuing a create action.

The CREATE statement may contain the list of the actual parameters within round brackets, as shown in
Figure D -l61.

P R O C E S S

STATE

Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D 211

S Y S T E M s;

BLOCK b;

P R O C E S S p;

DCL a , c INTEGER,

b B O O L EA N ,

CREATE p 1 (a ,b ,c) ;

E N D P R O C E S S p;

P R O C E S S p1 ;

FPAR

d ig i t INTEGER, c o n n e c t e d B O O L EAN, n u m b e r INTEGER;

ST A R T

E N D P R O C E S S p1;

E N DB L O C K b;

E N D S Y S T E M s;

F IG U R E D-161

E xam ple o f the creation o f a process instance

D.7.3.7.2 States and multiple appearances

In PR, a state is represented by the keyword STATE followed by the state name.

A state ends at the following state statement (next STATE statement) or at the process end (EN D PRO
CESS or STOP statement).

Moreover in PR there are always distinct statements to indicate going into a state (NEXT-

STATE < ±)) or moving from a state (STATE (~)).

There is not a common statement indicating both as in GR.

Multiple appearances of states have the same explanation and relation to the semantic model as is given in
§ D.6 (GR).

The following are examples on the PR version of those given for GR in § D.6.3.6.5.

212 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

NEXTSTATE s t a t e _ 1 ;

STATE S t a t e _ 1;

INPUT A;

NEXTSTATE s t a t e _ 2;

INPUT C;

J O I N a;

STATE S t a t e _ 2;

INPUT C;

J O I N b;

INPUT B;

NEXTSTATE S t a t e _ 3;

STATE S t a t e _ 3 ;

INP U T D;

J O I N b;

a) T h e c o m p l e t e d ia g r a m

STATE S t a t e _ 1 ;

INPUT A;

NEXTSTATE S T A T E _ 2 ;

INPUT C;

NEXTSTATE S t a t e _ 3 ;

STATE S t a t e _ 2 ;

INPUT B;

NEXTSTATE S t a t e _ 2 ;

INP U T C;

NEXTSTATE S t a t e _ 1 ;

STATE S t a t e _ 3 ;

INPUT D;

NEXTSTATE S t a t e _ 1 ;

b) D ia g r a m a) w ith m a in s t a t e s a n d n e x t s t a t e s
u s e d a s c o n n e c t o r s t o m a in s t a t e

F IG U R E D - l 62

Exam ples o f m ultiple appearances o f a state
(equivalent to Figure D -93)

Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

D.7.3.7.3 PR statement and use o f data

D.7.3.7.3.1 Input statement

The INPUT statement contains a signal list. Data items contained in signals are named using variable
identifiers. The variable identifiers have to be of the type indicated in the signal definition, so their position is
very important. These variable identifiers are contained within round brackets, and they are separated by commas
(see Figure D -l64). If one or more signal data items are discarded, the corresponding variables are missed, and
this is represented by two consecutive commas (Figure D -l63).

INPUT a (var1 ,var2„var4) ;

N ote — In th i s s t a t e m e n t , t h e th ird d a t a i t e m o f t h e s ig n a l a is d i s c a r d e d .

F IG U R E D - l 63

Signal a as input with only 3 o f its 4 data item s defined

SIG N A L sig1 (IN TEGER,B OOLEAN,INTEGER);

DCL a INTEGER,b B O O L E A N ,c INTEGER,

a) d e c l a r a t i o n s

INPUT s ig 1 (a , b ,c) ;

b) a c o r r e c t in p u t

INPUT s ig 1 (a , c , b) ;

c) an in c o r r e c t inp ut

F IG U R E D - l 64

IN P U T statem ents

D.7.3.7.3.2 Save statement

The SAVE statement may have the list of signal names or an asterisk, if all the incoming signals not
named in INPUT statements are saved. A simple example of use of SAVE is given in Figure D -l65.

214 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

S A V E S t a t e _ 31;

S A V E S;

INPUT R;

NEXTSTATE S t a t e 32;

ST ATE S t a t e 32

INPUT S;

F IG U R E D - l65

Exam ple o f the use o f save

D.7.3.7.3.3 Output statement

The OUTPUT statement contains the list of signals sent to other processes. For each data item contained
in the signal, there can be a corresponding actual expression or value. If a value of one or more data items is
undefined, it is omitted, and the empty position is represented by two consecutive commas (Figure D -l66).

O U T P U T s i g 1 (a „ c) ;

F IG U R E D - l66

Signal s ig l as output with only 2 o f its 3 data item s defined

The list of the actual values is put within round brackets. The value for each data item considered in the
signal has to be of the defined type. Referring to the declarations in Figure D -l64 a) for the input statement, a
correct and an incorrect output is shown in Figure D -l67.

O U T P U T s ig 1 (2 , t ru e ,1 0)

a) a c o r r e c t o u t p u t

O U T P U T s i g 1 (f a l s e , t r u e , 10)

b) an i n c o r r e c t o u t p u t

F IG U R E D - l 67

O utput statem ents

I* S 1 arrives , e n t e r s q u e u e a n d r e m a in s in q u e u e , R a rr iv es a n d
is i m m e d i a t e l y c o n s u m e d . T ran s i t ion t o s t a t e _ 32 is t r ig g e r e d .

On arrival a t s t a t e _ 32 ' S 1' is im m e d i a t e l y c o n s u m e d a n d
t ra n s i t io n t o n e x t s t a t e is t r i g g e r e d . */

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 215

D.7.3.7.3.4 Task statement

The task statement may contain one or more assignment statements, set of text statements a n d /o r informal
text. An informal text consists of a name an d /o r a phrase delimited by apostrophes. The statements or text are
separated by commas (Figure D -l68).

T A S K a: = b;

T A S K ' c o n n e c t t h e s u b s c r ib e r ' ;

T A S K RESET(TIME);

T A S K m a in _ a s s i g n m e n t , c: = d + e

T A S K va r l : = var2*var3,

var4: = var5 M O D var6;

F IG U R E D - l 68

Task statem ents

D.7.3.7.3.5 D E C ISIO N statement

The SDL PR decision is represented by the keyword DECISION followed by the decision name an d /o r
expression or text string. The latter is a text (formal or informal) contained between “ ” (apostrophes).

The set of outgoing paths is delimited by the DECISION statement at the beginning and by the
EN D D ECISIO N statement at the end (see Figure D-169).

DECISIO N

(resu lt):

(resu lt):

(resu lt) : , , , , ;

E N D D E C IS IO N ;

F IG U R E D -169

D elim itation o f a D ecision

The results of a decision are indicated within round brackets, and they are represented by one or more text
strings delimited by apostrophes, or by possible values obtained by the evaluation of the expression contained in
the decision statement. Different results within the parentheses are separated by commas. The values are
represented by constant expressions, or by ranges whose upper and lower bounds are constant expressions. The
result values have to be of the type of the expression contained in the decision statement, as illustrated in the
examples of Figures D -l70, D-171 and D -l72.

It is possible to indicate some results explicitly and to group all the other possible results using the
keyword ELSE, as illustrated in, for instance, Figure D-170.

216 Fascicle VI. II — Rec. Z.101 to Z.104 — Annex D

DECISION 'x';

(2): path 1

(6): p a th 2

(9 ,10): p a th 3

ELSE: p a th 4

E N D D E C IS IO N ;

N ote — x is an i n t e g e r b e t w e e n 1 a n d 10.

P ath 1 is s e l e c t e d w i th x = 2.

P ath 2 is s e l e c t e d w i th x = 6.

P ath 3 is s e l e c t e d w i t h x = 9 or x = 10.

P ath 4 is s e l e c t e d w i t h x = 1, = 3 , = 4 , = 5 , = 7 or = 8 .

D E CISIO N ' S u b s c r i b e r c a t e g o r y ' ;

(' in te r n a t io n a l ' , 'na t iona l') : , .

F IG U R E D -170

D ecision with E L SE

(' loca l ') p a th 2

F IG U R E D-171

Exam ple o f D E C IS IO N

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 217

Example

DCL x INT,

D E CISIO N x;

(2 + 5)
(6 + 8,10 + 12)
ELSE

E N D D E C IS IO N ;

DECISIO N a;

(true)

(f a l s e) :

E N D D E C ISIO N

D E CISIO N x;

(10) :

ELSE

E N D D E C IS IO N ;

F IG U R E D -172

Exam ples o f the results o f decisions

The EN D DECISION statement offers structuring capabilities as in structured programming as illustrated
in Figure D -l73.

DECISION

r ~ i -

L - r .

FIGURE D-I73

Structuring capabilities in the DECISION

All paths terminate at the END D ECISIO N statement. Those paths which have not been closed previously
continue at the statement following the EN D DECISION, as shown the equivalent in Figures D -l74 and D-175.

218 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

(1): TASK

(2): TASK

(3): OUTPUT

ENDDECISION;

TASK 'in c o m m o n ' ,

NEXTSTATE next;

DECISION 'x = ?';

(1): TASK '. .
JOIN n;

(2) : TASK '. .
JOIN n;

(3): OUTPUT '. .
JOIN n;

ENDDECISION;

n: TASK 'in c o m m o n '

NEXTSTATE next;

DECISION 'x = ?';

CCITT-86180

FIGURE D - l74

Branching from a DECISION

DECISION 'x = ?';
(1): T ASK '. .

TASK 'in c o m m o n '
NEXTSTATE next;

(2): TASK '. .
(3): TASK '. . .';

TASK 'in c o m m o n ' ;
JOIN n e x ts ;

ENDDECISION;

► TASK 'in c o m m o n ' ;

n e x ts : NEXTSTATE next; CCITT-86180

FIGURE D-175

Equivalent branching o f the example shown in Figure D-174

The decision statement can be used to model the IF-THEN structure, the DO-W HILE and the LOOP-
UNTIL structure.

The IF-THEN structure is shown in Figure D -l76, the IF-THEN ELSE in Figure D -l77, the DO-W HILE
in Figure D-178, and the LOOP-UNTIL in Figure D-179.

BLOCK a;

P R O C E S S b;

STATE s 1 ;

INPUT i1 ;

D ECISIO N 'i1 = ? '

(0): T A S K t l ;

ELSE:;

E N D D E C IS IO N ;

E N D P R O C E S S b;

E N DB LO C K a;

F IG U R E D - l 76

IF T H E N Structure

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D 219

BLOCK a;

P R O C E S S b;

STATE s 1 ;

INPUT i1;

DE CISION 'i1 = ? '

(0): T A S K t 1 ;

ELSE: T A S K t2;

E N D D E C IS IO N ;

E N D P R O C E S S b;

EN DB L O C K a;

F IG U R E D -177

IF T H E N EL SE Structure

BLOCK b1 ;

P R O C E S S p1 ;

STATE s 1 ;

INPUT i1 ;

1:. D E C I S I O N ' b = ?';

(f a l se) : J O I N 11;

ELSE : ;

E N D D E C IS IO N ;

T A S K t1 ;

J O IN 1;

E N D P R O C E S S p1 ;

E N DB L O C K b1;

F IG U R E D - l78

D O W H IL E Structure

BLOCK b1 ;

P R O C E S S p1 ;

STATE s1 ;

INPUT i1 ;

1 D E C I S I O N ' b = ?';

(f a l s e) : J O I N 1;

ELSE:;

T A S K t2;

E N D D E C IS IO N ;

E N D P R O C E S S p 1 ;

EN DB L O C K b1 ;

F IG U R E D - l79

L O O P .. .U N T IL .. Structure

Fascicle VI.11 — Rec. Z.101 to Z.104 — Annex D

When specifying a system, we may have situations where any of several behaviours would satisfy our
requirements. We then want to indicate a number of permissible behaviours leaving the choice of one of them to
the implementor.

