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FASCICLE X.3

Annex F.1 to Recommendation Z.100

SDL FORMAL DEFINITION



1 Preface
This Formal definition of SDL provides a language definition which supplements the def
inition given in the recommendation text. This annex is for use by those who require a 
very precise and detailed definition of SDL such as maintainers of the SDL language and 
designers of SDL tools.

The formal definition consist of three volumes:

A n n e x  F .1  (This volume)

Which states the motivation, describes the overall structure, provides 
guidelines for how to use the Formal Definition and describes the nota
tion used.

A n n e x  F .2  Which defines the static properties of SDL

A n n e x  F .3  Which defines the dynamic properties of SDL

2 M otivation
Natural languages in general are am b ig u o u s and in co m p le te , that is, more than one 
interpretation, can be given to some of the sentences in the language, no m atter whether 
the reader is a computer or a human being.
A definition or specification is fo rm a l if its meaning (semantics) is unambiguous and com
plete. As natural languages cannot be used for that purpose, special languages, known as 
sp ec ifica tio n  lan g u ag es (like SDL and LOTOS) have been developed. An implementation 
language like CHILL or PASCAL could also be used as a specification language (for instance 
a compiler specifies formally the semantics of another language), but often it is essential to 
separate the implementation details, irrelevant for the understanding, from the semantics of 
a specification.

Formal languages specially suitable for defining languages are known as m e ta  languages. 
For example, The Backus Naur form (BNF) is a meta language specially suitable for defining 
formally the syntax of programming languages.
In spite of the ambiguity of natural languages, natural languages are usually more readable 
for human beings than formal languages and can more easily express rationale giving a 
framework in which the formal specification can be understood. For these reasons both a 
definition in natural language and a definition in a formal specification language often are 
given.

This annex constitutes a formal definition of SDL. If any properties of an SDL concept 
defined in this document, contradicts the properties defined in Z.100 and the concept is 
consistently defined in Z.100, then the definition in Z.100 takes precedence and this formal 
definition requires correction.

2.1 The M eta Language
The m eta language used in this Formal Definition is Meta-IV [1]. The reasons for choosing 
this language are the following:

• It builds upon a very strong and extensively researched mathematical foundation.

• It has very convenient and powerful facilities for object manipulations.

• It has a “programming like” notation which means that it is oriented towards pro
grammers and implementors.

• It is in the process of being standardised within the European Community.

• It is well reported in books, proceedings and scientific journals and it has been used 
in the CCITT manual The Formal Definition of CHILL [2]- which also contains a 
summary of the Meta-IV notation.

Fascicle X .3 — R ec. Z.100 — A nnex F.1 1



•  Meta-IV tools are available which allow for syntax checking, visibility analysis, docu
ment generation, cross referencing etc.

In section 5, an informal introduction to the parts of Meta-IV used in the Formal Definition 
can be found. A complete definition of Meta-IV can be found in [1].

3 M odelling Technique
When considering what is meant by “semantics of SDL” it is convenient (conceptually) to 
decompose the language definition into several parts:

•  The definition of the syntax rules.

•  The definition of the static semantic rules (so-called well-formedness conditions) such 
as which names it is allowed to use at a given place, which kind of values it is allowed 
to assign to variables etc.

•  The definition of the semantics of the constructs in the language when they are inter
preted (the dynamic semantics).

There is no need for including the syntax rules in the Formal Definition as the BNF rules and 
Syntax diagrams found in Z.100 already serve as formal definitions of the syntax rules, which 
means that the input to the Formal Definition is a syntactically correct SDL specification. 
The input is represented by an Abstract Syntax. This abstract syntax is based on the SDL 
textual concrete syntax parse-tree (BNF rules) with irrelevant details such as separators and 
lexical rules removed. Therefore, this Abstract syntax is not the Abstract Syntax of Z.100 
appearing in the recommendations which is an abstraction of the SDL model concept.

For example the Abstract Syntax production rule:

1 Transstring :: Act$tmt+ [Termstmt]

expresses th a t a Ttomsistion string consists of a non-empty list of Action statements and an 
optional Terminator statement (the italicised letters also occur in the production rule).
The complete set of production rules (so-called Domain Definitions) defining the SDL-syntax 
on an abstract form is called ASo- In some respect it defines the language syntax on a more 
basic level than the syntax rules found in Z.100 since the concrete textual syntax in Z.100 
contains a lot of semantic information (it is context sensitive) as opposed to ASo. It should 
be noted that ASo is aa  abstraction of the concrete textual syntax. The concrete graphical 
syntax has not been used for reasons of economy in time and space rather than any difficulty 
in the task.

As an example a signal list in Z.100 is defined to be:

<signal list> ::= < signal item > {,<signal item>}
<signal item > ::= < signal identifier> | (< signal list identifier>) | < timer identifier> 

whereas the corresponding definitions in ASo are:

2 Signallist :: Signalitem+
3 Signalitem  =  Id | Signallistid

A Signallist consists of a list of Signalitems. A Signalitem is either an identifier or a signal list 
identifier. As opposed to the context sensitive BNF production < signal item > no distinction 
is made between a signal identifier and a timer identifier in ASo because syntactically they are 
both identifiers as opposed to signal lists which are distinguished by the use of parenthesis.

The starting point for the FD is syntactically correct SDL-specifications. The tasks of the 
Formal Definition are to
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•  Define the well-formedness conditions for SDL-specifications. This task, referred to as 
the Static Semantics, constitutes Annex F.2

•  Define the dynamic properties for SDL-specifications. This task, referred to as the 
Dynamic Semantics, constitutes Annex F.3

The steps are shown in figure 1. The result from the Static Semantics (i.e. ASi) is explained 
below.

Figure 1: Objectives of Static Semantics and Dynamic Semantics

The step of translating from the concrete textual syntax to AS0 is not formally defined, 
but is derived from the correspondance between names in the two syntaxes as previously 
illustrated for Signallist

3.1 Static Sem antics
In Z.100, the dynamic semantics of the various constructs are defined in terms of an Abstract 
Syntax. Common subsections, Concrete textual grammar and Concrete graphical grammar 
define the concrete syntax rules, state the appropriate well-formedness conditions and relate 
the concrete syntax rules to the abstract syntax in Z.100. It is defined using Meta-IV (in the 
common subsections Abstract grammar). The same abstract syntax is used in the Formal 
Definition (where it is referred to as ASi). A summary of this abstract syntax can be found 
in Annex B of Z.100.

In addition to defining the well-formedness conditions, the Static Semantics must therefore 
define how the ASo representation of a specification is transformed into the ASi representa
tion, that is, given an ASo representation, an ASi representation is returned by the Static 
Semantics if the ASo representation was well-formed. The Static Semantics can be regarded 
as an “abstract coinpiler” where the AS0 representation is the source language and the ASi 
representation is the object language.

In addition to ASo and ASi, the Static Semantics uses some internal utility domains, known 
as the Semantic Domains, which hold the information required at any place about a given 
entity. For example, when a process definition is transformed, information about its formal 
parameters is kept in the Semantic Domains and the information is retrieved during trans
formation of the Create Request action. The ASo domains could have been used for that 
purpose, as the Semantic Domains anyway are deduced from ASo, but a tree representation 
is not useful when information of a certain entity (say a process definition) occurring some
where in the tree is required. Therefore Semantic Domains are usually mappings modelling 
tables.

For instance, the Semantic Domains include a mapping (further explained in section 5.4.7) 
of identifiers into some descriptor containing information about the identifiers:

4 Descriptordict =  Qual is*Descr

where Qual is the identifier representation used internally in the Formal Definition and Descr 
is any descriptor. The descriptor may for instance be a process descriptor:
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5 Descr
6 ProcessD

= ProcessD | ...
:: ParameterD* Validinputset Outputset

expressing that a Process Descriptor contains a list of Parameter Descriptors, information 
about the Valid input signal set and information about the Output signals. The definitions 
of these three (sub)descriptors are not shown here.

