

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL -
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

V O LU M E X - FASCICLE X.5

ANNEX F.3 TO RECOMMENDATION Z.100:
SDL FORMAL DEFINITION

DYNAMIC SEMANTICS

IXTH p l e n a r y a s s e m b l y
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1 989

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

V O LU M E X - FASCICLE X.5

ANNEX F.3 TO RECOMMENDATION Z.100:
SDL FORMAL DEFINITION

DYNAMIC SEMANTICS

IXTH PLENARY A S SE M B L Y
MELBOURNE. 14-25 NOVEMBER 1988

Geneva 1989

ISBN 92-61 -03791 -7

© ITU

Printed in Sw itzerland

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)

Volume I

FASCICLE LI

FASCICLE 1.2

FASCICLE 1.3

FASCICLE 1.4

Volume II

FASCICLE II.l

FASCICLE II.2

FASCICLE II.3

FASCICLE II.4

FASCICLE II.5

FASCICLE II.6

Volume III

FASCICLE III.l

FASCICLE III.2

FASCICLE III.3

FASCICLE III.4

FASCICLE III.5

BLUE BOOK

- Minutes and reports of the Plenary Assembly.

List of Study Groups and Questions under study.

— Opinions and Resolutions.

Recommendations on the organization and working procedures of CCITT (Series A).

- Terms and definitions. Abbreviations and acronyms. Recommendations on means of
expression (Series B) and General telecommunications statistics (Series C).

— Index of Blue Book.

— General tariff principles — Charging and accounting in international telecommunications
services. Series D Recommendations (Study Group III).

— Telephone network and ISDN — Operation, numbering, routing and mobile service.
Recommendations E.100-E.333 (Study Group II).

— Telephone network and ISDN — Quality of service, network management and traffic
engineering. Recommendations E.401-E.880 (Study Group II).

— Telegraph and mobile services - Operations and quality of service. Recommenda
tions F.1-F.140 (Study Group I).

— Telematic, data transmission and teleconference services — Operations and quality of
service. Recommendations F.160-F.353, F.600, F.601, F.710-F.730 (Study Group I).

— Message handling and directory services — Operations and definition of service. Recom
mendations F.400-F.422, F.500 (Study Group I).

— General characteristics of international telephone connections and circuits. Recommenda
tions G.101-G.181 (Study Groups XII and XV).

— International analogue carrier systems. Recommendations G.211-G.544 (Study Group XV).

— Transmission media - Characteristics. Recommendations G.601-G.654 (Study Group XV).

— General aspects of digital transmission systems; terminal equipments. Recommenda
tions G.700-G.772 (Study Groups XV and XVIII).

— Digital networks, digital sections and digital line systems. Recommendations G.801-G.956
(Study Groups XV and XVIII).

Ill

FASCICLE III.6

FASCICLE III.7

FASCICLE III.8

FASCICLE III.9

Volume IV

FASCICLE IV. 1

FASCICLE IV.2

FASCICLE IV.3

FASCICLE IV.4

Volume V

Volume VI

FASCICLE VI. 1

FASCICLE VI.2

FASCICLE VI.3

FASCICLE VIA

FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

FASCICLE VI.9

FASCICLE VI. 10

IV

Line transmission of non-telephone signals. Transmission of sound-programme and televi
sion signals. Series H and J Recommendations (Study Group XV).

Integrated Services Digital Network (ISDN) — General structure and service capabilities.
Recommendations 1.110-1.257 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Overall network aspects and functions,
ISDN user-network interfaces. Recommendations 1.310-1.470 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Internetwork interfaces and maintenance
principles. Recommendations I.500-I.605 (Study Group XVIII).

General maintenance principles: maintenance of international transmission systems and
telephone circuits. Recommendations M.10-M.782 (Study Group IV).

•
Maintenance of international telegraph, phototelegraph and leased circuits. Maintenance of
the international public telephone network. Maintenance of maritime satellite and data
transmission systems. Recommendations M.800-M.1375 (Study Group IV).

Maintenance of international sound-programme and television transmission circuits.
Series N Recommendations (Study Group IV).

Specifications for measuring equipment. Series O Recommendations (Study Group IV).

Telephone transmission quality. Series P Recommendations (Study Group XII).

General Recommendations on telephone switching and signalling. Functions and informa
tion flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 his (Study
Group XI).

Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study
Group XI).

Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study
Group XI).

Digital local, transit, combined and international exchanges in integrated digital networks
and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.699 (Study Group XI).

Specifications of Signalling System No. 7. Recommendations Q.700-Q.716 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.771-Q.795 (Study
Group XI).

Digital subscriber signalling system No. 1 (DSS 1), data link layer. Recommendations
Q.920-Q.921 (Study Group XI).

FASCICLE VI. 11

FASCICLE VI.12

FASCICLE VI. 13

FASCICLE VI.14

Volume VII

FASCICLE VII. 1

FASCICLE VII.2

FASCICLE VII.3

FASCICLE VII.4

FASCICLE VII.5

FASCICLE VII.6

FASCICLE VII.7

Volume VIII

FASCICLE VIII. 1

FASCICLE VIII.2

FASCICLE VIII.3

FASCICLE VIII.4

FASCICLE VIII.5

FASCICLE VIII.6

FASCICLE VIII.7

FASCICLE VIII.8

Volume IX

Digital subscriber signalling system No. 1 (DSS 1), network layer, user-network manage
ment. Recommendations Q.930-Q.940 (Study Group XI).

Public land mobile network. Interworking with ISDN and PSTN. Recommenda
tions Q.1000-Q.1032 (Study Group XI).

Public land mobile network. Mobile application part and interfaces. Recommenda
tions Q.1051-Q.1063 (Study Group XI).

Interworking with satellite mobile systems. Recommendations Q.l 100-Q.l 152 (Study
Group XI).

Telegraph transmission. Series R Recommendations. Telegraph services terminal equip
ment. Series S Recommendations (Study Group IX).

Telegraph W itching. Series U Recommendations (Study Group IX).

Terminal equipment and protocols for telematic services. Recommendations T.0-T.63
(Study Group VIII).

Conformance testing procedures for the Teletex Recommendations. Recommendation T.64
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.65-T.101,
T.150-T.390 (Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.400-T.418
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.431-T.564
(Study Group VIII).

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks: services and facilities, interfaces. Recommenda
tions X.1-X.32 (Study Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study
Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Model and nota
tion, service definition. Recommendations X.200-X.219 (Study Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Protocol specifica
tions, conformance testing. Recommendations X.220-X.290 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems, internetwork management. Recommendations X.300-X.370 (Study Group VII).

Data communication networks: message handling systems. Recommendations X.400-X.420
(Study Group VII).

Data communication networks: directory. Recommendations X.500-X.521 (Study
Group VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable and other elements of outside plant. Series L Recom
mendations (Study Group VI).

V

Volume X

FASCICLE X.l

FASCICLE X.2

FASCICLE X.3

FASCICLE X.4

FASCICLE X.5

FASCICLE X.6

FASCICLE X.7

— Functional Specification and Description Language (SDL). Criteria for using Formal
Description Techniques (FDTs). Recommendation Z.100 and Annexes A, B, C and E,
Recommendation Z.110 (Study Group X).

— Annex D to Recommendation Z.100: SDL user guidelines (Study Group X).

— Annex F.l to Recommendation Z.100: SDL formal definition. Introduction (Study
Group X).

— Annex F.2 to Recommendation Z.100: SDL formal definition. Static semantics (Study
Group X).

— Annex F.3 to Recommendation Z.100: SDL formal definition. Dynamic semantics (Study
Group X).

— CCITT High Level Language (CHILL). Recommendation Z.200 (Study Group X).

— Man-Machine Language (MML). Recommendations Z.301-Z.341 (Study Group X).

VI

CONTENTS OF FASCICLE X.5 OF THE BLUE BOOK

Annex F.3 to Recommendation Z.100

SDL Formal Definition. Dynamic Semantics 1

REMARK

Due to the specialized nature of the SDL semantics, this Fascicle is published in English only.

REMARQUE

Etant donne la nature tres speciale de la semantique du LDS, ce fascicule est publie uniquement en anglais.

OBSERVACION

Debido a la naturaleza especializada de la semantica del LED, este fasciculo solo se publica en ingles.

PRELIMINARY NOTES

1 The Questions entrusted to each Study Group for the Study Period 1989-1992 can be found in Contri
bution No. 1 to that Study Group.

2 In this Fascicle, the expression “ Administration” is used for shortness to indicate both a telecommunication
Administration and a recognized private operating agency.

Fascicle X.5 — Table of Contents VII

P A G E INTENTIONALLY LEFT BLANK

P A G E L A ISSEE EN BLANC INTENTIONNELLEMENT

C o n ten ts

1 D om ains for th e Process com m unication 2
1.1 sdl-process *-* sy s te m .. 2
1.2 sdl-process <-» inpu t-port............................ 3
1.3 sdl-process w v i e w 4
1.4 sdl-process, input-port <-» t i m e r ... 4
1.5 system environm ent... 4
1.6 system *-* view 4
1.7 system *-+ p a t h .. 5
1.8 system, path <-► inpu t-port... 5
1.9 system «-► in p u t-p o r t .. 5
1.10 timer <-+ tick ... 5

2 D om ains for th e E ntity Inform ation 6
2.1 The Signal D e sc r ip to r ... 7
2.2 The Procedure D esc rip to r.. 7
2.3 The Type D escrip to r.. 7
2.4 The Sort Descriptor .. 7
2.5 The Process Descriptor .. 8
2.6 The Variable D e sc rip to r.. 8
2.7 The Operator and Literal D esc rip to r.. 8

3 T he U nderlying S ystem 9
3.1 System Processor 9
3.2 View P ro c e sso r.. 17
3.3 Path P ro c e s so r ... 18
3.4 Input-Port P ro cesso r.. 19
3.5 Timer Processor ... 25
3.6 Informal Tick P ro c e sso r .. 25

4 T he SD L -Process 26
4.1 The sd l-p rocess.. 26
4.2 Interpretation of a p rocess-g raph ... 28
4.3 Auxiliary fu n c tio n s... 37

5 C onstruction o f Entity-dict and H andling o f A bstract D ata T ypes 44
5.1 Construction of Descriptors for Simple O b je c ts .. 46
5.2 Handling of Abstract Data T y p e s ... 51
5.3 Selection of Consistent S u b se t............... 69
5.4 Construction of Communication P a t h s ... 70

Fascicle X .5 — C ontents IX

FASCICLE X.5

Annex F.3 to Recommendation Z.100

SDL FORMAL DEFINITION
DYNAMIC SEMANTICS

In tro d u ctio n

This part of The Formal Definition defines the dynamic properties of SDL. For a description
of the over-all structure of the Formal Definition and for an explanation of the notation
used, refer to Annex F .l: Introduction to the Formal Definition.

An SDL system is interpreted as a number of concurrent processes. The communication
between these is synchronous, CSP-like communication. The lines in the picture indicate
communication by means of CSP-output. The system-process creates instances of the other
processes: one instance of the view- and timer-process, one instance of the path-process for
each distinct path an SDL-output may be transported by, and one instance of the pair sdl-
process, input-port for each actual SDL-process instance. Totally, six different meta process
types are used in the model:

Figure 1: Structure of Interpretation Model

Fascicle X .5 — R ec. Z.100 — A nnex F.3 1

The processes are:

1. system

Which handles the signal routing and the creation of sdl-processes.

2. path

Which handles the indeterministic delay of channels and signalroutes. Note that all
potential delays from the signalroutes and channels traversed by one signal instance,
have been added into one delay in an instance of path.

3. timer

Which keeps track of the current time and handles time-out. When an sdl-process is
using the NOW expression it will request timer for the time value.

It is assumed that the environment in regular intervals sends a clock signal to the
timer. This mechanism is sketched as the tick-process. It must be noted, that the
informal model of the tick-process does not form part of the dynamic semantics, it is
only included for explanatory reasons.

4. view

Which keeps track of all revealed variables. Each time an sdl-process updates a revealed
variable, it sends the new value to view. When a process is using the VIEW expression,
it will request the current value from view.

5. sdl-process

Which interprets the behaviour of an SDL-process.

6. input-port

Which handles the queueing of signals in an SDL-process. For each instance of sdl-
process there exists exactly one input-port. Signals are always received by an sdl-process
in its input-port.

1 D om ain s for th e P ro cess com m u n ication

1.1 sdl-process «-* system
1 Process-Initiated :: Port
2 Port = II (input -port)

When an sdl-process has been created it answers Process-Initiated, when it is ready to
interpret its process graph. The data carried is the CSP-instance of the input-port started
by the process instance.

3 Create-Instance-Request
4 Create-Instance-Answer
5 Offspring-Value
6 Pid-Value
7 Value

:: Process-identifieri Value-List
:: [Offspring - Value]
= Pid-Value
= Value
= Ground-termi

When a process interprets the create request node, it will output the Create-Instance-
Request to system. The data carried are the process identifier of the process to be started,
and the list of actual parameters, system will respond by outputting Create-Instance-Answer
back, carrying the Pid-Value of the started process. If no process could be started, n il is
returned.

2 Fascicle X .5 — R ec. Z.100 — A nnex F.3

8 Send-Signal Signal-identifier! Value-List [Pid-Value\ Direct-viai

When an instance of sdl-process interprets an output node, it will output Send-Signal.
This transfers the identifier of the SDL signal being sent, the list of optional values attached
to the signal, the optional destination process instance, and the optional via set of channel
identifiers or signal route identifiers.