The various alternatives are indicated by the keyword ALTERNATIVE with an associated expression or
informal text.

The set of alternative behaviours is closed with the statement ENDALTERNATIVE; each alternative is
identified by a name.

The global structure is the same as that o f the DECISION; the difference is in the semantics. Whereas for
DECISIONS one of the branches is selected according to the value of a data item changing in the process lifetime,
for ALTERNATIVES only a single branch exists in the process implementation so that it is selected before the
implementation. An example is given in Figure D -l80.

D.7.3.7.3.6 Alternative statement

ALTERNATIVE 'A larm r e s p o n s e ' ;

(' f ir st c h o i c e ') : O U T P U T r i n g _ bell ;

(' s e c o n d c h o i c e ') : O U T P U T l i g h t a larm ;

ENDALTERNATIVE;

A t i m p l e m e n t a t i o n t i m e w e c o u l d h a v e

e i th e r

O U T P U T r i n g _ bell ;

or

O U T P U T l igh t _ a larm ;

F IG U R E D - l 80

Exam ple o f an A LT ER N A TIV E statem ent

The results of an ALTERNATIVE statement have the same syntax as the decision. Figure D -l81 shows an
example of this.

DCL a INTEGER 1:10;

ALTERNATIVE a;

(1.4) :
(5 , 1 0) :

ENDALTERNATIVE;

F IG U R E D - l 81

Exam ple o f the alternative statem ent

D.7.3.7.4 State pictures

Does not have a correspondence in PR.

D.7.3.7.5 Time

Time concept is used in SET and RESET statements. They can be the formal text in a PR TASK
statement (see § D.7.3.7.3.4).

Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D 221

D.7.3.7.6 Enabling condition

In PR, the enabling condition is represented by the keyword PROVIDED followed by the condition to be
evaluated. This keyword is attached to the INPUT statement. The condition attached to the IN PU T is a Boolean
expression. If the condition is true, the transition is enabled. If it is false, the signal is saved. As an input can only
appear once per state, the possibility of having an input appearing twice, from the same state, each having a
different enabling condition is not allowed.

The variables used in the expression attached to the enabling condition can be local or imported. They can
not be viewed.

An example of the use of enabling conditions is shown in Figure D -l82.

S Y S T E M s;

BLOCK b1 ;

P R O C E S S p;

DCL

c o n n e c t e d B O O L EA N ,

IMPORTED a la rm BLOCK b2 ,p 2 ;

STATE s1 ;

INPUT i1 P RO VIDED c o n n e c t e d ;

INPUT i2 P RO VIDED IMPORT a la r m ,p 2 ;

E N D P R O C E S S p;

ENDB LO CK b l ;
BLOCK b2;

P R O C E S S p2;

DCL

EXPORTED a larm B O O L EA N ;

E N D P R O C E S S p2;

ENDB LOCK b2;

E N D S Y S T E M s;

F IG U R E D - l 82

Exam ples o f enabling conditions

D.7.3.7.7 Continuous signals

In PR, continuous signals are represented by the keyword : PROVIDED followed by the condition to be
evaluated. Continuous signals differ syntactically from enabling conditions by not having an associated input
statement. The condition is a Boolean expression on data visible to that process. If, at the evaluation time the
condition is true, the transition is activated. If there are several continuous signals, the order of evaluation must
be indicated. This is done by associating a priority to each condition using the keyword: PRIORITY, followed by
an integer value. Continuous signals are defined as having lower priority than usual input signals. The condition
to be evaluated may contain only local or imported variables. It may not contain any viewed variables
(Figures D -l83 and D -l84).

222 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

SYSTEM s;

BLOCK b1 ;

P R O C E S S p1 ;

DCL

x I NT-

STATE s1 ;

PRO VIDED x = 2 PRIORITY 0

P RO VIDED x = 5 PRIORITY 1

INPUT i1 ;

E N D P R O C E S S p i ;

E N DBL O C K b 1 ;

E N D S Y S T E M s;

F IG U R E D - l 83

Exam ples o f continuous signals for local variables

S Y S T E M s;

BLOCK b l ;

P R O C E S S p i ;

DCL

c o n n e c t e d BOOL,

IMPORTED a lar m BLOCK b2 ,p 2 ;

STATE s1 ;

P ROVIDED c o n n e c t e d PRIORITY 0;

INPUT i1;

P ROVIDED IMPORT (a la rm ,p 2) PRIORITY 1;

E N D P R O C E S S p1 ;

E NDBL O CK b1;

BLOCK b2;

P R O C E S S p2;

DCL

EXPORTED a larm BOOL;

E N D P R O C E S S p2;

ENDB LO CK b2;

E N D S Y S T E M s ;

F IG U R E D - l 84

E xam ple o f continuous signals for imported variables

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 223

D.7.3.7.8 M ACRO call

The name associated to the MACRO keyword indicates a MACRO definition with that name (refer to
§ D.7.3.5). The MACRO statement can be inserted in any place of a PR representation but must come after the
relevant MACRO definition.

To interpret the representation, the MACRO definition should replace every occurrence of the MACRO
call statement, as the example of Figure D -l85 indicates.

The MACRO statement is: MACRO name;

S TATE a; STATE a;

INPUT o n h o o k ;

M A C R O r e l e a s e ;

INPUT l i n e _ r e l e a s e ;

INP U T d ig i t ; INPUT dig i t;

F IG U R E D - l 85

Interpretation o f a M A C R O call statem ent

D.7.3.7.9 PROCEDURE call

The procedure call contains a list of actual parameters for the procedure. They consist of input and output
signals visible from the procedure. Note that all signals visible to the caller, and not declared as actual parameters
in the procedure call, are automatically saved fo r the procedure lifetime. In addition, the actual parameters contain
the data visible to the caller that are made visible to the procedure.

Note also that the declaration of IN, or IN /O U T , is made in the procedure definition, so that it must not
be repeated by the calling statement. Also, note that parameters with the attribute IN /O U T in the procedure
definition correspond to variables owned directly or indirectly (when the caller is a procedure) by the caller. The
data mentioned in the actual parameters are associated by order with the formal parameters. If a param eter is not
given, it must be indicated by two consecutive commas. In this case the corresponding formal parameter has the
value “undefined”. An example is shown in Figure D -l86.

CALL p r o c 1 (s i g 1 „ c o n n) ;

(s e e e x a m p l e in § D .7 .3 .6 , i.e. F igure D -1 5 7

F IG U R E D - l 86

Interpretation o f a CALL to a procedure

D.7.3.7.10 Labels (connectors)

Labels are used as entry points associated to statements. This allows control to be transferred by means of
a JO IN statement (Figure D -l87).

equivalent to a

GO TO STATEMENT.

FIGURE D - l87

Label

JOIN A;

224 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

It is not possible to transfer control (and therefore associate labels) to the types of statement shown in
Figure D -l88.

SY S T E M ,

BLOCK,

P R O C E S S ,

STATE,

INPUT,

E N D M A C R O ,

ENDALTERNATIVE

F IG U R E D - l 88

N on-allow able label points

E N D S Y S T E M ,

ENDBLOCK,

E N D P R O C E S S ,

E N D D E C IS IO N ,

SA V E ,

E N D P R O C E D U R E ,

Only one label can be associated with a statement. Labels are always local to a process. It is not possible
to transfer control from one process to another by means of a label.

D.7.3.7.11 Statement reachability

Unless a transfer of control is indicated, statements are interpreted one after the other.

Statements transferring control are shown in Figures D-189 to D-193.

STATE .The control is transferred upon arrival o f a signal to the IN PU T or SAVE statement containing
that signal name.

S T A T E

I N P U T «—

IN P U T «-

S A V E CCITT-86180

FIGURE D-189

Transfer o f control in STATE

JO IN : The control is transferred to the statement having the label named in the JO IN ; there should be
one and only one statement having such a label.

J O I N a;

a : CCITT-86180

FIGURE D - l90

Transfer o f control in JOIN

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 225

NEXTSTATE: The control is transferred to the state having the name indicated in the NEXTSTATE
statement.

N E X S T A T E a;

S T A T E a; CCITT-86180

FIGURE D-191

Transfer o f control in NEXTSTATE

STOP: The interpretation terminates; there is no transfer of control.

S T O P ;

FIGURE D - l92

N o transfer o f control

Implicit transfer: is the same as previously explained for the decision branches.

DECISION 'x = ?';
(1): T ASK '. .

TASK 'in c o m m o n ' ;
NEXTSTATE next;

(2): TASK '. . .';
(3): T ASK '. . .';

TASK 'in c o m m o n ' ;
JOIN n ex ts ;

ENDDECISION;

*■ TASK 'in c o m m o n ' ;
n e x ts : NEXTSTATE next;

CCITT-86180

FIGURE D-193

Example o f implicit transfer o f control

D.7.3.7.12 Use o f divergence and convergence

In PR, this is covered by labels also, as defined in § D.7.3.7.10.

D.7.3.7.13 Comments

Comments are inserted by means of the keyword: COMMENT.

The keyword can be inserted, as a statement, wherever a TASK statement can be inserted. In addition, the
keyword can be associated with any other statement at the end of the statement:

S T A T E a C O M M E N T '. . .

With the exception of ENDstatements where the comment cannot be associated.

It is possible to add a CHILL comment (/ * ____ */) wherever a space (blank) may occur. Some examples
of the use of this kind of comment are given in Figures D -l94 and D -l95.

226 Fascicle V I.ll — Rec. Z.IOI to Z.104 — Annex D

DCL

a INTEGER, /* e x p la n a t io n o f t h e u s e o f v a r ia b le a */

b B O O L EA N ; /* e x p la n a t io n o f t h e u s e o f v a r ia b le b */

F IG U R E D - l94

U se o f C H IL L com ments in variable declaration

P R O C E D U R E A B C (IN a INTEGER, /* m e a n i n g o f th i s fo r m a l p a r a m e t e r */,
I N /O U T b B O O L EA N ; /* m e a n i n g o f th i s fo r m a l p a r a m e t e r */);

F IG U R E D - l95

U se o f C H IL L com ments in procedure definition

D.7.3.7.14 Shorthand notations

An * (asterisk) can be inserted in a STATE/INPUT/SAVE statement to indicate that all names applicable
to that statement apply.

Example;

a) STATE *; b) STATE A ,B ,C ,D ,G ;

N ote — a) is e q u i v a l e n t t o b) if A ,B ,C ,D ,G is t h e s e t o f
s t a t e s d e f i n e d in th a t p r o c e s s .

F IG U R E D - l96

A LL -states notation

a) INPUT*; b) INPUT 11, 13, 16;

N ote — a) is e q u i v a l e n t t o b) w h e r e 11, 13 a n d 16 are
i n c o m i n g s i g n a l s t o t h a t p r o c e s s a n d no t declared as
INPUT or SAVE in tha t state. O nly a s i n g l e INPUT or
S A V E w ith an * c a n b e a t t a c h e d t o a part icu lar s t a t e .

F IG U R E D - l97

ALL-incom ing-signals notation

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D 227

a) SAVE b) SAVE 11, 13, 16;

N ote — a) is e q u i v a l e n t t o b) w h e r e 11, 13 a n d 16 are
i n c o m i n g s i g n a l s t o th a t p r o c e s s n o t declared as
INPUT in that state. N o o t h e r S A V E c a n b e a t t a c h e d
t o t h e s a m e s t a t e .

F IG U R E D -198

ALL-saves notation

To a STATE *; we can associate a list of exceptions to exclude some states from the list. The names of
states to be excluded are bound by [] (square brackets).

a) STATE * [A ,C ,D]; b) STATE B, E, F, G;

N ote — a) a n d b) a re e q u i v a l e n t if A ,B ,C ,D ,E ,F ,G are
t h e s t a t e s o f t h e p r o c e s s .