The transformation itself is performed by a set of Meta-IV functions using the three Domains 
ASo, ASi and the Semantic Domains.

3.2 The D ynam ic Sem antics
The task of the Dynamic Semantics is to define the behaviour of an SDL specification on
ASi form.
The Dynamic Semantic? is divided into three major sections:

•  The Model for the underlying system (the abstract SDL-machine)

•  The Interpretation of the process graphs

• Transformation of ASi into a more appropriate representation; that is, a mapping is 
constructed (a Semantic Domain) which contains the information required during the 
interpretation such as information about the sort of variable, possible communication 
paths between processes, equivalence classes for types etc. The mapping is named
Entity-dict (or more correctly, the domain of the mapping is named Entity-dict).

Concurrency in SDL in the Dynamic Semantics is modelled by using M eta-processes; that 
is concurrently executing Meta-processes in Meta-IV model concurrently executing processes 
in SDL.
Six different Meta-process types are used:

• system

To handle the signal routing and the creation of sdl-processes.

• path

To handle the non-deterministic delay of channels.

• timer

To keep track of the current time and handle time-outs.

• view

To keep track of all revealed variables.

• sdl-process

To interpret the behaviour of an SDL-process.

• input-port

Which handles the queueing of signals in an SDL-process. For each instance of sdl- 
process there exists exactly one instance of input-port

The four Meta-process types system, path, timer and view can, as a whole, be regarded as 
modelling the underlying system.
There is no shared data between Meta-processes - they interact by transmitting values 
conveyed by instances (objects) of Com m unication D om ains (correspond to the SDL 
concept signals).
Communication Domains are defined in the same way as other domains; for example, objects 
of the Communication Domain Input-Signal are directed to an sdl-process instance from its 
attached input-port instance. The Communication Domain is defined like this:

4 Fascicle X .3 — R ec. Z.100 — A nnex F.1



7 Input-Signal Signal-Identifier [ Value]* Sender-Value

Instances of Input-Signal convey the identifier of the SDL signal which is sent, the list of 
values conveyed by the SDL signal and the PID value of the sender.

Figure 2 shows the complete “Meta-process interaction scheme” . The communication mech
anism is synchronous and the notation is known as CSP (see [3] and [4]) (Communicating 
Sequential Processes).

Figure 2: Communication scheme

3.3 Exam ple

Figure 3 shows the communication between meta-processes in the formal definition for the 
following (partial) SDL-process, when a signal ( “b” ) arrives from the environment, and the 
process responds by sending a signal ( “a”) back to the environment:

s t a t e  S; 
input b; 
output a ;
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The communication is informally illustrated by means of a message sequence chart. P ath (l) 
and Path(2) denotes two instances of the path-processor, corresponding to the path from 
the environment to the sdl-process (P ath(l)) and vice versa (Path(2)).

Environment System P ath (l) Path(2) Input-port SDL-process

*” Send-signal ( “b” )
*■ Queue-Signal ( “b” )

*" Signal-Delivered (“b
"" Next-Signal

” Input-Signal (“b” )
" Send-Signal ( “a” )

* Queue-Signal ( “a” )
Signal-Delivered ( “a

Figure 3: Example of communication between meta-processes

3.4 Physical Structure o f T he Formal D efinition

The Static Semantics (Annex F.2) is divided into three main parts:

1. The Domain definitions for ASo

2. The Domain definitions for the Semantic Domains

3. The Meta-IV functions checking well-formedness conditions and defining how ASo is 
transformed into ASi.

The Domain definitions for ASi which are used in part 2 and 3 are to be found in Z.100 and 
summarized in Annex B of Z.100. They are not repeated in the formal definition.
Annex F.2 also includes cross-indices on Meta-IV function names and domain names (both 
defining occurrence and applied occurrences) and a cross index on the well-formedness con
ditions applied.

The Dynamic Semantics (Annex F.3) is divided into five major sections:

1. Domain definitions for the Communication Domains

2. Domain definitions for the Semantic Domains (Entity-dict)

3. The Meta-process definitions and attached functions for the model of the underlying 
system

4. The Meta-process definitions and attached functions for the interpretation of the SDL- 
process

5. The creation of the internal domain Entity-dict. Entity-dict is used by the SDL- 
processes and it is therefore created before any SDL-processes are interpreted.
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Annex F.3, like Annex F.2 also contains a number of indices covering domain names, function 
names, Meta-process names, error conditions etc.

The volume of material (especially in Annex F.2) might seem frightening at a first glance. 
However, more than half of the space contains annotations for the Domains, function and 
process definitions.
The layout for a function and process definition follows a scheme:

1. First, the function or process definition is specified, by:

(a) a heading defining the process or function name and the names of its formal 
parameters

(b) its body (algorithm)
(c) a type clause specifying the type (domain) of the formal parameters and the type 

of the result (if any).

2. Then follows the itemized (plain english) annotations attached to the process or func
tion definition:

O b jec tiv e  Explains the purpose of the function or process
P a ra m e te rs  Explains the purpose of every formal parameter to the function

or process
R esu lt Explains the object returned (if any).
A lg o rith m  Explains, on a line by line base, the algorithm used in the function

or process.

Example

The outermost function definition-of-SDL from Annex F.2 which ties together the Static 
Semantics (transform-system) and the Dynamic Semantics (by starting the Meta-process 
system) is as follows:

definition-of -SDL(extparms, systemdef, predefsorts) ^

1 (let (asx, auxinf) =  transform-system(systemdef, predefsorts, extparms) in
2 if asi =  nil then
3 undefined
4 ' else
5 (let subsetcut =  select-consistent-subset(asi, extparms) in
6 s ta rt system(asi, subsetcut, auxinf)))

type : External-Information Syso Datadefo+ =>

O b jec tiv e
P a ra m e te rs

extparms
systemdef
predefsorts

A lg o rith m

Line 1 
Line 2

Line 4 
Line 5 
Line 6

Define the properties of SDL

Some External-Information (see annex F.2 section 2.3). 
The ASo-tree representing the SDL system 
The predefined data in ASo form.

Transform the system into the abstract syntax form (ASi form). 
If static errors are found (i.e. if no ASi representation could be 
derived) then the behavior is not defined.
If no static errors are found then
Select the set of Block-identifier\s denoting the consistent subset. 
Create a system instance, i.e. create a Meta-IV process which 
behaves like the underlying system.
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4 How to U se the Formal Definition

4.1 T he SDL U sers

The Formal Definition is not intended as a users reference manual on SDL. Newcomers 
on SDL may find the User Guidelines (annex D in Z.100) appropriate for achieving an 
overview of concepts (and their rationale) in the language, while the Z.100 Recommendation 
itself serves as a reference manual on SDL, but there might be some cases where Z.100 is 
inadequate. For instance

• if some properties are missing (e.g. some expected static condition), if some stated 
properties contradict other properties or

•  if the exact meaning of some stated properties is difficult to understand or

• if some properties (due to the lack of cross index in Z.100) are difficult to find or

• if the user wants to achieve a deeper understanding of more complex m atters like 
the abstract SDL machine, when and how to select a consistent subset, resolution by 
context, the inheritance mechanism etc.

In such cases the Formal Definition might be a useful supporting document. The user must 
of course first gain insight in the structure of the Formal Definition, how the functions are 
organized and what the Domains are used for. A certain amount of knowledge about the 
Meta-IV notation is also required, but as the functions are extensively annotated, it may 
be possible to read Meta-IV by reading the functions in conjunction with the annotations 
after having read the introduction on Meta-IV (section 5 below). When looking up in the 
Formal Definition, the users may take advantage of using the table of contents and the cross 
indices.

