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1 INTRODUCTION

This recommendation defines the CCITT high level programming language CHILL. CHILL stands for CCITT 
High Level Language.

An alternative definition of CHILL, in a strict mathematical form, is contained in the CCITT Manual, ’Formal 
definition of CHILL’. Another CCITT Manual, ’Introduction to CHILL’, serves as an introduction to the 
language.

This chapter gives an informal description of the facilities of CHILL. The language definition starts at chapter 
2.

1.1 GENERAL

CHILL was designed primarily for programming SPC telephone exchanges. However, it is considered to be 
general enough for other applications (e.g., message switching, packet switching, modelling, etc.).

CHILL was designed with the following requirements in mind (refer to Question 8 /XI of the study period 
1977-1980):

•  enhance reliability by allowing for extensive compile-time checking;

•  permit the generation of highly efficient object code;

•  be flexible and powerful in order to cover the required range of applications and to exploit various kinds 
of hardware;

•  encourage modular and structured program development;

•  be easy to learn and use.

CHILL programs can be written in a machine independent manner for the class of machines known to be used, 
or proposed for use, in SPC telephone exchanges.

CHILL does not attempt to provide specific constructs for every application mentioned above, but rather it has 
a general base with a number of possibilities suitable for the particular application.

CHILL as a language is machine independent. A particular implementation may, however, contain implemen­
tation defined language objects. Programs containing such objects will in general not be portable.

CHILL is designed under the assumption that it will be compiled from source text to object code. It is not 
specifically designed to make one-pass compilation feasible nor to minimise compiler size.

To allow security without an unacceptable loss of efficiency, much checking can be done statically. A few language 
rules can be tested only at run time. A violation of such a rule results in a run-time exception. However, the 
generation of run-time checks for these exceptions is optional, unless a programmer defined exception handler 
is specified.

1.2 LANG UAGE SURVEY

A CHILL program consists essentially of three parts:

•  a description of data objects;

•  a description of actions which are to be performed upon the data objects;

•  a description of the program structure.

Data objects are described by data statem ents (declaration and definition statements), actions are described 
by action statem ents and the program structure is determined by program structuring statements.
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The manipulatable data objects of CHILL are values and locations where values can be stored. The actions 
define the operations to be performed upon the data objects and the order in which values are stored into and 
retrieved from locations. The program structure determines the lifetime and visibility of data objects.

CHILL provides for extensive static checking of the use of data objects in a given context.

In the following sections, a summary of the various CHILL concepts is given. Each section is an introduction 
to a chapter with the same title, describing the concept in detail.

1.3 M ODES A N D  CLASSES

A location has a mode attached to it. The mode of a location defines the set of values which may reside in 
that location and other properties associated with the location and the values it may contain (note that not 
all properties of a location are determinable by its mode alone). Properties of locations are: size, internal 
structure, read-onlyness, referability, etc. Properties of values are: internal representation, ordering, applicable 
operations, etc.

A value has a class attached to it. The class of a value determines the modes of the locations that may contain 
the value.

CHILL provides the following categories of modes:

discrete modes integer, character, boolean, set (symbolic) modes and ranges thereof;
powerset modes sets of elements of some discrete mode;
reference modes bound references, free references and rows used as references to locations;
composite modes string, array and structure modes;
procedure modes procedures considered as manipulatable data objects;
instance modes identifications for processes;
synchronisation modes event and buffer modes for process synchronisation and communication, 
input-output modes association and access modes for input-output operations.

CHILL provides denotations for a set of standard modes. Program defined modes can be introduced by means of 
m ode definitions. Some language constructs have a so-called dynamic mode attached. A dynamic mode is a 
mode of which some properties can be determined only dynamically. Dynamic modes are always parameterised 
modes with run-time parameters. A mode that is not dynamic is called a static mode. An explicitly denoted 
mode in a CHILL program is always static.

Neither dynamic modes nor classes have a denotation in CHILL. They are introduced in the metalanguage only 
to describe static and dynamic context conditions,

1.4 LOCATIONS A N D  THEIR ACCESSES

Locations are (abstract) places where values can be stored or from which values can be obtained. In order to 
store or obtain a value, a location has to be accessed.

Declaration statem ents define names to be used for accessing a location.

There axe:

1 . location declarations;

2 . loc-identity declarations;

3. based declarations.

The first one creates locations and establishes access names to the newly created locations. The latter two 
establish new access names for locations created elsewhere.

Apart from location declarations, new locations can be created by means of a GETSTACK  or ALLOCATE  
built-in routine that will yield a reference value (see below) to the newly created location.

A location may be referable. This means that a corresponding reference value exists for the location. This 
reference value is obtained as the result of the referencing operation, applied to the referable location. By 
dereferencing a reference value, the referred location is obtained. CHILL requires certain locations to be
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always referable, but for other locations it is left to the implementation to decide whether or not they axe 
referable. Referability must be a statically determinable property of locations.

A location may have a read-only mode, which means that it can only be accessed to obtain a value and not 
to store a new value into it (except when initialising).

A location may be composite, which means that it has sub-locations which can be accessed separately. A 
sub-location is not necessarily referable. A location containing at least one read-only sub-location is said to 
have the read-only property. The accessing methods delivering sub-locations (or sub-values) axe indexing 
and slicing for strings and for arrays, and selection for structures.

A location has a mode attached. If this mode is dynamic, the location is called a dynamic mode location. (Note 
that the word dynamic is only used in relation to the mode; the location is not dynamic in the sense that it 
varies at run time, only that its properties cannot be completely determined statically.)

The following properties of a location, although statically determinable, axe not paxt of the mode: 

referability: whether or not a reference value exists for the location; 

storage class: whether or not it is statically allocated; 

regionality: whether or not the location is declared within a region.

1.5 VALUES A N D  THEIR OPERATIONS

Values axe basic objects on which specific operations are defined. A value is either a (CHILL) defined value 
or an undefined value (in the CHILL.sense). The usage of an undefined value in specified contexts results in 
an undefined situation (in the CHILL sense) and the program is considered to be incorrect.

CHILL allows locations to be used in contexts where values are required. In this case, the location is accessed 
to obtain the value contained.

A value has a class attached. Strong values are values that besides their class also have a mode attached. In 
that case the value is always one of the values defined by the mode. The class is used for compatibility checking 
and the mode for describing properties of the value. Some contexts require those properties to be known and a 
strong value will then be required.

A value may be literal, in which case it denotes an implementation independent discrete value, known at 
compile time. A value may be constant, in which case it always delivers the same value, i.e., it need only be 
evaluated once. When the context requires a literal or constant value, the value is assumed to be evaluated 
before run-time and therefore cannot generate a run-time exception. A value may be intra-regional, in which 
case it can refer somehow to locations declared within a region. A value may be com posite, i.e., contain 
sub-values.

Synonym definition statem ents establish new names to denote constant values.

1.6 ACTIONS

Actions constitute the algorithmic paxt of a CHILL program.

The assignment action stores a (computed) value into one or more locations. The procedure call invokes a 
procedure, a built-in routine call invokes a built-in routine (a built-in routine is a procedure whose definition 
is not written in CHILL and with a more general parameter and result mechanism). To return from and/or 
establish the result of a procedure call, the result and return actions are used.

To control the sequential action flow, CHILL provides the following flow of control actions: 

if action for a two-way branch;

case action for a multiple branch. The selection of the branch may be based upon several values, similar to 
a decision table;

do action for iteration or bracketing;
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exit action for leaving a bracketed action or a module in a structured manner; 

cause action to cause a specific exception;

goto action for unconditional transfer to a labelled program point.

Action and data statements can be grouped together to form a module or begin-end block, which form a 
(compound) action.

To control the concurrent action flow, CHILL provides the start, stop, delay, continue, send, delay case 
and receive case actions and the evaluation of a receive expression.

1.7 IN PU T  A N D  OUTPUT

The input and output facilities of CHILL provide the means to communicate with a variety of devices in the 
outside world.

The input-output reference model knows three states. In the free state there is no interaction with the outside 
world.

Through an ASSOCIATE  operation the file handling state is entered. In the file handling state there are 
locations of association mode, which denote outside world objects. It is possible via built-in routines to read 
and modify the language defined attributes of associations, i.e. existing, readable, writeable, indexable, 
sequencible and varying. File creation and deletion are also done in the file handling state.

Through the CONNECT operation, a location of access mode is connected to a location of an association  
mode, and the data transfer state is entered. The CONNECT operation allows positioning of a base index  
in a file. In the data transfer state various attributes of locations of access mode can be inspected and the 
data transfer operations READRECORD  and WBITERECORD  can be applied.

1.8 PROG RAM  STRUCTURE

The program structuring statements are the begin-end block, module, procedure, process and region.
The program structuring statements provide the means of controlling the lifetime of locations and the visibility 
of names.

The lifetime of a location is the time during which a location exists within the program. Locations can be 
explicitly declared (in a location declaration) or generated ( GETSTACK  or ALLOCATE  built-in routine 
call), or they can be implicitly declared or generated as the result of the use of language constructs.

A name is said to be visible at a certain point in the program if it may be used at that point. The scope of a 
name encompasses all the points where it is visible, i.e., where the denoted object is identified by that name.

Begin-end blocks determine both visibility of names and lifetime of locations.

M odules are provided to restrict the visibility of names to protect against unauthorised usage. By means of 
visibility statem ents, it is possible to exercise control over the visibility of names in various program parts.

A procedure is a (possibly parameterised) sub-program that may be invoked (called) at different places within 
a program. It may return a value (value procedure) or a location (location procedure), or deliver no result. 
In the latter case the procedure can only be called in a procedure call action.

Processes and regions provide the means by which a structure of concurrent executions can be achieved.

A complete CHILL program is a list of modules or regions that is considered to be surrounded by an (imaginary) 
process definition. This outermost process is started by the system under whose control the program is executed.

Constructs are provided to facilitate various ways of piecewise development of programs. A spec module and 
spec region are used to define the static properties of a program piece, a context is used to define the static 
properties of seized names. In addition it is possible to specify that the text of a program piece is to be found 
somewhere else through the remote facility.
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1.9 CO NCURRENT EXECUTION

CHILL allows for the concurrent execution of program units. A process is the unit of concurrent execution. 
The start action causes the creation of a new process of the indicated process definition. The process is 
then considered to be executed concurrently with the starting process. CHILL allows for one or more processes 
with the same or different definition to be active at one time. The stop action, executed by a process, causes 
its termination.

A process is always in one of two states; it can be active or delayed. The transition from active to delayed 
is called the delaying of the process; the transition from delayed to active is called the re-activation of the 
process. The execution of delaying actions on events, or receiving actions on buffers or signals, or sending 
actions on buffers, can cause the executing process to become delayed. The execution of a continue action on 
events, or sending actions on buffers or signals, or receiving actions on buffers can cause a delayed process to 
become active again.

Buffers and events are locations with restricted use. The operations send, receive and receive case are de­
fined on buffers; the operations delay, delay case and continue are defined on events. Buffers are a means of 
synchronising and transmitting information between processes. Events are used only for synchronisation. Sig­
nals are defined in signal definition statem ents. They denote functions for composing and decomposing lists 
of values transmitted between processes. Send actions and receive case actions provide for communication 
of a list of values and for synchronisation.

A region is a special kind of module. Its use is to provide for mutually exclusive access to data structures that 
axe shared by several processes.

1.10 GENERAL SEM ANTIC PROPERTIES

The semantic (non context-free) conditions of CHILL are the mode and class compatibility conditions (mode 
checking) and the visibility conditions (scope checking). The mode rules determine how names may be used; 
the scope rules determine where names may be used.

The mode rules are formulated in terms of compatibility requirements between modes, between classes and 
between modes and classes. The compatibility requirements between modes and classes and between classes 
themselves axe defined in terms of equivalence relations between modes. If dynamic modes are involved, mode 
checking is paxtly dynamic.

The scope rules determine the visibility of names through the program structure and explicit visibility state­
ments. The explicit visibility statements influence the scope of the mentioned names and also of possibly 
implied names of the mentioned names.

Names introduced in a program have a place where they are defined or declared. This place is called the 
defining occurrence of the name. The places where the name is used are called applied occurrences of the 
name. The name binding rules associate a unique defining occurrence with each applied occurrence of the 
name.

1.11 EXCEPTION HANDLING

The dynamic semantic conditions of CHILL axe those (non context-free) conditions that, in general, cannot be 
statically determined. (It is left to the implementation to decide whether or not to generate code to test the 
dynamic conditions at run time.) The violation of a dynamic semantic rule causes a run-time exception.

Exceptions can also be caused by the execution of a cause action or, conditionally, by the execution of an 
assert action. When, at a given program point, an exception occurs, control is transferred to the associated 
handler for that exception, if it is specifiable (i.e., it has a name) and is specified. Whether or not a handler 
is specified for an exception at a given point can be statically determined. If no explicit handler is specified, 
control may be transferred to an implementation defined exception handler.

Exceptions have a name, which is either a CHILL defined exception name, an implementation defined exception 
name, or a program defined exception name. Note that when a handler is specified for a CHILL defined 
exception name, the associated dynamic condition must be checked.
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1.12 IM PLEM ENTATION OPTIONS

CHILL allows for implementation defined integer modes, implementation defined built-in routines, 
implementation defined process names, implementation defined exception handlers and implemen­
tation defined exception names.

An implementation defined integer mode must be denoted by an implementation defined mode name. This 
name is considered to be defined in a newmode definition statement that is not specified in CHILL. Extending 
the existing CHILL-defined arithmetic operations to the implementation defined integer modes is allowed within 
the framework of the CHILL syntactic and semantic rules. Examples of implementation defined integer modes 
axe long integers, and short integers.

A built-in routine is a procedure whose definition is not specified in CHILL and that has a more general 
parameter passing and result transmission scheme than CHILL procedures.

A built-in process name is a process name whose definition is not specified in CHILL. A CHILL process may 
cooperate with implementation defined processes or start such processes.

An implementation defined exception handler is a handler appended to the imaginary outermost process def­
inition. If this handler receives control after the occurrence of an exception, the implementation may decide 
which actions are to be taken.

An implementation defined exception is caused if an implementation defined dynamic condition is violated.
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2 PRELIMINARIES

2.1 THE M ETALANGUAGE

The CHILL description consists of two parts:

•  the description of the context-free syntax;

•  the description of the semantic conditions.

2.1.1 The context-free syntax description

The context-free syntax is described using an extension of the Backus-Naur Form. Syntactic categories are 
indicated by one or more English words, written in italic characters, enclosed between angular brackets (< and 
>). This indicator is called a non-terminal symbol. For each non-terminal symbol, a production rule is given 
in an appropriate syntax section. A production rule for a non-terminal symbol consists of the non-terminal 
symbol at the lefthand side of the symbol ::=, and one or more constructs, consisting of non-terminal and/or 
terminal productions at the righthand side. These constructs are separated by a vertical bar ( | ) to denote 
alternative productions for the non-terminal symbol.

Sometimes the non-terminal symbol includes an underlined part. This underlined paxt does not form part of 
the context-free description but defines a semantic sub-category (see section 2 .1 .2 ).

Syntactic elements may be grouped together by using curly brackets ({ and }). A curly bracketed group may
contain one or more vertical bars, indicating alternative syntactic elements. Repetition of curly bracketed groups 
is indicated by an asterisk (*) or-plus (+). An asterisk indicates that the group is optional and can be further 
repeated any number of times; a plus indicates that the group must be present and can be further repeated any 
number of times. For example, { A }* stands for any sequence of A’s, including zero, while { A }+ stands for 
any sequence of at least one A. If syntactic elements are grouped using square brackets ( [ and ] ), then the 
group is optional.

A distinction is made between strict syntax, for which the semantic conditions axe given directly, and derived 
syntax. The derived syntax is considered to be an extension of the strict syntax and the semantics for the 
derived syntax is indirectly explained in terms of the associated strict syntax.

It is to be noted that the context-free syntax description is chosen to suit the semantic description in this
document and is not made to suit any particular parsing algorithm (e.g., there are some context-free ambiguities 
introduced in the interest of clarity).

2.1.2 The semantic description

For each syntactic category (non-terminal symbol), the semantic description is given in the sub-sections se­
mantics, static properties, dynamic properties, static conditions and dynamic conditions.

The section semantics describes the concepts denoted by the syntactic categories (i.e., their meaning and 
behaviour).

The section static properties defines statically determinable semantic properties of the syntactic category. 
These properties are used in the formulation of static and/or dynamic conditions in the appropriate sections 
where the syntactic category is used.

When appropriate, a section dynamic properties defines the properties of the syntactic category, which axe 
known only dynamically.

The section static conditions describes the context-dependent, statically checkable conditions which must be 
fulfilled when the syntactic category is used. Some static conditions are expressed in the syntax by means of 
an underlined paxt in the non-terminal symbol (see section 2.1.1). This use requires the non-terminal to be of 
a specific semantic category. E.g., <boolean expression> is identical to <expression> in the context free sense, 
but semantically it requires the expression to be of the boolean class. The underlined part is sometimes used in 
the text as an adjective to qualify the non-terminal. E.g., the sentence ’’the expression is constant” is identical 
to saying ’’the expression is a constant expression” .
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The section dynamic conditions describes the context-dependent conditions that must be fulfilled during 
execution. In some cases, conditions axe static if and only if no dynamic modes are involved. In those cases, 
the condition is mentioned under static conditions and referred to under dynamic conditions.

In the semantic description the non-terminals are written in italics without the angular brackets to indicate the 
syntactic objects.

2.1.3 The examples

For most syntax sections, there is a section examples giving one or more examples of the defined syntactic 
categories. These examples are extracted from a set of program examples contained in Appendix D. References 
indicate via which syntax rule each example is produced and from which example it is taken.

E.g., 6.20 (d+5)/5 (1.2) indicates an example of the terminal string (d+5)/5, produced via rule (1.2) of the
appropriate syntax section, taken from program example no. 6 line 20.

2.1.4 The binding rules in the metalanguage

Sometimes the semantic description mentions CHILL special simple name strings (see Appendix C). These 
special simple name strings are always used with their CHILL meaning and are therefore not influenced by the 
binding rules of an actual CHILL program.

2.2 VOCABULARY

Programs are represented using the CCITT alphabet no. 5, Recommendation V.3 (see Appendix Al). It is 
possible to represent any CHILL program using a minimum character set that is a subset of the CCITT alphabet 
no.5 basic code (see Appendix A2).

The lexical elements of CHILL are:

•  special symbols

• simple name strings

• literals.
\

Apart from the lexical elements there are also special character combinations.The special symbols and special 
character combinations are listed in Appendix B.

Simple name strings are formed according to the following syntax: 

syntax:
<simple name string> ::= (1)

<letter> { <letter> | <digit> | _}* (1.1)

The underline character ( _ ) forms part of the simple name string; e.g., the simple name string life-time  is 
different from the simple name string lifetime. In the case that an alphabet with lower case letters is available, 
it may be used within simple name strings. Lower case and upper case letters axe different, e.g., Status and 
status are two different simple name strings.

The language has a number of special simple name strings with predetermined meanings, see Appendix C. 
Some of them axe reserved, i.e., they cannot be used for other purposes unless explicitly freed by the free 
directive.

In the case that an alphabet with both upper and lower case letters is used, the special simple name strings 
must either all be in upper case representation or all be in lower case representation. The reserved simple 
name strings axe only reserved in the chosen representation (e.g., if the lower case fashion is chosen, row is 
reserved, ROW is not).
For the literal qualifications (see Appendix B) and the letters in a hexadecimal digit (see section 5.2.4.2) an 
implementation must allow either upper case, or both upper and lower case letters.
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2.3 THE USE OF SPACES

A space terminates any lexical element or special character combination. Lexical elements are also terminated 
by the first character that cannot be part of the lexical element. For instance, IFBTHEN  will be considered 
a simple name string and not as the beginning of an action IF B  TH EN , / / *  will be considered as the 
concatenation symbol ( / /  ) followed by an asterisk ( * ) and not as a divide symbol ( /  ) followed by a 
comment opening bracket ( /*  ). Contiguous spaces have the same delimiting effect as a single space.

2.4 COM M ENTS  

syntax:
<comment> ::= (1)

/*  < character string> * / (1-1)

< character string> (2)
{ <character> } * (2-1)

semantics: A comment conveys information to the reader of a program. It has no influence on the program
semantics.

static properties: A comment may be inserted at all places where spaces are allowed as delimiters, 

static conditions: The character string must not contain the special sequence: asterisk solidus ( * / ). 

examples:
4.1 /*  from collected algorithms from CACM nr.93 * / (1-1)

2.5 FORMAT EFFECTORS

The format effectors BS (Backspace), CR (Carriage return), FF (Form feed), HT (Horizontal tabulation), LF 
(Line feed), and VT (Vertical tabulation) of the CCITT alphabet no.5 (positions FEo to FE5 ) axe not mentioned 
in the CHILL context-free syntax description. However, an implementation may use these format effectors in 
CHILL programs. When used, they have the same delimiting effect as a space. They may not be used within 
lexical elements.

2.6 COM PILER DIRECTIVES  

syntax:
< directive clause> ::= (1)

<> <directive>{,<directive>}*[ <> ] (1-1)

<directive> ::= (2)
< CHILL directive> (2 .1 )

| <implementation directive> (2-2)

< CHILL directive> ::= (3)
<free directive> (3.1)

<:free directive> ::= (4)
FREE (<reserved simple name string Ust>) (4.1)

<simple name string list> ::= (5)
<simple name string>{,<simplei name string>} * (5.1)

semantics: A directive clause conveys information to the compiler. Except for the free directive, this infor­
mation is specified in an implementation defined format.
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An implementation directive must not influence the program semantics, i.e., a program with im­
plementation directives is correct, in the CHILL sense, if and only if it is correct without these 
directives.

A free directive will free the reserved simple name strings specified in the reserved simple name 
string list so that they may be redefined.

static properties: A directive clause may be inserted at any place where spaces are allowed. It has the same 
delimiting effect as a space. The names used in a directive clause follow an implementation defined 
name binding scheme which does not influence the CHILL name binding rules (see section 10.2).

static conditions: The optional directive-ending symbol (<>) may be omitted only if it is placed just in front 
of a semicolon (i.e., the directive clause is terminated with the first < >  or semicolon. However, the 
semicolon does not belong to the directive clause. As a consequence, a directive may contain neither 
the symbol < >  nor a semicolon unless placed between parentheses, see below). If parentheses occur 
in an implementation directive, they must be properly balanced and if a semicolon or the directive- 
ending symbol appears within parentheses, they do not end the directive.

examples:
15.1 <> FREE ( STEP ) (1.1)

2.7 NA M ES A N D  THEIR DEFINING  OCCURRENCES

syntax:
<name> ::= (1)

<name string> (1.1)

<name string> ::= (2)
<simple name string> (2.1)

| <prefixed name string> (2.2)

<prefixed name string> ::= (3)
<preGx> ! <simple name string> (3.1)

<preGx> ::= (4)
<simple preGx> { ! <simple preGx> } * (4.1)

<simple preGx> ::= (5)
<simple name string> (5.1)

<deGning occurrence> ::= (6)
<simple name string> (6.1)

<deGning occurrence Ust> ::= (7)
<deGning occurrence>{, < deGning occurrence> } * (7.1)

<Geld name> ::= (8)
<simple name string> (3 -1)

<Geld name deGning occurrence> ::= (9)
<simple name string> (9.1)

<Geld name deGning occurrence Ust> ::= (10)
<Geld name deGning occurrence> {, <Geld name deGning occurrence> } * (10.1)

< exception name> ::= (11)
<simpie name string> (11.1)

| <preGxed name string> (11.2)

<register name> ::= (12)
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< simple name string> (12-1)
| <prefixed name string> (12.2)

< text reference name> ::= (13)
<simple name string> (13-1)

| <prefixed name string> (13-2)

<map reference name> ::= (14)
<simple name string> (14-1)

| <prefixed name string> (14.2)

derived syntax: In the reduced character set, / .  is used for / (prefixing operator).

semantics: Names in a program denote objects. Given an occurrence of a name (formally: an occurrence
of a terminal production of name) in a program, the binding rules of section 1 0 .2  provide defining 
occurrences to which that (occurrence of) name is bound (formally: occurrences of terminal produc­
tions of defining occurrence). The name then denotes the object defined or declared by the defining 
occurrences. (There can be more than one defining occurrence for a name only in the case of set 
element names or of names with quasi deGning occurrences.) DeGning occurrences are said to define 
the name.

Similarly, Geld names are bound to Geld name deGning occurrences and denote the fields (of a 
structure mode) defined by those Geld name deGning occurrences.

Exception names axe used to identify exception handlers according to the rules stated in Chapter
11 .

Register names are used to identify registers in an implementation defined way (see section 8.4).

Text reference names are used to identify pieces of source text in an implementation defined way, 
subject to the rules in section 8 .1 0 .1 .

Map reference names are used to specify mapping in an implementation defined way (see section 
3.11.6).

When a name is bound to more than one deGning occurrence, each of the deGning occurrences to 
which the name is bound defines or declares the same object (see 1 0 .2 .2  and 8 .1 0  for precise rules).

Each simple name string has a canonical name string attached which is the simple name string 
itself.
Each name string has a canonical name string attached defined as follows :

•  if the name string is a simple name string, then the canonical name string of that simple 
name string;

•  if the name string is a prefixed name string, then the concatenation in left to right order of all 
simple name string's in the name string, separated by prefixing operators, i.e., interspersed 
spaces, comments and format effectors (if any) are left out.

In the rest of this document :

• the name string of a name, exception name, register name or text reference name is used to 
denote the canonical name string of the name string in that name, exception name, register 
name or text reference name respectively;

•  the name string of a deGning occurrence, Geld name or field name deGning occurrence is used 
to denote the canonical name string of the simple name string in that deGning occurrence, 
Geld name or Geld name deGning occurrence respectively.

The binding rules are such that:

•  names with a simple name string are bound to deGning occurrences with the same name 
string;
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• names with a prefixed name string are bound to defining occurrences with a name string 
identical with the rightmost simple name string in the prefixed name string of the name;

•  field names are bound to field name defining occurrences with the same name string as the 
field names.

definition of notation: Given a name string NS, and a string of characters P, which is either a prefix or is 
empty, we define that the result of prefixing NS with P, written P ! NS, is as follows:

• if P is empty, then P ! NS is NS;

•  or else, P ! NS is the name string attached to the prefixed name string obtained by concate­
nating all the characters in P, a prefixing operator and all the characters in NS.

For example, if P is ”q / r ” and NS is ”s / n” then P ! NS is ”q ! r ! s ! n”.

static properties: A name has the static properties attached to the defining occurrences to which it is bound.
A field name has the static properties attached to the field name defining occurrence to which it is 
bound.
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3 MODES AND CLASSES

3.1 GENERAL

A location has a mode attached to it; a value has a class attached to it. The mode attached to a location defines 
the set of values that may be contained in the location, the access methods of the location and the allowed 
operations on the values. The class attached to a value is a means of determining the modes of the locations 
that may contain the value. Some values are strong. A strong value has a class and a mode attached. This 
mode is always compatible with the class of the value and the value is one of the values defined by the mode. 
Strong values are required in those value contexts where mode information is needed.

3.1.1 Modes

CHILL has static modes (i.e., modes for which all properties are statically determinable) and dynamic modes 
(i.e., modes for which some properties are only known at run time). Dynamic modes are always parameterised 
modes with run-time parameters.

Static modes are terminal productions of the syntactic category mode.

Dynamic modes have no denotations in CHILL. However, for description purposes, virtual denotations are 
introduced in this document to denote dynamic modes. These virtual denotations will be preceded by the 
ampersand symbol (<fc); e.g., &VM(i) denotes a parameterised dynamic mode with run-time parameter i.

In addition, in some places virtual denotations for static modes are introduced. This is done for modes that 
are not or cannot be explicitly denoted in the program text but are virtually introduced by some language 
constructs. These modes are also denoted by virtual denotations preceded by an ampersand.

3.1.2 Classes

Classes have no denotation in CHILL.

The following kinds of classes exist and any value in a CHILL program has a class of one of these kinds:

•  For a mode M, there may exist the M-value class. All values with such a class and only those values 
are strong and the mode attached to the value is M.

• For a mode M there may exist the M-derived class.

•  For any mode M, there exists the M-reference class.

• The null class.

•  The all class.

The last two classes are constant classes, i.e. they do not depend on a mode M. A class is said to be dynamic
if and only if it is an M-value class or an M-derived class or an M-reference class, where M is a dynamic mode.

3.1.3 Properties of, and relations between, modes and classes

Modes in CHILL have properties. These may be hereditary or non-hereditary properties. A hereditary property 
is inherited from a defining mode to a mode name defined by it. Below a summary is given of the properties 
that apply to all modes (except for the first, they are all defined in section 1 0 .1 ) :

1. A mode has a novelty (defined in sections 3.2.2, 3.2.3 and 3.3).

2. A mode can have the read-only property.

3. A mode can be parameterisable.

4. A mode can have the referencing property.

5. A mode can have the tagged parameterised property.
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6 . A mode can have the non-value property.

Classes in CHILL may have the following properties (defined in section 10.1):

1 . A class can have a root mode.

2 . One or more classes may have a resulting class.

Operations in CHILL are determined by the modes and classes of locations and values. This is expressed by 
the mode checking rules which are defined in section 1 0 .1  as a number of relations between modes and classes.
There exists the following relations :

1. Two modes can be similar.

2 . Two modes can be v-equivalent.

3. Two modes can be equivalent.

4. Two modes can be 1-equivalent.

5. Two modes can be alike.

6 . Two modes can be N-alike.

7. Two modes can be read-compatible.

8 . Two modes can be dynamic read-compatible.

9. A mode can be restrictable to a mode.

1 0 . A mode can be compatible with a class.

1 1 . A class can be compatible with a class.

3.2 M ODE DEFINITIO NS

3.2.1 General

syntax:
<mode definition> ::= (1)

< defining occurrence list> = < defining mode> (1.1)

< defining mode> ::= (2)
<mode> (2-1)

derived syntax: A mode definition where the defining occurrence list consists of more than one defining
occurrence is derived from several mode definitions, one for each defining occurrence, separated by
commas, with the same defining mode. For example :

NEW M ODE dollar, pound = IN T ;

is derived from

NEW M ODE dollar = IN T , pound = IN T  ;

semantics: Mode definitions define one or more names to be mode names. Most properties of a mode name 
are inherited from its defining mode.
Mode definitions occur in synmode and newmode definition statements. A synmode is synonymous 
with its defining mode. A newmode is not synonymous with its defining mode. The difference is 
defined in terms of the property novelty, that is used in the mode checking (see section 1 0 .1 ).
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static properties: A deGning occurrence in a mode deGnition defines a mode name.

Mode names are also the predefined mode names IN T , B IN , BOOL , CHAR , PTR  , INSTANCE  , 
ASSOCIATION  and the implementation defined integer mode names (if any, see section 3.4.2).

A mode name has a defining mode which is the deGning mode in the mode deGnition which defines 
it. (For predefined and implementation defined mode names this defining mode is a virtual mode). 
The hereditary properties of a mode name are those of its defining mode.

A set of recursive definitions is a set of mode definitions or synonym definitions (see section 5.1) 
such that the deGning mode in each mode deGnition or constant value or mode in each synonym 
deGnition is, or directly contains, a mode name or a synonym name defined by a definition in the 
set.

A set of recursive mode definitions is a set of recursive definitions having only mode definitions. 
(Any set of recursive definitions must be a set of recursive mode definitions; see section 5.1).

Any mode being, or containing, a mode name defined in a set of recursive mode definitions is said 
to denote a recursive mode. A path in a set of recursive mode definitions is a list of mode names, 
each name indexed with a marker such that:

• all names in the path have a different definition;

•  for each name, its successor is or directly occurs in its defining mode (the successor of the 
last name is the first name);

•  the marker indicates uniquely the position of the name in the defining mode of its predecessor 
(the predecessor of the first name is the last name).

(Example: NEW M ODE M =  STRUCT (i M, n REF M); contains two paths: { M; } and 
{M„})
A path is safe if and only if at least one of its names is contained in a reference mode or a row 
mode, or a procedure mode at the marked place.

static conditions: For any set of recursive mode definitions, all its paths must be safe. (The first path of 
the example above is not safe).

examples:
1.15 operand- mode = IN T  (1-1)
3.3 complex =  STRUCT (re,im I N T ) (1.1)

3.2.2 Synmode definitions 

syntax:
<synmode deGnition statement> ::= (1)

SYNM ODE <mode deGnition> { , <mode definition>}*; (1.1)

semantics: Synmode definition statements define mode names which are synonymous with their defining
mode.

static properties: A deGning occurrence in a mode deGnition in a synmode deGnition statement defines a
synmode name (which is also a mode name). A synmode name is said to be synonym ous with 
a given mode (conversely, the given mode is said to be synonymous with the synm ode name) if 
and only if:

• either the given mode is the defining mode of the synmode name;

• or the defining mode of the synmode name is itself a synmode name, synonymous with 
the given mode.

The novelty of a synmode name is that of its defining mode.

Fascicle VI. 12 -  Rec Z.200 15



6.3
examples:

SYNM ODE month = SET (jan, feb, max, apr, may, jun,
jul, aug, sep, oct, nov, dec); ( 1 .1)

3.2.3 Newmode definitions 

syntax:
<newmode deGnition statement> ::= (1)

NEW M ODE <mode deGnition> { , <mode deGnition> } *; (1.1)

semantics: Newmode definition statements define mode names which are not synonymous with their defining 
mode.

static properties: A deGning occurrence in a mode deGnition in a newmode deGnition statement defines a 
newm ode name (which is also a mode name).
The novelty of the newmode name is the deGning occurrence which defines it.
If the defining mode of the newmode name is a range mode, then the virtual mode foname is 
introduced as the parent mode of the newmode name. The defining mode of Szname is the 
parent mode of the range mode, and the novelty of <fcname is that of the newmode name.

examples:
11.6 N E W M O D E  line = IN T (1:8); (1.1)
11.12 NEW M ODE board = ARRAY (line) ARRAY (column) square; (1.1)

3.3 M ODE CLASSIFICATION  

syntax:
<mode> ::= (1)

[ READ ] <non-composite mode> f l.i)
| [ READ j Ccomposite mode> (i.2)

<non-composite mode> (2)
< discrete mode> (2 -1)

| <powerset mode> (2.2)
| <reference mode> (2.3)
| <procedure mode> (2-4)
| <instance mode> (2.5)
| Synchronisation mode> (2.6)
| <input-output mode> (2-7)

semantics: A mode defines a set of values and the operations which are allowed on the values. A mode may 
be a read-only mode, indicating that a location of that mode may not be accessed to store a value. 
A mode has a novelty, indicating whether it was introduced via a newmode definition statement or 
not.

static properties: A mode has the following hereditary properties :

•  It is a read-only mode if it is an explicit or an implicit read-only mode.

• It is an explicit read-only mode if READ is specified or it is a parameterised array mode, 
a parameterised string mode or a parameterised structure mode, where the origin array 
mode name, origin string mode name or origin variant structure mode name, respectively, 
in it is a read-only mode.

• It is an implicit read-only mode if

-  it is the element mode of a read-only array mode (see section 3.11.3);

-  it is a field mode of a read-only structure mode or it is the mode of a tag field of 
a parameterised structure mode (see section 3.11.4).

16 Fascicle VI.12 -  Rec Z.200



Read-only modes have the same properties as their corresponding non-read-only modes except 
for the read-only property (see section 10.1.1).

A mode has the following non-hereditary properties :

•  It has a novelty that is either nil or the defining occurrence in a mode deGnition in a newmode 
deGnition statement. The novelty of a mode which is not a mode name (nor READ mode 
name) is defined as follows :

if it is a parameterised string mode, a parameterised array mode or a parame­
terised structure mode, its novelty is that of its origin string mode name, origin 
array mode name or origin variant structure mode name, respectively;

-  if it is a range mode, its novelty is that of its parent mode;

otherwise its novelty is nil.

The novelty of a mode that is a mode name ( READ mode name) is defined in sections
3.2.2 and 3.2.3.

• It has a size that is the value delivered by SIZE (M), where M is a virtual synmode name 
synonymous with the mode.

3.4 DISCRETE M ODES

3.4.1 General 

syntax:
<discrete mode> ::= (1)

<integer mode> (1.1)
| < boolean mode> (1-2)
| < character mode> (1.3)
| <set mode> (1.4)
| <range mode> (1.5)

semantics: Discrete modes define sets and subsets of well-ordered values. All discrete modes that are not
range modes can be parent modes of range mode (see section 3.4.6). All discrete modes define an 
upper bound and a lower bound and a number of values.

3.4.2 Integer modes 

syntax:
<integer mode> ::= (1)

IN T  (1.1)
| BIN (1.2)
| <integer mode name> (1-3)

derived syntax: BIN  is derived syntax for IN T .

semantics: An integer mode defines a set of signed integer values between implementation defined bounds over 
which the usual ordering and arithmetic operations are defined (see section 5.3). An implementation 
may define other integer modes with different bounds (e.g., LONG-INT, SHORT-INT, ...) that 
may also be used as parent modes for ranges (see section 1 2 .2 ).

static properties: An integer mode has the following hereditary properties:

• The upper bound and lower bound are the literals denoting respectively the highest and 
lowest value defined by the integer mode. They are implementation defined.

•  The number of values which is: upper bound  ̂lower bound +  1.

Fascicle VI. 12 -  Rec Z.200 17



1.5 IN T
examples:

(i.i)

3.4.3 Boolean modes 

syntax:
< boolean mode> ::= (1)

BOOL (1.1)
| <boolean mode name> (1-2)

semantics: A boolean mode defines the logical truth values ( TRUE and FALSE ), with the usual boolean
operations (see section 5.3). TRUE is greater than FALSE .

static properties: A boolean mode has the following hereditary properties:

• The upper bound of a boolean mode is TRUE , its lower bound is FALSE .

• The number of values defined by a boolean mode is 2.

examples:
5.4 BOOL (1.1)

3.4.4 Character modes 

syntax:
< character mode> ::= (1)

CHAR (1.1)
| < character mode name> (1-2)

semantics: A character mode defines the character values as described by the CCITT alphabet no.5, Inter­
national reference version (Recommendation V3, see Appendix Al). This alphabet also defines the 
ordering of the characters.

static properties: A character mode has the following hereditary properties:

• The upper bound and lower bound are the character string literals of length 1 denoting 
respectively the highest and lowest value defined by CHAR .

•  The number of values defined by a character mode is 128.

examples:
8.4 CHAR (1.1)

3.4.5 Set modes 

syntax:
<set mode> ::= (1)

SET ( <set Ust> ) (1-1)
J <set_mode name> (1-2)

<set Ust> ::= (2)
<numbered set Ust> (2-1)

| <unnumbered set Ust> (2-2)

<numbered set Ust> (3)
<numbered set element> { ,<numbered set element>}* (3-1)

<numbered set element> ::= (4)
<defining occurrence> = <integer literal expression> (4-1)

<unnumbered set list> ::= (5)
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<set element> { ,<set eiemenfc>} * (5.1)

<set element> ::= (6)
< defining occurrence> (6.1)

| <unnamed value> (6-2)

< unnamed value> ::= (7)
(7.1)

semantics: A set mode defines a set of named or unnamed values. The named values axe denoted by the
names defined by defining occurrences in the set fist; the unnamed values are the other values. The 
internal representation of the named values is the integer value associated with the named value (see 
below). This representation also defines the ordering of the values.

static properties: A defining occurrence in a set fist defines a set element name.

A set mode has the following hereditary properties:

• A set mode has a set of set element names which is the set of names defined by defining 
occurrences in its set fist.

• Each set element name of a set mode has an integer representation value attached which 
is, in the case of a numbered set fist, the value delivered by the integer literal expression in 
the numbered set element in which the defining occurrence defining the set elem ent name 
occurs; otherwise, one of the values 0,1,2,.... etc., according to its position in the unnumbered 
set fist. For example: SET (*,a,*,b,*), a has representation value 1, and b has representation 
value 3 attached.

• A set mode has an upper bound and a lower bound which axe its set elem ent names 
with the highest and lowest representation values, respectively.

• The number of values of a set mode is, in the case of a numbered set fist, the highest of 
the values attached to the set element names plus 1; otherwise, the number of set element 
occurrences in the unnumbered set fist.

•  A set mode is a set mode w ith holes, if and only if the number of its set element names is 
less than the number of values of the set mode.

static conditions: Each integer literal expression in the set fist must deliver a different non-negative integer
value in the sense that for any two expressions el and e2: NUM (el) and NUM (e2) deliver different
results.

A set mode must define at least one named value.

examples:
11.7 SET ( occupied, free) (1.1)
6.3 month (1-2)

3.4.6 Range modes

syntax:
<range mode> ::== (1)

<discrete mode name>{ <fiteral range> ) (1-1)
| RANG E ( <fiteral range> ) (1.2)
| BIN ( <integer literal expression> ) (1.3)
| < range mode name> (1.4)

<fiteral range> ::= (2)
<lower bound> : < upper bound> (2-1)

<lower bound> ::= (3)
<discrete literal expression> (3.1)
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<upper bound> ::=
<discrete literal expression>

(4)
(4.1)

derived syntax: The notation BIN (n) is derived from IN T (0 : 2n~l), e.g. BIN (2+1) stands for IN T (0 : 7).

semantics: A range mode defines the set of values ranging between the bounds specified (bounds included) 
by the literal range. The range is taken from a specific parent mode that determines the operations 
on and ordering of the range values.

static properties: A range mode has the following non-hereditary property: it has a parent mode, defined 
as follows:

• If the range mode is of the form:
<discrete mode name>( <literal range> )
then if the discrete mode name is not a range mode then the parent mode is the discrete mode 
name; otherwise, it is the parent mode of the discrete mode name.

•  If the range mode is of the form:
RA N G E ( <literal range> )
then the parent mode is the root mode of the resulting class of the classes of the upper 
bound and lower bound in the literal range.

• If the range mode is a synmode name, then its parent mode is that of the defining mode of 
the svnmode name.

• If the range mode is a newmode name, then its parent mode is the virtually introduced 
parent mode (see section 3.2.3).

A range mode has the following hereditary properties:

•  A range mode has a lower bound and an upper bound that are the literals denoting the 
values delivered by lower bound and upper bound respectively in the literal range.

•  The number of values of a range mode is the value delivered by NUM (U)- NUM  (L) + 1, 
where U and L denote respectively the upper bound and lower bound of the range mode.

•  A range mode is said to be a range mode with holes, if and only if its parent mode is a set 
mode w ith holes and an unnamed value is in the range specified by the range mode.

static conditions: The classes of upper bound and lower bound must be compatible and both must be
com patible with the discrete mode name, if specified.

Lower bound must deliver a value that is less than or equal to the value delivered by upper bound, 
and both values must belong to the set of values defined by discrete mode name, if specified.

The integer literal expression in case of BIN  must deliver a non-negative value.

examples:
9.5 IN T  (2:max) (1.1)
11.12 line (1.4)
9.5 2:max (2.1)

3.5 PO W ERSET M ODES 

syntax:
<powerset mode> ::= (1)

PO W ERSET <member mode> (1-1)
| < powerset mode name> (1-2)

<member mode> ::= (2)
< discrete mode> (2.1)
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semantics: A powerset mode defines values that are sets of values of its member mode. Powerset values range 
over all subsets of the member mode. The usual set-theoretic operators are defined on powerset 
values (see section 5.3).

static properties: A powerset mode has the following hereditary property:

• It has a member mode that is the member mode.

examples:
8.4 POW ERSET CHAR (1.1)
9.5 POW ERSET IN T (2:max) (1.1)
9.6 number-list (1-2)

3.6 REFERENCE M ODES

3.6.1 General 

syntax:
<reference mode> ::= (1)

<bound reference mode> f l.l)
| <free reference mode> (1-2)
| <row mode> (1-3)

semantics: A reference mode defines references (addresses or descriptors) to referable locations. By definition, 
bound references refer to locations of a given static mode; free references may refer to locations of 
any static mode; rows refer to locations of a dynamic mode.

The dereferencing operation is defined on reference values (see sections 4.2.3, 4.2.4 and 4.2.5), de­
livering the location that is referenced.

Two reference values are equal if and only if they both refer to the same location, or both do not 
refer to a location (i.e., they are the value NULL ).

3.6.2 Bound reference modes 

syntax:
< bound reference mode> ::= (1)

REF <referenced mode> (1-1)
| <bound reference mode name> (1-2)

<referenced mode> (2)
<mode> (2-1)

semantics: Bound reference modes define reference values to locations of the specified referenced mode.

static properties: A bound reference mode has the following hereditary property:

• It has a referenced mode that is the referenced mode.

examples:
10.42 REF cell (LI)

3.6.3 FVee reference modes 

syntax:
<free reference mode> ::= (1)

PTR (1.1)
| <free reference mode name> (1-2)

semantics: A free reference mode defines reference values to locations of any static mode.
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19.8 PTR
examples:

(1 .1)

3.6.4 Row modes 

syntax:
<row mode> ::= (1)

ROW <stringr mode> (1.1)
| ROW < array mode> (1-2)
| ROW < variant structure mode name> (1-3)
| <rowjgaqde name> (1.4)

semantics: A row mode defines reference values to locations of dynamic mode (which axe locations of some 
parameterised mode with statically unknown parameters).

A row value may refer to:

• string locations with statically unknown length,

• array locations with statically unknown upper bound,

• parameterised structure locations with statically unknown parameters, 

static properties: A row mode has the following hereditary property:

• It has a referenced origin mode, which is the string mode, the array mode, or the 
variant structure mode name, respectively.

static condition: The variant structure mode name must be parameterisable.

examples:
8.6 ROW CHAR (max) (1.1)

3.7 PROCEDURE M ODES 

syntax:
< procedure mode> ::= (1)

PROC ( [ <parameter list> ] ) [ CresuIt spec> ]
[ EXCEPTIONS ( <exception list> )] [ RECURSIVE ] (1.1)

| < procedure mode name> (1 -2 )

<parameter list> ::= (2)
<parameter spec> { ,<parameter spec>} * (2-1)

<parameter spec> ::= (3)
<mode> [ <parameter attribute> ] [ <register name> ] (3-1)

<parameter attribute> ::= (4)
IN  | OUT | INO UT | LOC [ DYNAM IC ] (4.1)

<result spec> ::= (5)
[ R ETU RN S ] (<mode> [ <result attribute> ] [ <register name> ]J (3-1)

Cresult attribute>::= (6)
[ NO NREF ] LOC [ DYNAM IC ] (6.1)

< exception list> ::= (7)
<exception name> { ,<exception name>} * (7.1)

derived syntax: A result spec without the optional reserved simple name string R ETU RN S is derived 
syntax for the result spec with RETU RN S .
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semantics: A procedure mode defines (general) procedure values, i.e., the objects denoted by general proce­
dure names that are names defined in procedure definition statements or entry definition statements. 
The procedure values indicate pieces of code in a dynamic context. Procedure modes allow for ma­
nipulating a procedure dynamically, e.g., passing it as a parameter to other procedures, sending it 
as message value to a buffer, storing it into a location, etc.

Procedure values can be called (see section 6.7).

Two procedure values are equal if and only if they denote the same procedure in the same dynamic 
context, or if they both denote no procedure (i.e., they are the value NULL ).

static properties: A procedure mode has the following hereditary properties:

• It has a list of parameter specs, each parameter spec consisting of a mode, possibly 
a parameter attribute and/or register name. The parameter specs are defined by the 
parameter list.

•  It has an optional result spec, consisting of a mode, an optional result attribute and/or 
register name. The result spec is defined by the result spec.

•  It has a possibly empty set of exception names, which are those mentioned in the exception 
list.

• It has a recursivity which is recursive if R E C U R SIV E  is specified; otherwise, an imple­
mentation defined default specifies either recursive or non-recursive.

static conditions: All names mentioned in exception list must be different.

Only if LOC is specified in the parameter spec or result spec may the mode in it have the non-value 
property.

If D Y N A M IC  is specified in the parameter spec or the result spec, the mode in it must be 
param eterisable.

3.8 INSTANCE M ODES 

syntax:
<instance mode> ::= (1)

INSTANCE (1.1)
| <instance mode name> (1*2)

semantics: An instance mode defines values which uniquely identify processes. The creation of a new process
(see sections 5.2.14, 6.13 and 9.1) yields a unique instance value as identification for the created
process.

Two instance values are equal if and only if they identify the same process, or they both identify no 
process (i.e., they are the value NULL ).

examples:
15.39 INSTANCE (1.1)

3.9 SYNCHRONISATION M ODES

3.9.1 General 

syntax:
<synchronisation mode> ::= (1)

<event mode> ( -^ j
| < buffer mode> (1 -2)
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semantics: Locations of synchronisation mode provide a means of synchronisation and communication between 
processes (see chapter 9). There exists no expression in CHILL denoting a value defined by a 
synchronisation mode. As a consequence, there are no operations defined on the values.

3.9.2 Event modes 

syntax:
<event mode> ::= (1)

EVENT [(<event Iengfch>]] (1-1)
| <event mode name> (1-2)

<event length> ::= (2)
<integer literal exvression> (2-1)

semantics: Event mode locations provide a means for synchronisation between processes. The operations
defined on event mode locations are the continue action, the delay action and the delay case action, 
which are described in section 6.15, 6.16 and 6.17 respectively.

static properties: An event mode has the following hereditary property:

•  It has an optional event length, which is the value delivered by event length.

static conditions: The event length must deliver a positive value.

examples:
14.10 EVENT (1.1)

3.9.3 Buffer modes 

syntax:
< buffer mode> ::= (1)

BU FFER  [(<buffer iength>)]<buffer element mode> (T.lJ
| < buffer mode name> (1-2)

< buffer length> ::= (2)
<integer literal expression> (2-1)

< buffer element mode> (3)
<mode> (3-1)

N.B. The syntax given above is syntactically ambiguous in connection with the syntax of the array 
modes. The following default interpretation applies: if BUFFER is immediately followed by an
opening parenthesis, the text immediately following is considered to be the start of the optional
buffer length indication and not as belonging to the buffer element mode.

semantics: Buffer mode locations provide a means of synchronisation and communication between processes.
The operations defined on buffer locations are the send action, the receive case action and the receive 
expression, described in section 6.18, 6.19 and 5.3.8 respectively.

static properties: A buffer mode has the following hereditary properties :

•  It has an optional buffer length, that is the value delivered by buffer length.

• It has a buffer element mode, that is the buffer element mode. 

static conditions: The buffer length must deliver a non-negative value.

The buffer element mode must not have the non-value property.

examples: '
16.30 BU FFER (1) user-messages (1-1)
16.34 user_ buffers ' (1-2)
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3.10 IN PU T -O U T PU T  M ODES

3.10.1 General 

syntax:
<input-output mode> (1)

< association mode> (1-1)
| < access mode> ~ (1-2)

semantics: Input-output modes are used for input-output operations as defined in chapter 7. There exist no 
expression in CHILL denoting a value defined by an input-output mode. As a consequence there 
are no operations defined on the values.

examples:
20.17 ASSOCIATION (1.1)

3.10.2 Association modes 

syntax:
<association mode> ::= (1)

ASSOCIATION (1.1)
| <association mode name> (1-2)

semantics: Association mode locations can contain a value which represents a relation to an outside world
object. Such a relation is called an association in CHILL; associations can be created by the built-in
routine ASSOCIATE  and be ended by DISSOCIATE .

3.10.3 Access modes 

syntax:
< access mode> (1)

ACCESS [ (<index mode>) ] [ <record mode> [ DYNAM IC ]] (1.1)
| <access mode name> (1-2)

<record mode> (2)
<mode> (2-1)

<index mode> ::= (3)
<discrete mode> (3-1)

| <literal range> (3-2)

N.B. The syntax given above is syntactically ambiguous in connection with the syntax of the axray 
mode. The following default interpretation applies : if ACCESS is immediately followed by an 
opening parenthesis, the text following is considered to be the start of the optional index mode 
denotation and not as belonging to the record mode.

derived syntax: The index mode notation literal range is derived from the discrete mode R A NG E (literal 
range).

semantics: Access mode locations provide the means for positioning a file and for tranferring values from the 
CHILL program to a file in the outside world, and vice versa.

An access mode may define a record mode; this record mode defines the root mode of the class of 
the values that can be transferred via a location of that access mode to or from a file. The mode 
of the transferred value may be dynamic, i.e., the size of the record may vary, when the attribute 
DYNAM IC is specified in the access mode denotation.

An access mode may also define an index mode; such an index mode defines the size of a ’’window” 
to (a part of) the file, from which it is possible to read (or write) records randomly. Such a window
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can be positioned in an (indexable) file by the connect operation. If no index mode is specified, then 
it is possible to transfer records only sequentially.

static properties: An access mode has the following hereditary properties :

•  It has an optional record mode which is the record mode if present. It is a dynamic record 
mode if DYNAM IC is specified, or a static record mode, otherwise.

• It has an optional index mode, which is the index mode.

static conditions: The optional record mode must not have the non-value property.

If DYNAM IC is specified, the record mode must be parameterisable.

The index mode must not be a set mode w ith holes, nor a range mode w ith holes.

examples:
20.18 ACCESS (indexset) record-type (1-1)
22.20 ACCESS string DYNAM IC (1.1)
20.18 record-type (2.1)
20.18 index-set (3-1)

3.11 COM POSITE M ODES

3.11.1 General 

syntax:
< composite mode> ::= (1)

<string mode> (1-1)
| <array mode> (1-2)
| <structure mode> (1-3)

semantics: Composite locations and values have sub-locations and sub-values which can be accessed or
obtained respectively (see sections 4.2.6-10 and 5.2.6-10).

3.11.2 String modes 

syntax:
<string mode> ::= (1)

<string type>( <string length> ) (1-1)
| < parameterised string mode> (1-2)
| <string mode name> (1-3)

<parameterised string mode> (2)
<origin string mode name>( <string length> ) (2-1)

| < parameterised string mode name> (2-2)

< origin string mode name> ::= (3)
<string mode name> (3-1)

<string type> ::= (4)
CHAR (4.1)

| B IT  (4.2)

<string length> ::= (5)
<integer literal expression> (3-1)

semantics: A string mode defines bit or character string values of a length indicated or implied by the string
mode.
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The string values of a given string mode are well-ordered. For character string values the ordering is 
the lexicographical order as defined by the CCITT alphabet no. 5. For bit string values the ordering 
is the lexicographical order such that a bit which is 1 is greater than a bit which is 0 .

String values are either empty or have string elements which are numbered from 0 upward. Two 
empty string values are equal.

The concatenation operator is defined on string values. The usual logical operators are defined on 
bit string values (see section 5.3).

static properties: A string mode has the following hereditary properties:

•  It is a bit string mode or a character string mode, depending on whether string type specifies 
B IT  or CHAR , or whether origin string mode name is a bit or character string mode.

• It has a string length, which is the value delivered by string length.

• It has an upper bound and a lower bound which are the values delivered by string length 
-  1 and 0 respectively.

A string mode is parameterised if and only if it is a parameterised string mode.

A  parameterised string mode has an origin string mode which is the mode denoted by origin 
string mode name.

static conditions: The string length must deliver a non-negative value.

The value delivered by the string length directly contained in a parameterised string mode must be 
less than or equal to the string length of the origin string mode name.

examples:
7.51 CHAR (20) (1.1)

3.11.3 Array modes

( i )

(1.1)
(1.2) 
(1.3)

<parameterised array mode> ::= (2)
< origin array mode name>( <upper index> ) (2-1)

| < parameterised array mode name> (2-2)

<origin array mode name> ::= (3)
< array mode name> (3-1)

<upper index> ::= (4)
<discrete literal expression> (4-1)

< element mode> ::= (5)
<mode> (3-1)

derived syntax: The reserved simple name string ARRAY is optional. An array mode (which is neither 
an array mode name nor a parameterised array mode) without ARRAY is derived from the array 
mode with ARRAY .

An array mode with more than one index mode (denoting a ’multi-dimensional’ array), is derived 
syntax for an array mode with an element mode that is an array mode. For example:

ARRAY (1:20,1:10) IN T

syntax:
< array mode> ::=

[ ARRAY ] (<index mode> { ,<index mode>}*) 
< element mode> { < element layout>} *

| <parameterised array mode>
| < array mode name>
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is derived from

ARRAY ( RANG E (1:20)) ARRAY ( RA NG E (1:10)) INT

Only if this derived syntax is used, is more than one element layout occurrence allowed. The number 
of element layout occurrences must be less than or equal to the number of index mode occurrences. 
In that case, the leftmost element layout is associated with the innermost element mode, etc.

semantics: An array mode defines composite values, which are lists of values defined by its element mode.
The physical layout of an array location or value can be controlled by element layout specification 
(see section 3.11.6). Two array values are equal if and only if all corresponding element values are 
equal.

static properties: An array mode has the following hereditary properties:

• It has an index mode which is the discrete mode denoted by index mode if it is not a 
parameterised array mode, otherwise the index mode is the range mode constructed as: 
Szname (lower bound : upper bound)
where Szname is a virtual synmode name synonymous with the index mode of origin array 
mode name, lower bound is the lower bound of the index mode of the origin array mode 
name and upper bound is the upper index.

•  It has an upper bound and a lower bound that are respectively the upper bound and 
the lower bound of its index mode.

• It has an element mode, which is either M or READ M, where M is the element mode, or 
the elem ent mode of the origin array mode name respectively. The element mode will be 
READ M if and only if M is not a read-only mode and the array mode is a read-only 
mode. The element mode is an implicit read-only mode if it is READ M.

• It has an element layout which, if it is a parameterised array mode, is the elem ent layout
of its origin array mode name; otherwise, it is either the specified element layout, or the
implementation default, which is either PACK or NOPACK .

• It is a mapped mode if and only if element layout is specified and is a step.

• It has a number of elem ents which is the value delivered by:
NUM ( upper bound ) -  NUM ( lower bound ) + 1
where upper bound and lower bound are respectively the upper bound and the lower 
bound of its index mode.

An array mode is parameterised if and only if it is a parameterised array mode.

A parameterised array mode has an origin array mode which is the mode denoted by origin array 
mode name.

static conditions: The class of upper index must be compatible with the index mode of the origin array 
mode name and the value delivered by it must lie in the range defined by that index mode.

The index mode must not be a set mode w ith holes nor a range mode w ith holes.

examples:
5.29 ARRAY (1:16) STRUCT (c4, c2, cl B O O L) (1.1)
11.12 ARRAY (line) ARRAY (column) square (1.1)
11.17 board (1.3)

3.11.4 Structure modes 

syntax:
<structure mode> ::— (1)

<nested structure mode> (1-1)
| <level structure mode> (1-2)
| <parameterised structure mode> (1.3)

28 Fascicle VI. 12 -  Rec Z.200



| <structure mode name> (1.4)

<nested structure mode> (2)
STRUCT (<Gelds> { ,<fields>} *) (2.1)

<fields> ::= (3)
<Gxed Gelds> (3.1)

| <alternative Gelds> (3-2)

<Gxed Gelds> ::= (4)
<Geld name deGning occurrence Gst> <mode> [ <Geld layout> ] (4-1)

< alternative Gelds> ::= (5)
CASE [ < tags> ] OF

< variant alternative> {,< variant alternative>}*
[ ELSE [ < variant Gelds>{,<variant fields>}*]] ESAC (5.1)

< variant alternative> (6)
[ <case label speciGcation> } : [ <variant Gelds> { ,<variant Gelds>} *] (6.1)

<tags> ::= (7)
<tag Geld name> { ,< tag Geld name>} * (7.1)

< variant Gelds> ::= (8)
<Geld name deGning occurrence Gst> <mode> [ <Geld layout> ] (3-1)

<parameterised structure mode> (9)
<origin variant structure mode name> (<Mteral expression Hst>) (9-1)

| < yarameterised structure mode name> (9-2)

<origin variant structure mode name> (10)
< variant structure mode name> (10.1)

<literal expression list> ::= (11)
<discrete literal expression> { ,<discrete literal expression>} * (J l.J j

derived syntax: A level structure mode is derived syntax for a nested structure mode. This is explained in 
section 3.11.5.