9 Stop :: ()

When an instance of sdl-process interprets the stop node, it will send Stop to system
which keeps track of whether instances are alive or dead.

1.2 sdl-process <-> input-port

1 Next-Signal :: Signal-identifier!-set
2 Input-Signal :: Signal-identifier! Value-List Sender-Value

The sdl-process outputs a Next-Signal to its input-port and the input-port responds (when
non-empty queue) with the output of Input-Signal. The Signal-identifier!-se t denotes the
signals which should remain in the queue (Save-set).

3 Set-T im er :: Timer-identifier! Timeout-value Arglist
Equivalent-test

4 Reset-Tim er :: Timer-identifier! Arglist Equivalent-test
5 Timeout-value = Value
6 Arglist = Value*
7 Equivalent-test :: Ground-term! Ground-term! —* Bool

When a input-port inputs Set- Timer from the sdl-process, interpreting a set timer action,
it starts a timer with expiration time denoted by Timeout-value. A timer has also a value list
attached which, together with the Timer-identifier!, identifies the timer instance. The input-
port tests whether two requests (i.e. Set-Timer, Reset-Timer or Active-Request) refers to the
same timer instance by comparing their Timer-identifiers and applying the Equivalent-test
function on the elements in the two associated Arglists. The Equivalent-test function takes
two Ground-term!S as arguments and returns (indicated by “- 4 ”) a Bool.

8 Active-Request :: Timer-identifier! Arglist Equivalent-test
9 Active-Answer :: Bool

The sdl-process sends an Active-Request to the input-port, to determine whether or not,
the timer, identified by Timer-identifier1 , is active. Arglist and Equivalent-test are explained
above.

Fascicle X .5 - R ec. Z.100 - A nnex F.3 3

1.3 sdl-process view

1 Reveal :: Variable-identifierx (Value | UNDEFINED) Pid-Value

When an sdl-process updates a revealed variable, it will output Reveal Reveal carries the
identifier of the revealed variable, the new value of the variable, and the Pid-Value of “self’.

2 View-Request :: Variable-identifieri Pid-Value
3 View-Answer :: (Value | UNDEFINED)

When an sdl-process views a variable it will output View-Request. View-Request carries
the identifier of the variable to be viewed, and the Pid- Value of the instance, which reveals
it. view responds by outputting View-Answer, which carries the requested value.

1.4 sdl-process, input-port <-> timer

1 Time-Request :: ()
2 Time-Answer :: Value

When an sdl-process evaluates the NOW expression, it will send Time-Request, timer re
sponds by sending Time-Answer, which carries the value of the current time.

The input-port continuously test on the expiration time of its timers. For that purpose it
needs the actual time from the timer. This communication is the same as between sdl-process
and timer.

1.5 system environment

1 Create-Pid :: Port
2 Pid-Created :: Pid-Value
3 Release-Pid :: Pid-Value

Since as few assumptions as possible should be made about the environment, a special scheme
for creation of instances in the environment has been defined. It is considerably simpler than
the scheme for creation of processes within the system. When a process instance is created
in the environment, its CSP-name input-port is sent to system carried by Create-Pid. The
system responds by outputting the associated SDL Pid-value back to environment carried
by Pid-Created. When a process instance in the environment ceases to exist, the system will
receive Release-Pid with the SDL Pid-Value of the stopped process from environment. The
main purpose of the scheme is to justify the administration within the system of Pid-Values
in the environment.

1.6 system view

1 Die :: Pid-Value

When an SDL process has stopped, view inputs Die such that the instance entry can be
deleted from its internal map of possibly revealed variables.

4 Fascicle X .5 — R ec. Z.100 — A nnex F.3

1.7 system path

1 Queue-Signal :: Signal-identifier Value-List Pid-Value
Port

A Signal is transferred by the system by outputting a Queue-Signal to the instance of path
corresponding to the selected route from sender to receiver. Queue-Signal transfers the
identifier of the signal, the values carried by the signal, the Pid-Value denoting the sender,
and the CSP-instance value of the receiving input-port.

2 Discard-Signals :: Port

When an sdl-process stops, the system demands all paths to remove signals directed
towards the input-port of the stopping sdl-process. This is done by outputting Discard-
Signals.

1.8 system, path <-» input-port

1 Signal-Delivered :: Signal-identifier Value-List Sender-Value
2 Value-List — [Value]*
3 Sender-Value = Pid-Value

The path sends the signal to input-port when it has been released. The system sends the
signal directly to input-port, if the sender and receiver is within same block.

1.9 system input-port

1 Stop-Queue :: ()

When an sdl-process instance stops, system outputs Stop-Queue to make its input-port stop.

1.10 timer tick

1 Time :: ()

The tick-process is not formally modelled. It is a process which sends “ticks” with regular
intervals to the system. Thus it forms the basis of the timer-process. The ticks should be
regarded as part of the input stream, which the SDL-system transforms into an output-
stream.

Fascicle X .5 — Rec. Z.100 — A nnex F.3 5

2 D om a in s for th e E n tity In form ation

Entity-dict contains information of all SDL identifiers referred to in the processes, i.e. when
ever a process needs information of an identifier Entity-dict is used. Initially, it is deduced
from A Si. Each process has its own version of Entity-dict.

1 Entity-dict = {Identifier\ SIGNAL) ™*SignalDD U
(Identifieri PROCEDURE) m*ProcedureDD U
(Identifieri TYPE) s?TypeDD U
{Identifieri SORT) s*{SyntypeDD | SortDD) U
{Identifieri PROCESS) 'z&ProcessDD U
{Identifieri VALUE) ^{V arD D \ OperatorDD) U
ENVIRONMENT s?Reachabilities U
EXPIREDF s?Is-expired U
PIDSORT is*Sort-identifieri U
NULLVALUE m*Literal-operator-identifieri U
TRUEVALUE s?Literal-operator-identifieri U
FALSEVALUE ■5?Literal-operator-identifieri U
SCOPEUNIT sPQualifieri U
PORT s?II{input-port) U
SELF ts*II{input-port) U
PARENT sPlI{input-port)

Entity-dict consist of a map from pairs of Identifieris {Identifier^) and their associated
entity class into descriptors. An entity class is either SIGNAL, PROCEDURE, TYPE, SORT,
PROCESS or VALUE.

In addition, it contains information of how signals from /to the environment of the system
can be routed. EN VIRO NM ENT is explained below.

A descriptor is either a descriptor of a signal, a procedure, a type, a syntype, a process,
a sort, a variable, a literal or operator. Note that some of the entities of SDL identifiers are
excluded (e.g. channels and blocks).

Furthermore, Entity-dict contains some extra objects which have to be known by the
underlying system and/or the sdl processes. Those objects are accessed via some Quot
values:

ENVIRONMENT When applied on Entity-dict the result is the Reachabilities leading
to/originating from the environment.

EXPIREDF When applied on Entity-dict the result is a function used by the timer
processor.

PIDSORT When applied on Entity-dict the result is the ASi identifier of the PiD
sort.

NULLVALUE When applied on Entity-dict the result is the ASi identifier of the PiD
literal null.

TRUEVALUE When applied on Entity-dict the result is the ASi identifier of the
boolean literal true.

FALSEVALUE When applied on Entity-dict the result is the ASi identifier of the
boolean literal false.

SCOPEUNIT When applied on Entity-dict the result is the qualifier denoting the
current scopeunit.

PORT When applied on Entity-dict the result is the II value of input port of
an sdl process.

SELF When applied on Entity-dict the result is the II value of the sdl process
using the Entity-dict.

6 Fascicle X .5 — R ec. Z.100 — A nnex F.3

PARENT When applied on Entity-dict the result is the II value of the parent of
the sdl process using the Entity-dict.

2.1 T h e S ign al D escrip tor

1 SignalDD :: Sort-reference-identifieri*

SignalDD is a descriptor of a signal. It contains the list of sort or syntype identifiers attached
to the signal.

2.2 T h e P roced u re D escrip tor

ProcedureDD
FormparmDD
InparmDD
InoutparmDD

:: FormparmDD* Procedure-graphi
= InparmDD \ InoutparmDD
:: Variable-identifieri
:: Variable-identifieri

ProcedureDD is a descriptor of a procedure. It contains a list of formal parameter descriptors
and the procedure graph. A formal parameter is either an IN parameter or an IN/OU T
parameter and it contains the Variable-identifieri.

2.3 T h e T yp e D escrip tor

1 TypeDD :: Sortmap Equationsi
2 Sortmap = Sort-identifieri ^T erm -class-set
3 Term-class = (Ground-termi \ Error-termi)-set

TypeDD is a descriptor of a data type definition. It contains a map (Sortmap) of all Sort-
identifieris visible in the scopeunit enclosing the data type definition into the set of equiva
lent classes existing for the sort. An equivalent class (Term-class) is a set of ground terms
possible joined with the error term.

It also contains the equations (Equationsi) from which the equivalent classes are derived.

2.4 T h e Sort D escrip tor

1 SortDD :: Type-identifieri
2 SyntypeDD :: Parent-sort-identifieri Range-condition

SortDD and SyntypeDD are descriptors of newtypes and syntypes respectively. A newtype
descriptor contains the identifier of the enclosing data type definition as all the properties
of newtypes are hold in that descriptor.

A syntype descriptor also contains the identifier of the parent newtype and an ASi range
condition.

Fascicle X .5 - Rec. Z.100 - A nnex F.3 7

2.5 T he P ro cess D escrip tor

1 ProcessDD :: ParameterDD* Initial Maximum Process
Reachabilities

2 Reachabilities = Reachability -set
3 ParameterDD = Variable-identifieri
4 Initial = Intg
5 Maximum = Intg
6 Reachability = (Process-identifieri | ENVIRONMENT)

Signal-identifieri-set Path
7 Path = Path-identifier*
8 Path-identifier = Identifieri

ProceasDD is a descriptor of a process. It contains the parameter list (ParameterDD), the
number of process instances created at system start-up time (Initial), the maximum number
of allowed processes (Maximum), the process graph, and Reachabilities. A Reachability
defines a Process-identifieri which may be reached from the process in the sending of a
signal in Signal-identifieri-set using a certain Path. The Path is identified by a list of
signalroute and channel identifiers (Path-identifiers). Path is empty in the cases where
Process-identifieri is both the sender and the receiver. A formal parameter descriptor is the
Variable-identifieri of the parameter.

2.6 T h e V ariable D escrip tor

1 VarDD :: Variable-identifieri Sort-reference-identifieri
[REVEALED] [ref Stg]

VarDD is a descriptor of a variable. It contains the variable identifier, the sort or syntype
identifier, the REVEALED attribute and optionally a reference to a storage. There is no
descriptor for view variables because the View-definitionis contains no (important) infor
mation. Each time a procedure is invoked, Entity-Diet is overwritten with the descriptors
representing the formal parameters and local declarations. For IN/OU T parameters the
descriptors contain the associated actual parameters and a reference to the version of the
storage where the version of the Variable-identifieri is found, i.e. because SDL allows re
cursive procedures, there may exist several versions of the same Variable-identifieri, one for
each recursive call and therefore also several versions of the storage.

2.7 T h e O p erator and L iteral D escrip tor

1 OperatorDD :: Argument-list Result
2 Argument-list = Sort-reference-identifieri*
3 Result = Sort-reference-identifieri

OperatorDD is a descriptor of an operator or a literal. It contains the list of sorts or syntypes
of the arguments and the sort or syntype of the result.

8 Fascicle X .5 — R ec. Z.100 — A nnex F.3

3 T h e U n d er ly in g S y stem

3.1 S y stem P rocessor

This processor is the entry point of interpretation for an SDL-description. All other processes
are started (directly or indirectly) from this process. It is started from definition-of-SDL,
defined in Annex F.2: Static Semantics.

system processor (asitree, subset, auxinf) =

1 (let (tim ein f, term inf, expiredf, delayf) = auxinf in
2 del instancemap := [j type II(sdl-process) ts?
3 ((ENVIRONMENT | Process-identifieri) Pid-Value)',
4 del queuemap := [] type Pid -Value -set stPort',
5 del pidno := [] type Process-identifieri m*No‘,
6 del pathm ap := [] type Channel-identifieri* sPlI (path)',
7 del pidset := {} type Pid- Value-set;
8 trap exit w ith error in
9 (let entitydict = extract - diet (asitree, subset, expiredf, term inf) in

10 s ta rt view()]
11 sta r t timer (timeinf)',
12 start-initial -processes (entitydict);
13 pathd (delayf) (entitydict);
14 handle-inputs (entitydict)))

type : System -definition Block -identifieri -set Auxiliary-information =>

O b jec tiv e Interpret the SDL-system
P a ra m e te rs

asitree
subset
auxinf

tim einf

term inf

expiredf
delayf

A lg o rith m

Line 2

Line 4

Line 5

Fascicle X .5 — Rec. Z.100 — A nnex F.3 9

The ASi-definition of the system.
The Consistent subset selected.
Contains the following (see line 1):

Information required by the timer processor. It contains a
function which updates the current NOW on each tick in the
timer processor and the start value of the system time. The
domain is defined in Annex F.2 and it is further described in
the timer processor.
A closure containing the ASi identifier of the Pid sort, the Pid
null literal and the Boolean literals True and False.
A function delivering true if a given timer has expired.
A function delivering a Bool value at random. Used in the
path-processor for modelling delay on channels.