4.2 The Im plem entors

As mentioned earlier, the Meta-IV approach allows implementors to derive an implemen
tation systematically (i.e. static analyzer, simulator etc.) from the Meta-IV specification. 
For SDL, it is possible to derive a static analyzer from Annex F.2 and a simulator from 
Annex F.3. It is advised to use the ASi representation (generated by the static analyzer) 
as a basis for simulation. The reasons are that context information for identifiers is missing 
in ASo (they are normally not qualified in ASo) and that the dynamic semantics of a spec
ification on ASo form may be difficult to derive due to the large number of shorthands in 
SDL (especially for concepts like data types).
It should be noted that the derivation into an implementation is systematical, but it is not 
mechanical.
The following points must be considered:

• Appropriate datatypes must be found for representing the ideal data types (domains) 
in Meta-IV such as mappings, lists and sets used in ASo, ASi and the Semantic 
Domains.

• Due to the visibility rules in SDL (the fact that identifiers may be used before they 
are defined) a so-called “fixpoint equation” is (for convenience) used in the Static 
Semantics (see section 3.1 of Annex F.2). In an implementation, the Semantic Domains 
may be created gradually by going through the ASo tree a number of times (e.g. 
descriptors for signals must be created before any descriptors for channels are created 
as channels refers to signals in their definitions).

• The initial algebra approach implies that the Formal Definition manipulates infinite 
objects. Also ASi contains infinitely objects. It is therefore necessary to modify AS* 
slightly and to impose restrictions on the use of data types or to use some abstraction 
technique in which these objects can be encoded.
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5 Introduction to M eta-IV
This section contains an informal introduction to Meta-IV and to how Meta-IV has been 
used in the Formal Definition, i.e. Meta-IV is explained in terms of the Formal Definition 
(abbreviated as FD) which means that only those parts of Meta-IV which have been used 
in the FD are explained.

5.1 G eneral Structure
The FD consists of:

•  A set of function and process definitions defining the semantics of SDL. Processes (in 
Meta-IV and in the FD called processors) are used for modelling concurrency and are 
therefore only used in the Dynamic Semantics. Syntactically, processor definitions look 
like function definitions (except for the keyword p ro cesso r following the processor 
name), therefore, the following description of the function concept also applies for 
processors.

•  A set of domain definitions which define the type of the objects manipulated with by 
the functions. Terms denoting certain groups of domain definitions are introduced in 
order to classify them logically. We have the ASq domains denoting the representation 
of the concrete syntax, the A5i domains denoting the abstract syntax of SDL and the 
sets of domains Diet and Entity-dict denoting the “internal” utility domains (semantic 
domains) of the Static- and Dynamic Semantics respectively. In this section, we will 
often use “value” as a synonym for object and “type” as a synonym for domain.

• A set of global constant definitions. In the FD, only two such definitions are present. 
They are defined in section 3.13 of the Static Semantics. They are not essential for 
understanding the FD.

Definitions may be specified in any order and names introduced in definitions may be used 
before they textually are defined.

5.2 Function D efinitions
A function definition consists of three parts:

1. The heading starts with the function name and is followed by one or two formal pa
rameter lists. Each formal parameter list is enclosed in parenthesis. There is no formal 
significance in dividing the parameters between two lists. Often some parameters are 
put into a separate (second) parameter list if they are of secondary importance for the 
evaluation. For instance in the case of the semantic domains which often are used by 
the functions and supplied in a separate parameter list.

2. The body of the function which can either be an expression or a sequence of statements. 
A function does not have to deliver any result (see below).

3. The type clause specifying the type of the formal parameters and the type of the 
result. First, the type of the first parameter list is specified, then the type of the 
second parameter list (if any) separated by the first parameter list by an arrow (—+ or 
=>), then another arrow and then the result.

Example

/(«.*)(<*) i

1 /* expression */

type : DomX D om Y  —► DomZ —► DomW

In this example we have:

/  is the name of the function
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a, b, d are formal parameters, a and b are contained in the first formal param
eter list and d is contained in the second parameter list. The type of a
is DomX , the type of b is Dom Y  and the type of d is DomZ. The type
of the result is Dom W. The domains DomX, Dom Y, DomZ and Dom W 
must be defined in some domain definitions.

If the formal parameters or the result are not used in accordance with the type clause, there 
is an error in the Meta-IV specification. In the example above informal Meta-IV text (the 
text enclosed in /*  * /) is used to denote some Meta-IV expression which for reasons of 
economy in space has been left out. Informal Meta-IV text is similar to informal text in
SDL and it is extensively used in the examples of this section.
Normally, a distinction is made between ap p lica tiv e  and im p e ra tiv e  functions. Applica
tive functions are functions which do not refer to parts of the global state (variables), that 
is, the result of such functions are only depending on the value of the applied actual param
eters. The body of an applicative function is restricted to be an expression as statements 
impose some change of state. Applicative functions must always deliver a result. Imperative 
functions are functions which refer to or even change- the global state (functions with side 
effects). If a function is imperative, it must be reflected in the type clause by using =£• 
instead of —» when specifying the result.
T hat is:

f (a ,b )(d )  i

1 /* expression referring to the global state or sequence of statements */

type : DomX D om Y  —► DomZ  =>• DomW

In the FD, the Static Semantics and the creation of the internal Domain Entity-dict in the 
Dynamic Semantics are applicative.

5.3 Variable D efinitions
Global variables are defined at the outermost level in processor definitions. They are vis
ible to all functions used by the processor defining the variable even though the functions 
normally are defined outside processor definitions. However, a function which is shared by 
two or more processors is not allowed to access variables. When several instances of a given 
processor exist, several instances of variables defined by the processor also exist. (There are 
no shared variables).
Variable definitions are introduced by specifying the keyword del followed by a list of variable 
names, optionally followed by an initial expression and ending with the type of the variable.

Example

del v l :=  5 type Intg\ 
del v2 type DomD’,

Here we have defined two variables v l and v2, v l is of type integer and is initialized to 5. v2 
is of type DomD. Note that variables can always be distinguished syntactically from other 
names since they are not italicised. An alternative syntax of variable definitions is:

del v l := 5 type Intg , 
v2 type DomD ;

The value associated to variables is accessed by using the contents operator which is the 
keyword c.
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Example

/ ( )  i

1 c v l -f c v2 

type : () => Intg

5.4 D om ains

Domains are usually defined in the beginning of a document. Domain names can be dis
tinguished syntactically from other names since the first letter is in capital. A domain is 
defined by specifying the domain name followed by a symbol (or by a “= ” in the case 
of a synonym name as explained in section 5.4.1) and then followed by a domain expression 
reflecting its properties (for an introduction to the domain notation see also §1.5.1 of Z.100).