F IG U R E D - l99

A LL-but-som e state notation

A dash (—) can be inserted in a NEXTSTATE statement to indicate* that the state from which the
transition originates is the same as that where the transition terminates (Figure D-200).

a) STATE a;. b) STATE a;

INP U T i; INPUT i;

N E X T S T A T E - ; NEXTSTATE a;

N ote — a) a n d b) a r e e q u iv a l e n t .

F IG U R E D -200

Identical originating and terminating state

228 Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

This notation is particularly useful in cases where it is desired to perform a common set o f actions in
several states remaining after that in the same state, as shown in Figure D-201.

S T A T E a;
M A C R O c h a r g i n g ;
I N P U T . . .

S T A T E b;
M A C R O c h a r g i n g ;
I N P U T . . .

S T A T E f;
M A C R O c h a r g i n g ;
I N P U T . . .

M A C R O DEF: c h a r g i n g ;
I N P U T c h a r g e ;
T A S K
N E X T S T A T E -

E N D M A C R O ;

CCITT-86180

FIGURE D-201
Macro definition

D.8 Mappings

This § describes some aspects of the mapping, between SDL and CHILL (§ D.8.1), and the mapping
between SD L/G R and SD L /PR (§ D.8.2).

D.8.1 Mapping between SD L and C H ILL

In this § some possible ways of mapping SDL to CHILL are illustrated. This is done as an example and
does not either pretend to be exhaustive or to suggest that any of these ways should be used in practice.

In fact the mapping should not only consider the available CHILL compiler and the target machine;
because in general the mapping is a very complex intellectual activity and it is only through experience that
designers/programmers can decide on a particular CHILL program structure to be used to implement a particular
SDL representation. This also applies to the representation in SDL of the functions implemented by a CHILL
program. A one-to-one mapping (if achievable) is not necessarily the best way of using SDL to represent the
functions implemented in CHILL.

In this approach the overall structure of a mapping between a complete SDL diagram and a (incomplete)
CHILL program is shown in Figure D-202.

Some examples of a m apping between constructs of the two languages are given in Figures D-203 to
D-206. They cover the following SDL constructs:

* state and reception/save of signals; selection of a nextstate;

* output;

* join;

* decision.

The declaring module contains both the definition and the declaration of all the signals used in the
transformed SDL diagram and all of the variables associated with these signals. All these variables are granted to
the module representing the functional block of the SDL diagram.

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 229

D e c la r in g : M O D U LE

I* CHILL m o d u l e c o n t a in in g t h e s i g n a l s a n d a s s o c i a t e d v a r ia b le s , u s e d in t h e S D L d i a g r a m */

G R A N T

/* g r a n t in g o f s i g n a l s a n d v a r ia b le s 7

S I G N A L S

/* s i g n a l s d e f in i t io n 7

S Y N M O D E (OR N E W M O D E)

I* t y p e d e f in i t io n */

E ND D e c la r in g ;

F u n c t io n a l _ B lock: M O D U LE

/* m o d u l e c o n t a i n i n g t h e p r o c e d u r a l part o f t h e S D L d ia g r a m */

SEIZE

/* s e i z in g o f all t h e s i g n a l s a n d v a r ia b le s th a t c a n b e r e c e i v e d a n d s e n t f r o m (to) th i s f u n c t io n a l
b lo c k */

/* d a t a d e f in i t io n a n d d e c la r a t io n ; s u c h d a t a is g lo b a l t o all t h e p r o c e s s e s b e l o n g i n g t o th i s
m o d u l e */

P r o c e s s n a m e : P R O C E S S ();

/* loca l d a t a d e f in i t io n a n d d e c la r a t io n */

n e x t s t a t e : = ;
join: = n o n e ;

DO FOR EVER)
s t a t e lo o p : CASE n e x t s t a t e OF

I* l o o p o n t h e v a r ia b le n e x t s t a t e in d ic a t in g t h e S D L s t a t e */

(s t a t e _ l a b e l 1) : / ? £ C £ / l / £ CASE
(s ig n a l n a m e l) :

(s ig n a l n a m e n) :

ESAC s t a t e _ lo o p ;

DO WHILE j o in / = n o n e ;

CASE jo in OF
(j o in Iab1): jo in: = n o n e ;

(j o i n _ l a b m) : join : = n o n e ;

E SA C ;

OD)
OD)

END p r o c e s s _ n a m e ;

E N D F u n c t io n a l B lock;

F IG U R E D-202

Exam ple o f a one-to-one mapping from S D L to C H IL L

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

The functional block module represents the behaviour (procedural part) of the SDL processes.

In this translation schema, each SDL process is represented as an infinite loop; a variable named
“nextstate” indicates the state to be examined, and a variable named “jo in” indicates possible join points
determining common sets of statements.

A selection, by means of the case construct of CHILL, is made upon the value of nextstate; each entry of
the case identifies an SDL state. In each entry a selection among the possible input signals is made. Each input
signal determines the set of actions to be performed (the “transition path”).

Each transition path ends with an assignment either to the variable “nextstate”, directly determining the
next state to be examined, or to the variable “jo in”. A subsequent selection loop on the current value of the
variable “jo in” allows every transition to terminate, in an SDL sense, and at the end assigns a value to the
variable “nextstate”.

(STATE 1 ^

I SIGN1 S I G N 2 j S I G N 3 !

^ ST A T E 3 ^
CCITT-76030

a) SD L

STATE1 :

RECEIVE C A SE

(S IG N A L 1):

(S I G N A L 2) :

N EXT STA T E: = S T A T E 3 ;

ELSE G ETOUT (LIST1)

E SA C STATE 1 ;

b) C H IL L

F IG U R E D-203

Exam ples o f mapping ST A T E /IN P U T /S A V E /N E X T ST ATE

One of the major problems in relating SDL and CHILL is the different semantics of signal reception; in
fact while CHILL doesn’t consume (and therefore doesn’t destroy) any signals unless they are received (persistent
signals), SDL process consumes (and therefore destroys), all the signals received until there is a match with one of
the inputs listed for that state. The semantics mismatch has been resolved by introducing the built-in-routine
GETOUT, as an alternative (ELSE path) in the CHILL RECEIVE CASE construct, as shown in Figure D-203.
The CHILL built-in-routine GETOUT, which knows (by parameters) the list of input and save signals, destroys
the other signals available to the process when it is called.

After executing the GETOUT routine the state selector is set to repeat the loop for that state until a valid
input signal is selected (or arrives if not already present).

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 231

STATE1

y S G A

S G B y

I
| CCITT-76040

a) SD L

STATE 1 :

RECEIVE CA SE

(S G A) : p i : = g e t _ i n s t a n c e _ v a lu e () ;

s e n d S G B t o p i ;

n e x t s t a t e : =;

ELSE n e x t s t a t e : = s t a t e l ;

E S A C STATE1 ;

b) C H IL L

F IG U R E D -204

E xam ple o f mapping O U T P U T

For example, once the input signal SGA, in Figure D-204 has been recognized, the appropriate destination
process instance for the signal SGB is selected and the signal SGB is sent.

Before sending the signal SGB it may be necessary to Fill some information fields which are to be carried
by the signal. This can either be done immediately before, or well in advance of sending the signal.

When a join point is met in the diagram (see Figure D-205), the appropriate value is assigned to the
variable “JO IN ”. As explained in Figure D-202, a loop on the value of the variable “jo in” is performed to
determine the next state to be examined. A join point can be seen, from the programming language point of view,
as a “goto” construct; collecting all the join points together so that they can be examined which allows the entire
skeleton program to be written without using gotos, thus making it easier to read.

An SDL decision has a direct translation into the case construct of CHILL, as shown in Figure D-206.

D.8.2 Mapping between GR and PR

Some parts of a system can only be described using PR, e.g. data definition and signal definition.
Therefore, systems represented using GR may need to be supplemented by some PR syntax. This means that
systems represented using GR can always be mapped to PR, but a PR representation may not be completely
representable in GR.

Figure D-207 shows the internal part of a block B given by a block interaction diagram and its
correspondent parts in PR.

Figure D-208 shows an example of a simple process definition for process PR1. It is given in both GR and
PR form. Only the parts having a graphical representation are shown.

For the block interaction diagram the GR constructs have a correlation with the PR constructs, as shown
in Figure D-209.

Figure D-210 shows the corresponding correlation for the process diagram.

232 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

I

\ y CCITT-76050

a) SD L

STATE 1 :

RECEIVE C A S E

(S1 in m) : c a s e m . id o f
(S G A) : ;

(S G B) : ;

(S G C) :; J O IN : = 1 ;

ELSE n e x t s t a t e : = s t a t e 1 ;

e s a c ;

E S A C STATE1 ;

b) C H IL L

F IG U R E D -205

E xam ple o f mapping J O IN

D.9 Application examples o f SD L

D.9.1 Introduction

Paragraph D.9 contains three examples of using SDL. The examples are taken from the telecommunica
tions application area, and make use of different subsets of SDL. An attempt was made to take realistic examples
and cover as many SDL concepts as possible.

In each example a system is presented on a high level of abstraction, and only part of the system is
elaborated in detail, the other parts are declared “undefined”.

One essential requirement for a system definition is that all its different parts are tied together
unambiguously into a complete whole (see § D.5). Since the recommendations do not provide language constructs
to meet this requirement, such constructs has to be prepared within the scope of the examples. These referencing
constructs are based on the syntax rules of SDL.

Since some of the SDL users probably prefer different kinds of referencing constructs, two main
approaches are used in the examples. One approach is based on SD L/PR syntax, the other one uses comments in
the graphical diagrams.

The examples are intended to show the use of SDL, and are not international specifications.

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D 233

a) S D L

1 : C A S E C OF

(A N S I) :

(A N S 2) :

(A N S i) :; n e x t s t a t e : = s t a t e 1 ;

E S A C 1 ;

b) C H IL L

F IG U R E D -206

Exam ple o f mapping D E C IS IO N

D.9.2 Telephone switching system

In this example only the basic SDL (Recommendation Z.101) is used.

The system definition is presented in all the concrete syntactical forms of SDL in order to facilitate their
comparison.

This example deals with a call handling process in a telephone switching system, and assumes a basic
knowledge of telephony. In the first phase (call set-up) a connection is established between the caller subscriber
(A) and the called subscriber (B), both belonging to the same exchange. In the second phase (conversation) the
process is waiting for call terminating signals. In the last phase (call termination) the subscribers are disconnected
and the process resumes its idle state.

D.9.2.1 S D L /G R syntactical form in the two versions

The normally used graphical syntactical form (transition-oriented version) does not make use of state
pictures, while the other (state-oriented version) does. The block interaction diagram is common for both forms.

In the state-oriented version of the example no variable definitions are included and setting and resetting
of timers is shown implicitly. Note further that nextstates are shown by a diminished size state symbol containing
the state number alone as sufficient identification.

234 Fascicle VI. 11 - Rec. Z.101 to Z.104 - Annex D

a) GR-syntax

BLOCK B ;

S U B S T R U C T U R E ;
S U B B L O C K S : B1, B2, B3 ;
SPLIT C1 INTO C11, C12 ;
SPLIT C2 INTO C2 ;
SPLIT C3 INTO C31, C 3 2 ;
C H A N N EL C11 FR O M ENV TO B1 WITH / * L11 */ ;
C H A N N EL C12 FR O M ENV TO B2 WITH /* L12 */;
C H A N N EL C2 FR O M ENV TO B2 WITH /* L2 * /;
C H A N N EL C31 FR O M B1 TO ENV WITH /* L31 */;
C H A N N EL C32 FROM B3 TO ENV WITH / * L32 * /;
/ * T h e n e w c h a n n e l s */
C H A N N EL C4 FRO M B1 TO B3 WITH / * L4 */ ;
C H A N N EL C5 FRO M B2 TO B3 WITH / * L5 */ ;
C H A N N EL C6 FRO M B3 TO B2 WITH / * L6 */ ;

E N D S U B S T R U C T U R E ;

E N D B L O C K B ;

b) PR-syntax

N ote — The PR program is not complete according to the syntax rules.