Let instancemap denote a map from csp-processor instances to a
composite domain of Process-identifieri or ENVIRONMENT and
Pid- Value. This map is instantiated as empty. It is primarily used
for routing of signals and for creation of new instances.
Let queuemap denote a map from equivalence classes of Pid- Values
to the input-port of the sdl-processts. This map is instantiated as
empty. Queuemap is used for same purposes as instancemap.
Let pidno denote a map for checking that the maximum number
of instances of a process-definition is not exceeded. The map is
instantiated as empty.

Line 6 Let pathm ap denote a map from delaying paths to csp-instances of
the path-processor. A delaying path is a list of channels traversed
by a signal instance, when an output-node is interpreted. It is
necessary to distinguish possible delaying paths, since sequence is
only guaranteed, when following the same sequence of channels.

Line 7 Let pidset denote the initially empty set of Pid- Values.
Line 11 Start timer with actual parameters for the handling of NOW (fur

ther explained in timer).
Line 12 Start sdl-processes.
Line 13 Start one processor instance for each communication path in the

system.
Line 14 Handle all further communication.

start -initial-processes (entitydict) =

1 (let pset = {id \ (id, PROCESS) G dom entitydict} in
2 for all p G pset do
3 (let mk-ProcessDD(, n o ,, ,) = entitydict((p, PROCESS)) in
4 (for i = 1 to no do
5 handle-create-instance-request(p, nil, n il)(entitydict))))

type : Entity-dict =>

O b je c tiv e Start sdl-processes.
A lg o rith m

Line 3 Let no denote the number of instances to be started of a process.
Line 4 Start the requested number of instances.

pathd(delayf)(entitydict) =

1 (let rs = en<ity<hct(ENVIRONMENT) in
2 for all reach G rs do
3 (let (, ,p) = reach in
4 let p 1 = (p[i] | 1 < i < lenp — 1) in
5 (if p' £ dom pathm ap
6 th en (def cspp : s ta rt path (delayf)',
7 pathm ap := cpathm ap + [p 1 cspp])
8 else I));
9 for all (pd, PROCESS) G dom entitydict do

10 (let m k -ProcessDD(,, , , rs) = entity diet ((pd, PROCESS)) in
11 for all reach G rs do
12 (let (d , , p) = reach in
13 let p ' = <p[*] | 2 < *' < (d = ENVIRONMENT
14 — lenp ,
15 T -► len p — 1)) in
16 if le n p ' > 0 A p ^ dom pathm ap then
17 (def cspp : s ta rt path(delayf);
18 pathm ap := c pathm ap 4- [p1 i—► cspp])
19 else
20 I)))

type : (() => Bool) —+ Entity-dict =>

O b je c tiv e Start a path processor instance for each pair of Process-identifieri and
path in the system. Updates a map from paths to csp-instances.

(3.1.2)

(3.1.3)

10 Fascicle X .5 — R ec. Z.100 — A nnex F.3

P a ra m e te rs

delayf A function delivering a Bool value at random. Used in path pro
cessor for modelling delay on channels.

A lg o rith m

Line 1 Let rs denote the reachability s e t of (processes in) the environment.
This information is based on channels leading into the system from
the environment, and extracted from entitydict.

Line 2 - 8 Start a processor instance for each reachability in the set. pcsp
denotes the csp-instance of the started processor.

Line 4 Let p ’ denote the path causing delay (i.e. excluding the last item,
which is a signal route).

Line 7 Update the pathmap accordingly.
Line 9-18 Repeat this scheme for originating processes within the system.
Line 13 Define the delaying part of the path as starting from second ele

ment, since first element is a signal route, and ending with second
last element if within the system, since then the last element is a
signal route.

Line 16 Only start a processor, if the remaining path is non-empty (causes
delay).

handle -inputs [entity diet) =

1 (cycle {input m k-Send-Signal(si, vl, r, p) from se
2 =>• handle-send-signal(si,vl,r,p, se)(entitydict),
3 in p u t m k -Create -Instance-Requester id, vl) from se
4 => handle-create-instance-request (prid, vl, se)(entitydict),
5 inpu t xnk-Stop() from se
6 => handle-stop (se),
7 inpu t mk- Create -Pid (port) from se
8 =>• handle-create-from-environment(port, se)(entitydict),
9 inpu t m k -Release-Pid(p) from se

10 => handle-stops-in-environment(p, se)})

type : Entity-dict =>■

O b jec tiv e Handle all communication of system after initializations.

A lg o rith m

Line 1 Start a loop forever. In each pass of that loop, one of the mentioned
inputs will be elaborated (on a non-deterministic basis). The han
dling of each input is described in a specific handle-function.

handle-stops-in-environment(p, se) =

1 (def class s.t. p £ class A class £ dom e queuemap;
2 d ef q : c queuemap(class)]
3 instancemap := c instancemap \ {se};
4 queuemap := c queuemap \ {c/ass};
5 discard-signals-to-port (q))

type : Pid- Value II =>

(3.1.4)

(3.1.5)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 11

O b jec tiv e

P a ra m e te rs

P
se

A lg o rith m

Line 3-4

Line 5

Handle stop of “processes” in the environment by updating maps within
the system.

Pid-Value of the “process” to stop.
Csp-instance of the “SENDER” .

Remove the “process” and its “input port” from the maps of living
instances.
Handle the removal of signals to the stopping process in the envi
ronment waiting on communication paths.

handle-create-from-environment(port, se)(entitydiet) =

1 (def (pid, pidclass) : getpid(entity diet);
2 instancemap := cinstancemap + [se i—> (ENVIRONMENT,pid)];
3 queuemap := cqueuemap + [pidclass i—» port);
4 o u tp u t nik-Pid-Created(pid) to se)

type : II II Entity-dict =£•

O b jec tiv e Handle the creation of Pid-Values in the environment. Update maps
within the system, and return the Pid-Value to the environment. The
communication is not exactly like the one in handling of CREATE-
nodes within the system. However, one cannot suppose the environment
to contain CREATE-nodes (!). The general idea is to make as few
assumptions about the environment as possible, while still having a
consistent model.

P a ra m e te rs

port

se

A lg o rith m

Line 2-3 Update the maps of living instances with the “process” communi
cated by the environment.

Line 4 Return the Pid-Value to the environment.

Csp-instance of the input-port of “the sender” . The environment
is assumed to contain an input-port, since this is the way asyn
chronous communication is implemented.
The csp-instance of “the sender” .

12 Fascicle X .5 — R ec. Z.100 — A nnex F.3

handle-send-signal(si, vl, r,p, se)(entitydiet) = (3.1.7)

1 (def (sidf sp) : cinstancemap(se);
2 (let re = ifis-Identifieri(sid)
3 then s-Reachabilities(entitydict((sid, PROCESS)))
4 else en<*<ydict(ENVIRONMENT) in
5 let re1 = {(, s ' ,) G re \ si G s'} in
6 let re" = if p = {} then re' else {(, ,p') G re' | p fl elem sp ' ^ {}} in
7 d ef rp : (r ^ nil
8 -♦ {(rident, r) G rngcinstancem ap | (riden t,,) G re"},
9 T -» {(rtden t,) G rng cinstancemap | (rident, ,) G re"});

10 (card (rp) = 0
11 -> e x it(“§2.7.4: No receiver found”),
12 card (rp) > 1
13 -» e x it(“§2.7.4: Multiple receivers found”),
14 T -* (let {(rident, r*)} = rp in
15 let (rident1, , path) G re" b es .t. rident1 = rident in
16 (def class s.t. ri G class A class G dom queuemap;
17 def rcsp : c queuemap (class);
18 (let reduced-path = delaying-path(path, sid, rident) in
19 if reduced-path = ()
20 then o u tp u t m k-Signal-Delivered(si, vl, sp) to rcsp
21 else (def path' : c pathm ap (reduced-path)]
22 o u tpu t m k-Queue-Signal(si, vl, sp, rcsp) to path')))))))

ty p e : Signal-identifieri Value-List [Pid-Value] Direct-viai
II(sdl-process) —» Entity-dict =>

O b jec tiv e Routing of signals.
P a ra m e te rs

si Signal being sent.
vl Optional list of values carried by the signal.
r Optional Pid- Value denoting the receiver, from the TO-clause.
p Optional set of paths, from the VIA-clause.
se Csp-instance of the sending sdl-process.

A lg o rith m

Line 1 Let sid and sp denote the Process-identifieri and Pid- Value of the
sender.

Line 2 Test whether the signal is sent from the environment (line 4) or
from a process within the system (line 3). In both cases re de
notes the Reachability-set of the sender. The remaining function
consecutively restricts the reachability of the sender (until line 9).

Line 5 Restrict to those reachabilities which may convey the actual signal,
si.

Line 6-6 Restrict based on the paths given in the VIA-clause, p.
Line 6 No restriction if the VIA-clause was absent.
Line 8 Check paths from the environment.
Line 6 Restrict the reachability-set to those members which mentions a

member of p from the VIA-clause in their path.
Line 7 Let rp denote the set of potential receivers. The members of rp are

pairs (Process-identifieri, Pid-Value).
Line 8 Handle the case, where a TO-clause was given. The pair must then

denote a living instance where the rident is in a reachability.
Line 9 Handle the case without a TO-clause. In this case the Pid-Value

member of the pair is left unspecified.

Fascicle X .5 — R ec. Z.100 — A nnex F.3 13

Line 10-14 Test the number of receivers found.
Line 11 Define the error of no (reachable and living) receiver.
Line 13 Define the error of more than one receiver (indeterminism of the

OUTPUT-node).
Line 14 Indicate success: rp contains one and only one member.
Line 15 Choose a path leading to the unique receiver. This choice is non-

deterministic, if sub-channels leading towards the same process
may carry the same signal.

Line 16 Let rcsp denote the csp-instance of the input-port of the receiving
sdl-process.

Line 18 Let reduced-path denote the part of the Path, which causes delay
(the channels).

Line 19 If the signal passes on no channels (within same block), then the
signal is output to the input-port processor of the receiver.

Line 21 Let path’ denote the csp-instance of the corresponding path pro
cessor.

Line 22 Output the signal to the selected path processor.

delaying-path(path, sid, rid) =

1 (len path < 1
2 - 0 ,
3 sid = ENVIRONMENT
4 -* {path[i] | 1 < i < len path — 1),
5 rid = ENVIRONMENT
6 -> t l path,
7 T — (path[i] | 2 < i < len path — 1))

ty p e : Path (ENVIRONMENT | Process-identifieri)
(ENVIRONMENT | Process-identifieri) —> Path

O bjective
P aram eters

path
sid
rid

R esu lt
A lgorithm

Line 1

Line 3

Line 5

Line 7

Reduce the communication path to the delaying path.

A complete path from sender to receiver
Identity of sender
Identity of receiver

The delaying path.

If the path is empty or consist of a single signal route identifier,
return it unmodified.
If the signal originates from the environment then remove the signal
route ending the Path
If the destination is the environment then remove the signal route
identifier starting the Path.
If the signal is sent from one block to another block, then remove
the starting and the ending signal route identifier

(3.1.8)

14 Fascicle X .5 — R ec. Z.100 — A nnex F.3

handle-create-instance-request (prid, vl, se)(entitydiet) = (3.1.9)

1 (if prid £ dom c pidno
2 then pidno := c pidno + [prid > 0]
3 else I;
4 (let m k -ProcessDD(il,, maxim um ,,) = entity diet ((prid, PROCESS)) in
5 let vl1 = if vl = nil then (nil | 1 < i < len il) else vl in
6 def parent : if se = nil then nil else s -Pid- Value(c instancemap(se));
7 def exceed : (maximum = c pidno (prid));
8 def (newpid,pidclass) : getpid(entitydict)',
9 if -i exceed then

10 (def csppid : s ta rt sdl-process(parent, newpid, vl1, prid)(entitydict);
11 (input m k-Process-Initiated(qcsppid) from csppid
12 => (instancemap := cinstancemap + [csppid i-» (prid, newpid)];
13 queuemap := c queuemap + [pidclass i—► qcsppid];
14 pidno := cpidno + [prid n-f cpidno(prtd) + 1])))
15 else
16 I;
17 if se ^ nil
18 then o u tp u t tain-Create-Instance-Answer (if exceed then nil else newpid) to se
19 else I))

ty p e : Process-identifieri [Value-List] [II(sdl-process)] —>
Entity-dict =>

O bjective Handle creation of sdl-processes.

Param eters

A lgorithm

initialization).

stance.

process definition.

if the create is caused by a Create-nodei . If the maximum number
was exceeded, nil is returned.

Fascicle X .5 — R ec. Z.100 — A nnex F.3 15

getpid(entitydict) = (3.1.10)

1 (let pidsortid — entttychc<(PIDSORT) in
2 let mk-SortDD{tid) = entitydict {{pidsortid, SORT)) in
3 let mk-TypeDD{sortmap,) = entitydict{{tid, TYPE)) in
4 let classes = sortmap {pidsortid) in
5 let nullterm = entitydict (NULLVALUE) in
6 d ef class s.t. class £ classes A {nullterm £ class) A -i(3<erm £ class){term £ c pidset);
7 let pid £ class in
8 pidset := c pidset U class',
9 re tu rn {pid, class))

type : Entity-dict => Pid- Value Pid-Value-set

O bjective

R esu lt
A lgorithm

Line 1
Line 2
Line 3

Line 4

Line 5
Line 6

Line 7
Line 8

Extract a Pid-Value not used yet. The Unique! operator defined for
the Pid sort in Z.100 ensures that there exist an infinite number of
Pid-Values. I.e. the values for the Pid sort are null,unique!(null),
unique!(unique!(null)) etc. The set of Pid terms (values) is found in
entitydict.