A Gxed Gelds occurrence or variant Gelds occurrence, where Geld name deGning occurrence list 
consists of more than one Geld name deGning occurrence, is derived syntax for several Gxed Gelds 
occurrences or variant Gelds occurrences with one Geld name deGning occurrence respectively, each 
with the specified mode and optional Geld layout. In the case of Geld layout, this Geld layout must 
not be pos. For example:

STRUCT (1,J BOOL PACK ) 
is derived from:

STRUCT (I BOOL PACK , J BOOL PACK )

semantics: Structure modes define composite values consisting of a list of values, selectable by a component 
name. Each value is defined by a mode that is attached to the component name. Structure values 
may reside in (composite) structure locations, where the component name serves as an access to 
the sub-location. The components of a structure value or location are called fields and their names 
field names.

There are fixed structures, variant structures and parameterised structures.

Fixed structures consist only of fixed fields, i.e., fields that are always present and that can be 
accessed without any dynamic check.

Variant structures have variant fields, i.e., fields that are not always present. For tagged variant 
structures, the presence of these fields is known only at run time from the value(s) of certain
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associated fixed field(s) called tag fields. Tag-less variant structures do not have tag fields. Because 
the composition of a variant structure may change during run time, the size of a variant structure 
location is based upon the largest choice (worst case) of variant alternatives.

A parameterised structure is determined from a variant structure mode for which the choice of 
variant alternatives is statically specified by means of literal expressions. The composition is fixed 
from the point of the creation of the parameterised structure and may not change during run time. 
The tag fields, if present, are read-only and automatically initialised with the specified values. 
For a parameterised structure location, a precise amount of storage can be allocated at the point of 
declaration or generation. Note that (virtual) dynamic parameterised structure modes also exist. 
Their semantics are defined in section 3.12.4.

The layout of a structure location or value can be controlled by means of a field layout specification 
(see section 3.11.6).

Two structure values are equal if and only if the corresponding component values are equal. However, 
if the structure values are tag-less variant structure values, the result of comparison is implementation 
defined.

static properties: 

general:

A structure mode has the following hereditary properties:

•  A structure mode is a fixed structure mode if and only if it is denoted by a nested (or level) 
structure mode that does not directly contain an alternative Gelds occurrence.

• A structure mode is a variant structure mode if and only if it is denoted by a nested (or 
level) structure mode and contains at least one alternative Gelds occurrence.

• A structure mode is a parameterised structure mode if and only if it is denoted by a 
parameterised structure mode.

• A structure mode has a set of field names. This set is defined below for the different cases. A 
name is said to be a field name if and only if it is defined in a Geld name deGning occurrence 
list in Gxed Gelds or variant Gelds in a structure mode.

Each field name of a structure mode has a field mode attached that is either M or READ  
M, where M is the mode following the field name. The field mode is READ M if M is 
not a read-only mode and either the structure mode is a read-only mode, or the field is 
a tag-field of a parameterised structure mode. The field mode is an implicit read-only 
mode if it is READ M.

A field name of a given structure mode has a field layout attached to it that is the Geld
layout following the field name, if present; otherwise it is the default field layout, which is
either PACK or NOPACK .

•  A structure mode denotes a mapped mode if and only if its field names have a field layout 
that is pos.

fixed structures:

A fixed structure mode has the following hereditary property:

• It has a set of field names which is the set of names defined by any Geld name deGning
occurrence list in Gxed Gelds. These field names are fixed field names.

variant structures:

A variant structure mode has the following hereditary properties:

•  It has a set of field names, that is the union of the set of names defined by any Geld name 
deGning occurrence list in Gxed Gelds and the set of names defined by any Geld name deGning
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occurrence list in alternative Gelds. Field names defined by a Geld name deGning occurrence 
list in Gxed Gelds axe the fixed field names of the variant structure mode; its other field 
names are the variant field names.

A field  name of a variant structure mode is a tag field name if and only if it occurs in any 
tags of an alternative Gelds. Alternative Gelds in which no tags are specified are tag-less 
alternative Gelds. The variant field names defined by any Geld name deGning occurrence 
list in variant Gelds of a tag-less alternative Gelds are tag-less variant field names. The 
other variant field names are tagged variant field names.

• A variant structure mode is a tag-less variant structure mode if and only if all its alter­
native Gelds occurrences are tag-less. Otherwise it is a tagged variant structure mode.

• A variant structure mode is a parameterisable variant structure mode if and only if it 
is either a tagged variant structure mode or a tag-less variant structure mode where for 
each of the alternative Gelds occurrences a case label speciGcation is given for all the variant 
alternative occurrences in it.

•  A parameterisable variant structure mode has a list of classes attached, determined as 
follows:

-  if it is a tagged variant structure mode, the list of M»- -value classes, where Mi are 
the modes of the tag field names in the order that they are defined in Gxed Gelds;

-  if it is a tag-less variant structure mode, the list is built up from the individual 
resulting lists of classes of each alternative Gelds by concatenating them in the 
order as the alternative Gelds occur. The resulting list of classes of an alternative 
Gelds occurrence is the resulting list of classes of the list of case label speciGcation 
occurrences in it (see section 10.1.3).

parameterised structures:

A structure mode is parameterised if and only if it is a parameterised structure mode.

A parameterised structure mode has an origin variant structure mode which is the mode denoted
by origin variant structure mode name.

A parameterised structure mode has the following hereditary properties:

• It has an origin variant structure mode that is the mode denoted by origin variant structure 
mode name.

•  It is a tagged parameterised structure mode if and only if its origin variant structure 
mode is a tagged variant structure mode; otherwise, the parameterised structure mode 
is tag-less.

•  It has a set of field names that is the union of the set of fixed field names of its origin 
variant structure mode and the set of those variant field names of its origin variant 
structure mode that are defined in variant alternative occurrences that are selected by the 
list of values defined by literal expression list.

The set of tag field names of a parameterised structure mode is the set of tag field names 
of its origin variant structure mode.

•  It has a list of values attached, defined by Uteral expression list. 

static conditions:

general:

All field names of a structure mode must be different.

If any field has a field layout which is pos, all the fields must have a field layout which must be pos.
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variant structures:

A tag field name must be a fixed field name and must be textually defined before all the alternative 
Gelds occurrences in whose tags it is mentioned. (As a consequence, a tag field precedes all the 
variant fields that depend upon it). The mode of a tag field name must be a discrete mode.

The mode of variant Gelds may have neither the non-value property nor the tagged parame­
terised property.

In a variant structure mode the alternative Gelds occurrences must be either all tagged or all tag- 
less. For tag-less alternative Gelds, case label specification may be omitted in all variant alternative 
occurrences together, or must be specified for each variant alternative occurrence.

If, for a tag-less variant structure mode, any of its alternative Gelds has case label speciGcation 
given, all its alternative Gelds must have case label speciGcation.

For alternative Gelds, the case selection conditions must be fulfilled (see section 10.1.3), and the 
same completeness, consistency and compatibility requirements must hold as for the case action (see 
section 6.4). Each of the tag field names of tags (if present) serves as a case selector with the 
M-value class, where M is the mode of the tag field name. In the case of tag-less alternative fields, 
the checks involving the case selector are ignored.

For a parameterisable variant structure mode none of the classes of its attached list of classes may 
be the all class. (This condition is automatically fulfilled by a tagged variant structure mode.)

parameterised structures:

The origin variant structure mode name must be parameterisable.

There must be as many literal expressions in the literal expression Ust as there are classes in the 
list of classes of the origin variant structure mode name. The class of each literal expression must 
be compatible with the corresponding (by position) class of the list of classes. If the latter class is 
an M-value class, the value delivered by the literal expression must be one of the values defined by 
M.

examples:
3.3 STRUCT (re, im I N T ) (2.1)
11.7 STRUCT (status SET (occupied, free),

CASE status OF 
(occupied): p piece,
(free):

ESAC ) (2.1)
2.6 fraction (1-4)
11.7 status SET (occupied, free) (4-1)
11.8 status (7-1)
11.9 p  piece (8-1)

3.11.5 Level structure notation

derived syntax:
<level structure mode> ::= (1)

1 [ <array speciGcation> ]
[ READ ] { ,<(2) level Gelds>} + (I-I)

<(n) level Gelds> ::= (2)
<(n) level Gxed Gelds> (2-1)

| < (n) level alternative Gelds> (2-2)

<(n) level Gxed Gelds> ::= (3)
n <Geld name deGning occurrence Ust> <mode> [ <Geld layout> ] (3.1)

| n <Geld name deGning occurrence list> [ <array speciGcation> }
[ READ ] [ <Geld layout> ] { ,<(n+l) level Gelds>} + (8-2)
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<(n) level alternative fields> ::= (4)
CASE [ < tags> ] OF

<(n) level alternative> { ,<(n) level alternative>} *
[ ELSE [ < (n) level variant fields>
{ ,<(n) level variant fields>} *]]
ESAC (4.1)

<(n) level alternative> ::= (5)
[ <case label specification>
{ ,<case label specification> } *]
: [ < (n) level variant Belds>
{ ,<(n) level variant Belds>} *] (5.1)

<(n) level variant Belds> ::= (6)
n <Beld name deBning occurrence list> <mode> [ <Beld layout> ] (6.1)

| n <Beld name deBning occurrence list> [ < array speciBcation> ]
[ READ ] [ <Beld layout> ] { ,<(n+1) level Belds>}+ (6.2)

<array speciBcation> ::= (7)
[ READ ] [ ARRAY ] (<index mode> { ,<index mode>} *)
{ <element layout>} * (7.1)

N.B. The above description of a level number notation for structures involves an extension to the 
syntax description method explained in chapter 2 : the syntax is recursively defined using the struc­
turing level number (n) as parameter.

semantics: The level structure mode is derived syntax for a unique nested structure mode.

The nested notation is considered as strict syntax and all semantics, properties and conditions axe 
explained in terms of it (see section 3.11.4).

If a structure contains fields that are themselves structures or arrays of structures, a hierarchy of 
structures is formed and a level number can be associated with each field.

Example:

SYNM O DE m =  STRUCT (
b BOOL ,
s ARRAY (1:10) STRUCT (t IN T , u BOOL ));

The structure as a whole has level 1, b and s have level 2, t and u have level 3. Instead of writing 
nested structure modes, it is allowed in the level structure mode to write the level number in the 
front of the name.

Example: „

SYNM O DE m = 1 ,2  b BOOL ,
2 s ARRAY (1:10),

3 t IN T ,
3 u BOOL ;

In mode definitions and synonym definitions with a mode, there is no name associated with the first 
level. The association occurs at the declaration or at the point of formal parameter specification. 
At these places, the name of the first level will be placed after the level-1 position.

Example:

DCL 1 a,
2 b BOOL ,
2 s ARRAY (1:10),

3 t I N T ,
3 u B O O L •
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With declarations, parameter and result specifications, the attributes and initialisations, if present, 
must be specified at the end of the level- 1 position.

Example:

p : PROC (1 x  INO UT ,
2 b B O O L ,
2 c IN T  );

If within a level structure mode an array of structures is specified, the array specification is given 
behind after the level indicator.

static conditions: Nested and level notations must not be mixed.

READ may not be specified immediately in front of a level structure mode.

examples:
19.12 DCL I x BA SED (p),

2 i info POS (0,8:31),
2 prev PTR  POS (1,0:15),
2 next PTR  POS (1,16:31) (1.1)

3.11.6 Layout description for array modes and structure modes 

syntax:
<element layout> ::= (1)

PACK | NOPACK | <step> (1.1)

<Geld layout> ::= (2)
PACK | NOPACK | <pos> (2.1)

<step> ::= (3)
STEP (<pos> [,<step size> ]) (3.1)

<pos> ::= (4)
PO S (<word> ,<start bit> ,<length>) (4-1)

| POS (<word> [,<start bit> [: <end bit> ]]) (4.2)

<word> ::= (5)
<integer literal expression> (5-1)

| <m ap reference name> (5 .2 )

<step size> ::= (6)
<integer literal expression> (6.1)

<start bit> ::= (7)
<integer literal expression> (7.1)

<end bit> ::— \ (8)
<integer literal expression> (8-1)

<length> ::= (9)
<integer literal expression> (9.1)

semantics: It is possible to control the layout of an array or a structure by giving packing or mapping
information in its mode. Packing information is either PACK or NOPACK , mapping information 
is either step in the case of array modes, or pos in the case of structure modes. The absence of element 
layout or field layout in an array or structure mode will always be interpreted as packing information, 
i.e., either as PACK or as NOPACK .

If PACK is specified for elements of an array, or fields of a structure, it means that the use of 
memory space is optimised for the array elements or structure fields, whereas NOPACK implies
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that the access time for the array elements or the structure fields is optimised. NOPACK also 
implies referable.

The PACK , NOPACK information is applied only for one level, i.e., it is applied to the elements 
of the array or fields of the structure, not for possible components of the array element or structure 
field. The layout information is always attached to the nearest mode to which it may apply and 
which does not already have layout attached.
For example, if the default packing is NOPACK :

STRUCT ( f  ARRAY (0:1) m PACK )

is equivalent to:

STRUCT ( f  ARRAY (0:1) m PACK NOPACK )

It is also possible to control the precise layout of a composite object by specifying positioning 
information for its components in the mode. This positioning information is given in the following 
ways:

• For array modes, the positioning information is given for all elements together, in the form 
of a step following the array mode.

• For structure modes, the positioning information is given for each field individually, in the 
form of a pos, following the mode of the field.

Mapping information with pos is given in terms of word and bit-offsets.
A pos of the form :

POS (<word> , <start bit> , <length>)

defines a bit-offset of

NUM (word) * WIDTH + NUM (start bit)

and a length of NUM (length) bits, where WIDTH  is the (implementation defined) number of bits 
in a word, and word is either an integer literal expression or a map reference name delivering an 
implementation defined integer value.

When pos is specified in held layout it defines that the corresponding field starts at the given 
bit-offset from the start of each location of that mode, and occupies the given length.

A step of the form

STEP (<pos> , <step size>)

defines a series of bit-offsets b* for i taking values 0 to n-1 where n is the number of elements in the 
array and

b{= i * NUM (step size).

The jth element of the array starts at a bit-offset of p + b3— 1 from the start of each location of 
the array mode, where p is the bit-offset specified in pos. Each element occupies the length given in 
pos.

Defaults

The notation:

POS (<word number> , <start bit> : <end bit>)

is semantically equivalent to:

POS (<word number> , <start bit> ,
NUM ( end bit ) -  NUM ( start bit ) -h 1)
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The notation:

POS (<word number> , <start bit>)

is semantically equivalent to:

PO S (<word number> , < start bit> , BSIZE)

where BSIZE is the minimum number of bits which is needed to be occupied by the component for 
which the pos is specified.

The notation:

POS (<word number>)

is semantically equivalent to:

POS (<word number> , 0 , WSIZE * WIDTH)

where WSIZE is the size of the mode of the component for which the pos is specified.

The notation:

STEP (<pos>)

is semantically equivalent to

STEP (<pos> , SSIZE)

where SSIZE is the <length> specified in pos or derivable from pos by the above rules.

static properties: For any location of an array mode the element layout of the mode determines the referability 
of its sub-locations (including sub-arrays, array slices) as follows:

• either all sub-locations are referable, or none of them axe;

• if the element layout is NOPACK all sub-locations are referable.

For any location of a structure mode, the referability of the structure field selected by a field name 
is determined by the field layout of the field name as follows:

• the field name is referable if the field layout is NOPACK .

static conditions: If the element mode of a given array mode or the field mode of a field name of a given 
structure mode, is itself an array or structure mode, then it must be a mapped mode if the given 
array or structure mode is mapped.

Each of word, start bit, end bit, length and step size must, if specified, deliver a non negative value; 
and the values delivered by start bit and end bit must be less than WIDTH, the number of bits in 
an implementation’s word; and the value delivered by start bit must be less than or equal to that of 
end bit.

Each implementation defines for each mode a minimum number of bits its values need to occupy; 
call this the minimum bit occupancy. For discrete modes it is any number of bits not less than log 
to the base two of the number of values of the mode. For array modes it is the offset of the element 
of the highest index plus its occupied bits. For structure modes it is the offset of the highest bit 
occupied.

For each pos the length specified must not be less than the minimum bit occupancy of the mode of 
the associated field or array components.

For each mapped array mode the step size must not be less than the length given or implied in the 
pos.

36 Fascicle VI.12 -  Rec Z.200



Consistency and feasibility

Consistency:

No component of a structure may be specified such that it occupies any bits occupied by another 
component of the same object except in the case of two variant field names defined in the same 
alternative fields occurrence; however, in the latter case the variant fields names may not both be 
defined in the same variant alternative nor both following ELSE .

Feasibility:

There axe no language defined feasibility requirements, except for the one that can be deduced 
from the rule that the referability of a sub-location of any (referable or non-referable) location is 
determined only by the (element or field) layout, which is a property of the mode of the location. This 
places some restrictions on the mapping of components that themselves have referable components.

examples:
17.5 PACK (1.1)
19.14 POS (1,0:15) (4.2)

3.12 DYNAM IC M ODES

3.12.1 General

A dynamic mode is a mode of which some properties are known only at run time. Dynamic modes are always 
parameterised modes with one or more run-time parameters. Dynamic modes have no denotation in CHILL. 
However, for description purposes, virtual denotations are introduced in this document. These virtual denota­
tions are preceded by the ampersand symbol (&) to distinguish them from actual notations which may appear 
in a CHILL program text.

3.12.2 Dynamic string modes

virtual denotation: &<origin string mode name> (< integer expression>)

semantics: A dynamic string mode is a parameterised string mode with statically unknown length. The
dynamic string length is the value delivered by the integer expression.

static properties:

• The dynamic string mode is a bit (character) string mode if and only if the origin string 
mode name is a bit (character) string mode.

dynamic properties:

• A dynamic string mode has a dynamic string length which is the value delivered by integer 
expression.

3.12.3 Dynamic array modes

virtual denotation: &< origin array mode name> (< discrete expression>)

semantics: A dynamic array mode is a parameterised array mode with statically unknown upper bound.
The lower bound, index mode and element mode are statically known, the dynamic upper bound  
is the value delivered by the discrete expression.

static properties:

A dynamic array mode has an index mode, element mode, element layout and lower 
bound attached, which are the index mode, element mode, element layout and lower
bound of the origin array mode name.
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dynamic properties:

•  A dynamic array mode has a dynamic upper bound which is the value delivered by discrete 
expression, and a dynamic number of elem ents which is the value delivered by

NUM (discrete expression ) -  NUM ( lower bound ) + 1 

where lower bound is the lower bound of the origin array mode name.

3.12.4 Dynamic parameterised structure modes

virtual denotation: &t<origin variant structure mode name> (<expression list>)

semantics: A dynamic parameterised structure mode is a parameterised structure mode with statically
unknown parameters. The composition of the structure mode can only be determined dynamically 
from the list of values delivered by expression list.

static properties:

• A dynamic parameterised structure mode has a unique origin variant structure mode 
attached that is the mode denoted by the origin variant structure mode name.

• A dynamic parameterised structure mode is tagged if and only if its origin variant 
structure mode is a tagged variant structure mode, otherwise it is tag-less.

• The set of field names (fixed field names, tag field names, variant field names) of a 
dynamic parameterised structure mode is the set of field names (fixed field names, tag  
field names, variant field names) of its origin variant structure mode.

dynamic properties:

• A dynamic parameterised structure mode has a list of values attached that is the list of 
values delivered by the expressions in the expression list.
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4 LOCATIONS AND THEIR ACCESSES

4.1 DECLARATIONS

4.1.1 General 

syntax:
< declaration statement> ::= (1)

DCL <declaration> { ,<declaration>} *; (1.1)

<declaration> ::= (2)
<location declaration> (2-1)

| <loc-identity declaration> (2-2)
| < based declaration> (2-3)

semantics: A declaration statement declares one or more names to be an access to a location.

examples:
6.9 DCL j I N T  := julian-day-number,

d , m , y I N T ;  (1.1)
11.36 startingsquare LOC := b(m .lin-l)(m .col-l) (2.2)

4.1.2 Location declarations 

syntax:
<location declaration> ::= (1)

<deBning occurrence list> <mode> [ STATIC ] [ <initialisation> ] (1.1)

<initialisation> ::= (2)
<reach-bound initialisation> (2.1)

| <lifetime-bound initialisation> (2.2)

<reach-bound initialisation> ::= (3)
< assignment symbol> <value> [ <handler> ] (3.1)

<lifetime-bound initialisation> ::= (4)
INIT <assignment symbol> <constant value> (4-1)

semantics: A location declaration creates as many locations as there axe defining occurrences specified in the 
deBning occurrence list.

With reach-bound initialisation, the value is evaluated each time the reach in which the declaration 
is placed is entered (see section 8.2) and the delivered value is assigned to the location(s). Before 
the value is evaluated the location(s) contain(s) an undefined value.

With lifetime-bound initialisation, the value yielded by the constant value is assigned to the loca­
tion^) only once at the beginning of the lifetime of the location(s) (see sections 8.2 and 8.9).

Specifying no initialisation is semantically equivalent to the specification of a Ufetime-bound initial­
isation with the undefined value (see section 5.3.1).

The meaning of the undefined value as initialisation for a location which has attached a mode with 
the tagged parameterised property or the non-value property is as follows :

tagged paxameterised property : the created tag field sub-location(s) axe initialised with their 
corresponding parameter value.

non-value property :
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the created event and/or buffer (sub)-location(s) are initialised to ’’empty”, i.e., no 
delayed processes are attached to the event or buffer nor are there messages in the 
buffer.

-  the created association (sub)-location(s) are initialised to ’’empty”, i.e., they do not 
contain an association.

-  the created access (sub)-location(s) are initialised to ’’empty” , i.e., they are not con­
nected to an association.

The semantics of STATIC and handler can be found in section 8.9 and chapter 11, respectively.

static properties: A defining occurrence in a location declaration defines a location name. The mode
attached to the location name is the mode specified in the location declaration. A location name 
is referable.

static conditions: The class of the value or constant value must be compatible with the mode and the
delivered value should be one of the values defined by the mode, or the undefined value.

If the mode has the read-only property, initialisation must be specified. If the mode has the 
non-value property, reach-bound initialisation must not be specified.

dynamic conditions: In the case of reach-bound initialisation, the assignment conditions of value with respect 
to the mode apply (see section 6 .2 ).

examples:
5.7 k2, x, w, t, s, r BOOL (1-1)
6.9 := julian _ day_ number (3-1)
8.4 IN IT  := [,A ,:’Z [] (4.1)

4.1.3 Loc-identity declarations 

syntax:
<loc-identity declaration> ::= (1)

<deBning occurrence list> <mode> LOC [ DYNAM IC ] <assignment symbol> 
<location> [ <handler> ] (1-1)

semantics: A loc-identity declaration creates as many access names to the specified location as there are
defining occurrences specified in the deBning occurrence list. The mode of the location may be 
dynamic only if DYNAM IC is specified.

If the location is evaluated dynamically, this evaluation is done each time the reach in which the 
loc-identity declaration is placed is entered. In this case, a declared name denotes an undefined 
location prior to the first evaluation during the lifetime of the access denoted by the declared name 
(see sections 8.2 and 8.9).

static properties: A deBning occurrence in a loc-identity declaration defines a loc-identity name. The
mode attached to a loc-identity name is, if DYNAM IC is not specified, the mode specified in 
the loc-identity declaration; otherwise, it is a dynamically parameterised version of it that has the 
same parameters as the mode of the location.

A  loc-identity name is referable if and only if the specified location is referable.

static conditions: If DYNAM IC is specified in the loc-identity declaration, the mode must be parame­
terisable. The specified mode must be dynamic read-compatible with the mode of the location 
if DYNAM IC is specified and read-compatible with the mode of the location otherwise.

examples:
11.36 starting square LOC := b(m.lin_ 1 )(m .col-1) (1-1)
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4.1.4 Based declarations

syntax:
< based declaration> ::= (1)

<defining occurrence list> <mode> BASED
[(< bound or free reference location name> )] (1-1)

derived syntax: A based declaration without a bound or free reference location name, is derived syntax for 
a synmode definition statement. E.g.

DCL I  IN T  BASED ;

is derived from:

SYNM O DE I =  IN T  ;

semantics: A based declaration with bound or free reference location name specifies as many access names as 
there are defining occurrences in the deGning occurrence list. Names declared in a based declaration 
serve as an alternative way of accessing a location by dereferencing a reference value. This reference 
value is contained in the location specified by the bound or free reference location name. This 
dereferencing operation is made each time and only when an access is made via a declared based 
name.

static properties: A defining occurrence in a based declaration with bound or free reference location name 
defines a based name. The mode attached to a based name is the mode specified in the based 
declaration. A  based name is referable.

static conditions: If the mode of the bound or free reference location name is a bound reference mode,
the specified mode must be read-compatible with the referenced mode of the mode of the 
bound or free reference location name.

examples:
19.12 1 x  BASED (p),

2 i info POS (0,8:31),
2 prev PTR  POS (1,0:15),
2 next PTR  POS (1,16:31) (1.1)

4.2 LOCATIONS

4.2.1 General

syntax:
<location> ::=

< access name>
| <dereferenced bound reference> 
| <dereferenced free reference>
| < dereferenced row>
| <string element>
| <string slice>
| <array element>
| < array slice>
| <structure Geld>
| <location procedure call>
| <location built-in routine call>
| <location conversion>

( i )
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
(1 .6)
(1.7)
(1.8)  
(1.9)

(1.10)
(1.11)
(1.12)

semantics: A location is an object that can contain values. Locations have to be accessed to store or obtain 
a value.

static properties: A location has the following properties
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•  It can be static or not (see section 8.9)

•  It can be intra-regional or extra-regional (see section 9.2.2);

•  It can be referable or not. The language definition requires certain locations to be referable 
as defined in the appropriate sections. An implementation may extend referability to other 
locations (see chapter 12);

• It has a mode, as defined in the appropriate sections. This mode is either static or dynamic.

dynamic conditions: In the case of dynamic mode locations, the required compatibility checks can be
completely performed only at run time. Check failure of the dynamic part will cause either the 
RANGEFAIL or the TAGFAIL exception.

4.2.2 Access names

syntax:
< access name> ::= (1)

<location name> (1-1)
| <loc-identitv name> (1-2)
| < based name> (1-3)
\ <location enumeration name> (1-4)
| <location do-with name> (1.5)

semantics: An access name is an access to a location.

An access name is one of the following:

• a location name : i.e., a name explicitly declared in a location declaration or implicitly 
declared in a formal parameter without the LOC attribute;

•  a loc-identity name : i.e., a name explicitly declared in a loc-identity declaration or implicitly 
declared in a formal parameter with the LOC attribute;

•  a based name : i.e., a name declared in a based declaration;

• a location enumeration name : i.e., a loop counter in a location enumeration;

• a location do-with name : i.e., a field name used as direct access in the do action with a
with part.

If the location denoted by a location do-with name is a variant field of a tag-less variant structure 
location, the semantics are implementation defined.

static properties: The (possibly dynamic) mode attached to an access name is the mode of the location name, 
loc-identitv name, based name, location enumeration name or location do-with name respectively.

An access name is referable if and only if it is a location name, a referable loc-identitv name, a 
based name, a referable location enumeration name, or a referable location do-with name.

dynamic conditions: When accessing via a loc-identitv name, it must not denote an undefined location.

When accessing via a based name, the same dynamic conditions hold as when dereferencing the 
bound or free reference location name in the associated based declaration (see sections 4.2.3 and 
4.2.4).

Accessing via a location do-with name causes a TAGFAIL exception if the denoted location is a 
variant field of:

•  a tagged variant structure mode location and the associated tag field value(s) indicate(s) 
that the field does not exist;
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4.12 a
11.39 starting
19.17 X
15.35 each
5.10 cl

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

4.2.3 Dereferenced bound references 

syntax:
< dereferenced bound reference> ::= (1)

<bound reference primitive value> ->  [ <mode name> ] (1.1)

semantics: The location obtained by dereferencing a bound reference value is the location that is referenced
by the bound reference value.

static properties: The mode attached to a dereferenced bound reference is the mode name if one is specified, 
otherwise the referenced mode of the mode of the bound reference primitive value. A dereferenced 
bound reference is referable.

static conditions: The bound reference primitive value must be strong. If the optional mode name is spec­
ified, it must be read-compatible with the referenced mode of the mode of the bound reference 
primitive value.

dynamic conditions: The lifetime of the referenced location must not have ended.

The EM PTY  exception occurs if the bound reference primitive value delivers the value 
NULL .

examples:
10.54 p - >  (1.1)

4.2.4 Dereferenced free references 

syntax:
< dereferenced free reference> ::= (1)

<free reference primitive value> -> <mode name> (1.1)

semantics: The location obtained by dereferencing a free reference value is the location that is referenced by
the free reference value.

static properties: The mode attached to a dereferenced free reference is the mode name. A dereferenced free 
reference is referable.

static conditions: The free reference primitive value must be strong.

dynamic conditions: The lifetime of the referenced location must not have ended.

The EM PTY  exception occurs if the free reference primitive value delivers the value NULL .

The mode name must be read-compatible with the mode of the referenced location.

4.2.5 Dereferenced rows 

syntax:
< dereferenced row> ::= (1)

Crow primitive value> ->  f l . l j

• a dynamic parameterised structure mode location and the associated list of values indicates
that the field does not exist.

examples:
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semantics: The location obtained by dereferencing a row value is that which is referenced by the row value.

static properties: The dynamic mode attached to a dereferenced row is constructed as follows: 
origin mode name( <parameter>{ ,<parameter> } *) 

where origin mode name is a virtual synmode name synonymous with the referenced origin 
mode of the mode of the (strong) row primitive value and where the parameters are, depending on 
the referenced origin mode:

• the dynamic string length, in the case of a string mode;

• the dynamic upper bound, in the case of an array mode;

•  the list of values associated with the mode of the parameterised structure location, in the 
case of a variant structure mode.

A dereferenced row is referable.

static conditions: The row primitive value must be strong.

dynamic conditions: The lifetime of the referenced location must not have ended.

The E M PTY  exception occurs if the row primitive value delivers NULL .

examples:
8.10 input ->  (1.1)

4.2.6 String elem ents 

syntax:
<string element> (1)

<string location> ( <start element> ) (1.1)

derived syntax: A string element is derived syntax for a string slice of length 1 (see section 4.2.7); e.g.,
<string location> (<start element>) 
is derived from:
<string location> (<start element> U P 1)

examples:
18.16 string ->(i) (1.1)

4.2.7 String slices 

syntax:
<string slice> (1)

<string location> ( <left element> : <right element> ) (1.1)
| <string location> ( <start element> U P <slice size> ) (1.2)

<left element> ::= (2)
<integer expression> (2.1)

<right element> ::= (3)
<integer expression> (3.1)

<start element> ::= (4)
<integer expression> (4-1)

<slice size> ::= (5)
<integer expression> (5-1)

semantics: A string slice delivers a (possibly dynamic) string location that is the part of the specified string
location indicated by left element and right element or start element and slice size. The (possibly
dynamic) length of the string slice is determined from the specified expressions.
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static properties: The (possibly dynamic) mode attached to a string slice is a parameterised string mode 
constructed as: 
ikname (string size)
where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the 
sir ins location and where string size is either

NUM ( right element ) -  NUM ( left element ) + 1

or

NUM ( slice size).

The mode attached to a string slice is static if string size is literal : i.e., left element and right 
element are literal or slice size is literal; otherwise, the mode is dynamic.

static conditions: If left element and right element are literal or slice size is literal, then they must deliver 
integer values such that the following relations hold:

0 < NUM ( left element ) < NUM ( right element ) <  L -  1

1 < NUM ( slice size ) < L

where L is the string length of the strins location. If the mode of strins location is dynamic, these
relations can only be checked at run time; see below.

dynamic conditions: The RANGEFAIL exception occurs if any of the relations above does not hold in the
case of a dynamic mode strins location, or if any of the following relations does not hold:

0 < NUM ( left element ) < NUM ( right element ) < L -  1

0 < NUM ( start element ) < NUM ( start element ) + NUM ( slice size )< L

where L is the (possibly dynamic) string length of the mode of the strins location.

examples:
18.26 blanks-> (count : 9) (1.1)
18.23 string ->  (scanstart UP 10) (1-2)

4.2.8 Array elements 

syntax:
< array element> ::= (1)

<array location> ( < expression list> ) (1-1)

< expression list> ::= (2)
<expression> { , <expression>} * (2-1)

derived syntax: The notation: (<expression Ust>) is derived syntax for:
(<expression>) { (<expression>)} *
where there are as many parenthesised expressions as there are expressions in the expression Ust. 
Thus an array element in the strict syntax has only one (index) expression.

semantics: An array element delivers a (sub)location which is an element of the specified array location.

static properties: The mode attached to the array element is the element mode of the mode of the array 
location.

An array element is referable if the element layout of the mode of the array location is NOPACK

static conditions: The class of the expression must be compatible with the index mode of the mode of the 
array location.
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dynamic conditions: The RANGEFAIL exception occurs if the following relation does not hold:

L < expression < U

where L and U are the lower bound and the (possibly dynamic) upper bound of the mode of the 
array location, respectively.

examples:
11.36 b(m .lin-l)(m .col-l) (1.1)

4.2.9 Array slices 

syntax
< array slice> ::= (1)

<array location>( <lower element> : <upper element> ) (1.1)
| < array location> ( <first element> U P <slice size> ) (1.2)

<lower element> ::= (2)
<expression> (2.1)

Cupper element> ::= . (3)
< expression > (3.1)

<6rst element> ::= (4)
<expression> (4.1)

semantics: An array slice delivers a (possibly dynamic) array location which is the part of the specified array 
location indicated by lower element and upper element or first element and slice size. The lower 
bound of the array slice is equal to the lower bound of the specified array; the (possibly dynamic) 
upper bound is determined from the specified expressions.

static properties: The (possibly dynamic) mode attached to an array slice is a parameterised array mode 
constructed as

&name(upper index)

where Scname is a virtual synm ode name synonymous with the (possibly dynamic) mode of the 
array location and upper index is either an expression whose class is compatible with the classes 
of lower element and upper element and delivers a value such that :

NUM ( upper index ) = NUM (L) + NUM ( upper element ) -  NUM ( lower element )

or is an expression whose class is com patible with the class of first element and delivers a value 
such that :

NUM ( upper index ) =  NUM (L) + NUM ( slice size ) -  1 

where L is the lower bound of the mode of the array location.

The mode attached to an array slice is static if upper index is literal, i.e., lower element and upper 
element axe both literal or if slice size is literal; otherwise, the mode is dynamic.

An array slice is referable if the element layout of the mode of the array location is NOPACK

static conditions: The classes of lower element and upper element or the class of first element must be
com patible with the index mode of the array location.

If lower element and upper element are both literal, or if slice size is literal, they must deliver 
values such that the following relations hold:

L < lower element < upper element < U
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1 < NUM ( slice size ) < NUM (U) -  NUM (L) + 1

where L and U axe respectively the lower bound and upper bound of the mode of the array 
location. If the mode of array location is dynamic, these relations can only be checked at run time; 
see below.

dynamic conditions: The RANGEFAIL exception occurs if any of the relations above does not hold for a 
dynamic mode array location or if any of the following relations does not hold:

L < lower element < upper element < U

NUM (L) < NUM ( first element ) < NUM ( first element ) + NUM ( slice size )
-  I < NUM (U)

where L and U are the lower bound and (possibly dynamic) upper bound of the mode of the 
array location, respectively.

examples:
17.27 res (0 : count -  1) (1.1)

4.2.10 Structure fields 

syntax:
<structure £eld> ::= (1)

<structure location> . <Geld name> (1-1)

semantics: A structure field delivers a (sub)location which is a field of the specified structure location. If
the structure location has a tag-less variant structure mode and the field name is a variant field 
name, the semantics are implementation defined.

static properties: The mode of the structure field is the mode of the field name. A  structure field is referable 
if the field layout of the field name is NOPACK .

static conditions: The Geld name must be a name from the set of field names of the mode of the structure 
location.

dynamic conditions: The TAGFAIL exception occurs if the structure location denotes:

•  a tagged variant structure mode location and the associated tag field value(s) indicate(s) 
that the field does not exist;

•  a dynamic parameterised structure mode location and the associated list of values indicates 
that the field does not exist.

examples:
10.57 last -> .info (1.1)

4.2.11 Location procedure calls 

syntax:
<location procedure call> ::= (1)

<location procedure call> (1.1)

semantics: A location is delivered as the result of a location procedure call.

static properties: The mode attached to a location procedure call is the mode of the result spec of
the location procedure call if DYNAM IC is not specified in it; otherwise it is a dynamically 
parameterised version of it that has the same parameters as the mode of the delivered location.

The location procedure call is referable if NO NREF is not specified in the result spec of the 
location procedure call.
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dynamic conditions: The location procedure call must not deliver an undefined location and the lifetime 
of the delivered location must not have ended.

4.2.12 Location built-in routine calls 

syntax:
<location built-in routine call> ::= (1)

<implementation location built-in routine call> (1-1)
| <CHILL location built-in routine call> (1.2)

<CHILL location built-in routine call> ::= (2)
<io CHILL location built-in routine call> (2-1)

semantics: A location is delivered as the result of an implementation location built-in routine call or a CHILL 
location built-in routine call. For the io CHILL location built-in routine call see section 7.4.

static properties: The mode attached to the location built-in routine call is the result mode of the im plementation 
location built-in routine call or the CHILL location built-in routine call.

dynamic conditions: The implementation location built-in routine call and the CHILL location built-in
routine call must not deliver an undefined location and the lifetime of the delivered location must
not have ended.

4.2.13 Location conversions 

syntax:
<location conversion> ::= (1)

<mode name>( <static mode location> ) (1-1)

semantics: A location conversion overrides the CHILL mode checking and compatibility rules. It explicitly 
attaches a mode to the specified static mode location.

The precise dynamic semantics of a location conversion axe implementation defined, 

static properties: The mode of a location conversion is the mode name.

A location conversion is referable, 

static conditions: The static mode location must be referable.

The following relation must hold:

SIZE ( mode name ) = SIZE ( static mode location )
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5 VALUES AND THEIR OPERATIONS

5.1 SY N O N Y M  DEFINITIONS

syntax:
<synonym deGnition statement> (1)

SY N  <synonym deGnition> { ,<synonym deGnition>} *; (1.1)

<synonym deGnition> ::= (2)
<deGning occurrence list> [ <mode> ] = <constant value> (2.1)

derived syntax: A synonym deGnition, where deGning occurrence hst consists of more than one defining
occurrence, is derived from several synonym deGnition occurrences, one for each defining occurrence 
with the same constant value and mode, if present. E.g., SY N  i , j  = 3; is derived from SY N  i =  
3, j  = 3;

semantics: A synonym definition defines a name that denotes the specified constant value.

static properties: A deGning occurrence in a synonym deGnition defines a synonym  name.

The class of the synonym name is, if a mode is specified, the M-value class, where M is the mode, 
otherwise the class of the constant value.

A synonym name is undefined if and only if the constant value is an undefined value (see section
5.3.1).

A synonym name is literal if and only if the constant value is a Uteral expression.

static conditions: If a mode is specified, it must be compatible with the class of the constant value and the 
value delivered by the constant value must be one of the values defined by the mode.

Synonym definitions must not be recursive nor mutually recursive via other synonym definitions or 
mode definitions, i.e. no set of recursive definitions may contain synonym definitions (see section
3.2.1).

examples:
1.17 SY N  neutral-for-add = 0,

neutral-for-mult = 1; f l.l)
2.18 neutral-for-add fraction = [ 0,1 ] (2.l)

5.2 PRIM ITIVE VALUE

5.2.1 General

syntax:
<primitive value> ::=

<location contents>
| < value name>
| <literal>
| <tuple>
| < value string element>
| < value string sGce>
| < value array element>
| < value array shce>
| < value structure Geld>
| < expression conversion>
| < value procedure call>
| < value built-in routine call>

w  
(1 .1) 
( 1.2)
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)
(1.8) 
(1.9)

(1.10)
(1.11)
(1.12)
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| <start expression> (1-13)
| <zero-adic operator> (1-14)
| <parenthesised expression> (1-45)

semantics: A primitive value is the basic constituent of an expression. Some primitive values have a dynamic 
class, i.e. a class based on a dynamic mode. For these primitive values the compatibility checks can 
only be completed at run time. Check failure will then result in the TAGFAIL or RANGEFAIL 
exception.

static properties: The class of the primitive value is the class of the location contents, value name, ...etc., 
respectively.

A primitive value is constant if and only if it is a value name, literal, tuple, referenced location, 
expression conversion or value built-in routine call that is constant

A primitive value is literal if and only if it is a value name that is literal, a discrete literal or a 
value built-in routine call that is literal.

5 .2 .2  Location contents 

syntax:
<location contents> ::= (1)

<location> (1-1)

semantics: A location contents delivers the value contained in the specified location. The location is accessed
to obtain the stored value.

static properties: The class of the location contents is the M-value class, where M is the (possibly dynamic) 
mode of the location.

static conditions: The mode of the location must not have the non-value property, 

dynamic conditions: The delivered value must not be undefined (see section 5.3.1). 

examples:
3.7 c2.im (1-1)

5 .2 .3  Value names 

syntax:
<value name> ::= - (1)

<synonym name> (1.1)
| <value enumeration name> (1-2)
| < value do-with name> (1-3)
| < value receive name> (1-4)
| <general procedure name> (1-3)

semantics: A value name delivers a value.

A value name is one of the following:

•  a synonym name : i.e., a name defined in a synonym definition statement;

•  a value enumeration name : i.e., a name defined by a loop counter in a value enumeration;

•  a value do-with name : i.e., a field name introduced as value name in the do action with
a with part;

•  a value receive name : i.e., a name introduced in a receive case action;

•  a general procedure name (see section 8.4).
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static properties: The class of a value name is the class of the synonym name, value enumeration name,
value do-with name, value receive name or the M-derived class, where M is the mode of the general 
procedure name, respectively.

A value name is literal if and only if it is a synonym name that is literal.

A value name is constant if it is a synonym name or a general procedure name denoting a proce­
dure name which has attached a procedure deGnition which is not surrounded by a block.

static conditions: The synonym name must not be undefined.

dynamic conditions: Evaluating a value do-with name causes a TAGFAIL exception if the denoted value is 
a variant field of:

•  a tagged variant structure mode value and the associated tag field(s) indicate(s) that the 
denoted field does not exist;

•  a dynamic parameterised structure mode value and the associated list of values indicates 
that the denoted field does not exist.

examples:
10.12 max (1-1)
8.8 i (1.2)
15.54 this-counter (1-4)

5.2.4 Literals

5.2.4.1 General 

syntax:
<literal> ::= (1)

<integer literal> (1.1)
<boolean literal> (1-2)
<set literal> (1-3)
<emptiness literal> (1-4)
< character string literal> '  (1.5)
< bit string literal> (1.6)

semantics: A literal delivers a constant value.

static properties: The class of the literal is the class of the integer literal, boolean literal, ...etc, respectively.
A Gteral is discrete if it is either an integer literal, a boolean literal, a set Gteral, a character string 
literal of length 1 or a bit string literal of length 1.

The letter together with the following apostrophe which starts an integer literal, boolean literal, 
character string Hteral and bit string hteral (i.e. B ’, C \ D ’, H ’, O’) is a literal qualification.

5.2.4.2 Integer literals 

syntax:
<integer Uteral> ::= (1)

<decimal integer hteral> (1-1)
| < binary integer hteral> (1-2)
| < octal integer Hteral> (1-3)
| <hexadecimal integer hteral> (1.4)

< decimal integer Htera!> ::= (2)
[.D U < d i g i t >  l - } + (2.1)

< binary integer literal> ::= (3)
B ’ { 0  | 1 | _} + (3.1)

Fascicle VI. 12 -  Rec Z.200 51



< octal integer literal> ::= (4)
O ’ { <octal digit> | _} + (4.1)

<hexadecimal integer literal> ::= (5)
H ’ { <hexadecimal digit> | _} + (5.1)

<digit> ::= (6)
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \8  \ 9 (6.1)

<hexadecimal digit> ::= (7)
<digit> | A  | B  | C | D \ E \ F (7.1)

<octal digit> ::= (8)
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 (8.1)

N.B. : An implementation may support lower case letters for the lite ra l qualifications (i.e. d \ b \ 
o\ h ’) and for the letters in hexadecimal digit (i.e. a, b, c, d, e, f).

sem antics: An integer literal delivers a non-negative integer value. The usual decimal (base 10) notation
is provided as well as binary (base 2), octal (base 8) and hexadecimal (base 16). The underline
character ( _ ) is not significant : i.e., it serves only for readability and it does not influence the
denoted value.

s ta tic  p roperties: The class of an integer literal is the IN T  -derived class.

s ta tic  conditions: The string following the apostrophe ( ’ ) and the whole integer literal must not consist
solely of underline characters.

exam ples:
6.11 1.721.119 (1.1)

D ’1-721-119 (1.1)
B ’101011-110100 (1.2)
O ’53-64 (1.3)
H A F4 (1.4)

5.2.4.3 Boolean literals

syntax :
<boolean literal> ::= (1)

FALSE | TRUE (1.1)

sem antics: A boolean literal delivers a boolean value.

s ta tic  p roperties: The class of a boolean literal is the BOOL -derived class.

exam ples:
5.46 FALSE (1.1)

5.2.4.4 Set literals

syntax :
<set literal> ::= (1)

<set element name> (1-1)

sem antics: A set literal delivers a set value. A set literal is a name defined in a set mode.

s ta tic  p roperties: The class of a set literal is the M-derived class, where M is the set mode (in the given
context) which has the specified set element name as a set elem ent name.

exam ples:
6.51 dec (1.1)
11.78 king (1.1)
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5.2.4.5 Emptiness literal

syntax:
<emptiness literal> (1)

NULL (1.1)

semantics: The emptiness literal delivers either the empty reference value : i.e., a value which does not refer
to a location, the empty procedure value : i.e., a value which does not indicate a procedure, or the
empty instance value : i.e., a value which does not identify a process.

static properties: The class of the emptiness literal is the null class.

examples:
10.43 NULL (1.1)

5.2.4.6 Character string literals 

syntax:
< character string literal> ::= (1)

’ { <non-apostrophe character> | <apostrophe>}* ’ (1-1)
| C ’ { <octal digit> <hexadecimal digit> | _ }* ’ (1.2)

< character > ::= (2)
<letter> (2.1)

| <digit> (2.2)
| <symbol> (2.3)
| <space> (2.4)

<letter> (3)
A  | B  | C | D | E  | F | G \ H \ I  \ J  \ K  \ L \ M  (3.1)

\ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z  (3.2)

<symbol> ::= (4)
-  I ’ I ( 1 * 1 + 1 .  I -  I • l / l ; I ; I < l = l >  I? (4-1)

<space> ::= ' (5)
SP (5.1)

<apostrophe> ::= (6)
(6 .1)

N.B. : SP denotes the character ’’space”; see Appendix Al. An implementation may support lower 
case letters for the literal qualifications (i.e. c’).

semantics: A character string literal delivers a character string value that may be of length 0. A character
string literal of length 1 may serve as a character value. To represent the character apostrophe ( ’ )
within a character string literal, it has to be written twice ( ’ ’ ). The above mentioned characters 
constitute the minimum printable character set that must be provided. An implementation may 
allow any character that is in the CCITT alphabet no. 5, as terminal production of < character > 
(see Appendix Al). Apart from the printable representation, the hexadecimal representation may be 
used. In this case, each octal digit or hexadecimal digit pair denotes that character value whose rep­
resentation corresponds to the given hexadecimal value (see Appendix Al); the underline character 
( _ ) is not significant.

static properties: The length of a character string literal is either the number of non-apostrophe character 
and apostrophe occurrences, or the number of octal digit, hexadecimal digit occurrences.

The class of a character string hteral is the CHAR (n)-derived class, where n is the length of the 
character string hteral.

examples:
8.19 A-B< ZAA9K’ ’ ’ (1.1)
8.19 ”  (6.1)
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5.2.4.7 Bit string literals 

syntax:
<bit string Htera!> ::= (1)

< binary bit string literal> (1.1)
| <octal bit string literal> (1-2)
| <hexadecimal bit string literal> (1-3)

< binary bit string literal> (2)
B ’ { 0 | I | _} *’ (2.1)

<octal bit string literaJ> ::= (3)
O ’ { <octal digit> | _ } *’ (3.1)

<bexadecimal bit string literal> ::= (4)
H ’ { <hexadecimal digit> | _ } *’ (4.1)

N.B. : An implementation may support lower case letters for the literal qualifications (i.e. b’, o’,
h ’ ).

semantics: A bit string literal delivers a bit string value that may be of length 0. Binary, octal or hexadecimal 
notations may be used. The underline character ( _ ) is insignificant, i.e. it serves only for readability 
and does not influence the indicated value.

static properties: The length of a bit string literal is either the number of 0 and I occurrences after B ’,
three times the number of octal digit occurrences after O’ or four times the number of hexadecimal
digit occurrences after H ’.

The class of a bit string literal is the B IT  (n) -derived class, where n is the length of the bit string 
literal.

examples:
B ’101011-110100’ (1.1)
O ’53-64’ (1.2)
H ’AF4’ (1.3)

5.2.5 Tuples 

syntax:
<tuple> ::= (1)

[ <mode name> ] (: { <powerset tuple> | <array tuple> | <structure tuple>} :) (1.1)
| < character string literal> (1.2)
| < bit string hteral> (1-3)

< powerset tuple> ::= (2)
[{ <expression> | <range>} { , { <expression> | <range> } } *] (2.1)

<range> (3)
<expression> : <expression> (3.1)

< array tuple> ::= (4)
<unlabelled array tuple> (4-1)

| < labelled array tuple> (4-2)

< unlabelled array tuple> ::= (5)
<value> { ,<value>} * (5.1)

<labelled array tuple> ::= (6)
<case label Ust> : <value> { , Cease label Ust> : <value>} * (6.1)
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<structure tuple> ::= (7)
<unlabeUed structure tuple> (7-1)

| <labelled structure tuple> (7-2)

<unlabelled structure tuple> ::= (8)
<value> { ,<value> } * (8-1)

<labelled structure tuple> ::= (9)
<field name list> : <value> { , <field name list> : <value>} * (9-1)

<Geld name list> ::= (10)
.<field name> { , .<£eld name> } * (10-1)

N.B. : If tuple is a character string literal or a bit string literal, the syntactic construct is ambiguous; 
it will be interpreted as a tuple if and only if a character string literal or bit string literal occurs in 
a context where an array tuple without mode name is legal.

derived syntax: The tuple opening and closing brackets, [ and ], are derived syntax for (: and :) respectively.
This is not indicated in the syntax to avoid confusion with the use of square brackets as meta 
symbols.

semantics: A tuple delivers either a powerset value, an array value or a structure value.

If it is a powerset value, it consists of a list of expressions and/or ranges denoting those member 
values which are in the powerset value. A range denotes those values which lie between or are one of 
the values delivered by the expressions in the range. If the second expression delivers a value which 
is less than the value delivered by the first expression, the range is empty : i.e., it denotes no values. 
The powerset tuple may denote the empty powerset value.

If it is an array value, it is a (possibly labelled) list of values for the elements of the array; in the 
unlabelled array tuple, the values are given for the elements in increasing order of their index; in 
the labelled array tuple, the values are given for the elements whose indices are specified in the case 
label list labelling the value. It can be used as a shorthand for large array tuples where many values 
are the ' ame. The label ELSE denotes all the index values not mentioned explicitly. The label * 
denotes all index values (for further details, see section 10.1.3).

If an array tuple is constant and the element mode is compatible with the CHAR(lj-derived
(BIT(l)-derived) class, it is allowed to use a character (bit) string Hteral as a shorthand for the 
array tuple (e.g. (:’a \ ’b ’, ’c\ ’d ’ :) may be written as ’abed’ ).

If it is a structure value, it is a (possibly labelled) set of values for the fields of the structure. In the 
unlabelled structure tuple, the values are given for the fields in the same order as they are specified 
in the attached structure mode. In the labelled structure tuple, the values are given for the fields 
whose field names are specified in the field name list for the value.

The order of evaluation of the expressions and values in a tuple is undefined and they may be
considered as being evaluated in mixed order.

static properties: The class of a tuple is the M-value class, where M is the mode name, if specified. Otherwise, 
M depends upon the context where the tuple occurs, according to the following list:

• if the tuple is the value or constant value in an initiaHsation in a location declaration, then 
M is the mode in the location declaration;

• if the tuple is the righthand side value in a single assignment action, then M is the (possibly 
dynamic) mode of the lefthand side location;

• if the tuple is the constant value in a synonym deGnition with a specified mode, then M is 
that mode;

•  if the tuple is an actual parameter in a procedure call or in a start expression, then M is the 
mode in the corresponding parameter spec;
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•  if the tuple is the value in a return action or a result action, then M is the result mode of the 
procedure name of the result action or return action (see section 6.8);

• if the tuple is a value in a send action, then it is the associated mode specified in the signal 
definition of the signal name or the buffer element mode of the mode of the buffer location;

• if the tuple is an expression in an array tuple, then M is the element mode of the mode of 
the array tuple;

•  if the tuple is an expression in an unlabelled structure tuple or a labelled structure tuple 
where the associated Held name list consists of only one Geld name, then M is the mode of 
the field in the structure tuple for which the tuple is specified;

• If the tuple is the value in a GETSTACK  or ALLOCATE  built-in routine call, then M is the 
mode denoted by argument.

A  tuple is constant if and only if each value or expression occurring in it is constant.

static conditions: The optional mode name may be deleted only in the contexts specified above. Depending 
on whether a powerset tuple, array tuple or structure tuple is specified, the following compatibility 
requirements must be fulfilled:

a. powerset tuple

1. The mode of the tuple must be a powerset mode.

2. The class of each expression must be compatible with the member mode of the 
mode of the tuple.

3. For a constant powerset tuple the value delivered by each expression must be one 
of the values defined by that member mode.

b. array tuple

1. The mode of the tuple must be an array mode.

2. The class of each value must be compatible with the element mode of the mode 
of the tuple.

3. In the case of an unlabelled array tuple, there must be as many occurrences of value 
as the number of elements of the array mode of the tuple.

4. In the case of a labelled array tuple, the case selection conditions must hold for the 
list of case label list occurrences (see section 10.1.3). The resulting class of the list 
must be com patible with the index mode of the mode of the tuple.

5. In the case of a labelled array tuple, the value delivered by each literal expression 
in each case label list and the values defined by each mode name in each case label list 
must be a value defined by the index mode of the tuple.

6. In an unlabelled array tuple, at least one value occurrence must be an expression.

7. For a constant (array) tuple, where the element mode of the mode of the tuple 
is a discrete mode, each specified value must deliver a value defined by that elem ent 
mode, unless it is an undefined value.

8. In those contexts where the optional mode name can be deleted (as specified above), 
it is allowed to use a character string literal or a bit string literal provided that :

1. the mode of tuple is an array mode;

2. the element mode of the mode of tuple is compatible with the CHAR(l)- 
or B IT(l)-derived class if tuple is a character string hteral or bit string hteral 
respectively;
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3. the string length of the character string literal or bit string literal must deliver 
the same value as the number of elements of the mode of tuple.

structure tuple

1. The mode of the tuple must be a structure mode.

2. This mode must not be a structure mode which has field names which are invisible 
(see section 10.2.5).

In the case of an unlabelled structure tuple:

• If the mode of the tuple is neither a variant structure mode nor a parame­
terised structure mode, then:

3. There must be as many occurrences of value as there are field names 
in the list of field names of the mode of the tuple.

4. The class of each value must be compatible with the mode of the 
corresponding (by position) field name of the mode of the tuple.

•  If the mode of the tuple is a tagged variant structure mode or a tagged  
parameterised structure mode, then:

5. Each value specified for a tag field must be a literal expression.

6. There must be as many occurrences of value as there are field names 
indicated as existing by the value(s) delivered by the literal expression 
occurrences specified for the tag fields.

7. The class of each value must be compatible with the mode of the 
corresponding field name.

• If the mode of the tuple is a tag-less variant structure mode or a tag-less 
parameterised structure mode, then:

8. No unlabelled structure tuple is allowed.

In the case of a labelled structure tuple:

• If the mode of the tuple is neither a variant structure mode nor a parame­
terised structure mode, then:

9. Each field name of the list of field names of the mode of the tuple 
must be mentioned once and only once in a Geld name list and in the 
same order as in the mode of the tuple.

10. The class of each value must be compatible with the mode of any 
field name specified in the Geld name list labelling that value.

• If the mode of the tuple is a tagged variant structure mode or a tagged  
parameterised structure mode, then:

11. Each value that is specified for a tag field must be a Gteral expression.

12. Only field names corresponding to fields indicated as existing by the 
value(s) delivered by the literal expression occurrences specified for the 
tag fields may be specified and all of them must be specified in the same 
order as in the mode of the tuple.

13. The class of each value must be compatible with the mode of any 
field name specified in the Geld name Gst labelling that value.
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• If the mode of the tuple is a tag-less variant structure mode or a tag-less 
parameterised structure mode, then:

14. Field names mentioned in Geld name list, which are defined in the 
same alternative Gelds, must be all defined in the same variant alterna­
tive or defined after'ELSE . All the field names of a selected variant 
alternative or defined after ELSE must be mentioned once and only 
once in the same order as in the mode of the tuple.

15. The class of each value must be compatible with the mode of any 
field name specified in the Geld name list in front of that value.

16. If the mode of the tuple is a tagged parameterised structure mode, the list of 
values delivered by the Uteral expression occurrences specified for the tag fields must 
be the same as the list of values of the mode of the tuple.

17. For a constant (structure) tuple, each value specified for a field with a discrete 
mode must deliver a value within the bounds of the mode of the field (bounds included), 
unless it is an undefined value.

18. At least one value occurrence must be an expression.

No tuple may have two value occurrences in it such that one is extra-regional and the other is 
intra-regional (see section 9.2.2).

dynamic conditions: The assignment conditions of any value with respect to the member mode, ele­
ment mode or associated field mode, in the case of powerset tuple, array tuple or structure tuple, 

' respectively (see section 6.2) apply (refer to conditions a2, b2, c4, c7, clO, cl3 and cl5).

If the tuple has a dynamic array mode, the RANGEFAIL exception occurs if any of the conditions 
b3 or b5 fail.

If the tuple has a dynamic parameterised structure mode, the TAGFAIL exception occurs if the 
check cl6 fails.