FIGURE D-207

Correlation between GR and PR for a block interaction diagram

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 235

PROCESS PR1

STATE ST01 ;

INPUT S N 1 ;

D E C ISIO N D1 ;

(N O) : O U T P U T S N 3 ;

(Y E S): DE CISIO N D2 ;

(N O) : T A S K T S K 1

(Y E S): T A S K T S K 2 ,

E N D D E C I S IO N ;

O U T P U T S N 2 TO PR2 ;

E N D D E C I S I O N ;

NEXTSTATE ST01 ;

E N D P R O C E S S P R 1 ;

PROCESS PR1 ;

N o te — D1 and D2 are formally defined data. PR2 is data of type PID in the PR example,
but can be the process name in the GR example.

FIGURE D-208

C orre lat ion between GR and PR for a process d iagram

Fascicle V I .ll - Rec. Z.101 to Z.104 - Annex D

CONCEPT GR PR

c h a n n e l

b lo c k

p r o c e s s

s y s t e m
e n v i r o n m e n t

s y s t e m

s ig n a l list

c r e a t e

s ig n a l ro u te

t e x t e x t e n s i o n

c o m m e n t

()
EN V IR O N M EN T

[]

- [

/ * * /

CH A N N EL

BLOCK
EN DBL O C K

P R O C E S S
E N D P R O C E S S

ENV

SY S T E M
E N D S Y S T E M

CREATE

/ * * /

CCITT-76090

F IG U R E D -209

Correlation o f constructs in GR and PR for sym bols used in block interaction diagram

Fascicle VI. 11 - Rec. Z.101 to Z.104 — Annex D

s t a t e

n e x t s t a t e

in p u t

o u t p u t

ta s k

d e c i s i o n

i n - c o n n e c t o r

o u t - c o n n e c t o r

t e x t e x t e n s i o n

c o m m e n t

CONCEPT

m e r g i n g
t r a n s i t io n s

all (e x c e p t)

s a v e

p r o c e d u r e cal l

p r o c e d u r e star t

p r o c e d u r e s t o p

m a c r o call

m a c r o in let

m a c r o o u t l e t

s ta r t

s t o p

c r e a t e r e q u e s t

c o n t i n u o u s s ig n a l

e n a b l i n g
c o n d i t io n

o p t io n

GR

CD
CD
I

>

O

©

* r. j

C J

(D

CD
©
CD
x

STATE

NEXTSTATE

INPUT

O U T P U T

T A S K

D E CISIO N
E N D D E C IS IO N

x :

J O IN x

PR

C O M M E N T
or ^ , /

JO IN x
x :

*

SA V E

CALL

P R O C E D U R E

RETURN

M A C R O

M A C R O
E X P A N S I O N

E N D M A C R O

ST A R T

S T O P

CREATE

P RO VIDED

I N P U T -
P RO VIDED

ALTERNATIVE
ENDALTERNATIVE

CCITT-76101

F IG U R E D -210

Correlation o f constructs in GR and PR within a process diagram

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

T e le p h o n e _ s w it c h in g _ s y s t e m S I G N A L : S e n d _ t o n e (INT)
/* T h e s ig n a l v a r ia b le s i n d i c a t e s
t h e t y p e o f t h e t o n e . Its v a l u e s
a re i m p l e m e n t a t i o n d e f i n e d */)

S I G N A L : Dig it (INT)
/* T h e s ig n a l v a r ia b le s c o n t a i n s
t h e d ia l led d ig i t * /;

C5 S ig n a l _ r e c o g n i t io n M a i n t e n a n c e

/ * u n d e f i n e d */ / * u n d e f i n e d */

_ _

C1

A _ o f f _ h o o k
A _ o n _ h o o k
B_ o f f _ h o o k
B_ o n _ h o o k

_ D ig i t

[O u t _ o f _ s e r v i c e] C2

Call_ h a n d l in g

Call_ h a n d l in g

/ ‘ p r o c e s s b o d y in
F ig u res D -2 1 2
a n d D -2 1 3 */

7 u i \

C3

S e n d _ d ia l_ to n e ,
S e n d _ r ing_ s ig n a l _ t o _ B,
S e n d _ r ing_ t o n e _ t o _ A,
S e n d _ t o n e ;
S t o p _ d ia l_ t o n e ,
S t o p _ ring_ s ig n a l ,
S t o p _ r ing_ t o n e ,
S t o p _ t o n e

S t a r t _
m e t e r i n g _ A,
S t o p _
m e t e r i n g _ A _

C4

C6 S i g n a l _ s e n d i n g

/ * u n d e f i n e d */

M e t e r in g

/ * u n d e f i n e d */

CCITT-76111

F IG U R E D-211

B lock interaction diagram for the system Telephone_ switching_ system

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

DCL
B_ number STRING
/* Contains the dial led digits */,
Tone_ type INTEGER
/ ‘ Indicates the typ e o f th e tone.
Its values are im plem entation def in ed */,
Dig INTEGER
/* Contains the last dialled digit */;

DCL, T1, T2, T3, T4, T5 TIMER ;

Timer T1 is s e t to 1 /
N O W + A. A d e n o t e s a co n s ta n t 1/

value that is im plem entation [
def in ed J

•{und ef ined
'D iscon n ect 'D iscon n e ct

digit digit
receiver' receiver'

1 y - { to p a g e 2

J A n a lo g o u s to
timer T1

CCITT-20594

^ Ringing Pa9 e 2
F IG U R E D -212 (page 1 o f 2)

Process diagram for the process C a ll_ handling, transition-oriented version

240 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

Ringing

to page i j — ^ Idle \

11

\
/ o f f .

B_
hook \ A-/ o n _ hook > T3

< S top_ / S top_ /
r in g . < r in g j ^

signal \ signal \

S top_
ring_

signal

/ S to p . /
< ring_

\ tone \

RESET
(T3);

r ~

S top_
ring_
tone

~ 1-----

'Connect
path A -B '

RESET
(T3);
I

Stop_
ring
tone
I

'Release
allocated

path'

'Release
allocated

path'
31

Start.
m etering (Idle) — [t o page 1

Conversation

A_
on hook

B_
on hook

Stop_
m etering

(A w ait_ B_ \ f
on_ hook J I

SET
(N O W + D,

A w ait_ A_
on hook

— £ A nalogous to tim er T1

1 1................. 1

j*o
,

o

“
3

.o

/
\ N A-/ o f f _ hook \ A -/ o n _ hook > T4

\ B_
/ o f f _ hook

'D isconnect Start_ \ S top_ \ Stop_
path ' m etering A / m etering J k/ m e t e r in g A /

^Conversatiom RESET
(T4);

'D isconnect
path'

H—

'Disconnect
path'

'S elect
tone type '

RESET
(T4);

^Conversation^

<TXr̂
f r o m page 1, 2

to page 1 <S e n d _ to n e
tone_ type)

SET
(N O W + E ,

T5) ;
31

- ~ £ A nalogous to tim er T1

/ Tone_) r
I connected I L Tone

A_
on hook T5

S top_
tone £

RESET
(T5);

3 1

(ldle }-■ { to page 1

CCITT-20604

F IG U R E D -212 (page 2 o f 2)

Process diagram for the process C all_ handling, transition-oriented version

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 241

Key to pictorial description of the call states Key to inputs

"A " party
handset
off hook

A -

"B" party
handset
on hook

DR

Functional block boundary Call_ charging of
Digit A__ p a r ty -^

receiver isln < A

d _ N o W 658
new digit recognized

. Supervisory
tim er No. T4
is running

Path reserved
but connected

Ring
current

© '

/
Ring current sender
(i.e. ring signal) /

Out of
serviceA

« A»_ party's line declared
out of service

h Handset off_ hook

h Handset on_ hook

d New digit recognized

7* Timer T4 has expired

CCITT-20615

F IG U R E D -213

Process diagram for the process C all_ handling, state-oriented version

242 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

D.9.2.2 SD L /P R syntactical form

S Y S T E M T e l e p h o n e _ s w i t c h i n g _ s y s t e m ;

C H A N N E L C1 FROM S i g n a l _ r e c o g n i t i o n TO C a l l_ h a n d l in g

WITH A _ o f f _ h o o k ,

A _ o n _ h o o k ,

B _ o f f _ h o o k ,

B _ o n _ h o o k ,

Dig it ;

C H A N N EL C2 FROM Call _ h a n d l in g TO M a i n t e n a n c e

WITH O u t _ o f _ s e r v i c e ;

C H A N N EL C3 FR O M C a l l _ h a n d l i n g TO S i g n a l _ s e n d i n g

WITH S e n d _ dial _ t o n e ,

S e n d _ ring _ s ig n a l _ t o _ B ,

S e n d _ ring _ t o n e _ t o _ A,

S e n d _ t o n e ,

S t o p _ d i a l _ t o n e ,

S t o p _ r i n g _ s i g n a l ,

S t o p _ ring _ t o n e ,

S t o p _ t o n e ;

C H A N N E L C4 FROM C a l l_ h a n d l in g TO M et e r in g

WITH S ta rt _ m e t e r i n g _ A,

S t o p _ m e t e r i n g _ A;

C H A N N E L C5 FROM ENV TO S ig n a l _ r e c o g n i t io n

WITH I* u n d e f i n e d */;

C H A N N EL C6 FR O M S i g n a l _ s e n d i n g t o ENV

WITH /* u n d e f i n e d */;

S IG N A L S e n d _ t o n e (INT)

I* T h e s ig n a l v a r ia b le i n d i c a t e s t h e t y p e o f t h e t o n e .

Its v a l u e s a r e i m p l e m e n t a t i o n d e f i n e d */;

S I G N A L D ig it (INT)

/* T h e s ig n a l v a r ia b le c o n t a i n s t h e d ia l led d ig i t */;

BLOCK S ig n a l _ r e c o g n i t io n /* u n d e f i n e d */;
ENDB LO CK ;

BLOCK S ig n a l s e n d i n g /* u n d e f i n e d */;

ENDBL O CK ;

BLOCK M a i n t e n a n c e /* u n d e f i n e d */;

ENDB LO CK ;

BLOCK M e t e r in g /* u n d e f i n e d */;

ENDBLOCK;

F IG U R E D -214 (page 1 o f 4)

System definition using S D L /P R -syn tax

Fascicle VI.11 — Rec. Z.101 to Z.104 — Annex D 243

BLOCK C a l l _ h a n d l i n g ;

P R O C E S S C a l l_ h a n d l in g (1 ,1);

DCL B _ n u m b e r ST R IN G

/* c o n t a i n s t h e d ia l l ed d ig i t */;

DCL T o n e _ t y p e INTEGER

/* I n d ic a t e s t h e t y p e o f t h e t o n e . Its v a l u e s a re i m p l e m e n t a t i o n d e f i n e d */;

DCL D ig INTEGER

/* c o n t a i n s t h e la s t d ia l led d ig i t */;

ST A R T; NEXTSTATE Idle;

STATE Idle;

INPUT A _ o f f _ h o o k ;

D E CISIO N 'In s er v i c e ' ;

('N o') : O U T P U T O u t o f _ s e r v ic e ;

NEXTSTATE O ff _ h o o k _ o u t _ o f _ s e r v ic e ;

('Y es ') : DE CISIO N 'B lo c k in g ';

('Y es ') : NEXTSTATE O f f _ h o o k _ i n _ s e r v ic e ;

('N o') : T A S K ' C o n n e c t d ig i t r e c e iv e r ' ;