Note, that the model assumes, that the system-processor also maintains
unique Pid-Values for the environment. Otherwise it is hard to imagine
how Pid-Values may be used to address processes in the environment.

An unused Pid- Value and the equivalence class, it belongs to.

Extract the Identifieri of the PID sort from entitydict.
Extract the type identifier defined on the system level.
Extract the sortmap containing the equivalent classes of the sort
defined on the system level.
Extract the equivalence classes of the Pid sort. Note that for the
Pid sort, every equivalence class contains exactly one ground term.
Extract the ASi representation of the NULL term.
Take an equivalence class not represented in pidset and different
from the NULL term.
Take a ground term in this equivalence class.
Add this new value to the set of Pid- Values.

handle-stop {se) =

1 (d ef {prid, p) : c instancemap(se);
2 d e f class s.t. p £ class A class £ dom queuemap;
3 d e f q : cqueuem ap(class)]
4 instancemap := cinstancemap \ {se};
5 queuemap := c queuemap \ {c/ass};
6 pidno := cpidno + \prid >—» cpidno(pnd) — 1];
7 discard-signals-to-port{q)\
8 output vain-Stop-Queue{) to q\
9 output mk.-Die{p) to view)

ty p e : U {sdl-process) =>

O bjective

P aram eters

Handle STOP-Nodeis.

Csp-instance of sdl-process to be stopped.

(3.1.11)

16 Fascicle X .5 — R ec. Z.100 — A nnex F.3

A lg o rith m

Line 4 Subtract the process from the map of living instances.
Line 5 Subtract the corresponding input-port from its map.
Line 6 Update the current number of instances of prid by subtracting the

stopped process.
Line 7 Discard signals waiting on paths to the stopped process.
Line 8 Request the input-port to stop.
Line 9 Request the view to update map of revealed variables.

discard-signals-to-port(q) =

1 (for all r £ rng c pathmap do
2 o u tp u t m k -Discard-Signals(q) to r)

ty p e : Port =£•

O b jec tiv e Output to all path-instances telling them to delete signal instances wait
ing to be transmitted to one input-port.

P a ra m e te rs

q Csp-instance of the input-port.

3.2 V iew P rocessor
view processor () =

1 (del viewmap := [] type (Pid-Value Variable-identifieri) Value | UNDEFINED);
2 trap exit w ith error in
3 (cycle {input m k-Reveal (id, value, pid) from sdl-process
4 => viewmap := c viewmap -f [(pid, id) t—► value],
5 inpu t mk- View -Request (id, revealpid) from viewpid
6 => (let entry = (revealpid, id) in
7 if entry £ dom c viewmap
8 then ou tpu t mk- View-Answer(c viewmap(entry)) to viewpid
9 else ex it("§5.5.4.4: Revealing process is not alive”)),

10 inpu t m k -Die(pid) from system
11 =>■ (for all (pid, id) £ dom e viewmap do
12 viewmap := c viewmap \ {(pid, id)})}))

type : () =»

O b jec tiv e Interpret the concept of VIEW and REVEAL.

A lg o rith m

Line 1 Let viewmap denote a map from a pair of Pid- Value and Variable-
identifieri to a revealed Value.

Line 3 Handle the Reveal input.
Line 4 Update the map with the new entry.
Line 5 Handle a VIEW from sdl-process.
Line 8 Return the value to sdl-process.
Line 9 Define the error of a variable not being revealed.
Line 10 Handle the notice of a stopped sdl-process.
Line 11 Subtract all revealed variables of the stopped process from the map.

(3.1.12)

(3.2.1)

Fascicle X .5 — Rec. Z.100 — A nnex F.3 17

3 .3 P a th P rocessor

path processor (delayf) =

1 (del pqueue := () type [Signal-identifieri Value-List Pid-Value Port)*;
2 cycle {input m k-Queue-Signal(si, vl, sp, rcsp) from system
3 (pqueue := c pqueue ((si, vl, sp, rcsp))),
4 inpu t m k-Discard-Signals(q) from system
5 => (pqueue := (cpqueue[ij | 1 < i < len c pqueue A
6 (def (, , , r) : cpqueue[ij;
7 re tu rn r ^ ?))))
8 (delayf () A c pqueue ^ ())
9 (ou tpu t ink-Signal-Delivered(&-Signal-identifieri(hdcpqvie\ie),

10 s-Value-List(hdc pqueue),
11 B-Pid- Va/ue(hdc pqueue)) to s-P ort(hdc pqueue))
12 => (pqueue := t ic pqueue)})

type : (() Bool) =>

O b jec tiv e

P a ra m e te rs

delayf

A lg o rith m

Line 3
Line 4

Line 5

Line 8

Interpret the potential delay in a path. An instance exists for each
value of path in Reachability-set in ProcessDD.

A function delivering a Bool value at random. Used for modelling
delay on channels.

Insertion of a signal into the queue of the path.
Handle the removal of signals directed to a specific input-port, q.
Is used when the sdl-process of the input-port stops.
Let the new pqueue equal the old one except for items directed to
«•
This clause models the non-deterministic delay on the path. The
o u tp u t is guarded by a predicate: it may only take place if delayf
yields true and pqueue is non-empty. The concrete syntax is:

(<predicate>)(<communication event>)
=> <8tatement>

The indeterminism is expressed in terms of the imperative function
delayf, the definition of which is outside the scope of this formal
definition. If the predicate holds, the signal is output to the in
stance of the input-port.

Line 12 Remove the output signal from the queue.

(3.3.1)

18 Fascicle X .5 — R ec. Z.100 — A nnex F.3

3.4 In p u t-P o rt P rocessor

This processor implements the unbounded buffers of sdl-processes and timers. The un
bounded buffer is reflected in the processor as the variable queue.

input-port processor (ppid, expiredf) =

1 (del queue := () type (Signal-identifieri Value-List Pid- Value)*;
2 del waiting := false type Bool;
3 del pendingset := {} type Signal-identifieri-set;
4 del timers := [] type (Timer-identifieri Arglist) m»(Z7(sdl-process) Value Equivalent-test)]
5 cycle {input m k-Signal-Delivered(sid, vl, se) from p
6 handle-queue-insert(sid, vl, se,p),
7 inpu t mk-Next-Signal(saveset) from p
8 =$> handle-queue-extract(saveset, (), cqueue, p),
9 inpu t mk-Stop-Queue () from p

10 =*> stop,
11 inpu t mk - Set-Tim er (tid, v, al, et) from p
12 => handle-set-timer(tid, v, al, et, p),
13 in p u t m k-Re set -Timer (tid, al, et) from p
14 =4> handle-reset-timer(tid, al, et),
15 in p u t mk-Active-Request(tid, al, et) from p
16 =̂> handle-active-request(tid, al, et,p),
17 (ou tpu t m k -Time-Request() to timer]
18 handle-time-request(ppid, expiredf))})

type : Pid-Value Is-expired =>

O bjective

Param eters

pcsp
expiredf

A lgorithm

Line 1

Line 2

Line 3

Line 4

Line 5

Interpret the input-port of sdl-process. An instance exists for each
instance of sdl-process.

The Pid-value of the served sdl-process.
Function delivering True if a given timer has expired.

Let queue denote the unbounded buffer of the sdl-process. Each
entry contains a Signal-identifieri, a possibly empty list of Values
and a Pid-Value denoting “SENDER” .
Let waiting denote whether the sdl-process is waiting reply after a
request for Next-Signal, which could not be answered immediately
because queue was empty, or because all signals present in the
queue were members of saveset parameter. In case of a pending
request, pendingset (see below) holds the saveset of the pending
request.
Let pendingset denote the saveset associated with a pending re
quest from sdl-process as indicated by waiting.
Let timers denote a map for active timers. The II (sdl-process) of
the map denotes the sdl-process which sets the timer. The Value
of the map denotes the expiration time, and is nil after expiration
(that is: when the time is on the queue). The Equivalence-test is
used to compare values of Arglists (e.g. to compare an element
from the timers map with a signal in the queue in the function
handle-queue-extract). Value holds the expiration time. A timer is
subtracted from the map, when it is returned to sdl-process as a
signal.
Is the entry of the main cycle of input-port.

(3.4.1)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 19

Line 7 Note: this input cannot always be answered immediately. The
reason for introducing the variables waiting and pendingset is the
SAVE construct. If a pure queue structure, then an input-guard
could be used to exclude communication of Next-Signal in case of
empty queue.

Line 17 Include one output in this scheme. It is the repeated request for
the actual time from the timer.

handle-queue-insert{sid, vl, se, pcsp) =

1 (queue := cqueue {{sid, vl, se));
2 if ^waiting then
3 handle -queue-extract {c pendingset, (), c queue, pcsp)
4 else
5 I)

type : Signal-identifieri Value-List Pid-Value II{sdl-process) =>

O b je c tiv e Insert a signal in the queue.

P a ra m e te rs

sid Signal to be inserted.
vl Its optional list of values.
se Sender.
pcsp The CSP-instance of the served sdl-process.

A lg o rith m

Line 1 Concatenate the signal to queue.
Line 2-3 Test if a Next-Signal is pending, and if so, extract an element from

the queue. This may lead to an Input-Signal to sdl-process.

(3.4.2)

20 Fascicle X .5 — R ec. Z.100 — A nnex F.3

handle-queue-extract(saveset, qf, qa,pcsp) = (3.4.3)

1 (if qa ^ () then
2 (let s = hd qa in
3 let (sid, vl, se) = s in
4 (if sid £ saveset
5 then handle-queue-extract(saveset, qf (s), tl qa,pcsp)
6 else (output m k-Input-Signal(sid, vl, se) to pcsp\
7 queue := qf /'x tl qa',
8 waiting := false;
9 i f (s id ,) £ dom e timers then

10 if (3a, et)((sid, a) £ d om e timers A
11 (,, et) = c timeis(sid, a) A
12 same-argument-values(a, vl, et)) then
13 (d ef (a, et) s.t. (sid, a) £ d om e timers A
14 (,, et) = c timers (sid, a) A same-argument-values(a, vl, et);
15 timers := c timers \ {(sid, a)})
16 else
17 I
18 else
19 I)))
20 else
21 (pendingset := saveset',
22 waiting := true))

ty p e: Signal-identifieri- set
(Signal-identifieri Value-List Pid-Value)*
(Signal-identifieri Value-List Pid-Value)* II(sdl-process) =>■

O bjective

Param eters

Extract one element from the queue and send it to sdl-process if sdl-
process is ready to receive input.

saveset

<lf
qa
pcsp

Set of signals not to be extracted from queue in this situation.
Part of the queue already examined.
Part of the queue which yet needs examination.
The CSP-instance of the served sdl-process.

A lgorithm

Line 1
Line 2
Line 3

Line 5

Line 6

Line 9
Line 13

Line 21

Stop the extraction without success if qa is empty.
Otherwise take the first element of qa and
decompose the queue into Signal-identifieri, a list of Values, and
“SENDER” .
If the signal is in saveset, then concatenate it to the queue which
has been examined, and repeat the search on the remaining part
of qa.
Output Next-Signal to sdl-process if si is not in saveset. Update
the queue by concatenation of qf and remaining part of qa. Set the
flag for no pending requests, and finally in
update the timers map, if the signal extracted was a timer.
The timer to be removed should have same identifier as the signal,
si and a comparison by et should conclude, that the argument list
from the timer is equivalent to the one from the timers map.
In case of no success, set the mark for pending request with the
actual saveset.

Fascicle X .5 — R ec. Z.100 — A nnex F.3 21

1 (len a = len vl A
2 (Vt G ind a)(et(a[i], *>![*])))

type : Arglist Arglist Equivalent-test —► Bool

same-argument-values{a, vl, et) =

O b je c tiv e Test whether two lists of Termis are equivalent, as defined by et.
P a ra m e te rs

a One list to check.
vl The other one.
et Equivalent-test function.

A lg o rith m

Line 1 The length of the two lists should be the same.
Line 2 For each index the test should success.

handle-set-timer{tid, v, al, et, p) =

1 (handle-reset-timer{tid, al, et);
2 timers := c timers + [{tid, al) {p, v, et)])

type : Timer-identifieri Value Arglist Equivalent-test II{sdl-process) =>

O b jec tiv e
P a ra m e te rs

tid
v
al
et

P

A lg o rith m

Line 1

Line 2

handle-reset-timer{tid, al, et) ==

1 (for all {t, a) G dom e timers do
2 (if (3a)((tid , a) G dom e timers A
3 same-argument-values{a, al, et)) then
4 (def (, e ,) : ctim ers{tid,al);
5 (timers := c timers \ {(t, a)};
6 if c e = nil
7 then {handle-remove-timer-from-queue{tid, al, et, (), cqueue))
8 else I))
9 else

10 I))

type : Timer-identifieri Arglist Equivalent-test =$■

Set a timer, by updating the timers map.

Identifier of the timer.
Expiration time.
Argument list of the timer.
Corresponding equivalence-test function, which may be applied to
each member in the argument list.
The sdl-process which set the timer.

Reset a possibly existing timer with same identifier and argument-
list.
Update the timers map.