The value delivered by a tuple must not be undefined.

examples:
9.6 number-Ust[ ] ( i.i)
9.7 [ 2:max] (2.1)
8.25 [(’A ’):3,(’B ’, ’K ’, ’Z ’):1,( ELSE ):0] (6.1)
17.5 [(*):’ 1 (6.1)
12.35 (: NULL , NULL ,536:) (7.1)
11.18 [.status:occupied,.p:[white,rook]\ (9.1)

5.2.6 Value string elements 

syntax:
< value string element> ::= (1)

<strins primitive value>( <start element> ) (1-1)

derived syntax: A value string element is derived syntax for a value string sGce of length 1 (see section
5.2.7), i.e. :
<string primitive value>( < start element>) 
is derived from:
<string primitive value> (<start element> U P 1)

5.2.7 Value string slices 

syntax:
< value string slice> ::= (1)

<strins primitive value> (<left element> : <right element>) (1-1)
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| <string primitive value> (<start element> U P <slice size>) (1.2)

N.B. if the string primitive value is a string location, the syntactic construct is ambiguous and will
be interpreted as a string slice (see section 4.2.7).

semantics: A value string slice delivers a (possibly dynamic) string value which is the paxt of the specified
string value indicated by left element and right element or start element and slice size. The (possibly 
dynamic) length of the string slice is determined from the specified expressions.

static properties: The (possibly dynamic) class of a value string slice is the M-value class, where M is a
parameterised string mode constructed as :
Szname (string size)
where foname is a virtual synmode name synonymous with the (possibly dynamic) mode of the 
string primitive value and where string size is either

NUM ( right element ) -  NUM ( left element ) + 1

or

NUM ( slice size ).

The class of a value string shce is static if string size is literal : i.e., left element and right element 
are literal or slice size is literal; otherwise, the class is dynamic.

static conditions: If left element and right element are literal, or if slice size is literal, then they must
deliver integer values such that the following relations hold:

0 < NUM ( left element ) < NUM ( right element ) < L  -  1

1 < NUM ( shce size ) < L

where L is the string length of the mode of the string primitive value. (If the mode of string 
primitive value is dynamic, these relations can only be checked at run time; see below.)

dynamic conditions: The value delivered by a value string shce must not be undefined.

The RANGEFAIL exception occurs if any of the relations above does not hold in the case of a string 
primitive value which has a dynamic class, or if any of the following relations does not hold:

0 < NUM ( left element ) < NUM ( right element ) < L  -  1

0 < NUM ( start element ) < NUM ( start element ) + NUM ( shce size ) < L

where L is the (possibly dynamic) string length of the mode of the string primitive value.

5.2.8 Value array elements 

syntax:
< value array element> ::= (1)

<array primitive value> (< expression hst>) (1-1)

N.B. if the array primitive value is an array location the syntactic construct is ambiguous and will 
be interpreted as an array element (see section 4.2.8).

derived syntax: See section 4.2.8

semantics: A value array element delivers a value which is an element of the specified array value.

static properties: The class of the value array element is the M-value class, where M is the elem ent mode
of the mode of the array primitive value.

static conditions: The class of the expression must be compatible with the index mode of the mode of the 
array primitive value.
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dynamic conditions: The value delivered by a value array element must not be undefined.

The RANGEFAIL exception occurs if the following relation does not hold:

L < expression < U

where L and U are the lower bound and (possibly dynamic) upper bound of the mode of the 
array primitive value, respectively.

5.2.9 Value array slices 

syntax:
< value array slice> ::= (1)

<array primitive value> ( <lower element> : Cupper element> ) (1-1)
| < array primitive value> ( <first element> U P < slice size> ) (1-2)

N.B. If the array primitive value is an array location, the syntactic construct is ambiguous and will 
be interpreted as an array slice (see section 4.2.9).

semantics: A value array slice delivers an (possibly dynamic) array value which is the part of the specified 
array value indicated by lower element and upper element, or first element and slice size. The 
lower bound of the value array slice is equal to the lower bound of the specified array value; the 
(possibly dynamic) upper bound is determined from the specified expressions.

static properties: The (possibly dynamic) class of a value array slice is the M-value class, where M is a
parameterised array mode constructed as:

&:name( upper index )

where <fcname is a virtual synmode name synonymous with the (possibly dynamic) mode of the 
array primitive value and upper index is either an expression whose class is compatible with the 
classes of lower element and upper element and delivers a value such that

NUM ( upper index ) = NUM (L) + NUM ( upper element ) -  NUM ( lower element )

or is an expression whose class is compatible with the class of first element and delivers a value 
such that

NUM ( upper index ) = NUM (L) + NUM ( slice size ) -  1 

where L is the lower bound of the mode of the array primitive value.

The class of a value array slice is static if upper index is literal : i.e., lower element and upper 
element both are literal or slice size is literal; otherwise, the class is dynamic.

static conditions: The classes of lower element and upper element or the class of first element must be
com patible with the index mode of the array primitive Value.

If lower element and upper element both are literal or slice size is literal, then they must deliver 
values such that the following relations hold:

L < lower element < upper element < U

1 < NUM ( slice size ) < NUM (U) -  NUM (L) + 1

where L and U are, respectively, the lower bound and upper bound of the mode of the array 
primitive value. If the mode of array primitive value is dynamic, these relations can only be checked 
at run time; see below.

dynamic conditions: The value delivered by a value array slice must not be undefined.

The RANGEFAIL exception occurs if any of the relations above does not hold for an array primitive 
value which has a dynamic class or if any of the following relations does not hold:

60 Fascicle VI. 12 -  Rec Z.200



L < lower element < upper element < U

NUM (L) < NUM ( first element ) < NUM ( first element ) + NUM ( slice size ) -  1 
< NUM (U)

where L and U are the lower bound and (possibly dynamic) upper bound of the mode of the 
array primitive value, respectively.

5.2.10 Value structure fields 

syntax:
< value structure Geld> ::= (1)

<structure primitive value> . <field name> (1.1)

N.B. if the structure primitive value is a structure location the syntactic construct is ambiguous and
will be interpreted as a structure field (see section 4.2.10).

semantics: A value structure field delivers a value which is a field of the specified structure value. If the
structure primitive value has a tag-less variant structure mode and the field name is a variant 
field name, the semantics are implementation defined.

static properties: The class of value structure field is the M-value class, where M is the mode of the field 
name.

static conditions: The field name must be a name from the set of field names of the mode of the structure 
primitive value.

dynamic conditions: The value delivered by a value structure Geld must not be undefined.

The TAGFAIL exception occurs if the structure primitive value has :

• a tagged variant structure mode and the associated tag field value(s) indicate(s) that the 
denoted field does not exist;

• a dynamic parameterised structure mode and the associated list of values indicates that 
the field does not exist.

examples:
16.51 ( RECEIVE user_ buffer).allocator (1.1)

5.2.11 Expression conversions 

syntax:
<expression conversion> ::= (1)

<modename> (<expression>) (1-1)

N.B. : if the expression is a static mode location, the syntactic construct is ambiguous and will be 
interpreted as a location conversion (see section 4.2.13).

semantics: An expression conversion overrides the CHILL mode checking and compatibility rules. It explicitly 
attaches a mode to the expression. If the mode of the mode name is a discrete mode and the class of 
the value delivered by the expression is discrete, then the value delivered by the expression conversion 
must be such that :

NUM  ( mode name ( expression )) =  NUM  ( expression )

Otherwise, the value delivered by the expression conversion is implementation defined and depends 
on the interal representation of values.

static properties: The class of the expression conversion is the M-value class, where M is the mode name.
An expression conversion is constant if and only if the expression is constant.
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static conditions: The mode name must not have the non-value property. An implementation may impose 
additional static conditions.

dynamic conditions: If the class of the value delivered by expression is discrete and if the mode of the
mode name is a discrete mode which does not define a value with an internal representation equal 
to NUM  ( expression ), then the OVERFLOW  exception occurs. An implementation may impose
additional dynamic conditions that, when violated, result in the occurrence of an exception defined
by the implementation.

5.2.12 Value procedure calls 

syntax:
< value procedure caJl> ::= (1)

< value procedure call> (1.1)

semantics: A value procedure call delivers the value returned from a procedure.

static properties: The class of the value procedure call is the M-value class, where M is the mode of the
result spec of the value procedure call.

dynamic conditions: The value procedure call must not deliver an undefined value (see sections 5.3.1 and 
6 .8).

examples:
6.50 juliaji-day-number([ 10,dec,1979]) (1-1)
11.63 ok-bishop(b,m) (1-1)

5.2.13 Value built-in routine calls 

syntax:
<value built-in routine call> ::= (1)

im plem entation value built-in routine call> (1-1)
| <CHILL value built-in routine call> (1-2)

< CHILL value built-in routine call> ::= (2)
NUM ( <discrete expression>) (2-1)

| PRED ( <discrete expression> ) (2-2)
| SUCC ( <discrete expression> ) (2-3)
| ABS ( in te g e r  expression> ) (2-4)
| CARD ( < powerset expression> ) (2-3)
| M AX ( < powerset expression> ) (2-6)
| MIN ( < powerset expression> ) (2.7)
| SIZE ( { <mode name> | <static mode location> } ) (2-8)
| UPPER (<upper lower argument> ) (2-9)
| LOWER (<upper lower argument> ) (2-10)
| GETSTACK ( <getstack argument> [, <value> ]) (2.11)
| ALLOCATE ( <allocate argument> [, <value> ]) (2.12)
| <io CHILL value built-in routine call> (2-13)

<getstack argument> ::= (3)
<argument> (3.1)

<allocate argument> (4)
< argument > (4.1)

< argument> (5)
<mode name> (3-1)

| <array mode name>( <expression> ) (3-2)
| <string mode name>( <integer expression> ) (3-3)
| <variant structure mode name>( <expression list> ) (3-4)
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< upper lower argument> ::= (6)
< array location> (3-1)

| <array primitive value> (6-2)
| <array mode name> (6.3)
| <string location> (6.4)
| <string primitive vaJue> (6-5)
| <string mode name> (6-6)
| <discrete location> (6-7)
| <discrete expression> (6.8)
| <discrete mode name> (6-9)

N.B. : If the upper lower argument is an  (array, string, discrete) location, the syntactic ambiguity is
resolved by interpreting upper lower argument as a location rather than an expression or primitive 
value.

semantics: A value built-in routine call is either an implementation defined built-in routine call or a CHILL 
defined built-in routine call delivering a value. A CHILL value built-in routine call is an invocation of 
one of the CHILL defined built-in routines that delivers a value. The CHILL value built-in routines 
related to input output are defined in chapter 7.

NUM  delivers an integer value with the same internal representation as the value delivered by the 
discrete argument. NUM  for set values delivers the integer value as specified by the set mode. NUM  
, for character values, delivers the integer value as specified by CCITT alphabet no. 5 (see Appendix 
Al). NUM  ( TRUE ) delivers 1, NUM  ( FALSE ) delivers 0. NUM  , for integer values, delivers that 
integer value.

PRED and SUCC deliver, respectively, the next lower and higher discrete value. If the discrete 
argument is a set value from a set mode w ith holes, the holes are skipped (i.e., in the example in 
static properties of section 3.4.5, SUCC (a) delivers b, PRED (b) delivers a).

ABS  is defined on integer values, delivering the absolute value of the integer value.

CARD , M AX  and MIN  are defined on powerset values. CARD delivers the number of element 
values in the powerset value. M AX  and MIN  deliver respectively the greatest and smallest element 
value in the powerset value.

SIZE is defined on referable static mode locations and modes. In the first case it delivers the 
number of addressable memory units occupied by that location, in the second case, the number of 
addressable memory units that a referable location of that mode will occupy. In the first case, the 
static mode location will not be evaluated at run time.

UPPER and LOWER are defined on (possibly dynamic) :

•  array, string and discrete locations, delivering the upper bound and lower bound of the 
mode of the location,

•  array and string primitive values, delivering the upper bound and lower bound of the 
mode of the value’s class,

•  strong discrete expressions, delivering the upper bound and lower bound of the mode of 
the value’s class,

• array, string and discrete mode names, delivering the upper bound and lower bound of 
the mode

respectively.

GETSTACK  and ALLOCATE create a location of the specified mode and deliver a reference value 
for the created location. GETSTACK  creates this location on the stack (see section 8.9). If the 
argument is a mode name, a static mode location of that mode is created and a reference value is 
delivered. Otherwise, a dynamic mode location is created whose mode is a parameterised mode 
with non-literal parameters as specified in the argument and a row value referring to the location
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is delivered. The created location is initialised with the value of value, if present; otherwise, with 
the undefined value (see section 4.1.2).

static properties: The class of a NUM  built-in routine call is the IN T  -derived class. The built-in routine 
call is constant if and only if the argument is either constant or literal.

The class of a PRED or SUCC built-in routine call is the resulting class of the argument. The 
built-in routine call is constant (literal) if and only if the argument is constant (literal).

The class of an ABS  built-in routine call is the resulting class of the argument. The built-in 
routine call is constant (literal) if and only if the argument is constant (literal).

• The class of a CARD built-in routine call is the IN T  -derived class. The built-in routine call is 
constant if and only if the argument is constant.

The class of a M AX  or MIN  built-in routine call is the M-value class, where M is the member 
mode of the mode of the powerset expression. The built-in routine call is constant if and only if 
the argument is constant.

The class of a SIZE built-in routine call is the IN T  -derived class. The built-in routine call is 
constant.

The class of an UPPER and LOWER built-in routine call is

•  the M-value class if upper lower argument is an array location, array expression or array mode 
name, where M is the index mode of array location, (strong) array expression or array mode 
name, respectively;

• the IN T  -derived class if upper lower argument is a string location, string expression or 
strins mode name-,

• the M-value class if upper lower argument is a discrete location, discrete expression or 
discrete mode name, where M is the mode of discrete location, or the mode of the (strong) 
discrete expression, or the discrete mode name respectively.

An UPPER or LOWER built-in routine call is constant if the upper lower argument is an (array, 
strins or discrete) mode name or if the mode of the array or strins location is static or if the array or 
string expression has a static class or if upper lower argument is a discrete expression or a discrete 
location.

The class of a GETSTACK  or ALLOCATE built-in routine call is the M-reference class, where M
is the mode of argument. M is either the mode name or a parameterised mode constructed as :
&z< array mode name>( <expression> ) or
&:<strins mode name> ( < inteser expression> ) or
&< variant structure mode name>( <expression list> ) ,
respectively.

static conditions: If the argument of a PRED or SUCC built-in routine call is constant, it must not deliver, 
respectively, the smallest or greatest discrete value defined by the root mode of the class of the 
argument.

If the argument of a M AX  or MIN  built-in routine call is constant, it must not deliver the empty 
powerset value.

The static mode location argument of SIZE must be referable.

The discrete expression as an argument of UPPER and LOWER must be strong.

The following compatibility requirements hold for an argument which is not a single mode name:

• The class of the expression must be compatible with the index mode of the array mode 
name.
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•  The variant structure mode name must be parameterisable and there must be as many ex­
pressions in the expression list as there are classes in the list of classes of the variant structure 
mode name and the class of each expression must be compatible with the corresponding 
class in the list of classes of the variant structure mode name.

The class of the value, if present, in the GETSTACK  and ALLOCATE built-in routine call must be 
compatible with the mode of argument; this check is dynamic in case the mode of argument is a 
dynamic mode.

dynamic properties: A reference value is an allocated reference value if and only if it is returned by an 
ALLOCATE  built-in routine call.

dynamic conditions: PRED and SUCC cause the OVERFLOW  exception if they are applied to the smallest 
or greatest discrete value defined by the root mode of the class of the argument.

NUM  and CARD cause the OVERFLOW  exception if the resulting value is outside the set of values 
defined by IN T .

M AX  and MIN  cause the EM PTY  exception if they are applied to empty powerset values (i.e. 
containing no member values).

ABS causes the OVERFLOW  exception if the resulting value is outside the bounds defined by the 
root mode of the class of the argument.

GETSTACK  and ALLOCATE cause the RANGEFAIL exception if in the argument:

• the expression delivers a value which is outside the set of values defined by the index mode 
of the array mode name;

•  the integer expression delivers a negative value or a value which is greater than the string  
length of the string mode name;

• any expression in the expression list for which the corresponding class in the list of classes of 
the variant structure mode name is an M-value class (i.e. is strong) delivers a value which 
is outside the set of values defined by M.

GETSTACK  causes the SPACEFAIL exception if storage requirements cannot be satisfied.

ALLOCATE  causes the ALLOCATEFAIL exception if storage requirements cannot be satisfied.

For GETSTACK  and ALLOCATE the assignment conditions of the value delivered by value with 
respect to the mode of argument apply.

examples:
9.12 MIN (sieve) (2.10)
11.47 PRED (coLl) (2.2)
11.47 SUCC (col-1) (2.4)

5.2.14 Start expressions 

syntax:
<start expression> (1)

START < process name> ([ < actual parameter list> ]) (1-1)

semantics: The evaluation of the start expression creates and activates a new process whose definition
is indicated by the process name (see chapter 9). Parameter passing is analogous to procedure 
parameter passing; however, additional actual parameters may be given with an implementation 
defined meaning. The start expression delivers a unique instance value identifying the created 
process.

static properties: The class of the start expression is the INSTANCE -derived class.
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static conditions: The number of actual parameter occurrences in the actual parameter list must not be
less than the number of formal parameter occurrences in the formal parameter list of the process 
definition of the process name. If the number of actual parameters is m and the number of formal 
parameters is n (m>n), the compatibility requirements for the first n actual parameters are the same 
as for procedure parameter passing (see section 6.7).

dynamic conditions: For parameter passing, the assignment conditions of any actual value with respect to 
the mode of its associated formal parameter apply (see section 6.7).

The start expression causes the SPACEFAIL exception if storage requirements cannot be satisfied.

examples:
15.35 START counterQ (1-1)

5.2.15 Zero-adic operator 

syntax:
<zero-adic operator> ::= (1)

THIS (1.1)

semantics: The zero-adic operator delivers the unique instance value identifying the process executing it.

static properties: The class of the zero-adic operator is the INSTANCE -derived class.

5.2.16 Parenthesised expression  

syntax:
<parenthesised expression> ::= (1)

( <expression> ) (1-1)

semantics: A parenthesised expression delivers the value delivered by the evaluation of the expression.

static properties: The class of the parenthesised expression is the class of the expression.

A  parenthesised expression is constant (literal) if and only if the expression is constant (literal).

examples:
5.10 (al OR bl) (1.1)

5.3 VALUES A N D  EXPRESSIO NS

5.3.1 General 

syntax:
<value> ::= (1)

<expression> (1-1)
| < undefined value> (1-2)

< undefined value> ::= (2)
* (2 .1)

| < undefined synonym name> (2-2)

semantics: A value is either an undefined value or a (CHILL defined) value delivered as the result of the 
evaluation of an expression.

static properties: The class of a value is the class of the expression or undefined value, respectively.

The class of the undefined value is the all class if the undefined value is a * ; otherwise, the class is
the class of the undefined synonym name.
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A value is constan t if and only if it is an undefined value or an expression which is constan t.

dynamic properties: A value is said to be undefined if it is denoted by the undefined value or when explicitly 
indicated in this document. A composite value is undefined if and only if all its sub components 
(i.e. substring values, element values, field values) are undefined.

(Note: A value can denote an undefined value only in the following contexts:

• it is an undefined value;

•  it is a location contents containing an undefined value;

•  it is a value procedure call delivering an undefined value;

•  it is a value string slice, a value array element, a value array slice or a value structure field 
delivering an undefined value.)

examples:
6.40 (146-097*c)/4+(l-461 *y)/4

+(153+m+c)/5+day+l~721-119 (1.1)

5.3.2 Expressions 

syntax:
<expression> ::= (1)

<operand-l> (1.1)
| <sub expression> { OR | XOR } <operand-l> (1.2)

<sub expression> ::= (2)
< expression > (2-1)

semantics: The order of evaluation of the constituents of an expression and their sub-constituents etc. is
undefined and they may be considered as being evaluated in mixed order. They need only to be 
evaluated to the point that the value to be delivered is determined uniquely. If the context requires 
a constant or literal expression, the evaluation is assumed to be done prior to run time and cannot 
cause an exception. An implementation will define ranges of allowed values for literal and constant 
expressions and may reject a program if such a prior-to-run-time evaluation delivers a value out of 
the implementation defined bounds.

If OR or XOR  is specified the sub expression and the operand-1 deliver:

•  boolean values, in which case OR and XOR  denote the usual logical operators delivering a 
boolean value;

• bit string values, in which case OR and XOR  denote the usual logical operations on bit 
strings, delivering a bit string value;

• powerset values, in which case OR denotes the union of both powerset values and XOR  
denotes the powerset value consisting of those member values which are in only one of the 
specified powerset values (e.g. A XOR B = A -B  OR B -A ).

static properties: If an expression is an operand-1, the class of the expression is the class of the operand-1.
If OR or XOR  is specified, the class of the expression is the resulting class of the class of sub 
expression and the operand-1.

An expression is constant (literal) if and only if it is either an operand-1 which is constant 
(literal), or built up from an expression and an operand-1 which are both constant (literal).

static conditions: If OR or XOR  is specified, the class of the sub expression must be com patible with the 
class of the operand-1. Both classes must have a boolean, powerset or bit string root mode.

dynamic conditions: In the case of OR or XOR , a RANGEFAIL exception occurs if one or both operands 
have a dynamic class and the dynamic part of the above mentioned compatibility check fails.
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10.31 i<min
10.31 i<min OR i>max

examples:
(1.1)
(1.2)

5.3.3 O perand-1 

syntax:
<operand-l> ::= (1)

<operand-2> (1-1)
| <sub operand-1> AND <operand-2> (1.2)

<sub operand-1> ::= (2)
< operand-1> (2-1)

sem antics: If AND  is specified, sub operand-1 and operand-2 deliver:

•  boolean values, in which case AND  denotes the usual logical ”and” operation, delivering a 
boolean value;

• bit string values, in which case AND  denotes the usual logical ’’and” operation on bit strings, 
delivering a bit string value;

• powerset values, in which case AND  denotes the intersection operation of powerset values 
delivering a powerset value as a result.

s ta tic  p roperties: If an operand-1 is an operand-2, the class of the operand-1 is the class of the operand-2.

If AND  is specified, the class of the operand-1 is the resu lting  class of the classes of the operand-2 
and sub operand-1.

An operand-1 is constan t (literal) if and only if it is either an operand-2 which is constan t 
(literal), or built up from an operand-1 and an operand-2 which are both constan t (literal).

s ta tic  conditions: If AND  is specified, the class of the sub operand-1 must be com patib le with the class of 
the operand-2. These classes must both have a boolean, powerset or b it string roo t mode.

dynam ic conditions: In the case of AND  , a RANGEFAIL exception occurs if one or both operands have a
dynamic class and the dynamic part of the above mentioned compatibility check fails.

exam ples:
5.10 (al OR bl) (1.1)
5.10 NO T k2 AND (al OR bl) (1.2)

5.3.4 O perand-2  

syntax:
<operand-2> ::= - (1)

< operand- 3> ( i.l)
| <sub operand-2> <operator-3> <operand-3> (1-2)

<sub operand-2> ::= (2)
<operand-2> (2-1)

<operator-3> ::= (3)
<relational o per at or > (3-1)

| <membership operator> (2-2)
| < powerset inclusion operator. (3.3)

Creiational operator> ::= (4)
=  I / =  I > I > =  I < I < =  (4.1)

<membership operator> (5)
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<powerset inclusion operator> (6)
< =  | > =  | <  | > (6.1)

semantics: The equality (—) and inequality ( /■=) operators are defined between all values of a given mode.
The other relational operators (less than: <, less than or equal to: < = , greater than: >, greater 
than or equal to: > =  are defined between values of a given discrete or string mode. All the relational 
operators deliver a boolean value as result.

The membership operator is defined between a member value and a powerset value. The operator 
delivers TRUE if the member value is in the specified powerset value, otherwise FALSE .

The powerset inclusion operators are defined between powerset values and they test whether or not a 
powerset value is contained in: <= , is properly contained in: <, contains: > =  or properly contains: 
> the other powerset value. A powerset inclusion operator delivers a boolean value as result.

static properties: If an operand-2 is an operand-3, the class of the operand-2 is the class of the operand-3. 
If an operator-3 is specified, the class of the operand-2 is the BOOL -derived class.

An operand-2 is constant (literal) if and only if it is either an operand-3 which is constant 
(literal) or built up from a sub operand-2 and an operand-3 which are both constant (literal).

static conditions: If an operator-3 is specified, the following compatibility requirements between the class of 
sub operand-2 and the class of the operand-3 must be fulfilled:

•  if the operator-3 is =  or / —, both classes must be compatible;

•  if the operator-3 is a relational operator other than =  or /= ,  both classes must be com patible 
and must have a discrete or string root mode;

• if the operator-3 is a membership operator, the class of operand-3 must have a powerset root 
mode and the class of the sub operand-2 must be compatible with the member mode of 
that root mode;

• if the operator-3 is a powerset inclusion operator, both classes must be com patible and must 
have a powerset root mode.

dynamic conditions: In the case of a relational operator, a RANGEFAIL or TAGFAIL exception occurs if one 
or both operands have a dynamic class and the dynamic part of the above mentioned compatibility 
check fails. The TAGFAIL exception occurs if and only if a dynamic class is based upon a dynamic 
parameterised structure mode.

examples:
10.50 NULL (1.1)
10.50 last= NULL (1.2)

5.3.5 Operand-3 

syntax
< operand-3> ::= (1)

<operand-4> (1-1)
| <sub operand-3> <operator-4> <operand-4> (1-2)

<sub operand-3> ::= (2)
<operand-3> (2-1)

<operator-4> (3)
< arithmetic additive operator> (3-1)

| <string concatenation operator> (3-2)
| <powerset difference operator> (3-3)

IN  (5.1)

Fascicle VI. 12 -  Rec Z.200 69



<arithmetic additive operator> ::= (4)

<string concatenation operator> ::= (5)
/ /  fs.i;

< powerset difference operator> ::= (6)
(6.1)

semantics: If the operator-4 is an arithmetic additive operator, both operands deliver integer values and the 
resulting integer value is the sum (-f-) or difference (-) of the two values.

If the operator-4 is a string concatenation operator, both operands deliver either bit string values 
or character string values; the resulting value consists of the concatenation of these values.

If the operator-4 is the powerset difference operator, both operands deliver powerset values and 
the resulting value is the powerset value consisting of those member values which are in the value 
delivered by sub operand-3 and not in the value delivered by operand-4.

static properties: If an operand-3 is an operand-4, the class of the operand-3 is the class of operand-4. If an 
operator-4 is specified, the class of the operand-3 is determined by the operator-4 as follows:

•  if operator-4 is a string concatenation operator, the class of the operand-3 is dependent on 
the classes of the operand-4 and sub operand-3:

-  if none of them is strong, the class is the B IT  (nJ-derived class or CHAR (nJ-derived 
class, depending on whether both operands are bit or character strings, where n is 
the sum of the string lengths of the root modes of both classes,

-  otherwise, the class is the &:name(nJ-value class, where Szname is a virtual synm ode 
name synonymous with the mode of one of the strong operands and n is the sum 
of the string lengths of the root modes of both classes.

(this class is dynamic if one or both operands have a dynamic class).

•  if operator-4 is an arithmetic additive operator or powerset difference operator, the class of 
the operand-3 is the resulting class of the classes of the operand-4 and the sub operand-3.

An operand-3 is constant (literal) if and only if it is either an operand-4 which is constant 
(literal), or built up from an operand-3 and an operand-4 which are both constant (literal) and 
operator-4 is either the arithmetic additive operator or the powerset difference operator.

static conditions: If an operator-4 is specified, the following compatibility requirements must be fulfilled:

•  if operator-4 is the arithmetic additive operator, the classes of both operands must be com­
patible and they must both have an integer root mode;

•  if operator-4 is the string concatenation operator, the root modes of the classes of both 
operands must both be compatible with a bit string mode or both be com patible with 
a character string mode and, if both classes axe value classes, their root modes must have 
the same novelty;

•  if operator-4 is the powerset difference operator, the classes of both operands must be com­
patible and both must have a powerset root mode.

dynamic conditions: In the case of an operand-3 which is not constant, an OVERFLOW  exception occurs 
if an addition (+) or a subtraction (-) gives rise to a value that is not one of the values defined by 
the root mode of the class of the operand-3.

examples:
1.6 j  (1.2)
1.6 i+ j (1.2)

+ I -  (4.1)
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5.3.6 Operand-4 

syntax
<operand-4> ::= (1)

<operand-5> (1.1)
| <sub operand-4> <arithmetic multiplicative operator> <operand-5> .

<sub operand-4> ::= (2)
<operand-4> (2.1)

<arithmetic multiphcative operator> ::= (3)
* | / |  MOD | REM (3.1)

semantics: If an arithmetic multiplicative operator is specified, sub operand-4 and operand-5 deliver integer 
values and the resulting integer value is either the product ( * ), the quotient ( / ) ,  modulo ( MOD )
or division remainder ( REM  ) of both values.

The modulo operation is defined such that I  MOD J  delivers the unique integer value K, 0 < K  < 
J  such that there is an integer value N  such that I  = N  * J  + K; J  must be greater than 0.

The quotient operation is defined such that all relations 
ABS (X /Y ) = ABS (X) /  ABS (Y) and 
sign (X /Y ) = sign (X) /  sign (Y) and
ABS (X) -  ( ABS (X) /  ABS (Y)) * ABS (Y) = ABS (X) MOD ABS (Y)
yield TRUE  for all integer values X and Y, where sign (X) = - I  if X < 0, otherwise sign (X) = 1.

The remainder operation is defined such that X REM  Y  = X  -  (X /Y ) * Y  yields TRUE for all 
integer values X  and Y.

static properties: If the operand-4 is an operand-5, the class of the operand-4 is the class of the operand-5;
otherwise, the class of the operand-4 is the resulting class of the classes of the sub operand-4 and 
the operand-5.

An operand-4 is constant (literal) if and only if it is either an operand-5 which is constant 
(literal), or built up from an operand-4 and an operand-5 which are both constant (literal).

static conditions: If an arithmetic multiphcative operator is specified, the classes of the operand-5 and sub 
operand-4 must be compatible and both must have an integer root mode.

dynamic conditions: In the case of an operand-4, that is not constant, an OVERFLOW  exception occurs if 
a multiplication ( *) or a division ( / )  or a modulo ( MOD ) or a remainder ( R E M ) operation gives
rise to a value that is not one of the values defined by the root mode of the class of the operand-4 or
is performed on operand values for which the operator is mathematically not defined: i.e., division 
or remainder with an operand-5 delivering 0 or a modulo operation with an operand-5 delivering a 
non-positive integer value.

examples:
6.15 1-461 (1.1)
6.15 (4 * d + 3) /  1-461 (1.2)

5.3.7 Operand-5 

syntax
<operand-5> ::= (1)

[ <monadic operator> ] <operand-6> (1-1)

<monadic operator> ::= (2)
-  | NOT (2.1)

| <string repetition operator> (2-2)

<string repetition operator> (3)
(<integer hteral exy<ression>) ' (3.1)
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sem antics: If the monadic operator is a change-sign operator (-), the operand-6 delivers an integer value and 
the resulting integer value is the previous integer value with its sign changed.

If the monadic operator is NOT , the operand-6 delivers either a boolean value or a bit string value 
or a powerset value. In the first two cases the logical negation of the boolean or bit string value is 
delivered. In the latter case, the set complement value : i.e., the set of those member values which 
are not in the operand powerset value, is delivered.

If the monadic operator is a string repetition operator, the operand-6 is a character string literal or 
a bit string literal. If the integer literal expression delivers 0, the result is the empty string value; 
otherwise, the result is the string value formed by concatenating the string with itself as many times 
as specified by the value delivered by the literal expression minus 1.

static properties: If the operand-5 is an operand-6 , the class of the operand-5 is the class of the operand-6 .

If a monadic operator is specified, the class of the operand-5 is:

• if the monadic operator is -  or NO T  then the resulting class of the operand-6 ;

• if the monadic operator is the string repetition operator, then it is the CHAR (n) or B IT  (n) 
-derived class (depending on whether the literal, was a character string literal or bit string 
literal) where n = r * L, where r  is the value delivered by the integer literal expression and 
L  is the string length of the string literal.

An operand-5 is constant if and only if the operand-6 is constant.
An operand-5 is literal if and only if the operand-6 is literal and the monadic operator is -  or 
N O T.

static conditions: If the monadic operator is -, the class of the operand-6 must have an integer root mode.

)
If the monadic operator is NOT , the class of the operand-6 must have a boolean, bit string or 
powerset root mode.

If the monadic operator is the string repetition operator, the operand-6 must be a character string 
Hteral or a bit string hteral. The integer literal expression must deliver a non-negative integer-value.

dynamic conditions: If the operand-5 is not constant, an OVERFLOW  exception occurs if a change sign 
(-) operation gives rise to a value which is not one of the values defined by the root mode of the 
class of the operand-5.

examples:
(1.1)
(1.1)
(2.2)

5.3.8 Operand-6 

syntax:
<operand-6> ::= (1)

<referenced location> (1-1)
| <receive expression> (1.2)
| <primitive value> (1.3)

<referenced location> ::= (2)
->  <location> (2.1)

| A D D R  (<location>) (2.2)

<receive expression> ::= (3)
R E C E IV E  < buffer location> (3.1)

derived syntax: A D D R  (<location>) is derived syntax for ->  <location>.

5.10 N O T k2
7.54 (6 )"
7.54 (6)
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sem antics: An operand-6 is either a referenced location, a receive expression or a primitive value (see section
5.2.1).

A referenced location delivers a reference to the specified location.

The receive expression delivers a value out of the specified buffer or from any delayed sending process. 
If the receive expression is executed while the buffer does not contain a value or no sending process 
is delayed on it, the executing process is delayed until a value is sent to the buffer (see chapter 9 for 
full details).

s ta tic  p roperties: The class of an operand-6 is the class of the referenced location, receive expression or
primitive value respectively.
The class of the referenced location is the M-reference class where M is the mode of the location.
The class of the receive expression is the M-value class, where M is the buffer elem ent mode of
the mode of the buffer location.

An operand-6 is constan t if and only if the primitive value is constan t or the referenced location 
is constan t.
A referenced location is constan t if and only if the location is s ta tic .
An operand-6 is litera l if and only if the primitive value is literal.

s ta tic  conditions: The location must be referable.

dynam ic conditions: The lifetime of the buffer location must not end while the executing process is delayed 
on that buffer location.

exam ples:
8.24 ->  c (2.1)
16.51 R E C E IV E  user_ buffer (3.1)
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6 ACTIONS

6.1 GENERAL

syntax:
< action statement> ::= (1)

[ <defining occurrence> :] < action> [ <handler> ] [ <simple name string> ]; (1-1)
| <module> (4-2)
| <spec module> (1-3)

<action> ::= (2)
< bracketed action> (2-1)

| <assignment action> (2 -2)
| <call action> (2.3)
| <exit action> (2.4)
| <return action> (2-5)
| <result action> (2-6)
| Cgoto action> (2.7)
| < assert action> (2-8)
| <empty action> (2-9)
| <start action> (2-10)
| <stop action> (2.11)
| < delay action> (2-12)
| <continue action> (2-13)
| Csend action> (2-14)
| <cause action> (2-15)

<bracketed action> (3)
<if action> (3.1)

| Cease action> (3-2)
| <do action> (3-3)
| <hegin-end block> (3-4)
| <delay case action> (3-5)
| <receive case action> (3-6)

semantics: Action statements constitute the algorithmic part of a CHILL program. Any action statement may 
be labelled. Those actions that may never cause an exception may never have a handler appended.

static properties: A deSning occurrence in an action statement defines a label name.

static conditions: The simple name string may only be given after an action which is a bracketed action or 
if a handler is specified, and only if a defining occurrence is specified. The simple name string must 
be the same name string as the defining occurrence.

6.2 ASSIG N M EN T ACTION  

syntax:
<assignment action> (1)

<single assignment action> (1.1)
| <multiple assignment action> (1.2)

<single assignment action> (2)
<location> { <assignment symbol> | <assigning operator>} <value> (2.1)

<multiple assignment action> ::= (3)
<location> { ,<Jocation>}+ <assignment symbol> <value> (3.1)

< assigning operator> ::= (4)
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< closed dyadic operator> < assignment symbol> (4.1)

<closed dyadic operator> ::= (5)
OR | XOR

I AND (5.1)
| < powerset difference operator> (5.2)
| <arithmetic additive operator> (5.3)
| <arithmetic multiphcative operator> (5.4)

<assignment symbol> ::= (6)
••=  I =  (6.1)

derived syntax : The =  symbol is derived syntax for the := symbol.

sem antics: The assignment action stores a value into one or more locations.

If an assignment symbol is used, the value yielded by the right hand side is stored into the location(s) 
specified at the left hand side.

If an assigning operator is used, the value contained in the location is combined with the right hand 
side value (in that order) according to the semantics of the specified closed dyadic operator, and the 
result is stored back into the same location.

The evaluation of the left hand side location(s),of the right hand side value, and of the assignment 
themselves are performed in an unspecified and possibly mixed order. Any assignment may be 
performed as soon as the value and a location have been evaluated.

If the location (or any of the locations) is the tag  field of a variant structure, the semantics for the 
variant fields that depend on it are implementation defined.

sta tic  conditions: The modes of all location occurrences must be equivalent and they must have neither 
the read-only  p roperty , nor the non-value p roperty . Each mode must be com patib le  with 
the class of the value. The checks are dynamic in the case where dynamic mode locations and/or a 
value with a dynamic class are involved.

The value must be regionally safe for every location (see section 9.2.2).

If in a single assignment action an assigning operator is specified, the specified value must be an 
expression.

dynam ic conditions: The TAGFAIL exception occurs if, in the case of a dynamic p a ram ete rised  structure 
mode location and/or value, the dynamic part of the above mentioned compatibility check fails.

The RANGEFAIL exception occurs if any location has a range mode and the value delivered by the 
evaluation of value is neither one of the values defined by the range mode nor the undefined value.

The RANGEFAIL exception occurs if, in the case of a dynamic pa ram ete rised  string mode or 
array mode location and/or value, the dynamic part of the above mentioned compatibility check 
fails.

The above mentioned conditions are called the assignment conditions of a value with respect to a 
mode (i.e. the mode of the location).

In the case of an assigning operator the same exceptions are caused as if the expression:
<location> <closed dyadic operator> (<expression>)
were evaluated and the delivered value stored into the specified location (note that the location is 
evaluated once only).

exam ples:

4.12 a :=  b-fc (1.1)
10.25 stackindex- := 1 (2.1)
19.19 x.prex, x.next := NULL (3-1)
10.25 - : =  (4.1)
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6.3 IF ACTION

syntax:
<if action> ::= (1)

IF  <boolean expression> <then clause> [ <else clause> ] F I f l . l j

<then clause> ::= (2)
T H E N  < action statement list> (2.1)

<else clause> ::= (3)
ELSE < action statement list> (3.1)

| ELSIF <boolean expression> <then clause> [ <else clause> ] (3.2)

derived syntax : The notation:
ELSIF <boolean expression> <then clause> [ <else clause> ] 
is derived syntax for:
ELSE IF  <boolean expression> <then clause> [ <else clause> ] F I ;

sem antics: The if action is a conditional two-way branch. If the boolean expression yields TRUE , the action
statement list following T H E N  is entered; otherwise, the action statement list following ELSE ,
if present, is entered.

exam ples:

7.22 IF  n > =  50 T H E N  rn(r) := ’L ’;
n - := 50; 
r-f := 1;

F I (1.1)
10.50 IF  last = NULL

T H E N  first,last := p;
ELSE last ->.succ := p; 

p  > .pred := last; 
last := p;

F I (1.1)

6.4 C A SE  A C T IO N  

syntax:
<case action> ::= (1)

CA SE Cease selector list> OF [ < range fist>;] { Cease alternative>} +
[ ELSE Caction statement list> ]
ESA C (1.1)

< case selector list> ::= (2)
<discrete expression> { ,<discrete expression>} * (2.1)

Crange list> ::= (3)
<discrete mode> { ,<discrete mode>} * (3.1)

Cease alternative> ::= (4)
Cease label speciGcation> : Caction statement list> (4.1)

sem antics: The case action is a multiple branch. It consists of the specification of one or more discrete
expressions (the case selector list) and a number of labelled action statement lists (case alternatives). 
Each action statement list is labelled with a case label specification which consists of a list of case 
label list specifications (one for each case selector). Each case label list defines a set of values. The
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use of a list of discrete expresssions in the case selector list allows selection of an alternative based 
on multiple conditions.

The case action enters that action statement list for which values given in the case label specification 
match the values in the case selector list.

The expressions in the case selector list are evaluated in an undefined and possibly mixed order. 
They need to be evaluated only up to the point where a case alternative is uniquely determined.

static conditions: For the list of case label speciGcation occurrences, the case selection conditions apply (see 
section 10.1.3). »

The number of discrete expression occurrences in the case selector list must be equal to the number 
of classes in the resulting list of classes of the list of case label list occurrences and, if present, to 
the number of discrete mode occurrences in the range list.

The class of any discrete expression in the case selector list must be compatible with the corre­
sponding (by position) class of the resulting list of classes of the case label list occurrences and, 
if present, compatible with the corresponding (by position) discrete mode in the range list. The 
latter mode must also be compatible with the corresponding class of the resulting list of classes.

Any value delivered by a discrete literal expression or defined by a literal range or by a discrete 
mode in a case label (see section 10.1.3) must lie in the range of the corresponding discrete mode 
of the range list, if present, and also in the range defined by the mode of the corresponding discrete 
expression in the case selector list, if it is a strong discrete expression. In the latter case, the values 
defined by the corresponding discrete mode of the range list, if present, must also lie in that range.

The optional reserved simple name string ELSE , followed by an action statement list, may only 
be omitted if the list of case label list occurrences is complete (see section 10.1.3).

dynamic conditions: The RANGEFAIL exception occurs if a range list is specified and the value delivered 
by a discrete expression in the case selector list does not lie within the bounds specified by the 
corresponding discrete mode in the range list.

examples:

4.11 CASE order OF
(1): a := b+c;

R E T U R N ;
(2): d := 0;
( ELSE ): d := 1;

ESAC (1.1)
11.43 starting.p.kind, starting.p.color (2-1)
11.58 (rook),(*):

IF NOT ok-rook(b,m)
TH EN  

CAUSE illegal;
FI ; (4.1)

6.5 DO ACTION

6.5.1 General 

syntax:
<do action> ::= (1)

DO [ <control part>;] <action statement list> OD f l . l j

< control part> ::= (2)
<for control> [ <while control> ] (2-1)

| < while control> (2-2)
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| <with part> (2.3)

sem antics: The do action has three different forms: the do-for and the do-while versions, both for looping, and 
the do-with version as a convenient short hand notation for accessing structure fields in an efficient 
way. If no control part is specified, the action statement list is entered once, each time the do action 
is entered.

When the do-for and the do-while versions axe combined, the while control is evaluated after the for 
control, and only if the do action is not terminated by the for control.

dynam ic conditions: The SPACEFAIL exception occurs if the storage requirements cannot be satisfied.

exam ples:

4.17 DO FO R  i := I TO  c;
op(a, b, d, order-1); 
d := a;

OD (1.1)
15.58 DO W IT H  each;

IF  this_ counter = counter 
T H E N  

status := idle;
E X IT  find-counter;

F I ;
OD (1.1)

6.5.2 For con tro l 

syntax:
<for control> ::= (1)

F O R  { <iteration> { ,<iteration>} * | E V E R  } (1.1)

<iteration> ::= (2)
< value enumeration> (2.1)

| <location enumeration> (2.2)

< value enumeration> (3)
<step enumeration> (3-1)

| <range enumeration> (3-2)
| <powerset enumeration> (3-3)

<step enumeration> ::= (4)
<loop counter> < assignment symbol>
<start vaJue> [ <step vaJue>] [ D O W N  ] <end va/ue> (4.1)

<loop counter> ::= (5)
< deGning occurrence> (5.1)

<start value> ::= (6)
<discrete expression> (6-1)

<step value> ::= (7)
B Y  <intee:er expression> (7.1)

<end value> (8)
TO  <discrete expression> (3-1)

<range enumeration> (9)
<loop counter> [ D O W N  ] IN  <discrete mode> (9.1)

<powerset enumeration> ::= (10)
<loop counter> [ D O W N  ] IN  < powerset expression> (10.1)
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<location enumeration> ::= (11)
<loop counter> [ D O W N  ] IN  <composite location> (H -l)

<composite location> ::= (12)
<array location> (12-1)

| <strins: location> (12-1)

sem antics: The action statement list is repeatedly entered according to the specified for control.

The for control may mention several loop counters. The loop counters are evaluated each time in an 
unspecified order, before entering the action statement list, and they need be evaluated only up to 
the point that it can be decided to terminate the do action. The do action is terminated if at least 
one of the loop counters indicates termination.

A distinction is made between norm al and abnorm al termination. Normal termination occurs if 
the evaluation of at least one of the loop counters indicates termination. Abnormal termination 
occurs if a while condition evaluation delivers FALSE , or if an exit action or a goto action with a 
(target) label defined outside the action statement list is executed, or if an exception is caused for 
which the appropriate handler lies outside, and is not appended to, the do action, or if the handler 
of the do action is entered and falls through, or if the do action is left by a return action.

1. do for ever:

The action list is indefinitely repeated; only abnormal termination is possible.

2. value enum eration:

The action statement list is repeatedly entered for the set of specified values of the loop 
counters. The set of values is either specified by a discrete mode (range enumeration), or by 
a powerset value (powerset enumeration), or by a start value, step value and end value (step 
enumeration).

The loop counter always implicitly defines a name which denotes its value or location inside 
the action statement list. However, if an access name with a name string that is equal to the 
name string of the loop counter is visible outside the do action, the value of the loop counter 
will be stored into the denoted location just prior to abnormal termination. In the case of 
normal termination the value stored into the location denoted by the external access name is 
undefined.

range enum eration:

In the case of range enumeration without (with) D O W N  specification, the initial value of 
the loop counter is the smallest (greatest) value in the set of values defined by the discrete 
mode. For subsequent executions of the action statement list, the N E XT VALUE will be 
evaluated as:

SUCC (PREVIOUS VALUE) ( PRED (PREVIOUS VALUE)).

Normal termination occurs if the action statement list has been executed for the greatest 
(smallest) value defined by the discrete mode.

pow erset enum eration:

In the case of powerset enumeration without (with) D O W N  specification, the initial value 
of the loop counter is the smallest (highest) member value in the denoted powerset value. If 
the powerset value is empty, the action statement list will not be executed. For subsequent 
executions of the action statement list, the next value will be the next greater (smaller) 
member value in the powerset value. Normal termination occurs if the action statement list 
has been executed for the greatest (smallest) value. When the do action is executed, the 
pow erset expression is evaluated only once.

s tep  enum eration:
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In the case of step enumeration without (with) D O W N  specification, the set of values of the 
loop counter is determined by a start value, end value, and possibly step value. When the do 
action is executed, these expressions are evaluated only once in an unspecified and possibly 
mixed order. The step value is always positive. The test for termination is made before each 
execution of the action statement list. Initially, a test is made to determine whether the start 
value of the loop counter is greater (smaller) than the end value. For subsequent executions, 
N E X T VALUE will be evaluated as:

PREVIOUS VALUE + STEP VALUE (PREVIOUS VALUE -  STEP VALUE)

in the case of step value specification; otherwise as:

SUCC (PREVIOUS VALUE) ( PRED (PREVIOUS VALUE)).

Normal termination occurs if the evaluation yields a value which is greater (smaller) than the 
end value or would have caused an OVERFLOW  exception.

3. location enumeration:

In the case of a location enumeration without (with) D O W N  specification, the action state­
ment list is repeatedly entered for a set of locations which are the elements of the array 
location denoted by array location or the components of the string location denoted by strins 
location. The semantics are as if before each execution of the action statement list the loc- 
identity declaration :

DCL <loop counter> <mode> LOC := <composite location> (<index>);

were encountered, where mode is the element mode of the array location or &:name(l) such 
that Scname is a virtual synmode name synonymous with the mode of the strins location, 
and where index is initially set to the lower bound (upper bound) of the mode of array 
location or strins location and index before each subsequent execution of the action statement 
list is set to SUCC (index) ( PRED (index)). The action statement list will not be executed 
if the string length of the mode of strins location — 0.
The do action is terminated (normal termination) if index just after an execution of the action 
statement list is equal to the upper bound (lower bound) of the mode of array location 
or strins location.
When the do action is executed, the composite location is evaluated only once.

static properties: A loop counter has a name string attached which is the name string of its defining
occurrence.

value enumeration:

The name defined by the loop counter is a value enumeration name. If a name string is visible 
in the reach in which the do action is placed which is equal to the name string of the loop counter, 
the loop counter is explicit, otherwise it is implicit.

step enumeration:

The class of the name defined by an explicit loop counter is the M-value class, where M is the mode 
of the external access name (see below: static conditions).

The class of the name defined by an implicit loop counter is the resulting class of the classes of 
the start value, step value if present, and end value.

range enumeration:

_ The class of the name defined by the loop counter is the M-value class, where M is the discrete 
mode.

powerset enumeration:

The class of the name defined by the loop counter is the M-value class, where M is the member 
mode of the mode of the (strong) powerset expression.
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location enumeration:

The name defined by the loop counter is a location enumeration name. Its mode is the element 
mode of the mode of the array location or the string mode <fcnam e(l), where &name is a virtual 
synmode name synonymous with the mode of string location.

A location enumeration name is referable if the element layout of the mode of the array location 
is NOPACK .

static conditions:

step enumeration:

The classes of start value, end value and step value, if present, must be pairwise compatible. In 
the case of a loop counter which is explicit, the externally visible name must be an access name. 
The mode of the external access name must be compatible with each of these classes and must not 
be a read-only mode.

powerset enumeration, range enumeration:

In the case of an explicit loop counter, the externally visible name must be an access name. The 
mode of the external access name must be compatible with the class of the name defined by the 
loop counter.

dynamic conditions: A RANGEFAIL exception occurs if the value delivered by step value is not greater
than 0 or if, in the case of an explicit loop counter, the value to be stored back into the external 
location prior to abnormal termination, does not lie within the bounds specified by the mode of the 
external location. This exception occurs outside the block of the do action.

examples:

4.17 FOR i := I TO c ( i .i )
15.37 FOR EVER ( i .i )
4.17 i := 1 TO c (3.1)
9.12 j  := MIN (sieve) BY  MIN (sieve) TO  max (3.1)
14.28 i IN IN T (1:100) (3.2)

6.5.3 W hile control 

syntax:
<while control> (1)

W H ILE < boolean expression> f l . l j

semantics: The boolean expression is evaluated just before entering the action statement list (after the
evaluation of the for control, if present). If it yields TRUE , the action statement list is entered;
otherwise, the do action is terminated (abnormal termination).

examples:

7.35 W H ILE n > =  1 (1.1)

6.5.4 W ith part 

syntax:
<with part> (1)

W IT H  < with control> { ,<with control>} * ( l.l)

<with control> ::= (2)
<structure location> (2-1)

| <structure primitive value> (2-2)
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N.B. if the structure primitive value is a location, the syntactic construct is ambiguous and will be 
interpreted as a structure location.

semantics: The (visible) field names of the mode of the structure locations or structure value specified in each 
with control are made available as direct accesses to the fields.

The visibility rules are as if a field name defining occurrence were introduced for each field name 
attached to the mode of the location or primitive value and with the same name string as the field 
name.

If a structure location is specified, access names with the same name string as the field names of 
the mode of the structure location are implicitly defined, denoting the sub-locations of the structure 
location.

If a structure primitive value is specified, value names with the same name string as the field names 
of the mode of the (strong) structure primitive value are implicitly defined, denoting the sub-values 
of the structure value.

When the do action is entered, the specified structure locations and/or structure values are evaluated 
once only on entering the do action, in an unspecified, possibly mixed order.

static properties: The (virtual) defining occurrence introduced for a field name has the same name string 
as the field name deGning occurrence of that field name.

Structure primitive value: A (virtual) defining occurrence in a with-paxt defines a value do- 
w ith name. Its class is the M-value class, where M is the mode of that field name of the structure 
mode of the structure primitive value, which is made available as value do-with name.

Structure location: A (virtual) defining occurrence in a with-paxt defines a location do-with  
name. Its mode is the mode of that field name of the mode of the structure location, which is made 
available as location do-with name. A location do-with name is referable if the field layout of 
the associated field name is NOPACK .

examples:

15.58 W ITH each (1.1)

6.6 EXIT ACTION  

syntax:
<exit action> ::= (1)

EXIT <simple name string> (1.1)

semantics: An exit action is used to leave a bracketed action statement or a module. Action is resumed
immediately after the closest surrounding bracketed action statement or module labelled with the
simple name string.

static conditions: The exit action must lie within the bracketed action statement or module of which the
deGning occurrence in front has the same name string as simple name string.

If the exit action is placed within a procedure or process definition, the exited bracketed action 
statement or module must also lie within the same procedure or process definition (i.e. the exit 
action cannot be used to leave procedures or processes).

No handler may be appended to an exit action.

examples:

15.62 EXIT Gnd-counter (1.1)

82 Fascicle VI. 12 -  Rec Z.200



6.7 CALL ACTION

syntax:
<call action> ::= (1)

[ CALL ] { <procedure call> (1-1)
| <CHILL built-in routine call> (1-2)
| <implementation built-in routine call>} (1.3)

<procedure call> ::= (2)
{ < procedure name> | < procedure primitive value>} ( [ < actual parameter list> ] )(2.1)

< actual parameter list> ::= (3)
<actual parameter> { ,<actual parameter>} * (3.1)

<adual parameter> ::= (4)
<value> (4.1)

| <location> (4-2)

< CHILL built-in routine call> ::= (5)
<CHILL value built-in routine call> (5-1)

| <CHILL location built-in routine call> (5-2)
| <CHILL simple built-in routine call> (5-3)

<CHILL simple built-in routine call> ::= (6)
TERMINATE (<reference expression>) (6.IJ

| <io CHILL simple built-in routine call> (6-2)

derived syntax: The reserved simple name string CALL is optional. A call action with CALL is derived
from a call action without CALL .

sem antics: A call action causes either the call of a procedure or of a built-in routine. A procedure call causes 
a call of the general procedure indicated by the value delivered by the procedure primitive value or 
the procedure indicated by the procedure name. The actual values and locations specified in the 
actual parameter list axe passed to the procedure.

A CHILL built-in routine call is either a CHILL location built-in routine call, which delivers a 
location (see section 4.2.12), or a CHILL value built-in routine call, which delivers a value (see 
section 5.2.13), or a CHILL simple built-in routine call, which delivers neither a value nor a location. 
The simple built-in routines for input output are described in Chapter 7.

TERMINATE  ends the lifetime of the location referred to by the value delivered by reference ex­
pression. An implementation might as a consequence release the storage occupied by this location. If 
the lifetime of the location had already ended prior to calling TERMINATE  , no action is performed.

s ta tic  p roperties: A procedure call has the following properties attached: a list of p a ra m e te r  specs, possibly 
a resu lt spec, a possibly empty set of exception names, a generality, a recursiv ity , and possibly 
it is in tra-reg ional (the latter is only possible with a procedure name, see section 9.2.2). These 
properties are inherited from the procedure name or any mode com patib le  with the class of the 
procedure primitive value (in the latter case, the generality is always general).

A procedure call with a resu lt spec is a location procedure call if and only if LOC is specified in 
the resu lt spec; otherwise, it is a value procedure call.

s ta tic  conditions: The number of actual parameter occurrences in the procedure call must be the same as 
the number of its parameter specs. The compatibility requirements for the actual parameter and 
corresponding (by position) parameter spec of the procedure call are:

•  If the parameter spec has the IN  attribute (default), the actual parameter must be a value 
whose class is com patib le  with the mode in the corresponding parameter spec. The latter 
mode must not have the non-value p roperty . The actual parameter is a value which must 
be regionally safe for the procedure call.
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• If the parameter spec has the IN O U T or O U T attribute, the actual parameter must be a 
location, whose mode must be compatible with the M-value class, where M is the mode in 
the corresponding parameter spec. The mode of the (actual) location must be static and must 
not have the read-only property nor the non-value property. The actual parameter is a 
location. It can be viewed as a value which must be regionally safe for the procedure call.

• If the parameter spec has the IN O U T  attribute, the mode in the parameter spec must be 
compatible with the M-value class where M is the mode of the location.

• If the parameter spec has the LOC attribute specified without D Y N A M IC  , the actual 
parameter must be a location which is both referable and such that the mode in the parame­
ter spec is read-compatible with the mode of the (actual) location, or the actual parameter 
must be a value which is not a location but whose class is com patible with the mode in the 
parameter spec.

• If the parameter spec has the LOC attribute with D Y N A M IC  specified, the actual param­
eter must be a location which is both referable and such that the mode in the parameter 
spec is dynamic read-compatible with the mode of the (actual) location, or the actual 
parameter must be a value which is not a location but whose class is com patible with a 
parameterised version of this mode.

• If the parameter spec has the LOC attribute then

-  if the actual parameter is a location it must have the same regionality as the proce­
dure call-,

-  if the actual parameter is a value then it must be regionally safe for the procedure 
call.

dynamic conditions: A procedure call can cause any of the exceptions of the attached set of exception
names. It causes the EM PTY  exception if the procedure primitive value delivers NULL , it causes the 
SPACEFAIL exception if storage requirements cannot be satisfied and it causes the RECURSEFAIL 
exception if the procedure calls itself recursively and its recursivity is non-recursive.

Parameter passing can cause the following exceptions:

• If the parameter spec has the IN  , IN O U T  or LOC attribute, the assignment conditions 
of the (actual) value (possibly contained in an actual location), with respect to the mode of 
the parameter spec apply at the point of the call (see section 6.2) and the possible exceptions 
are caused before the procedure is called.

• If the parameter spec has the IN O U T or O U T attribute, the assignment conditions of the 
local value of the formal parameter, with respect to the mode of the (actual) location apply 
at the point of return (see section 6.2) and possible exceptions are caused after the procedure 
has returned.

• If the parameter spec has the LOC attribute and the actual parameter is a value which is not 
a location, the assignment conditions of the (actual) value with respect to the mode of the 
parameter spec apply at the point of the call and the possible exceptions are caused before 
the procedure is called (see section 6.2).

The procedure primitive value must not deliver a procedure defined within a process definition whose 
activation is not the same as the activation of the process executing the procedure call (other than 
the imaginary outermost process) and the lifetime of the denoted procedure must not have ended.

TERMINATE  causes the EM PTY  exception if the reference expression delivers the value NULL .

TERMINATE  causes the TERMINATEFAIL exception if the reference expression does not deliver 
an allocated reference value.

examples:

4.18 op(a,b,d,order-1) (1.1)
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6.8 RESU LT AN D  R E T U R N  A C TIO N

syntax:
< return action> ::= (1)

R E T U R N  [ <result> } (1.1)

<result action> ::= (2)
RESU LT <result> (2.1)

<result> ::= (3)
<value> (3.1)

| <location> (3-2)

derived syntax: The return action with result is derived from RESU LT <result> ; R E T U R N  . If a handler 
is appended to such a return action, it is considered to be appended to the result action from which 
it was derived.

sem antics: The result action serves to establish the result to be delivered by a procedure call. This result may 
be a location or a value. The return action causes the return from the invocation of the procedure 
within whose definition it is placed. If the procedure returns a result, this result is determined by 
the last executed result action. If no result action has been executed the procedure call delivers an 
undefined location or undefined value, respectively.

s ta tic  p roperties: The result action and return action have a procedure name attached, which is the name 
of the closest surrounding procedure definition.

s ta tic  conditions: The return action and the result action must be textually surrounded by a procedure
definition. A result action may only be specified if its p rocedure name has a resu lt spec.