Example

8 Output-nodei :: Signal-identifier
[Expressioni]*
[Signal - destination  ]
Direct-viai

This example is taken from the abstract syntax of SDL (for clarity, all the names of ASi are 
suffixed by a ‘Y ’ in the FD). It defines a n am ed  tre e , that is, a record-like datatype where 
the name of the recordtype is Output-nodex and i t ’s fields are of the type Signal-identifierx, 
[Expression]*, [Signal-destination] and Direct-viax.
The most important operator for named trees is the m k- (make) operator which is used for 
composing and decomposing tree objects (i.e. record values).
For example, if a name sigid denotes an object of domain Signal-identifier, a name exprlist 
denotes an object of domain [Expressioni]*, a name dest denotes an object of type [Signal- 
destinationi] and a name via denotes an object of domain Direct-viax then an object of 
domain Output-nodei is constructed by writing:

m k -Output-nodex (sigid, exprlist, dest, via)

which can be used in Meta-IV expressions. Note that the order in which the arguments are 
specified in the m k- operator is significant. This applies for function calls as well. 
Similarly, if we have an object, named outputnode , of domain Output-nodex and we want to 
access the fields, we can introduce names for the fields by decomposing it (the same names 
as above are chosen here):

let m k-Output-nodex(sigid, exprlist, dest, via) — outputnode in 
/* some expression using the fields */

By means of the le t construct we have introduced names to denote the fields in the object 
outputnode. Using the le t construct is the general way of introducing names for objects 
(not only in combination with the m k- operator). The le t construct is explained further in 
section 5.5
If some of the fields are not used in the expression we can omit the corresponding names in 
the decomposition. For instance, if sigid is not used in the expression, we can write:

let m k -Output-nodex[, exprlist, dest, via) =  outputnode in 
/* some expression using exprlist and dest */

If we only want to use the Signal-Identifierx in the expression we can alternatively use the 
field select operator s-:
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le t sigid =  s-Signal- Identifier (outputnode) in 
/* some expression using sigid */

The field select operator can only be used if the field can be uniquely determined by men
tioning the domain name.
We can choose to decompose (i.e. introduce names for the contained elements) the formal 
parameters in the function head instead of in the body if we find it more readable. That is

int-create-node(vn\L-Create-request-nodex(pid, exprl))(dict) =

1 /* body of int-create-node */

type : Create-request-nodei —► Entity-dict =>

is equivalent to

int-create -node (createnode) (diet) =

1 (let m k- Create -request -nodex(pid, exprl) =  createnode in
2 /* body of int-create-node */)

type : Create-request-nodex —* Entity-dict =>

Note that in this example we also have a second parameter list containing the formal pa
rameter diet of the domain Entity-dict.

5.4.1 S ynonym s

Using the field select operator is only possible if the field in the domain definition is rep
resented by a name. If for instance we want to use the select operator on the second field 
of objects of the domain Output-nodei, we must define Output-nodex in a slightly different 
way:

9 Output-nodex :: Signal-identifierx
Valuelist
[Signal-destination]
Direct-Viax

10 Valuelist = [Expressionx]*

This Output-nodex is exactly the same domain as the Output-nodex previously defined. The 
only difference is that we have given the second field a name i.e. we have defined a synonym 
or shorthand for the domain expression [Expressionx]* (the “= ” symbol is used when defining 
synonyms). Often there are other reasons for defining synonyms such as if the same domain 
expression is used at several places or for the sake of readability. For instance, in the 
abstract syntax of SDL, we have Channel-namei , Block-namex, Process-namex etc. which 
all are synonyms for the domain Namex, but which carries information to the reader about 
the objects represented by the various Namexs being of certain entity classes. Another 
typical case is where we have a long list of alternatives. For instance, the abstract syntax 
for Expressionx is
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11 Expressionx — Ground-expressionx \
Active-expressionx

12 Active-expressionx — Variable-accessx |
Conditional-expressionx |
Operator-applicationx \
Imperative - operatorx

13 Imperative-operatorx =  Now-expressionx |
Pid-expressionx |
View-expressionx |
Timer-active-expressionx

which better reflects the grouping of the various kinds of expressions than

14 Expressionx =  Ground-expressionx \
Variable-accessx |
Conditional-expressionx |
Operator-applicationx |
Now-expressionx |
Pid-expressionx |
View-expressionx |
Timer-active-expressionx

5.4.2 U nnam ed Trees

In some cases, we don’t need to name a tree definition. U nnam ed trees are extensively 
used in the FD, but they are anonymous since they often don’t have to be defined explicitly.

Example

The first line in the definition of Entity-dict in the Dynamic Semantics is:

15 Entity-dict =  (Identifieri Entityclass) Entitydescr

which expresses that the Entity-dict includes a mapping from the two domains Identifierx and 
Entityclass into some descriptor (Entitydescr). These two domains constitute an unnamed 
tree. If a named tree should be used, we would have to rewrite the definition into:

16 Entity-dict — Pair m* Entity descr
17 Pair :: Identifier Entityclass

Example

Reachability in the dynamic semantics is defined as

18 Reachability =  (Process-identifieri | ENVIRONMENT)
Signal-identifierx-set Path

Here we have defined a synonym for an unnamed tree containing three fields:

1. A field which can contain either a process identifier or the quotation literal ENVIRON
MENT

2. A field which contains a set of signal identifiers

3. A field of the domain Path

As shown, parenthesis are in the domain definitions both used for defining unnamed trees 
and for grouping alternatives.
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Example

The function make-formal-parameters in the Dynamic Semantics is defined as:

make-formal-parameters(parml, level) =

1 /* The body, which is not shown here */

type : Procedure-formal-parameter]* Qualifier —+ FormparmD* Entity-dict

This function returns two objects- FormparmD* and Entity-dict which means that it in fact 
returns an unnamed tree consisting of two objects.

The m k- operator cannot be used on unnamed trees. Composition and decomposition of 
these is obtained by enclosing the fields in parenthesis.

Example

composition of a Reachability object where a denotes a Process-Identifieri, b denotes a signal 
identifier set and d denotes a Path:

(a, b,d)

if, for the sake of readability, we want to denote the object by a name (it is easier to deal 
with a name than with (a,b,d), especially if (a,b,d) is used several times in an expression) 
then we can again use the le t construct, that is, the expression:

/* some expression using “(a,b,d)” */

is equivalent to

(let reach =  (a, fe, d) in 
/* some expression using “reach” */)

The le t construct is also used for decomposing objects of unnamed trees. For example a 
decomposition of a Reachability object named reach where we for some reason don’t use the 
signal identifier set is:

le t ( a , , d) = reach in
/* some expression using a and d */

When we call a function, it is usual to decompose unnamed trees which are the result of the 
function call i.e.:

let (parmlist, pathlist) = make-formal-parameters(..., ...)in
/* some expression using the function results parmlist and pathlist */

is equivalent to:

let parminf = make-formal-parameters( ... , ...) in 
let (parmlist, pathlist) =  parminf in
/* some expression using the function results parmlist and pathlist */

5 .4 .3  B ran c h in g  C o n s tru c ts

In some cases, it must be possible to distinguish a number of tree objects from each other. 
For instance, objects of the Imperative-operator] synonym previously defined is either a
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Now-expression], a Pid-expression], a View-expression] etc. W ith an Imperative-operator] 
in hand, we must first determine the type of the Imperative-operator] before we can evaluate 
it. For that purpose, we can use the case expression/statement. For instance, the function 
which evaluates the imperative SDL expressions could look like:

eval-imperative-expression(expr) =

1 cases expr:
2 (mk-Now-expression^ )
3 -» eval-now-expressionQ,
4 m k- View-expression] (vid, pidexpr)
5 -♦ eval-view-expression(vid, pidexpr),
6 mk-Timer-active-expression](tid, actlist)
7 -» eval-timer-expression(tid, actlist),
8 T -* eval-pid-expression(expr))

type : Imperative-operator] =>

Note that we branch on the ty p e  of the Imperative-operator- not on the actual value of 
the fields in the tree. T  denotes an “otherwise” clause which is used here because the final 
alternative in Imperative-operator] (Pid-expressioni)  is a synonym representing four other 
alternatives which we don’t want to distinguish here. The evaluation of these alternatives 
is deferred to eval-pid-expression.
Another way of doing it is by using the boolean operator is- which returns t r u e  if the object 
given as argument is of a certain domain, e.g.

eval-imperative-expression(expr) =

1 i f is-Now-expression](expr) then
2 eval-now-expression()
3 else
4 i f h-View-expression](expr) then
5 eval-view-expression^- Variable-identifier](expr), s-Expression](expr))
6 else
7 if  is-Timer-active-expression](expr) then
8 (let nik-Timer-active-expression](tid, actlist) — expr in
9 eval-timer-expression(tid, actlist))