(3.4.4)

(3.4.5)

(3.4.6)

22 Fascicle X .5 — R ec. Z.100 — A nnex F.3

O b jec tiv e Reset a timer by updating the timers map and the queue.

P a ra m e te rs

tid Identifier of the timer.
al Argument list of the timer.
et Corresponding equivalence-test function, which may be applied to

each member in the argument list.

A lg o rith m

Line 2 Select the appropriate timer as having an argument list such that
(tid,a) is in the domain for the timers map, and such that a matches
al by applying the equivalence-test, et.

Line 5 Subtract (tid, a) from the timers map.
Line 7 Remove tid from the queue, if it has been put there (marked in the

Value field of the range for timers map).

handle-remove-timer-from-queue(sid, al, et, qf, qa) =

1 (let (si, v l ,) = hd qa in
2 if si = sid A same-argument-values(vl, al, et)
3 then queue := qf ^ tl qa
4 else handle-remove-timer-from-queue(sid, al, et, qf (hd qa), tl qa))

type : Signal-identifieri Arglist Equivalent-test
(Signal-identifieri [Value*] Pid-Value)*
(Signal-identifieri [Value*] Pid-Value)* =>

O b jec tiv e

P a ra m e te rs

sid
al
et

qf
qa

A lg o rith m

Line 1
Line 3

Line I

Remove one element from the queue.

Signal to be removed.
Argument list of the timer.
Corresponding equivalence-test function , which may be applied to
each member in the argument list.
Part of the queue examined.
Part of the queue to be examined yet.

Let si denote the Signal-identifieri of the first element of qa.
If si is the signal to be removed then update queue to be qf con
catenated with remaining part of qa, otherwise in
continue the search on the remaining part of qa, note that sid
should always be present in the queue, on the outermost call of the
function, so a test terminating the recursion is not needed!

handle-active-request(tid, al, et, pcsp) =

1 (def stat : (3a)((tid, a) € dom e timers A
2 same-argument-values(al, a, et))\
3 o u tp u t m k -Active-Answer(stat) to pcsp)

type : Timer-identifieri Arglist Equivalent-test II(sdl-process) =£•

O b jec tiv e Supply the answer to ACTIVE based on the timers map.

(3.4.7)

(3.4.8)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 23

P aram eters

tid Identifier of the timer.
al Argument list of the timer.
et Corresponding equivalence-test function , which may be applied to

each member of the argument list.
pcsp The CSP-instance of the sdl-process being served.

A lgorithm

Line 1 Let stat denote true if the specified timer is in the domain of the
timers map, otherwise false.

Line 3 Use this value as parameter in the output to sdl-process.

handle-time-request(ppid, expiredf) ^

1 (inpu t m k -Tim e-Answer(t) from timer
2 =$r (for all (tid, al) E dom e timers do
3 (def (p, expt, et) : ctim ers(tid, a/);
4 if expt nil A expiredf (expt, t) then
5 (timers := c timers + [(tid, al) t—► (p, nil, et)];
6 handle-queue-insert(tid, al,ppid,p))
7 else
8 I)))

type : Value Is-expired =$■

Handle the comparison with the actual time for all timers being set.

The Pid-value of the sdl-process being served.
Function (constructed in Annex F.2) delivering True if a given
timer has expired.

Receive the actual time from timer in t.
Start the examination for timers set.
Examine whether it is already on the queue, and whether it is
expired.
In that case change the timers map to contain “on the queue” .
Insert the timer on the queue, with “SENDER” equal to “SELF”
for the served sdl-process.

O bjective
P aram eters

ppid
expiredf

A lgorithm

Line 1
Line 2
Line 4

Line 5
Line 6

(3.4.9)

24 Fascicle X .5 — R ec. Z.100 — A nnex F.3

3.5 T im er P rocessor

This processor has been introduced to interpret the concept of global time in SDL. It results
in a very simple communication with an external tick processor.

timer processor (tim ein f) ~

1 (let (tim e f, startt) — tim einf in
2 del time-now := startt type Value;
3 cycle {input mk- Time () from tick
4 => time-now := tim ef (c time-now),
5 inpu t mk- Time - Request () from p
6 =>• o u tp u t m k-Tim e-Answer(c time-now) to p})

type : Time-information =>

O b jec tiv e Interpret the timer-handling in underlying system.
P a ra m e te rs The object timem/contains two components (line 1) generated in Annex

F.2:

tim ef A function being called on each “tick” from the environment, the
tim ef function thus encapsulates two problems: interpretation of
” -f” for the Time sort and the resolution of time values within the
system (i.e. what is the increment in NOW for each ’’tick”).

startt The initial value of NOW.

Let time-now denote the (only one) global time of the system.
By using a model which includes the start time for interpretation
(startt) and the updating (the function timef) it is hoped to give a
correct description of SDL’s time-concept.
Update the time.
Return NOW.

3 .6 In form al Tick P rocessor
tick processor () “

1 (cycle (ou tpu t m k-Tim e() to tim er;
2 /* models informally the interval between consecutive ticks */))

type : () =*■

A lg o rith m

Line 2

Line 4
Line 6

(3.5.1)

(3.6.1)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 25

4 T h e S D L -P ro cess

This section describes how the META-IV processor sdl-process interpret an instance of an
SDL-process. The definition of the SDL-process is from the entity-dict. All inter-process
and other communication is managed by the underlying system.

Each SDL-process instance have a local storage which type is given by:

1 Stg = Identifieri ®'{Value | UNDEFINED)

4.1 T h e sd l-p rocess
The META-IV processor sdl-process is created by the processor system and by its actual
parameters given knowledge of its surroundings, itself and the SDL-process it must interpret.
An sdl-process instance cease to exist when the SDL-process has been interpreted.

sdl-process processor (parentp, selfp, actparml, process-id)(dict) =

1 (let xrik-Identifier^ qual, nm) = process-id in
2 let nullterm = diet (NULLVALUE) in
3 def dict\ : diet + [SCOPEUNIT i—► qual (m k-Process-qualifieri(nm))] +
4 [PORT i—► sta rt input-port (selfp, dict(EXPIREDF))] +
5 [SELF i—► selfp] +
6 [PARENT i—► (parentp = nil
7 -► nullterm,
8 T -» parentp)];
9 del sender := nullterm type Pid -Value;

10 del offspring := nullterm type Pid-Value;
11 del stg := [] type Stg;
12 (trap exit() w ith error in
13 (trap exit(STOP) w ith o u tp u t m k-Stop() to system in
14 (let m k -ProcessDD(formparml, ,, graph,) = dicti((process-id, PROCESS)) in
15 (def dict2 : dict\ -f- [(id, VALUE) i—► mk-VarDD(id, sort, rev, stg) |
16 (id, VALUE) £ dom dicti A is- VarDD(dict\((id, VALUE))) A
17 s-Qualifieri(id) = diefi(SCOPEUNIT) A
18 mk- VarDD(, sort, rev,) = dicii((id, VALUE))];
19 init-process-decls(dict2);
20 init-process-parms(formparml, actparml) (dict2);
21 o u tp u t xnk-Process-Initiated(dict2(POKT)) to system;
22 int -process-graph (graph)(dict2))))))

type : [Pid-Value] Pid-Value Value-List Process-identifieri —* Entity-dict =>

O bjective
P aram eters

parentp
selfp
actparml
process-id

A lgorithm

Line 2

Interprets an sdl-process.

The SDL PID-value of the process that created this one.
The SDL PID-value of this process.
The list of actual parameters.
The SDL-identifier of this process.

Extract the ASi version of the PID value NULL.

26 Fascicle X .5 — R ec. Z.100 — A nnex F.3

Line 3 - 6 Augment the diet so that:
Line 3 SCOPEUNIT denotes the current scope. SCOPEUNIT is updated

whenever the interpretation of the SDL-process enters a new scope
unit,

Line 4 PORT denotes the CSP-name of the input port, The actual pa
rameters for the creation of the input-port processor is the SDL
PID-value of this process and a function to test whether or not a
timer is expired. The input port is the process that handles the
signals send to the process and manipulation of timers.

Line 5 SELF denotes the SDL PID-value of the process itself,
Line 6 PARENT denotes the SDL PID-value of the parent process, if any.

There is no parent process if the process is created during system
initialization.

Line 9 - 1 0 Declare the variables sender and offspring, both initialized to null
term.

Line 11 Declare a variable, stg, which are to be the local storage of this
sdl-process and initiate it to be empty.

Line 12 Trap any exit with error.
Line 13 Traps ex it (STOP) by sending a stop signal to the system and ter

minate.
Line 1 5 -1 8 diet is changed so that it for each local variable contain a reference

to the local storage. Both declared variable and formal parameters
are considered as local variables.

Line 19 Augment the storage according to the declarations of the sdl-
process.

Line 20 Augment the storage according to the contents of the actual pa
rameters.

Line 21 The process is now initiated and the system processor is given
knowledge about this and the CSP name of the input-port processor
by outputting the signal Process-Initiated to system.

Line 22 Interpret the sdl-process.

init-process -decls(dict) =

1 (for all (id, VALUE) £ dom d id do
2 if is -VarDD(did ((id, VALUE))) A s-Qualifieri(id) = dicf(SCOPEUNIT)
3 then update-stg(id, nil)(diet)
4 else I)

ty p e : Entity-dict

O b jec tiv e

A lg o rith m

Line 1
Line 2
Line 3

Update the storage with the variable declarations associated to the sdl-
process being interpreted.

For all those identifiers with VALUE attribute and
which are variable descriptors and declared in this process,
the storage is initiated with nil. The optional initiation belonging
to a variable declaration is in ASx transformed into assignments in
a task prefixing the start transition.

(4.1.2)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 27

1 (for all i € ind formparml do
2 wp<ia<e-5<5f(/ormparm/[i], ac£parra/[i])(cfoc<))

type : ParameterDD* Value-List —* Entity-dict =>

Updates the local process storage with formal process parameters and
the optionally applied actual parameters.

The list of formal parameters.
The list of actual parameters.

The local storage is updated with the variable denoted by each
formal parameter and the value of its associated actual parameter.
The range check is postponed to update-stg.

init-proce s s -parms (formparml, actparml)(diet) =

4 .2 In terp reta tio n o f a process-grap h

Describes the interpretation of a process-graph divided into an interpretation function for
each type of graph-node.

O bjective

P aram eters

formparml
actparml

A lgorithm

Line 1 - 2

int -process -graph(graph)(diet) —

1 (let mk-Process-graphi(xnk-Process-start-nodei(trans), stateset) — graph in
2 (tlxe [statenm t—*• int-state-node(statenode)(dict) |
3 statenode £ stateset A s-State-name\(statenode) = statenm] in
4 (let m k -Transition\(nodel, termordec) = trans in
5 int-transition(nodel, termordec)(diet))))

type : Process-graphi —► Entity-dict

O bjective

P aram eters

graph

A lgorithm

Line 1
Line 2

Line 4

Interprets the SDL process graph

The process graph.

Partition of the graph into a start transition and a set of states.
Traps all exit(state-nam e) from int-state-node and int-transition
by interpreting the associated S ta te - n o d e The tix e construct is
a very convenient way to model the “goto”s used in the nextstate
nodes. The keyword tix e is followed by a map from state names
into call of int-state-node with the state-node associated to state
name as actual parameter. If an exit(statenm i) is encountered
within the scope of the tixe-construct, that is either in the range of
the tixe map (int-state-node) or in int-transition, the interpretation
of the process is continued interpreting the state-node with the
name statenm i.
Interpretation of the start-transition.

(4.1.3)

(4.2.1)

28 Fascicle X .5 — R ec. Z.100 — A nnex F.3

int-state-node(mk-State-node\ (, mk-Save-signalseti(saveset), inputset))(did) = (4.2.2)

1 (ou tpu t mk-Next-Signal(saveset) to chct (PORT);
2 in p u t m k-Input-Signal(sid, actparml, sender') from dfcf(PORT)
3 =4> (sender := sender' ;
4 (let {in/mode} = {inp £ inputset \ s-Signal-identifieri (inp) = 3id} in
5 let nik-Input-nodei(, formparml, trans) = inpnode in
6 for all * £ ind formparml do
7 (if formparml[i] ^ nil
8 then update-stg(formparml, actparml[i])(did)
9 else I);

10 (let mk-Transitioni(nodel, termordec) = trans in
11 int-transition(nodel, termordec)(did)))))

type : State-nodei —* Entity-dict

O b jec tiv e

P a ra m e te rs

state-node

A lg o rith m

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6 - 9

Line 11

Request a new signal from the input-port, receives it and interprets the
corresponding transition.

Composed of a saveset which is the signal to be saved by the input-
port and an inputset which is a set of signals and associated tran
sitions.

Request the input-port to output a signal which is not in the
saveset, and to save all signals belonging to the saveset.
Receive a signal composed of a signal-identifier, an actual param
eter list and the SDL Pid-value of the sender.
The process variable sender is updated with the sender value of
the just received signal.
Select that input node that have the same signal identifier as the
received signal.
Decompose the selected input into the formal parameter list of the
signal and the associated transition.
For all the formal parameters: if the formal parameter is present
(different from nil), then the storage is updated with its associated
variable and the value of the actual parameter.
Interpret the selected transition.

int-transition(nodel, termordec)(did) =

1 (if nodel = ()
2 then cases termordec:
3 (mk-Nextstate-nodei (nm)
4 -» exit(nm),
5 m k-Stop-nodei ()
6 -♦ exit(STOP),
7 mk-Return-nodei()
8 - exit(RETURIM),
9 mk-Decision-node\ (, ,)

10 -> int-decision-node(termordec)(did))
11 else (int-graph-node (hd nodel)(did);
12 int-transition(t 1 nodel, termordec)(did)))

type : Graph-nodei* (Terminatori | Decision-nodei) —♦

(4.2.3)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 29

O bjective

Param eters

Interprets a transition.

nodel
termordec

A lg o rith m

Line 2
Line 3

Line 5
Line 7
Line 9
Line 10

Line 11

The list of graph nodes not yet interpreted.
A terminator node or a decision node.