A handler must not be appended to a return action (without result).

If LOC ( LOC D Y N A M IC  )is specified in the resu lt spec of the p rocedure  name of the result 
action, the result must be a location, such that the mode in the resu lt spec is read-com patib le  
(dynam ic read-com patib le) with the mode of the location. The location must be referab le if 
N O N R E F  is not specified in the resu lt spec. The result is a location which must have the same 
regionality  as the procedure name attached to the result action.

If LOC is not specified in the resu lt spec of the p rocedure  name of the result action, the result 
must be a value, whose class is com patib le with the mode in the resu lt spec. The result is a value 
which must be regionally safe for the procedure name attached to the result action.

dynam ic conditions: If LOC is not specified in the resu lt spec of the p rocedure  name, the assignment 
conditions of the value in the result action, with respect to the mode in the resu lt spec of its 
p rocedure  name, apply.

exam ples:

4.21 R E T U R N  (1.1)
1.6 RESU LT i+ j (2.1)
5.19 c (3.1)

6.9 G O TO  A C TIO N  

syntax:
<goto action> ::= (1)

G O TO  <simpie name string> (1.1)
f

sem antics: The goto action causes a transfer of control. Action is resumed with the action statement labelled 
with the simple name string.
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static conditions: If the goto action is placed within a procedure or process definition, the label indicated 
by the simple name string must also be defined within the definition (i.e. it is not possible to jump 
outside a procedure or process invocation).

A handler must not be appended to a goto action.

6.10 ASSERT ACTION  

syntax:
< assert action> ::= (1)

ASSERT < boolean expression> (1.1)

semantics: The assert action provides a means of testing a condition.

dynamic conditions: The ASSERTFAIL exception occurs if the boolean expression delivers FALSE . 

examples:

4.7 ASSERT b>0 AND c>0 AND order>0 (1.1)

6.11 EM PTY ACTION  

syntax:
<empty action> ::= (1)

<empty> (1.1)

<empty> ::= (2)

semantics: The empty action does not cause any action.

static conditions: A handler must not be appended to an empty action.

6.12 CAUSE ACTION  

syntax:
Ccause action> ::= (1)

CAUSE <exception name> (1.1)

semantics: The cause action causes the exception whose name is indicated by exception name.

static conditions: A handler must not be appended to a cause action.

examples:

4.9 CAUSE wrong-input (1.1)

6.13 START ACTION  

syntax:
<start action> ::= (1)

<start expression> [ SET c instance location> ] (1.1)

derived syntax: The start action with the SET option is derived syntax for the single assignment action:
<instance location> := <start expression>

semantics: The start action evaluates the start expression (see section 5.2.14), possibly without using the
resulting instance value.
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14.45 START call-distributor ( )

examples:

( i . i )

6.14 S T O P  A C T IO N

syntax:
<stop action> (1)

S T O P  (1.1)

semantics: The stop action terminates the process executing the stop action (see section 9.1).

static conditions: A handler must not be appended to a stop action.

6.15 C O N T IN U E  A C TIO N  

syntax:
<continue action> ::= (1)

C O N T IN U E  < event location> (1-1)

semantics: The continue action allows the process of the highest priority, which is delayed on the specified 
event location, to be re-activated. If there is no unique process of the highest priority, one particular 
process of the highest possible priority will be selected according to an implementation defined 
scheduling algorithm. If there are no processes delayed on the specified event location, the continue 
action has no further effect (see chapter 9 for further details).

examples:

13.25 C O N T IN U E  resource-freed (1.1)

6.16 DELAY A C T IO N  

syntax:
< delay action> ::= (1)

DELAY < event location> [ < priority> ] (1.1)

<priority> ::= (2)
P R IO R IT Y  <integer literal expression> (2-1)

semantics: The delay action causes the process executing it to become delayed. It can become re-activated by
a continue action on the event location specified. The priority indicates the priority of the delayed
process within the set of processes which are delayed on the indicated event location. The default
and lowest priority is 0 (see chapter 9 for further details).

static conditions: The integer literal expression must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if the mode of the event location has a length
attached and the number of processes delayed on the specified event location is equal to the length 
just after the evaluation of the event location. This exception occurs before the delaying of the 
process.

The lifetime of the delivered event location must not end while the process executing the delay action 
is delayed on it.

examples:

13.18 DELAY resource-freed (1-1)

Fascicle VI.12 -  Rec Z.200 87



6.17 DELAY CASE ACTION

syntax:
<delay case action> ::= (1)

DELAY CA SE [ { SET  <instance location> [ <priority> ] ; | <priority> ;} ].
{ < delay alternative>} +
ESA C (1.1)

< delay alternative> ::= (2)
(<event list>) : <action statement list> (2-1)

< event list> ::= (3)
< event location> { ,< event location>} * (3.1)

sem antics: The delay case action causes the process executing it to become delayed. It can become re-activated 
by a continue action on one of the specified event locations. In that case an action statement list 
that is labelled by the event location on which the continue action, that re-activated the process, 
was performed, will be executed (see chapter 9 for further details). Before the process becomes 
delayed, each event location and the instance location if specified, will be evaluated. They will 
all be evaluated in an unspecified and possibly mixed order. If two or more evaluations deliver the 
same event location, the choice of an action statement list is non-deterministic.

If an instance location is specified, the instance value identifying the process that executed the 
activating continue action, will be stored into the instance location.

s ta tic  conditions: The mode of the instance location must not have the read-only  p roperty . The
integer literal expression in priority must not deliver a negative value.

dynam ic conditions: The DELAYFAIL exception occurs if the mode of at least one event location has a
length attached such that the number of delayed processes on the specified event location is equal 
to the length after the evaluation of the event location. This exception occurs before the delaying 
of the process.

The lifetime of none of the delivered event locations must end while the process executing the delay 
case action is delayed on it.

exam ples:

14.26 DELAY CA SE
(operator-is-ready): /*  some actions */
(switch-is-dosed): DO FO R  i IN  IN T  (1:100);

C O N T IN U E  operator-is-ready;
/*  empty the queue */
OD ;

ESA C (1.1)

6.18 SEN D  A C T IO N

6.18.1 G eneral 

syntax:
<send action> ::= (1)

<send signal action> (1.1)
| <send buffer action> (1-2)

sem antics: The send action initiates the transfer of synchronisation information, from a sending process. The 
detailed semantics depend on whether the synchronisation object is a signal or a buffer.
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6.18.2 Send signal action

syntax:
<send signal action> ::= (1)

SEND <signalname> [(<value> { ,<value>} *) ]
[ TO < instance primitive value> ] [ <priority> ] (1.1)

semantics: The specified signal is sent together with the list of values and priority (if present). The default 
and lowest priority is 0. If the signal name has a process name attached, it means that only processes 
of that name may receive the signal. If the TO option is specified, it identifies the only process 
that may receive the signal. This process identification must not be in contradiction with a possible 
process name attached to the signal name. If neither an instance primitive value is specified nor a 
process name is attached to the signal name, the signal may be received by any process.

static conditions: The number of value occurrences must be equal to the number of modes of the signal
name. The class of each value must be compatible with the corresponding mode of the signal name. 
No value occurrence may be intra-regional (see section 9.2.2). The integer literal expression in 
priority must not deliver a negative value.

dynamic conditions: The assignment conditions of each value, with respect to its corresponding mode of
the signal name, apply.

The EM PTY  exception occurs if the instance primitive value delivers NULL .

The EXTIN CT  exception occurs if and only if the lifetime of the process indicated by the value 
delivered by the instance primitive value has terminated at the point of the execution of the send 
signal action.

The SENDFAIL exception occurs if the signal name has a process name attached which is not the 
name of the process indicated by the value delivered by the instance primitive value.

examples:

15.78 SEND ready TO received- user (1.1)
15.86 SEND readout(count) TO user

6.18.3 Send buffer action

syntax:
<send buffer action> ::= (1)

SEND <buffer location>(<value>) [ <priority> ] (1.1)

semantics: The specified value together with the priority is stored into the buffer location if its capacity
allows for it. The latter is not the case if the mode of the buffer location has a length attached 
and the number of values stored in the buffer is equal to the length just prior to the execution of 
the send buffer action. As a result, the sending process will become delayed until there is capacity 
in the buffer location or until the value sent is consumed. The default and lowest priority is 0 (see 
chapter 9 for further details).

static conditions: The class of the value must be compatible with the buffer element mode mode of
the mode of the buffer location. The value must not be intra-regional (see section 9.2.2). The
integer literal expression in priority must not deliver a negative value.

dynamic conditions: For the send buffer action, the assignment conditions of the value with respect to the 
buffer element mode of the mode of the buffer location apply. The possible exceptions occur before 
the delaying of the process.

The lifetime of the delivered buffer location must not end while the process executing the send 
buffer action is delayed on it.
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16.119 SEND user-> ([ready, -> counter- buffer])

examples:

(1 .1)

6.19 RECEIVE CASE ACTION

6.19.1 General 

syntax:
<receive case action> ::== (1)

<receive signal case action> (1.1)
| <receive buffer case action> (1.2)

semantics: The receive case action receives synchronisation information that is transmitted by the send
action. The detailed semantics depend on the synchronisation object used, which is either a signal 
or a buffer. Entering a receive case action does not necessarily result in a delaying of the executing 
process (see chapter 9 for further details).

6.19.2 Receive signal case action 

syntax:
Creceive signal case action> ::= (1)

RECEIVE CASE [ SET < instance location>;\
{ <signal receive alternative>} +
[ ELSE < action statement list> ] ESAC (1-1)

<signal receive alternative> ::= (2)
(<signal name> [ IN  cdeGning occurrence list> ]) : <action statement list> (2-1)

semantics: The receive signal case action receives a signal, possibly with a list of values, the signal name of 
which is specified in a signal receive alternative.

When the receive signal case action is entered the instance location is evaluated and if a signal of one
of the specified names which may be received by a process executing it is present for reception, the 
signal is received. If no such signal is present and if ELSE is not specified, the process executing the 
receive signal case action becomes delayed; if ELSE is specified, the action statement list following 
it will be entered.

When a signal is received, the action statement list labelled with the signal name of the received 
signal, will be entered. If more than one signal may be received, a signal of the highest priority will 
be selected according to an implementation defined scheduling algorithm. If the signal name has a 
list of modes attached, i.e. a list of values is sent with the signal, a list of defining occurrences must 
be specified after IN .
They define value receive names denoting the received values. If in the reach in which the receive 
signal case action is placed, an access name is visible which is equal to an introduced name, the 
received value will be stored into the denoted location immediately after signal reception and before 
the execution of the action statement list.

If the SET option is specified and if the signal is received, the instance value denoting the process 
that has sent the received signal will be stored into the instance location immediately after signal 
reception and before entering the signal receive alternative.

static properties: A deGning occurrence in the deGning occurrence list of a signal receive alternative defines 
a value receive name. Its class is the M-value class, where M is the corresponding mode of the 
signal name in front of it. If a name is visible in the reach where the signal receive case action is 
placed, which is equal to one of the names introduced after IN , the value receive name is explicit; 
otherwise, it is implicit.

static conditions: The mode of the instance location must not have the read-only property.

All signal name occurrences must be different.
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The optional IN  and the deGning occurrence list in the signal receive alternative must be specified 
if and only if the signal name has a non-empty set of modes. The number of names in the deGning 
occurrence Ust must be equal to the number of modes of the signal name.

If the value receive name is explicit, the externally visible name must be an access name and its 
mode must be com patib le with the class of the value receive name. The mode of the access name 
must not have the read-only p roperty ; if it has the referencing p ro p erty  then the access name 
must be extra-regional.

dynam ic conditions: If the value receive name is explicit, the assignment conditions of the received value 
with respect to the mode of the external access name apply. The possible exceptions occur after 
receiving the signal and before entering the action statement list.

The SPACEFAIL exception occurs if, when entering an action statement list, storage requirements 
cannot be satisfied.

exam ples:

15.83 R E C E IV E  CA SE
(step): count + := 1;
(terminate):

SEN D  readout(count) TO user;
EX IT  work-loop;

ESA C (1.1)

6.19.3 Receive buffer case action 

syntax:
<receive buffer case action> ::— (1)

R E C E IV E  CA SE [ SET <instance location>;]
{ <buffer receive alternative>} +
[ ELSE < action statement list> ]
ESA C (1.1)

< buffer receive alternative> ::= (2)
(< buffer location> IN  <deGning occurrence>) : <action statement list> (2-1)

sem antics: The receive buffer case action receives a value from a buffer location or from a sending process
delayed on a buffer location, which location is indicated in a buffer receive alternative.

When the receive buffer case action is entered the instance location is evaluated and if a value is 
present in, or a sending process is delayed on, one of the specified buffer locations, the value will be 
received and an action statement list labelled with a buffer location delivering the buffer location 
from which the value has been received, will be executed.

When the receive buffer case action is entered, the buffer locations are evaluated in an unspecified 
and possibly mixed order and they need only be evaluated up to a point sufficient to select an 
alternative. If none of the specified buffer locations contains a value and no sending process is delayed 
on a specified buffer location then if ELSE is not specified the executing process becomes delayed, if 
ELSE is specified the action statement list following it will be executed. If more than one value can 
be received, a value with the highest priority will be selected according to an implementation defined 
scheduling algorithm. If two or more buffer location occurrences deliver the same buffer location 
from which the value is received, the selection of the action statement list is non-deterministic.

The value is received immediately before entering the action statement list following the colon. The 
defining occurrence after IN  defines a value receive name denoting the received value. If in the 
reach where the buffer receive case action is placed, an access name is visible which is equal to a 
created value receive name, the received value is stored into the denoted location immediately 
before entering the action statement list.
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If the SE T  option is specified and if the value is received, the instance value denoting the process 
that has sent the received value will be stored into the instance location immediately after reception 
of the value and before entering the buffer receive alternative.

s ta tic  p roperties: A defining occurrence in a buffer receive alternative defines a value receive name. Its 
class is the M-value class, where M is the buffer elem ent mode of the mode of the buffer location 
labelling the buffer receive alternative.

If a name is visible in the reach where the receive buffer case action is placed, which is equal to the 
name introduced after IN  , the value receive name is called explicit; otherwise, it is im plicit.

s ta tic  conditions: The mode of the instance location must not have the read-only  p roperty .

If the value receive name is explicit, the externally visible name must be an access name and 
its mode must be com patib le with the class of the value receive name with the same name. 
The mode of the access name must not have the read-only  p roperty ; if it has the referencing 
p ro p erty  then the access name must be ex tra-reg ional.

dynam ic conditions: If the value receive name is explicit, the assignment conditions of the received value 
with respect to the mode of the external access name, apply. The possible exceptions occur after 
receiving the value and before entering the action statement list.

The SPACEFAIL exception occurs if, when entering an action statement list, storage requirements 
cannot be satisfied.

The lifetime of none of the delivered buffer locations must end while the process executing the 
receive buffer case action is delayed on it.
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7 INPUT AND OUTPUT

7.1 I /O  R E F E R E N C E  M OD EL

A model is used for the description of the input/output facilities in an implementation independent way; it 
distinguishes 3 states for a given association location : a free state, a file handling state and a data transfer 
state.

The diagram shows the three states and the possible transitions between the states.

ASSOCIATE

CONNECT

DISSOCIATE

The association location contains no value. 
No relation to an outside world object.

The association location contains an association. 
Operations like create and delete a file, 
or change its properties.

DISCONNECT

An access location is connected to the association 
location. Transfer data to/from a file : 
read and write operations.

The model assumes that objects, in implementations often referred to as datasets, files or devices, exist in the 
ou tside w orld, i.e., the external environment of a CHILL program. Such an outside world object is called 
a file in the model. A file can be a physical device, a communication line or just a file in a file management 
system; in general, a file is an object that can produce and/or consume data.

Manipulating a file in CHILL requires an association; an association is created by the associate operation and 
it identifies a file. An association has a ttr ib u tes ; these attributes describe the properties of a file that is or 
could be attached to the association.

In the free s ta te , there is no interaction or relation between the CHILL program and outside world objects. 
The associate operation changes the state of the model from the free state into the file hand ling  s ta te . 
This operation takes as one argument an association location and an implementation defined denotation for an 
outside world object for which an association must be created; additional arguments may be used to indicate 
the kind of association for the object and the initial values for the attributes of the association. A particular 
association also implies an (implementation dependent) set of operations that may be applied on the file that 
is attached to that association.

In the file handling state, it is possible to manipulate a file and its properties via an association, provided that 
the association enables the particular operation; for operations that change the properties of a file, an exclusive 
association for the file will be necessary in general.

The model assumes associations in general are exclusive : i.e., only one association exists at the same time for 
a given outside world object. However, implementations may allow the creation of more associations for the 
same object, provided that the object can be shared among different users (programs) and/or among different
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associations within the same program. All operations in the file handling state take an association as an 
argument.

The dissociate operation is used to end an association for an outside world object; this operation causes 
transition from the file handling state back to the free state.

Transferring data to or from a file is possible only in the d a ta  tran sfe r sta te ; transfer operations require an 
access location to be connected to an association for that file. The connect operation connects an access 
location to an association and changes the state of the model into the data transfer state. The operation takes 
an association location and an access location as arguments; the association location contains an association for 
the file to, or from, which data can be transferred via the access location. Additional arguments of the connect 
operation denote for which type of transfer operations the access location must be connected, and to which 
record the file must be positioned. At most one access location can be connected to an association location at 
any one time.

The disconnect operation takes an access location as argument and disconnects it from the association it is 
connected to; it changes the state of the model back to the file handling state.

In the data transfer state, an access location must be used as an argument of a transfer operation; there are 
two transfer operations provided, namely, a read  operation to transfer data from a file to the program and a 
w rite  operation to transfer data from the program to a file. The transfer operations use the record mode of 
the access location to transform CHILL values into records of the file, and vice versa.

A file is viewed in the model as an a rray  of values; each element of this array relates to a record of the file. 
The element mode of this array is determined by the connect operation to be the record mode of the access 
location being connected. An index value is assigned to each record of the file; this value uniquely identifies 
each record of the file. In the description of the connect and transfer operations, three special index values will 
be used, namely, a base index, a cu rren t index and a tran sfe r index. The base index is set by the connect 
operation and remains unchanged until a subsequent connect operation; it is used to calculate the transfer index 
in transfer operations and the current index in a connect operation. The transfer index denotes the position 
in the file where a transfer will take place; the current index denotes the record to which the file currently is 
positioned.

7.2 A SSO C IA TIO N  VALUES

7.2.1 G eneral

An association value reflects the properties of a file that is or could be attached to it. A particular association 
value also implies an (implementation dependent) set of operations on the file that is possibly attached to it.

Association values have no denotation but are contained in locations of assocation mode; there exists no ex­
pression denoting a value of association mode. Association values can only be manipulated by built-in routines 
that take an association location as parameter.

7.2.2 A ttrib u te s  of association values

An association value has attributes; the attributes describe the properties of the association and the file that 
may or could be attached to it.

The following attributes are language defined :

• ex isting  : indicating that a (possibly empty) file is attached to the association;

• readab le  : indicating that read operations are possible for the file when it is attached to the association;

•  w riteab le  : indicating that write operations are possible for the file when it is attached to the association;

•  indexable : indicating that the file, when it is attached to the association, allows for random access to 
its records;
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• sequencible : indicating that the file, when it is attached to the association, allows for sequential access 
to its records;

• varying : indicating that the size of the records of the file, when it is attached to the association, may 
vary within the file.

These attributes have a boolean value; the attributes axe initialized when the association is created and may be 
updated as a consequence of particular operations on the association. This list comprises the language defined 
attributes only; implementations may add attributes according to their own needs.

7.3 ACCESS VALUES

7.3.1 General

Access values are contained in locations of access mode. An access location is necessary to transfer data from 
or to a file in the outside world.

Access values have no denotation but are contained in locations of access mode; there exists no expression 
denoting a value of access mode. Access values can only be manipulated by built-in routines that take an access 
location as parameter.

7.3.2 Attributes of access values

Access values have attributes that describe their dynamic properties, the semantics of transfer operations, and 
the conditions under which exceptions can occur.

CHILL defines the following attributes :

• usage : indicating for which transfer operation(s) the access location is connected to an association; the 
attribute is set by the connect operation.

• outoffile : indicating whether or not the transfer index calculated by the last read operation was in the 
file; the attribute is initialized to FALSE by the connect operation and is set by every read operation.

7.4 BUILT-IN ROUTINES FOR IN PU T OUTPUT

7.4.1 General

Language defined built-in routines are defined for operations on association locations and access locations, and 
for inspecting and changing the attributes of their values.

syntax:
<io CHILL value built-in routine call> (1)

<association a ttr io CHILL value built-in routine call> (1-1)
| <isassociated io CHILL value built-in routine call> (1-2)
| < access a ttr io CHILL value built-in routine call> (1-3)
| <readrecord io CHILL value built-in routine call> (1-4)

<io CHILL simple built-in routine call> (2)
<dissociate io CHILL simple built-in routine call> (2-1)

| <modification io CHILL simple built-in routine call> (2.2)
| < connect io CHILL simple built-in routine call> (2.3)
| < disconnect io CHILL simple built-in routine call> (2-4)
| <writerecord io CHILL simple built-in routine call> (2-5)

<io CHILL location built-in routine call> ::= (3)
<associate io CHILL location built-in routine call> (3-1)
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The built-in routines will be described in the following sections.

7.4.2 Associating an outside world object

syntax:
< associate io CHILL location built-in routine call> ::= (1)

ASSOCIATE f<association location>[,<associate parameter list> ] ) ( l . l j

<isassociated io CHILL value built-in routine call> ::= (2)
ISASSOCIATED (< association location>) (2-1)

<associate parameter list> ::= (3)
<associate parameter> { ,<associate parameter> } * (3-1)

< associate parameter> ::= (4)
<location> (4.1)

| <value> (4.2)

semantics: ASSOCIATE  creates an association to an outside world object. It initializes the association
location with the created association. It initializes the attributes of the created association. The 
association location is also returned as a result of the call. The particular association that is created 
is determined by the locations and/or values occurring in the associate parameter list; the modes 
(classes) and the semantics of these locations (values) are implementation defined.

ISASSOCIATED  returns TRUE if association location contains an association and FALSE other­
wise.

static properties: The class of an ISASSOCIATED  built-in routine call is the BOOL -derived class. The
mode of an ASSOCIATE built-in routine call is the mode of the association location.

static conditions: The mode and the class of each associate parameter is implementation defined.

dynamic conditions: ASSOCIATE  causes the ASSOCIATEFAIL exception if the association location already 
contains an association or if the association cannot be created due to implementation defined reasons.

example:
20.21 ASSOCIATE (£le-association, ’D SK^ECO RD S.D AT’); (1.1)

7.4.3 Dissociating an outside world object

syntax:
< dissociate io CHILL simple built-in routine call> ::= (1)

DISSOCIATE (<association location>) (1-1)

semantics: DISSOCIATE terminates an association to an outside world object. An access location that
is still connected to the association contained in an association location is disconnected before the 
association is terminated.

dynamic conditions: DISSOCIATE causes the NOTASSOCIATED  exception if association location does not 
contain an association.

example:
22.38 DISSOCIATE (association); (1-1)
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7.4.4 Accessing association attributes

syntax:
< association a ttr io CHILL value built-in routine call> ::= (1)

EXISTING (<association location>) (1.1)
| READABLE {< association location>) fJ.2j
| WRITEABLE (<association location>) (1-3)
| INDEXABLE (<association location>)
| SEQUENCIBLE (<association location>) (1.5J
| VARYING (<association location> ) fl.6j

semantics: EXISTING  , READABLE  , W RITEABLE  , INDEXABLE  , SEQUENCIBLE and VARYING
return respectively the value of the existing-, readable-, writeable-, indexable-, sequencible- 
and varying-attribute of the association contained in association location.

static properties: The class of an association a ttr io CHILL value built-in routine call is the BOOL -derived 
class.

dynamic conditions: The association a ttr io CHILL value built-in routine call causes the NOTASSOCIATED  
exception if association location does not contain an association.

7.4.5 M odifying association attributes

syntax:
<modi£cation io CHILL simple built-in routine call> (1)

CREATE (<association location>) (1.1)
| DELETE (<association location>) (T.2)
| MODIFY (<a§sociation location>[,<modify parameter list> ]) (1-3)

<modify parameter list> (2)
<modify parameter> { , <modify parameter> } * (2.1)

<modify parameter> ::= (3)
<value> (3.1)

| <location> (3-2)

semantics: CREATE creates an empty file and attaches it to the association denoted by the association loca­
tion. The existing-attribute of the indicated association is set to TRUE if the operation succeeds.

DELETE detaches a file from the association denoted by association location and deletes the file. 
The existing-attribute of the indicated association is set to FALSE if the operation succeeds.

MODIFY provides the means of changing properties of an outside world object for which an asso­
ciation exists and that is denoted by association location; the locations and/or values that occur in 
modify parameter list describe how the properties must be modified. The modes (classes) and the 
semantics of these locations (values) are implementation defined.

dynamic conditions: C REATE , DELETE and MODIFY cause the NOTASSOCIATED  exception if association 
location does not contain an association.

CREATE causes the CREATEFAIL exception if one of the following conditions occurs :

• the existing-attribute of the association is TRUE;

• the creation of the file fails (implementation defined).

DELETE  causes the DELETEFAIL exception if one of the following conditions occurs :
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•  the existing-attribute of the association is FALSE;

example:

• the deletion of the file fails (implementation defined).

MODIFY  causes the MODIFYFAIL -exception if the properties, defined by modify parameter list 
cannot or may not be modified; the conditions under which this exception can occur are implemen­
tation defined.

21.39 CREATE (outassoc); (1.1)
21.69 DELETE (curassoc); ' (1-2)

7.4.6 Connecting an access location

syntax:
<connect io CHILL simple built-in routine call> ::= (1)

CONNECT (<access location>,<association location>,
< usage expression>[,<where expression>[,<index expression> ]]) (1.1)

< usage expression> (2)
<expression> (2-1)

<where expression> ::= (3)
<expression> (3-1)

Cindex expression> (4)
<expression> (4-1)

predefined set-modes: To control the connect operation, performed by the built-in routine CONNECT ,
two setmode names are predefined in the language, namely, USAGE and WHERE; the corresponding 
setmodes are SET ( READ O N LY , W RITEO N LY , READW RITE  ) and SET ( FIRST  , SAME  , 
L A S T ), respectively.

Values of the mode USAGE indicate for which type of transfer operations the access location must 
be connected to an association, while values of the mode WHERE indicate how the file that is 
attached to an association must be positioned by the connect operation.

semantics: CONNECT connects the access location to the association that is contained in association location;
there must be a file attached to the denoted association; i.e., the association’s existing-attribute 
must be TRUE.

The value that is delivered by usage expression indicates for which type of transfer operations the 
access location must be connected to the file. If the expression delivers READ O N LY , the connection 
is prepared for read operations only; if it delivers WRITEONLY  , the connection is set up for write 
operation only; if it delivers READW RITE  the connection is prepared for both read and write 
operations.

The indexable-attribute of the denoted association must be TRUE if the access location has an 
index mode, while the sequencible-attribute must be TRUE if the location has no index mode.

CONNECT (re)positions the file that is attached to the denoted association; i.e., it establishes a 
(new) base index and current index in the file. The (new) base index depends upon the value that 
is delivered by where expression :

• if where expression delivers FIRST  or is not specified, the base index is set to 0; i.e., the file 
is positioned before the first record;

• if where expression delivers SAME  , the base index is set to the current index in the file;
i.e., the file position is not changed;
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• if where expression delivers LAST  , the base index is set to N, where N denotes the number 
of records in the file; i.e., the file is positioned after the last record.

After a base index is set, a current index will be established by CONNECT . This current index 
depends upon the optional specification of an index expression :

• if no index expression is specified, the current index is set to the (new) base index;

• if an index expression is specified, the current index is set to 
base index +  NUM (v) -  NUM (1)
where 1 denotes the lower bound of the access location’s index mode and v denotes the 
value that is delivered by index expression.

If the access location is being connected for sequential write operations (i.e., the access location has 
no index mode and the usage expression delivers W RITEO N LY ), then those records in the file that 
have an index greater than the (new) current index will be removed from the file; i.e., the file may 
be truncated or emptied by CONNECT .

An access location that has no index mode cannot be connected to an association for read and write 
operations at the same time.

Any access location to which the denoted association may be connected will be disconnected implic­
itly before the association is connected to the location that is denoted by access location.

CONNECT initializes the outoffile-attribute of the access location to FALSE and sets the usage- 
attribute according to the value that is delivered by usage expression.

static conditions: The mode of access location must have an index mode if an index expression is specified;
the class of the value delivered by index expression must be com patible with that index mode.

The class of the value delivered by usage expression must be compatible with the USAGE-derived 
class.

The class of the value delivered by where expression must be compatible with the WHERE-derived 
class.

dynamic conditions: CONNECT causes the NOTASSOCIATED  exception if association location does not
contain an association.

CONNECT causes the CONNECTFAIL exception if one of the following conditions occurs:

• the association’s existing-attribute is FALSE;

• the association’s readable-attribute is FALSE and usage expression delivers READONLY  or 
READW RITE  ;

•  the association’s w riteable-attribute is FALSE and usage expression delivers W RITEONLY  
or READW RITE  ;

•  the association’s indexable-attribute is FALSE and access location has an index mode;

• the association’s sequencible-attribute is FALSE and access location has no index mode;

• where expression delivers SAME , while the association contained in association location is 
not connected to an access location;

• the association’s varying-attribute is FALSE and the access location has a dynamic record 
mode, while usage expression delivers WRITEONLY  or READW RITE  ;

•  the association’s varying-attribute is TRUE and the access location has a static record mode, 
while usage expression delivers READONLY or READW RITE  ;

• the access location has no index mode, while usage expression delivers READW RITE  ;
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•  the association contained in association location cannot be connected to the access location, 
due to implementation defined conditions.

CONNECT causes the RANGEFAIL exception if the index mode of access location is a range
mode and the index expression delivers a value which lies outside the bounds of that range mode.

exam ple:
20.22 CONNECT (record-Gle, tile-association, READW RITE ); (1.1)
20.24 READONLY (2.1)

7.4.7 D isconnecting an  access location

syntax:
<disconnect io CHILL simple built-in routine call> ::= (1)

DISCONNECT (<access location> ) ( i.i)

sem antics: DISCONNECT disconnects the access location denoted by access location from the association
it is connected to.

dynam ic conditions: DISCONNECT causes the NOTCONNECTED  exception if the access location is not
connected to an association.

7.4.8 Accessing a ttr ib u te s  of access locations

syntax:
< access a ttr io CHILL value built-in routine call> ::= (1)

GET ASSOCIATION (< access location>) (1-1)
| GETUSAGE (<access location>) (i.2)
| OUTOFFILE (<access location>) (i.3)

sem antics: GETASSOCIATION returns a reference value to the association location that the access location
is connected to; it returns NULL if the access location is not connected to an association.

GETUSAGE returns the value of the usage-attribute; i.e., READONLY  ( W RITEONLY  ) if the 
access location is connected only for read (write) operations, or READW RITE  if the access location 
is connected for both read and write operations.

OUTOFFILE returns the value of the outoffile-attribute of access location; i.e., TRUE if the last 
read operation calculated a transfer index that was not in the file, FALSE otherwise.

s ta tic  p roperties: The class of a GETASSOCIATION built-in routine call is the ASSOCIATION-reierence 
class.

The class of an OUTOFFILE built-in routine call is the BOOL -derived class.

The class of a GETUSAGE built-in routine call is the USAGf£-derived class.

dynam ic conditions: GETUSAGE and OUTOFFILE cause the NOTCONNECTED  exception if the access
location is not connected to an association.

exam ple:
21.47 OUTOFFILE (infiles ( FALSE)) (1.3)
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7.4.9 D ata transfer operations

syntax:
<readrecord io CHILL value built-in routine call> ::= (1)

READRECORD (<access location>[,<index expression> ] [,<store location> ]) (1.1)

< writerecord io CHILL simple built-in routine call> (2)
WRITERECORD (<access location>[,<index expression> ], <write expression>) (2.1)

<store location> ::= (3)
<static mode location> (3.1)

< write expression> (4)
< expression > (4.1)

N.B. - The syntax of the READRECORD  built-in routine is ambiguous but is resolved using the 
mode of access location.

semantics: For the transfer of data to or from a file, the built-in routines WRITERECORD  and READ­
RECORD  are defined. The access location must have a record mode, and it must be connected 
to an association in order to transfer data to or from the file that is attached to that association. 
The transfer direction must not be in contradiction with the actual value of the access location’s 
usage-attribute.

Before a transfer takes place, the transfer index; i.e., the position in the file of the record to be 
transferred, is calculated. If the access location has no index mode, the transfer index is the 
current index incremented by 1; if the access location has an index mode, the transfer index is 
calculated as follows :

transfer index := base index +  NUM (v) -  NUM (1) + 1

where 1 is the lower bound of the mode of the access location’s index mode and v denotes the 
value that is delivered by index expression. If the transfer of the record with the calculated transfer 
index has been performed successfully, the current index becomes the transfer index.

The read operation:.

READRECORD  transfers data from a file in the outside world to the CHILL program.

If the calculated transfer index is not in the file, the outoffile-attribute is set TRUE ; otherwise, 
the file is positioned and the record is read.

The record that is read must not deliver an undefined value; the effect of the read operation is 
implementation defined if the record being read from the file is not a legal value according to the 
record mode of the access location.

If a store location is specified, then the value of the record that was read is assigned to this location. 
If no store location is specified, the value will be assigned to an implicitly created location; the 
lifetime of this location ends when the access location is disconnected or reconnected. Whether the 
referenced location is created only once by the connect operation, or every time a read operation is 
performed, is not defined.

READRECORD  returns in both cases a reference value that refers to the (possibly dynamic mode) 
location to which the value was assigned.

The write operation:

WRITERECORD  transfers data from the CHILL program to a file in the outside world. The file 
is positioned to the record with the calculated index and the record is written.

After the record has been written successfully, the number of records is set to the transfer index, if 
the latter is greater than the actual number of records.
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The record written by WRITERECORD  is the value delivered by write expression; the class of this 
value may be dynamic only if the access location has a dynamic record mode.

static properties: The class of the READRECORD  built-in routine call is the M-reference class, where M is 
the record mode of the access location, if it has a static record mode, or a dynamically parameterised 
version of it, if the location has a dynamic record mode; the parameters of such a dynamically 
parameterised record mode are :

• the dynamic string length of the string value that was read in case of a string mode;

•  the dynamic upper bound of the array value that was read in case of an array mode;

• the list of (tag) values associated with the mode of the structure value that was read in case 
of a variant structure.

static conditions: The access location must have a record mode.

An index expression may not be specified if access location has no index mode and must be specified 
if the access location has an index mode; the class of the value delivered by index expression must 
be compatible with that index mode.

If store location is specified, then the mode of store location and the record mode of access location 
must be equivalent. The store location must be referable.

The mode of store location must not have the read-only property.

The class of the value delivered by write expression must be compatible with the record mode of 
the access location-, the class may be dynamic if and only if the access location has a dynamic record 
mode.

dynamic conditions: The READRECORD  and WRITERECORD  built-in routine call cause the NOTCON­
NECTED  exception if the access location is not connected to an association.

The READRECORD  or WRITERECORD  built-in routine call cause the RANGEFAIL exception 
if the index mode of access location is a range mode and the index expression delivers a value that 
lies outside the bounds of that range mode.

The READRECORD  built-in routine call causes the READFAIL exception if one of the following 
conditions occurs :

• the value of the usage-attribute is WRITEONLY  ;

•  the value of the outoffile-attribute is TRUE;

•  the reading of the record with the calculated index fails, due to outside world conditions.

The WRITERECORD  built-in routine call causes the WRITEFAIL exception if one of the following 
conditions occurs :

• the value of the usage-attribute is READONLY  ;

• the writing of the record with the calculated index fails, due to outside world conditions.

The WRITERECORD  built-in routine call causes the RANGEFAIL exception if the access location 
has a record mode that is a range mode and the write expression delivers a value which lies outside 
the bounds of this range mode.

If the RANGEFAIL exception or the NOTCONNECTED  exception occur then it occurs before the 
value of any attribute is changed and before the file is positioned.

example:
20.24 READRECORD (record-file, curindex, record-buffer); (1.1)
22.25 READRECORD (Gleaccess); (1.1)
20.32 WRITERECORD (record-ffle, curindex, record-buffer); (2.1)
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21.61 WRITERECORD (outGle, buffers( flag)); (2.1)
20.24 record_ buffer (3.1)
21.61 buffers( flag) f4.1)
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8 PROGRAM STRUCTURE

8.1 G E N ER A L

The do action, begin-end block, module, region, spec module, spec region, quasi module, quasi region, context, 
receive case action, procedure definition and process definition determine the program structure; i.e., they 
determine the scope of names and the lifetime of locations created in them.

• The word block will be used to denote:

-  the action statement list in the do action including the loop counter and while control;

-  the begin-end block;

-  the procedure definition excluding the result spec and parameter spec of all formal parameters 
of the formal parameter list;

-  the process definition excluding the parameter spec of all formal parameters of the formal pa­
rameter list;

-  the action statement list in a buffer receive alternative or in a signal receive alternative, including 
the defining occurrence of defining occurrence list afterTN ;

-  the action statement list after ELSE in a receive case action or handler;

-  the on-alternative in a handler.

•  The word m odulion will be used to denote

-  a module or region, excluding the contexts, defining occurrence and/or handler, if any;

-  a quasi module or a quasi region;

-  a spec module or spec region, excluding the contexts, if any;

-  a context.

• The word group  will denote either a block or a m odulion.

• The word reach  or reach  of a  group will denote that part of the group that is not surrounded (see 
section 8.2) by an inner group of the group (i.e., the part consisting of the outermost nesting level of the 
group).

A group influences the scope of each name c rea ted  in its reach.
Names are created by defining occurrences :

•  A defining occurrence in the defining occurrence list of a declaration, mode definition or synonym defini­
tion or appearing in a signal definition creates a name in the reach where the declaration, mode definition, 
synonym definition or signal definition, respectively, is placed.

• A defining occurrence in a set mode creates a name in the reach directly enclosing the set mode.

• A defining occurrence appearing in the defining occurrence list in a formal parameter list creates a name 
in the reach of the associated procedure definition or process definition.

• A defining occurrence in front of a colon followed by an action, region, quasi module, quasi region, 
procedure definition, entry definition or process definition creates a name in the reach where the ac­
tion, region, quasi module, quasi region, procedure definition, procedure definition containing the entry 
definition, process definition, respectively, is placed.

• A (virtual) defining occurrence introduced by a with part or in a loop counter creates a name in the 
reach of the block of the associated do action.
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• A deGning occurrence in the deGning occurrence Gst of a buffer receive alternative or a signal receive 
alternative creates a name in the reach of the block of the associated buffer receive alternative or signal 
receive alternative respectively.

•  A (virtual) deGning occurrence for a language predefined or an implementation defined name creates a 
name in the reach of the imaginary outermost process (see section 8.8).

The places where a name is used are called applied occurrences of the name. The name binding rules 
associate a deGning occurrence with each applied occurrence of the name (see section 10.2.2).

A name has a certain scope, i.e. that part of the program where its definition or declarations can be seen and, 
as a consequence, where it may be freely used. The name is said to be visible in that part. Locations and 
procedures have a certain lifetime, i.e. that part of the program where they exist. Blocks determine both 
visibility of names and the lifetime of the locations created in them. Modulions determine only visibility; the 
lifetime of locations created in the reach of a modulion will be the same as if they were created in the reach of 
the first surrounding block. Modulions allow for restricting the visibility of names. For instance, a name created 
in the reach of a module will not automatically be visible in inner or outer modules, although the lifetime might 
allow for it.

8.2 REACHES A N D  NESTING  

syntax:
<begin-end body> (1)

<data statement list> <action statement list> (1.1)

<proc body> ::= (2)
<data statement list> { < action statement> | <entry statement>} * (2-1)

<process body> ::= (3)
<data statement list> <action statement list> (3.1)

<module body> ::= (4)
{ <data statement> | <visibility statement> | <region> \ <spec region> } *

< action statement list> (4-1)

<region body> ::= (5)
{ <data statement> \ <visibility statement>} * (5-1)

<spec module body> (6)
{ < quasi data statement> | <visibility statement> | <quasi module> | <spec module>

I
<quasi region> \ <spec region> \ <quasi cause statement> } * (6-1)

<spec region body> ::= (7)
{ < quasi data statement> \ <visibihty statement> | < quasi cause statement> }* (7.1)

<context body> ::= (8)
{ < quasi data statement> | <visibility statement> | <quasi module> \ <spec module>

1< quasi region> \ <spec region> } * (8.1)

< quasi module body> ::= (9)
{ <quasi data statement> | <visibility statement> | <quasi module> \ <spec module>

1 <quasi region> \ <spec region> }* (9.1)

< quasi region body> ::= (10)
{ <quasi data statement> | <visibiUty statement> } * (10-1)

<action statement list> (11)
{ < action statement>} * (H-l)
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<data statement list> ::= (12)
{ <data statement>} * (12.1)

<data statement> ::= (13)
< declaration statement> (13.1)

| <deGnition statement> (13.2)

< deGnition statement> ::= (14)

<synmode deGnition statement> (14.1)
| <newmode deGnition statement> (14.2)
| <synonym deGnition statement> (14.3)
| <procedure deGnition statement> (14.4)
| <process deGnition statement> (14.5)
| <signal deGnition statement> (14.6)
| <empty>; (14.7)

semantics: When a reach of a block is entered, all the lifetime-bound initialisations of the locations created 
when entering the block are performed. Subsequently the reach-bound initialisations in the block 
reach and the possibly dynamic evaluations in the loc-identity declarations axe performed in the 
order they axe textually specified.

When a reach of a modulion is entered, the reach-bound initialisations and the possibly dynamic 
evaluations in the loc-identity declarations in the modulion reach axe performed in the order they 
are textually specified.

static properties: Any reach is directly enclosed in zero or more groups as follows:

• If the reach is the reach of a do action, begin-end block, procedure deGnition, process deGni­
tion, then it is directly enclosed in the group in whose reach the do action, begin-end block, 
procedure deGnition or process deGnition, respectively, is placed, and only in that group.

• If the reach is the action statement Gst, or a buffer receive alternative, or signal receive 
alternative, or the action statement list following ELSE in a receive buffer case action or 
receive signal case action, then it is directly enclosed in the group in whose reach the receive 
buffer case action or receive signal case action is placed, and only in that group.

•  If , in a handler which is not appended to a group, the reach is the action statement Gst in 
an on-alternative or the action statement list following ELSE , then it is directly enclosed 
in the group in whose reach the statement to which the handler is appended, is placed, and 
only in that group.

• If the reach is an on-alternative or action statement Ust after ELSE of a handler which 
is appended to a group, then it is directly enclosed in the group to which the handler is 
appended, and only in that group.

•  If the reach is a module, region, spec module or spec region, then it is directly enclosed in the 
group in whose reach it is placed, and also directly enclosed in the context directly in front 
of the module, region, spec module or spec region, if any. This is the only case where a reach 
has more than one directly enclosing group.

•  If the reach is a context then it is directly enclosed in the context directly in front of it. If 
there is no such context, it has no directly enclosing group.

A reach has directly enclosing reaches that axe the reaches of the directly enclosing groups. A 
statement has a unique directly enclosing group, namely, is the group in which the statement is 
placed. A reach is said to directly enclose a group (reach) if and only if the reach is a directly 
enclosing reach of the group (reach).

A statement (reach) is said to be surrounded by a group if and only if either the group is the directly 
enclosing group of the statement (reach) or a directly enclosing reach is surrounded by the group.

A reach is said to be entered when:
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• Module reach: the module is executed as an action (e.g., the module is not said to be entered 
when a goto action transfers control to a label name defined inside the module).

• Begin-end reach: the begin-end block is executed as an action.

• Region reach: the region is encountered (e.g., the region is not said to be entered when one 
of its critical procedures is called).

• Procedure reach: the procedure is entered via its main entry (i.e., not via an additionally 
defined entry point).

• Process reach: the process is activated via a start statement.

• Do reach: the do action is executed as an action after the evaluation of the expressions or 
locations in the control paxt.

• Buffer-receive alternative reach, signal receive alternative reach: the alternative is executed 
on reception of a buffer value or signal.

• On-alternative reach: the on-alternative is executed on the cause of an exception.

An action statement list is said to be entered when and only when its first action, if present, receives 
control from outside the action statement list.

8.3 BEG IN -END BLOCKS 

syntax:
<begin-end block> ::= (1)

BEG IN <begin-end body> END (1.1)

semantics: A begin-end block is an action (compound action), possibly containing local declarations and
definitions. It determines both visibility of locally created names and the lifetimes of locally created
locations (see sections 8.9 and 10.2).

dynamic conditions: A SPACEFAIL exception occurs if the begin-end block requires local storage for which 
storage requirements cannot be satisfied.

examples: see 15.73 - 15.90

8.4 PROCEDURE DEFINITIONS  

syntax:
Cprocedure deGnition statement> ::= (1)

< deGning occurrence> : <procedure deGnition>
[ <handler> ] [ <simple name string>]; (1-1)

<procedure deGnition> ::= (2)
PROC ( [ < formal parameter Gst> ] ) [ <result spec> ]

[ EXCEPTIONS (< exception Gst>)] <procedure attributes>;
<proc body> END (2.1)

<formal parameter Gst> ::= (3)
<formal parameter> { ,<formal parameter>} * (3.1)

<formal parameter> ::= (4)
< deGning occurrence Ust> <parameter spec> (4.1)

<procedure attributes> ::= (5)
[ <generality> ] [ RECURSIVE ] (5.1)

<generality> (6)
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GENERAL (6.1)
| SIM PLE (6.2)
| INLINE (6.3)

< entry statement> (7)
< defining occurrence> : < entry definition >; (7. Jj

<entry deGnition> ::= (8)
ENTRY (8.1)

derived syntax: A formal parameter, where defining occurrence list consists of more than one defining
occurrence, is derived from several formal parameter occurrences, separated by commas, one for 
each deGning occurrence and each with the same parameter spec. For example: i, j  IN T  LOC is 
derived from i IN T  LOC , j I N T  LOC .

semantics: A procedure definition defines a (possibly) parameterised sequence of actions that may be called 
from different places in the program. Control is returned to the calling point either by executing a 
return action or by reaching the end of the proc-body or an on-alternative of a handler appended 
to the procedure definition (falling through). Different degrees of complexity of procedures may be 
specified as follows:

Simple procedures ( SIMPLE ) are procedures that cannot be manipulated dynamically. 
They are not treated as values, i.e. they cannot be stored in a procedure location nor can 
they be passed as parameters to or returned as result from a procedure call.

General procedures ( GENERAL ) do not have the restrictions of simple procedures and 
may be treated as procedure values.

Inline procedures ( INLINE ) have the same restrictions as simple procedures and they 
cannot be recursive. They have the same semantics as normal procedures, but the compiler 
will insert the generated object code at the point of invocation rather than generating code 
for actually calling the procedure.

Only simple and general procedures may be specified to be (mutually) recursive. When no proce­
dure attributes are specified, an implementation default will apply.

A procedure may return a value or it may return a location (indicated by the LOC attribute in the 
result spec).

The defining occurrence in front of the procedure definition defines the name of the procedure.

A procedure may have multiple entry points by means of entry statements. These statements are 
considered to be additional procedure definitions. The defining occurrence in the entry statement 
defines the name of the entry point in the procedure in which reach it is placed. The entry point is 
determined by the textual position of the entry statement.

parameter passing:

There are basically two parameter passing mechanisms: the ’’pass by value” and the ’’pass by 
location” ( LOC attribute). The attributes OUT and INOUT indicate variations of the pass by 
value mechanism.

pass by value

In pass by value parameter passing, a value is passed as a parameter to the procedure and stored in a 
local location of the specified parameter mode. The effect is as if, at the beginning of the procedure 
call, the location declaration: DCL <formal parameter deGning occurrence><mode> := <actual 
parameter>; were encountered. However, the initialisation cannot cause an exception inside the 
procedure body. Optionally, the keyword IN may be specified to indicate pass by value explicitly.

If the attribute INO UT is specified, the actual parameter value is obtained from a location, and 
just before returning, the current value of the formal parameter is restored in the actual location.

108 Fascicle VI. 12 -  Rec Z.200



The effect of OUT is the same as for INOUT with the exception that the initial value of the actual 
location is not copied into the formal parameter location upon procedure entry; therefore, the formal 
parameter has an undefined initial value. The store-back operation need not be performed if the 
procedure causes an exception at the calling point.

pass by location

In pass by location parameter passing, a (possibly dynamic mode) location is passed as a parameter 
to the procedure body. Only referable locations can be passed in this way. The effect is as if at 
the entry point of the procedure the loc-identity declaration statement: DCL <formal parameter 
defining occurrence><mode> LOC [ DYNAM IC ] := <actual parameter>; were encountered. 
However, such a declaration cannot cause an exception inside the procedure body.

If a value is specified that is not a location, a location containing the specified value will be implicitly 
created and passed at the point of the call. The lifetime of the created location is the procedure 
call. The mode of the created location is dynamic if the value has a dynamic class.

result transmission:

Both a value and a location may be returned from the procedure. In the first case, a value is specified 
in any result action, in the latter case, a location (see section 6.8). The returned value or location is 
determined by the most recently executed result action before returning. If a procedure with a result 
spec returns without having executed a result action, the procedure returns an undefined value or 
an undefined location. In this case the procedure call may not be used as a location procedure 
call (see section 4.2.11) nor as a value procedure call (see section 5.2.12), but only as a call action 
(section 6.7).

register specification:

Register specification can be given in the formal parameter of the procedure and in the result spec. 
In the pass by value case, it means that the actual value is contained in the specified register; in the 
pass by location case, it means that the (hidden) pointer to the actual location is contained in the 
specified register. If the specification is in the result spec it means that the returned value or the 
(hidden) pointer to the returned location is contained in the specified register.

static properties: A defining occurrence in a procedure definition statement and an entry statement defines 
a procedure name.

A procedure name has a procedure definition attached that is defined as:

• If the procedure name is defined in a procedure definition statement, then the procedure 
definition in that statement.

• If the procedure name is defined in an entry statement, then the procedure definition in 
whose reach the entry statement is placed.

A procedure name has the following properties attached, as defined by its procedure definition:

•  It has a list of parameter specs that are defined by the parameter spec occurrences in the 
formal parameter list, each parameter consisting of a mode, possibly a parameter attribute 
and/or register name.

• It has possibly a result spec, consisting of a mode, possibly a result attribute and/or register 
name.

• It has a possibly empty set of exception names, which are the names mentioned in exception 
list.

•  It has a generality that is, if generality is specified, either general or sim ple or inline, 
depending on whether GENERAL , SIM PLE or INLINE is specified; otherwise, an 
implementation default specifies general or simple. If the procedure name is defined 
inside a region, its generality is simple.
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•  It has a recursivity which is recursive if RECURSIVE is specified; otherwise, an imple­
mentation default specifies either recursive or non-recursive. However, if the generality 
is inline, or if the procedure name is critical (see section 9.2.1) the recursivity is non­
recursive.

A procedure name that is general is a general procedure name. A general procedure name 
has a procedure mode attached, formed as:
PROC ([ <parameter list> ]) [ <resvlt spec> )
[ E X C E PT IO N S (<exception list>)] [ R E C U R SIV E  ]
where <result spec>, if present, and <exception list> are the same as in its procedure deGnition 
and < parameter list> is the sequence of < parameter spec> occurrences in the formal parameter 
list, separated by commas.

A name defined in a deGning occurrence list in the formal parameter is a location name if and 
only if the parameter spec in the formal parameter does not contain the LOC attribute. If it does 
contain the LOC attribute, it is a loc-identity name. Any such a location name or loc-identity 
name is referable.

static conditions: If a procedure name is intra-regional (see section 9.2.2), its procedure definition must 
not specify GENERAL .

If a procedure name is critical (see section 9.2.1), its definition may specify neither G E N ER A L 
nor R E C U R S IV E  .

No procedure definition may specify both INLINE and RECURSIVE .

If specified, the simple name string must be equal to the name string of the deGning occurrence in 
front of the procedure deGnition.

Only if LOC is specified in the parameter spec or result spec may the mode in it have the non-value 
property.

All exception names mentioned in exception Mst must be different.

examples:

1.4 add:
PROC ( i , j INT ) ( I N T  ) EXCEPTIONS (OVERFLOW);

RESU LT i+ j
EN D add; (1.1)

8.5 PROCESS DEFINITIO NS  

syntax:
<process deGnition statement> ::= (1)

<deGning occurrence> : <process deGnition>
[ <handler> ] [ <simple name string> ]; (1.1)

/

<process deGnition> (2)
PROCESS ( [ < formal parameter Ust> ] ); <process body> END (2.1)

semantics: A process definition defines a possibly parameterised sequence of actions that may be started for 
concurrent execution from different places in the program (see chapter 9).

static properties: A deGning occurrence in a process deGnition statement defines a process name.

static conditions: If specified, the simple name string must be equal to the name string of the deGning
occurrence in front of the process deGnition.

A process deGnition statement must not be surrounded by a region or by a block other than the 
imaginary outermost process definition (see section 8.8).
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Only if LOC is specified in the parameter spec in a formal parameter in the formal parameter list 
may the mode in it have the non-value property.

examples: 
14.13 PROCESS (); 

wait: 
PROC ( x I N T ) ;

/*some wait action*/
EN D wait;
DO FOR EVER ;

wait(10 /*  seconds * / );
CONTINUE operator-is-ready;

OD ;
EN D  (2.1)

The parameter attributes in the formal parameter list must not be INO UT nor OUT .

8.6 MODULES 

syntax:
<module> ::= (1)

[ <contexts> ] [ <defining occurrences]
M ODULE <module body> EN D  [ <handler> ] [ <simple name string> ]; (1-1)

| [ <contexts> ] <remote module> (1-2)

semantics: A module is an action statement possibly containing local declarations and definitions. A module
is a means of restricting the visibility of name strings; it does not influence the lifetime of the locally
declared locations.

The detailed visibility rules for modules are given in section 10.2.

static properties: A defining occurrence in a module defines a module name as well as a label name. The 
name has the module (seen as a modulion i.e., excluding the contexts, defining occurrence, handler, 
if any) attached.

static conditions: If specified, the simple name string must be equal to the name string of the deGning
occurrence.

examples: 
7.48 MODULE

SEIZE convert;
DCL n IN T  INIT := 1979;
DCL rn CHAR (20) INIT (20/
G RANT n,rn; 

convert ();
ASSERT rn = ,M DCCCCLXXVH ir//(6y  

EN D  (1.1)

8.7 REGIONS 

syntax:
<region> ::= (1)

[ <contexts> ] [ < deGning occurrence> :] REGION <region body> END  
[ <handler> ] [ <simple name string> ]; (1.1)

| [ <contexts> ] <remote region>; (1-2)

semantics: A region is a means of providing mutually exclusive access to its locally declared data objects
for the concurrent executions of processes (see chapter 9). It determines visibility of locally created
names in the same way as a module.
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static properties: A defining occurrence in a region defines a region name. It has the region (seen as a
modulion i.e., excluding the contexts, defining occurrence, handler, if any) attached.

static conditions: If specified the simple name string must be equal to the name string of the defining
occurrence.

A region must not be surrounded by a block other than the imaginary outermost process definition. 

examples: see 13.1 - 13.28

8.8 PROGRAM  

syntax:
< program> ::= (1)

{ <module> | <spec module> \ <region> \ <spec region>} + (1.1)

semantics: Programs consist of a list of modules or regions surrounded by an imaginary outermost process 
definition.

The definitions of the CHILL pre-defined names (see Appendix C2) and the implementation defined 
built-in routines, modes and register names are considered, for lifetime purposes, to be defined in 
the reach of the imaginary outermost process definition. For their visibility see section 10.2.

8.9 STORAGE ALLOCATION A N D  LIFETIME

The time during which a location or procedure exists within its program is its lifetime.

A location is created by a declaration or by the execution of a GETSTACK or an ALLOCATE  built-in routine 
call.

The lifetime of a location declared in the reach of a block is the time during which control lies in that block or 
in a procedure which call originated from that block, unless it is declared with the attribute STATIC . The 
lifetime of a location declared in the reach of a modulion is the same as if it were declared in the reach of the 
closest surrounding block of the modulion. The lifetime of a location declared with the attribute STATIC is 
the same as if it were declared in the reach of the imaginary outermost process definition. This implies that 
for a location declaration with the attribute STATIC , storage allocation is made only once, namely, when 
starting the imaginary outermost process. If such a declaration appears inside a procedure definition or process 
definition, only one location will exist for all invocations or activations.

The lifetime of a location created by executing the GETSTACK  built-in routine call is the time during which 
control lies in the directly enclosing block or in a procedure which call originated from that block.

The lifetime of a location created by an ALLOCATE built-in routine call is the time starting from the ALLO­
CATE call until the time that the location cannot be accessed anymore by any CHILL program. The latter is 
always the case if a TERMINATE  built-in routine call is done on an allocated reference value that references 
the location.

The lifetime of an access created in a loc-identity declaration is the directly enclosing block of the loc-identity 
declaration.

The lifetime of a procedure is the directly enclosing block of the procedure definition.

static properties: A location is said to be static if and only if it is a static mode location of one of the
following kinds:

• A location name that is declared with the attribute STATIC or whose definition is not 
surrounded by a block other than the imaginary outermost process definition.

• A string element or string slice where the string location is static and either the left element 
and right element, or start element and slice size are constant.
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•  An array element or array slice where the array location is s ta tic  and either the lower element 
and the upper element, or the first element and slice size are constan t.

• A structure field where the structure location is sta tic . If the structure location is not a 
varameterised structure location then the field name must not be a variant field name.

• A location conversion where the location occurring in it is sta tic .

8.10 C O N ST R U C T S FO R  P IE C E W IS E  PR O G R A M M IN G

8.10.1 R em ote pieces 

syntax:
<remote module> ::= (1)

[ <simple name string> :] M O D U LE R E M O T E  <source text designator>; (1.1)

<remote region> ;:= (2)
[ <simple name string>:] R E G IO N  R E M O T E  <source text designator>; (2.1)

<remote spec module> ::= (3)
[ <simpie name string>:] SPE C  M O D U LE R E M O T E  <source text designator>;(3.1)

<remote spec region> ::= (4)
[ <simple name string>:] SPE C  R E G IO N  R E M O T E  <source text designator>; (4.1)

<remote context> ::= (5)
C O N T E X T  R E M O T E  <source text designator> FO R  (5.1)

<source text designator> (6)
< character string literal> (6.1)

| < text reference name> (6-2)
| <empty> (6.3)

sem antics: Remote modules, remote regions, remote spec modules, remote spec regions and remote contexts 
are means to represent the source text of a program as a set of (interconnected) files.

A source text designator refers in an implementation defined way to a piece of CHILL source text, 
as follows :

• If the source text designator is empty, the source text is retrieved from the structure of the 
program in which it is placed.

• If the source text designator contains a character string literal, the character string literal is 
used to retrieve the text.