O U T P U T S e n d _ dial _ t o n e ;

T A S K SE T (N O W + A, T1);

I* T im e r T1 is s e t t o N O W + A . A d e n o t e s a c o n s t a n t v a lu e t h a t is
im p l e m e n t a t i o n d e f i n e d */

NEXTSTATE A w a i t _ f i r s t _ dig i t;

E N D D E C IS IO N ;

E N D D E C IS IO N ;

STATE O f f _ h o o k _ in _ s e r v ic e ;

INPUT A _ o n _ h o o k ;

NEXTSTATE Idle;

STATE O ff _ h o o k _ o u t _ o f _ s e r v ic e ;

INPUT A _ o n _ h o o k ;

NEXTSTATE Idle;

STATE A w a i t f i r s t _ d ig i t ;

INPUT D ig it (D ig) ;

O U T P U T S t o p _ dia l t o n e ;

T A S K RESET (T1),

B n u m b e r : = 0;

10: T A S K ' A p p e n d D ig t o B _ n u m b e r ' ;

D E CISIO N ' S u f f i c i e n t n u m b e r o f d ig i t s r e c e iv e d ' ;

('No') : T A S K SE T (N O W + B ,T 2) ;

NEXTSTATE A w a i t _ n e x t _ dig it;

('Y es ') : DE CISIO N 'T ype o f B _ n u m b e r ' ;

('Local n orm al ') : T A S K ' D i s c o n n e c t d ig i t r e c e iv e r ' ;

D E CISIO N 'B party f re e ' ;

('N o') : J O IN 1;

('Y es ') : DE CISIO N 'B lo c k in g ';

('Y es '): JO IN 1;

('N o') : T A S K ' A l l o c a t e p a th A - B ' ;

O U T P U T S e n d _ ring _ s ig n a l _ t o _ B ;

O U T P U T S e n d _ ring _ t o n e _ t o _ A;

T A S K SE T (N O W + C , T3);

NEXTSTATE R in g in g ;

E N D D E C IS IO N ;

E N D D E C IS IO N ;

('Local v a c a n t ') : T A S K ' D i s c o n n e c t d ig i t r ec e iv e r ' ;

JO IN 1;

('O ther'): /* u n d e f i n e d */;

E N D D E C IS IO N ;

E N D D E C IS IO N ;

F IG U R E D -214 (page 2 o f 4)

System definition using S D L /P R -syn tax

244 Fascicle VI.11 — Rec. Z.101 to Z.104 — Annex D

INPUT T1;

O U T P U T S t o p _ dia l t o n e ;

T A S K ' D i s c o n n e c t d ig i t r e c e iv e r ' ;

J O I N 1;

INPUT A _ o n h o o k ;

O U T P U T S t o p _ dia l _ t o n e ;

T A S K ' D i s c o n n e c t d ig i t r ec e iv e r ' ;

T A S K RESET (T1);

NEXTSTATE Idle;

STATE A w a i t _ n e x t _ dig it;

INPUT D ig i t (D ig) ;

T A S K R ESET (T2);

J O I N 10;

INPUT T2;

T A S K ' D i s c o n n e c t d ig i t r ec e iv e r ' ;

J O I N 1;

INPUT A _ o n h o o k ;

T A S K ' D i s c o n n e c t d ig i t r ec e iv e r ' ;

T A S K RESET (72);

N EXTSTATE Idle;

STATE R in g in g ;

INPUT B _ o f f h o o k ;

O U T P U T S t o p ring s ig n a l ,

S t o p _ ring _ t o n e ;

T A S K RESET (T3);

T A S K ' C o n n e c t p a t h A — B';

O U T P U T S t a r t _ m e t e r i n g A;

NEXTSTATE C o n v e r s a t i o n ;

INPUT A _ o n _ h o o k ;

O U T P U T S t o p _ ring _ s ig n a l ,

S t o p _ ring _ t o n e ;

T A S K RESET (13);
T A S K ' R e l e a s e a l l o c a t e d p a th ';

NEXTSTATE Idle;

INPUT T3;

O U T P U T S t o p _ ring _ s ig n a l ,

S t o p _ ring _ t o n e ;

T A S K ' R e l e a s e a l l o c a t e d pa th ';

J O IN 1;

STATE C o n v e r s a t i o n ;

INPUT A _ o n h o o k ;

O U T P U T S t o p _ m e t e r i n g A

NEXTSTATE A w a i t _ B _ o n _ h o o k ;

INPUT B _ o n _ h o o k ;

T A S K S E T (N O W + D , T4);

NEXTSTATE A w a i t A o n h o o k ;

F IG U R E D -214 (page 3 o f 4)

System definition using S D L /P R -syn tax

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 245

ST ATE A w a i t _ B _ o n _ h o o k ;

INPUT A _ o f f _ h o o k ;

O U T P U T S t a r t m e t e r i n g _ A;

NEXTSTATE C o n v e r s a t i o n ;

INPUT B _ o n _ h o o k ;

T A S K ' D i s c o n n e c t p a th ' ;

NEXTSTATE Idle;

STATE A w a i t _ A _ o n _ h o o k ;

INPUT A _ o n _ h o o k

O U T P U T S t o p _ m e t e r i n g _ A;

T A S K RESET (T4);

T A S K ' D i s c o n n e c t p a th ' ;

NEXTSTATE Idle;

INPUT B _ o f f h o o k ;

T A S K RESET (T4);

NEXTSTATE C o n v e r s a t i o n ;

INPUT T4;

O U T P U T S t o p _ m e t e r i n g _ A;

T A S K ' D i s c o n n e c t p a th ';

1: T A S K ' S e l e c t t o n e ty p e ' ;

O U T P U T S e n d _ t o n e (T o n e t y p e) ;

T A S K SET (N O W + E , T5);

NEXTSTATE T o n e c o n n e c t e d ;

STATE T o n e _ c o n n e c t e d ;

INPUT A _ o n _ h o o k ;

O U T P U T S t o p _ t o n e ;

T A S K RESET (T5);

NEXTSTATE Idle;

INPUT T5;

J O I N 1;

E N D P R O C E S S Call _ h a n d l in g ;

E N DB L O C K C a l l_ h a n d l in g ;

E N D S Y S T E M ;

F IG U R E D -214 (page 4 o f 4)

System definition using S D L /P R -syn tax

D.9.3 Data user part o f common channel signalling system

The following example is based on Recommendation X.61. It is not necessarily equivalent to X.61 and is
not intended as an international standard. The example illustrates the use of the procedure and option concepts
which are defined in Recommendation Z.103.

In a circuit switched network which employs Common Channel Signalling, the signalling messages for a
group of interexchange trunk circuits are conveyed by a centralized signalling network. Figure D-215 is an
overview of a circuit switched data network comprising three exchanges. The data user part of the common
channel signalling system is represented by the call control functional blocks in the originating, transit and
destination exchanges. The overview diagram is not a formal part of the specification but it is included to explain
the relationships between the signalling system and the other components of the data network. A Block Interaction
Diagram of the signalling system is shown in Figure D-216.

The Originating, Transit and Destination processes (Figures D-217, D-218 and D-219) represent the
functions necessary to establish, maintain and terminate a data connection between two user interfaces. During the
call establishment phase, the destination exchange may implement one of two responses to the incoming call.
These alternatives are defined by the use of the option symbol. Call acceptance by the called user results in a
Ready for Data signal being sent to the originating process when the destination exchange has connected through.

The Originating, Transit and Destination processes all perform similar functions to release the trunk
circuits when the call is terminated. These functions are defined by the global procedures in Figures D-220
and D-221.

246 Fascicle V I.ll - Rec. Z.101 to Z.104 - Annex D

CCITT-70051

N ote — Data User Part of common channel signalling system show in dotted boundary.

FIGURE D-215

Overview o f circuit switched data network com prising three exchanges

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 247

DA T A U S E R PART

C lea r_ c a l l in g _ u ser ,
Call_ r ejec t ,
C o m p l e t e _ c le a r in g

C1

D A T A _ U S E R _ PART
PR O C E D U R E R E L E A S E , O U T G O I N G , CIRCUIT;
/ * P r o c e d u r e b o d y in F igure D -2 2 0 */;
E N D P R O C E D U R E
PR O C E D U R E R E L E A S E , I N C O M I N G , CIRCUIT;
/ * P r o c e d u r e b o d y in f ig u r e D -2 2 0 */\
E N D P R O C E D U R E

NEW TYPE C le a r t y p e
LITERALS Expired , C l e a r , fo r w a r d .

C a l l , r e j ec t , C l e a r , b a c k w a r d
E ND C l e a r t y p e ;
NEW TYPE P h a s e t y p e

LITERALS B lo c k e d , W a i t i n g , D a ta
END P h a s e t y p e ;

O u t g o i n g , call .
C a l l i n g , u s e r , c le a r

C2

ORIGINAT ING CALL CO N T RO L

ORIGINAT ING (1,1]

/ * P r o c e s s b o d y in
Figure D -2 1 7 */

C a l l , a c c e p t e d , m e s s a g e ,
C a l l , r e j e c t e d , m e s s a g e .
C l e a r , m e s s a g e , b a c k w a r d

C5

A p p l y , t r u n k , s e i z e d ,
A p p l y , f r e e , trunk

C3

C4 £ R e a d y , f o r , d a t a J

C6

■ [

A d d r e s s , m e s s a g e .
C l e a r , m e s s a g e , f o r w a r d ,
I n c o m i n g , c i r c u i t , c l e a r e d]

T R A N S IT CALL CO N T RO L

T R A N S IT (1,1)

/ * P r o c e s s b o d y
in F igure D -2 1 8 */

C8

C a l l , a c c e p t e d , m e s s a g e ,
C a l l , r e j e c t e d , m e s s a g e ,
C l e a r , m e s s a g e , b a c k w a r d .
O u t g o i n g , c i r c u i t , c l e a r e d

A p p l y , t r u n k , s e i z e d .
A p p l y , f r e e , trunk

C7
]

C9

A d d r e s s , m e s s a g e .
C l e a r , m e s s a g e , fo r w a r d]

D E STIN A TIO N CALL CO N T RO L

D E STIN A TIO N (1,1)

/ * P r o c e s s b o d y
in F igure D -2 1 9 */

C11

C a l l , a c c e p t e d ,
O t h e r , c a l l , r e jec t ,
C alled u s e r c le a r

C10

[A p p l y , f r e e trunk

C12

C a l l , u ser ,
C lear c a l l e d u s e r]

CCITT-70060

F IG U R E D -216

B lock Interaction diagram for the system D A T A , U S E R , PART

248 Fascicle VI. II - Rec. Z.101 to Z.104 - Annex D

CCITT-70070

F IG U R E D -217 (page 1 o f 2)

Process diagram for O riginating_ C all_ Control

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

F IG U R E D -217 (page 2 o f 2)

Process diagram for O riginating_ C all_ Control

250 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

F IG U R E D -218

P rocess diagram for Transit_ C all_ Control

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

I SYN T3 = / * undefined duration * /;
DCL Timeout T IM E R ;

RELEASE, IN C O M IN G , CIRCUIT
(C a ll, reject, Blocked,
C le ar, m essage, fo rw a rd ,, , ,
C a ll, re jec ted , message)

^ Idle J

Before

<' C a ll,
accep ted ,
message

After

This state also appears in
page 2 of Figure D-219

Tim eout

Before

<r C a ll,
accep ted ,
kmessage

RELEASE, IN C O M IN G , CIRCUIT
(Expired, W aiting,
C le ar, m essage, forward.
C le ar, c a lle d , u s e r,, ,
C a ll, re jec ted , message)

T
RESET

(Timeout)

— r ~
'Connect

Throught'

(Data
^ phase J \ See page 2 of Figure D-219

CCITT-70100

F IG U R E D -219 (page 1 o f 2)