If the node list is empty then termordec is interpreted.
A nextstate node is interpreted by exit with the name of the next
state.
A stop node by exit with STOP.
A return node by exit with RETURN.
A decision node by calling the int-decision-node function.
If the node list is not empty then the first node is interpreted by
the function int-graph-node.
The remaining part of the transition is interpreted by recursion.

int-decision-node(uik.-Decision-nodei(quest, answset, elseansw))(did) =

1 (let answset' = matching-answer{quest, answset){diet) in
2 (if answset1 {}
3 th en (let {va3n-Decision-answer\{, trans)} = answset' in
4 let nik-Transitioni{nodel, termordec) = trans in
5 int-transition{nodel, termordec){dict))
6 else {elseansw ^ nil
7 -» (let mk-Else-answeri{trans) = elseansw in
8 let xnk-Transition\{nodel, termordec) = trans in
9 int-transition{nodel, termordec){dict)),

10 T -♦ ex it("§2.7.5: No matching answer"))))

type : Decision-nodei —* Entity-dict =>

O b je c tiv e Interpret a decision-node by on the basis of the question to select an
answer from the answer set and interprets the associated transition or
if there is not an matching answer in the answer set to interpret the else
transition. An error occurs if there is no answer matching the question
and no else answer.

The question of the decision.
The set of answers and associated transitions.
The optionally else transition.

Extract the set of matching answers by calling matching-answer.
If the extracted set of answers is not empty the it contain only one
answer (it is tested in the static semantic that the answers do not
overlap) and the transition associated with the selected answer is
interpreted.
If no matching answers is found then the transition associated with
else answer is interpreted.
If no matching answers is found and no else answer is supplied, an
error occurs.

P a ra m e te rs

quest
answset
elseansw

A lg o rith m

Line 1
Line 2 - 5

Line 6 - 9

Line 10

(4.2.4)

30 Fascicle X .5 — R ec. Z.100 — A nnex F.3

matching-answer(quest, answset)(diet) = (4.2.5)

1 (let gterm = dict(TRUEVALUE) in
2 {mk-Decision-answeri(valsetortext,) £ answset |
3 (is-Range-condition(valsetortext) A is-E ipressioni^uest)
4 -► (let m k-Range-condition(orid, cset) = valsetortext in
5 let operatori = make-valuetest-operator(quest, orid, cset) in
6 is-equivalent((trap exit() w ith false in
7 eua/-ea:presston(oJperatori)(<i*ct)), gterm, diet (SCOP EUNIT))(diet)),
8 T -> text-equality(quest, valsetortext))})

ty p e : Decision-questioni Decision-answeri-set —♦ Entity-dict —> Decision-answeri-set

O bjective

P aram eters

quest
answset

R esu lt
A lgorithm

Line 1
Line 2 -8

Line 3 - 6

Line 8

Find the set of answers in the supplied set of answers which match the
supplied question.

The question of the decision.
The set of answers and associated transitions.

The matching answer and its associated transition.

Extract the ASi version of the AS0 literal TRUE.
Construct the set of answers from answset selected by the predi
cates in Line 3 - 8 .
If neither the question nor the answer is informal then a value test
operator is made to test whether the question match the answer
or not.
If the question or the answer is informal the equality is tested by
text-equality.

make-valuetest-operator (expl, orid, cset) =

1 (let v £ cset in
2 let op = cases v :
3 (mk-CZosed-ran^e1(aop, c l, c2)
4 -* (let m k-Open-range\(relop, co l) = c l in
5 let t l = m k-Operator-application(relop, (col, exp 1)),
6 t2 = make-valuetest-operator(expl, orid, {c2}) in
7 m k -Operator-application(aop, (t l , t2))),
8 mk-Open-rangei(relop, c l)
9 -» mk - Operator-applicationi(relop, (expl, c l))) in

10 i f card cset = 1 then
11 op
12 else
13 (let op' — make-valuetest-operator(exp 1, orid, cset — {u}) in
14 ink-Operator-application (orid, (op, op1))))

ty p e : Expression Operator-identifieri C ondition -set —► Expression

O bjective

Param eters

expi

Make an operator that are able to test whether the expression expi
fulfill the condition composed by the identified operator and orid and
the range condition set cset.

The expression to be tested.

(4.2.6)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 31

orid Identifies the operator which are used to compose the condition in
cset.

cset Set of range condition which exp\ should fulfill.

R e su lt An operator capable of testing whether the value of exp\ match the
condition composed by the operator identified by orid and cset.

A lg o rith m

Line 1 Select a range condition, v, in cset.
Line 3 If v is a Closed-rangei it is decomposed into a and-operator, aop,

and two Open-rangei conditions, ci and c2 .
Line 5 Let <1 denote the value test operator for ci.
Line 6 Let <2 denote the value test operator for c2 .
Line 7 Compose an Operator-application that applies ti and <2 Qop,

and let op denote this application i.e. construct the operator
"A N D "("<="(col,expl) , t2) .

Line 8 Compose an Operator-application that applies exp\ and ci on relop
and call it t; i.e. construct the operator "< = "(ex p l ,c l) .

Line 11 If v is the last element in cset op is returned.
Line 13 Make a value test operator for the rest of the cset and call it op’.
Line 14 Compose an Operator-application where orid is applied the two

operator applications op and op ’.

text-equality (exp-text, value set-text) =

1 (/* This informal M eta-IV text denotes the equality test */;
2 /* between informal question and/or informal answer */)

type : (Informal-texti \ Expression) (Informal-text\ \ Range-condition) —► Bool

int - graph -node (graphnode)(dict) =

1 (cases graphnode:
2 (m k-T ask-node/silt) int-task-node(silt)(dict),
3 mk-Output-node\ (, , ,) — int-output-node(graphnode)(dict),
4 m k -Create -request -node\(,) -* int-create-node (graphnode) (diet),
5 m k-Call-nodei(,) int-call-node(graphnode)(dict),
6 m k-5et-nodei(,,) int-set-node(graphnode)(dict),
7 mk-Reset-node\ (,) -» int-reset-node(graphnode)(dict)))

type : Graph-node 1 —► Entity-dict =>

O b je c tiv e Interprets a graph node.
P a ra m e te rs

graphnode The graphnode to be interpreted.

int-task-node(silt)(dict) ~

1 (cases silt:
2 (m k - Assignment-statement^ ,) -* int-assign-stm t(silt)(dict),
3 m k-Informal-text\() -» int-informal-text(silt)))

type : (Assignment-statement\ | Informal-text/) —> Entity-dict

(4.2.7)

(4.2.8)

(4.2.9)

32 Fascicle X .5 — R ec. Z.100 — A nnex F.3

silt

A lg o rith m

Line 1

O bjective
Param eters

An assignment statement or informal text.

Silt is interpreted as either an assignment or as informal text.

Interpret a task-node.

int-set-node(mk-Set-nodei(texp, tid , exprl))(dict) =

1 (def va/ : eval-expression(texp)(dict);
2 d ef va il : (eval-expression(exprl[i])(dict) | 1 < i < len exprl);
3 let mk - SignalDD (sortl) = dict((tid, SIGNAL)) in
4 d ef vail' : (reduce-term(sortl[i\, vall[i], diet (SCO PE UNIT))(diet) | 1 < i < len vail);
5 d e f / (t l , t2) : is-equivalent (t l , t2, dict(SCOPEl)N\T))(dict);
6 if(V t £ ind vall)(range-check(sortl[i\, vail'[i])(diet))
7 then o u tp u t m k-Set-Tim er(tid, val, va il',f) to drcf(PORT)
8 else exit("§5.4.1.9: Value is not within the range of the Syntype”))

type : Set-nodei —* Entity-dict =>

O b jec tiv e

P a ra m e te rs

texp

tid
exprl

A lg o rith m

Line 1
Line 4
Line 5

Line 6

Interprets the set node by checking the actual parameters of the timer-
signal for range-errors and then output the set timer signal to the input-
port.

The timer expression whose value denote the time to which the
timer should be set.
The identifier of the timer to be set.
The actual parameters for the timer.

Evaluate the timer expression and the list of actual parameters.
See reduce-term.
Make the isequivalent function to be used in the inputport proces
sor to test whether this timer already is set with the same actual
parameters.
Test if the values of the actual parameters for the timer are within
the range of their associated sorts.

int-reset-node(mk-Reset-nodei(tid, exprl))(dict) =

1 (def v a il : (eval-expression(exprl[i])(dict) | 1 < i < len exprl);
2 let m k-SignalDD (sortl) = dict((tid, SIGNAL)) in
3 d ef vail' : (reduce-term(sortl[i\, vall[i], dict(SCOPEUN\T))(dict) \ 1 < i < len vail);
4 def /(<1, t2) : is-equivalent(tl, t2, dic<(SCOPEUNIT))(chcf);
5 if (Vt £ ind vall1)(range-check(sortl[i\, vall'[i])(diet))
6 then o u tp u t m k-Reset -Timer (tid, vail' , f) to chc< (PORT)
7 else e x it(“§5.4.1.9: Value is not within the range of the Syntype”))

type : Reset-nodei —»• Entity-dict =>

O b jec tiv e Interpret the reset-node by checking whether the actual parameters of
the timer signal are within the range of their sorts, and if so, output
the Reset-Timer signal to the input-port processor.

(4.2.10)

(4.2.11)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 33

P a ra m e te rs

tid The identifier of the timer to be reset.
exprl The actual parameters for the timer.

A lg o rith m

Line 1 Evaluate the timer the list of actual parameters.
Line 3 See Reduce-term.
Line 4 Make the is-equivalent function to be used in the input-port proces

sor to test whether this timer already is set with the same actual
parameters.

Line 5 Test if the values of the actual parameters for the timer are within
the range of their associated sorts.

int-aasign-stmt(mk-Assignm ent-statement\(vid, exp))(dict) =

1 (def val : eval-expression(exp)(dict)\
2 update-stg(vid, val)(dict))

type : Assignment-statementi —► Entity-dict =>

O b je c tiv e The variable is assigned to the value of the expression.

P a ra m e te rs

vid The variable.
exp The expression.

A lg o rith m

Line 1 Evaluate the value of the expression.
Line 2 Update the storage with vid and value of the expression.

int-informal-text (ink-Informal-texti()) =

1 (/* This informal M eta-IV text denotes the interpretation of informal text */)

type : Informal-text\ =>

int-output-node(xnk-Output-node\(sid\, exprl, dest, via))(dict) =

1 (def vail : (eval-expression(exprl[i])(dict) | 1 < * < len exprl);
2 d ef pidval : eval-expression(dest)(dict)-,
3 let xnk-SignalDD(sortl) = dict((sid\, SIGNAL)) in
4 d ef vail' : (reduce-term(sortl[i\, vall[i], dic<(SCOPEUI\IIT))(dfc<) | 1 < i < len vail);
5 if (Vi £ ind vall')(range-check(sortl[i], vall'[i])(diet))
6 then o u tp u t m k-5end-Signal(sid\, vail', pidval, via) to system
7 else exit("§5.4.1.9: Value is not within the range of the Syntype”))

type : Output-nodei —> Entity-dict =>

O b je c tiv e Interpret an output node by checking if the actual parameters are within
the range of their sorts, if so, Send-Signal is output to the system pro
cessor.

(4.2.12)

(4.2.13)

(4.2.14)

34 Fascicle X .5 — R ec. Z.100 — A nnex F.3

P a ra m e te rs

sid\ The identifier of the signal to be send.
exprl The actual parameters for the signal.
deat A PID expression denoting the process to which the signal should

be send.
via A set of path identifiers denoting the path the signal should follow.

A lg o rith m

Line 1 Evaluate the list of actual parameters and the pid-value.
Line 4 See reduce-term.
Line 5 Test if the values of the actual parameters for the signal are within

the range of their associated sorts.

int-create-node(vnV.-Create-request-node\(pid, exprl)){dict) = (4.2.15)

1 (def v a il: (eval-expression(exprl[i])(dict) | 1 < i < len exprl)]
2 let m k -ProcessDD(formparms,, , ,) = dict((pid, PROCESS)) in
3 let sortl = (B-Sort-reference-identifieri(dict((formparms[i\, VALUE))) | 1 < i < len formparms) in
4 def vail1 : (reduce-term(sortl[i], vall[i], diet (SCOP EUI\IIT))(diet) | 1 < * < len vail);
5 o u tp u t m k-Create-Instance-Request(pid, vail1) to system ;
6 in p u t nik-Create-Instance-Answer(offspring') from system
7 =£• if offspring' = nil then
8 (let nullterm = dtct(IMULLVALUE) in
9 offspring := nullterm)

10 else
11 offspring := offspring1)

type : Create-request-nodei —► Entity-dict =>

O b jec tiv e Interprets the create node.
P a ra m e te rs

pid The identifier of the process to be created.
exprl The list of actual parameters.