• If the source text designator contains a text reference name, the text reference name is 
interpreted in an implementation defined way to retrieve the source text.

A program with remote modules (remote regions, remote spec modules, remote spec regions, remote 
contexts) is equivalent to the program built by replacing each remote module (remote region, remote 
spec module, remote spec region, remote context) by the piece of CHILL text referred to by its source 
text designator.

s ta tic  conditions: The source text designator in a (1. remote module, 2. remote region, 3. remote spec
module, 4. remote spec region, 5. remote context) must refer to a piece of source text which is a 
terminal production of a (1. a module which is not a remote module, 2. region which is not a remote 
region, 3. spec module which is not a remote spec module, 4. spec region which is not a remote 
spec region, 5. context which is not a remote context).
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When the source text referred to by the source text designator in a (1. remote module, 2. remote 
region) starts with a deGning occurrence, then the (1. remote module, 2. remote region) must start 
with a simple name string which is the name string of that deGning occurrence.

When the source text referred to by the source text designator in a (1. remote spec module, 2. 
remote spec region) starts with a simple name string, then the (1. remote spec module, 2. remote 
spec region) must start with the same simple name string.

exam ples:
25.9 M O D U LE R E M O T E  stack-code (1.1)
25.9 stack-code (6-2J

8.10.2 Spec m odules, spec regions and  contexts 

syntax:
<spec module> ::= (1)

[ <contexts> ] [ <simple name string> :] S PE C  M O D U LE
<spec module body> EN D  [ <simple name string> ]; fJ .lj

| <remote spec module> (1.2)

<spec region> (2)
[ <contexts> ] [ <simple name string> :] S PE C  R E G IO N
<spec region body> EN D  [ <simple name string> ]; (2-1)

| <remote spec region> (2-2)

<contexts> ::= (3)
<context> { <context> } * (3-1)

<context> ::= (4)
C O N T E X T  <context body> EN D  [ <quasi handler> ] FO R  (4-1)

| <remote context> (4-2)

sem antics: Spec modules, spec regions and contexts axe used to specify static properties of names. They are 
redundant but they can be used for piecewise programming.

Simple name strings in spec modules and spec regions are not names, they axe not bound, and they 
have no visibility rules.

s ta tic  conditions: In a spec module or a spec region, the optional simple name string following EN D  may 
only be present if the optional simple name string before SPE C  is present. When both are present, 
they must have equal name strings.
A context which has no directly enclosing group may not contain visibility statements.

exam ples:
23.1 letter-count:

S PE C  M O D U LE 
SEIZE m a x ;
count: PR O C  ( RO W  CHAR (max) IN  , ARRA Y ( ’A ’:’Z ’) IN T  O U T ); E N D  ; 
G R A N T  count ;

EN D  letter-count; (I-I)

24.1 C O N T E X T
count: PR O C  ( RO W  CHAR (max) IN  , ARRA Y ( ,A ,:,Z i) IN T  O U T ); EN D  ; 

E N D  FO R  (4.1)

8.10.3 Q uasi s ta tem en ts  

syntax:
<quasi data statement> ::— (1)

<quasi declaration statement> (I-1)
| < quasi deGnition statement> (1.2)
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< quasi declaration statement> ::= (2)
DCL <quasi declaration> {, <quasi declaration> } *; (2.1)

< quasi declaration> ::= (3)
<defining occurrence list> <mode>
[ STATIC ][ N O N R E F ][  D Y N A M IC  ] (3.1)

< quasi definition statement> ::= (4)
<synmode deGnition statement> (4.1)

| <newmode deGnition statement> (4-2)
| <synonym deGnition statement> (4.3)
| < quasi procedure deGnition statement> (4.4)
| < quasi process deGnition statement> (4-5)
| <signal deGnition statement> (4.6)
| <empty>; (4.7)

< quasi procedure deGnition statement> ::= (5)
<deGning occurrence> : PR O C  ( [ < quasi formal parameter Ust> ] )
[ <result spec> ] [ E X C E PT IO N S (<exception Gst>) ]
<procedure attributes> { <quasi entry statement> } *
EN D  [ <simple name string> ]; (5.1)

< quasi entry statement> ::= (6)
< deGning occurrence> : EN TR Y  ; (6.1)

< quasi formal parameter Ust> ::= (7)
<quasi formal parameter> {, <quasi formal parameter> } * (7.1)

< quasi formal parameter> ::= (8)
[ <simple name string> {, <simple name string> } *] <parameter spec> (8.1)

< quasi process deGnition statement> ::= (9)
<deGning occurrence> : PR O C E SS ( [ < quasi formal parameter Ust> ] )
EN D  [ <simple name string> ]; (9.1)

<quasi region> ::= (10)
[ < deGning occurrence> :] R E G IO N  < quasi region body>
EN D  [ <simple name string> ]; (10.1)

<quasi module> ::= (11)
[ < deGning occurrence> :] M O D U LE < quasi module body>
EN D  [ <simple name string> ]; (11.1)

< quasi cause statement> ::= (12)
CA U SE < exception Gst>; (12-1)

< quasi handler> ::= (13)
O N  ELSE EN D

| ON < exception Gst> [ EL SE J EN D  (12-1)

semantics: Quasi statements are used in spec modules, spec regions and contexts to specify static proper­
ties of names. These specifications are redundant, but quasi statements can be used for piecewise
programming.

Quasi cause statements indicate the presence of cause statements in remote modules or remote
regions directly enclosed in the reach directly enclosing the reach of the spec module or spec region
in which the quasi cause statement is placed.

static properties.
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The name defined by a defining occurrence in a quasi declaration is referable if NO NREF is not 
specified.

A deBning occurrence in front of REGION in a quasi region (in front of MODULE in a quasi 
module) defines a quasi region (quasi module) name with the quasi region (quasi module) at­
tached.

All deBning occurrences surrounded by a context, a spec module or a spec region are quasi deBning 
occurrences.

static conditions: Quasi statements axe restricted forms of the corresponding statements and are subject to 
their static conditions.

8.10.4 M atching between quasi defining occurrences and defining occurrences

The following rules apply :

•  If a name string in a reach that is not the reach of a quasi module, quasi region, spec module, spec 
region or context is bound to a quasi deBning occurrence, then it must also be bound to a deBning 
occurrence which is not a quasi deBning occurrence. The two deBning occurrences must have identical 
static properties (semantic category, referability, regionality, staticity, forbidden fields, ..., etc, when 
applicable). If the two deBning occurrences have a mode attached, or if their static properties involve 
a mode, then those two modes must be alike. If the quasi deBning occurrence is enclosed in the reach 
then the deBning occurrence which is not a quasi deBning occurrence must be surrounded by, but not 
directly enclosed in, the reach.

• In every reach, if name strings N1 and N2 are bound respectively to deBning occurrences D1 and D2 and 
quasi deBning occurrences Q1 and Q2 and if the modes of Q1 and Q2 are N-alike then the modes of 
D1 and D2 must also be N-alike.
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9 CONCURRENT EXECUTION

9.1 PROCESSES A N D  THEIR DEFINITIONS

A process is the sequential execution of a series of statements. It may be executed concurrently with other 
processes. The behaviour of a process is described by a process definition (see section 8.5), that describes 
the objects local to a process and the series of action statements to be executed sequentially.

A process is created by the evaluation of a start expression (see section 5.2.14). It becomes active (i.e., 
under execution) and is considered to be executed concurrently with other processes. The created process is 
an activation of the definition indicated by the process name of the process definition. An unspecified number 
of processes with the same definition may be created and may be executed concurrently. Each process is 
uniquely identified by an instance value, yielded as the result of the start expression or the evaluation of the 
THIS operator. The creation of a process causes the creation of its locally declared locations, except those 

declared with the attribute STATIC (see section 8.9), and of locally defined values and procedures. The locally 
declared locations, values and procedures are said to have the same activation as the created process to which 
they belong. The imaginary outermost process (see section 8.8), which is the whole CHILL program under 
execution, is considered to be created by a start expression executed by the system under whose control the 
program is executing. At the creation of a process, its formal parameters, if present, denote the values and 
locations as delivered by the corresponding actual parameters in the start expression.

A process is term inated by the execution of a stop action or by reaching the end of the process body or the 
end of an on-alternative of a handler specified at the end of the process definition (falling through). If the 
imaginary outermost process executes a stop action or falls through, the termination will be completed when 
and only when all its subsidiary processes (i.e., processes created by start expressions in it) are terminated.

A process is, at the CHILL programming level, always in one of two states: it is either active (i.e., under 
execution) or delayed (i.e., waiting for a condition to be fulfilled). The transition from active to delayed is 
called the delaying of the process; the transition from delayed to active is called the re-activation of the 
process.

9.2 M UTUAL EXCLUSION A N D  REGIONS

9.2.1 General

Regions (see section 8.7) are a means of providing processes with mutually exclusive access to locations declared 
in them. Static context conditions (see section 9.2.2) are made such that accesses by a process (which is not 
the imaginary outermost process) to locations declared in a region can be made only by calling procedures that 
are defined inside the region and granted by the region.

A procedure name is said to denote a critical procedure (and it is a critical procedure name) if either it 
is defined inside a region and granted by the region or if a procedure name with the same procedure definition 
(see section 8.4) is critical (the latter becomes relevant only when entry definitions are involved).

A region is said to be free if and only if control lies in none of its critical procedures or in the region itself
performing reach-bound initialisations.

The region will be locked (to prevent concurrent execution) if:

•  The region is entered (note that because regions are not surrounded by a block, no concurrent attempts 
can be made to enter the region).

• A critical procedure of the region is called.

• A process, delayed in the region, is re-activated.

The region will be released, becoming free again, if:

• The region is left.

• The critical procedure returns.
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• The critical procedure executes an action that causes the executing process to become delayed (see
section 9.3). In the case of dynamically nested critical procedure calls, only the latest locked region will
be released.

• The process executing the critical procedure terminates. In the case of dynamically nested critical 
procedure calls, all the regions locked by the process will be released.

If, while the region is locked, a process attempts to call one of its critical procedures or is re-activated, the 
process is suspended until the region is released. (Note that the process remains active in the CHILL sense).

When a region is released and more than one process has been suspended while attempting to call one of its 
critical procedures or to be re-activated in one of its critical procedures, only one process will be selected to 
lock the region according to an implementation defined scheduling algorithm.

9.2.2 Regionality

To allow for checking statically that a location declared in a region can only be accessed by calling critical 
procedures or by entering the region for performing reach-bound initialisations, the following static context 
conditions are enforced:

• the regionality requirements mentioned in the appropriate sections (assignment action, procedure call, 
send action, result action);

• intra-regional procedures are not general (see section 8.4);

• critical procedures are neither general nor recursive (see section 8.4).

A location and procedure call have a regionality which is intra-regional or extra-regional. A value has a 
regionality which is intra-regional or extra-regional or nil. These properties are defined as follows:

1. Location

A location is intra-regional if and only if any of the following conditions is fulfilled:

•  It is an access name that is either:

-  a location name declared textually inside a region and not defined in a formal parameter 
of a critical procedure,

-  a loc-identitv name, where the location in its declaration is intra-regional or that is 
defined in a formal parameter of an intra-regional procedure,

-  a based name where the bound or free reference location name in its declaration is intra- 
regional,

-  a location enumeration name, where the array location or string location in the associated 
do action is intra-regional,

-  a location do-with name, where the structure location in the associated do action is intra- 
regional.

• It is a dereferenced bound reference, where the bound reference primitive value in it is intra- 
regional.

• It is a dereferenced free reference, where the free reference primitive value in it is intra-regional.

•  It is a dereferenced row, where the row primitive value in it is intra-regional.

•  It is an array element or array slice, where the array location in it is intra-regional.

•  It is a string element or string slice, where the string location in it is intra-regional.

•  It is a structure Geld, where the structure location in it is intra-regional.
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•  It is a location procedure call, where in the location procedure call a procedure name is specified 
which is intra-regional.

• It is a location built-in routine call, that the implementation specifies it is intra-regional.

•  It is a location conversion, where the static mode location in it is intra-regional.

A location which is not intra-regional is extra-regional.

2. Value

A value has a regionality depending on its class. If it has the M-derived class or the all-class or the 
null-class then it has regionality nil. Otherwise it has the M-value class or the M reference class and 
it has a regionality depending on the mode M as follows :

If M does not have the referencing property then the regionality is nil; otherwise, the value is an 
operand-6 (and has the referencing property) :

If it is a primitive value then

• If it is a location contents that is a location, then it is that of the location.

• It it is a value name then

-  if it is a synonym name then it is that of the constant value in its definition;

-  if it is a value do-with name then it is that of the structure primitive value in the associated 
do action;

-  if it is a value receive name then it is extra-regional.

• If it is a tuple then if one of the value occurrences in it has regionality not nil then it is that of
that value (it does not matter which choice is made, see section 5.2.5 static conditions); otherwise, 
it is nil.

•  If it is a value array element or a value array slice then it is that of the array primitive value in it.

•  If it is a value structure field then it is that of the structure primitive value in it.

•  If it is an expression conversion then it is that of the expression in it.

• If it is a value procedure call then it is that of the procedure call in it.

• If it is an im plementation value built-in routine call then it is defined by the implementation.

•  If it is a CHILL value built-in routine call then if it is surrounded by a region then it is intra-
regional; otherwise, it is extra-regional.

If it is a referenced location then it is that of the location in it.

If it is a receive expression then it is extra-regional.

3. Procedure name

A procedure name is intra-regional if and only if it is defined inside a region and it is not critical (i.e., 
not granted by the region). Otherwise it is extra-regional.

4. Procedure call

A procedure call is intra-regional if it contains a procedure name which is intra-regional; otherwise, 
it is extra-regional.

A value is regionally safe for a non-terminal (used only for location, procedure call and procedure name) if 
and only if :
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•  the non-terminal is extra-regional and the valu is not intra-regional;

•  the non-terminal is intra-regional and the vaJ ie is not extra-regional.

9.3 DELAYING OF A PROCESS

When a process is active, it can become delayed by executing or evaluating one of the following actions or 
expressions:

Delay action (see section 6.16). When a process executes a delay action, it becomes delayed. It becomes a 
member with a priority of the set of delayed processes attached to the specified event location.

Delay case action (see section 6.17). When a process executes a delay case action, it becomes delayed. It 
becomes a member, with the specified priority, of the set of delayed processes that is attached to each event 
location specified in a delay alternative of the delay case action.

Receive expression (see section 5.3.8). When a process evaluates a receive expression, it becomes delayed if 
and only if there are no values in, nor sending processes delayed on, the specified buffer location. It becomes a 
member of the set of delayed receiving processes attached to the specified (empty) buffer location.

Receive signal case action (see section 6.19.2). When a process executes a receive signal case action, it 
becomes delayed if and only if no signal that may be received by the process executing the receive signal case 
action is pending and only if ELSE is not specified. The process becomes a member of the set of delayed 
processes attached to each signal name specified in the signal-receive alternative.

Receive buffer case action (see section 6.19.3). When a process executes a receive buffer case action, it 
becomes delayed if and only if no value is present in any of the specified buffer locations, no sending process is 
delayed on any of the specified buffer locations, and if ELSE is not specified. It becomes a member of the set 
of delayed receiving processes that is attached to each buffer location specified in a buffer-receive alternative of 
the receive buffer case action.

Send buffer action (see section 6.18.3). When a process executes a send buffer action, it becomes delayed if 
and only if the mode of the buffer location has a length attached and the number of values in the buffer is equal 
to the length just prior to the sending operation. The process becomes a member, with the specified priority, 
of the set of delayed sending processes attached to the buffer location.

When a process executes an action that causes it to become delayed while its control lies within a critical 
procedure, the associated region will be released. The dynamic context of the procedure will be retained until 
the process is re-activated where it was delayed in the region. The region will then be locked again.

9.4 RE-ACTIVATION OF A PROCESS

When a process is delayed, it can become re-activated if and only if another process executes one of the following 
actions:

Continue action (see section 6.15). When a process executes a continue action, it re-activates another process 
if and only if the set of delayed processes of the specified event location is not empty. A process of the highest 
priority is selected to become active according to an implementation defined scheduling algorithm. This re­
activated process is thus removed from all sets of delayed processes.

Send signal action (see section 6.18.2). When a process executes a send signal action, it re-activates another 
process if and only if the set of delayed processes of the specified signal name contains a process that may 
receive the signal. A process is selected to become active according to an implementation defined scheduling 
algorithm. This re-activated process is thus removed from all sets of delayed processes. If no delayed process 
is present to receive the signal, the signal becomes pending, with its specified priority, possible list of values, 
process name and/or instance value.

Send buffer action (see section 6.18.3). If a process executes a send buffer action, it re-activates another 
process if and only if the set of delayed receiving processes of the specified buffer location is not empty. A 
process is selected to become active according to an implementation defined scheduling algorithm. This re­
activated process is thus removed from all sets of delayed processes. If the set of delayed receiving processes of 
a specified buffer location is empty, the sent value will be stored into the buffer with its specified priority if the 
buffer capacity allows for it (see section 9.3).
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Receive expression (see section 5.3.8). When a process evaluates a receive expression, it re-activates another 
process if and only if the set of delayed sending processes of the specified buffer location is not empty. In 
that case, it receives a value of the highest priority among the values in the buffer location and from the 
delayed sending processes. Receiving a value from a buffer, the process removes the value from the buffer, and 
a delayed sending process with the value of the highest priority is selected to become active according to an 
implementation defined scheduling algorithm. This re-activated process is thus removed from the set of delayed 
sending processes and its value is stored in the buffer, with the specified priority.
Receiving a value directly from a delayed sending process, a delayed process carrying the value with the highest 
priority is selected to become active according to an implementation defined scheduling algorithm. This re­
activated process is thus removed from the set of delayed sending processes and its value is received.

Receive buffer case action (see section 6.19.3). When a process executes a receive buffer case action, it 
re-activates another process if and only if the set of delayed sending processes of any of the specified buffer 
locations is not empty. In that case it receives a value of the highest priority among the values in the buffer 
location and from the delayed sending processes. Receiving a value from a buffer, the process removes the value 
from the buffer and a delayed sending process with the highest priority is selected to become active according 
to an implementation defined scheduling algorithm. This re-activated process is thus removed from the set of 
delayed sending processes and its value is stored in the buffer, with the specified priority. Receiving a value 
directly from a delayed sending process, a delayed process carrying the value with the highest priority is selected 
to become active according to an implementation defined scheduling algorithm. This re-activated process is 
thus removed from the set of delayed sending processes attached to the buffer location and its value is received.

When a process executes an action that causes another process to become active while the re-activating process 
is active within a critical procedure, the re-activating process will remain active, i.e., it will not release the 
region at that point.

9.5 SIGNAL DEFINITIO N STATEMENTS 

syntax:
<signal deGnition statement> ::= (1)

SIGNAL <signal deGnition> { ,<signal deGnition> } *; (1.1)

<signal deGnition> ::= (2)
<deGning occurrence> [= (<mode> { ,<mode>} *)] [ TO < process name> ] (2.1)

semantics: A signal definition defines a composing and decomposing function for values to be transmitted
between processes. If a signal is sent, the specified list of values is transmitted. If no process is 
waiting for the signal in a receive case action, the values are kept until a process receives the values.

static properties: A deGning occurrence in a signal deGnition defines a a signal name.

A signal name has the following properties:

• It has an optional list of modes attached, that are the modes mentioned in the signal deGnition.

• It has an optional process name attached that is the process name specified after TO . 

static conditions: No mode in a signal deGnition may have the non-value property.

examples:
15.27 SIGNAL initiate = ( INSTANCE ),

terminate; (1-1)
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10 GENERAL SEMANTIC PROPERTIES

10.1 MODE CHECKING

10.1.1 Properties of modes and classes

10.1.1.1 Read-only property 

Informal

A mode has the read-only property if it is a read-only mode or contains a component or a sub-component 
etc. which is a read-only mode.

Definition

A mode has the read-only property if and only if it is :

• an array mode with an element mode that has the read-only property;

• a structure mode where at least one of its field modes has the read-only property, where the field is 
not a tag field with an implicit read-only mode of a parameterised structure mode;

• a read-only mode.

10.1.1.2 Parameterisable modes 

Informal

A mode is parameterisable if it can be parameterised.

Definition

A mode is parameterisable if and only if it is

• a parameterisable variant structure mode;

• an array mode;

• a string mode.

10.1.1.3 Referencing property 

Informal

A mode has the referencing property if it is a reference mode or contains a component or a sub-component, 
etc. that is a reference mode.

Definition

A mode has the referencing property if and only if it is :

• an array mode with an element mode that has the referencing property;

• a structure mode where at least one of its field modes has the referencing property;

• a reference mode.

10.1.1.4 Tagged parameterised property
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Informal

A mode has the tagged parameterised property if it is a tagged parameterised structure mode or contains 
a component or a sub-component etc. which is a tagged parameterised structure mode.

Definition

A mode has the tagged parameterised property if and only if it is :

• an array mode with an element mode which has the tagged parameterised property;

•  a structure mode where at least one of its field modes has the tagged parameterised property;

• a tagged parameterised structure mode.

10.1.1.5 Non-value property 

Informal

A mode has the non-value property if no expression or primitive value denotation exists for the mode. 

Definition

A mode has the non-value property if and only if it is :

• an array mode with an element mode that has the non-value property;

• a structure mode where at least one of its field modes has the non-value property;

•  an event mode, a buffer mode, an access mode or an association mode.

10.1.1.6 Root mode

Any M-value class or M-derived class, where M is a discrete mode or a string mode, has a root mode defined 
as:

• M, if M is not a range mode;

• the parent mode of M, if M is a range mode.

10.1.1.7 Resulting class

Given two compatible classes (see section 10.1.2.7), which are either the all class, an M-value class or an 
M-derived class, where M is either a discrete mode, a powerset mode or a string mode, the resulting class is 
defined as:

• the resulting class of the M-value class and the N-value class, the N-derived class or the all class is, if
M is not a range mode then the M-value class; otherwise, the P-value class, where P is the parent mode
of M;

• the resulting class of the M-derived class and the N-derived class or the all class is the M-derived class;

•  the resulting class of the all class and the all class is the all class.

Given a list Ct- of pairwise compatible classes (i=l,...,n), the resulting class of the list of classes is recursively 
defined as the resulting class of the resulting class of the list C; (i= l,...,n -l) and the class Cn if n > 1; 
otherwise, as the resulting class of Ci and Ci .

(Note that CHILL is defined in such a way that the order of taking the classes C,• is irrelevant, i.e., all such 
resulting classes axe compatible.)
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10.1.2 Relations on modes and classes

10.1.2.1 Genera]

In the following sections, the compatibility relations are defined between modes, between classes, and between 
modes and classes. These relations are used throughout the document to define static conditions.

The compatibility relations themselves are defined in terms of other relations which are mainly used in this 
chapter for the above mentioned purpose.

10.1.2.2 Equivalence relations on modes 

Informal

The following equivalence relations play a role in the formulation of the compatibility relations:

• Two modes are similar if they are of the same kind; i.e., they have the same hereditary properties.

• Two modes are v-equivalent (value-equivalent) if they are similar and also have the same novelty.

• Two modes are equivalent if they are v-equivalent and also possible differences in value representation 
in storage or minimum storage size are taken into account.

• Two modes are 1-equivalent (location-equivalent) if they axe equivalent and also have the same read­
only specification.

• Two modes are alike if they are indistinguishable; i.e., if all operations that can be applied to objects 
of one of the modes can be applied to the other one as well, provided that novelty is not taken into 
account.

• Two modes are N-alike if they axe alike and have equal novelty specification. ,

Definition

In the following sections, the equivalence relations on modes are given in the form of a (partial) set of relations. 
The full equivalence algorithms axe obtained by taking the symmetric, reflexive and transitive closure of this 
set of relations. The modes mentioned in the relations may be virtually introduced or dynamic. In the latter 
case, the complete equivalence check can only be performed at run time. Check failure of the dynamic paxt will 
result in the RANGEFAIL or TAGFAIL exception (see appropriate sections).

Checking two recursive modes for any equivalence requires the checking of associated modes in the corresponding 
paths of the set of recursive modes by which they are defined. The modes axe equivalent if no contradiction 
is found. (As a consequence, a path of the checking algorithm stops successfully if two modes which have been 
compared before, are compaxed).

The relation similar

Two modes axe similar if and only if :

•  they axe integer modes;

• they axe boolean modes;

• they axe character modes;

•  they are set modes such that they define the same number of values and for each set element name
defined by one mode there is a set element name defined by the other mode which has the same name
string and the same representation value;

• they are range modes with similar parent modes;

• one is a range mode whose parent mode is similar to the other mode;

• one is a boolean mode and the other a bit string mode of length 1;
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one is a character mode and the other a character string mode of length 1; 

they are powerset modes such that their member modes are equivalent; 

they are bound reference modes such that their referenced modes are equivalent; 

they are free reference modes;

they are row modes such that their referenced origin modes are equivalent; 

they are procedure modes such that:

1. they have the same number of parameter specs and corresponding (by position) parameter 
specs have 1-equivalent modes, the same parameter attributes and the same register names, if 
present;

2. they both have or both do not have a result spec. If present, the result specs must have 
1-equivalent modes, the same attributes and the same register names, if present;

3. they have the same set of exception names;

4. they have the same recursivity; 

they are instance modes;

they are event modes such that they both have no event length or the same event length; 

they are buffer modes such that:

1. they both have no buffer length or the same buffer length;

2. they have 1-equivalent buffer element modes; 

they are association modes;

they are access modes such that:

1. they both have no index mode or both have index modes which are equivalent;

2. at least one has no record mode, or both have record modes that are 1-equivalent and that are 
both static record modes or both dynamic record modes. <

they are string modes such that:

1. they both are bit string modes or character string modes;

2. they have the same string length. This check is dynamic in the case that one or both modes is 
(are) dynamic. Check failure will result in the RANGEFAIL exception;

they are array modes such that:

1. their index modes are v-equivalent;

2. their element modes are equivalent;

3. their element layouts are equivalent;

4. they have the same number of elements. This check is dynamic if one or both modes is (are) 
dynamic. Check failure will result in the RANGEFAIL exception;

they are structure modes which are not parameterised structure modes such that:

1. they have the same number of fields and corresponding (by position) fields are equivalent;
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2. if they axe both parameterisable variant structure modes, their lists of classes must be com­
patible;

• they axe parameterised structure modes such that:

1. their origin variant structure modes axe similar;

2. their corresponding (by position) values axe the same. This check is dynamic if one or both modes 
is (axe) dynamic. Check failure will result in the TAGFAIL exception.

The relation v-equivalent

Two modes axe v-equivalent if and only if they axe similar and have the same novelty.

The relation equivalent

Two modes axe equivalent if and only if they axe v-equivalent and:

•  if one is a boolean mode, the other must also be a boolean mode;

•  if one is a character mode, the other must also be a character mode;

•  if one is a range mode, the other must also be a range mode and both upper bounds must be equal 
and both lower bounds must be equal.

The relation l-equivalent

Two modes are 1-equivalent if and only if they are equivalent and if one is a read-only mode, the other 
must also be a read-only mode, and:

•  if they axe bound reference modes, their referenced modes must be 1-equivalent;

•  if they axe row modes, their referenced origin modes must be 1-equivalent;

• if they are array modes, their element modes must be 1-equivalent;

•  if they axe structure modes which are not parameterised structure modes, corresponding (by position) 
fields must be 1-equivalent; if they axe parameterised structure modes, their origin variant structure 
modes must be 1-equivalent.

The relations equivalent and 1-equivalent for fields

Two fields (both fields in the context of two given structure modes) are 1. equivalent, 2. 1-equivalent if and 
only if both fields axe fixed fields which are 1. equivalent, 2. 1-equivalent or both are alternative fields which 
are 1. equivalent, 2. 1-equivalent.

The relations equivalent and 1-equivalent axe recursively defined for corresponding fixed fields, variant fields, 
alternative fields and variant alternatives respectively in the following way:

•  Fixed fields and variant fields

1. Both fields must have equivalent field layout.

2. Both field modes must be 1. equivalent, 2. 1-equivalent.

• Alternative fields

1. Both alternative fields have tags or both have no tags. In the former case, the tags must have the 
same number of tag field names and corresponding (by position) tag field names must denote 
corresponding fixed fields.

2. Both must have the same number of variant alternatives and corresponding (by position) variant 
alternatives must be 1. equivalent, 2. 1-equivalent.

3. Both must have no ELSE specified or both must have ELSE specified. In the latter case, the 
same number of variant fields must follow and corresponding (by position) variant fields must be
1. equivalent, 2. 1-equivalent.
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• Variant alternatives

1. Both variant alternatives must have the same number of case label lists and corresponding (by 
position) case label lists must either be both irrelevant, or both define the same set of values. If 
one case label list contains an ELSE then so must the other.

2. Both variant alternatives must have the same number of variant fields and corresponding (by 
position) variant fields must be 1. equivalent, 2. 1-equivalent.

The relation equivalent for layout

In the rest of the section, it will be assumed that each pos is of the form:
POS (< numb er>,< start bit>,<length>)

and that each step is of the form:
STEP (<pos>,<step size>)

Section 3.11.6 gives the appropriate rules to bring pos or step in the required form.

• Field layout

Two field layouts are equivalent if they are both NOPACK , or both PACK , or both pos. In the 
latter case the one pos must be equivalent to the other one (see below).

• Element layout

Two element layouts are equivalent if they are both NOPACK , both PACK , or both step. In 
the latter case the pos in the one step must be equivalent to the pos in the other one (see below) and 
step size must deliver the same values for the two element layouts.

• 'Pos

A pos is equivalent to another pos if and only if both word occurrences deliver the same value, both 
start bit occurrences deliver the same value and both length occurrences deliver the same value.

The relation alike

Two modes are alike if and only if they both are or both are not read-only modes and they both have novelty 
nil or both have novelty non-nil and

• they are integer modes;

• they are boolean modes;

•  they are character modes;

• they are similar set modes;

• they are range modes with equal upper bounds and equal lower bounds;

• they are powerset modes such that their member modes are alike;

• they are bound reference modes such that their referenced modes are alike;

•  they are free reference modes;

• they are row modes such that their referenced origin modes are alike;

• they are procedure modes such that :

1. they have the same number of parameter specs and corresponding (by position) parameter 
specs have alike modes, the same parameter attributes and the same register name, if present;

2. they both have or both do not have a result spec. If present, the result specs must have alike 
modes, the same attributes and the same register name, if present;

3. they have the same set of exception names;
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•  they are instance modes;

• they axe event modes such that they both have no event length or the same event length;

•  they axe buffer modes such that :

1. they both have no buffer length or the same buffer length;

2. they have buffer element modes which are alike;

•  they axe association modes;

•  they axe access modes such that :

1. they both have no index mode or both have index modes that are alike;

2. at least one has no record mode or both have record modes that are alike and that are both 
static record modes or both dynamic record modes;

• they are string modes such that :

1. they both are bit string modes or character string modes;

2. they have the same string length;

• they are array modes such that :

1. their index modes axe alike;

2. their element modes axe alike;

3. their element layouts are equivalent;

4. they have the same number of elements;

• they are structure modes that axe not parameterised structure modes such that :

1. they have the same number of fields and corresponding (by position) fields are alike;

2. if they axe both parameterisable variant structure modes, their lists of classes must be com ­
patible;

• they are parameterised structure modes such that :

1. their origin variant structure modes are alike;

2. their corresponding (by position) values are the same.

The relation alike for fields

Two fields (both fields in the context of two given structure modes) are alike if and only if both fields are fixed 
fields which are alike or both are alternative fields which are alike.

The relation alike is recursively defined for (corresponding) fixed fields, variant fields, alternative fields and
variant alternatives respectively in the following way :

• Fixed fields and variant fields

1. Both fields must have equivalent field layout.

2. Both field modes must be alike.

3. Both fields must have the same name string attached.

4. they have the same recursivity;
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• Alternative fields

1. Both alternative fields have tags or both have no tags. In the former case, the tags must have the
same number of tag field names and corresponding (by position) tag field names must denote
corresponding fixed fields.

2. Both must have the same number of variant alternatives and corresponding (by position) variant 
alternatives must be alike.

3. Both must have no ELSE specified or both must have ELSE specified. In the latter case, the
same number of variant fields must follow and corresponding (by position) variant fields must be
alike.

• Variant alternatives

1. Both variant alternatives must have the same number of case label lists and corresponding (by 
position) case label lists must either be both irrelevant, or both define the same set of values. If 
one case label list contains an ELSE , then so must the other.

2. Both variant alternatives must have the same number of variant fields and corresponding (by
position) variant fields must be alike.

The relation ” N-alike”

Two modes that are alike, are N-alike if and only if they have the same novelty and if that novelty is nil, 
then further :

• if they are powerset modes, their member modes must be N-alike;

• if they are array modes, their respective index modes and element modes must be N-alike;

• if they are structure modes, their corresponding (by position) field modes must be N-alike;

• if they are reference modes, their referenced modes must be N-alike;

• if they are row modes, their referenced origin modes must be N-alike;

• if they are procedure modes, their result spec, if present, and corresponding (by position) parameter 
specs, if any, must have N-alike modes;

• if they are buffer modes, their buffer element modes must be N-alike;

• if they are access modes, their index modes, if present, must be N-alike and their record modes, if
present, must be N-alike.

10.1.2.3 The relation read-compatible 

Informal

A mode M is said to be read-compatible with a mode N if and only if M and N are equivalent and M and its 
possible (sub-)components have equal or more restrictive read-only specifications. This relation is therefore 
non-symmetric.

Example:
READ REF READ CHAR is read-compatible with REF CHAR 

Definition

A mode M is said to be read-compatible with a mode N (a non-symmetric relation) if and only if M and N 
are equivalent and, if N is a read-only mode, then M must also be a read-only mode and further:

• if M and N are bound reference modes, the referenced mode of M must be read-com patible with the 
referenced mode of N;
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• if M and N axe row modes, the referenced origin mode of M must be read-compatible with the 
referenced origin mode of N;

• if M and N are array modes, the element mode of M must be read-compatible with the element 
mode of N;

• if M and N are structure modes which are not parameterised structure modes, any field mode of M 
must be read-compatible with the corresponding field mode of N. If M and N are parameterised 
structure modes, the origin variant structure mode of M must be read-compatible with the origin 
variant structure mode of N.

10.1.2.4 The relation dynamic read-compatible 

Informal

The relation dynamic read-compatible is relevant only for modes that can be dynamic, i.e., string, array 
and variant structure modes. A parameterisable mode M is said to be dynamic read-compatible with a 
(possibly dynamic) mode N, if there exists a dynamically parameterised version of M which is read-com patible 
with N.

Definition

A mode M is dynamic read-compatible with a mode N (a non-symmetric relation) if and only if one of the 
following holds :

•  M and N are string modes and there exists a length p such that M(p) is read-compatible with N. This 
check is dynamic if N is dynamic. Check failure will result in the RANGEFAIL exception.

• M and N are array modes and there exists a value p such that M(p) is read-compatible with N. This 
check is dynamic if N is dynamic. Check failure will result in the RANGEFAIL exception.

• M is a parameterisable variant structure mode and N is a parameterised structure mode and there 
exists a list of values pi , ..., pn such that M(pi , ..., pn ) is read-compatible with N. This check is 
dynamic if N is dynamic. Check failure will result in the TAGFAIL exception.

•  M and N are parameterisable variant structure modes and M is read-compatible with N.

10.1.2.5 The relation restrictable 

Informal

The relation restrictable is relevant for equivalent modes with the referencing property. A mode M is 
said to be restrictable to a mode N if it or its possible sub-components refer to locations with equal or less 
restrictive read-only specification than those referenced by N. This relation is therefore non-symmetric. The 
relation is used in assignments.

Example:
REF IN T  is restrictable to REF READ IN T
STRUCT (P REF BOOL ) is restrictable to STRUCT (Q REF READ BOOL )

Definition

A mode M is restrictable to a mode N (a non-symmetric relation) if and only if M and N are equivalent and 
further :

• if M and N are bound reference modes, the referenced mode of N must be read-compatible with the 
referenced mode of M;

• if M and N are row modes, the referenced origin mode of N must be read-compatible with the 
referenced origin mode of M;

• if M and N are array modes, the element mode of M must be restrictable to the element mode of N;

• if M and N are structure modes, each field mode of M must be restrictable to the corresponding field 
mode of N.
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10.1.2.6 Compatibility between a mode and a class

•  any mode M is compatible with the all class;

•  a mode M is compatible with the null class if and only if M is a reference mode or a procedure mode 
or an instance mode;

• a mode M is compatible with the N-reference class if and only if it is a reference mode and one of the 
following conditions is fulfilled:

1. N is a static mode and M is a bound reference mode whose referenced mode is read-com patible 
with N;

2. N is a static mode and M is a free reference mode;

3. M is a row mode with referenced origin mode V and:

if V is a string mode, N must be a string mode such that V(p) is read-com patible with 
N, where p is the (possibly dynamic) length of N. The value p must not be greater than 
the string length of V. This check is dynamic if N is a dynamic mode. Check failure will 
result in a RANGEFAIL exception;

-  if V is an array mode, N must be an array mode such that V(p) is read-com patible with 
N, where p is the (possibly dynamic) upper bound of N. The value p must not be greater 
than the upper bound of V. This check is dynamic if N is a dynamic mode. Check failure 
will result in a RANGEFAIL exception;

-  if V is a variant structure mode, N must be a parameterised structure mode such that 
V(pi ,...pn ) is read-compatible with N, where pi ,...p„ denote the list of values of N;

• a mode M is compatible with the N-derived class if and only if M and N are similar;

• a mode M is compatible with the N-value class if and only if one of the following holds:

1. if M does not have the referencing property, M and N must be v-equivalent;

2. if M does have the referencing property, N must be restrictable to M.

10.1.2.7 Compatibility between classes

• Any class is compatible with itself.

• The all class is compatible with any other class.

• The null class is compatible with any M-reference class.

• The null class is compatible with the M-derived class or M-value class if and only if M is a reference
mode, procedure mode or instance mode.

• The M-reference class is compatible with the N-reference class if and only if M and N are equivalent. 
If M and/or N is (are) a dynamic mode, the dynamic part of the equivalence check is ignored, i.e., no 
exceptions can occur.

• The M-reference class is compatible with the N-derived class or N-value class if and only if N is a
reference mode and one of the following conditions is fulfilled:

1. M is a static mode and N is a bound reference mode whose referenced mode is equivalent to
M.

2. M is a static mode and N is a free reference mode.

3. N is a row mode with referenced origin mode V and:
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-  if V is a string mode, M must be a string mode such that V(p) is equivalent to M, where 
p is the (possibly dynamic) length of M. The value p must not be greater than the string  
length of V. This check is dynamic if M is a dynamic mode. Check failure will result in a 
RANGEFAIL exception;

-  if V is an array mode, M must be an array mode such that V(p) is equivalent to M, 
where p is the (possibly dynamic) upper bound of M. The value p must not be greater 
than the upper bound of V. This check is dynamic if M is a dynamic mode. Check failure 
will result in a RANGEFAIL exception;

-  if V is a variant structure mode, M must be a parameterised structure mode such that 
V(pi ,...pn ) is equivalent to M, where pi ,...pn denote the list of values of M.

• The M-derived class is compatible with the N-derived class or N-value class if and only if M and N are 
similar.

•  The M-value class is compatible with the N-value class if and only if M and N are v-equivalent.

Two lists of classes are compatible if and only if both lists have the same number of classes and corresponding 
(by position) classes axe compatible.

10.1.3 Case selection  

syntax:
< ca se  label specification > ::= (1)

C ease label list> { ,C ease label list> } * (T.I)

C case label list> ::= (2)
(< case label> { ,C  case label> } *) (2-1)

| <irrelevant> (2-2)

C ease label> ::= (3)
< discrete literal expression> (3-1)

| <literal range> (3.2)
| Cdiscrete mode name> (3-3)
| ELSE (3.4)

<irrelevant> ::= (4)
(*) (4-1)

semantics: Case selection is a means of selecting an alternative from a list of alternatives. The selection is 
based upon a specified list of selector values. Case selection may be applied to:

• alternative fields (see section 3.11.4), in which case a list of variant fields is selected,

• labelled array tuples (see section 5.2.5), in which case an array element value is selected,

• case action (see section 6.4), in which case an action statement list is selected.

In the first and last situation, each alternative is labelled with a case label specification; in the 
labelled array tuple, each value is labelled with a case label list. For ease of description, the case 
label list in the labelled array tuple will be considered in this section as a case label specification 
with only one case label list occurrence.

Case selection selects that alternative which is labelled by the case label specification which matches 
the list of selector values. (The number of selector values will always be the same as the number of 
case label list occurrences in the case label specification.) A list of values is said to match a case 
label specification if and only if each value matches the corresponding (by position) case label list 
in the case label specification.

A value is said to match a case label list if and only if:
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• the case label list consists of case labels and the value is one of the values explicitly indicated 
by one of the case labels or implicitly indicated in the case of ELSE ;

• the case label list consists of irrelevant.

The values explicitly indicated by a case label are the values delivered by any discrete expression, 
or defined by the literal range or discrete mode name. The values implicitly indicated by ELSE 
are all the possible selector values which are not explicitly indicated by any associated case label list 
(i.e., belonging to the same selector value) in any case label specification.

static properties:

• An alternative Gelds with case label speciGcation, a labelled array tuple, or a case action has 
a list of case label specifications attached, formed by taking the case label speciGcation in 
front of each variant alternative, value or case alternative, respectively.

• A case label has a class attached, which is, if it is a discrete literal expression, the class of the 
discrete literal expression; if it is a literal range, the resulting class of the classes of each 
discrete Gteral expression in the literal range; if it is a discrete mode name, the resulting 
class of the M-value class where M is the discrete mode name; if it is ELSE , the all class.

• A case label list has a class attached, which is, if it is irrelevant, then the all class, otherwise 
the resulting class of the classes of each case label.

• A case label speciGcation has a list of classes attached, which are the classes of the case label 
lists.

• A list of case label specifications has a resulting list of classes attached. This resulting 
list of classes is formed by constructing, for each position in the list, the resulting class 
of all the classes that have that position.

A list of case label specifications is complete if and only if for all lists of possible selector values, a 
case label specification is present, which matches the list of selector values. The set of all possible 
selector values is determined by the context as follows:

•  For a tagged variant structure mode it is the set of values defined by the mode of the 
corresponding tag field.

•  For a tag-less variant structure mode it is the set of values defined by the root mode of 
the corresponding resulting class (this class is never the all class, see section 3.11.4).

• For an array tuple, it is the set of values defined by the index mode of the mode of the array 
tuple.

•  For a case action with a range list, it is the set of values defined by the corresponding discrete 
mode in the range list.

•  For a case action without a range list, it is the set of values defined by M where the class of 
the corresponding selector is the M-value class or the M-derived class.

static conditions: For each case label speciGcation the number of case label list occurrences must be equal.

For any two case label speciGcation occurrences, their lists of classes must be compatible.

The list of case label speciGcation occurrences must be consistent, i.e., each list of possible selector 
values matches at most one case label specification.

examples:
11.9 (occupied) (3.1)
11.58 (rook),(*) (1.1)
8.25 ( ELSE ) (2.2)
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10.1.4 Definition and summary of semantic categories

This section gives a summary of all semantic categories which are indicated in the syntax description by means 
of an underlined part. If these categories axe not defined in the appropriate sections, the definition is given 
here, otherwise the appropriate section will be referenced.

10.1.4.1 Names 

Mode names

access mode name: 
array mode name: 
association mode name: 
boolean mode name: 
bound reference mode name: 
buffer mode name: 
character mode name: 
discrete mode name: 
event mode name: 
free reference mode name: 
instance mode name: 
integer mode name: 
mode name: 
newmode name:
varameterised array mode name:
yarameterised string mode name:
yarameterised structure mode name:
power set mode name:
procedure mode name:
range mode name:
row mode name:
set mode name:
string mode name:
structure mode name:
synmode name:
variant structure mode name:

a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
see section 3.2.1 
see section 3.2.3 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
a name defined to be 
see section 3.2.2 
a name defined to be

an access mode, 
an array mode, 
an association mode, 
a boolean mode, 
a bound reference mode, 
a buffer mode 
a character mode, 
a discrete mode, 
an event mode, 
a free reference mode, 
an instance mode, 
an integer mode.

a parameterised array mode, 
a parameterised string mode, 
a parameterised structure mode, 
a powerset mode, 
a procedure mode, 
a range mode, 
a row mode, 
a set mode, 
a string mode, 
a structure mode.

a variant structure mode.

Access names

based name: 
location name: 
location do-with name: 
location enumeration name: 
loc-identitv name:

Value names

synonym name: 
value do-with name: 
value enumeration name: 
value receive name:

Miscellaneous names

bound or free reference location 
name:
built-in routine name:

general procedure name: 
label name: 
module name: 
non-reserved name:

see section 4.1.4 
see sections 4.1.2 
see section 6.5.4 
see section 6.5.2 
see sections 4.1.3

see section 5.1
see section 6.5.4
see section 6.5.2
see sections 6.19.2, 6.19.3

a location name with a bound 
reference mode or a free reference mode, 
any implementation defined name 
denoting an implementation 
defined built-in routine.
a procedure name whose generality is general, 
see section 6.1, 8.6 
see sections 8.6 
a name which is none of the
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reserved names mentioned in Appendix Cl, 
procedure name: see section 8.4
process name: see section 8.5
region name: see sections 8.7
reserved simple name string list: a simple name string list consisting solely of

reserved simple name strings, (see Appendix Cl) 
set element name: see section 3.4.5
signal name: see section 9.5
tag Geld name: see section 3.11.4
undefined synonym i

10.1.4.2 Locations

access location: 
array location: 
association location: 
buffer location: 
discrete location: 
event location: 
instance location: 
static mode location 
string location: 
structure location:

10.1.4.3 Expressions and values

array primitive value: a primitive value whose class is
compatible with an array mode. 

boolean expression: an expression whose class is
compatible with a boolean mode. 

bound reference primitive value: a primitive value whose class is
compatible with a bound reference mode. 

constant value: a value which is constant.
discrete expression: an expression whose class is

compatible with a discrete mode. 
discrete literal expression: a discrete expression which is literal.
free reference primitive value: a primitive value whose class is

compatible with a free reference mode, 
a primitive value whose class is 
compatible with an instance mode, 
an expression whose class is 
compatible with an integer mode, 
an integer expression which is literal, 
an expression whose class is 
compatible with a powerset mode, 
a primitive value whose class is 
compatible with a procedure mode, 
a primitive value whose class is 
compatible with either a bound reference mode, 
a free reference mode or a row mode, 
a primitive value whose class is 
compatible with a row mode, 
a primitive value whose class is 
compatible with a string mode, 
a primitive value whose class is 
compatible with a structure mode.

instance primitive value:

integer expression:

integer literal expression: 
powerset expression:

procedure primitive value:

reference primitive value:

row primitive value: 

string primitive value: 

structure primitive value:

see section 5.1

a location with an access mode, 
a location with an array mode, 
a location with an association mode, 
a location with a buffer mode, 
a location with a discrete mode, 
a location with an event mode, 
a location with an instance mode, 
a location with a static mode, 
a location with a string mode, 
a location with a structure mode.
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static conditions: Neither a boolean expression nor a discrete expression (when indicated in the syntax) may 
have a dynamic class; i.e., the check whether the expression is compatible with a boolean mode or 
a discrete mode, can be made statically.

10.1.4.4 Built-in routine calls

access a ttr io CHILL value built-in routine call 
associate io CHILL location built-in routine call 
association a ttr io CHILL value built-in routine call 
connect io CHILL simple built-in routine call 
disconnect io CHILL simple built-in routine call 
dissociate io CHILL simple built-in routine call 
im plementation built-in routine call 
implementation location built-in.routine call 
implementation value built-in routine call 
isassociated io CHILL value built-in routine call 
modification io CHILL simple built-in routine call 
readrecord io CHILL value built-in routine call 
writerecord io CHILL simple built-in routine call

see section 
see section 
see section 
see section 
see section 
see section 
see section 
see section 
see section 
see section 
see section 
see section 
see section

7.4.8
7.4.2
7.4.4
7.4.6
7.4.7
7.4.3
6.7
4.2.12
5.2.13 
7.4.2
7.4.5
7.4.9
7.4.9

10.1.4.5 Miscellaneous semantic categories 

array mode:

discrete mode:

a mode in which the composite mode 
is an array mode.

a mode in which the non-composite 
mode is a discrete mode.

location procedure call: 

modulion defining occurrence:

non-apostrophe character: 

string mode:

value procedure call:

see section 4.2.11

a defining occurrence which defines 
a module name or a region name.

a character which is not an apostrophe.

a mode in which the composite mode 
is a string mode.

see section 5.2.12

10.2 VISIBILITY A N D  NAM E BINDING

10.2.1 Degrees of visibility

The binding rules are based on the visibility of name strings in the reaches of a program. Within a reach, each 
name string has one of the following four degrees of visibility:

Table 1. Degrees of visibility
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Visibility Properties (informal)

directly strongly 
visible

Name string is visible by creation, 
granting, seizing, or direct pervasiveness

indirectly strongly 
visible

Name string is inherited via block 
nesting or by its pervasive attribute

weakly visible Name string is implied by a strongly 
visible name string

invisible Name string may not be applied

A name string is said to be strongly visible in a reach if it is either directly strongly visible or indirectly  
strongly visible in that reach. A name string is said to be visible if it is either weakly or strongly visible, 
in that reach. Otherwise the name string is said to be invisible in that reach. The program structuring 
statements and visibility statements determine uniquely to which visibility class each name string belongs.

When a name string is visible in a reach, it can be directly linked to another name string in another reach, 
or directly linked to a deGning occurrence in the program. The rules for direct linkage are in section 10.2.4.

Based on direct linkage, the notion of (not necessarily direct) linkage is defined as follows:

A name string N l, visible in reach R l, is said to be linked to name string N2 in reach R2 or to deGning
occurrence D, if and only if one of the following conditions holds:

•  Nl in R l is directly linked to N2 in R2 or to D

• N l in R l is directly linked to some N in some R, and N in R is linked to N2 in R2 or to D.

Note that linkage must be interpreted with respect to the visibility degree: a name string may be strongly 
visible in a reach with some linkages, and weakly visible in the same reach with other linkages.

10.2.2 Visibility conditions and name binding

In each reach of a program, the following conditions must be satisfied:

•  Each name string visible in that reach must be linked to at least one deGning occurrence.

• If a name string is strongly visible in a reach, and is linked to more than one deGning occurrence, then 
all such deGning occurrences (that are not quasi deGning occurrences, for which rules are in 8.10) must 
be deGning occurrences of compatible classes (in other words: must define the same set element), and 
all of them must be directly enclosed in one and the same reach.

A name string weakly visible in a reach, and linked as a weakly visible name string in that reach to deGning
occurrences that are not in compatible classes, is said to have a weak clash in that reach.

A name string NS, visible in reach R, is said to be bound in R to several deGning occurrences according to the 
following rules:

• If NS is strongly visible in R, NS is bound to the deGning occurrences to which it is linked in R (as a 
strongly visible name string);

• else, if NS is weakly visible in R, it is bound to the deGning occurrences to which it is linked in R (as a 
weakly visible name string), provided NS has no weak clash in R. (Weak clashes are allowed in a reach 
if no name with a name string with a weak clash exists in the reach);

•  otherwise, NS is not bound in R.

static condition: The name string attached to each name directly enclosed in a reach must be visible and
bound in that reach.

binding of names: A name N with attached name string NS in a reach R is bound to the deGning occurrences 
to which NS is bound in R.
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10.2.3 Implied name strings

Each name string strongly visible in a reach R has a set of implied name strings, which are weakly visible in R, 
with the linkages specified below.

Each mode has a possibly empty set of implied defining occurrences attached in a reach, as listed in Table 2.

Each name string NS, strongly visible in reach R, has a set of implied defining occurrences, defined as follows, 
where D is one of the defining occurrences to which NS is bound in R:

• If D defines an access name of mode M, the implied defining occurrences of NS in R are those implied 
in R by M.

• If D defines a mode name, the implied defining occurrences of NS in R are those implied in R by the 
defining mode of the mode name.

•  If D defines a procedure name, the implied defining occurrences of NS in R are those implied in R by 
the parameter list and of the result spec of the procedure, if any.

• If D defines a signal name, the implied defining occurrences of NS in R are all defining occurrences 
implied in R by all modes attached to the signal.

• If D defines a process name, the implied defining occurrences of NS in R are those implied in R by the 
parameter list, if any.

Table 2. Implied defining occurrences of modes in reach R
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M odes Set of implied defining occurrences

IN T , BIN  , CHAR 
INSTANCE , PTR  
BOOL , EVENT  
CHAR (n), BIN (n) 
B IT  (n), RA NG E (...) 
ASSOCIATION

Empty

mode name The set of defining occurrences implied in R 
by its defining mode

M(m:n) The set of defining occurrences implied in R 
by M

mode name (...) 
(parameterised)

The set of defining occurrences implied in R 
bv mode name

REF M, ROW M 
READ M, POW ERSET M 
BU FFER  M

The set of defining occurrences implied in R 
by M

SET (...) The set of set element defining occurrences 
in the mode

PROC (Mu ...,Mn )(Mn+1) The union of the sets of the defining occurrences 
implied in R by Mi through Mn+i

ACCESS (M) N The union of the sets of the defining occurrences 
implied in R by M, N, USAGE and WHERE

ARRAY (M) N The union of the sets of the defining occurrences 
implied in R by M and N

STRUCT (Nt Mi ,...,Nn Mn )
The union of the sets of defining occurrences 
implied in R by M; for fields that are visible in R. 
For variant structures it is the union of 
the defining occurrences implied in R by the 
fields of the variant structure that are visible in R

If a name string NS, strongly visible in a reach R, has implied defining occurrences, each of those defining 
occurrences specifies an implied name string for NS in R: let D be a defining occurrence implied by NS in R 
and let Ni be the name string of D. There are two cases:

•  NS is a simple name string. Then Ni directly linked in R to D is an implied name string of NS.

•  NS is of the form P ! S, where S is a simple name string. Then P ! Ni directly linked in R to D is an 
implied name string of NS.

examples: 
m. MODULE

DCL x SET (on, off);
G RAN T x PREFIXED , 

END ;
/*  m ! x  visible here with imphed m ! on, m ! off */

10.2.4 Visibility in reaches

10.2.4.1 General

A name string is directly strongly visible in a reach according to the following rules :

•  the name string is seized into the reach (see 10.2.4.5);
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•  the name string is granted into the reach (see 10.2.4.4);

•  there is a deGning occurrence with that name string in the reach. In that case, the name string in the
reach is directly linked to the deGning occurrence. (Note that the name string may be directly linked to 
several deGning occurrences in the reach.)

• the name string is strongly visible in a directly enclosing reach and has the directly pervasive property 
in that reach. In that case, the name string also has the directly pervasive property in the reach, and is
directly linked to the same name string in the directly enclosing reach.

A name string is indirectly strongly visible in a reach according to the following rules :

•  The reach is a block in which the name string is not directly strongly visible, and the name string is 
strongly visible in the directly enclosing reach. The name string is said to be inherited by the block, and 
is directly linked to the same name string in the directly enclosing reach.

•  The name string is not directly strongly visible in the reach, and the name string is strongly visible in 
a directly enclosing reach, where it has the pervasive property. The name string in the reach is directly 
linked to the name string in the directly enclosing reach. The name string has the pervasive property in 
the reach.

•  The name string is a language or implementation defined name string, and the reach is a context with 
no context in front of it or the imaginary outermost process deGnition. The name string is considered to 
be directly linked to a deGning occurrence for its predefined meaning. The name string has the pervasive 
property.

A name string is weakly visible in a reach if it is implied by a name string which is strongly visible in the reach, 
the rules for linkage are in 10.2.3.

10.2.4.2 Visibility statements 

syntax:
<visibility statement> (1)

<grant statement> (1-1)
| <seize statement> (1-2)

semantics: Visibility statements are only allowed in modulion reaches and control the visibility of the name 
strings mentioned in them and implicitly of their implied name strings.

static properties: A visibility statement has one or two origin reaches (see 8.2) and one or two destination 
reaches attached, defined as follows:

• If the visibility statement is a seize statement, its destination reach is the modulion reach
directly enclosing the seize statement, and its origin reaches are the reaches directly enclosing
that modulion reach.

• If the visibility statement is a grant statement, then its origin reach is the modulion reach 
directly enclosing the grant statement, and its destination reaches are the reaches directly 
enclosing that modulion reach.

10.2.4.3 Prefix rename clause

syntax:
<preGx rename clause> ::= (1)

( <old preGx> ->  <new preGx> ) ! <postGx> (1-1)

<old preGx> (2)
<preGx> (2.1)

| <empty> (2.2)

<new preGx> ::= (3)
<preGx> (3.1)
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<postfix> (4)
<seize post£x> {,<seize postfix>}* (4-1)

| <grant postfix> {,<grant postfix>}* (4-2)

| <empty> (3.2)

derived syntax: A prefix rename clause where the postfix consists of more than one seize postfix (grant
postfix) is derived syntax for several prefix rename clauses, one for each seize postfix (grant postfix), 
separated by commas, with the same old prefix and new prefix.

For example :

G RAN T (p -> q) ! a , b ;

is derived syntax for

G RAN T (p ->  q) ! a , (p -> q) ! b ;

semantics: Prefix rename clauses are used in visibility statements to express change of prefix in prefixed name 
strings that are granted or seized. (Since prefix rename clauses can be used without prefix changes 
-when both the old prefix and the new prefix are empty- they are taken as the semantic base for 
visibility statements).

static properties: A prefix rename clause has one or two origin reaches attached, which are the origin reaches
of the visibility statement in which it is written.

A prefix rename clause has one or two destination reaches attached, which are the destination reaches
of the visibility statement in which it is written.

A postfix has a set of name strings attached, which is the set of name strings attached to its seize 
postfix or the set of name strings attached to its grant postfix. These name strings are the postfix 
name strings of the prefix rename clause.

A  prefix rename clause has a set of old name strings and a set of new name strings attached. Each 
postfix name string attached to the prefix rename clause gives both an old name string and a new 
name string attached to the prefix rename clause, as follows: the new name string is obtained by 
prefixing the postfix name string with the new prefix-, the old name string is obtained by prefixing 
the postfix name string with the old prefix.

When a new name string and an old name string are obtained from the same postfix name string, 
the old name string is said to be the source of the new name string.

visibility rules: The new name strings attached to a prefix rename clause are strongly visible in their
destination reaches and axe linked in those reaches to their sources in the origin reaches. If the 
prefix rename clause is paxt of a seize (grant) statement, those name strings are seized (granted) in 
their destination reach (reaches).

A name string NS strongly visible in reach R is said to be seizable by modulion M directly enclosed 
in R if NS is not linked in R to any name string in the reach of M.

A name string NS weakly visible in reach R is said to be seizable by modulion M directly enclosed 
in R if NS is linked in R to a defining occurrence not surrounded by the reach of M.

A name string NS strongly visible in reach R of modulion M is said to be grantable by M if NS is 
not linked in R to NS in the reach directly enclosing M.

A name string NS weakly visible in reach R of modulion M is said to be grantable by M if NS is 
linked in R to a defining occurrence surrounded by R.

static conditions: If a prefix rename clause is in a seize statement directly enclosed in the reach of modulion 
M then each of its old name strings must be :

• visible and bound in the reach directly enclosing the reach of M and
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•  seizable by M.