10 else
11 eval-pid-expression(expr)

type : Imperative-operator] =>

Note th a t both access to the fields by decomposition (line 8) and access to the fields by 
means of the field selection operator (line 5) are illustrated here.
As in most other programming- and specification languages, it is required that the alterna
tives in the case expression/statement are “constant” (as they are when we branch on the 
tree type) which means that if the alternatives are of a dynamic nature (say variables or for
mal parameters) the if-then-else construct must be used. However, there is another notation 
for the if-then-else construct, the so-called Mc-Carthy construct which is more convenient if 
there are many alternatives:
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eval-imperative-expression( expr) =

1 (is-Now - expressioni (expr)
2 -> eval-now-expression(),
3 is - View-expressioni(expr)
4 -» (let mk- View-expressioni(vid,pidexpr) =  expr in
5 eval-view -expression (vid, pidexpr)),
6 ’m-Timer-expressioni (expr)
7 -» (let m k -Timer-expression\(tid, actlist) =  expr in
8 eval-timer-expression (tid, actlist)),
9 T -* eval-pid-expression(expr))

type : Imperative-operatori =£■

Note that, some FD function names also start with “is-” . These cases can easily be distin
guished from the “is-” operator since they are not in boldface.

5 .4 .4  E le m e n ta ry  d om ains

Meta-IV provides a number of predefined elementary domains. Their notation and the 
associated operators are described in the following.

5 .4 .4 .1 B oolean

The Meta-IV name Bool denotes the domain of tru th  values, i.e. the set { true ,fa lse}

Operators for Boolean:

Notation type operation
“1 Bool —* Bool negate
A Bool —► Bool and
V Bool —► Bool or
D Bool —► Bool imply
= Bool Bool —* Bool equal

Bool Bool —y Bool different

Example

In terms of Meta-IV expressions, the properties of the Bool operators A , V and D can 
be illustrated as follows:

-ia =  (if a th en  false else true) 
a V b =  (if a th en  tru e  else 6) 
a A b = (if u th en  b else false) 
a D b =  (if a th en  b else true)

5 .4 .4 .2  In te g e r

Three domain names are predefined for the integer values:

• The name Intg denotes the domain of all integer values, i.e. the set {... -2,-l,0,l,2,...}

• The name No denotes the domain of non-negative integer values, i.e. the set {0,1,2,...}

•  The name Ni denotes the domain of positive integer values, i.e. the set {1,2,...}
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Operators for Integer:

Notation type operation
- Intg Intg negate
- Intg Intg —► Intg subtract
+ Intg Intg -♦ Intg add
* Intg Intg —► Intg multiply
/ Intg Intg —► Intg integer divide
m o d No Ni --► No modulus
= Intg Intg --► Bool equal
* Intg Intg --► Bool different
< Intg Intg Bool less than
< Intg Intg Bool less than or equal
> Intg Intg Bool greater than
> Intg Intg --► Bool greater than or equal

5.4.4.3 C h a ra c te r

The Meta-IV name Char denotes the domain of ASCII character values. For the printable 
characters, there exist object representations which are enclosed in quotation marks, e.g. 

a , a ,

Operators for Character:

Notation type operation
— Char Char —► Bool equal
* Char Char —> Bool different
< Char Char —► Bool less than
< Char Char —> Bool less than or equal
> Char Char —+ Bool greater than
> Char Char —* Bool greater than or equal

The relational operators are applied on the associated ASCII numerical values.

For the sake of readability, objects of the domain Char+ may be represented by a sequence 
of characters enclosed in quotation marks e.g ”abc” is the same as (”a” ,”b” ,”c”) (see section 
5.4.6)

5.4 .4 .4  Q u o ta tio n

The Meta-IV name Quot denotes the domain of quotations. They are distinct elementary 
objects and they are represented as any bold-face sequence of uppercase letters and digits 
e.q. ENVIRONMENT, REVERSE.

Operators for Quotations:

Notation type operation
= Quot Quot —*■ Bool equal

Quot Quot —► Bool different

As opposed to other domains, objects of Quot may occur in domain definitions when only 
certain object(s) of Quot are possible in the given context, for example, in the abstract 
syntax of Z.100, Originating-blocki is defined to be

1 Originating-blocki =  Block-identifieri | ENVIRONMENT

alternatively, Originating-blocki could have been defined using Quot:
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2 Originating-blocki = Block-identifieri \ Quot

however, using ENVIRONMENT in the domain definition is more precise, since this object 
is the only Quot value possible in that context.

5 .4 .4 .5  T oken

The Meta-IV name Token denotes the domain of tokens. This domain can be considered as 
consisting of a potentially infinite set of distinct elementary objects for which no represen
tations are required.

Operators for Tokens:

Notation type operation

'H
. 

II Token Token —► Bool 
Token Token —* Bool

equal
different

Example

Namei in the abstract syntax of Z.100 is defined to be

1 Name x :: Token

The only property needed for Namex s during interpretation is equality. A Namex therefore 
consist of a Token value (the actual spelling of names is irrelevant).

5 .4 .4 .6 Ellipsis

The Ellipsis domain (represented by ...) denotes an unspecified construct. It is used in 
domain definitions or in expressions

• whenever the actual domain or expression is of no importance for the semantics or

•  whenever the elaboration of the domain or expression is outside the scope of the 
specification.

Example

Informal-textx in the abstract syntax of Z.100 is defined to be

1 Informal-textx :: ...

Informal-textx cannot be interpreted using Meta-IV. Informal-textx therefore contains some 
further unspecified object.

5.4 .5  S et D om ains

A set domain is constructed by postfixing the element domain by the keyword -se t (the 
dash is significant). For example

2 State-nodex :: State-namei
Save-signals etx 
Input-nodei -set

3 Save-signalset :: Signal-Identifierx-set

expresses that objects of the domain State-nodex consist of a state name, a save signalset, 
which contains a set of signal identifiers, and a set of Input-nodes. Set values can be
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constructed by using an explicit set constructor which is an expression list enclosed by 
braces, i.e.

{1 ,3 ,5 ,1}

denotes an object of the domain Intg-se t and it contains the three Intg values 1,3,5. A more 
usual form is the so-called implicit set constructor where the set includes all those elements 
which satisfy a certain condition (predicate). For example

{t E Intg | 0 < i < 5 V i m od 2 =  0}

defines the set

{0 ,1 ,2 ,3 ,4 ,5 ,6 ,8 ,10 ,12 ,14 ,16 ,...}

It reads: The set of those values on the left hand side of the vertical bar (possibly qualified 
by a value or by a domain) for which the expression on the right hand side of the vertical 
bar holds.

The empty set is denoted by {}.

In the following explanation of the semantics of the operators on sets, s denotes the set 
{1,3,5}:

G

u 

n 

\

c  

c

c a rd  

u n io n

= , ^

Example

In terms of Meta-IV expressions, the properties of the set operators £ ,U ,D ,C ,C ,ca rd  
and u n io n  can be illustrated as follows:

Membership operator.
Test whether a given element of the element domain is contained in a
set, that is, 1 E s =  t r u e  and 2 E s =  false.
Test whether a given element of the element domain is excluded in a
set, that is, 1 ^  s =  false and 2 ^  s = t ru e .

Union operator.
Join two sets, that is, {2,3} U s EE {1,2,3,5} and s U s E= s.
Intersection operator. Return the intersection of two sets, that is, {2,3} 
D s = {3} and {} D s = {}.