A lg o rith m

Line 1 Evaluate the value of each actual parameter.
Line 2 Establish the list of Sort-reference-identifiers of the formal param

eters.
Line 4 See reduce-term.
Line 5 Output an Create-Instance-Request to the system processor.
Line 6 Input either the PID value of the created process or, if the process

could not be created, nil.
Line 9 If the process could not be created the offspring assigned to the

nullterm. A new process cannot be created if there already exists
the maximal number of instances of that process.

Line 11 If the process could be created then offspring is assigned to the
PID value received from the system processor.

Fascicle X .5 — R ec. Z.100 — A nnex F.3 35

int-call-node(mk.-Call-node\(prd-id, exprl))(dict) = (4.2.16)

1 (del newstg := [] type Stg]
2 let m k-ProcedureDD(formparms, graph) = dict((prd-id, PROCEDURE)) in
3 let xrik-Identifieri(qual1 nm) = prd-id in
4 let newlevel = guaZ ^ (m k-Procedure-qualifieri (nm)) in
5 let decl-parm-set — {(m.k-Identifieri(l,), VALUE) € dom diet | Z = newlevel} in
6 let dicti = establ-dyn-dict(formparms, exprl, newstg, decl-parm-set)(dict) in
7 let dict2 = dicti + [SCOPEUNIT newlevel] in
8 (trap exit(RETURN) w ith I in
9 int -procedure -graph(graph)(dictz)))

type : Call-nodei —► Entity-dict

O b jec tiv e
P a ra m e te rs

prd-id
exprl

A lg o rith m

Line 1

Line 2

Line 3 - 4
Line 5

Line 6

Line 7 - 9

Interpret a procedure call node.

The identifier of the procedure to be called.
The actual parameters for the procedure call.

Declare a new empty storage variable to be used as the storage
local to the procedure.
Establish the list of procedure formal parameters and the procedure
graph.
Calculate the scope level of the procedure.
Extract the set of variables defined or used as formal parameters
on this level.
Make a new diet and update the new storage according to the
new definitions and the formal and actual parameters by calling
establ-dyn-dict.
Enter the new level and trap ex it (RETURN) from the interpreta
tion of the procedure graph by doing nothing.

int-procedure-graph(graph)(dict) =

1 (let xnk-Procedure-graphi(mk-Procedure-start-nodei(trans), stateset)
2 tixe [statenm int-state-node(statenode)(dict) \
3 statenode £ stateset A &-State-namei(statenode) = statenm] in
4 let m k -Transitioni(nodel, termordec) = trans in
5 int-transition(nodel, termordec)(diet))

type : Procedure-graphs —* Entity-dict =>

graph in

O b jec tiv e
P a ra m e te rs

graph

A lg o rith m

Line 1
Line 2

Line 4

Interpret a procedure graph.

The procedure graph.

Partition of the graph into a start transition and a set of states.
Trap all ex it (statenm) from int-state-node and int-transition by
interpreting the associated state-node (An explanation of the tixe
construct is given in the annotations of int-process-graph).
Interpretation of the start-transition.

(4.2.17)

36 Fascicle X .5 — R ec. Z.100 — A nnex F.3

4.3 A u xiliary fu nctions
The following defines the auxiliary functions used in the previous sections. The auxiliary
functions evaluate expressions, perform range check, manages the local storage and the
dynamic part of the entity diet (see section 2.6).

eval-expression(exp) (diet) =

1 (if exp = nil then
2 nil
3 else
4 cases exp:
5 (m k-Identifieri(,)
6 eval-variable-identifier(exp)(dict),
7 mk- Ground - expression i ()
8 -♦ eval-ground - expression (exp)(dict),
9 mk-Operator-application^,)

10 -► eval-operator-application(exp)(dict).
11 mk-Conditional-expressioni(el, e2, e3)
12 -* eval-conditional-expression(e 1, e2, e
13 m k -View-expressioni(,)
14 eval-view-expression(exp)(dict),
15 mk-Timer-active-expressioni(,)
16 -* eval-active - expression (exp) (diet),
17 mk-Now-expres$ioni()
18 -» eval-now-expressionQ,
19 m k-Self -expressioni()
20 -» mk-Ground-termi(dict(SELF)),
21 mk-Parent-expression\ ()
22 -» mk-Ground-ferm1(dict(PARENT)),
23 mk-Offspring-expressioni ()
24 mk- Ground-termi (c offspring),
25 mk-Sender-expressioni ()
26 -» mk-Ground-term i(c sender)))

type : [Expressioni] —* Entity-dict => [Value]

O bjective
P aram eters

R esu lt
A lgorithm

Line 1
Line 19

Evaluate an ASi expression.

The ASi expression.

The value of the expression.

If the expression equals nil the result is the nil value.
If the expression is a Self, Parent, Offspring or Sender-expression
the ground-term of the contents of self, parent, offspring or sender
is returned.

(4.3.1)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 37

1 (let mk- VarDD (vid , ,, stg) = dict((id , VALUE)) in
2 i f cstg(vid) = UNDEFINED
3 then e x it ("§5.5.2.2: Value of accessed variable is undefined”)
4 else c stg (vid))

type : Identifieri Entity-dict =$> Value

Evaluate a variable identifier.

The variable identifier.

The contents, if any, of that variable.

Gets the referenced identifier.
If the contents of storage for the referenced identifier is undefined
an error occurs.
The contents of storage for the referenced identifier is returned.

eval-ground - expression (mk- Ground - expressioni (ex))(dict) =

1 (let m k-Ground-termi(e) = ex in
2 if is-Identifieri(e) then

eval-variable-identifier (id)(dict) =

3 ex
4 else
5 if is-Conditional-termi(e) then
6 (let nik-Conditional-termi(bext exl, ex2) = e in
7 eval - conditional-expression(bex, ex l, ex2)(dict))
8 else
9 (let (opid, arglist) = e in

10 let m k -OperatorDD(sortlist, sort) = dict((opid, VALUE)) in
11 if (Vi £ ind arglist)(range-check(sortlist[i], arglist[i])(dict)) then
12 (let arglist' = (eval-expression(arglist[i])(dict) | 1 < i < len arglist) in
13 let t = m k -Ground-termi((opid, arglist1)) in
14 if range-check(sort, t)(dict)
15 then t
16 else e x it("§5.4.1.9: Value is not within the range of the Syntype”))
17 else
18 e x it(‘‘§5.4.1.9: Value is not within the range of the Syntype")))

type : Ground-expressioni —* Entity-dict —► Value

Evaluate a ground expression.

A ground term.

The value of the ground expression, given as the operator identifier and
the evaluated argument list.

If the ground term consist of an identifier the ground term is re
turned.

O bjective

P aram eters

ex

R esu lt

A lgorithm

Line 2

O bjective

P aram eters

id

R esu lt

A lgorithm

Line 1
Line 3

Line 4

(4.3.2)

(4.3.3)

38 Fascicle X .5 — R ec. Z.100 — A nnex F.3

Line 6 If the ground term is a conditional term then it is decomposed and
evaluated.

Line 9 If the ground term neither is an identifier nor a conditional expres
sion it must be an operator application.

Line 11 The argument list of the operator is tested for range errors ac
cording to its associated sortlist. If no range error is detected the
operator identifier and the evaluated sort list is composed into a
ground term. Otherwise range error occurs.

Line 14 The ground term is tested for range error according to the sort
of the operator. If no range error is detected the ground term is
returned.

eval-operator- application (m k-Operator-application\(opid, expl))(dict) =

1 (def v a il : (eval-expression(expl[i])(dict) | 1 < i < len expl)]
2 let term = m k-Ground-term\((opid, vail)) in
3 let m k- OperatorDD (sortl, result) — dict((opid, VALUE)) in
4 if (Vi 6 ind sortl)(range-check(sortl[i], vall[i])(dict)) A
5 range-check(result, term)(diet)
6 th en term
7 else e x it(“§5.4.1.9: Value is not within the range of the Syntype’’))

type : Operator-applicationi —► Entity-dict => Value

O bjective
P aram eters

opid
expl

R esult

A lgorithm

Line 1
Line 2

Line 3
Line 4

Line 5

Line 6

Evaluate an operator application.

Identifier of the operator.
Argument list for the application.

The value of the operator application, that is a ground term of the
operator identifier and the evaluated argument list.

Evaluate the list of arguments.
Make a ground term of the operator identifier and the evaluated
argument list.
Lookup the operators denotation in Entity-dict.
Test whether the evaluated arguments are within the range of their
associated sorts.
Test whether the term made in line 2 is within the range of the
sort of the result.
If no range error is found the term made in line 2 is returned.

eval-view-expression(mV.-View-expression\(idx, exp))(dict) =

1 (def pid : eval-expression(exp)(dict)\
2 def pid' : reduce-term(dict(P\DSORT), pid, diet(SCOPEUN\T))(dict);
3 o u tp u t xrik-View-Request(idi, pid') to view,
4 (input mk- View-Answer(val) from view
5 =» if val = UNDEFINED
6 then e x it ("§5.5.2.2: The viewed value is undefined’’)
7 else val))

type : View-expression —♦ Entity-dict => Value

(4.3.4)

(4.3.5)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 39

O b je c tiv e Evaluate a VIEW expression

eval-conditional-expression(expi, exp2, expz)(dict) =

1 (let trueterm = dtc£(TRUEVALUE) in
2 let falseterm — dict(FALSEVALUE) in
3 if is-equivalent(eval-expression(expi)(dict), trueterm , dic£(SCOPEUI\IIT))(dic£) then
4 eval-expression(exp2)(dict)
5 else
6 if is-equivalent(eval-expression(expi)(dici), falseterm, dic£(SCOPEUNIT))(dtc£) then
7 eval-expression(expz)(dict)
8 else
9 e x it(“§5.5.2.3: Condition must evaluate to TRUE or FALSE"))

type : Expressioni Expressioni Expressioni —> Entity-dict Value

Evaluate a conditional expression.

The condition expression.
The consequence expression.
The alternative expression.

The value of either the consequence or the alternative expression de
pending on the condition.

Extract the ASi term for TRUE.
Extract the ASi term for FALSE.
If the trueterm is equal to the condition then
Evaluate the consequence expression else
If the falseterm is equal to the condition then
Evaluate the alternative expression else
it is an error (only possible if the Boolean sort has been enriched
by additional values).

eval-active-expression(mk-Timer-active-expressioni(timer, exprl))(dict) =

1 (let xnk.-Identifieri(qual,) = timer in
2 let m k -SignalDD (sortl) = d id ((timer, SIGNAL)) in
3 let trueterm = dic£(TRUEVALUE),
4 falseterm = diet (FALSEVALUE) in
5 def vail : (eval-expression(exprl[i])(did) | 1 < i < len exprl)]
6 def vail' : (reduce-term{sortl[i], vaii[t], dtc<(SCOPEUNIT))(dic£) | 1 < i < len vail)]
7 let f (t 1, £2) = is-equivalent(tl, £2, qual)(dict) in
8 o u tp u t m k -Active-Request(timer, va il',f) to dic£(PORT);
9 (inpu t mk-Active-Answer(b) from ohc£(PORT)

10 => if 6 then m k -Ground-termi (trueterm) else m k -Ground-termi(falseterm)))

type : Timer-active-expressioni —» Entity-dict => Value

O b jec tiv e Test whether the depicted timer is active.
P a ra m e te rs

timer The identifier of the timer.
exprl The parameters of the timer.

O b je c tiv e
P a ra m e te rs

expi
expz
expz

R e su lt

A lg o rith m

Line 1
Line 2
Line 3
Line 4
Line 6
Line 7
Line 9

(4.3.6)

(4.3.7)

40 Fascicle X .5 — R ec. Z.100 — A nnex F.3

R esu lt The ASi value of TRUE if the depicted timer is active else the ASi
value of FALSE.

A lg o rith m

Line 1 Establish the sort list of the timer.
Line 3-4 Extract the ASi value of TRUE and FALSE.
Line 5 Evaluate the timer parameters.
Line 6 See reduce-term
Line 7 Define a function to test for equivalence between vail’ and the

parameters of the potential active timer.
Line 8 Send an Active-Request to the input port.
Line 9 Receive an Active-Answer from the input port with a parameter b,

denoting the “activeness” of the timer.
Line 10 Return the ASi version of TRUE or FALSE depending on b.

eval-now-expression^) =

1 (ou tpu t nik-Time-Request() to timer;
2 (input m k -Time-Answer(val) from timer
3 => val))

type : () => Value

O b je c tiv e Evaluate the now expression.

R e su lt A value denoting now, see the Timer processor.