If a prefix rename clause is in a grant statement directly enclosed in the reach of modulion M then 
each of its old name strings must be :

•  visible and bound in the reach of M and

• grantable by M.

If a modulion reach contains several prefix rename clauses in seize (grant) statem ents) then their 
sets of new name strings must be two by two disjoint.

exam ples:
25.35 (stack ! int -> stack)! ALL (1.1)

10.2.4.4 Grant statement

syntax:
<grant statement> ::= (1)

G R A N T  <prefix rename clause> {,<prefix rename clause>}*
[ [ D IR EC TLY  ] PERV A SIV E ] , (1.1)

| G R A N T  <grant window> [ <prefix clause> }
[ [ D IR EC TLY  ] PER V A SIV E ] ; (1.2)

<grant window> ::= (2)
< grant postjSx> { , < grant postGx> }* (2-1)

< grant postfix> ::= (3)
<name string> (3.1)

| <newmode name string> < forbid clause> (3-2)
| [ <prefix> / ] ALL (3.3)

<pre£x clause> ::= (4)
P R E F IX E D  [ <prefix> ] (4.1)

<forbid clause> ::= (5)
FO R B ID  { <forbid name list> | A L L } (3-1)

<forbid name list> ::= (6)
( <£eld name> { , <field name>} *) (6-1)

semantics: Grant statements are a means of extending the visibility of name strings in a modulion reach
into the directly enclosing reaches. FO R B ID  can be specified only for newmode names which are 
structure modes. It means that all locations and values of that mode have fields which may be 
selected only inside the granting modulion, not outside.

The following visibility rules apply:

• If the grant statement contains prefix rename clause(s), the grant statement has the effect of 
its prefix rename clause(s) (see 10.2.4.3).

• If the grant statement contains grant windows, it is shorthand notation for a set of grant
statements with prefix rename clauses constructed as follows:

-  There is a grant statement for each grant postfix in the grant window.

-  The old prefix in their prefix rename clause is empty.

-  The new prefix in their prefix rename clause is the prefix attached to the prefix clause
in the grant statement, or it is empty if there is no prefix clause in the original grant 
statement.
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-  The postfix in the prefix rename clause is the corresponding postfix in the grant 
window.

•  The notation FO R B ID  ALL is a syntactic shorthand forbidding all the field names of the 
new m ode name (see section 10.2.5).

• If a prefix rename clause in a grant statement has a grant postfix which contains a prefix and 
ALL , then it is of the form

(OP->NP) / P  / ALL

where OP and NP  are the possibly empty old prefix and new prefix respectively and P  is the 
prefix in the grant postfix. The prefix rename clause is then equivalent to a clause of the 
form

(OP ! P->NP ! P) ! ALL

sta tic  p roperties: When a grant statement contains ( D IR EC TLY  ) PER V A SIV E , then all name strings 
granted by it have the (directly) pervasive property in the surrounding reaches of the modulion in 
which the grant statement is contained.

A prefix clause has a prefix attached, defined as follows:

• If the prefix clause contains a prefix, then that prefix is attached.

• Otherwise, the attached prefix is a simple prefix whose name string is determined as fol­
lows:

-  If the reach directly enclosing the prefix is a module, region, quasi module or quasi 
region, then the name string is the same as the one of the modulion name of that 
modulion.

-  If the reach directly enclosing the prefix is a spec region or spec module, then the 
name string is the name string in front of S PE C  .

A grant postfix has a set of name strings attached, defined as follows:

•  If it is a name string, or contains a new m ode name string, then the set containing only that 
name string.

• Otherwise, let OP be the (possibly empty) old prefix of the prefix rename clause in which the 
grant postfix is placed, the set contains all name strings of the form OP ! N  (i.e., obtained by 
prefixing N  with OP) for any name string N  such that OP ! N  is strongly visible in the reach 
of the modulion in which the grant postfix is placed and grantable by this modulion.

s ta tic  conditions: The new m ode name string with forbid specification must be a simple name string and 
must be strongly visible in the reach R  of the modulion in which the grant statement is placed. The 
new m ode name string must be bound in R  to the deGning occurrence of a newmode, which must 
be a structure mode, and each field name in the field name Gst must be a field name of that mode. 
The newmode deGning occurrence must be directly enclosed in R. All field names in a forbid name 
Gst must have different name strings.

If the grant statement is placed in the reach of a region or spec region, it must not grant a name string 
which is bound in the reach of the region or spec region to in tra-reg ional deGning occurrences.

The prefix rename clause in a grant statement must have a grant postGx.

A name string granted by a grant statement in the reach of a spec module or a spec region must be 
bound in that reach to a deGning occurrence surrounded by that reach. That deGning occurrence 
may not have a quasi module or quasi region attached.

If a grant statement contains a prefix clause which does not contain a prefix, then its directly 
enclosing modulion must not be a context and,
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•  if its directly enclosing modulion is a module, region, quasi module or quasi region, then it 
must be named (i.e., it must be headed by a deGning occurrence followed by a colon);

•  if its directly enclosing modulion is a spec module or a spec region, then it must be headed 
by a simple name string.

exam ples:
25.10 G R A N T  ALL P R E F IX E D  stack ! char ; (1.1)
6.44 gregorian-date, Julian-day-number (2.1)

10.2.4.5 Seize statement 

syntax:
<seize statement> ::= (1)

SEIZE <prefix rename clause> { , <prefix rename clause>}*; (1.1)
| SEIZE <seize window> [ <prefix clause> ] ; (1.2)

<seize window> (2)
< seize posthx> { , < seize posthx> }* (2-1)

<seize postfix> (3)
<name string> (3-1)

| <modulion name string> ALL (3-2)
| [ <prefix> ! ] ALL (3.3)

<modulion name string> ::= (4)
<moduUpn name string> (4.1)

sem antics: Seize statements are a means of extending the visibility of name strings in group reaches into the 
reaches of directly enclosed modulions.

The following visibility rules apply:

• If a name string which has the (directly) pervasive property in the directly enclosing reaches 
is seized, it will be d irectly  strongly  visible in the reach of the seizing modulion and it 
keeps the (directly) pervasive property.

• If the seize statement contains prefix rename clause(s), the seize statement has the effect of 
its prefix rename clause(s) (see 10.2.4.3).

•  If the seize statement contains a seize window, it is shorthand notation for a set of seize 
statements with prefix rename clauses constructed as follows:

-  For each seize postfix in the seize window, there is a corresponding seize statement.

-  The old prefix in their prefix rename clause is the prefix attached to the prefix clause 
in the seize statement, or is empty if there is no prefix clause in the original seize 
statement.

-  The new prefix in their prefix rename clause is empty.

-  The postfix in their prefix rename clause is the corresponding postfix of the seize 
window.

•  If a prefix rename clause in a seize statement has a seize postfix which contains a prefix and
ALL , then it is of the form

(OP->NP) ! P ! ALL

where OP and NP are the possibly empty old prefix and new prefix respectively and P is 
the prefix in the seize postfix. The prefix rename clause is then equivalent to a clause of the 
form
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(OP ! P->NP ! P) ! ALL

• If a prefix rename clause in a seize statement has a seize postfix which contains a modulion 
name string and ALL , then it is of the form

(OP->NP) ! M N  ALL

where OP and NP are the possibly empty old prefix and new prefix respectively and M N  is 
the modulion name string in the seize postfix. The prefix rename clause is then equivalent to 
a set of seize statements, each one with a prefix rename clause of the of the form

(OP->NP) ! NS

with a seize statement for each name string NS such that:

-  NS is strongly visible in the reach that directly encloses the modulion directly enclosing 
the seize statement and is seizable by this modulion;

-  NS is granted by the modulion attached to the defining occurrence to which M N  is 
bound in the reach directly enclosing the modulion in which the seize statement is 
placed.

static properties: A seize postfix has a set of name strings attached, defined as follows:

• If the seize postfix is a name string, the set containing only the name string.

• Else, if the seize postfix is ALL , let OP be the (possibly empty) old prefix of the prefix 
rename clause of which the seize postfix is part, the set contains all name strings of the 
form OP ! S, for any name string S, such that OP ! S is strongly visible in the reach directly 
enclosing the modulion in which the seize statement is placed and seizable by this modulion.

static conditions: A name string in the set of old name strings attached to a prefix rename clause in a seize 
statement must not be bound to a value do w ith defining occurrence nor a location do w ith  
defining occurrence in a reach which directly encloses the modulion in which the visibility statement 
is placed.

The prefix rename clause in a seize statement must have a seize postfix.

If a seize statement contains a prefix clause which does not contain a prefix, then its directly enclosing 
modulion must not be a context and,

•  if its directly enclosing modulion is a module, region, quasi module or quasi region, then it 
must be named (i.e., it must be headed by a defining occurrence followed by a colon);

•  if its directly enclosing modulion is a spec module or a spec region, then it must be headed 
by a simple name string.

The m odulion name string in a modulion name string must be bound, in reaches directly enclosing 
the reach in which the modulion name string is placed, to a modulion defining occurrence. It must 
not be bound to a defining occurrence to which a quasi region or quasi module is attached.

examples:
25.35 SEIZE (stack ! int -> stack) ! ALL ; (1-1)
25.26 SEIZE ALL P R E F IX E D  s tack; (1.2)

10.2.5 Visibility of field names

Field names may occur only in the following contexts:

•  Field selection in structure field and value structure field.

•  Labelled structure tuples.

•  Forbid clauses in the grant statement.

Fascicle VI. 12 -  Rec Z.200 145



In each of these cases, the name string of the Held name can be bound to a Geld name defining occurrence in 
the mode M or in the defining mode of M, obtained as follows:

• M is the mode of the structure location or (strong) structure value.

•  M is the mode of the structure tuple.

• M is the mode of the deGning occurrence to which the newmode name string is bound in the reach in
which the forbid clause is placed.

However, if the novelty of M is a newmode name which has been granted by a modulion with a forbid clause, 
then outside the granting modulion the Geld names mentioned in the forbid name list axe invisible and cannot 
be used.
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11 EXCEPTION HANDLING

11.1 GENERAL

An exception is either a language defined exception, in which case it may have a language defined exception 
name, a user defined exception, or an implementation defined exception. A language defined exception will be 
caused by the dynamic violation of a dynamic condition. Any exception can be caused by the execution of a 
cause action.

When an exception is caused, it may be handled, i.e., an action statement list of an appropriate handler will be 
executed.

Exception handling is defined such that at any statement it is statically known which exceptions might occur 
(i.e., it is statically known which exceptions cannot occur) and for which exceptions an appropriate handler can 
be found or which exceptions may be passed to the calling point of a procedure. If an exception occurs and no 
handler for it can be found, the program is in error.

11.2 HANDLERS  

syntax:
<handler> ::= (1)

ON { <on-alternative>}* [ ELSE < action statement list> ] EN D (1.1)

<on-alternative> ::= (2)
(<exception list>) : <action statement list> (2-1)

semantics: An action statement list in an on-alternative is entered if an exception occurs in the statement 
to which the handler is appended and whose exception name is mentioned in the exception list in 
the on-alternative. If ELSE is specified, the action statement list following it will be entered if an 
exception occurs in the statement to which the handler is appended and whose exception name is 
not specified in any exception list directly contained in the handler.

If the handler is appended to an action, when the end of an action statement list in an on-alternative 
is reached, control will be given to the action statement following the action statement in which the 
handler is placed.

If the handler is appended to a procedure definition, control will be returned to the calling point 
when the end of an action statement list is reached. If the handler is appended to a process definition, 
the executing process will terminate when the end of an action statement list in the on-alternative 
is reached.

static conditions: All the exception names in all the exception list occurrences must be different.

dynamic conditions: The SPACEFAIL exception occurs if an action statement list is entered and storage 
requirements cannot be satisfied.

examples:
10.47 ON

( ALLOCATEFAIL ): CAUSE overflow;
EN D  (1.1)

11.3 H ANDLER IDENTIFICATION

When an exception E occurs at an action A, or a data statement or region D, the exception may be handled 
by an appropriate handler; i.e., an action statement list in the handler will be executed or the exception may 
be passed to the calling point of a procedure; or, if neither is possible, the program is in error.

For any action A, or data statement or region D, it can be statically determined whether for a given exception 
E at A or D an appropriate handler can be found or whether the exception may be passed to the calling point.
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An appropriate handler for A or D with respect to an exception with exception name E is determined as 
follows:

1. if a handler is appended to A or D which mentions E in an exception list or which specifies ELSE , then 
that handler is the appropriate one with respect to E;

2. otherwise, if A or D is directly enclosed by a bracketed action, a module or a region, the appropriate
handler (if present) is the appropriate handler for the bracketed action, module or region with respect 
to E;

3. otherwise, if A or D is placed in the reach of a procedure definition then:

• if a handler is specified after the procedure definition which handler specifies E in an exception
list or specifies ELSE then that handler is the appropriate handler,

•  if E is mentioned in the exception list of the procedure definition then E is caused at the calling 
point,

•  otherwise there is no handler;

4. otherwise, if A or D is placed in the reach of a process definition (possibly the imaginary one) then:

•  if a handler is specified after the process definition which handler specifies E in an exception list 
or specifies ELSE , then that handler is the appropriate handler,

• otherwise there is no handler;

5. otherwise, if A is an action of an action statement list in a handler then the appropriate handler is the 
appropriate handler for the action A’ or data statement or region D’ with respect to E to which the 
handler is appended but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate handler implies exiting from blocks, 
local storage will be released when exiting from the block.
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12 IMPLEMENTATION OPTIONS

12.1 IM PLEM ENTATION DEFINED BUILT-IN ROUTINES 

syntax:
<built-in routine call> ::= (1)

<built-in routine name> ([ <built-in routine parameter list> ] ) (I.Jj

<built-in routine parameter list> ::= (2)
<built-in routine parameter> { , <built-in routine parameter>} * (2-1)

<built-in routine parameter> ::= (3)
<val ue> (3.1)

| <location> (3.2)
| <non-reserved name> (3.3)

semantics: An implementation may provide for a set of implementation defined built-in routines in addition 
to the set of language defined built-in routines.

A value, a location, or any program defined name that is not a reserved simple name string may 
be passed as parameter. The built-in routine call may return a value or a location. The parameter 
passing mechanism is implementation defined.

A built-in routine may be generic; i.e., its class (if it is a value built-in routine call) or its mode (if 
it is a location built-in routine call) may depend not only on the built-in routine name but also on 
the static properties of the actual parameters passed and the static context of the call.

static properties: A built-in routine name is an implementation defined name that is considered to be defined 
in the reach of the imaginary outermost process definition or in any context (see section 8.8). It may 
have a set of implementation defined exception names attached. A built-in routine call is a value 
(location) built-in routine call if and only if the implementation specifies that for a given choice of 
static properties of the parameters and the given static context of the call, the built-in routine call 
delivers a value (location).

12.2 IM PLEMENTATION DEFINED INTEGER MODES

An implementation may define integer modes other than the ones defined by IN T ; e.g., short integers, long inte­
gers, unsigned integers. These integer modes must be denoted by implementation defined integer mode names. 
These names axe considered to be newmode names, similar to IN T . Their value ranges are implementation 
defined. These integer-modes may be defined as root modes of appropriate classes.

12.3 IM PLEMENTATION DEFINED REGISTER NAM ES

An implementation may define a set of pre-defined register names (see sections 2.7 and 3.7).

12.4 IM PLEMENTATION DEFINED PROCESS NAM ES AND EXCEPTION NA M ES

An implementation may define a set of implementation defined process names; i.e., process names whose 
definition is not specified in CHILL. The definition is considered to be placed in the reach of the imaginary 
outermost process or in any context. Processes of this name may be started and instance values denoting such 
processes may be manipulated.

An implementation may define a set of exception names.
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12.5 IM PLEMENTATION DEFINED HANDLERS

An implementation may specify that an implementation defined handler is appended to the imaginary outermost 
process definition (see section 8.8). The exception names and actions in the implementation defined handler 
may specify any legal CHILL exception name or action. Note that an on-alternative in such handler can be 
entered only by an exception caused by the outermost process and not by any inner process.

12.6 IM PLEMENTATION DEFINED REFERABILITY

An implementation may define other (sub-)locations to be referable in addition to the locations which are 
defined to be referable by the language (see section 4.2.1).

12.7 SYNTAX OPTIONS

At some places, CHILL allows for more than one syntactic description for the same semantics. The choice for 
one of the following options must be fixed within the whole program.

Assignment symbol

The assignment symbol is either := or =

ARRAY

The reserved simple name string ARRAY is either mandatory or not allowed.

RETU RN S

In procedure definitions with a result spec, the reserved simple name string RETU RN S should be either 
mandatory or not allowed.

Structure modes

Structure modes must be either in the nested structure notation or in the level numbered notation.

Literal and tuple brackets

In the case that square brackets are available in the representation alphabet, the brackets [ and ] may be used 
instead of (: and :) respectively.
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APPENDIX As CHARACTER SETS FOR CHILL

A .l  CCITT ALPHABET NO. 5 INTERNATIONAL REFERENCE VERSION

Recommendation V3 (The internal representation is the binary number formed by bits b7 to b l, where b l  is 
the least significant bit).

is 0 0 0 0 1 1 1 1
n
(3

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

to

■
0 1 2 3 4 5 6 7

0 1 NUL TCz
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A .2 M INIM AL CHARACTER SET FOR CHILL

^10 0 0 0 0 F I i 1 1
0 0 1 1 0 0 1 1

u r n 0 1 0 1 0 1 0 1

muses i«i 0 1 2 3 4 5 6 7
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APPENDIX B: SPECIAL SYMBOLS
AND CHARACTER COMBINATIONS

Name Use

J semicolon terminator for statements etc.
J comma separator in various constructs
( left parenthesis opening parenthesis of various constructs
) right parenthesis closing parenthesis of various constructs
I left square bracket opening bracket of a tuple
] right square bracket closing bracket of a tuple

left tuple bracket opening bracket of a tuple
0 right tuple bracket closing bracket of a tuple

colon label indicator, range indicator
dot field selection symbol

:= assignment symbol assignment, initialisation
< less than relational operator
< = less than or equal relational operator
= equal relational operator, assignment, 

initialisation, definition indicator
h not equal relational operator
> = greater than or equal relational operator
> greater than relational operator
+ plus addition operator
— minus subtraction operator
* asterisk multiplication operator, undefined value, 

unnamed value, irrelevant symbol
/ solidus division operator
/ / double solidus concatenation operator

— > arrow referencing and dereferencing, 
prefix renaming

<> diamond start or end of a directive clause
/* comment opening bracket start of a comment
V comment closing bracket end of a comment

apostrophe start or end symbol in various literals
5 5 double apostrophe apostrophe within character or 

character string literals
/• prefixing operator prefixing of names
/ prefixing operator prefixing of names

B ’ literal qualification binary base for literal
D ’ literal qualification decimal base for literal
H ’ literal qualification hexadecimal base for literal
O ’ literal qualification octal base for literal
C ’ literal qualification hexadecimal representation for 

character string literal
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APPENDIX C: SPECIAL SIMPLE NAME STRINGS

C .l RESERVED SIM PLE NAM E STRINGS

OD
OF
ON
OUT

PACK
PERVASIVE
POS
POW ERSET
PREFIXED
PRIORITY
PROC
PROCESS

RANGE  
READ  
RECEIVE  
RECURSIVE  
REF
REGION  
REMOTE  
RESULT 
RETURN  
RETURNS  
ROW

ELSE
ELSIF
END
ENTRY
ESAC
EVENT
EVER
EXCEPTIONS
EXIT
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ACCESS
A D D R
ALL
ARRAY
ASSERT

BASED
BEGIN
BU FFER
BY

CALL
CASE
CAUSE
CONTEXT
CONTINUE

FI
FOR
FORBID

GENERAL
GOTO
GRANT

IF
IN
INIT
INLINE
INOUT

LOC

DCL
DELAY
DIRECTLY
DO
DO W N
DYNAM IC

MODULE

NEW M ODE
NONREF
NOPACK

SEIZE
SEND
SET
SIGNAL
SIMPLE
SPEC
START
STATIC
STEP
STOP
STRUCT
SY N
SYNM ODE

THEN
TO

U P

WHILE
W ITH



C.2 PR EDEFINED SIMPLE NAM E STRINGS

ABS
AND
ALLOCATE
ASSOCIATE
ASSOCIATION

BIN
B IT
BOOL

CARD
CHAR
CONNECT
CREATE

DELETE
DISCONNECT
DISSOCIATE

FALSE
FIRST

GETASSOCIATION
GETSTACK
GETUSAGE

INDEXABLE
INSTANCE
IN T
ISASSOCIATED

LAST
LOWER

M AX
MIN
MOD
MODIFY

NOT
NULL
NUM

OR
OUTOFFILE

PRED
PTR

READABLE
READONLY
READRECORD
READW RITE
REM

EXISTING

C.3 EXCEPTIO N NAM ES

ALLOCATEFAIL
ASSERTFAIL
ASSOCIATEFAIL
CONNECTFAIL
CREATEFAIL
DELAYFAIL
DELETEFAIL
EM PTY
EXTINCT
MODIFYFAIL
NOTCONNECTED

NOTASSOCIATED
OVERFLOW
RANGEFAIL
READFAIL
REC URSEFAIL
SENDFAIL
SPACEFAIL
TAGFAIL
TERMINATEFAIL
WRITEFAIL

C.4 DIRECTIVES

FREE

SEQUENCIBLE
SAME
SIZE
SUCC

TERMINATE
THIS
TRUE

UPPER
USAGE

VARYING

WHERE
W RITEABLE
W RITEONLY
WRITERECORD

XOR
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APPENDIX D: PROGRAM EXAMPLES

1. Operations on integers

1 integer-operations:
2 MODULE
3
4 add:
5 PROC (i,jIN T  ) ( IN T ) EXCEPTIONS (OVERFLOW);
6 RESULT i+ j
7 END add;
8
9 mult:

10 PROC (i,jIN T  ) ( IN T ) EXCEPTIONS (OVERFLOW);
11 RESULT i* j
12 END mult;
13
14 GRANT add, mult;
15 SYNM ODE operand-mode= INT ;
16 G RAN T operand-mode;
17 SY N  neutral-for-add=0,
18 neutral-for-mult=l;
19 G RAN T neutral-for-add,
20 neutral-for-mult;
21
22 END integer-operations;

2. Same operations on fractions

1 fraction-operations:
2 MODULE
3 NEW M ODE fraction=  STRUCT (num,denum INT );
4
5 add:
6 PROC (fl,f2 fraction)(fraction) EXCEPTIONS (OVERFLOW);
7 RETU RN [fl.num*f2.denum+f2.num*fl.denum,fl.denum*f2.denum]
8 END add;
9

10 mult:
11 PROC (fl,f2 fraction)(fraction) EXCEPTIONS (OVERFLOW);
12 RETU RN [fl.num*f2.num,f2.denum*fl.denum];
13 END mult;
14
15 G RAN T add, mult;
16 SYNM ODE operand-mode—fraction;
17 G RAN T operand-mode;
18 SY N neutral-for-add fraction=[ 0,1 ],
19 neutral-for-mult fraction=[ 1,1 ];
20 G RANT neutral-for-add,
21 neutral-for-mult;
22
23 END fraction-operations;
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3. Same operations on complex numbers

1 complex-operations:
2 MODULE
3 NEW M ODE complex= STRUCT (re,im IN T );
4
5 add:
6 PROC (cl,c2 complex)(complex) EXCEPTIONS (OVERFLOW);
7 RETU RN [cl.re-hc2.re,cl.im+c2.im];
8 END add;
9

10 mult:
11 PROC (cl,c2 complex)(complex) EXCEPTIONS (OVERFLOW);
12 RETURN [cl.re*c2.re-cl.im*c2.im,cl.re*c2.im~hcl.im*c2.re];
13 EN D  mult;
14
15 G RA N T add, mult;
16 SYNM O DE operand-mode=complex;
17 G RA N T operand-mode;
18 SY N  neutral-for-add=complex [ 0,0],
19 neutral-for-mult=complex [ 1,0];
20 G RA N T neutral-for-add,
21 neutral-for-mult;
22
23 EN D complex-operations;

4. General order arithmetic

1 general-order-arithmetic: /*  from collected algorithms from CACM no. 93 * /
2 MODULE
3 op:
4 PROC (a IN T  INOUT , b,c,order IN T )
5 EXCEPTIONS (wrong-input) RECURSIVE ;
6 D C L d IN T ;
7 ASSERT b>0 AND c>0 AND order>0
8 ON (ASSERTFAIL):
9 CAUSE wrong-input;

10 END ;
11 CASE order OF
12 (1): a := b+c;
13 R ETU RN ;
14 (2): d := 0;
15 ( ELSE ): d := 1;
16 ESAC ;
17 DO FOR i := I TO c;
18 op (a,b,d,order-1);
19 d := a;
20 OD ;
21 RETU R N  ,
22 EN D  op;
23
24 G RAN T op;
25
26 END general-order-arithmetic;

Fascicle VI. 12 -  Rec Z.200 157



Adding bit by bit and checking the result

1 add_ bit- by_ bit:
2 MODULE
3 adder:
4 PROC (a STRUCT (a2,al BOOL ) IN  , b STRUCT (b2,bl BOOL ) IN )
5 RETU RN S ( STRUCT (c4,c2,cl BOOL ));
6 DCL c STRUCT (c4,c2,cl BOOL );
7 DCL k2,x,w,t,s,r BOOL ;
8 DO W ITH a,b,c;
9 k2 := al AND bl;

10 cl := NO T k.2 AND (al OR b l);
11 x  := a2 AND b2 AND k2;
12 w := a2 OR b2 OR k2;
13 t := b2 AND k2;
14 s := a2 AND k2;
15 r := a2 AND b2;
16 c4 := r OR s OR t;
17 c2 := x  OR (w AND NO T c4);
18 OD ;
19 R ETU RN c;
20 END adder;
21 G RA N T adder;
22 END add-bit-by-bit;
23
24 exhaustive-checker:
25 MODULE
26 ' SEIZE adder;
27 DCL a STRUCT (a2,al BOOL ),
28 b STRUCT (b2,bl BOOL );
29 SY NM O D E res= ARRAY (1:16) STRUCT (c4,c2,cl BOOL );
30 DCL r  IN T  , results res;
31 DO W ITH a,b;
32 r := 0;
33 DO FOR a2 IN BOOL ;
34 DO FOR a l IN BOOL ;
35 DO FOR b2 IN BOOL ;
36 DO FOR bl IN BOOL ;
37 r+ := 1;
38 results (r) := adder (a,b);
39 OD ;
40 OD ;
41 OD ;
42 OD ;
43 OD ;
44 ASSERT
45 results=res [[ FALSE , FALSE , FALSE ],( FALSE , FALSE , TRUE },
46 [ FALSE , TRUE , FALSE } ,[ FALSE , TRUE , TRUE },
47 [ FALSE , FALSE , TRUE ] ,[ FALSE , TRUE , FALSE j,
48 [ FALSE , TRUE , TRUE ] ,[ TRUE , FALSE , FALSE ],
49 [ FALSE , TRUE , FALSE ] ,[ FALSE , TRUE , TRUE ],
50 [ TRUE , FALSE , FALSE j ,[ TRUE , FALSE , TRUE ],
51 [ FALSE , TRUE , TRUE ] ,[ TRUE , FALSE , FALSE j,
52 [ TRUE , FALSE , TRUE ] ,[ TRUE , TRUE , FALSE ]];
53 END exhaustive-checker;
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6. Playing w ith  dates

1 playing-with-dates:
2 M ODULE /*  from collected algorithms from CACM no. 199 */
3 SYNM ODE month= SET (jan,feb,mar,apr,may,jun,
4 jul,aug,sep,oct,nov,dec);
5 NEW M ODE date= STRUCT (day IN T (1:31), mo month, year INT );
6
7 gregoriari-date:
8 PROC (juHan-day-number IN T )(date);
9 DCL j IN T  := julian_ day-number,

10 d,m,y I N T ;
11 j - := 1-721-119;
12 y  := (4*  j - 1) /  146-097;
13 j  := 4 * j  -  1 -  146-097 * y;
14 d : = j / 4 ;
15 j  := (4 * d + 3) /  1-461;
16 d := 4 * d -h 3 -  1-461 * j;
17 d := (d + 4) /  4;
18 m := (5*  d - 3 )  /  153;
19 d := 5 * d -  3 -  153 * m;
20 d := (d + 5) /  5;
21 y :=  100* y  +  j
22 IF m<100 TH EN m + := 3;
23 ELSE m — := 9;
24 y  + := 1;
25 FI ;
26 R ETU R N  [d,month (m+1), y);
27 EN D gregorian-date;
28
29 julian-day-number:
30 PROC (d date)( IN T );
31 DCL c,y,m IN T ;
32 DO W ITH d;
33 m := NUM (mo)+l;
34 IF m>2 TH EN m -  := 3;
35 ELSE m -h :— 9;
36 year -  := 1;
37 FI ;
38 c := year/100;
39 y  := year-100*c;
40 RETU RN (146-097*c)/4+(l-461*y)/4
41 +(153+m+c)/5+day+l-721-119;
42 OD ;
43 END julian_ day-number;
44 G RAN T gregorian-date, juhan _ day- numb er;
45 END playing-with-dates;
46
47 test:
48 MODULE
49 SEIZE gregorian-date, juhan_day-number;
50 ASSERT julian_<Jay_number (j 10,dec,1979 ])=juhan-day-number
51 (gregorian-date (juhan-day-number ([ 10,dec,1979 ])));
52 END test;
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7. Roman numerals

1 Roman:
2 M O D U LE
3 SEIZE n,rn;
4 G R A N T  convert;
5 convert:
6 P R O C  () E X C E PT IO N S (string.too.small);
7 DCL r  IN T := 0;
8 DO W H ILE n> =1.000;
9 rn(r) := ’M ’;

10 n -  :=  1.000;
11 r + := 1;
12 OD ;
13 IF  n>500 T H E N  rn(r) := ’D ’;
14 n -  := 500;
15 r +  := 1;
16 F I ;
17 DO W H ILE 21 >=100;
18 rn(r) := ’C’;
19 22 -  := 100;
20 r + := 1;
21 OD ;
22 IF  n>=50 T H E N  rn(r) := ’L ’;
23 a  -  := 50;
24 r +  := 1;
25 F I ;
26 DO W H ILE n>=10;
27 rn(r) := ’X ’;
28 n -  := 10;
29 r +  := 1;
30 OD ;
31 IF  n>=5 T H E N  rn(r) := ’V ’;
32 22 -  :=  5;
33 r +  := 1;
34 F I ;
35 DO W H ILE n>=l;
36 rn(r)':= T;
37 2i -  := I ;

38 r + := 1;
39 OD ;
40 R E T U R N  ;
41 E N D  ON  (RANGEFAIL): DO FO R  i := 0 TO  UPPER (rn);
42 rn(i) :=
43 OD ;
44 CA U SE string-toosmall;
45 E N D  convert;
46 EN D  Roman;
47 test:
48 M O D U LE
49 SEIZE convert;
50 DCL 2i IN T  IN IT  :=  1979;
51 DCL rn CHAR (20) IN IT  := (20)’ ’;
52 G R A N T  n,rn;
53 convert ();
54 A SSERT 2-2i= ’M DCCCCLXXVIIIP//(6)” ;
55 EN D  test;
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8. Counting letters in a character string of arbitrary length

1 letter-count:
2 M O D U LE
3 SEIZE  max;
4 DCL letter P O W E R SE T  CHAR IN IT  := [’A ’ : 'Z\,
5 count:
6 P R O C  (input RO W  CHAR (max) IN  , output ARRA Y ( A ’:’Z ’) IN T  O U T );
7 DO FO R  i := 0 TO UPPER (input ->);
8 IF  input -> (i) IN  letter
9 T H E N

10 output (input ~> (i)) + := 1;
11 F I ;
12 OD ;
13 E N D  count;
14 G R A N T  count;
15 EN D  letter-count;
16 test:
17 M O D U LE
18 SY N M O D E results= ARRA Y f ’AVZ’J IN T ;
19 DCL c CHAR (10) IN IT  := A -B < ZA A 9K ’ ’
20 DCL output results;
21 SY N  max=10-000;
22 G R A N T  max;
23 SEIZE count;
24 count (-> c,output);
25 A SSER T output=results [(’A ’) : 3 ,C B \,K \ ,Z )) : 1, ( ELSE ) : 0};
26 EN D  test;

9. P rim e  num bers

1 prime:
2 M O D U LE
3
4 SY N  max = H ’7FFF;
5 N E W M O D E  number-list = P O W E R SE T  IN T (2:max);
6 SY N  empty = number-list [ ];
7 DCL sieve number-list IN IT  ;= [ 2:max],
8 primes number-list IN IT  := empty;
9 G R A N T  primes;

10 DO W H ILE sieve/=empty;
11 primes OR := [ M IN (sieve)];
12 DO FO R  j  := MIN (sieve) B Y  MIN (sieve) TO max;
13 sieve -  := [j;
14 OD ;
15 OD ;
16 EN D  prime;
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10. Implementing stacks in two different ways, transparent to the user

1 stack : M O D U LE
2 N E W M O D E  element = ST R U C T  (a IN T , b BOOL );
3 stacks^ 1:
4 M O D U LE
5 SEIZE element;
6 SY N  max=10-000,min=l;
7 DCL stack ARRA Y  (min : max) element,
8 stackindex IN T  IN IT  := min;
9

10 push:
11 P R O C  (e element) E X C E PT IO N S (overflow);
12 IF  stackindex=max
13 T H E N  CA U SE overflow;
14 F I ;
15 stackindex + := 1;
16 stack (stackindex) := e;
17 R E T U R N  ;
18 E N D  push;
19
20 pop:
21 P R O C  () E X C E P T IO N S  (underflow);
22 IF stackindex=min
23 T H E N  CA U SE underflow;
24 F I ;
25 stackindex -  :— 1;
26 R E T U R N  ;
27 E N D  pop;
28
29 elem:
30 P R O C  (i IN T ) (element LOC ) E X C E PT IO N S (bounds);
31 IF  i<min OR i>max
32 T H E N  CA U SE bounds;
33 F I ;
34 R E T U R N  stack (i);
35 E N D  elem;
36
37 G R A N T  push,pop,elem;
38 EN D  stacks-1;
39 stacks-2:
40 M O D U LE
41 SEIZE element;
42 N E W M O D E  celi= ST R U C T  (pred,succ R E F  cell,info element);
43 DCL p,last,first R E F  cell IN IT  := NULL ;
44
45 push:
46 P R O C  (e element) E X C E PT IO N S (overflow);
47 p := ALLOCATE (cell) ON
48 (ALLOCATEFAIL) : CA U SE overflow;
49 EN D  ;
50 IF  last= NULL
51 T H E N  first := p;
52 last := p;
53 ELSE last -> . succ := p;
54 p -> . pred :— last;
55 last := p;
56 F I ;
57 last -> . info := e;
58 R E T U R N  ;
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

EN D  push;

pop:
P R O C  () E X C E PT IO N S (underflow);

IF  last= NULL
T H E N  CA U SE underflow; 

F I ;
p := last;
last := last -> . pred;
IF last = NULL

T H E N  first := NULL ;
ELSE last -> . succ := NULL ;

F I ;
TERMINATE(p);
R E T U R N ;

EN D  pop;

elem:
PR O C  (i IN T ) (element LOC ) E X C E PT IO N S (bounds); 

IF  Brst= NULL
T H E N  CA U SE bounds; 

F I ;
p := first;
DO FO R  j  := 2 TO i;

IF  p -> . succ= NULL
T H E N  CA U SE bounds; 

F I ;
p := p -> . succ;

OD ;
R E T U R N  p -> . info;

EN D  elem;

/*  G R A N T  push,pop,elem; */
EN D  stacks-2;

EN D  stack;
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11. Fragment for playing chess

1 chess-fragments:
2 M O D U LE
3 N E W M O D E  piece= ST R U C T  (color SET (white, black),
4 kind SET  (pawn,rook,knight,bishop,queen,king));
5 N E W M O D E  column= SET (a,b,c,d,e,f,g,h);
6 N E W M O D E  Une= IN T (1 : 8);
7 N E W M O D E  square= ST R U C T  (status SET (occupied,free),
8 CA SE status OF
9 (occupied) : p piece,

10 (free) :
11 ESA C );
12 N E W M O D E  board= ARRA Y (line) ARRA Y (column) square;
13 N E W M O D E  move= ST R U C T  (Hn-l,Hn-2 line,
14 col-1,col-2 column);
15
16 initialise:
17 P R O C  (bd board IN O U T  );
18 bd := [ (1): [(a,h): .status: occupied, .p [white,root]],
19 (b,g): .status: occupied, .p [white,knight]],
20 (c,f): .status: occupied, .p [white,bishop]],
21 (d): .status: occupied, .p [white, queen]],
22 (e): .status: occupied, .p [white,king}]},
23 (2): [( ELSE ):[.status: occupied, .p [white,pawn]]],
24 (3:6):[( ELSE ):[.status: free}],
25 (7): [f ELSE J:[.status: occupied, .p [black,pawn]]],
26 (8): \(a,h): .status: occupied, .p [b]ach,root]],
27 (b,g): .status: occupied, .p [black,knight]],
28 (c,f): .status: occupied, ,p [black,bishop]],
29 (d): .status: occupied, .p [black, queen]],
30 (e): .status: occupied, .p [black,king]]]
31 1;
32 R E T U R N  ;
33 E N D  initialise;
34 register-move:
35 P R O C  (b board LOC ,m move) E X C E PT IO N S (illegal);
36 DCL starting square LOC := b (m .lin-l)(m .col-l),
37 arriving square LOC := b (m.lin-2)(m.col-2);
38 DO W IT H  m;
39 IF  starting.status=free T H E N  CA U SE illegal; F I ;
40 IF  arriving.status/—free T H E N
41 IF  arriving.p.kind=king T H E N  CA U SE illegal; F I ;
42 F I
43 CA SE starting.p.kind, starting.p.color OF
44 (pawn), (white):
45 IF  col-1 = col- 2 AND (arriving.status/=free
46 OR NO T (lin-2= lin-l+ l OR lin-2= hn-l+ 2 AND lin-2=2))
47 OR (col- 2= PRED (col-1) OR col_ 2= SUCC (col-1))
48 AND arriving.status=free T H E N  CA U SE illegal; F I ;
49 IF  arriving.status/=free T H E N
50 IF  arriving.p.color—white T H E N  CA U SE illegal; F I ;
51 (pawn), (black) :
52 IF  col-l=col-2 AND (arriving.status/=free
53 OR NO T (lin -2= lin -l-l OR lin-2= lin-l-2  AND Hn-1=7))
54 OR (col-2= PRED (col-1) OR coL2= SUCC (col-1))
55 AND arriving.status=free T H E N  CA U SE illegal; F I ;
56 IF arriving.status/—free T H E N
57 IF  arriving.p.color=black T H E N  CA U SE illegal; F I
58 (rook),(*):

F I

F I
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IF  NO T ok-rook (b,m)
T H E N  CA USE illegal;

F I ;
(bishop),(*):
IF NOT ok-bishop (b,m)

T H E N  CA U SE illegal;
F I ;

(queen),(*):
IF  NO T ok-rook (b,m) AND NOT ok-bishop (b,m)

T H E N  CA U SE illegal;
F I ;

(knight),(*):
IF  ABS ( ABS ( NUM (col-2)- NUM (col-1))

-  ABS (lin-2- lin-1)) /=  1 
OR ABS ( NUM (col-2)- NUM (col-1))

+ ABS (lin-2- lin-1) = / 3 T H E N  CA U SE illegal; F I ;
IF  arriving.status/=free T H E N

IF  arriving.p.color=starting.p.color T H E N  
CA U SE illegal; F I ; F I ;

(king)/*):
IF  ABS ( NUM (coL 2)- NUM (col-1)) > 1 

OR ABS (lin-2- hn-1) > 1
OR lin-2= lin-l AND coL2=col-l T H E N  CA U SE illegal; F I ;

IF  arriving.status/=free T H E N
IF arriving.p.color=starting.p.color T H EN
CA U SE illegal; F I ; F I ;/* checking king moving to check not implemented

85 ESA C ;
86 OD ;
87 arriving := starting;
88 starting := [.sfcatus:free];
89 R E T U R N  ;
90 EN D  register-move;
91 ok-rook:
92 P R O C  (b board,m move)( BOOL );
93 D CL starting square := b (m .lin-l)(m .col-l),
94 arriving square := b (m.lin-2)(m.col-2);
95
96 DO W IT H  m;
97 IF  NOT (col-2=col-l OR lm -l= lin-2)  T H E N  R E T U R N  FALSE ; F I ;
98 IF  arriving.status/—free T H E N
99 IF arriving.p. color=starting.p. color T H E N  ;

100 R E T U R N  FALSE ; F I ; F I ;
101 IF  col-l=col-2
102 T H E N  IF  lin -l< hn-2
103 T H E N  DO FO R  lin := lin-1+1 TO lin-2-1;
104 IF  b (Un)(col-1).status/=free
105 T H E N  R E T U R N  FALSE ;
106 F I ;
107 OD
108 ELSE DO FO R  lin := lin -1-1 D O W N  TO  lin -2+1;
109 IF  b (lin) (col-1).status/=free
110 T H E N  R E T U R N  FALSE ;
111 F I ;
112 OD ;
113 F I ;
114 ELSIF col-l<col-2
115 T H E N  DO FO R  col := SUCC (col-1) TO  PRED (col-2);
116 IF  b (lin-1 )(col).status/=free
117 T H E N  R E T U R N  FALSE ;
118 F I ;

59
60 
61 
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80 
81 
82
83
84
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119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

OD ;
ELSE DO F O R  col := SUCC (col-2) D O W N  TO  PRED (col-1); 

IF  b (lin-1)(col).status/=free 
T H E N  R E T U R N  FALSE ;

F I ;
OD ;

F I ;
R E T U R N  TRUE ;

O D ;
EN D  ok-rook; 

ok- bishop:
P R O C  (b board,m move)( BOOL );

DCL starting square := b (m .lin-l)(m .col-l), 
arriving square := b (m.lin-2)(m.col-2), 
col column;

DO W IT H  m;
CA SE lin-2> lin-l,col-2>col-l OF 

( TRUE ),( TRUE ): col := col-1;
DO  FO R  lin := lin -l-h l TO lin-2-1; 

col := SUCC (col);
IF  b (lin)(col).status/—free

T H E N  R E T U R N  FALSE ;
F I ;

OD ;
IF  SUCC (col)/=col-2

T H E N  R E T U R N  FALSE ;
F I ;

( TRUE ),( FALSE ): col := col-1;
DO FO R  lin := lin -l-h l TO lin-2-1; 

col := PRED (col);
IF b (lin)(col).status/=free

T H E N  R E T U R N  FALSE ;
F I ;

O D ;
IF  PRED (col)/=col-2

T H E N  R E T U R N  FALSE ;
F I ;

( FALSE ),( TRUE ): col := col-1;
DO FO R  lin := lin -1-1 D O W N  TO lin-2-hl; 

col := SUCC (col);
IF b (lin)(col).status/—free

T H E N  R E T U R N  FALSE ;
F I ;

OD ;
IF SUCC (col)/=col-2

T H E N  R E T U R N  FALSE ;
F I ;

( FALSE ),( FALSE ): col := col-1;
DO FO R  lin := lin-1-1  D O W N  TO  lin-2+1; 

col := PRED (col);
IF b (lin)(col).sta tus/=free

T H E N  R E T U R N  FALSE ;
F I ;

O D ;
IF  PRED (col)/=col-2

T H E N  R E T U R N  FALSE ;
F I ;

ESA C ;
IF  arriving.status=free T H E N  R E T U R N  TRUE ;
ELSE R E T U R N  arriving.p. color/=starting.p. color; F I ;

Fascicle VI. 12 -  Rec Z.200



180 OD ;
181 E N D  ok- bishop;
182 EN D  chess-fragments;
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12. Building and m anipulating a circularly linked list

1 circulax-list:
2 M O D U LE
3 handle-Ust:
4 M O D U LE
5 G R A N T  insert, remove, node;
6 N E W M O D E  node= ST R U C T  (pred, sue R E F  node, value IN T  );
7 DCL pool ARRA Y  (l:1000)node;
8 DCL head node := (: NULL , NULL ,0 :);
9

10 insert: PR O C  (new node);
11 /*  insert actions */
12 E N D  insert;
13
14 remove: PR O C  ();
15 /*  remove actions * /
16 EN D  remove;
17
18 initialize-list:
19 B E G IN
20 DCL last R E F node := ->head;
21 DO FO R  new IN  pool;
22 new.pred := last;
23 last->.suc := - >new;
24 last := - >new;
25 new.value := 0;
26 OD ;
27 head.pred := last;
28 last->.suc := ->head;
29 E N D  initialize-list;
30
31 E N D  handle-list;
32 manipulate:
33 M O D U LE
34 SEIZE node, remove, insert;
35 DCL node-a node := (: NULL , NULL ,536 :);
36 removeQ;
37 removeQ;
38 insert (node-a);
39 EN D  manipulate;
40 EN D  circular-Ust;
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A region for managing com peting accesses to a resource

1 allocate-resources:
2 R E G IO N
3 G R A N T  allocate, deallocate;
4 N E W M O D E  resource-set =  IN T (0:9);
5 DCL allocated ARRA Y (resource-set) BOOL := (: (resourceset): FALSE :);
6 DCL resource-freed E V E N T  ;
7
8 allocate:
9 PR O C  ()(resource-set);

10 DO FO R  E V E R  ,
11 DO FO R  i IN  resource-set;
12 IF  NOT allocated(i)
13 T H E N
14 allocated(i) := TRUE ;
15 R E T U R N  i;
16 F I ;
17 OD ;
18 DELAY resource-freed;
19 OD ;
20 EN D  allocate;
21
22 deallocate:
23 PR O C  (i resource -  set);
24 allocated(i) := FALSE ;
25 C O N T IN U E  resource-freed;
26 EN D  deallocate;
27
28 EN D  allocate-resources;
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14. Queuing calls to a switchboard

1 switchboard:
2 M O D U LE
3 /*  This example illustrates a switchboard which queues incoming calls
4 and feeds them to the operator at an even rate. Every time the
5 operator is ready one and only one call is let through. This is
6 handled by a call distributor which lets calls through at Gxed
7 intervals. I f  the operator is not ready or there are other calls
8 waiting, a new call must queue up to wait for its turn. */
9 D CL operator-is-ready,

10 switch-is-closed E V E N T  ;
11
12 call- distributor:
13 P R O C E SS  ();
14 wait:
15 P R O C  (x IN T );
16 /*some wait action*/
17 E N D  wait;
18 DO FO R  E V E R  ,
19 wait(10 /*seconds*/);
20 C O N T IN U E  operator-is_ ready;
21 OD ;
22 E N D  call-distributor;
23
24 call-process:
25 P R O C E SS  ();
26 DELAY CA SE
27 (operator-is-ready): /*  some actions * / ;
28 (switch-is-dosed): DO FO R  i IN  IN T (1:100);
29 C O N T IN U E  operator-is-ready;
30 /*  empty the queue*/
31 OD ,
32 E S A C ;
33 E N D  call-process;
34
35 operator:
36 PR O C E SS  ();
37 DCL time IN T ;
38 DO FO R  E V E R  ,
39 IF  time — 1700
40 T H E N  C O N T IN U E  switch-is-dosed;
41 F I ;
42 OD ;
43 E N D  operator;
44
45 STA RT call-distributor();
46 STA RT operator();
47 DO FO R  i IN  IN T  (1:100);
48 STA RT caJi_ process (J;
49 OD ,
50 EN D  switchboard;
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15. Allocating and deallocating a set of resources

1 <> FREE ( S T E P  );
2 M O D U LE
3 SIG N A L
4 acquire,
5 release=( INSTANCE ),
6 congested,
7 ready,
8 step,
9 readout=( IN T );

10 G R A N T  ALL ;
11 E N D  definitions;
12 counter-manager:
13 M O D U LE
14 /*  To illustrate the use of signals and the receive case, (buffers
15 might have been used instead) we will look at an example where an
16 allocator manages a set of resources, in this case a set of
17 counters. The module is part of a larger system where there are
18 users, that can request the services of the counter-manager. The
19 module is made to consist of two process definitions, one for the
20 allocation and one for the counters, initiate and terminate
21 are internal signals sent from the allocator
22 to the counters. All the other signals are external, being sent
23 from or to the users. */
24
25 SEIZE /*  external signals */
26 acquire, release, congested,ready,step,readout;
27 SIG N A L initiate = ( INSTANCE ),
28 terminate;
29 allocator:
30 PR O C E SS  ();
31 N E W M O D E  no-of-counters = IN T (1:100);
32 DCL counters ARRA Y  (no-of-counters)
33 ST R U C T  (counter INSTANCE ,status SET  (busy,idle));
34 DO FO R  each IN  counters;
35 each := (: START counter(), idle :);
36 OD ;
37 DO FO R  E V E R  ;
38 B E G IN
39 D C L user INSTANCE ;
40 awaitsignals:
41 R E C E IV E  C A SE SET user;
42 (acquire):
43 DO  FO R  each IN  counters;
44 DO W IT H  each;
45 IF  status = idle
46 T H E N
47 status := busy;
48 SEN D  initiate (user) TO  counter;
49 E X IT  awaitsignals;
50 F I ;
51 OD ;
52 OD ;
53 SEN D  congested TO user;
54 (release IN  this-counter):
55 SEN D  terminate TO  this-counter;
56 find-counter:
57 DO FO R  each IN  counters;
58 DO W IT H  each;
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62
63
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IF  this-counter = counter 
TH E N

status := idle;
E X IT  fin d_ counter;

F I ;
OD ;

OD find _counter;
ESA C await signals;

EN D  ;
OD ;
EN D  allocator; 

counter:
PR O C E SS ();

DO  FO R  EV E R  ;
B E G IN

DCL user INSTANCE , 
count IN T  := 0;

R E C E IV E  CA SE
(initiate IN  received-user):

SEN D  ready TO  received- user; 
user := received-user;

ESA C ; 
work-loop:
DO FO R  E V E R  ;

R E C E IV E  CA SE 
(step): count + := 1;
(terminate):

SEN D  readout(count) TO user; 
E X IT  work-loop;

ESAC ;
OD work-loop;

E N D  ;
OD ;

E N D  counter;
STA RT allocatorQ;

EN D  counter-manager;
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Allocating and deallocating a set of resources using buffers

1 <> FREE ( S T E P  );
2
3 user-world:
4 M O D U LE
5 /*  This example is the same as no. 15 except that buffers are
6 used for communication in stead of signals.
7 The main difference is that processes are now identified
8 by means of references to local message buffers rather than
9 by instance values. There is one message buffer declared

10 local to each process. There is one set of message types
11 for each process definition. When started each process must
12 identify its buffer address to the starting process.
13 The user-world module sketches some of the environment in
14 which the counter-manager is used. */
15
16 SEIZE allocator;
17 G R A N T  user_ buffers,user-messages,
18 allocator-messages, allocator-buffers,
19 counter-messages, counters-buffers;
20 N E W M O D E
21 user_ messages =
22 ST R U C T  (type SET  (congested, ready, x
23 readout, allocator-id),
24 CA SE type OF
25 (congested) : ,
26 (ready) : counter R E F counters-buffers,
27 (readout) : count IN T ,
28 (allocator-id): allocator R E F allocator-buffers
29 ESAC ),
30 user-buffers = B U F F E R  (1) user-messages,
31 allocator-messages =
32 ST R U C T  (type SET  (acquire, release, counter-id),
33 C A SE type OF
34 (acquire) : user R E F user-buffers,
35 (release,
36 counter-id): counter R E F counters-buffers
37 ESA C ),
38 allocator-buffers = B U F F E R  (1) allocator-messages,
39 counter-messages —
40 ST R U C T  (type SET  (initiate, step, terminate),
41 CA SE type OF
42 (initiate) : user R E F user-buffers,
43 (step,
44 terminate):
45 ESA C ),
46 counters-buffers = B U F F E R  (1) counter-messages;
47 DCL user_ buffer user- buffers,
48 allocator-buf R E F  allocator-buffers,
49 counter-buf R E F  counters-buffers;
50 START allocator (-> user-buffer);
51 allocator-buf := ( R E C E IV E  user-buffer).allocator;
52 EN D  user-world;
53 counter-manager:
54 M O D U LE
55 SEIZE user_ buffers,user_messages,
56 allocator-messages, allocator-buffers,
57 counter-messages, counters-buffers;
58 G R A N T  allocator;
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59
60 allocator:
61 PR O C E SS  (starter R E F  user-buffers);
62 DCL allocator-buffer allocator-buffers;
63 N E W M O D E  no-of-counters = IN T (1:10);
64 D CL counters ARRAY (no_ of- counters)
65 ST R U C T  (counter R E F  counters-buffers,
66 status SE T  (busy, idle)),
67 message allocator-messages;
68 SEN D  starter-> ([allocator-id, -> allocator- buffer]);
69 DO FO R  each IN  counters;
70 STA RT counter(-> allocator- buffer);
71 each := [( R E C E IV E  allocator-buffer).counter, idle];
72 OD ;
73 DO FO R  E V E R  ;
74 B E G IN
75 DCL user R E F  user_ buffers;
76 message := R E C E IV E  allocator-buffer;
77 handle-messages: ,
78 C A SE message.type OF
79 (acquire):
80 user := message.user;
81 DO FO R  each IN  counters;
82 DO W IT H  each;
83 ' IF  status= idle
84 T H E N  status := busy;
85 SEN D  counter-> ([initiate, user]);
86 E X IT  handle-messages;
87 FI ;
88 OD ;
89 OD ;
90 SEN D  user->([congested]);
91 (release):
92 SEN D  meSsage.counter-> ([ terminate]) ;
93 find-counter:
94 DO  FO R  each IN  counters;
95 DO W IT H  each;
96 IF message.counter = counter
97 T H E N  status := idle;
98 E X IT  find-counter;
99 FI ;

100 OD ;
101 OD find-counter;
102 (counter-id): ;
103 ESA C handle-messages;
104 E N D  ;
105 OD ,
106 E N D  allocator;
107 counter:
108 P R O C E SS  (starter R E F allocator-buffers);
109 DCL coimter-buffer counters-buffers;
110 SEN D  starter->  ([counter-id, -> counter- buffer]);
111 DO FO R  E V E R  ;
112 B E G IN
113 DCL user R E F user_ buffers,
114 count IN T := 0,
115 message counter-messages;
116 message := R E C E IV E  counter-buffer;
117 CA SE message.type OF
118 (initiate): user := message.user;
119 SEN D  user->([ready, - > counter- buffer]);
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ELSE /*  some error action * /
ESA C ; 

work-loop:
DO FO R  E V E R  ;

message := R E C E IV E  counter-buffer;
CA SE message.type OF 

(step) : count + := 1;
(terminate): SEN D  user->([readout, count]);

E X IT  work-loop;
ELSE /*  some error action */

ESA C ;
OD work-loop;

EN D  ; 
OD ;

EN D  counter;
EN D  counter-manager;
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17. String scannerl

1 string_scannerl: /*  This program implements strings by means
2 of packed arrays of characters. * /
3 M O D U LE
4 SY N
5 blanks ARRA Y  (0:9) CHAR PA CK  =  [(*):’ ’ ], linelength = 132;
6 SY N M O D E
7 stringptr = RO W  ARRA Y (lineindex) CHAR PA CK  ,
8 hneindex = IN T (0:linelength-l);
9

10 scanner:
11 PR O C  (string stringptr, scanstart hneindex IN O U T  ,
12 scanstop Hneindex, stopset P O W E R S E T  CHAR )
13 R E T U R N S  ( ARRA Y (0:9) CHAR PA C K  );
14 DCL count IN T := 0,
15 res ARRA Y (0:9) CHAR PA CK  := blanks;
16 DO
17 FO R  c IN  string~>(scanstart:scanstop)
18 W H ILE NOT (c IN  stopset);
19 count + := 1;
20 OD ;
21 IF  count>0
22 T H E N
23 IF  count >10
24 T H E N
25 count := 10;
26 FI ;
27 res(0:count-l) := string-> (scanstart:scanstart+count~l);
28 F I ;
29 RESU LT res;
30 IF  scanstart-hcount < scanstop
31 T H E N
32 scanstart := scanstart+count+1;
33 F I ;
34 EN D  scanner;
35
36 G R A N T  scanner;
37
38 EN D  strings scannerl;
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18. String scanner2

1 string-scanner2: /*  This example is the same as no.17 but it uses
2 character string instead of packed arrays */
3 M O D U LE
4 SY N
5 blanks = (10)’ ’, Hnelength — 132;
6 SY N M O D E
7 stringptr = RO W  CHAR (linelength),
8 lineindex = IN T (0:linelength-l);
9

10 scanner:
11 PR O C  (string stringptr, scanstart lineindex IN O U T  ,
12 scanstop Hneindex, stopset P O W E R S E T  CHAR )
13 R E T U R N S ( CHAR (10));
14 DCL count IN T  := 0;
15 DO FO R  i := scanstart TO scanstop
16 W H ILE NOT (string-> (i) IN  stopset);
17 count + := 1;
18 OD ;
19 IF  count>0
20 T H E N
21 IF  count>—10
22 T H E N
23 RESULT string-> (scanstart U P  10);
24 ELSE
25 RESULT string->(scanstart:scanstart+count-l)
26 //blanks (count :9);
27 F I ;
28 ELSE
29 RESU LT blanks;
30 F I ;
31 IF  scanstart+count < scanstop
32 T H E N
33 scanstart := scanstart+count+1;
34 F I ;
35 E N D  scanner;
36
37 G R A N T  scanner;
38
39 EN D  stringscanner2;
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19. Removing an item  from a double linked list

1 queue: M O D U LE
2 SY N M O D E info= IN T ;
3 queue- removal:
4 M O D U LE
5 SEIZE info;
6 G R A N T  remove;
7 remove:
8 P R O C  (p PTR ) R E T U R N S (info) E X C E PT IO N S (EMPTY);
9 /*  This procedure removes the item referred to

10 by p from a queue and returns the information
11 contents of that queue element * /
12 DCL 1 x  B A SED  (p),
13 2 i info PO S (0,8:31),
14 2 prev PTR  PO S (1,0:15),
15 2 next PTR  PO S (1,16:31);
16 DCL prev, next PTR ;
17 prev := x.prev;
18 next := x.next;
19 x.prev, x.next := NULL ;
20 RESULT x.i;
21 p := prev;
22 x.next := next;
23 p := next;
24 x.prev := prev;
25 E N D  remove;
26 EN D  qu eue_ removal;
27 EN D  queue;
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U p d a te  a  reco rd  of a  file

1 read-modify- write:
2 M O D U LE
3
4 /*  this example indicates how the CHILL i/o concepts can be used * /
5 /*  to write an apphcation where a record of a random accessible * /
6
7

/*  file can be updated or added if not yet in use 7
/
8 N E W M O D E
9 in d exse t = IN T (1:1000),