Complement operator.
Exclude a given set of values from a set, that is, s\{ l,2}  =  {3,5} and 
{1,2}\„ =  {2}.
Proper subset operator.
Test whether the elements of a given set are contained in a set, that is, 
{1,5} C 8 = t ru e , s C {1,5} =  false and s C s = false.
Subset operator.
Test whether the elements of a given set are contained in or equal to a 
set, that is, {1,5} C s = t ru e , s C {1,5} =  false and s C s = t ru e .
Cardinality operator.
Return the number of elements in a set, that is, c a rd  s = 3 and c a rd
{} =  o.
Distributed union operator.
The argument is a set of sets and the result is the union of all the sets 
contained in the argument, that is, u n io n  {s,{5,6},{1,5,8}} i « U  {5,6} 
U {1,5,8} =  {1,3,5,6,8}.
Test for equality and inequality of sets.
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element ^  s \  — (->(element £ s i)) 
s i  U s2 =  {element \ element £ s i  V element £ s2} 
s i  D s2 =  {element | element £ s 1 A element £ s2} 
s i  \  s2 =  {element | element £ s i  A element s2} 
s i  C s2 = (yelement £ sl)(element £ s2) A s i  ^  s2 
s i  C s2 = (Velement £ sl)(element £ s2) 
c a rd  s i  =  (if s i  =  {} 

then  0
else (let element € s i  in

1 +  card (s i \  {element}))) 
union s i  =  {element | (3set £ sl)(element £ set)}

The quantifiers (V and 3) are explained in section 5.6

5 .4 .6  L ist D o m a in s

A list or tuple domain is constructed by postfixing the element domain by a in the case 
of a possibly empty list and otherwise by a “+”

Example

4 Signal-definitioni :: Signal-namei
Sort -reference-identifieri *

This domain definition expresses that a signal definition consists of a signal name and a 
possibly empty list of sort identifiers.

A list value can be constructed by using an explicit tuple constructor. This is an expression 
list enclosed in angular brackets, i.e.

(11.12.11.13.14)

denotes an object of the domain Intg+ (or Intg*) and it contains 5 ordered elements.

The empty list is denoted by ().

There are also implicit list constructors similar to those for sets. For instance, in the function 
int-output-node in the Dynamic Semantic we construct a tuple (vail) which contains the 
values of all the actual parameters (exprl) in an output node:

let vail = (eval-expression(exprl[i])(dict) | 1 < * < len exprl) in

which corresponds to an explicit enumeration of all the elements in the list:

let vail =  (eval-expression(exprl[l])(dict), 
eval-expression(exprl[2])(dict), 
eval-expre s sion( exprl [3]) (diet),
•••) *n

Note that the tuple brackets (( and )) have a different shape than the relational operators 
< and >.

In the following explanation of the semantics of the operators on lists I denotes the list
(11.12.11.13.14):

h d  Return the first element (the head of a list). That is, h d  / =  11. The
argument to h d  must not be an empty list (()).
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t l

M

len
elem s

in d

cone

=1 i1

Return the list where the first element has been removed (return the 
tail). That is t l  / =  (12,11,13,14).

Return element number i in a list. That is, /[3] =  11 and /[5] =  14. The 
index value must not be less than 1 or greater that the length of the 
list.

Return the length of a list. That is, len  1 = 5 .
Return the set which consist of those elements which are in a  list. That 
is, e lem s 1 =  {11,12,13,14}.
Return the set of integer objects which are the legal index values for a 
list. That is, in d  I =  {1,2,3,4,5}.
Concatenate two lists. That is I /'~* (0,1) =  (11,12,11,13,14,0,1).
Concatenate all those list which are elements of the list given as argu
ment. That is cone ((0,7),1,(9)) =  (0,7,11,12,11,13,14,9)
Test for equality and inequality of lists.

Example

In terms of Meta-IV expressions, the properties of the list operators hd , tl, in d , elem s and 
cone can be illustrated as follows:

hdZ =  (if Z =  () then  undefined else /[l]) 
tl  I — (Z[i] | 2 < i <  len Z) 
ind  I =  {t | 1 < i < len 1} 
elems I — {/[t] | % £ ind 1}
cone I = (if I = () then  () else hd I ^  conctl I)

5.4 .7  M ap  D om ains

A map Domain (i.e. a table) is constructed by specifying the domain of entry objects, 
followed by the is* operator and followed by the domain of the objects contained in the 
mapping (the ra n g e  values)

Example

5 Entity-dict = (Identifieri Entityclass) Entity descr U 
ENVIRONMENT s* Reachability-set U 
EXPIREDF Is-expired U 
PIDSORT 7s*Identifieri U 
NULLVALUE Identifieri U 
TRUEVALUE sr*Identifieri U 
FALSEVALUE stldentifieri

The full definition of the Entity-dict mapping is given above. It shows how the ^o p era to r 
is used and also that co m p o site  mappings can be constructed by using the domain merge 
operator U , that is, given a mapping of domain Entity-dict:

• we lookup in the mapping by applying an object of the unnamed tree (Identifieri 
Entityclass) and the result is an object of domain Entitydescr or

•  we apply the Quot value ENVIRONMENT and the result is an object of domain 
Reachability-se t or

•  we apply the Quot value EXPIREDF and the result is an object of domain Is-expired 
or

•  we apply the Quot value PIDSORT and the result is an object of domain Identifieri or

•  we apply the Quot value NULLVALUE and the result is an object of domain Identifieri 
or
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•  we apply the Quot value TRUEVALUE and the result is an object of domain Identifieri 
or

• we apply the Quot value FALSEVALUE and the result is an object of domain Identifieri

We can only apply a value if it previously has been put into the mapping object, as opposed 
to functions where the correspondence between argument values and result values are fixed 
and defined when the function is defined.

Mapping values can be constructed by using an explicit mapping constructor which is a list 
of pairs of entry values and range values enclosed in square brackets, i.e.

[1 D,
2 t- AA,
4 i-* BB,
9 k  ABC,
5 ~  XYZ]

denotes a mapping value of domain Intg is* Quot.

Also implicit mappings may be constructed. For example the implicit mapping 

[ a H- * &| a € - / Vi Aa * a  =  &] 

is equivalent to the infinite mapping

[1 - 1,
2 h  4,
3 i-» 9,
 ]

In the following explanation of the semantics of the operators on mappings m  denotes the 
first of the mapping specified explicitly above:

m(entryvalue) Return a value from a mapping, that is, m (l) =  D and m(9) =  ABC.

+  Overwrite a mapping with another mapping. This operator is not com
mutative, that is

ro +  [O h  XX, 1 — B] =

[0 i-> XX,1 ^  B,2 i—► AA,4 BB, 9 ABC,5 XYZ] 

whereas

[0 i—► XX, 1 i—> B] +  m =

[0 i—► XX,1 D,2 (-* AA,4 i-» BB, 9 t-+ ABC,5 t -  XYZ]

\  Exclude a given set of entry values from a mapping, 1;hat is

m \{l,2,3} is

[4 BB, 9 i-» ABC,5 ^  XYZ]

d o m  Return the set which contains exactly those entry values which are
present in a given mapping, that is

d o m  m  =  {1,2,4,5,9}

rn g  Return the set which contains exactly those range values which are
contained in a given mapping, that is

rn g  m =  {D,AA,BB,ABC,XYZ}

=  , ^  Test for equality and inequality of two mappings.
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m erge From the given set of mappings, return the mapping which is con
structed by merging all the mappings contained in the set, that is

{ m , [ 0 h -  W E ] , [10 h -  D ]}  =
[0 WE,10 i—► D,1 D,2 i—► AA,4 (-♦ BB, 9 >-► ABC,5 i-* XYZ]

If any of the mappings contained in the set have overlapping entries, 
an arbitrary value among the possible values is chosen.