Process diagram for D estin a tio n , C a l l , Control

252 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

Clear_
Message.
forward

^ D a ta . P h a s ^

Other /
C all. C
reject \

RE LEAS E_ IN C O M IN G . CIRCUIT
(C lear, forward. D a ta ,,
C lear, c a lle d , user,
A p p ly , f r e e , tru n k ,,)

Called
user
clea

RELEASE. IN C O M IN G . C IRCUIT
(C a ll, reject. Data,
C lear, m essage , forward.
C lear, c a lle d , user,
A pp ly , fr e e , tru n k ,,
C a ll, re je c te d , message)

K

RELEASE. IN C O M IN G . CIRCUIT
(C le ar, backward, Data,
C le ar, m essage, forward.
C lear, c a lle d , user.
A p p ly , fr e e , trunk,
C le ar, m essage , backw ard ,)

G D CCITT-70110

F IG U R E D -219 (page 2 o f 2)

Process diagram for D estin a tio n . C a l l . Control

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

! RELEASE, OUTGOING
CIRCUIT

(IN ClearmodeCleartype,
SIG NA L C lear, back,
R ejec t, call, C lear,
backward. C a ll, reject.
A p p ly , f re e . Trunk,
C le ar, forward)______

SYN T5 = / * undefined duration * /;
DCL Timeout TIMER ;

<
| Expired, C lear, forward

C le ar,
backward

'Release
connection'

C a ll, reject ~| C le ar, backward

C lear,
backward

'Release
connection'

A pp ly ,
free
trunk

v_- >
ik /

C lear,
forward

SET
(N O W () + T5,

Timeout)

(W ait f o r , \
com p le te , I

clearing I

, (Kck). J

Clear_
back"

Reject
call ‘

Timeout

A p p ly ,
free
trunk

! - >
ik X

CCITT-70120

F IG U R E D -220

Procedure diagram for R e le a se , O u tg o in g , Circuit Procedure

254 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

F IG U R E D-221

Procedure diagram for R elease_ Incom ing_ Circuit Procedure

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

D.9.4 Class 0 Transport Protocol

The following example is based on the Transport Protocol Recommendation for Open Systems Intercon
nection. The example is a subset o f the T ransport' Protocol which is not necessarily equivalent to the
Recommendation, and is not intended as an international standard.

SDL following Recommendations Z.101 and Z.103 has been used. While data is employed, this is in a
somewhat informal manner, without using Recommendation Z.104. Enumeration types of Z.104 have been
simulated with IN TEG ER variables, with names being given to undefined constants. Operations on data have not
been formally defined.

D.9.4.1 Overview

The Transport Layer of the OSI Reference Model provides a service to its users by providing communica
tion channels (called Transport connections) between pairs of users. At each user connection point the Transport
Layer is represented by a Transport Entity. Transport entities communicate with each other using a Transport
Protocol and the services of the Network Layer. An overview diagram appears in Figure D-223. The example
describes a Transport Entity which implements only the Glass 0 Transport Protocol.

A Transport connection is established between two Transport entities. The model upon which the
specification is based describes the behaviour of one entity independently, and may be applied to both ends of the
connection. The Interaction Diagram, Figure D-224, shows a single block representing the Transport Entity,
linked to the Environment by channels known as the Transport Service Access Point (TSAP) and Network Service
Access Point (NSAP). The Transport Service User and the Network Layer are considered as the Environment.

The Transport Entity contains two processes. The first, the DIRECTOR, has a single instance which is
always present (indicated by the numbers at the top right hand corner of the process symbol). The second process,
the ENDPOINT, has only dynamically created instances, one of which is created for the lifetime of each attempt
to establish a transport connection. If a signal ‘T _ CONNECT request’ or ‘N _ CONNECT indication’ is received
by the DIRECTOR, the latter immediately creates a new instance of EN D PO IN T to handle all subsequent signals
associated with the connection attempt. Each instance of EN DPOINT has a property ‘kind’, with one of the
values INITIATOR or RESPONDER, which determines the initial behaviour of the instance; the instance
terminates itself when the connection is closed by one of the transport service users, or after an error.

The behaviour of DIRECTOR is given by the process diagram in Figure D-225. That of EN D PO IN T is
given by Figures D-226 to D-230. The specification of EN DPOINT makes use of SDL procedures for the
connection establishment, data transfer, and termination phases.

D.9.4.2 SD L specification o f the system

The system is specified by the following SDL-PR text. The text deviates from the Recommendations in that
some parts are given in SDL-GR form with references to these given in the SDL-PR in the form of comments.

256 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

S Y S T E M T R A N S P O R T _ ENTITY;

/* t h e ro le o f a T R A N S P O R T _ ENTITY in a t r a n s p o r t c o n n e c t i o n b e t w e e n t w o u s e r s is s h o w n in t h e
o v e r v i e w d ia g r a m o f F igure D -2 2 3 . */

/* c h a n n e l s a n d a s s o c i a t e d s i g n a l s are s h o w n in t h e in t e r a c t io n d ia g r a m , F igure D - 2 2 4 */

S I G N A L /* in p u t- l i s t */

(P ID ,STR IN G)

(P ID ,STR IN G)

C O N N R E Q

C O N N _ R S P

C O N N _ RPLY

D A TA REQ (S TR IN G)

T _ D ! S C _ REQ

N _ C O N N _ IND (P ID ,STR IN G)

N _ C O N N _ CFM (P ID ,STR IN G)

N _ C O N N _ R P L Y

N _ D A TA _ IND (S T R IN G)

N _ D I S C _ IND

N _ R E S E T _ IND

M A C R O E X P A N S IO N s i g n a l s ;

T _ C O N N _ R E Q , T _ C O N N _ R S P , T _ C O N N _ RPLY, T _ D A T A _ REQ, T D IS C REQ, N C O N N
IND, N _ C O N N _ CFM, N _ C O N N _ RPLY, N _ D A T A _ I N D , N D IS C IND,

N _ R E S E T _ IND,

E N D M A C R O s ig n a l s ;

S I G N A L /* o u t p u t - l i s t */

(P ID ,ST R IN G)

(P ID ,STR IN G)

C O N N _ IND

C O N N C F M

D A T A _ I N D

D I S C _ I N D

C O N N REQ

C O N N _ R S P

D A TA REQ

D IS C REQ

(STR IN G)

(P ID ,ST R IN G)

(P ID ,ST R IN G)

(S TR IN G)

F IG U R E D -222 (page 1 o f 3)

System specification using S D L /P R

Fascicle V I.ll - Rec. Z.101 to Z.104 - Annex D 257

BLOCK T R A N S P O R T _ ENTITY;

P R O C E S S DIRECTOR (1 ,1);
/* the single instance of this process controls the assignment of ENDPOINTs 7
DCL co n n _ p a ra m s STRING,

conn _ id PID ;
/* p r o c e s s d ia g r a m , F igure D -2 2 5 , g i v e s p r o c e s s b o d y */

E N D P R O C E S S DIRECTOR;
P R O C E S S E N D P O IN T (0,);

/* an instance of this process is created by DIRECTOR for each connection requested 7
FPAR

kind INT /* v a l u e s INITIATOR, R E S P O N D E R 7 ,
c o n n p a r a m s ST R IN G ,
c o n n id PID;

DCL
ref ST R IN G ,
t c id PID ,

n c id PID ,
t p d u s i z e INT /* v a l u e s
c s t a t INT / ' v a l u e s D A T A _ T R A N S F E R , D IS C O N N E C T E D

IMPORTED / '1 f r o m t c id v ia c h a n n e l T S A P in */
t ind f lo B O O L ,

IMPORTED I '1 f r o m n c id v ia c h a n n e l N S A P in */
' n req f lo BO O L ,

EXPORTED r h t o t c id v ia c h a n n e l T S A P o u t 7
t req f lo B O O L ,

EXPORTED r 1 t o n c id via c h a n n e l N S A P o u t */
n ind f lo B O O L ;

P R O C E D U R E INITIATE C O N N EC T ;
S IG N A L M A C R O s i g n a l s ;
IN c o n n p a r a m s S T R IN G ,
IN t c _ i d PID ,
I N /O U T n c id PID ,
I N /O U T tp d u s i z e INT ,
I N /O U T c s t a t INT /* v a l u e s D A TA T R A N S F E R , D IS C O N N E C T E D *

DCL
n c o n n p a r a m s ST R IN G ,
p r o p _ t p d u _ s i z e INT ,
t p d u _ f l a g INT /* v a l u e s CC, DR, ER, CR, DT, INV 7 ,
t p d u _ d a t a ST R IN G ,
nbin ST R IN G ,
n b o u t ST R IN G ,
t b o u t ST R IN G ,
ta sk r INT /* v a l u e s CLOSE , NC, TC, NC&TC, N O N E 7 ;

/* p r o c e d u r e d ia g r a m , F igu re D -2 2 7 , g i v e s p r o c e d u r e b o d y */
E N D P R O C E D U R E INITIATE C O N N EC T ;
P R O C E D U R E R E S P O N D C O N N E C T

S I G N A L M A C R O s ig n a l s ;
IN c o n n p a r a m s ST R IN G ,
IN /O U T t c id PID ,
IN n c id PID ,
I N /O U T t p d u s i z e INT ,

7
7

I N /O U T c s t a t INT /* v a l u e s D A T A _ T R A N S F E R , D IS C O N N E C T E D 7 ;
DCL

n _ c o n n _ p a r a m s S T R IN G ,
p r o p _ t p d u _ s i z e INT ,
t p d u _ f l a g INT /* v a l u e s CC, DR, ER, CR, DT, INV 7 ,
t p d u d a t a ST R IN G ,
nb in ST R IN G ,
n b o u t ST R IN G ,
tb in ST R IN G ,
t b o u t ST R IN G ,
ta s k r INT /* v a l u e s CL OSE , NC, TC, NC&TC, N O N E 7

I* p r o c e d u r e d ia g r a m , F igu re D -2 2 8 , g i v e s p r o c e d u r e b o d y */
E N D P R O C E D U R E R E S P O N D _ C O N N EC T ;

F IG U R E D -222 (page 2 o f 3)

System specification using S D L /P R

258 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

P R O C E D U R E D A T A _ P H A S E;

S IG N A L M A C R O s ig n a l s ;

IN

IN

ref

t c id

ST R IN G ,

PID ,

IN n c id PID ,

IN tp d u s i z e INT ,

IN /O U T c s t a t I N T / * v a l u e s DATA T R A N S F E R , D IS C O N N E C T E D

IN /O U T IMPORTED /* f r o m t c _ i d v ia c h a n n e l T S A P _ i n */

t ind f lo BO O L ,

IN /O U T IMPORTED /* f r o m n c id v ia c h a n n e l N S A P _ i n */

n _ r e q _ f l o B O O L ,

IN /O U T EXPORTED /* t o t c id v ia c h a n n e l T S A P o u t * /

t _ r e q _ f l o B O O L ,

I N /O U T EXPORTED /* t o n c id via c h a n n e l N S A P o u t */

n ind f lo B O O L ;

DCL

in p ut p r e s e n t B O O L ,

o u t p u t p r e s e n t . B O O L ,

tb in ST R IN G , '

nb in S T R IN G ,

tb o u t ST R IN G ,

n b o u t S T R IN G ,

o u t p u t s e g m e n t ST R IN G ,

in p u t t s d u ST R IN G ,

t p d u f la g INT /* v a l u e s CC, DR, ER, CR, DT, INV */ ,

taskr INT /* v a l u e s C L O SE, NC, TC, NC&TC, N O N E */;

/* p r o c e d u r e d ia g r a m . F igure D -2 2 9 , g i v e s p r o c e d u r e b o d y */

E N D P R O C E D U R E D A T A _ P H A S E ;