10 record-type = ST R U C T  (
11 free B O O L,
12 count I N T ,
13 name CHAR (20));
14
15 DCL
16 cur in dex in dex- set,
17 file-association ASSOCIATION,
18 record-file A CCESS (indexset) record-type,
19 record- buffer record- type;
20
21 ASSOCIATE (hie-association, DSK:RECORDS.DAT); /*  create association 7
22 CONNECT (record-file,file-association, READW RITE ); /*  connect to hie 7
23 curindex := 123; /*  position record 7
24 READRECORD (record-hie,curindex,record- buffer); /*  read the record 7
25 IF  record- buffer.free /*  if  record is free 7
26 T H E N /*  the claim and 7
27 record- buffer.free := FALSE /*  initialize it 7
28 record-buffer, count := 0;
29 record-buffer.name := ’CHILL I/O  concept ’;
30 F I ;
31 record-buffer.count + := 1; /*  increment its count/
32 WRITERECORD (record-file, curindex, record-buffer); /*  write the record 7
33 DISSOCIATE (hie-association); /*  end the association!/
34
35 EN D  read-modify-write;
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21. Merge two sorted files

1 mergesorted-Gles:
2 M O D U LE
3
4 /*  this example shows how two sorted files can be merged into one */
5 /*  new sorted hie, where the Geld ’key’ is used for sorting * /
6 /*  the old sorted files are deleted after the merging has been done * /
7
8 N E W M O D E
9 record-type = ST R U C T  (

10 key I N T ,
11 name CHAR (50));
12
13 DCL
14 Gag BO O L,
15 infiles ARRA Y ( BOOL ) A CCESS record-type,
16 outGle A CCESS record-type,
17 buffers ARRA Y ( B O O L ) record-type,
18 innames ARRA Y  ( BOOL ) CHAR (10) IN IT  := {’FILE.IN. 1 ’, ’FILE.IN..2 ’},
19 outname CHAR (10) IN IT  := ’FILE.OUT ’,
20 inassocs ARRA Y ( BOOL ) ASSOCIATION ,
21 outassoc ASSO CIATION;
22
23 /*  associate both sorted input files, connect an access to them for input * /
24 /*  and read their first record into a buffer */
25
26 DO
27 FO R  curfile IN  infiles,
28 curbuffer IN  buffers,
29 curassoc IN  inassocs,
30 curname IN  innames;
31 CONNECT (curGle, ASSOCIATE (curassoc, curname), READONLY );
32 READRECORD (curfile, curbuffer);
33 OD
34
35 /*  associate the output file, create a file for the association */
36 /*  and connect an access to it for output */
37
38 ASSOCIATE (outassoc,outname);
39 CREATE (outassoc);
40 CONNECT (outGle, outassoc, WRITEONLY );
41 merge-Gles:
42 DO FO R  E V E R
43
44 /*  determine which file, if  any at all, to process next*/
45 /*  ’Gag’ indicates the file */
46
47 C A SE OUTOFFILE (inGles( FALSE )), OUTOFFILE (inGles( TRUE )) OF
48 ( TRUE ), ( TRUE ): /*  both files are empty * /
49 E X IT  m erge_ Gles;
50 ( TRUE ), ( FALSE ): /*  one file is empty */
51 Gag := TRUE ;
52 ( FALSE ), ( TRUE ): /*  one file is empty */
53 Gag := FALSE ;
54 ( FALSE ), ( FALSE ): /*  no file is empty */
55 Gag := buffers( FALSE ).key>buffers( TRUE ).key;
56 ESA C ;
57
58 /*  output the buffer which currently contains a record with the * /
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74

/*  smallest value for ’key’, 611 the buffer with a new record * /

WRITERECORD (out61e,buffers(6ag));
READRECORD (inBles(Bag), buffers(hag));

OD merge-files;

/*  delete the input hies and close the output hie * /

DO
FO R  curassoc IN  inassocs;

DELETE (curassoc); /*  delete the hie 7
. DISSOCIATE (curassoc); 

OD ;
DISSOCIATE (outassoc);

/*  and terminate association * / 

/*  disconnect and terminate * /

EN D  mergesorted-hles;
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22. Read a file w ith variable length records

1 variable-length-records:
2 M O D U LE
3
4 /*  This example shows how a hie which consists of variable length * /
5 /*  records can be treated. * /
6 /*  The hie consists of a number of strings of varying length; the */
7 /*  algorithm will read a string, allocate an appropriate location * /
8 /*  for it, and put the reference to this location into a push down hst * /
9

10 N E W M O D E
11 string = CHAR (80),
12 link-record = ST R U C T  (
13 next-record R E F Hnk-record,
14 string-row RO W  string);
15
16 DCL
17 pushdownhst R E F hnk-record IN IT  := NULL ,
18 length IN T (1:80),
19 temporaryrow RO W  string,
20 hleaccess A C CESS string D Y N A M IC  ,
21 association ASSO CIATION;
22
23 ASSOCIATE (association,’INPUT.DATA’); /*  associate the input hie */
24 CONNECT (hleaccess, association, READONLY ); /*  connect access for input */
25 temporaryrow := READRECORD (hleaccess); /*  read the first record */
26 DO /*  while not end-of-hle */
27 W H ILE NOT(OUTOFFILE(hleaccess));
28 pushdownhst := ALLOCATE (link-record, /*  get a new hnk record */
29 [pushdownhst, NULL ]); /*  and initialize it */
30 length := 1 + UPPER (temporaryrow->); /*  determine length of string */
31 DO
32 W IT H  pushdowhst->; /*  add new string to hst */
33 string-row := ALLOCATE ( CHAR (length), /*  allocate space for string */
34 temporaryrow->); /*  and hll it */
35 OD ;
36 temporaryrow := READRECORD (hleaccess); /*  get next record in hie */
37 OD ;
38 DISSOCIATE (association); /*  end the association */
39
40 EN D  variable-length-records;
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23. The use of spec modules

1 letter-count:
2 SPE C  M O D U LE
3 /*  This is a spec module for the corresponding module in example 8. * /
4 SEIZE max;
5 count: PR O C  ( RO W  CHAR (max) IN  , ARRA Y (’A ’:’Z ’) IN T  O U T ); EN D  ;
6 G R A N T  count;
7 EN D  letter-count;
8 test:
9 M O D U LE

10 /*  This is the module ’test’ from example 8. */
11 /*  It can now be piecewise compiled together with */
12 /*  the above spec module */
13 SY N M O D E results = A RRA Y  (’A ’:’Z ’) IN T ;
14 DCL c CHAR (10) IN IT  := ’A-B>ZAA9K’ ’
15 SY N  max = 10-000;
16 G R A N T  max;
17 SEIZE count;
18 count (-> c, output);
19 A SSERT output = results [(’A ’) : 3, ( ’B \ ’K ’, ’Z ’) : 1, ( ELSE ) : 0 };
20 EN D  test;

24. E xam ple of a  context

1 C O N T E X T
2 /*  This is a context for the same module ’’test” * /
3 /*  as used in example 23, allowing the piecewise * /
4 /*  compilation of ’’test” */
5 count : PR O C  ( RO W  CHAR (max) IN  , ARRAY ( ’A ’:’Z ’) IN T  O U T ); EN D
6 EN D  FO R
7
8 test :
9 M O D U LE

10 SY N M O D E results = ARRA Y ( ’A ’:’Z ’) IN T ;
11 DCL c CHAR (10) IN IT  := ’A-B> ZAA9K’ ’ ’;
12 SY N  max = 10-000;
13 G R A N T  max;
14 SEIZE count;
15 count (-> c, output);
16 A SSER T output = results [(’A ’) : 3, ( ’B ’, ’K ’, ’Z ’) : 1, ( ELSE ) : 0};
17 EN D  test;
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25. The use of prefixing and remote modules

1 /*  This example uses the module ’stacks-1’ from example 10. */
2 /*  It shows how prefixes can be used to prevent name clashes. */
3 /*  It uses the remote construct to share source code. */
4 /*  It is assumed that the code of the module ’stacks-1’ can */
5 /*  be referred to through the text reference name ’stack-code’ */
6 char-stack:
7 M O D U LE
8 SY N M O D E element = CHAR ;
9 M O D U LE R E M O T E  stack-code ;

10 G R A N T  ALL P R E F IX E D  stack ! char ;
11 EN D  char-stack ;
12
13 int stack:
14 M O D U LE
15 SY N M O D E element = INT ;
16 M O D U LE R E M O T E  stack-code ;
17 G R A N T  ALL P R E F IX E D  stack ! int ;
18 EN D  in ts ta ck  ;
19 /*  Here ’push’, ’pop’ and ’element’ are visible but */
20 /*  with prefixes ’stack ! char’ and ’stack I in t’ for * /
21 /*  the implementations with element = CHAR and */
22 /*  element = IN T respectively. */
23 /*  Below are some possibilities of using the granted * /
24 /*  names inside modules. * /
25 M O D U LE
26 SEIZE ALL P R E F IX E D  stack j
27 DCL c CHAR ;
28 int ! push (123) ;
29 char ! push ( ’a ’) ;
30 int ! pop ( ) ;
31 c = char ! elem (1) ;
32 E N D  ;
33
34 M O D U LE
35 SEIZE (stack ! int ->  stack) ! ALL ;
36 stack ! push (345) ;
37 stack ! pop ( ) ;
38 EN D  ;
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APPENDIX E: COLLECTED SYNTAX

2 PR E L IM IN A R IE S

2.2 V O CA BU LARY

<simple name string> ::=
<letter> { <letter> | <digit> | _}*

2.4 C O M M E N TS

<comment> ::=
/*  < character string> */

< character string>
{ <character> } *

2.6 C O M PIL E R  D IR E C T IV E S

<directive clause> ::=
<> <directive>{,<directive>}*[ <> ]

<directive>
<CHILL directive>

| <implementation directive>

< CHILL directive>
<free directive>

<free directive> ::=
FREE (<reserved simple name string list>)

<simple name string list> ::=
<simple name string>{,<simple name string>} *

2.7 N A M ES A N D  T H E IR  D E FIN IN G  O C C U R R E N C E S

<name> ::=
<name string>

<name string> ::=
<simple name string>

| <prefixed name string>

<prefixed name string>
<prefix> ! <simple name string>

<pre£x> : :=
<simple prehx> { ! < simple pre£x> } *

<simple pre£x> ::=
<simple name string>

<de£ning occurrence> ::=
<simple name string>

<de£ning occurrence list> ::=
<de£ning occurrence>{, <de£ning occurrence> } *
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<field name> ::=
<simple name string>

Cfieid name deGning occurrence> ::=
<simple name string>

<Geld name deGning occurrence Ust> ::=
<Geld name deGning occurrence> {, <Geld name deGning occurrence> } *

< exception name> ::=
<simple name string>

| < prefixed name string>

<register name> ::=
<simple name string>

| <preGxed name string>

< text reference name> ::=
< simple name string>

| <preGxed name string>

<map reference name> ::=
<simple name string>

| <prefixed name string>

3 M ODES A N D  CLASSES

3.2 M ODE DEFINITIONS

3.2.1 General

Cmode deGnition>
' < deGning occurrence Ust> = < deGning mode>

< deGning mode> ::=
<mode>

3.2.2 Synmode definitions

<synmode deGnition statement> ::=
SYNM ODE <mode deGnition> { , <mode deGnition>}*;

3.2.3 Newm ode definitions

<newmode deGnition statement> ::=
NEW M ODE <mode deGnition> { , Cmode deGnition>} *;

3.3 M ODE CLASSIFICATION

<mode> ::=
[ READ ] <non-composite mode>

| [ READ ] <composite mode>

<non-composite mode> ::=
<discrete mode>

| Cpowerset mode>
| <reference mode>
| <procedure mode>
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| <instance mode>
| Synchronisation mode>
| <input-output mode>

3.4 DISCRETE M ODES 

3.4.1 General

<discrete mode> ::=
<integer mode>

| < boolean mode>
| < character mode>
| <set mode>
| <range mode>

3.4.2 Integer modes

<integer mode> ::=
IN T  

| BIN
| < integer mode name>

3.4.3 Boolean modes

<boolean mode> ::=
BOOL 

| <boolean mode name>

3.4.4 Character modes

< character mode> ::=
CHAR 

| <character mode name>

3.4.5 Set modes

<set mode> ::=
SET ( <set Ust> )

| <set mode name>

<set Ust> ::=
<numbered set hst>

| < unnumbered set hst>

<numbered set list> ::=
<numbered set element> { ,<numbered set element>}*

<numbered set element>
<defining occurrence> = < integer Hteral expression>

<unnumbered set Hst> ::=
<set element> { ,<set element> } *

<set element> ::=
< defining occurrence>

| < unnamed value>

<unnamed value> ::=
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3.4.6 Range modes

<range mode> ::=
<discrete mode name>( <literal range> ) 

| R A N G E  ( <literal range> )
| BIN ( <integer literal expression> )
| <range mode name>

<literal range>
<lower bound> : < upper bound>

<lower bound>
<discrete literal expression>

< upper bound>
< discrete literal expression>

3.5 P O W E R S E T  M O D ES

<powerset mode>
P O W E R S E T  <member mode>

| < powerset mode name>

<member mode> ::=
<discrete mode>

3.6 R E F E R E N C E  M O D ES

3.6.1 G eneral

<reference mode>
< bound reference mode>

| <free reference mode>
| Crow mode>

3.6.2 B ound reference m odes

<bound reference mode>
R E F <referenced mode>

| <bound reference mode name>

<referenced mode> ::=
<mode>

3.6.3 Free reference m odes

< free reference mode> ::=
PTR

| < free reference mode name>

3.6.4  Row m odes

<row mode> ::=
RO W  <string mode>

| RO W  < array mode>
| RO W  <variant structure mode name>
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| Crow mode name>

3.7 PR O C E D U R E  M O D ES

<procedure mode> ::=
P R O C  ( [ < parameter list> ] ) [ <result spec> ]

[ E X C E P T IO N S  ( < exception list> j] [ R E C U R SIV E  ]
| < procedure mode name>

<parameter list> ::=
<parameter spec> { ,<parameter spec>} *

< parameter spec> ::=
<mode> [ <parameter attribute> ] [ <register name> ]

<paxameter attribute> ::=
IN  | O U T | IN O U T  | LOC [ D Y N A M IC ]

<result spec> ::=
[ R E T U R N S  ] (<mode> [ <result attribute> ] [ <register name> ])

<result attribute>::=
[ N O N R E F ] LOC [ D Y N A M IC  ]

< exception list>
<exception name> { ,<exception name>} *

3.8 IN ST A N C E  M O D ES

<instance mode> ::=
INSTANCE 

| <instance mode name>

3.9 SY N C H R O N ISA T IO N  M O D ES

3.9.1 G eneral

<synchronisation mode> ::= 
< event mode>

I <buffer mode>

3.9.2 E vent m odes

< event mode>
E V E N T  [f<event length>)] 

| < event mode name>

<event length> ::=
<integer literal expression>

3.9.3 Buffer m odes

< buffer mode> ::=
B U F F E R  [(<buffer length>)]<buffer element mode> 

| < buffer mode name>

<buffer length> ::=
<integer literal expression>
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<buffer element mode> ::=
<mode>

3.10 IN PU T -O U T PU T  MODES

3.10.1 General

<input-output mode> ::=
< association mode>

| < access mode>

3.10.2 Association modes

<association mode> ::=
ASSOCIATION  

| <association mode name>

3.10.3 Access modes

< access mode> ::=
ACCESS [ (<index mode>) ] [ <record mode> [ DYNAM IC ]] 

| < access mode name>

<record mode> ::=
<mode>

<index mode> ::=
< discrete mode>

| <literal range>

3.11 COM POSITE M ODES

3.11.1 General

<composite mode> ::=
<string mode>

| <array mode>
| <structure mode>

3.11.2 String modes

<string mode> ::=
<string type> ( <string length> )

| <parameterised string mode>
| <strins: mode name>

<parameterised string mode>
<origin string mode name>( <string length> )

| < parameterised strins mode name>

< origin string mode name> ::=
<strins mode name>

<string type>
CHAR 

| B IT

<string length> ::=
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< integer literal expression>

3.11.3 A rray  m odes

<array mode> ::=
[ A R RA Y  ] (<index mode> { ,<index mode>}*) 
<element mode> { <element layout>} *

| < parameterised array mode>
| < array mode name>

<parameterised array mode> ::=
<origin array mode name>( <upper index> )

| < parameterised array mode name>

< origin array mode name>
<array mode name>

<upper index> ::=
<discrete literal expression>

<element mode> ::=
<mode>

3.11.4 S tru c tu re  m odes

<structure mode>
<nested structure mode>

| cievei structure mode>
| <parameterised structure mode>
| <structure mode name>

<nested structure mode> ::=
ST R U C T  (<Gelds> { ,<Helds> } *)

<Gelds> ::=
< fixed Gelds>

| < alternative Gelds>

<fixed fields> ::=
<field name defining occurrence list> <mode> [ <Beld layout> ]

< alternative fields> ::=
CA SE [ < tags> ] OF

<variant alternative>{,<variant alternative>}*
[ ELSE [ < variant fields>{,<variant fields>}*]] ESAC

< variant alternative> ::=
[ <case label specification> ] : [ <variant Gelds> { ,<variant fields> }

<tags> ::=
< tag field name> { ,< tag Geld name>} *

< variant Gelds> ::=
<Geld name deGning occurrence Ust> <mode> [ <Geld layout> ]

<parameterised structure mode>
<origin variant structure mode name> (<literal expression list>)

| < varameterised structure mode name>

< origin variant structure mode name> ::=
< variant structure mode name>
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<literal expression list> ::=
<discrete literal expression> { .<discrete literal expression> } *

3.11.5 Level structure notation

<level structure mode> ::=
1 [ <array specification> ]
[ READ ] { ,<(2) level fields>} +

<(n) level Belds> ::=
< (n) level fixed Belds>

| < (n) level alternative Belds>

<(n) level Bxed Belds>
n <Beld name deBning occurrence Bst> <mode> [ <Beld layout> ] 

| n <Beld name deBning occurrence list> [ <array speciBcation> ]
[ READ ] [ <Beld layout> ] { ,< (n+l) level Belds>} +

< (n) level alternative Belds> ::=
CASE [ < tags> ] OF

<(n) level alternative> { ,<(n) level alternative> } *
[ ELSE [ <(n) level variant Belds>
{ ,<(n) level variant Belds>} *]]
ESAC

<(n) level alternative> ::=
[ <case label speciBcation>
{ ,Cease label speciBcation>} *]
: [ <(n) level variant Belds>
{ ,<(n) level variant Belds> } *]

<(n) level variant Belds> ::=
n <Beld name deBning occurrence Mst> <mode> [ <Beld layout> ] 

| n <Beld name deBning occurrence Ust> [ <array speciBcation> ]
[ READ ] [ <Beld layout> ) { ,<(n+l) level Belds>}+

<array speciBcation> ::=
[ READ ] [ ARRAY ] (<index mode> { ,<index mode>} *)
{ <element layout>} *

3.11.6 Layout description for array modes and structure modes

<element layout> ::=
PACK | NOPACK | <step>

<Beld layout>
PACK | NOPACK | <pos>

<step> ::=
STEP (<pos> [,<step size> ])

<pos> ::=
POS (<word> ,<start bit> ,<length>)

| PO S (<word> [,<start bit> [: <end bit> ]]J

<word> ::=
< integer literal expression>

| <map reference name>

<step size> ::=
<integer literal expression>
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< start bit> ::=
<integer literal expression>

<end bit> ::=
<integer literal expression>

<length> ::=
<integer literal expression>

4 LOCATIONS AN D  THEIR ACCESSES 

4.1 DECLARATIONS

4.1.1 General

<declaration statement> ::=
DCL <declaration> { ,<declaration> } *;

<declaration> ::=
<location declaration>

| <loc-identity declaration>
| < based declaration>

4.1.2 Location declarations

<location declaration> ::=
<deGning occurrence list> <mode> [ STATIC ] [ <initialisation> ]

< initialisation> ::=
<reach-bound initialisation>

| <lifetime-bound initialisation>

<reach-bound initialisation> ::=
<assignment symbol> <value> [ <handler> ]

<lifetime-bound initialisation> ::=
INIT <assignment symbol> < constant value>

4.1.3 Loc-identity declarations

<loc-identity declaration> ::=
<de6ning occurrence list> <mode> LOC [ DYNAM IC ] <assignment symbol> 
<location> [ <handler> ]

4.1.4 Based declarations

<based declaration> ::=
< deGning occurrence list> <mode> BASED  
[f<bound or free reference location name>)\

4.2 LOCATIONS

4.2.1 General

<location>
<access name>
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| <dereferenced bound reference>
| < dereferenced free reference>
| <dereferenced row>
| <string element>
| < string slice>
| < array element >
| < array slice>
| <structure field>
| <location procedure call>
| <location built-in routine call>
| <location conversion>

4.2.2 Access names

< access name> ::=
Ciocation name>

| <loc-identitv name>
| < based name>
| <location enumeration name>
| <location do-with name>

4.2.3 Dereferenced bound references

<dereferenced bound reference> ::=
<bound reference primitive value> ->  [ <mode name> ]

4.2.4 Dereferenced free references

< dereferenced free reference> ::=
<free reference primitive value> ->  <mode name>

4.2.5 Dereferenced rows

<dereferenced row> ::=
<row primitive vaiue> ->

4.2.6 String elements

<string element>
<string location> ( <start element> )

4.2.7 String slices

<string slice> ::=
<strins location> ( <left element> : <right element> )

| <strins location> ( <start element> U P  <slice size> )

<left element> ::=
Cinteger expression>

<right element> ::=
<inteser expression>

<start element> ::=
<inteser expression>

<slice size> ::=
<inteser expression>
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<array element> ::=
< array location> ( < expression list> )

<expression list>
<expression> { , < expression>} *

4.2.8 Array elements

4.2.9 Array slices

< array slice> ::=
<array location> ( <lower element> : < upper element> ) 

| < array location> ( <Grst element> U P <slice size> )

<lower element> ::=
<expression>

< upper element> ::=
<expression>

<first element> ::=
<expression>

4.2.10 Structure fields

<structure field> ::=
<structure location> . <field name>

4.2.11 Location procedure calls

<location procedure call> ::=
<location procedure caJl>

4.2.12 Location built-in routine calls

<location built-in routine call> ::=
im plem entation location built-in routine call> 

| <CHILL location built-in routine call>

< CHILL location built-in routine call> ::=
<io CHILL location built-in routine call>

4.2.13 Location conversions

<location conversion> ::=
<mode name> ( <static mode location> )

5 VALUES A N D  THEIR OPERATIONS

5.1 SY NO NY M  DEFINITIONS

<synonym definition statement> ::=
SY N  <synonym definition> { ,<synonym definition>} *;

<synonym de£nition> ::=
<defining occurrence list> [ <mode> ] =  <constant value>
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5.2 PRIM ITIVE VALUE

5.2.1 General

<primitive value> ::=
<location contents>

| <value name>
| <literal>
| <tuple>
| < value string element>
| < value string slice>
| < value array element>
| <value array slice>
| < value structure field>
| <expression conversion>
| <vaJue procedure call>
| <value built-in routine call>
| <start expression>
| < zero-adic operator>
| <parenthesised expression>

5.2.2 Location contents

<location contents> ::=
<location>

5.2.3 Value names

<value name> ::=
<synonym name>

| < value enumeration name>
| < value do-with name>
| < value receive name>
| < general procedure name>

5.2.4 Literals

5.2.4.1 General

<literal> ::=
<integer literal>

| < boolean literal>
| <set literal>
| <emptiness hteral>
| <character string literal>
| <bit string literal>

5.2.4.2 Integer literals

<integer literal> ::=
< decimal integer literal>

| < binary integer Uteral>
| <octal integer Uteral>
| <hexadecimal integer literal>

< decimal integer literal>
[D’\ { <digit> | _} +
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<binary integer literal> ::=
B ' { 0  | I | _} +

< octal integer literal> ::=
O ’ { <octal digit> | _} +

<hexadecimal integer literal> ::=
H ’ { <hexadecimal digit> | _} +

<digit>
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9

<hexadecimal digit> ::=
<digit> | A  | B  | C | D \E  | F

<octal digit> ::=
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7

5.2.4.3 Boolean literals

< boolean literal> ::=
FALSE | TRUE

5.2.4.4 Set literals

<set literal>
<set element name>

5.2.4.5 Emptiness literal

<emptiness literal> ::=
NULL

5.2.4.6 Character string literals

< character string literaJ>
’ { <non-apostrophe character> \ <apostrophe>}* ’ 

| C ’ { <octal digit> <hexadecimal digit> |

<character> ::=
<letter>

| <digit>
| <symbol>
| <space>

<letter>
A \B  \C  \D  \E  

I N  | O | P  | Q | R

<symbcl> ::=
-  I ’ I ( U  I * I +

<space> ::=
SP

<apostrophe> ::=
J 5

\F  \G  \H  \ I  \ J  \ K  \L  \M  
\ S  \ T  \ U \ V  \ W \ X  \ Y  \ Z

I , I -  I • I /  I •• I ; I < I = I > I ?
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5.2.4.7 Bit string literals

< bit string literal> ::=
< binary bit string literal>

| <octal bit string literal>
| <hexadecimal bit string literal>

Cbinary bit string literal> ::=
B ’ { 0  | I | _} *’

<octal bit string literal>
O ’ { <octal digit> | _ } *’

<hexadecimal bit string literal> ::=
H ’ { <hexadecimaJ digit> | _ } * ’

5.2.5 Tuples

< tu ple> ::=
[ <mode name> ] (: { <powerset tuple> | <array tuple> \ <structure tuple>} :) 

| < character string literal>
| < bit string literal>

< powerset tuple> ::=
[{ <expression> \ <range> } { , { <expression> \ < range>} } *]

<range> ::=
<expression> : <expression>

< array tuple> ::=
<unlabelled array tuple>

| <labelled array tuple>

<unlabelled array tuple> ::=
<value> { ,<vaiue>} *

<labelled array tuple> ::=
<case label list> : <value> { , <case label list> : <value> } *

<structure tuple> ::=
<unlabelled structure tuple>

| <labelled structure tuple>

<unlabelled structure tuple> ::=
<value> { ,<vaiue>} *

<labelled structure tuple> ::=
<Geld name list> : <value> { , <field name list> : <value> } *

<Geld name list> ::=
.<field name> { , .<field name> } *

5.2.6 Value string elements

< value string element> ::=
< strin s' primitive value>( <staxt element> )

5.2.7 Value string slices

C vaJue string slice> ::=
<string primitive value> (<left element> : <right element>)

| <strins primitive value> (<start element> U P  <slice size>)
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5.2.8 Value array elements

<value array element> ::=
< array primitive value> (< expression list>)

5.2.9 Value array slices

< value array slice> ::=
<array primitive value> ( <lower element> : <upper element> ) 

| < array primitive value> ( <first element> U P  <slice size> )

5.2.10 Value structure fields

< value structure field> ::=
<structure primitive value> . <£eld name>

5.2.11 Expression conversions

< expression conversion> ::=
<mode name> (<expression>)

5.2.12 Value procedure calls

< value procedure call> ::=
< value procedure call>

5.2.13 Value built-in routine calls

<value built-in routine call> ::=
<implementation value built-in routine call>

| <CHILL value built-in routine call>

<CHILL value built-in routine call> ::=
NUM ( < discrete expression>)

| PRED ( <discrete expression> )
| SUCC ( < discrete expression> )
| ABS ( <integer expression> )
| CARD ( < powerset expression> )
| M AX ( < vowerset expression> )
| MIN ( < powerset expression> )
| SIZE ( { <mode name> | <static mode location> I )
| UPPER (< upper lower argument> )
| LOWER (<upper lower argument> )
| GETSTACK ( <getstack argument> [, <value> ]J 
| ALLOCATE ( <allocate argument> [, <value> ])
| <io CHILL value built-in routine call>

<getstack argument>
< argument >

< allocate argument>
<axgument>

< argument>
<mode name>

| < array mode name>( <expression> )
| <strins: mode name> ( <integer expression> )
| <variant structure mode name>( <expression list> )
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< upper lower argument> ::=
< array location>

| < array primitive vaiue>
| < array mode name>
| <string location>
| <string primitive value>
| <string; mode name>
| <discrete location>
| < discrete expression>
| < discrete mode name>

5.2.14 Start expressions

< start expression> ::=
START < process name> <actual parameter list> ]j

5.2.15 Zero-adic operator

<zero-adic operator> ::=
THIS

5.2.16 Parenthesised expression

<parenthesised expression> ::=
( <expression> )

5.3 VALUES A N D  EXPRESSIO NS

5.3.1 General

<value> ::=
<expression>

| <undefined value>

< undefined value> ::=
*

| < undefined synonym name>

5.3.2 Expressions

< expression >
< operand-1>

\ <sub expression> { OR \ XOR  } <operand-1>

<sub expression> ::=
<expression>

5.3.3 Operand-1

<operand-l> ::=
<operand-2>

| <sub operand-1> AND < operand-2>

<sub operand-1> ::=
<operand-l>

5.3.4 Operand-2
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<operand-2> ::=
<operand-3>

| <sub operand-2> <operator-3> <operand-3>

<sub operand-2> ::=
<operaxid-2>

<operator-3>
<relational operator>

| <membership operator>
| <powerset inclusion operator.

<relational operator> ::=
=  i / =  i > i > =  i < i < =

<membership operator>
IN

<powerset inclusion operator> ::=
< =  | > =  | < | > ■

5.3.5 Operand-3

<operand-3> ::=
< operand-4>

| <sub operand-3> <operator-4> <operand-4>

<sub operand-3> ::=
<operand-3>

<operator-4> ::=
<arithmetic additive operator>

| <string concatenation operator>
| < powerset difference operator>

<arithmetic additive operator>
+ I -

<string concatenation operator> ::=
/ /

< powerset difference operator>

5.3.6 Operand-4

<operand-4> ::=
<operand-5>

| <sub operand-4> <arithmetic multiplicative operator> <operand-5>

<sub operand-4>
<operand-4>

<arithmetic multiplicative operator> ::=
* | / |  MOD | REM

5.3.7 Operand-5

<operand-5> ::=
[ <monadic operator> ] <operand-6>
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<monadic operator> ::=
-  | NOT  

| <string repetition operator>

<string repetition operator> ::=
(<integer literal expression>)

5.3.8 O perand-6

<operand-6> ::=
<referenced location>

| <receive expression>
| <primitive value>

<referenced location> ::=
-> <location>

| A D D R  (<location>)

<receive expression> ::=
R E C E IV E  < buffer location>

6 A C TIO N S 

6.1 G E N ER A L

< action statement>
[ <defining occurrence> :] < action> [ <handler> ] [ <simple name string> ]; 

| <module>
| <spec module>

<action> ::=
< bracketed action>

| <assignment action>
I Ccall action >
| Cexit action>
| <return action>
| <resnlt action>
| <goto action>
| <assert action>
| < empty action >
| <start action>
| <stop action >
| < delay action>
| <continue action>
| <send action>
| < cause action>

<bracketed action> ::=
<if a ction>

| <case action>
| <do action>
| <begin-end block>
| < delay case action>
| <receive case action>

6.2 A SSIG N M E N T  A C TIO N

<assignment action> ::=
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<single assignment action>
| <multiple assignment action>

<single assignment action> ::=
<location> { < assignment symbol> | <assigning operator>} <value>

< multi pie assignment a ction> ::=
<location> { ,<location>}+ <assignment symbol> <value>

< assigning operator> ::=
<closed dyadic operator> <assignment symbol>

<closed dyadic operator> ::=
OR | XOR  

| AND
| < powerset difference operator>
| < arithmetic additive operator>
| < arithmetic multiplicative operator>

<assignment symbol> ::=

6.3 IF ACTION

Cif action> ::=
IF < boolean expression> Cthen clause> [ Ceise clause> ] FI

<then clause> ::=
TH EN <action statement list>

<else clause> ::=
ELSE < action statement list>

| ELSIF <boolean expression> <then clause> [ <else clause> ]

6.4 CASE ACTION

<case action> ::=
CASE Cease selector list> OF [ <range list>;] { Cease alternative>} + 

[ ELSE C action statement list> ]
ESAC

Cease selector list> ::=
< discrete expression> { ,< discrete expression> } *

<range list> ::=
< discrete mode> { . C discrete mode> } *

Cease alternative> ::=
Cease label speciGcation> : <action statement list>

6.5 DO ACTION

6.5.1 General

Cdo action> ::=
DO [ Ccontrol part>;] Caction statement list> OD

C control part> ::=
<for control> [ C while control> ]

| < while control>
| c  with pait>
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6.5.2 For control

<for control> ::=
FOR { <iteration> { ,<iteration>} * | EVER }

<iteration> ::=
<value enumeration>

| <location enumeration>

<value enumeration> ::=
<step enumeration>

| <range enumeration>
| <powerset enumeration>

<step enumeration> ::=
<loop counter> <assignment symbol>
<staxt value> [ <step vaJue>] [ DOW N ] <end value>

<loop counter> ::=
<deGning occurrence>

<start value> ::=
<discrete expression>

<step value> ::=
BY  < integer expression>

<end value>
TO < discrete expression>

Crange enumeration> ::=
<loop counter> [ DO W N ] IN < discrete mode>

<powerset enumeration> ::=
<loop counter> [ DOW N ] IN < powerset expression>

<location enumeration>
<loop counter> [ DO W N ] IN <composite location>

<composite location> ::=
<array location>

| < strins: location>

6.5.3 W hile control

< while control> ::=
WHILE < boolean expression>

6.5.4 W ith part

<with part> ::=
W ITH <with control> { ,<with control> } *

<with control> ::=
<structure location>

| < structure primitive value>

6.6 EXIT ACTION
<exit action> ::=

EXIT <simple name string>

204 Fascicle VI. 12 -  Rec Z.200



6.7 CALL ACTION

< call action> ::=
[ CALL ] { <procedure call>

| <CHILL built-in routine caJl>
| <implementation built-in routine call> }

<procedure call>
{ < procedure name> \ < procedure primitive value>} ( [ < actual parameter list> ] )

<actual parameter list> ::=
<actual parameter> { ,<actual parameter>} *

<actual parameter>
<value>

| <location>

<CHILL built-in routine call> ::=
<CHILL value built-in routine call>

| <CHILL location built-in routine call>
| <CHILL simple built-in routine call>

< CHILL simple built-in routine call> ::=
TERMINATE P reference expression>)

| <io CHILL simple built-in routine call>

6.8 RESULT A N D  RETU RN ACTION

<return action> ::=
R ETU RN [ <result> ]

<result action> ::=
RESULT <result>

<result> ::=
<value>

| <location>

6.9 GOTO ACTION

<goto action>
GOTO <simple name string>

6.10 ASSERT ACTION

< assert action> ::=
ASSERT < boolean expression>

6.11 EM PTY ACTION

<empty action> ::=
<empty>

<empty> ::=

6.12 CAUSE ACTION

< cause action> ::=
CAUSE <exception name>
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6.13 START ACTION

<start action> ::=
< start expression> [ SET <instance location>

6.14 STOP ACTION

<stop action>
STOP

6.15 CO NTINUE ACTION

<continue action> ::=
CO NTINUE <event location>

6.16 DELAY ACTION

<delay action> ::=
DELAY <event location> [ <priority> ]

<priority> ::=
PRIO RITY <integer literal expression>

6.17 DELAY CASE ACTION

<delay case action> ::=
DELAY CASE [ { SET < instance iocation> [ <priority> ] ; 

{ < delay alternative> } +
ESAC

< delay alternative>
(<event list>) : <action statement list>

<event list> ::=
<event location> { ,<event location>} *

6.18 SEND ACTION

6.18.1 General

<send action> ::=
<send signal action>

| <send buffer action>

6.18.2 Send signal action

<send signal action> ::=
SEND <signal name> [(<value> { ,<value>} *) ]

[ TO <instance primitive value> ] [ <priority> ]

6.18.3 Send buffer action

<send buffer action> ::=

SEND < buffer location>(<value>) [ <priority> ]

| < priority>;} ]
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6.19 RECEIVE CASE ACTION

6.19.1 General

<receive case action>
<receive signal case action>

| <receive buffer case action>

6.19.2 Receive signal case action

<receive signal case action> ::=
RECEIVE CASE [ SET <instance location>;}

{ <signal receive alternative>} +
[ ELSE < action statement list> ] ESAC

<signal receive alternative> ::=
{<signal name> [ IN  <defining occurrence list> ] j : <action statement list>

6.19.3 Receive buffer case action

<receive buffer case action>
RECEIVE CASE [ SET <instance location> ;]

{ < buffer receive alternative> } +
[ ELSE < action statement list> ]
ESAC

< buffer receive alternative> ::=
(<buffer location> IN <defining occurrence>) : <action statement list>

7 IN PU T  A N D  OUTPUT

7.4 BUILT-IN ROUTINES FOR IN PU T  O UTPUT

7.4.1 General

<io CHILL value built-in routine call> ::=
< association a ttr io CHILL value built-in routine call> 

| < isassociated io CHILL value built-in routine call>
| < access a ttr io CHILL value built-in routine call>
| <readrecord io CHILL value built-in routine call>

<io CHILL simple built-in routine call> ::=
<dissociate io CHILL simple built-in routine call>

| <modiffcation io CHILL simple built-in routine call>
| <connect io CHILL simple built-in routine call>
| <disconnect io CHILL simple built-in routine call>
| < writerecord io CHILL simple built-in routine call>

<io CHILL location built-in routine call> ::=
<associate io CHILL location built-in routine call>

7.4.2 Associating an outside world object

<associate io CHILL location built-in routine call> ::=
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ASSOCIATE (<association location>[,<associate parameter list> ]j

< isassociated io CHILL value built-in routine call>
ISASSOCIATED (<association location>)

<associate parameter list> ::=
< associate parameter> { ,< associate parameter> } *

< associate parameter> ::=
<location>

| <vaiue>

7.4.3 Dissociating an outside world object

<dissociate io CHILL simple built-in routine call> ::=
DISSOCIATE (<association location>)

7.4.4 Accessing association attributes

< association a ttr io CHILL value built-in routine call> ::=
EXISTING (<association location>)

| READABLE (<association location>)
| W RITEABLE (<association location>)
| INDEXABLE (< association location>)
| SEQUENCIBLE (<association location>)
| VARYING (< association location>)

7.4.5 M odifying association attributes

<modification io CHILL simple built-in routine caJl> ::=
CREATE (<association location>)

| DELETE (< association location>)
| MODIFY (<association location>[,<modifv parameter list> ]J

<modify parameter list> ::=
<modify parameter> { , <modify parameter> } *

<modify parameter> ::=
<value>

| <location>

7.4.6 Connecting an access location

<connect io CHILL simple built-in routine call> ::=
CONNECT f< access location> ,< association location>,

<usage expression>[,<where expression>[,<index expression> ]]J

< usage expression> ::=
<expression>

<where expression> ::=
< expression>

<index expression> ::=
<expression>

7.4.7 Disconnecting an access location

<disconnect io CHILL simple built-in routine call>
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DISCONNECT (<access location>)

7.4.8 Accessing attributes of access locations

< access a ttr io CHILL value built-in routine call>
GETASSOCIATION (<access location>)

| GETUSAGE (<access location>)
| OUTOFFILE (<access location>)

7.4.9 Data transfer operations

<readrecord io CHILL value built-in routine call> ::=
READRECORD (<access location>[,<index expression> ] [,<store location> ]J

<writerecord io CHILL simple built-in routine call>
WRITERECORD (<access location>[,<index expression> ], <write expression>)

<store location> ::=
<static mode location>

< write expression> ::=
<expression>

8 P R O G R A M  ST R U C T U R E

8.2 R E A C H ES A N D  N E ST IN G

<begin-end body> ::=
<data statement list> <action statement list>

<proc body> ::=
<data statement list> { <action statement> | <entry statement>} *

<process body> ::=
<data statement list> < action statement list>

<module body> ::=
{ <data statement> | <visibility statement> | <region> | <spec region> } *

< action statement list>

<region body>
{ <data statement> | <visibility statement>) *

<spec module body> ::=
{ < quasi data statement> | <visibility statement> | < quasi module> | <spec module> |
< quasi region> \ <spec region> \ <quasi cause statement> } *

<spec region body> ::=
{ < quasi data statement> | Cvisibility statement> | < quasi cause statement> }*

< context body> ::=
{ <quasi data statement> | <visibility statement> | < quasi module> | <spec module> | 
<quasi region> | <spec region> } *

< quasi module body> ::=
{ <quasi data statement> | <visibility statement> \ < quasi module> | <spec module> | 
< quasi region> \ <spec region> }*

< quasi region body> ::=
{ < quasi data statement> | <visibility statement> } *
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<action statement list> ::=
{ < action statement>} *

<data statement list> ::=
{ <data statement> } *

<data statement> ::=
<declaration statement>

| < definition statement>

<de£nition statement> ::=
<synmode definition statement>

| <newmode definition statement>
| <synonym deGnition statement>
| <procedure deGnition statement>
| <process deGnition statement>
| <signal deGnition statement>
| <empty>;

8.3 BEG IN -END BLOCKS

<begin-end block> ::=
BEGIN <begin-end body> END

8.4 PROCEDURE DEFINITIONS

<procedure deGnition statement> ::=
<deGning occurrence> : <procedure deGnition>
[ <handler> ] [ <simple name string>];

<procedure de£nition> ::=
PROC ( [ < formal parameter Ust> ] ) [ <result spec> ]

[ EXCEPTIO NS (<exception Mst>)] <procedure attributes>; 
<proc body> END

<formal parameter Ust> ::=
<formal parameter> { ,<  formal paxameter> } *

<formal parameter>
< deGning occurrence Gst> <parameter spec>

<procedure attributes> ::=
[ <generality> ] [ RECURSIVE ]

<generality> ::=
GENERAL  

| SIM PLE  
| INLINE

< entry statement>
<deGning occurrence> : <entry deGnition>;

<entry de£nition> ::=
ENTRY

8.5 PROCESS DEFINITIO NS

<process deGnition statement> ::=
<deGning occurrence> : <process deGnition> 
[ <handler> } [ <simple name string> ];
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<process de£nition> ::=
PROCESS ( [ <formal parameter list> ] ); <process body> END

8.6 MODULES

<module> ::=
[ <contexts> ] [ <deBning occurrence>:]
MODULE <module body> END [ <handler> ] [ <simple name string> ];

| [ <contexts> ] <remote module>

8.7 REGIONS

<region> ::=
[ <contexts> ] [ <deEning occurrence> :] REGION <region body> END  
[ <handler> ] [ <simple name string> ];

| [ <contexts> ] <remote region>;

8.8 PROGRAM

<program> ::=
{ <module> \ <spec module> \ <region> | <spec region> } +

8.10 CO NSTRUCTS FOR PIECEW ISE PROGRAM M ING

8.10.1 Rem ote pieces

<remote module> ::=
[ <simple name string^] MODULE REMOTE <source text designator>;

<remote region> ::=
[ <simple name string>:] REGION REM OTE <source text designator>;

<remote spec module> ::=
[ <simple name string> :] SPEC MODULE REM OTE <source text designator>;

<remote spec region> ::=
[ <simple name string>:] SPEC REGION REM OTE <source text designator>;

<remote context> ::=
CONTEXT REMOTE <source text designator> FOR

<source text designator>
< character string literal>

| <text reference name>
| < empty>

8.10.2 Spec m odules, spec regions and contexts

<spec module> ::=
[ <contexts> ] [ <simple name string> :] SPEC MODULE  
<spec module body> END [ <simple name string> ];

| <remote spec module>

Cspec region> ::=
[ <contexts> ] [ <simple name string> :] SPEC REGION  
<spec region body> END [ <simple name string> ];

| <remote spec region>

<contexts> ::=
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<context> { <context> } *

<context> ::=
CONTEXT <context body> END [ < quasi handler> ] FOR 

| <remote context>

8.10.3 Quasi statem ents

< quasi data statement> ::=
< quasi declaration statement>

| < quasi definition statement>

<quasi declaration statement> ::=
DCL <quasi declaration> {, <quasi declaration> } *;

<quasi declaration>
<defining occurrence list> <mode>
[ STATIC ] [ NONREF ] [ DYNAM IC ]

< quasi definition statement> ::=
<synmode definition statement>

| <newmode definition statement>
| <synonym deGnition statement>
| < quasi procedure deGnition statement>
| < quasi process deGnition statement>
| <signal deGnition statement>
| <empty>;

< quasi procedure deGnition statement> ::=
< deGning occurrence> : PROC ( [ < quasi formal parameter list> ] )
[ <result spec> ] [ EXCEPTIONS (<exception Ust>) ]
<procedure attributes> { <quasi entry statement> } *
END [ <simple name string> ];

< quasi entry statement>
< deGning occurrence> : ENTRY ;

< quasi formal parameter Gst> ::=
< quasi formal parameter> {, < quasi formal parameter> } *

<quasi formal parameter> ::=
[ <simple name string> {, <simple name string> } *] <parameter spec>

< quasi process deGnition statement> ::=
<deGning occurrence> : PROCESS ( [ < quasi formal parameter list> ] ) 
END [ <simple name string> ];

< quasi region>
[ < deGning occurrence> :] REGION < quasi region body>
END [ <simple name string> ];

< quasi module> ::=
[ < deGning occurrence> :] MODULE < quasi module body>
END [ <simple name string> ];

<quasi cause statement> ::=
CAUSE <exception list>;

< quasi handler> ::=
ON ELSE END

| ON <exception Ust> [ ELSE ] END
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9 CO NCURRENT EXECUTION

9.5 SIGNAL DEFINITIO N STATEMENTS

<signal definition statement> ::=
SIGNAL <signal definition> { ,<signal definition>} *;

<signal definition> ::=
<de£ning occurrence> [= (<mode> { ,<mode>} *)] [ TO < process name> ]

10 GENERAL SEM ANTIC PROPERTIES 

10.1 M ODE CHECKING

10.1.3 Case selection

<case label specification> ::=
<case label list> { ,Cease label list> } *

Cease label list> ::=
(<case label> { ,Cease label> } *)

| C irrelevant >

Cease label> ::=
<discrete literal expression>

| Cliteral range>
| C discrete mode name>
| ELSE

<irrelevant> ::=
(*)

10.2 VISIBILITY A N D  NAM E BINDING

10.2.4 Visibility in reaches

10.2.4.2 Visibility statements

C visibility statement>  ::=
<grant statement>

| Cseize statement>

10.2.4.3 Prefix rename clause

<prefbt rename clause> ::=
( < old pre£x> ->  <new pre6x> ) ! <post£x>

<old pre£x> ::=
<preBx>

| C empty>

<new pre£x> ::=
<prefix>

| C empty>

<post£x> ::=
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<seize postfix> {,<seize postfix>}*
| <grant post£x> {,<grant postGx>}*

10.2.4.4 Grant statement

<grant statement>
G RANT <prefix rename clause> {,<prefix rename clause>}*

[ [ DIRECTLY ] PERVASIVE ] ;
| G RAN T <grant window> [ <prefix clause> ]

[ [ DIRECTLY ] PERVASIVE ] ;

<grant window> ::=
<grant postGx> { , <grant postfix> }*

<grant postGx> ::=
<name string>

| <newmode name string> <forbid clause>
| [ <prefix> ! ] ALL

< prefix clause> ::=
PR EFIXED [ <prefix> ]

<forbid clause>
FORBID { <forbid name list> | ALL }

<forbid name list> ::=
( <field name> { , Cfieid name>} *)

10.2.4.5 Seize statement

<seize statement> ::=
SEIZE < prefix rename clause> { , <prefix rename clause>}*;

| SEIZE <seize window> [ <prefix clause> ] ;

<seize window> ::=
<seize post&x> { , <seize postGx> }*

< seize postfix> ::=
<name string>

| <modulion name string> ALL 
| [ <prefix> ! ] ALL

<modulion name string>
<modulion name string>

11 EXCEPTION HANDLING

11.2 H ANDLERS

<handler> ::=
ON { < on-alternative> }* [ ELSE <action statement list> ] END

<on-alternative>
(<exception list>) : <action statement list>
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12 IM PLEM ENTATION OPTIONS
12.1 IM PLEMENTATION DEFINED BUILT-IN ROUTINES

<built-in routine call> ::=
<built-in routine name> (j <built-in routine parameter list> ])

<built-in routine parameter list> ::=
<built-in routine parameter> { , <built-in routine parameter> } *

< built-in routine parameter> ::=
< value>

| <location>
| <non-reserved name>

\
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APPENDIX F: INDEX OF PRODUCTION RULES

non-terminal

<access mode>
<access name>
< action >
< action statement >
< action statement list >
< actual parameter >
< actual parameter list>
<allocate argument>
< alternative fields >
< apostrophe >
< argument >
< arithmetic additive operator>
< arithmetic multiplicative operator>
< array element >
< array mode>
< array slice >
<array specification>
< array tuple >
< assert action >
< assigning operator>
< assignment action >
< assignment symbol >
< associate parameter>
< associate parameter list>
< association mode>

< based declaration >
<begin-end block>
<begin-end body>
<binary bit string literal>
< binary integer literal >
<bit string literal>
Cboolean literal>
<boolean mode>
<bound reference mode>
<bracketed action>
<buffer element mode>
< buffer length >
< buffer mode>
<buffer receive alternative> 
<built-in routine call>
<built-in routine parameter> 
<built-in routine parameter list>

<call action>
<case action >
<case alternative>
Cease label>
Cease label list>

defined
section page

used on 
page(s)

3.10.3 25 25
4.2.2 42 41
6.1 74 74
6.1 74 105
8.2 105 76,77,88,90,91,105,147
6.7 83 83
6.7 83 65,83
5.2.13 62 62
3.11.4 29 29
5.2.4.6 53 53
5.2.13 62 62
5.3.5 69 69,75
5.3.6 71 71,75
4.2.8 45 41
3.11.3 27 26
4.2.9 46 41
3.11.5 33 32,33
5.2.5 54 54
6.10 86 74
6.2 74 74
6.2 74 74
6.2 75 39,40,74,75,78
7.4.2 96 96
7.4.2 96 96
3.10.2 25 25

4.1.4 41 39
8.3 107 74
8.2 105 107
5.2.4.7 54 54
5.2.4.2 51 51
5.2.4.7 54 51,54
5.2.4.3 52 51
3.4.3 18 17
3.6.2 21 21
6.1 74 74
3.9.3 24 24
3.9.3 24 24
3.9.3 24 23
6.19.3 91 91
12.1 149 48,62,83
12.1 149 149
12.1 149 149

6.7 83 74
6.4 76 74
6.4 76 76
10.1.3 132 132
10.1.3 132 54,132
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non-terminal defined
section page

used on
page(s)

Cease label specification> 10.1.3 132 29,33,76
Cease selector list> 6.4 76 76
Ccause action> 6.12 86 74
C character > 5.2.4.6 53 9,53
Cchaxacter mode> 3.4.4 18 17
Ccharacter string> 2.4 9 9
C character string literal > 5.2.4.6 53 51,54,113
C CHILL built-in routine call> 6.7 83 83
CCHILL directive> 2.6 9 9
CCHILL location built-in routine call> 4.2.12 48 48,83
C CHILL simple built-in routine call> 6.7 83 83
CCHILL value built-in routine call> 5.2.13 62 62,83
C closed dyadic operator > 6.2 75 75
C comment > 2.4 9
Ccomposite location> 6.5.2 79 79
C composite mode> 3.11.1 26 16
C context > 8.10.2 114 114
Ccontext body> 8.2 105 114
C contexts > 8.10.2 114 111,114
Ccontinue action> 6.15 87 74
C control part> 6.5.1 77 77

Cdata statement> 8.2 106 105,106
Cdata statement list> 8.2 105 105
C decimal integer literal > 5.2.4.2 51 51
C declaration > 4.1.1 39 39
C declaration statement > 4.1.1 39 106
C defining mode> 3.2.1 14 14
C defining occurrence > 2.7 10 10,18,19,74,78,91,107,108,110,111

115,121
< defining occurrence list> 2.7 10 14,39,40,41,49,90,107,115
< definition statement > 8.2 106 106
< delay action > 6.16 87 74
< delay alternative > 6.17 88 88
< delay case action> 6.17 88 74
<dereferenced bound reference> 4.2.3 43 41
<dereferenced free reference> 4.2.4 43 41
< dereferenced row> 4.2.5 43 41
<digit> 5.2.4.2 52 8,51,52,53
< directive > 2.6 9 9
< directive clause> 2.6 9
<discrete mode> 3.4.1 17 16,76
<do action > 6.5.1 77 74

< element layout > 3.11.6 34 27,33
< element mode> 3.11.3 27 27
<else clause > 6.3 76 76
< emptiness literal > 5.2.4.5 53 51
< empty > 6.11 86 86,106,113,115,140,141
< empty action > 6.11 86 74
<end bit> 3.11.6 34 34
<end value> 6.5.2 78 78
<entry definition> 8.4 108 108
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non-terminal defined
section page

used on 
page(s)

<entry statement> 8.4 108 105
< event length > 3.9.2 24 24
< event list> 6.17 88 88
< event mode> 3.9.2 24 23
< exception list> 3.7 22 22,107,115,147
< exception name> 2.7 10 22,86
<exit action > 6.6 82 74
< expression > 5.3.2 67 18,19,20,24,26,27,29,34,44,45

46,54,61,62,63,66,67,71,76,78
81,83,86,87,98,101,132

< expression conversion > 5.2.11 61 49
< expression list> 4.2.8 45 45,59,62

<field layout> 3.11.6 34 29,32,33
<field name> 2.7 10 55,61,142
<field name defining occurrence> 2.7 10 10
< field name defining occurrence list> 2.7 10 29,32,33
<field name list> 5.2.5 55 55
<fields> 3.11.4 29 29
<first element> 4.2.9 46 46,60
< fixed fields > 3.11.4 29 29
< forbid clause > 10.2.4.4 142 142
<forbid name list> 10.2.4.4 142 142
<for control> 6.5.2 78 77
<formal parameter> 8.4 107 107
<formal parameter list> 8.4 107 107,110
<free directive> 2.6 9 9
<free reference mode> 3.6.3 21 21

< generality > 8.4 107 107
<getstack argument > 5.2.13 62 62
<goto action > 6.9 85 74
< grant postfix> 10.2.4.4 142 141,142
< grant statement > 10.2.4.4 142 140
< grant window > 10.2.4.4 142 142

<handler> 11.2 147 39,40,74,107,110,111
<hexadecimal bit string literal> 5.2.4.7 54 54
<hexadecimal digit> 5.2.4.2 52 52,53,54
Chexadecimal integer literal> 5.2.4.2 52 51

<if action>
Cimplementation directive>

6.3 76 74
9

<index expression> 7.4.6 98 98,101
< index mode> 3.10.3 25 25,27,33
<initialisation> 4.1.2 39 39
<input-output mode> 3.10.1 25 16
<instance mode> 3.8 23 16
<integer literal> 5.2.4.2 51 51
<integer mode> 3.4.2 17 17
<io CHILL location built-in routine call> 7.4.2 96 48,95
<io CHILL simple built-in routine call> 7.4.9 101 83,95
<io CHILL value built-in routine call> 7.4.9 101 62,95,96
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non-terminal defined
section page

used on 
page(s)

< irrelevant > 10.1.3 132 132
<iteration> 6.5.2 78 78

< labelled array tuple > 5.2.5 54 54
Clabelled structure tuple> 5.2.5 55 55
Cleft element> 4.2.7 44 44,58
<length> 3.11.6 34 34
< letter> 5.2.4.6 53 8,53
Clevel structure mode> 3.11.5 32 28
Clifetime-bound initialisation> 4.1.2 39 39
<literal> 5.2.4.1 51 49
Cliteral expression list> 3.11.4 29 29
Cliteral range> 3.4.6 19 19,25,132
<location> 4.2.1 41 40,44,45,46,47,48,50,62,63,72

74,79,81,83,85,86,87,88,89,90
91,96,97,98,100,101,149

Clocation built-in routine call> 4.2.12 48 41
Clocation contents> 5.2.2 50 49
Clocation conversion> 4.2.13 48 41
Clocation declaration> 4.1.2 39 39
Clocation enumeration> 6.5.2 78 78
Clocation procedure call> 4.2.11 47 41
Cloc-identity declaration> 4.1.3 40 39
Cloop counter> 6.5.2 78 78,79
Clower bound> 3.4.6 19 19
Clower element > 4.2.9 46 46,60

Cmap reference name> 2.7 11 34
Cmember mode> 3.5 20 20
Cmembership operator> 5.3.4 68 68
Cmode> 3.3 16 14,20,21,22,24,25,27,29,32,33

39,40,41,49,76,78,115,121
Cmode definition> 3.2.1 14 15,16
C modify parameter > 7.4.5 97 97
C modify parameter list> 7.4.5 97 97
C module > 8.6 111 74,112
Cmodule body> 8.2 105 111
Cmodulion name string> 10.2.4.5 144 144
Cmonadic operator> 5.3.7 71 71
Cmultiple assignment action> 6.2 74 74

Cname> 2.7 10 17,18,19,20,21,22,23,24,25,26
27,29,41,42,43,47,48,50,52,54
61,62,63,65,66,83,89,90,121,15
149

Cname string> 2.7 10 10,142,144
Cnested structure mode> 3.11.4 29 28
Cnewmode definition statement > 3.2.3 16 106,115
Cnew prefix> 10.2.4.3 140 140
C(n) level alternative > 3.11.5 33 33
C(n) level alternative fields> 3.11.5 32 32
C(n) level fields > 3.11.5 32
c(n) level fixed fields > 3.11.5 32 32
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non-terminal defined
section page

used on 
page(s)

<(n) level variant fields > 3.11.5 33 33
<non-composite mode> 3.3 16 16
<numbered set element> 3.4.5 18 18
< numbered set list> 3.4.5 18 18
<(n-fl) level fields > 32,33

<octal bit string literal> 5.2.4.7 54 54
<octal digit> 5.2.4.2 52 52,53,54
<octal integer literal> 5.2.4.2 51 51
<old prefix> 10.2.4.3 140 140
< on-alternative > 11.2 147 147
< operand-1> 5.3.3 68 67,68
<operand-2> 5.3.4 68 68
< operand-3 > 5.3.5 69 68,69
< operand-4 > 5.3.6 71 69,71
< operand-5 > 5.3.7 71 71
< operand-6 > 5.3.8 72 71
<operator-3> 5.3.4 68 68
<operator-4> 5.3.5 69 69
<origin array mode name> 3.11.3 27 27
<origin string mode name> 3.11.2 26 26
< origin variant structure mode name> 3.11.4 29 29

<parameter attribute> 3.7 22 22
<parameterised array mode> 3.11.3 27 27
<parameterised string mode> 3.11.2 26 26
< parameterised structure mode> 3.11.4 29 28
<parameter list> 3.7 22 22
< parameter spec> 3.7 22 22,107,115
< parenthesised expression > 5.2.16 66 50
<pos> 3.11.6 34 34
< postfix > 10.2.4.3 141 140
< powerset difference operator > 5.3.5 70 69,75
<powerset enumeration> 6.5.2 78 78
<powerset inclusion operator> 5.3.4 69 68
<powerset mode> 3.5 20 16
<powerset tuple> 5.2.5 54 54
<prefix> 2.7 10 10,140,142,144
<prefix clause> 10.2.4.4 142 142,144
<prefixed name string> 2.7 10 10,11
< prefix rename clause > 10.2.4.3 140 142,144
<primitive value> 5.2.1 49 43,58,59,60,61,63,72,81,83,89
<priority> 6.16 87 87,88,89
<proc body> 8.2 105 107
<procedure attributes> 8.4 107 107,115
<procedure call> 6.7 83 47,62,83
<procedure definition> 8.4 107 107
<procedure definition statement> 8.4 107 106
<procedure mode> 3.7 22 16
<process body> 8.2 105 110
<process definition> 8.5 110 110
<process definition statement > 8.5 110 106
<program> 8.8 112
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non-terminal