The empty mapping is denoted by [] (two square brackets very close to each other) 

Example

In terms of Meta-IV expressions, the properties of the mapping operators \ ,  -f and m erge  
can be illustrated as follows:

m l \  i  =  [ a n + 6 | a €  dom m l \ s  A m l(a) =  b]
m l +  m2 =  [a m 6 | (o € dom m2 A m2(a) = b) V (a G dom m l \  dom m2 A m l(a) =  b)] 
merge m l =  (if m l = {} '

then |]
else (let element € m l in

element +  merge m l \  {element}))

5.4.8 P id  D om ains

A Pid domain (corresponding to the Pid sort in SDL) is constructed by means of the II 
symbol. Optionally it may be qualified by the processor type to indicate which kind of Pid 
values the domain denotes, for example

6 Discard-Signals :: II(input-port)

The Discard-Signals domain (defined in the Dynamic Semantics) contains Pid objects qual
ified by the processor type input-port. The Meta-IV Pid values should not be confused with 
the SDL Pid values which in SDL are Ground-term^s, i.e. The domain of the SDL Pid values 
are defined in the Dynamic Semantics to be:

7 Pid-Value = Value
8 Value =  Ground-term\

Meta-IV Pid values are created when applying the s ta r t  statement/expression. It corre
sponds to the create request action in SDL. For example, when the system  processor creates 
an instance of a timer processor with the actual parameter timer/, it looks like:

example

start tim er(tim erf)

When the start construct is used as an expression, it creates a processor instance and returns 
the Meta-IV Pid value of this instance (corresponding to the OFFSPRING value in SDL). 
For example when the sdl-process processor starts its input-port processor:

start input-port(selfp, dic f (E X P IR E D ))

an instance of the input-port processor is created and the resulting Meta-IV Pid value is used 
by the sdl-process for identifying the input-port. The parameters selfp and dict(EXPIRED) 
are given to the created instance.

Communication is performed by the synchronous communication primitives inp u t and o u t
put. In the output construct, we can either choose to communicate with a specific processor

Fascicle X .3 — Rec. Z.100 — A nnex F.1 23



instance or we can choose to communicate with an unspecified instance of a specific processor 
type.

Example

output nik-Some-tree(somevalue1 someothervalue,...) to p

where p either denotes a Pid value or p is the name of a processor type. The values sent by 
the processor are usually encapsulated in a named tree object (of some co m m u n ica tio n  
domain) and such trees can therefore be equated to the signal concept in SDL, i.e. Some-tree 
can be regarded as a signal.

In the input construct, we both specify the communication object we want to receive and 
the action which should be taken when the object is received. In addition, we may specify a 
name which after the reception of the object denotes the Pid value of the sending processor 
(corresponding to SENDER in SDL) or which restricts the possible senders i.e.

input mk-Some-tree^a, 6, d) from p
=> /* some statements or an expression */

After reception of Some-tree, a,b and d will denote the values conveyed by Some-tree and 
for p there are three possible interpretations:

•  If p is a processor type name then the input should be received from an instance of 
that particular processor type

•  If p is a name which is not already defined then this occurence is the defining occurence 
of the name and it is visible in the expression or statements which follow the input 
clause. It denotes the Meta-IV Pid value of the sender.

• If p is an expression then it must be of the type II and the input will be received from 
the processor instance denoted by the expression.

If one of several inputs may be received, a number of input constructs separated by comma 
are specified and the number is enclosed by braces, i.e.

{input mk-Some-tree(a, b, d) from p
= / *  some statements or an expression */, 

input mk-Some-other-tree(a, 6, d) from p
=> /* some statements or an expression */}

In some cases we may want to specify that either an input or an output should be made, 
depending on which communication first is possible (not applicable in SDL due to the fact 
th a t in SDL communication is asynchronous). In such cases, output constructs are included 
in the set of communication events, i.e.

{input mk-Some-tree(a, b, d) from p
=> /* some statements or an expression */,

input mk-Some-other-tree(a, b, d) from p 
=> /* some statements or an expression */,

output mk-Something(/* expression */, /* expression */) to pi}

Often the cycle construct is used in conjunction with input and output, if the communication 
should be repeated, i.e.
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cycle {input m k -Some-tree(a, b, d) from p
=$■ /* some statements or an expression */,

in p u t m k-Some-other-tree(a, b, d) from p 
=> /* some statements or an expression */,

o u tp u t m k-Something(/* expression */»/* expression */) to pt}

which means that after a communication event, the processor instance will take the appro
priate action and then start waiting for a new event to happen.

5.4.9 R efe ren ce  D om ains

When a Meta-IV variable is declared by

del v type Intg;

a Meta-IV storage location is allocated and the variable (v) will denote a reference to the 
location. When the content of the location is accessed, the c operator (contents operator) 
is used as shown earlier. When the variable is used without the contents operator the result 
is a value of the r e f  domain, that is, a reference to the storage location, r e f  domains are 
specified by using the keyword ref, followed by the appropriate domain. For example

9 VarD :: Variable-identifieri Sort-reference-identifieri
[REVEALED] re f Stg

The variable descriptor includes a reference to the domain Stg. The VarD descriptor is 
defined in the Dynamic Semantics and it is described further in the associated annotations.

5 .4.10 O ptioned D om ains

The square brackets which are extensively used in the domain definitions mean optionality. 

Example

10 Signal-definitioni :: Signal-namei
Sort-reference-identifieri*
[Signal-refinementi]

expresses that in objects of the tree Signal-definitioni, the object of the domain Signal- 
refinement may or may not be present. If it is not present, the field will contain the type-less 
value n il

Example

(let ink-Signal-definitioni(name, sort, refinement) — /* some Signal-definitioni object */ in 
if  refinement = nil then  

/* some actions */

else
(let m k-Signal-refinementi (...) = refinement in 
/* some other actions using the signal refinement */))

5.5 The let and d ef C onstructs
As shown earlier,*the le t construct can be used for composing and decomposing objects. The 
le t construct is more generally used whenever we want some name to denote some specific 
object (often it is just in order to avoid too complicated and unreadable expressions). The 
names occuring on the left hand side of the equal sign in the le t construct are the defining 
occurences (except for domain names which must always be defined somewhere in a domain
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definition). An introduced name can also be used on the right hand side of the equal sign (the 
name is then recursively defined) and in the expression which follows the le t construct. In 
the example below, namel is visible (i.e. may be used) in /* expression 1*/, /* expressions*/,  
/*  expressions* /  and /*  expression^* / ,  name2 is visible in /* expression^*/ ,  /*  expressions*/  
and /*  expression^*/  and nameS is visible in /*  expressions*/  and /*  expression^* / .  For the 
sake of restricting the visibility of the names introduced by a le t, the let construct is enclosed 
by parenthesis. In the example above a signal refinement constitutes an expression and it 
starts with left parenthesis because a le t construct is used.
There are two ways of specifying a sequence of lets:

let nam el =  /* expressionl */ in  
let name2 = f* expression2 */ in 
let name 3 = /* expressions */ in 
/* expression4 */

or

le t nam el =  /* expressionl */, 
name2 =  /* expression2 */, 
name3 =  /* expressions */ in  

/* expression4 */

The first form showing three le ts  is usually used in the FD when the order is im portant,
that is if f*  expre$sion2*/  uses namel and if f*  expressions* j  uses name2 whereas the second
form is used when the various le ts  are independent.
There are several different forms of a le t construct. We have already seen how it can be 
used for decomposing objects. Other relevant forms are:

let name £ setornamel in
/* some expression using name */
let name be s.t. /* condition using name */ in
/* some expression using name */
let name £ setorname2 be s.t. /* condition using name */ in  
/* some expression using name */ 
let name(parameters) =  /* function body */ in 
/* some expression applying name */

The first form reads: Extract an arbitrary value belonging to the set or belonging to the 
domain denoted by setornamel and denote the value by name.
The second form reads: Construct a value, i.e. let name b e  such th a t the specified condition 
holds for the value.
The third form is a combination of the two previous forms, where both restrictions apply. 
If no such value exists, the specification is erroneous.
The fourth form reads: Construct a local function (called name) which has some formal 
parameters (parameters) and a body.