PR O C E D U R E RELEASE C O N N E C T

S IG N A L M A C R O s i g n a l s ;

IN taskr INT /* v a l u e s CL O SE, NC, T c [NC&TC, N O N E */,

IN t c _ i d PID ,

IN n c id PID ,

I N /O U T c s t a t INT /* v a l u e s DATA T R A N S F E R , D IS C O N N E C T E D

IN /O U T t p d u _ f la g INT /* v a l u e s CC, DR, ER, CR, DT, INV */ ,

IN /O U T la s t t p d u ST R IN G ;

DCL

nbin ST R IN G ,

n b o u t S T R IN G ,

t b o u t S T R IN G ;

/* p r o c e d u r e d ia g r a m , F igure D -2 3 0 , g i v e s p r o c e d u r e b o d y */

E N D P R O C E D U R E RELEASE C O NNECT;

/* p r o c e s s d i a g r a m , F igure D -2 2 6 , g i v e s p r o c e s s b o d y */

E N D P R O C E S S ENDPO INT ;

E N DB LO C K T R A N S P O R T _ ENTITY;

E N D S Y S T E M T R A N S P O R T _ E N T I T Y ;

FIGURE D-222 (page 3 of 3)

System specification using S D L /P R

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D 259

D.9.4.3 Operations upon data items

Operations upon data items are represented informally. These are:

alloc _ ref: gives a unique Transport Protocol connection reference

fo rm _ t_
fo rm _ t_
fo rm _ t_
fo rm _ t_
fo rm _ n
fo rm _ n
fo rm _ n
form n

conn
conn
data _
disc_
conn
data
conn
disc

_ ind:
_ cfm:
ind:
ind:
_ req :

req:
_ rsp :
req:

Each of these operations forms the set of data fields for the corresponding service
primitive from the parameters supplied, together with background knowledge of the
Transport entity (e.g. mapping between transport and network addresses in the case
of n _ conn _ req)

conn _ feasible:

conn _ acceptable:

conn _ providable:

tpdu-type:

prop _ tpdu _ size:

agree _ tpdu _ size:

extract _ tpdu _ size:

take _ segment:

append _ segment:

last _ tpdu:

Transport entity knowledge at the calling TSAP indicates that the connection may
be achieved (local resources available, called TSAP reachable, quality of service
achievable) — boolean

the Transport entity at the called NSAP has resources to accept the network
connection — boolean

Transport entity knowledge at the called end indicates that the transport connection
may be achieved (called TSAP available, quality of service achieved) — boolean

determines the content of n _ d a ta_ ind (values: CR, CC, DT, DR, ER or INV —
the last indicates a TPDU invalid for any reason)

initiator’s proposal for value of tpdu _ size

responder’s agreed value for tpdu _ size

determines parameter value contained in CC TPDU

takes next DT TPDU from TSDU

adds current DT TPDU to partially completed TSDU

current DT TPDU has End of TSDU mark set

The input values to operations are listed within brackets after the operation name.

CCITT-70140

F IG U R E D -223

Overview diagram showing the role o f a T R A N SP O R T _ ENTITY in a Transport Connection

260 Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D

Fascicle
V

I.ll
—

Rec.
Z.101

to
Z.104

—
Annex

D

E N V I R O N M E N T

T S A P o u t

E N V IR O N M E N T

T S A P in

T R A N S P O R T ENTITY

T C O N N REQ

N C O N N IND

CREATE

N _ C O N N _ CFM,
N _ D A T A _ IND,
N _ D I S C _ IND,
N _ R E SE T_ IND
N _ C O N N _ RPLY
(n _ r e q _ f l o)

T C O N N R S P , T C O N N CFM,
T D A TA REQ, T C O N N IND,
T D IS C REQ, T D A T A IND,
T _ C O N N _ REPLY T D IS C IND

T_ C O N N _ RPLY
(t_ in d _ f lo)

/ — V
(t_ r e q _ f lo)

N _ C O N N _ REQ,
N _ C O N N _ R S P ,
N _ D A T A _ REQ,
N _ D I S C _ REQ,
N _ C O N N _ RPLY
(n _ i n d _ f l o)

N S A P _ in

E N V IR O N M E N T

N S A P o u t

F IG U R E D -224

Interaction diagram for T R A N S P O R T _ EN TITY block

E N V IR O N M E N T

CCITT-70145

K>0\

^ D IR E C T O R ^

F IG U R E D -225

P rocess diagram for D IR E C T O R

262 Fascicle VI. II — Rec. Z.101 to Z.104 — Annex D

{(t_ req_ flo, 1
n_ req_ flo, I

n_ ind_ flo) I

F IG U R E D -226

Process diagram for E N D P O IN T

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

264
Fascicle

V
I.11

—
Rec.

Z.101
to

Z.104
—

Annex
D

form_ n_
conn_ req

(conn_ param s,
nbout) ;

N_ CONN_ REQ
(nbout)

WAIT FOR
NETWORK SERVICE

TO REPLY WITH
AN ENDPOINT ID

N_ CONN
RPLY

(nc_ id)

nc_ id :
SENDER;

WAIT FOR
NETWORK

CONNECTION
CONFIRM

N_CONN
CFM

form_ n_ data_ req
(CR, conn_ param s,

prop_ tpdu_ size,
n b o u t);

~ r

©

RELEASE,
CONNECT

(MACRO sig n a ls ;
TC, tc_ id, nc_ id,

c s ta t , ,)

T_ DISC,
REQ

N_ DISC
IND

RELEASE,
CONNECT

(MACRO sig n a ls ;
NC, t c , id, n c , id,

c s ta t , ,)

RELEASE,
CONNECT

(MACRO sig n a ls ;
TC, t c , id, n c , id,

c s ta t , ,)

N_ DATA,REQ
(nbout)

TO nc id

WAIT FOR
TRANSPORT
CONNECTION

CONFIRM FROM
PEER ENTITY

T_ DISC,
REQ

N_ DISC
IND

RELEASE,
CONNECT

(MACRO signals ;
NC, t c , id, n c , id,

c s ta t , ,)

N_ RESET,
IND

RELEASE,
CONNECT

(MACRO s ig n a ls ;
TC, t c , id, n c , id,

c s ta t , ,)

tp d u , size : = ex trac t,
tp d u , size (nbin)

fo rm , t_ c o n n , cfm
(co n n , param s,

nbin, tbout) ;

T CONN,CFM
(tbout)

TO tc id

DATACTRANSFER;

ER,
DR

RELEASE,
CONNECT

(MACRO sig n als ;
NC&TC, t c , id,
n c , id, c s ta t , ,)

CR,
DT or +
INV

RELEASE,
CONNECT

(MACRO sig n a ls ;
NC&TC, t c , id,
n c , id, c s ta t , ,)

CCITT-70170

RELEASE,
CONNECT

(MACRO signals ;
CLOSE, t c , id, n c , id

csta t, ERR, nbin)

FIGURE D-227

Procedure diagram for INITIATE_ CONNECT

Fascicle
V

I.ll
—

Rec.
Z.101

to
Z.104

—
Annex

D
265

form _ n_ conn_ rsp
(conn_ param s,

nbout) ;

N_ CONN_ RSP
(nbout)

TO nc id

WAIT FOR
TRANSPORT
CONNECTION

REQUEST FROM
PEER ENTITY

N_ DATA
IND ~

(nbin)

N_ RESET_
IND

RELEASE_
CONNECT

(MACRO sig n a ls ;
NC, tc_ id, nc_ id,

c s ta t , ,)

T_ CONN_ IND
(self, tbout)

RELEASE_
CONNECT

(MACRO signals ;
NC, tc_ id, nc_ id,

c s ta t , ,)

WAIT FOR
USER TO REPLY

WITH AN
ENDPOINT ID

N_ DISC
IND

WAIT FOR
USER TO GIVE
TRANSPORT
CONNECTION

RESPONSE

RELEASE_
CONNECT

(MACRO sig n a ls ;
NONE, tc_ id,
nc id, c s ta t , ,)

CC, DT, DR or INV

RELEASE,
CONNECT

(MACRO signals ;
CLOSE, tc_ id, nc_ id

cstat, ERR, nbin)

ER

RELEASE,
CONNECT

(MACRO s ig n a ls ;
NC, t c , id, n c , id,

c s ta t , ,)

tp d u , size: =
a g re e , tp d u , size

(nb in); fo rm , n_ d a ta ,
req (CC, tp d u , size,

tbin, nbout) ;

N_ DATA, REQ
(nbout)

TO nc id

DATA^TRANSFER;

RELEASE,
CONNECT

(MACRO signals;
NC, t c , id, n c , id,

csta t, ,)

RELEASE,
CONNECT

(MACRO s ig n a ls ;
NC&TC, t c , id,
n c , id, csta t, ,)

RELEASE,
CONNECT

(MACRO sig n a ls ;
TC, t c , id, n c , id,

csta t, ,)

RELEASE,
CONNECT

(MACRO signals ;
CLOSE, t c , id, n c , id

csta t, ERR, nbin)

fo rm , t_ c o n n , ind
(nbin, tb o u t) ;

RELEASE,
CONNECT

(MACRO sig n a ls ;
CLOSE, t c , id, n c , id,

cstat,DR, nbin)

CCITT-70180

FIGURE D-228

Procedure diagram for RESPOND, CONNECT

266
Fascicle

V
I.ll

—
Rec.

Z.101
to

Z.104
—

Annex
D

DATA PHASE

n_ in d _ f lo : = TRUE;
t_ r e q _ f lo : = TRUE;

inpu t_ p r e s e n t : = FALSE
o u tp u t_ p r e s e n t : =

FA LSE;

DATA TRANSFER

T_ DISC
REQ

T_ DATA_
REQ
(tbin)

NOT
o u tp u t_
p re s en t

RELEASE_ CONNECT
(MACRO s ig n a ls ;
NC, tc _ id, nc_ id,

c s t a t , ,)

o u tp u t_ p r e s e n t : =
TRUE;

EXPORT (t_ req_ F lo):
FA LSE;

o u tp u t_ p re s e n t
AND IMPORT

(n_ req_ flo, nc_ id)
PRIORITY 1

o u tp u t_ s e g m e n t : =
tak e_ s e g m e n t

(tbin, tp d u _ s iz e) ;

fo rm _ n_ d a ta _ req
(DT, ref,

o u tp u t_ seg m e n t,
nbou t) ;

N_ DATA_ REQ
(nbou t)

TO nc id

o u tp u t_ p r e s e n t : =
FA LSE;

EXPORT (t_ req_ f lo) :
TRUE;

inpu t_ p re s en t
AND IMPORT

(t_ ind_ flo, tc _ id)
PRIORITY 2

fo rm _ t_ d a ta _ ind
(input_ tsd u ,

tb o u t) ;

T_ DATA_ IND
(tbou t)

TO tc id

FALSE

EXPORT (n _ in d _ flo):
TRUE;

inpu t_ p re s e n t : =
FALSE;

N_ DATA
IND

(nbin)

N_ RESET_
IN

N_ DISC_
IND

RELEASE_ CONNECT
(MACRO sig n a ls ;

NC& TC, tc _ id,
nc_ id, c s t a t , ,)

RELEASE_ CONNECT
(MACRO s ig n a l s ;
TC, tc _ id, nc_ id,

c s t a t , ,)

in p u t , t s d u : =
a p p e n d , s e g m e n t

(nbin, in p u t , t s d u) ;

s ' l a s t ,
(nt

tp d u
Di n) s '

TRUE

EXPORT (n ind flo): =
FALSE;

in p u t p re s e n t : =
TRUE;

ER

RELEASE, CONNECT
(MACRO sig n a ls ;
NC, tc _ id, nc_ id,

c s t a t , ,)

CC, CR, DR
o r INV

RELEASE, CONNECT
(MACRO sig n a ls ;

CLOSE, t c , id,
n c , id, c s t a t , ,)

FALSE

CCITT-70190

FIGURE D-229

Procedure diagram for DATA, PHASE

R E L E A S E ,
C O N N E C T

ELSE

C L O SE f o r m , n_ d a t a , req
(t p d u , f la g ,

l a s t , t p d u , n b o u t) ;

N _ D A T A , REQ
(n b o u t) ^

TO n c , id /

CCITT-70200

D I S C O N N E C T E D ;

F IG U R E D -230

Procedure diagram for R E L E A S E , C O N N E C T

Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

D.10 Tools fo r SD L

D.l 0.1 Introduction

This paragraph outlines a set of tools which may support SDL. These tools may support the generation of
documents, SDL diagram (GR form) or listings (PR form), an d /o r the validation of SDL representations.