< quasi cause statement>
< quasi data statement >
< quasi declaration >
< quasi declaration statement>
< quasi definition statement >
< quasi entry statement >
< quasi formal parameter >
< quasi formal parameter list>
< quasi handler >
< quasi module >
<quasi module body>
< quasi procedure definition statement >
< quasi process definition statement >
< quasi region >
<quasi region body>

<range>
Crange enumeration>
Crange list>
Crange mode>
Creach-bound initialisation>
Creceive buffer case action>
Creceive case action>
Creceive expression>
Creceive signal case action>
C record mode>
Creferenced location>
C referenced mode>
Creference mode>
C region >
Cregion body>
Cregister name>
Crelational operator>
Cremote context>
Cremote module>
Cremote region>
Cremote spec module>
Cremote spec region>
Cresult>
C result action >
Cresult attribute>
C result spec>
Creturn action>
C right element >
Crow mode>

Cseize postfix>
Cseize statement>
Cseize window>
Csend action >
Csend buffer action>
Csend signal action>

defined
section page

used on 
page(s)

8.10.3 115 105
8.10.3 114 105
8.10.3 115 115
8.10.3 114 114
8.10.3 115 114
8.10.3 115 115
8.10.3 115 115
8.10.3 115 115
8.10.3 115 114
8.10.3 115 105
8.2 105 115
8.10.3 115 115
8.10.3 115 115
8.10.3 115 105
8.2 105 115

5.2.5 54 54
6.5.2 78 78
6.4 76 76
3.4.6 19 17
4.1.2 39 39
6.19.3 91 90
6.19.1 90 74
5.3.8 72 72
6.19.2 90 90
3.10.3 25 25
5.3.8 72 72
3.6.2 21 21
3.6.1 21 16
8.7 111 105,112
8.2 105 111
2.7 10 22
5.3.4 68 68
8.10.1 113 114
8.10.1 113 111
8.10.1 113 111
8.10.1 113 114
8.10.1 113 114
6.8 85 85
6.8 85 74
3.7 22 22
3.7 22 22,107,115
6.8 85 74
4.2.7 44 44,58
3.6.4 22 21

10.2.4.5 144 141,144
10.2.4.5 144 140
10.2.4.5 144 144
6.18.1 88 74
6.18.3 89 88
6.18.2 89 88
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non-terminal defined
section page

used on
page(s)

<set element >
<set list>
<set literal >
<set mode>
<signal definition>
<signal definition statement> 
<signal receive alternative> 
<simple name string>

<simple name string list> 
<simple prefix>
<single assignment action>
<slice size>
< source text designator > 
<space>
<spec m odu lo  
<spec module body>
<spec region >
<spec region body>
<start action>
<start bit>
< start element >
<start expression>
<start value>
<step>
<step enumeration >
<step size>
<step value>
<stop action >
<store location>
<string concatenation operator> 
<string element >
< string length >
< string mode>
<string repetition operator > 
<string slice>
<string type>
< structure field >
<structure mode>
<structure tuple>
<sub expression >
<sub operand-1>
<sub operand-2>
<sub operand-3 >
<sub operand-4>
<symbol>
< synchronisation mode> 
<synmode definition statement>
< synonym definition >
< synonym definition statement >

<tags>
Ctext reference name>

3.4.5 19 19
3.4.5 18 18
5.2.4.4 52 51
3.4.5 18 17
9.5 121 121
9.5 121 106,115
6.19.2 90 90
2.2 8 9,10,11,74,82,85,107,110,111,113

114,115
2.6 9 9
2.7 10 10
6.2 74 74
4.2.7 44 44,46,59,60
8.10.1 113 113
5.2.4.6 53 53
8.10.2 114 74,105,112
8.2 105 114
8.10.2 114 105,112
8.2 105 114
6.13 86 74
3.11.6 34 34
4.2.7 44 44,58,59
5.2.14 65 50,86
6.5.2 78 78
3.11.6 34 34
6.5.2 78 78
3.11.6 34 34
6.5.2 78 78
6.14 87 74
7.4.9 101 101
5.3.5 70 69
4.2.6 44 41
3.11.2 26 26
3.11.2 26 26
5.3.7 71 71
4.2.7 44 41
3.11.2 26 26
4.2.10 47 41
3.11.4 28 26
5.2.5 54 54
5.3.2 67 67
5.3.3 68 68
5.3.4 68 68
5.3.5 69 69
5.3.6 71 71
5.2.4.6 53 53
3.9.1 23 16
3.2.2 15 106,115
5.1 49 49
5.1 49 106,115

3.11.4 29 29,33
2.7 11 113
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non-terminal defined
section page

<then clause > 6.3 76
< tuple > 5.2.5 54

< undefined value > 5.3.1 66
Cunlabelled array tuple > 5.2.5 54
<unlabelled structure tuple> 5.2.5 55
< unnamed value > 3.4.5 19
Cunnumbered set list> 3.4.5 18
Cupper bound> 3.4.6 19
Cupper element> 4.2.9 46
Cupper index> 3.11.3 27
Cupper lower argument> 5.2.13 62
Cusage expression> 7.4.6 98

C value > 5.3.1 66

C value array element > 5.2.8 59
C value array slice > 5.2.9 60
Cvalue built-in routine call> 5.2.13 62
Cvalue enumeration> 6.5.2 78
Cvalue name> 5.2.3 50
Cvalue procedure call> 5.2.12 62
Cvalue string element> 5.2.6 58
Cvalue string slice> 5.2.7 58
Cvalue structure field> 5.2.10 61
Cvariant alternative> 3.11.4 29
Cvariant fields> 3.11.4 29
Cvisibility statement > 10.2.4.2 140

C where expression > 7.4.6 98
Cwhile control> 6.5.3 81
Cwith control> 6.5.4 81
Cwith part> 6.5.4 81
Cword> 3.11.6 34
C write expression > 7.4.9 101

Czero-adic operator> 5.2.15 66

used on
page(s)

76 
49

66
54
55 
19 
18 
19
46,60
27
62
98

39,49,54,55,62,74,83,85,89,96
97,149
49
49
49
78
49
49
49
49
49 
29 
29 
105

98
77 
81
78 
34 
101

50
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APPENDIX G: INDEX

abnormal termination 79, 81 
ABS  63 
absolute value 63 
A CCESS 25, 138
access attribute 95
access location 40, 94, 96, 98, 99, 100, 101, 102
access mode 25, 123, 125, 128, 134, 135
access name 40, 41, 42, 134, 138
access value 95
action 74, 104
action statement 111
action statement list 106, 147, 148
action statements 74
activation 117
active 117
actual parameter 108
actual parameter list 83
A D D R  72
alike 14, 116, 124, 127, 129
ALL 142, 144, 145, 214
all class 13, 32, 66, 119, 123, 131, 133
ALLOCATE  56, 63, 112
allocate argument 62
allocated reference value 65, 84, 112
ALLOCATEFAIL 65
alternative field 28, 126, 128, 132
AND  68
applied occurrence 105 
arithmetic additive operator 70 
arithmetic multiplicative operator 71 
ARRAY 27, 32, 138, 150 
array element 45, 113 
array location 80
array mode 16, 28, 44, 122, 123, 125, 126, 128, 129, 130, 131, 132, 134, 135, 136
array slice 46
array tuple 54, 133
A SSERT 86
assert action 86
ASSERTFAIL 86
assigning operator 75
assignment action 75, 118
assignment conditions 58, 65, 66, 75, 84, 85, 89, 91, 92 
assignment’symbol 75, 150 
ASSOCIATE  25, 96 
ASSOCIATEFAIL 96
association 25, 93, 96, 97, 98, 99, 100, 101, 102
ASSOCIATION  15, 25, 138, 190
association attribute 94
association location 40
association mode 25, 123, 125, 128, 134, 135
association value 94

base index 94, 98, 101 
based declaration 41 
based name 41, 42 
B E G IN  107
begin-end block 104, 106, 107 
BIN  15, 17, 19, 138
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binding rules 11, 136
B IT  26, 138
bit string literal 54
bit string mode 27, 70, 124, 125, 128
bit string value 67, 68, 70, 72
block 81, 104, 106, 110, 112, 117, 140, 148
BOOL 15, 18, 138
boolean literal 52
boolean mode 18, 124, 126, 127, 134, 135, 136 
boolean value 67, 68, 69, 72 
bound 134, 137, 141, 143, 145
bound reference mode 21, 125, 126, 127, 129, 130, 131, 134, 135 
bracketed action 74, 82, 148 
buffer 73, 88, 89, 91, 92 
BU FFER  24, 138
buffer element mode 24, 56, 73, 89, 92, 125, 128, 129
buffer length 24, 120, 125, 128
buffer location 39, 120, 121
buffer mode 24, 123, 125, 128, 129, 134, 135
buffer receive alternative 91, 105, 106
buffer-receive alternative 107, 120
built-in routine 149
BY 78, 204 

CALL 83
call action 83 
canonical name string 11 
CARD 63
CASE 32, 76, 88, 90, 91
case action 32, 76, 132, 133
case alternative 76
case label 132
case label list 127, 129, 132
case label specification 76, 132
case selection 132
case selector list 76
CAUSE 86, 115, 212
cause action 86, 147
change-sign operator 72
CHAR 15, 18, 26, 138
character mode 18, 124, 125, 126, 127, 134
character string literal 53
character string mode 27, 70, 125, 128
character string value 70
CHILL built-in routine call 83
CHILL value built-in routine call 63
class 13
closed dyadic operator 75 
closest surrounding 82, 85 
comment 9, 11 
compatibility relations 124
compatible 14, 20, 28, 32, 40, 45, 46, 49, 55, 56, 57, 58, 59, 60, 64, 67, 68, 69, 70, 71, 75, 77, 81,.83, 84, 85, 89,
91, 92, 99, 102, 123, 126, 128, 131, 132, 133, 135, 136, 137
complement 72
complete 77, 133
composite mode 26
concatenation 27
concatenation operator 70
CONNECT 98
connect operation 94, 95, 101

Fascicle VI.12 -  Rec Z.200 225



connected 100, 101, 102 
CONNECTFAIL 99 
connectoperation 98 
consistency 36 
consistent 133
constant 50, 51, 55, 56, 58, 61, 64, 66, 67, 68, 69, 70, 71, 72, 73, 112, 135 
constant class 13
context 104, 106, 114, 115, 116, 140, 143, 145, 149 
CONTEXT 113, 114, 211, 212 
CO NTINUE 87
continue action 24, 87, 88, 120
control part 78
CREATE  97
CREATEFAIL 97
creation of names 104
critical procedure 110, 117, 120, 121
current index 94, 98, 101

data transfer state 94 
DCL 39, 114, 212
declaration 104
declaration statement 39
defining mode 15
defining occurrence 11,104,108
DELAY 87 ,88
delay action 24, 87, 120
delay case action 24, 88, 120
delayed 87, 88, 89, 90, 117, 118, 120
DELAYFAIL 87, 88
delaying 117
DELETE  97
DELETEFAIL 97
dereferenced bound reference 43
dereferenced free reference 43
dereferenced row 43
dereferencing 21
derived class 13, 51, 52, 53, 54, 55, 64, 65, 66, 69, 70, 72, 96, 97, 99, 119, 123, 131, 132, 133
derived syntax 7
destination reach 140, 141
directive 155
directive clause 9
DIRECTLY 142, 214
directly enclosed 106, 116, 137, 144
directly enclosing block 112
directly enclosing group 106, 114
directly enclosing reach 106, 140, 142
directly linked 137, 139, 140
directly pervasive property 140, 143, 144
directly strongly visible 137, 139, 140, 144
DISCONNECT 100
disconnect operation 94, 100
discrete literal 50, 51
discrete mode 17, 32, 61, 123, 134, 135, 136
DISSOCIATE 25, 96
dissociate operation 94
division remainder 71
DO 77
do action 50, 78, 104, 106, 107 
DO W N 78, 79, 204
DYNAM IC 22, 25, 40, 47, 84, 85, 109, 115, 212
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dynamic array mode 37
dynamic class 13, 59, 60, 67, 68, 69, 70, 75, 102, 136
dynamic condition 7, 147
dynamic mode 13, 21, 22, 37, 45, 46
dynamic mode location 42
dynamic parameterised array mode 75
dynamic parameterised string mode 75
dynamic parameterised structure mode 38, 42, 47, 51, 58, 61, 69, 75 
dynamic property 7
dynamic read-compatible 14, 40, 84, 85, 130 
dynamic record mode 26, 99, 102, 125, 128 
dynamic string mode 37

element 28
element layout 28, 34, 37, 45, 46, 125, 127, 128
element mode 16, 36, 37, 45, 56, 122, 123, 125, 126, 128, 129, 130
ELSE 32, 55, 58, 76, 77, 90, 91, 115, 120, 126, 129, 132, 133, 147, 212, 214 
ELSIF 76
emptiness literal 53
EM PTY  43, 44, 65, 84, 89
empty action 86
empty buffer location 39
empty event location 39 ,
empty instance value 53
empty powerset value 55, 64, 65
empty procedure value 53
empty reference value 53
empty string 27, 72
EN D 107, 110, 111, 114, 115, 147, 210, 211, 212, 214 
enter 106, 117 
ENTRY 108, 115, 210, 212
entry definition 104 
entry point 108 
entry statement 23, 108 
equality operator 69 
equivalence relations 124
equivalent 14, 75, 102, 124, 125, 126, 128, 129, 130, 131, 132
ESAC 32, 76, 88, 90, 91 
EVENT 24, 138, 189
event length 24, 125, 128
event location 39, 87, 88, 120
event mode 24, 123, 125, 128, 134, 135
EVER 78
exception 79, 147
exception handling 147
exception list 22
exception name 11, 23, 83, 86, 125, 127, 147, 149, 155 
EXCEPTIONS 22, 107, 115, 210, 212
exclusive or 67
EXISTING  97
existing-attribute 94, 97, 98, 99
EXIT 82
exit action 79, 82
explicit loop counter 80, 81
explicit read-only mode 16
explicit value receive name (buffer) 92
explicit value receive name (signal) 90
expression 67
expression conversion 61
EXTIN CT  89

Fascicle VI.12 -  Rec Z.200 227



extra-regional 42, 58, 91, 92, 118

FALSE 18, 52, 63, 69 
feasability 37 
FI 76 
field 29
field layout 30, 34, 47, 126, 127, 128
field mode 16, 30, 36, 122, 123, 126, 128, 129, 130
field name 30, 38, 42, 47, 50, 57, 61, 82, 143
field name defining occurrences 11
field name list 55
file 25, 93, 94, 98, 101, 113
file handling state 93
file positioning 98, 101, 102
file truncation 99
FIRST  98
fixed field 28,126,128
fixed field name 30
fixed structure mode 30
fomal parameter 84
FOR 78, 113, 114, 211, 212
for control 79
FORBID 142, 214
forbid clause 142, 145, 214
format effectors 9, 11
free 117
FREE 9, 185
free directive 9
free reference mode 21, 125, 127, 131, 134, 135 
free state 93

general 109, 118 
GENERAL 108, 210
general procedure 83, 108 
general procedure name 23, 50, 110, 134 
generality 83, 109 
generic 149
GETASSOCIATION 100 
GETSTACK  56, 63, 112 
getstack argument 62 
GETUSAGE 100 
GOTO 85 
goto action 79, 85 
G RANT 141, 142, 214 
grant postfix 141, 142 
grant statement 140, 142, 145 
grant window 142 
grantable 141 
group 104

handler 40, 74, 79, 82, 85, 86, 87, 104, 106, 108, 117, 147, 150
handler identification 147
hereditary property 13, 124
hole 26, 28, 63
hole (range mode) 20
hole (set mode) 19
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IF 76
if action 76
imaginary outermost process 84, 105, 110, 112, 117, 140, 149, 150
implementation defined built-in routine 112, 149
implementation defined exception name 149
implementation defined handler 150
implementation defined integer mode 15, 149
implementation defined mode 112
implementation defined name 105
implementation defined process name 149
implementation defined referability 150
implementation defined register name 149
implementation directive 9
implementation value built-in routine call 62
implicit created location 109
implicit loop counter 80
implicit read-only mode 16, 28, 30, 122
implicit value receive name (buffer) 92
implicit value receive name (signal) 90
implied defining occurrence 138
implied name string 138, 140
IN  22, 78, 83, 84, 90, 91, 108, 204
index mode 37, 45, 46, 56, 59, 60, 64, 65, 99, 101, 102, 125, 128, 129, 133
index mode (of access mode) 25
index mode (of array mode) 28
INDEXABLE 97
indexable file 26
indexable-attribute 94, 98, 99
indirectly strongly visible 137
inequality operator 69
INIT 39, 193
initialisation 39, 108
inline 109
INLINE 108, 210
inline procedure 108
IN O U T  22, 84, 108, 109, 111
input-output mode 25
INSTANCE 15, 23, 65, 66, 138
instance location 88
instance mode 23, 125, 128, 131, 134, 135 
instance value 23, 86, 90, 92, 117 
IN T  15, 17, 65, 138, 149 
integer literal 52
integer mode 17, 124, 127, 134, 135, 149 
integer value 70, 71, 72 
intra-regional 42, 58, 83, 89, 110, 118, 143 
invisible 137
invisible field name 57, 146 
io CHILL value built-in routine call 95 
irrelevant 127, 129, 132, 133 
ISASSOCIATED  96

1-equivalent 14, 124, 125, 126 
label name 74, 111 
labelled array tuple 54, 132 
labelled structure tuple 145 
LA ST  98 
layout 30, 34, 82 
level number 33 
level numbered structure 150
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level structure mode 33 
lexical element 8, 9
lifetime 43, 48, 73, 83, 84, 87, 88, 89, 92, 101, 104, 105, 107, 109, 111, 112
lifetime-bound initialisation 39, 106
linkage 137
linked 137, 141
list of classes 132, 133
literal 45, 46, 49, 50, 51, 59, 60, 64, 67, 72, 73, 135 
(literal) 66, 67, 68, 69, 70, 71 
literal qualification 8, 51, 52, 53, 54 
literal range 20
LOC 22, 40, 42, 83, 84, 85, 108, 109, 110, 111
loc-identity declaration 40, 106, 112
loc-identity name 40, 42, 110
location 39, 41, 118
location built-in routine call 48
location contents 50
location conversion 48, 113
location declaration 39, 55
location do with defining occurrence 145
location do with name 42, 82
location enumeration 80
location enumeration name 42, 81
location name 40, 42, 110, 112
location procedure call 47
location-equivalent 124
locked 117, 118, 120
LO NG-INT  17
loop counter 79, 80, 81, 104
LOWER  63
lower bound 17, 63
lower bound (array mode) 28, 37, 46, 47, 60, 80
lower bound (array slice) 46
lower bound (boolean) 18
lower bound (char) 18
lower bound (index mode) 99, 101
lower bound (integer) 17
lower bound (range mode) 20, 126, 127
lower bound (set) 19
lower bound (string mode) 27, 80
lower case 8

map reference name 11 
mapped 28 
mapped mode 30, 36 
mapping 34 
M AX  63
member mode 21, 64, 125, 127, 129 
membership operator 69 
metalanguage 7 
MIN  63 
mode 16, 42
mode checking 48, 61, 122 
mode definition 14, 104 
mode name 15, 134, 138 
MODIFY 97 
MODIFYFAIL 98
module 82, 104, 106, 107, 111, 112, 143, 144, 145, 148 
M ODULE 111, 113, 114, 115, 212
module name 111, 136
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modulion 104, 111, 112, 140, 141 
modulo 71 
monadic operator 72 
multi-dimensional array 27 
multiple assignment action 74 
mutual exclusion 111, 117

N-alike 14, 116, 124, 129 
name 11
name binding 10, 105, 137
name creation 104
name string 11, 116
named value 19
nested structure 150
nested structure mode 28, 33
new prefix 141, 142, 144
NEW M ODE 16
newmode definition 14, 16
newmode name 16, 20, 142, 143, 146, 149
nil 127, 129
non-composite mode 16
non-hereditary property 13
non-recursive 23, 84, 110
non-value property 14, 23, 24, 26, 32, 39, 40, 50, 62, 75, 83, 110, 111, 121, 123
N O N R E F 22, 47, 85, 115, 116, 212
N O PA C K  28, 30, 34, 45, 46, 47, 81, 82, 127
normal termination 79, 80
NO T  72
NOTASSOCIATED  97, 99
NOTCONNECTED  100, 102
novelty 13, 14, 15, 16, 17, 70, 124, 126, 127, 129, 146
NULL 21, 23, 43, 44, 53, 84, 89
null class 13, 53, 119, 131
NUM  63
number of elements 28, 37, 57, 125, 128 
number of values 17 
number of values (boolean) 18 
number of values (char) 18 
number of values (integer) 17 
number of values (range) 20 
number of values (set) 19, 124 
numbered set list 18

OD 77 
OF 76 
old prefix 141, 142, 144 
ON 115, 147, 212, 214
on-alternative 107, 117, 147, 150 
OR 67
origin array mode 28
origin array mode name 17, 27, 28, 191
origin reach 140, 141
origin string mode 27
origin string mode name 17, 26, 190
origin variant structure mode 31, 38, 126, 128, 130
origin variant structure mode name 17, 29, 191
O U T 22, 84, 109, 111
outermost nesting level 104
OUTOFFILE 100
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outoffile-attribute 95, 99, 100, 101, 102 
outside world object 93, 96, 97 
OVERFLOW  62, 65, 70, 71, 72, 80

PA C K  28, 30, 34, 127
packing 34
parameter attribute 23, 125, 127
parameter list 22, 138
parameter passing 108
parameter specs 23, 83, 125, 127, 129
parameterisable 13, 22, 23, 26, 40, 65, 122
parameterisable variant structure mode 30, 122, 126, 128, 130
parameterised array mode 17, 28, 46, 60, 134
parameterised string mode 17, 27, 45, 59, 134
parameterised structure mode 16, 17, 30, 31, 57, 122, 125, 126, 128, 130, 131, 132, 134
parent mode 16, 17, 20, 123, 124
parenthesised expression 66
pass by location 109
pass by value 108
path 15
pending (signal) 120 
PERVASIVE 142, 214
pervasive property 140, 143, 144
piecewise programming 113, 114, 115
pos 30, 31, 35
PO S 34, 127
postfix 141
P O W E R S E T  20, 138
powerset difference operator 70
powerset enumeration 79
powerset inclusion operator 69
powerset mode 21, 125, 127, 129, 134, 135
powerset tuple 54
powerset value 67, 68, 69, 70, 72
PRED  63
predefined name 105, 112 
predefined set mode name 98 
predefined simple name string 155 
prefix 10
prefix rename clause 141 
PR EFIXED 142, 214 
primitive value 50 
priority 87, 89, 90, 91, 120, 121 
PRIO RITY 87
PROC 22, 107, 115, 138, 210, 212 
procedure 107 
procedure attribute 107, 210
procedure call 55, 83, 118, 119
procedure definition 23, 82, 85, 86, 104, 106, 108, 147, 148
procedure mode 23, 125, 127, 129, 131, 134, 135
procedure name 85, 109, 117, 119, 138
procedure value 23
process 23, 24, 65, 73, 84, 87, 88, 89, 90, 107, 117, 120 
PROCESS 110, 115, 212
process creation 117
process definition 82, 86, 104, 106, 110, 117, 147, 148 
process name 89, 110, 121, 138, 149 
process re-activation 87, 88, 117, 120 
process termination 87, 117
product 71
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program 112, 113, 117 
program structure 104 
PTR  15, 21, 138

quasi defining occurrence 11, 116 
quasi handler 115
quasi module 104, 115, 116, 143, 144, 145, 212 
quasi region 104, 115, 116, 143, 144, 145, 212 
quasi statement 115 
quotient 71

R A N G E  19, 138
range enumeration 79
range mode 16, 17, 20, 26, 100, 102, 123, 124, 126, 127, 134
RANGEFAIL 42, 45, 46, 47, 50, 58, 59, 60, 65, 67, 68, 69, 75, 77, 81, 100, 102, 124, 125, 130, 131, 132
re-activation 117
reach 104, 106, 108, 112, 137, 139
reach-bound initialisation 39, 106, 117
READ 16, 32, 34, 138
read operation 94, 95, 101
read-compatible 14, 40, 41, 43, 84, 85, 129, 130, 131
read-only mode 16, 28, 30, 81, 122, 124, 126, 127, 129
read-only property 13, 16, 40, 75, 84, 88, 90, 91, 92, 102, 122
READABLE  97
readable-attribute 94, 99
READFAIL 102
READONLY 98, 99, 100, 102
READRECORD  101
READW RITE  98, 99, 100
RECEIVE 72, 90, 91
receive buffer case action 91, 106, 120, 121
receive case action 24, 50, 90, 104, 121
receive expression 24, 73, 120
receive signal case action 90, 106, 120
record mode 25, 94, 102, 125, 128, 129
RECURSEFAIL 84
recursive 23, 49, 108, 110, 118
RECURSIVE 22, 107, 210
recursive definition 15
recursivity 23, 83, 84, 110, 125, 128
R E F 21, 138
referable 21, 34, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 63, 64, 73, 81, 82, 84, 85, 102, 109, 110, 116, 150
reference class 13, 73, 100, 102, 119, 131
reference mode 21, 122, 129, 131, 134
reference value 21
referenced location 73
referenced mode 21, 41, 43, 125, 126, 127, 129, 130, 131
referenced origin mode 22, 44, 125, 126, 127, 129, 130, 131
referencing property 13, 91, 92, 119, 122, 130, 131
region 104, 106, 107, 109, 110, 111, 112, 117, 120, 121, 143, 144, 145, 148
REGION 111, 113, 114, 115, 211, 212
region name 112, 136
regionality 84, 85, 118
regionally safe 75, 83, 84, 85, 119
register name 11, 23, 125, 127, 149
register specification 109
relational operator 69
released 117
REM OTE 113, 211
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remote context 113 
remote module 113 
remote piece 113 
remote region 113 
remote spec module 113 
remote spec region 113 
reserved name 135
reserved simple name string 8, 10, 135, 149, 150, 154
restrictable 14, 130, 131
result 85
RESULT 85
result action 56, 85, 109, 118
result attribute 23
result mode 56
result spec 23, 47, 62, 83, 85, 109, 125, 127, 129, 138, 150
resulting class 14, 20, 56, 64, 67, 68, 70, 71, 72, 80, 123, 133
resulting list of classes 30, 77, 133
RETU RN 85
return action 56, 79, 85, 108
R ETU RN S 22, 150
root mode 14, 20, 25, 64, 65, 67, 68, 69, 70, 71, 72, 123, 133, 149 
ROW 22, 138
row mode 22, 125, 126, 127, 129, 130, 131, 134, 135

safe 15 
SAME  98, 99 
scope 104, 105 
seizable 141, 145 
SEIZE 144, 214 
seize postfix 141, 144 
seize statement 140, 144 
sqjze window 144 
selector 32 
selector value 132 
semantic category 7, 134 
semantics 7 
SEND 89
send action 24, 56, 88, 118 
send buffer action 89, 120 
send signal action 89, 120 
SENDFAIL 89 
SEQUENCIBLE 97 
sequencible-attribute 94, 98, 99 
SET 18, 86, 88, 90, 91, 138 
set element 18
set element name 11, 19, 52, 124  ̂
set literal 52
set mode 19, 26, 104, 124, 127, 134 
SHO RT-INT  17 
signal 88
SIGNAL 121, 213
signal definition 104, 121
signal name 56, 90, 121, 138
signal receive alternative 90, 105, 106, 107, 120
similar 14, 124, 126, 127, 131, 132, 149
simple 109
SIM PLE 108, 210
simple name string 8
simple procedure 108
single assignment action 55, 74
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size 17
SIZE 48, 63
source text; designator 113
space 9, 10, 11
SPACEFAIL 65, 66, 78, 84, 91, 92, 107, 147
S P E C  113, 114, 143, 211
spec module 104, 106, 114, 115, 116, 143, 144, 145
spec region 104, 106, 114, 115, 116, 143, 144, 145
special simple name string 8, 154
special symbol 8, 153
stack 63
START 65
start action 86
start expression 55, 65, 117
STATIC 39, 112, 115, 117, 212
static class 59, 60
static conditions 7
static location 41, 73, 112
static mode 13, 21, 45, 46, 48, 84, 131, 135
static properties 7
static record mode 26, 99, 102, 125, 128
step 35
STEP 34, 127
step enumeration 79
STOP 87
stop action 87, 117
storage 83
storage allocation 112 
store location 101, 102 
string concatenation operator 70 
string element 44, 112
string length 22, 27, 37, 44, 45, 57, 59, 65, 70, 72, 80, 102, 125, 128, 131, 132 
string length (bit string literal) 54 
string length (char string literal) 53 
string location 80
string mode 26, 44, 122, 123, 125, 128, 130, 131, 132, 134, 135, 136 
string repetition operator 72 
string slice 44 
string value 72
strong 13, 43, 44, 63, 64, 70, 77, 80, 82, 146 
strongly visible 137, 138, 139, 141, 143, 145 
ST R U C T  138 
structure field 47, 113, 145 
structure location 82
structure mode 16, 29, 122, 123, 125, 126, 128, 129, 130, 134, 135, 142, 143, 150
structure tuple 54
structure value 82
subsidiary process 117
SUCC 63
surrounded 104, 106, 110, 112 
SY N  49
synchronisation mode 24 
SYNM ODE 15
synmode definition 14, 15
synmode name 15, 20, 28, 44, 45, 46, 59, 60, 70, 80, 81 
synonym definition 15, 49, 55, 104 
synonym name 49, 50
synonymous 15, 16, 28, 44, 45, 46, 59, 60, 70, 80, 81 
syntax 7
syntax options 150
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tag field 16, 29, 39, 47, 57, 61, 75, 122, 133 
tag field name 30, 126, 129 
tag-less parameterised structure mode 57, 58 
tag-less variant field name 30
tag-less variant structure mode 30, 47, 57, 58, 61, 133 
TAGFAIL 42, 47, 50, 51, 58, 61, 69, 75, 124, 126, 130 
tagged parameterised property 13, 32, 39, 123 
tagged parameterised structure mode 31, 57, 58, 123 
tagged variant field name 30
tagged variant structure mode 30, 38, 42, 47, 51, 57, 61, 133
TERMINATE  83, 84, 112
TERMINATEFAIL 84
text reference name 11
TH EN 76
THIS 66, 117
TO 78, 89, 121, 204, 213
transfer index 94, 100, 101
TRUE 18, 52, 63, 69, 71
tuple 55
tuple brackets 150

undefined 109
undefined location 40, 42, 48, 85 
undefined synonym name 51
undefined value 39, 40, 49, 50, 56, 58, 59, 60, 61, 62, 64, 66, 75, 79, 85, 101, 109
underline character 8, 52, 53, 54
unlabelled array tuple 54
unnamed value 19
unnumbered set list 18
UP 46, 58
UPPER 63
upper bound 17, 63
upper bound (array mode) 22, 28, 37, 44, 46, 47, 60, 102, 131, 132
upper bound (array slice) 46
upper bound (boolean) 18
upper bound (char) 18
upper bound (integer) 17
upper bound (range mode) 20, 126, 127
upper bound (set) 19
upper bound (string mode) 27
upper case 8
upper lower argument 62
USAGE 98, 100
usage-attribute 95, 99, 100, 101, 102

v-equivalent 14, 124, 125, 126, 131, 132
value 66, 119, 132
value array element 59
value array slice 60
value built-in routine call 63
value class 13, 50, 55, 59, 60, 61, 62, 64, 65, 70, 73, 80, 82, 84, 90, 92, 123, 131, 133
value do with defining occurrence 145
value do with name 50, 82
value enumeration 79
value enumeration name 50, 80
value name 50, 134
value procedure call 62
value receive name 50
value receive name (buffer) 92
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value receive name (signal) 90
value string element 58
value string slice 59
value structure field 61, 145
value-equivalent 124
variant alternative 126
variant field 28, 29, 42, 51, 126, 128
variant field name 30, 47, 61
variant structure mode 30, 44, 57, 102, 131, 132, 134
VARYING 97
varying-attribute 95, 99
visibility 82, 107, 111, 112, 114, 136, 144
visibility of field names 145
visible 105, 137, 141
visiblity statement 140

weak clash 137
weakly visible 137, 138, 140, 141
WHERE 98
WHILE 81
while control 81
WITH 81
with control 81
with part 50, 81, 104, 204
write operation 94, 99, 101
WRITEABLE  97
writeable-attribute 94, 99
WRITEFAIL 102
W RITEONLY  98, 99, 100, 102
WRITERECORD  101

XOR  67

zero-adic operator 66
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Supplement No. 1

LIST OF CHILL TRAINING DOCUMENTS

CCITT Study Group XI, period 1977-1980: Introduction to CHILL (in English). A CCITT Manual, prepared by 
Study Group XI.

Available through: ITU Sales Section, Place des Nations, CH-1211 Geneva 20, Switzerland.

Introduction to CHILL (in Japanese). K. Maruyama, NTT, Tokyo, May 1981.
Available through: Mr. Norio Sato, Musashino-ECL, Nippon Telegraph and Telephone, Musashino-shi, 
Tokyo 180, Japan.

Introduction to the CCITT high level language for SPC systems: CHILL (in English). W. Buerger, H. Sorgenfrei, 
Siemens Telefone System Division, 1978. A collection of copies from transparencies.

Not available through normal book service.

Management information on CHILL. H. Sorgenfrei, Siemens Telefone Systems Division, 1980. A collection of 
copies from transparencies.

Not available through normal book service.

A software development system based on CHILL. H. Krafka, Siemens OeV ET S3. A 3-page report plus copies 
from transparencies.

Not available through normal book service.

Introduzione all linguaggio CHILL (in Italian). R. Martucci, ITALTEL. Progetto Finalizzato Informatica CNR, 
ETS/PISA 1982.

Available through: CSELT. Via Reiss Romoli 274, 1-10148 Torino, Italy.

CHILL: Die Neue CCITT-sprache (in German). H. Zwittlinger, Abend-Technikum und Software-Schule, Bern, 
Switzerland.

H. Lang & Cie., Bern 1981 (Vol. 4, Beitrage Mathematik, Informatik, Nachrichtentechnik). A course consisting of 
16 tables, held at University Bern 1980/81.

Available through bookshops.

CHILL: the standard language for SPC systems. K. Rekdal, RUNIT, Trondheim, Norway. A collection of copies 
from computer-print transparencies.

Available through: Mr. K. Rekdal, RUNIT, Strindvegen 2, N-7034 Trondheim, Norway.

CHILL/D: A self-instructional manual (Volumes I, II, III). T. Valk-Fai (Philips PITTC), Philips PTI, Hilversum,
1982. A course document covering more than the indicated subset.

Order from: M. J. van Doggenaar, PITTC, PO Box 32, 1200 JD Hilversum, Netherlands.

CHILL: Eine moderne Programmiersprache fur die Systemtechnik. W. Sammer, H. Schwaertzel (Siemens AG), 
Springer Verlag, 1982. Handbook on CHILL and description of the Siemens Implementation (in German).

Available through bookshops.

Elementos del Lenguaje CHILL. CTNE (J. Munera, editor), Madrid, Mayo 1982. Course material to be extended 
describing a basic subset of CHILL (in Spanish).

Available through: Mr. J. Munera, CTNE, Dept, de Normativa Tecnica, Apartado 753, Madrid 13, Spain.

Einfuhrung in die CCITT High Level Programming Language CHILL. W. Buerger, H. Sorgenfrei, W. Eldon, 
Siemens AG, Bereich Fernsprechsysteme, Miinchen, Mai 1980. A course with tasks and examples (in German), 3 
volumes.

Available through: Siemens Lehr- und Lernmittel, Postfach 830451, D-8000 Munich 83, F.R. Germany.
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CCITT Study Group XI, period 1980-1981. Rapporteur for CHILL Maintenance: CHILL User Manual (5th 
draft). A teachers and Students handbook on CHILL.

Not yet available through ITU Sales Service, but published in the CHILL Bulletin, Vol. 4, No. 1, March 
1984.
Available through: Mr. Kees Smedema, AT&T and Philips Telecommunications, Rue des Deux-Gares 80, 
B-1070, Brussels, Belgium.

Supplement No. 2

LIST OF ACCESSES TO CHILL PROGRAMMING SYSTEMS 
FOR NON-PROFIT USE BY SCIENTIFIC AND EDUCATIONAL BODIES

(Up to October 1984)

Siemens: The compiler plus debugger may be provided to scientific or educational users, a fee will be raised to 
cover transfer expenses. An implementation at the Technical University of Berlin has been accomplished.

Contact: Mr. Reithmaier, Siemens AG, K OeV EP D13, POB 700073, D-8000 Munich 70, F.R. Germany.

STERIA: Price of a source level licence for educational or scientific use of the CHILL front-end is 300 000 FF. 
Contact: STERIA, avenue de l’Europe, F-78140 Velizy-Villacoublay, France.

PTT Dr. Neher Laboratory: The CHILL front-end plus executing virtual machine and debugger may be used by 
scientific and educational institutions in the Netherlands. Computer time will be charged.

Contact: Mr. G. H. te Sligte, Dr. Neher Laboratory, POB 421, NL-2260 Leidschendam, Netherlands.

Nordic CHILL compiler: The CHILL integrated programming system CHIPSY may be accessed by scientific and 
educational institutions against a nominal charge. The programming system, on the Hasler Bern installation, is 
being used by students of the Software-School Switzerland and the informatics department of the University of 
Bern.

Contact: RUNIT, Strindvegen 2, N-7034 Trondheim, Norway.

Danish Telecom Research Laboratory: The CHILL compiler and interpreter can be obtained by scientific and 
educational bodies at a nominal charge.

Contact: Peter Haff, Telecom Research Laboratory, Borups Alle 43, DK-2200 Copenhagen N, Denmark. 

NTT, Japan: Method and conditions for access to the CHILL programming system are being investigated.

Supplement No. 3

LIST OF REFERENCES TO PUBLICATIONS ABOUT CHILL

ANDERSEN (T.): A Portable CHILL Runtime System. Scandpower. 2nd CHILL Conference, Lisle, Illinois, USA. 
10 pages, 1983.

BORDELON (E. P.): Name Binding in CHILL. Bell Laboratories. 2nd CHILL Conference, Lisle, Illinois, USA. 
10 pages, 1983.

BOTSCH (D.): The use of high level language programming and its impact on the software of digital switching 
systems. ISS 79, Paris, 1979.
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BOURGONJON (R. H.): CHILL. . .  The standard high level language for programming SPC telephone exchanges. 
Philips’ Telecommunicatie Industrie B.v., Hilversum, Netherlands. Journal A, Volume 22, No. 4, 4 pages in 
English, 1981.

BOURGONJON (R. H.), BREEUS (C.): Implementation experience with the CCITT high level language CHILL. 
ISS ’79, Paris, 1979.

BOURGONJON (R. H.): The CCITT high level programming language. 3rd SETSS Conference, Helsinki, 
Finland, 1978.

BOURGONJON (R. H.), REKDAL (K.): CHILL user’s manual, 1981.

BOURGONJON (R. H.): Programming Languages, Environments and CHILL. Philips’ Telecommunicatie Indus­
trie B.v., Netherlands. 2nd CHILL Conference, Lisle, Illinois, USA. 6 pages, 1983.

BOUTE (R. T.), JACKSON (M. I.): A joint evaluation of the programming language ADA and CHILL. BTM, 
Antwerpen, Belgium. Standard Telecom. Laboratory, Harlow, United Kingdom. IEE Conference, Publication 
No. 198, 6 pages in English, 1981.

BRANQUART (P.), LOUIS (G.), WODON (P.): Aspects de CHILL, le langage du CCITT. MBLE, Bruxelles, 
Belgium. Revue TSI (Technique et Science informatique), 9 pages in French, 1982.

BRANQUART (P.), LOUIS (G.), WODON (P.): On the Analytical Description of CHILL. Philips Research
Laboratory, Brussels. 2nd CHILL Conference, Lisle, Illinois, USA. 6 pages, 1983.

BUTCHER (B. A.): Selecting an Appropriate CHILL Subset. ITT-ATC. 2nd CHILL Conference, Lisle, Illinois, 
USA. 6 pages in English, 1983.

CAIN (G.J.), JACKSON (L. N.), VESETAS (R.), WALTER (A.), YONG (W. B.): Computer aided software 
generation (the MELBA system for generating CHILL code). 4th SETSS Conference, University of Warwick, 
Coventry, United Kingdom, 1981.

CAMICI (A.), GIARRATANA (V.), NIRO (F.), MODESTI (M.): CHILL for supporting software engineering 
environments. CSELT & SIP, Italy. 5th SETSS Conference, Lund, Sweden. 4 pages in English, 1983.

CAMICI (A.), GIARRATANA (V.), NIRO (F.), PANARONI (P.): Criteri di progetto nell’implementazione del 
linguaggio di programmazione CHILL. Congresso AICA 1980, Bologna, 1980.

CAMICI (A.), GIARRATANA (V.), MANUCCI (F.): A CHILL software development system for distributed
architecture. ICC’81, Denver, USA, 1981.

CARRELLI (C.), MANUCCI (F.), ROSCI (G.): CHILL Programming System: implementation and operational 
aspects. Congress ISS ’81’CIC Symposium, Montreal, Canada (in English), 1981.

CARRELLI (C.), MANUCCI (F.), MARTUCCI (R.): The CCITT high level language: an approach in Italy. 
ISS ’79, Paris, 1979.

CCITT: CHILL language definition. Recommendation Z.200, 1984.

CONROY (R. A.): Impacts of CHILL on System Design. ITT-ATC. 2nd CHILL Conference, Lisle, Illinois, USA. 
3 pages, 1983.

DACKER (B.), JACOBSON (I.): Real time system design using CHILL. 3rd SETSS Conference, Helsinki, 
Finland, 1978.

DE BACHTIN (O.), LINDROOS (L.), TONNBY (I.): Programmed testing of AXE systems using a CHILL based 
language PILOT. 4th SETSS Conference, University of Warwick, Coventry, United Kingdom, 1981.

DENENBERG (C. G.): CHILL implementation techniques. 3rd SETSS Conference, Helsinki, Finland, 1978.
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DE NICOLA (R.), MARTUCCI (R.), ROBERTI (P.): A CHILL based distributed architecture. International 
Computing Symposium, London, 1981.

DENIS (G.), LANGLOIS (C.): Presentation d’une machine langage orientee vers le langage CHILL. CNET, Paris, 
France. Revue L ’echo des Recherches, 7 pages in French, 1981.

\

DENIS (G.), LANGLOIS (C.), DTSSERNIO (J. P.): Machine langage adaptee a CHILL: premiers resultats 
devaluation. CNET, Paris, France. Congres ISS’81’CIC Symposium, Montreal, Canada. 6 pages in English and in 
French, 1981.

FEICHT (E. J.): “CHILL Factory”: production and maintenance of a large CHILL software system. Siemens, 
F.R. Germany. 5th SETSS Conference, Lund, Sweden. 6 pages in English, 1983.

GIARRATANA (V.), MODESTI (M.): An SDL into CHILL skeleton translation system. CSELT & SIP, Italy. 
5th SETSS Conference, Lund, Sweden. 6 pages in English, 1983.

GIARRATANA (V.), GIANNETI (B.), MUSSA (P. L.): Verso la formalizzazione della generazione di codice nei 
compilatori: un generatore di codice indipendente della macchina per il CHILL. Congresso AICA 1980, Bologna, 
1980.

GREEN (G. A.), HALLSTEINSEIN (S. O.), WANVIK (D. H.), NOKKEN (L.): Separate Compilation in 
CHIPSY. RUNIT. STK. 2nd CHILL Conference, Lisle, Illinois, USA, 1983.

GUTFELDT (H.): Modelling telecom processes with CHILL process. Hassler AG, Bern, Switzerland. 5th SETSS 
Conference, Lund, Sweden. 4 pages in English, 1983.

GUTFELDT (H.): CHILL. Hassler AG, Bern, Switzerland. Hassler Werk Zeitung, 1 page in German, 1981.

GUTFELDT (H.): SDL and CHILL Structured Programming. Hassler AG, Bern, Switzerland. 2nd CHILL 
Conference, Lisle, Illinois, USA. 13 pages, 1983.

GUTTMAN (N.): Efficient Implementation of Nested Non-recursive Procedures in CHILL. Bell Laboratories. 
2nd CHILL Conference, Lisle, Illinois, USA. 6 pages, 1983.

HAFF (P.), BJOERNER (D.): CHILL Formal definition. Dansk Datamatik Center, Lyngby, Denmark, 1981.

HAMMER (D.), FRANKEN (G.), GREEN (P. C): A distributed Operating System for the TCP16 System. Philips’ 
Telecommunicatie Industrie B.v., Netherlands. 5th SETSS Conference, Lund, Sweden. 6 pages in English, 1983.

HAQUE (T. A.), DALEY (R. W.): ITT 1240 Digital Exchange — CHILL Programming environment. ITT-ESC, 
1983.

HAQUE (T. A.): ITT CHILL Programming environment, Electrical Communication, Vol. 9. ITT-ESC, 1983.

HAQUE (T. A.): CHILL Programming environment, Proceedings of COMPSAC’83, Chicago, USA. ITT-ESC,
1983.

HRVENSALO (J.): CHILL — unsi standardikieli. Finnish state research center, Finland. Elektroniikka No. 19, 
3 pages in Finnish, 1981.

KEEDY (J. L.): A report on the concurrent processing features of the CCITT language CHILL. Telecom 
Australia. 45 pages in English, 1981.

KRAFKA (H. H.): A software development system based on CHILL. 4th SETSS Conference, University of 
Warwick, Coventry, United Kingdom, 1981.

KURKI-SUONIO REINO: Mikrojen uudet. University of Tampere, Finland. Elektroniikka No. 19, 3 pages in 
Finnish, 1981.
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LANGLOIS (C.): Evaluation of a CHILL Oriented Processor. CNET. 2nd CHILL Conference, Lisle, Illinois, 
USA. 9 pages, 1983.

LO (P.), SHAW (F.): A Distributed Operating System for CHILL. ITT-ATC. 2nd CHILL Conference, Lisle, 
Illinois, USA. 5 pages, 1983.

McCULLOUGH (R. H.): A CHILL Compiler Based on the Portable C Compiler. Bell Laboratories. 2nd CHILL 
Conference, Lisle, Illinois, USA. 13 pages, 1983.

MARUYAMA (K.), KONISHI (K.), SATO (N.): NTT CHILL Implementation Aspects and its Application 
Experience. Musashino electrical communication laboratory, NTT, Japan. 6 pages in English, 1981.

MEIJER (R. W.), te SLIGTE (G. H.): Status report of CCITT HLL implementation at the Dr. Neher Laboratory 
of the Netherlands PTT. 3rd SETSS Conference, Helsinki, Finland, 1978.

MEILING (E.), STEEN (U.), PALM: A comparative Study of CHILL and ADA on the Basis of Denotational 
Descriptions. Dansk Datamatik Center, Lyngby. 2nd CHILL Conference, Lisle, Illinois, USA. 14 pages, 1983.

MODESTI (M.), GIARRATANA (V.): An SDL to CHILL Skeleton Transformer. SIP DG Roma, CSELT Torino. 
2nd CHILL Conference, Lisle, Illinois, USA. 13 pages, 1983.

MOORE (B. G.), CHANDRASEKHARAN (M.): Tools for maintaining consistency in large programs compiled 
in parts. GTE Laboratories, USA. 5th SETSS Conference, Lund, Sweden. 5 pages in English, 1983.

OLSEN (N. C.): Alternatives for handling I/O in CHILL. ITT-ATC. 2nd CHILL Conference, Lisle, Illinois, USA. 
5 pages, 1983.

PANARONI (P.), RUGANI (U.): II parallelismo nel linguaggio CHILL: descrizione, analisi comparata e sua 
implementazione. Congresso AICA 1980, Bologna, 1980.

REITHMAIER (E.): Compilation Control in a large CHILL Application. Siemens. 2nd CHILL Conference, Lisle, 
Illinois, USA. 10 pages, 1983.

RIETSCHOTE van (H. F.): Debugging in a CHILL Oriented Program Development System. Philips’ Telecommu­
nicatie Industrie B.v., Netherlands. 2nd CHILL Conference, Lisle, Illinois, USA. 4 pages, 1983.

REKDAL (K.): CHILL, the standard language for programming SPC systems. IEEE Transactions on Telecommu­
nications, June 1981. Proceedings of NTC, New Orleans, USA, November 1981. 20 pages in English, 1981.

REKDAL (K.): CHILL, the standard language for programming SPC systems. Mini-micro systems, Shenyang, 
China. 7 pages in Chinese, 1982.

REKDAL (K.): Introduction to CHILL, 1980.

REKDAL (K.), BOTNEVIK (H.), HALLSTEINSEIN (S. O.), VENSTAD (A.): Some implementation aspects of 
CHILL. 3rd SETSS Conference, Helsinki, Finland, 1978.

REKDAL (K.): CHILL in the Software Engineering Context. 5th SETSS Conference, Lund, Sweden, 1983.

REKDAL (K.): CHILL, The Standard Language. Proceedings of COMPSAC’83, Chicago, USA, 1983.

RUDMIK (A.), MOORE (B. G.): The separate Compilation of Very Large CHILL Programs. GTE. 2nd CHILL 
Conference, Lisle, Illinois, USA. 11 pages, 1983.

SMEDEMA (C. H.), BISHOP (R.), CHEUNG (R. C. H.), BORDELON (E. P.), FEAY (M. R.), LOUIS (G.): 
Separate Compilation and the development of large programs in CHILL. PTI Netherlands, British Telecom UK, 
Bell Laboratories USA and PRL Belgium. 5th SETSS Conference, Lund, Sweden. 7 pages in English, 1983.

SMEDEMA (C. H.), MEDEMA (P.), BOASSON (M.): The programming languages: PASCAL, MODULA, 
CHILL, ADA. Prentice-Hall International. 160 pages in English, 1983.
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SMEDEMA (C. H.): A test approach for CHILL based systems. Philips’ Telecommunicatie Industrie B.v., 
Hilversum, Netherlands. 2nd CHILL Conference, Lisle, Illinois, USA. 4 pages, 1983.

TEICHROEW (D.), BLOCK (C.), KYO CHUL KANG, CHIKOFSKY (E.): Usage of the System Encyclopedia 
Manager (SEM) System with the CCITT Functional Specification and Description Language (CCITT/SDL). 
2nd CHILL Conference, Lisle, Illinois, USA. 15 pages, 1983.

THALHAMER (J. A.): Design Issues of a High Level Symbolic Debugger for CHILL. ITTE-PSC, 1983.

THEURETZBACHER (N.): Implementation of the CHILL Tasking Concept in a Compiler and a Real Time 
Operating System. ITT-Austria. 2nd CHILL Conference, Lisle, Illinois, USA. 6 pages, 1983.

VALK-FAI (T.): A training course in the use of CHILL. PTI. 2nd CHILL Conference, Lisle, Illinois, USA. 
11 pages, 1983.

VENSTAD (A.): On rehosting CHIPSY. RUNIT. 2nd CHILL Conference, Lisle, Illinois, USA. 10 pages, 1983.

WEN (W.): Problem Oriented Languages. ITT-ATC. 2nd CHILL Conference, Lisle, Illinois, USA. 4 pages, 1983.

WINKLER (J. F. H.): A new Methodology for I/O  and its application to CHILL. Siemens AG, Munich. 
2nd CHILL Conference, Lisle, Illinois, USA. 16 pages, 1983.

ZWITTLINGER (Dr. H.): CHILL, die neue CCITT Sprache. Ingenieurschule, Bern, Switzerland. Programmier- 
sprachen fur die Nachrichtentechnik, University Bern. 76 pages in German, 1980/81.
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Supplement No. 4

LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS

Origin CHILL compiler CHILL applications

Country Organization Host computer OS Target
computere Status 1 SPC system Support software Others Status 1

Federal Siemens AG 7700 BS 1000/ 7700 I EWSD, I
Republic of BS 2000
Germany

7800 I ETS, “Complete” I
development and
production system

7800 BS3000 IBM 370 I
SSP 103 I BIGFON, I

IBM 370 OS/MVS SSP 112D I EMS U
8086 Family I

ISDN u

Tekade VAX II VMS 6800 U
(Front end) (Front end) U

Standard Electrik IBM 370 MVS iAPX 86 I System 12 I
Lorenz IBM 370 MVS 8086 Family I 5600 BCS u
(ITT/SEL) Development and

production system
I

ISDN u
DFS u

1 P: Planned.
U: Under development.
I : Implemented.



248 
Fascicle 

VI.12 
— 

Suppl. 
N

o.

LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS (cont.)

Origin CHILL compiler CHILL applications

Country Organization Host computer OS Target computer Status 1 SPC system Support software Others Status 1

Austria ITT Austria HP
VAX VMS

8085
8086

I
I

5200 BCS 
(AMANDA)

I

Belgium BTM IBM 370 MVS 8086 I System 12 

ISDN

Development and 
production system

I

I
U

Brazil CPqD
TELEBRAS

VAX 11 VMS * iAPX 286 P TROPICO P

Denmark Telecom Research 
Lab

VAX (portable) VMS Virtual machine 
hosted on VAX 

(portable)

I
(Comer-

cially
available)

Symbolic CHILL 
Debugger

U

1 P: Planned.
U: Under development.
I: Implemented.
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LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS (cont.)

Origin CHILL compiler CHILL applications

Country Organization Host computer OS Target computer Status 1 SPC system Support software Others Status '

Spain CTNE No CHILL compiler planned until now
Note — We are using ITX tools in SESA (SESARC) and we have no 
decision for the future about tools to be used.

System 12 U

United States 
of America

ATT-Bell Labs. P

ITT IBM 370 MVS 8086 I System 12 Development and 
production system

I
I

CTE
Laboratories

IBM 370

VAX 11/780 
TANDEM

IBM 370 
based OS

IBM 370 
TANDEM 

VAX 11/780 
I 8086 
1432

I
I
I
I
U

1 P: Planned.
U: Under development.
I: Implemented.
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LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS (cont.)

Origin CHILL compiler CHILL applications

Country Organization Host computer OS Target computer Status 1 SPC system Support software Others Status 1

Finland Technical Research 
Centre,
T elecommunications 
Laboratories

CHILL run-time 
support software for 
compiled programs

UMC
micro­

computer

U

France PTT and STERIA DPS 8 MULTICS CHILL

Processor FRONT 
END

I

I

Experiment of 
SPC system I

Italy TELETTRA UNIVAC
1100/60

EXEC 8 MIC 30 
MIC 10

U

SIP-CSELT VAX 780 
VAX 780 
VAX 780

VMS
UNIX
VMS

MIC 20 
VAX 780 
VAX 780

I
U
I

ITALTEL-SIT
SPA

VAX 11/750 MVS MIC 20 U UT-100
new switching
system

Optimizing 
processor working 
on the output of the 
compiler
SDL-like language 
to CHILL 
Translator

I

I

FACE
(ITT)

IBM 370 MVS 8086 Family I System 12

Development and 
production system

I

I

1 P: Planned.
U: Under development.
I: Implemented.
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LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS (Cont.)

Origin CHILL compiler CHILL applications

Country Organization Host computer OS Target computer Status 1 SPC system Support software Others Status 1

Japan KDD DIO D180 DIO I XE-10 U

(NTT’s
compiler)

Digital INTS 
XE-20
Digital INTS

U

NTT DIO D180 DIO I -  DIO ESS 
(D100B,
Mobile
telephone, data 
telephone)

— D60 (Digital 
telephone 
transit)

Office data 
generator (see 
SETSS 1975 paper)

I

I

DIPS DIPS 
(NTT’s TSS and 

real-time OS)

DIO

D10-VLSI

I — Facsimile 
storage and 
conversion 
system

— D70 (Digital 
telephone 
combined 
transit local)

— D50 (Circuit 
data switching)

— Wideband 
exchange 
system

I

I

U

u

DIPS DISP DIO and 
D10-VLSI

U 2 -  D70
version-up

INS

u

u

1 P: Planned.
U : Under development.
I: Implemented.

2 Enhanced with partial code generation and module decomposition (see second CHILL conference paper).
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LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS (cont.)

Origin
\ CHILL compiler CHILL applications

Country Organization Host computer OS Target computer Status 1 SPC system Support software Others Status 1

Norway STK
(ITT)

ND100 SINTRAN III iAPX 86 I 5500 BCS 
Digimat 2000

I
I

Norwegian Telecom 
Administration

ND 100 SINTRAN III . I 8086 I X25

Costal
radio-control
Experimental
National N /&  O
Network
Experimental
service integrated
video-switch

U

U

P

P

Netherlands Administration

AT&T and
Philips
Telecom

PDP 10 

IBM 370

(TO PS-10 
(TOPS-20

UNIX

PDP-11

MC 68000 
PDP-10

IBM 370

I

I
U

u

Support system 
PRX/A

OMC

OS

Signalling
C7

ISDN
D-channel
protocol

Data
base

application
Terminal

multiplexes

I

I
u

u

u
p

I

I

1 P: Planned.
U : Under development.
I: Implemented.
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LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS (end)

Origin CHILL compiler CHILL applications

Country Organization Host computer OS Target computer Status 1 SPC system Support software Others Status 1

United BT ND 100 SINTRAN 8086 I Teletext I
Kingdom Protocol

P

ITT/ESC IBM 370 MVS 8086 I System 12 Support I
5600 BCS Software U

Switzerland Hasler ND-100 (compiler SINTRAN III 1 8086 I Planned Target OS Telex
delivered by Teletex u

RUNIT) Convertor
MARK II u

USRR Moscow Institute of ES-1033 OS ES CC NEVA-1 M I
T elecommunications CC-NEVA-1M NEVA-1 M
Moscow State BESM-6 CC NEVA-1M I
University

Denmark RUNIT ND 100 SINTRAN III iAPX 86 I
Finland Nordic Telecom iAPX 286 U

Administration and ND 100 u
British Telecom Intellec MDS ISIS II iAPX 86 I

Sweden CP/M-86 iAPX 86 I
United VAX 11 VMS iAPX 86 P CHILL run time
Kingdom UNIX iAPX 86 u system I

IBM PC CP/M-86 iAPX 86 I

1 P: Planned.
U: Under development.
I: Implemented.
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LIST OF CHILL IMPLEMENTATIONS AND APPLICATIONS (cont.)

Origin CHILL compiler CHILL applications

Country Organization Host computer OS Target computer Status 1 SPC system Support software Others Status 1

Norway STK
(ITT)

ND100 SINTRAN III iAPX 86 I 5500 BCS 
Digimat 2000

I
I

Norwegian Telecom 
Administration

ND 100 SINTRAN III I 8086 I X25

Costal
radio-control
Experimental
National N /& O
Network
Experimental
service integrated
video-switch

U

U

P

P

Netherlands Administration

AT&T and
Philips
Telecom

PDP 10 

IBM 370

(TOPS-10 
(TOPS-20

UNIX

PDP-11

MC 68000 
PDP-10

IBM 370

I

I
U

u

Support system 
PRX/A

OMC

OS

Signalling
Cl

ISDN
D-channel
protocol

Data
base

application
Terminal

multiplexes

I

I
u

u

u
p

I

I

1 P: Planned.
U: Under development.
I : Implemented.
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