Example

Define the square root of 3:

let r £ Real be s.t. r > 0 A r * r  =  3 i n

Example

Define the factorial function where n is the formal parameter:
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let fact(n) =  if  n < 0 then  error else if  n =  0 then  1 else n * fact(n  — 1) in

When defining a name for an object which is constructed by referring to the global state 
(i.e. if the name is defined in terms of an imperative expression) the d e f  notation is used 
instead of the le t notation, that is, the keyword le t is replaced by the keyword def, the 
equal symbol is replaced by a colon and the keyword in  is replaced by a semicolon (because 
the d e f  construct is used in statement context, see section 5.7). For instance, if we want to 
denote a created processor instance value by a name, we write:

(def pid : s ta rt input-port{somevalue);
/* some statements using the pid value */)

or if we want to decompose the result of an imperative function we write:

(d e fm k -Some-tree(a, b) : some-imperative-function{...)\
/* some statements using a and b */)

There also exist a d e f  version of the “be such th a t” construct:

(def r  £ Real s.t. r > 0 A r * r  =  cv l ;
/* some statements using r */)

where we use d e f  because we use a variable (v l) in the evaluation of r. It reads: Define a 
Real value r  such th a t the square of r equals the contents of the variable v l.

It should be noted that the names introduced in le t and d e f  are n o t variables. They are 
names representing a specific value and it is not allowed to assign a new value to such names.

5.6 Q uantification
Meta-IV also provides the mathematical quantifiers- the u n iv e rsa l quantifier represented 
by the symbol V, the ex is te n tia l quantifier represented by the symbol 3 and the u n iq u e  
quantifier represented by the symbol 3!. These quantifiers may be used in q u an tified  
expressions which return the boolean value true if a specified condition (a p re d ic a te )  on 
an object is satisfied.

Example

identifiers-defined-on-system-level(p) =

1 (Wnik-Identifieri(q,)  £ p)(len q =  1) 

type : Identifieri -set —► Bool

This function returns true if and only if for all identifiers (Identifieri) in the set p it holds 
that the length of its qualifier (q) is equal to 1 (the second pair of parenthesis encloses the 
predicate expression).

Example

one-identifier-defined-on-system-level(p) —

1 (3m k-Identifieri(q1) £ p)(len q = 1) 

type : Identifieri -set —► Bool

This function returns true if and only if there exist at least one identifier (Identifieri) in the 
set p for which the length of its qualifier (5) is equal to 1.
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Example

exactly-one-identifier-defined-on-system-level{p) =

1 (3!mk-Identifieri(q , ) £ jp)(len q = 1) 

type : Identifieri-set —* Bool

This function returns true if and only if there exist exactly one (Identifieri) in the set p for 
which the length of its qualifier (g) is equal to 1.

Alternatively, we can choose to decompose the identifier in the predicate expression instead 
of in the quantification, that is

identifiers-defined-on-system-level(p) =

1 ( V  £ p)
2 ((let m k-Identifieri(q ,)  =  p' in
3 len q =  1))

type : Identifieri -set —► Bool

Note that apostrophe and dash are legal characters in Meta-IV names.

5.7 A uxiliary Statem ents
•  Identity statement

The keyword I  indicates an empty statement i.e. a statement which doesn’t do any
thing.

•  Undefined statement/expression
The keyword u n d efin ed  indicates that no semantics can be given.

• Return statement
The keyword r e tu r n  followed by an expression terminates the elaboration of an im
perative function and the result is the given expression.

• Error statement/expression.
The keyword e r ro r  indicates in the FD a dynamic SDL error.

•  Assign statement.
Like in SDL. The contents operator (c) is not used when assigning to variables.

•  For and while statement.
Same (well-known) concept as in CHILL. The statements to be repeated are enclosed 
in parenthesis.

• Trap and exit statement/expression.
Trap (handle) any exits caused by an exit statement/expression. If an argument is 
given to the exit statement, it is only trapped if the expression given matches the value 
given in the trap  exit statement. A special version of the trap exit mechanism- the tix e  
construct have been used in the functions int-process-graph and int-procedure-graph. 
The tix e  construct is explained in the associated annotations.

5.8 D eviations from  the notation  used in the Formal D efinition  
o f CHILL

•  In the formal definition of CHILL, the predefined domain names consist of boldface 
uppercase letters (e.g. B O O L, IN T G ) and names denoting semantic domains may 
consist of uppercase letters only.
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In the formal definition of SDL, all domain names are in italic, the first letter is in 
uppercase and they contain at least one lowercase letter.

•  In the formal definition of CHILL, all objects are finite.

In the formal definition of SDL, objects may be infinite. The semantics of some of 
the operators are not well-defined when applied on such objects, e.g. operators like 
cardinality and equality have not been used on potentially infinite objects.

In addition, a special constant infinite has been used in transform-process in Annex 
F.2. for representing the ’’unbounded number of instances” in ASi-

• In the formal definition of SDL, the Meta-IV notation has been extended to include 
the elementary domain Char and the character strings objects (see section 5.4.4.3).

•  In the path processor in Annex F.3. a so-called ’’output guard” has been used. The 
concept is described in the annotations attached to the Path processor as well as in
[4]-

5.9 Exam ple: D em on gam e specified in M eta-IV
In the following, it is shown how Meta-IV can be used for defining the semantics of Demon 
game. For further details about Demon game, refer to Z.100 §2.9.

Communication demon —► monitor and monitor —> game

11 Bump

Communication user —► monitor

12 Newgame :: 0

Communication game —► monitor

13 Gameover

Communication monitor —► game

14 Gameoverack

Communication game —► user

16 Win
17 Lose
18 Score

15 Gameid 0
0
0
Intg

Communication user —* game

19 Probe
20 Result
21 Endgame

0
0
0

int-demon-gameQ = 

1 s ta rt monitor()

t y p e : ( ) =>( )
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monitor processor () =

1 (del userset :=  {} type I I -set,
2 gameset :=  {} type I I -set;
3 cycle (inpu t mk-Newgame() from  sender
4 =>• if  sender £ c userset then
5 (def offspring : s ta rt game(sender);
6 gameset := c gameset U {offspring};
7 userset := c userset U {sender})
8 else
9 I,

10 in p u t mk-Gameover(player) from  sender
11 => (gameset := cgameset \  {sender};
12 userset := c userset \  {player};
13 o u tp u t m k-GameoverackQ to  sender),
14 in p u t mk-BiimpQ  from  demon
15 => for all pid £ gameset do
16 o u tp u t m k-Bum p() to  pid))

type : ()=»

game processor (player) =

1 (del count := 0 type Intg ;
2 del even := tru e  type Bool;
3 o u tp u t mk-Gameid() to  player;
4 cycle (inpu t m k-Pro6e() from  user
5 => if  c even
6 then  (ou tpu t mk-W m() to player;
7 count := c count +  1)
8 else (ou tpu t mk-£ose() to  player;
9 count := c count — 1),

10 in p u t nik-Result() from  user
11 =£• o u tp u t mk-5core(count) to player,
12 in p u t nik-Endgame() from  user
13 =$■ (ou tpu t mk-Gameover (player) to  monitor;
14 inpu t m k-GameoverackQ from  monitor
15 =$> stop),
16 in p u t mk-jBumpQ from  monitor
17 => even := -iceven))

type : / 7 = M )
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