An exhaustive list of possible tools is not listed in these guidelines. The tools required are dependant on
the methodology chosen by the user.

In principle SDL can be used without any tools. However, the inherent complexity of modern systems is
such that the SDL representations are often complex. Therefore, automatic tools are needed to help manage the
specification, design, and documentation of many systems. For instance, the complexity and cost of manually
drawing, and possibly updating, the graphic documentation of a switching exchange would be significantly
reduced by using suitable aids.

Due to the above considerations SDL has been designed so that tools can be effectively used to support its
use.

D .l0.2 Classes o f tools

SDL tools may be classified by the activities carried out during the production of SDL documentation, for
instance:

* Tools for input

According to the syntactic forms we have input aids for the SDL graphic, textual phrase, and pictorial
forms.

* Tools for syntactic checking

These include syntax analyzers for each of the three syntaxes.

* Tools for document generation

Once SDL documents are stored within a machine, tools can access and reproduce them, possibly using
several peripherals. These may use a syntactic form different from that used to input the document. In addition
tools may be able to generate new types of documents derived from those originally entered.

* Tools for system modelling and analysis

The SDL documents representing a system can be used for abstracting a model of the system. Checks can
be performed on that model. They can search for deadlocks, make a comparison between various models of the
same system (e.g. between a specification and a description), or run a simulation of the system behaviour etc.

* Tools supporting code generation

Very detailed SDL representations may be used to help in the programming of software. Tools may be
developed in such a way that a guided, semi-automatic, code sequence may be performed.

A specific, but useful, class o f tools is represented by:

* SDL training tools

These may either stand alone or be integrated with other tools. Integration allows users of other functions
to be given aid when required.

As SDL is used in many of the various phases of a systems life cycle, one can easily see a use of all types
o f tools in an integrated project environment.

D .l0.3 Document input

No special requirements are needed for entering the textual phrase form of SDL, as the PR syntax is
equivalent, from the input viewpoint, to any character string input. Therefore it may benefit by the same tools
(string editors). The other two syntaxes however assume graphic handling capability.

It is obvious that whilst support for PR input can be beneficial, GR or PE input support is essential, if we
plan to use these syntaxes as input media.

268 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

Input of G R /P E documents can be considered together as both syntaxes use graphics. What is needed is a
graphic editor and a device to output diagrams in graphic form. A graphic input device is not required because it
is possible to input a diagram over a predefined grid. Each symbol can be associated to a given string. For
example it is possible to input a state by giving its position on a grid (couple of coordinates, square number etc.)
and the type (state) as a character string.

A graphic input device can give immediate feedback to the user. However, the “grid m ethod” would be
faster and easier to implement.

A graphic editor is always required for functions such as the connection of two symbols, displacement of a
set of symbols to another area of the page or to other pages, and concatenate deletion (deletion of a symbol
implies the deletion of the connection to that symbol). As for the PR tools, the G R /P E input tools should be
modelled on the SDL semantics/syntax. Therefore it should impede invalid connections, and prom pt the user to
fill up all of the uncompleted parts etc.

The tools are faced with several problems which derive from the physical constraints o f graphics devices,
such as “resolution”. It is almost impossible to have a sufficient number of characters, which are readable, while
also allowing the display of a reasonable number of symbols on the screen.

Solutions such as a zooming window, or scrolling, have to be considered, but they are not completely
satisfactory. High resolution may not be considered a “must” if diagrams are copied by the user but it is very
desirable if diagrams are produced directly by the user. For the same reason (requirement of an overview and of a
certain amount of details) high resolution is desirable in the display of diagrams.

Tools for aiding the PR input can be helpful: they may prom pt the user with expected PR keywords,
pointing out that some closing keyword is still missing (such as enddecision, endstate etc.).

They can immediately format the PR according to the keywords received, insert delimiters automatically,
and present to the user PR oriented function keys etc.

The implementation of such tools can be based on existing character string editors which can be extended
to include the features mentioned above.

D .l0.4 Document verification

Once documents are stored in a machine the next step is to verify them. They should first be verified
individually, and then related diagrams should be combined and verified until the total system is verified.

If the input has been made through an SDL oriented tool a good amount of checking on each individual
document could have already been done.

Errors deriving from “not possible” operations (e.g. inputs or saves following anything but a state) should
all be detected and corrected during the input phase. The detection of some errors is however only possible at the
completion of the input phase, both on a single document and, of course, in case of inconsistencies between
documents.

Several SDL rules can be automatically checked. For instance the requirement that all outputs should have
a corresponding input.

In the case of a multi-level representation, to a certain extent, consistency between levels can be checked.

The formal SDL model may be used to derive a collection of verification procedures.

D .l0.5 Document reproduction

SDL documents stored in a machine must be able to be retrieved, displayed, and reproduced. Tools for all
these activities are required. It may be useful to be able to retrieve only part, or subsets, of documents. The
retrieval can be SDL oriented, e.g. “find all the processes sending” a given signal, or “in which states” is a certain
action performed, and so on. Tools for displaying information are of particular interest when the inform ation is to
be displayed using the graphic syntax. The same observations as made for the input of documents in G R /P E
syntaxes apply. The reproduction of documents is dependent on the type of document to be reproduced, on how
this document has been stored and on the characteristics of the output peripheral. It may also be dependent on
how it was entered. Users may wish for an output in a different syntax from the one used to enter the document.

Fascicle VI. 11 - Rec. Z.101 to Z.104 — Annex D 269

The reproduction of documents is affected by the output peripheral constraints. For example a diagram
can be too large to fit in a given space of paper, and therefore has to be chopped into pieces. Connectors have to
be added and cross references should be inserted. It may be desirable to distinguish between an “addition” made
by the tool and original input characteristics. Other physical constraints may impede the output of all the
available information, e.g. a given symbol size is too small to contain all the associated text. Several strategies can
be followed, perhaps chosen by the user. They include stretching the symbol, chopping the text, chopping it but
adding full text as a footnote, putting the text beside the symbol... Tools allowing flexibility in output format are
desirable: these features include different sizes of symbol, different output formats, vertical or horizontal display
etc.

A document should always be able to be reproduced in exactly the same way as it was entered.

D .l0.6 Document generation

Starting from the SDL documents entered by the users and stored in the machine, several other documents
can be generated automatically, among these:

— the signal lists, organized per process, per block, or per system;

— the process interaction diagrams, showing the interactions and the following sequences of actions in
communicating processes;

— the state overview diagrams, showing the process graph as a set of states connected by arcs
representing the transitions;

— the cross reference table, organized per process, per block, or per system;
— the partitioning diagram, showing the structure of the blocks and levels;

— the system behaviour, as a response to sequences of environment actions;

— indexes: Once generated documents will have to be reproduced and the same considerations presented
above are valid.

SDL documents entered in GR form can automatically be translated to the equivalent PR form and vice
versa.

In order to produce a correct PR form all G R diagrams representing Processes of a Block have to be
considered together with the associated G R Block Interaction Diagram.

The following considerations apply:

— the GR form contains visual information which cannot be translated into the PR form (it does not
exist in PR). For example, the symbol coordinates are meaningless in the PR form;

— connectors linking flow lines on different pages can be eliminated.

The inverse translation, from PR to GR, is however much more complex and is unlikely to completely
satisfy all the potential readers. Apart from identation, there is no subjective criteria to the elegance of a PR form,
whilst a wide variety of subjective criteria exist for the GR form.

Due to the two dimensional representation of the GR form some labels inserted to cope with the
sequential structure of the PR, can be deleted as a connection line is sufficient. From a PR form two different GR
representations can be derived, namely the functional block interaction diagram and the process diagram (of
course if the PR is representing a process alone, only the process diagram can be derived).

Usually the translation generates a model of the GR diagrams. This model contains all the information
necessary for a tool to format and reproduce the diagram on a graphic device.

Note that two different tools translating some PR into GR may obtain two GR representations with
different layouts. The GR representations so obtained are both correct provided they preserve the semantics
expressed in the originating representation.

D .l0.7 System modelling and analysis

SDL documents, independent of whether they specify or describe a system, are basically a model of that
system.

This model, which is primarily intended to transfer information from one person to another, can also be
interpreted by tools, checked for consistency, for completeness (this aspect may not be satisfied in cases of
specification aiming at specifying only some parts of a system), and for correctness and compliance with the SDL
rules (as described in the paragraph on document verification).

270 Fascicle VI. 11 — Rec. Z.101 to Z.104 — Annex D

In addition, tools may be developed to use the model to simulate the systems functional behaviour. The
simulator can interact with the environment and conclusions on the adherence of the model to the users
expectations can be drawn.

If additional information is added to indicate the time consumed in executing each action, and to
dimension the resources available (queues, instances etc.) the simulation can also study the capacity of the system.

Tools may be developed to create a model of the environment, starting from the system model, to create
meaningful sequences to check the real system. Path analysis may detect deadlocks in the model.

The system model can also be used as on-line documentation. If appropriate links exist between the actual
system and the documentation storage, a tool may be developed to trace system real time events on the model.

To achieve this, correlation should be provided between the physical events, as seen by the system, and the
logical events dealt with by the SDL documentation. If the documentation is organized into several levels of
abstraction the user can choose the level to be traced. This can be very useful as it allows users with different
education and training to inspect the system activities.

Tools interpreting the SDL model can also be used to single out differences in behaviour of different
models of the same system. It may also be used to compare different system descriptions (systems produced by
different companies), or to compare the system specification with the description. In this way it is possible to see
if a system description complies with the original specification.

D.10.8 Codegeneration

The provisions of a formally defined syntax and of a formal mathematical definition of SDL, make it
possible to realize tools able to map the semantics of SDL representations to the semantics of programming
languages. Such tools are possibly unable to provide complete implementation programs, but they may be very
useful in providing at least a frame-work for the actual program.

Paragraph D.8.1 of this U.G. outlines an example of how the mapping between SDL and CHILL may be
achieved.

D .l0.9 Training

A complete training course on SDL has been developed; it consists of about two hundred pages of text
and a collection of slides (about 200). The course covers all the aspects of the language providing at the same time
examples and a few suggestions on the use of SDL.

The SDL Course is obtainable from the International Telecommunication Union, General Secretariat —
Sales Section, Place des Nations, CH-1211 Geneve 20 (Switzerland).

Fascicle V I.ll — Rec. Z.101 to Z.104 — Annex D 271

CCITT
SDL Symbols

Symboles LDS
Sfmbolos LED

	A NOTE FROM ITU LIBRARY & ARCHIVES
	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE EIGHTH PLENARY ASSEMBLY (1984)
	CONTENTS OF FASCICLE VI. 11 OF THE RED BOOK
	Annexes to Recommendations Z.100 to Z.104 - Functional specification and description language (SDL)
	Annex A — SDL glossary
	Annex B — Abstract syntax summary
	Annex Cl — SDL/GR summary
	Annex C2 — SDL/PR summary
	Annex D — SDL User Guideline