A lg o rith m

Line 1 Send a Time-Request to the timer processor.
Line 2 Receive Time-Answer with the value of now.

establ-dyn-diet (formparml, exprl, stg, decl-parm-set)(dict) =

1 (if decl-parm-set ^ {} then
2 (let (id, VALUE) E decl-parm-set in
3 def dicti • (m k -InoutparmDD (id) E elems formparml
4 -♦ (let i E ind formparml be s.t. formparml[i\ = m k-InoutparmDD (id) in
5 let mk- VarDD (vid, sid, rev, stg') = diet ((exprl[i\, VALUE)) in
6 [(id, VALUE) i-* mk-VarDD(vid, sid, rev, sty')]),
7 m k- InparmDD (id) E elems formparml
8 -* (let i E ind formparml be s.t. formparml[i] = m k-InparmDD (id) in
9 let mk- VarDD(vid, sid, rev ,) = dict((id, VALUE)) in

10 let diet' — [(id, VALUE) t—> mk- VarDD(vid, sid, rev, sty)] in
11 update-stg(vid, eval-expression(exprl[i])(dict))(dict + diet');
12 diet'),
13 T -► (let mk- VarDD (vid, sid, rev ,) = diet ((id, VALUE)) in
14 let diet' = [(id, VALUE) t—► nik-VarDD (vid, sid, rev, stg)] in
15 update-stg(vid, nil)(diet -f diet');
16 diet'));
17 re tu rn establ-dyn-diet (formparml, exprl, stg, decl-parm-set \ {(id, VALUE)})(dic<) + dicti)
18 else
19 diet)

type : FormparmDD* Expressioni* re f Stg (Identifieri VALUE)-set —► Entity-dict => Entity-dict

(4.3.8)

(4.3.9)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 41

O b jec tiv e Perform the necessary changes in the dynamic part of entity-dict when
a procedure call is interpreted. Futhermore the storage is updated
according to the variables defined in the procedure and the formal IN
parameters.

P a ra m e te rs

formparml The list of formal parameters.
actparml The list of actual parameters.
stg A reference to the new storage.
dcl-parm-set The set of diet entries for which the diet and the storage should be

updated.

R e su lt The updated Entity-dict.

A lg o rith m

Line 1 The recursion stops if the set of diet entries is empty.
Line 2 Take one of the diet entries.
Line 3 If it corresponds to one of the formal IN/OUT parameters then:
Line 4 - 5 Lookup the associated actual parameter, and its descriptor in diet.
Line 6 Let the variable of the formal parameter be described by the vari

able descriptor of the actual parameter.
Line 7 If it corresponds to one of the formal IN parameters then:
Line 8 Lookup the index of the: formal parameter.
Line 9 -10 Change the variable descriptors of the formal parameter to refer

ence the new storage.
Line 11 Update the storage for the variable with the value of the actual

parameter using the new descriptor.
Line 13 If it neither corresponds to a formal IN nor to a formal IN/OUT

parameter then:
Line 13 - 16 It is treated like the formal IN parameter, but the storage is up

dated with n il (UNDEFINED).
Line 17 Call establ-dyn-diet for the rest of the dcl-parm-set and overwrite

the result with the just constructed entry.
Line 19 Stops the recursion when there are no more definitions or param

eters to examine and return the old diet.

(4.3.10)

1 (let nik-VarDD (vid, sid, revealed, stg1) = dict((id, VALUE)) in
2 d ef val' : if val — nil then
3 UNDEFINED
4 else
5 reduce-term(sid, val, dtct(SCOPEUNIT))(dic<);
6 if range-check(sid, val')(dici)
7 then (stg' := c stg' + [vid i—► val']',
8 if revealed = REVEALED then
9 (ou tpu t mk-Reveal(vid, val', dtct(SELF)) to view)

10 else
11 I)
12 else e x it(“§5.4.1.9: Value is not within the range of the Syntype’’))

type : Identifieri Value —► Entity-dict =>

O b je c tiv e Updates the storage for the applied variable identifier with the applied
value and reveal the variable if it is declared revealed.

update-stg(id, val)(diet) =

42 Fascicle X .5 — R ec. Z.100 — A nnex F.3

P a ra m e te rs

id The variable identifier for which the storage should be updated.
val The value with which the storage should be updated.

A lg o rith m

Line 1 Lookup the description of the variable identifier.
Line 2 If val is different from nil it must be changed to match the sort

identifier of the variable (See reduce-term), if the value is equal to
n il the storage will be updated with UNDEFINED.

Line 7 - 8 The referenced storage is overwritten with the new variable - value
pair.

Line 9 For revealed variables Reveal is send to the view processor with
the variable identifier, the “reduced” value and the PID value of
this process.

Line 12 If the “reduced” value is not within the range of the variable sort,
a range error occurs.

range-check(sort-id, value)(dict) =

1 if value (E {nil, UNDEFINED} then
2 true
3 else
4 (cases diet ((sort-id, SORT)):
5 (xxik.-SyntypeDD(,nik-Range-conditioni(orid, condset))
6 -» (let operatori = make-valuetest-operator (value, orid, condset) in
7 let value' = eval-ground-expression(operator\)(dict) in
8 let trueterm = dtc<(TRUEVALUE) in
9 is-equivalent(eval-expression(value')(dict), trueterm, cfict(SCOPEUNIT))(cfic<)),

T -* true))10

type Sort-reference-identifieri [Value] —* Entity-dict —► Bool

O b jec tiv e
P a ra m e te rs

Test whether a value is within the range of its sort.

sort-id The sort identifier.
value The value to be tested.

R e su lt True if the value is in range else false.

A lg o rith m

Line 1 n il or UNDEFINED is within the range of all sorts.
Line 4 Lookup the description of the sort.
Line 6 If the sort is a syntype then use the orid, the condset and the value

to make an SDL-operator (operatori) to perform the range check.
See make-valuetest-operator.

Line 8 Extract the ASi version of true.

(4.3.11)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 43

5 C o n stru c tio n o f E nti ty-d ic t and H an dlin g o f A b stra ct
D a ta T y p es

This section contains the functions which build the entitydict (see the domain definition of
Entity-dict). entitydict is used by the sdl-process as well as by the System process which also
creates the object by applying the entry function extract-diet.

The section is divided into four subsections :

1. The creation of simple self-contained descriptors such as descriptors for syntypes, vari
ables, signals etc. Also the descriptors for processes (i.e. ProcessDDs) are created, but
with an empty Reachability set.
Descriptors are created for entities regardless of whether they are defined in a scopeunit
included in the consistent subset. The reason for this is that the consistency checks
on the data types applies for all scopeunits.

2. Creation of the descriptors for the Data-type-definition\ s {TypeDD). For each scopeu
nit, this descriptor is created before the descriptors for the sorts (SortDD) are created.

3. Selection of the consistent subset

4. Creation of the Reachabilities for the processes (i.e. creation of all possible communi
cation paths for the processes.)

The selection of the consistent subset is made after descriptors for all the entities are con
structed, but before Reachabilities are constructed by removing the descriptors of the pro
cesses which are not in the consistent subset. The construction of the entitydict can be
regarded as some intermediate level between the static semantics and the dynamic seman
tics. The error conditions in this section (checks on the consistent subset and on consistency
of the abstract data types) can be regarded as some additional static conditions which are
placed in the Dynamic Semantics because:

• The check on selection of a consistent refinement subset requires construction of Reach
abilities.
To be strict, the selection of the consistent (refinement) subset is not an error condi
tion, since it is not part of an SDL specification, but in order to check its properties,
consistency checks are made on the set of block identifiers reflecting the consistent
subset.

• Consistency checks on equivalent classes and on mutual exclusion of decision answers
cannot easily by expressed in terms of ASi, i.e. these (static) checks are placed in the
Dynamic Semantics because construction of the equivalent classes is required.

extract - diet (as\tree, blockset, expiredf, term inf) =

1 (let (as\pid, as\null, as\true, as\false) — terminf in
2 let d = [EXPIREDF >-* expiredf,
3 PIDSORT i-* asipid,
4 NULLVALUE ~ asxnull,
5 TRUEVALUE h-* asxtrue,
6 FALSEVALUEt-* asx false] in
7 (let m k-System-definitioni{nm, bset, cset, sigset, tp, synset) = as\tree in
8 let level = (m k-System-qualifieri(nm)) in
9 let leafprocesses = select-consistent-subset(bset, blockset, level) in

10 let diet1 = extract-sortdict(tp, level)(d) in
11 let diet" — merge {m ake-entity(entity, level)(dict') | entity G (sigset U synset U bset)} in
12 let d' — diet" + [(id, q) t—► d((id, q)) | (id, q) G dom d A (q = PROCESS D id G leafprocesses)]
13 make-structure-paths(bset, cset, level)(d')))

type : System-definition\ Block-identifieri-set Is-expired Term-information —* Entity-dict

44 Fascicle X .5 — R ec. Z.100 — A n n ex F.3

O bjective Construct the entitydict which is used by the sdl-processts and by the
system process. The object is constructed by the system process and
given as actual parameter every time a new sdl-process is started.

Param eters

as itree

blockset

expiredf
term inf

R esult
A lgorithm

Line 1

Line 2-6

Line 8
Line 9

Line 10

Line 11

Line 12

Line 13

The abstract syntax representation of a system i.e. an object of
the domain System-definitioni.
The (assumed) consistent subset represented by a set of block iden
tifiers and block substructure identifiers. Although the system
scopeunit also is in the consistent subset, it is not included in
blockset
A function delivering true if a given timer has expired
Some ASi identifiers used by the underlying system.

An object of the domain Entity-dict

Decompose the Term-information (defined in Annex F.2) which
contains the Identifier is of the PiD sort, the NULL literal, the
TRUE literal and FALSE literal.
Create the initial entitydict wherein the expired function and the
term information are placed.
Make the qualifier which denotes the system level.
Check that the consistent subset is well-formed and extract the
identifiers of the processes which are contained in the consistent
subset
Create the descriptors for the Data-type-definitioni, the literals and
the operators defined on the system level.
Make the entitydict contributions for the signals (sigset), the syn-
types (synset) and the blocks (bset).
Remove the descriptors of the processes which are not in the con
sistent subset.
Insert Reachabilities in all the process descriptors (ProcessDDs).
make-structure-paths returns the entitydict where they have been
inserted.

Fascicle X .5 — Rec. Z.100 — A nnex F.3 45

5.1 C o n stru ctio n o f D escrip tors for S im ple O bjects

make-entity{entity, level)(dict) =

1 cases entity:
2 (m k- Timer - definition (nm, sortlist)
3 -» diet + [(xnk-Identifieri(level, nm), SIGNAL)
4 m k-Signal-definitioni{,,)
5 -♦ diet -f make-signal-diet{entity, level),
6 mk-Process-definitioni (,,,,,,)> > >)
7 -♦ make-process-dict{entity,level){dict),
8 xnk-Procedure-definitioni{,, , , , ,)
9 -» make-procedure-dict{entity,level){dict),

10 m k -Variable- definitioni {nm, sort, rev)
11 -♦ diet + [{ink-Identifieri {lev el, nm), VALUE) ►
12 m k-Syn-type-definition\{nm, psort, ran)
13 -* diet + [{mk-Identifieri{level, nm), SORT) i—
14 mk-Block - defin ition^,, , , , , ,)
15 — make-block-diet{entity, level){dict),
16 T diet)

m k -SignalDD (sortlist)],

m k -VarDD{, sort, rev,)],

m k -SyntypeDD{psort, ran)],

type : Decl\ Qualifier

O b jec tiv e

Entity-dict —♦ Entity-dict

P a ra m e te rs

entity
level

A lg o rith m

Return the Entity-dict {diet) which is updated to contain the contribu
tion for an entity.

The ASi definition for the entity
A qualifier denoting the scopeunit containing the definition

Construct the contribution for entity in hand. Note that a timer is
treated as a normal signal and that no descriptor is required for view
variables (there is no View-definitioni entry in the case statement).

make-signal-diet (m k-Signal-definition\{nm, sortlist, refinement), level) =

1 (let d = [(mk-Identifier\{level, nm), SIGNAL) mk-SignalDD {sortlist)) in
2 if refinement = nil then
3 d
4 else
5 (let mk-Signal-refinementi{subsigset) = refinement in
6 let level' = level (mk-Signal-qualifieri{nm)) in
7 d + m erge {make-signal-dict{&-Signal-definition\{sdef), level') \ sdef £ subsigset}))

type : Signal-definitioni Qualifier —> Entity-dict

O b jec tiv e Make the entitydict contribution for a signal and for its sub-signals.
Note that a signal descriptor does not tell whether a signal is a subsignal
or not. This is due to the fact that only if the same signals are selected
in both ends of a communication link the subsignal selection is well-
formed, independently of whether the signals are sub-signals or not.

P a ra m e te r s

Signal-definitioni The ASi signal definition consisting of

nm The name of the signal
sortlist The sorts of the values conveyed by the signal

(5.1.1)

(5.1.2)

46 Fascicle X .5 — R ec. Z.100 — A nnex F.3

refinement The signal refinement part

level A qualifier denoting the scopeunit where the signal is defined.

A lg o rith m

Line 1 Make the contribution for the signal and
Line 5-7 Make the contributions for the sub-signals with the qualifier de

noting the scopeunit which is the signal definition.

(5.1.3)

1 (let mk-Process -definitioni(nm, in s t , f , pset, sigset, tp, synset, vse t,, tset, graph) = pdef in
2 let mk-Num ber-of -instances\{init, maxi) = inst,
3 pid = m k-Identifieri(level, nm),
4 level' = level (mk-Process-qualifieri(nm)) in
5 let parm — (mk-Identifieri(level', s-Variable-namei(f[i])) | 1 < i < le n /) in
6 let parmd = [(parm[t], VALUE) i-+ mk- VarDD(, s-Sort-reference-identifieri(f[i]), n i l ,) |
7 1 < i < len /] in
8 let diet' = extraci-sortdict(tp, level')(dict -f parmd) in
9 let diet" — m erge{m ake-entity(entity,level')(dict') \

10 entity £ (pset U sigset U synset U vset U tset)} in
11 let m k-Process-graph\(, stateset) = graph in
12 let nodeset = u n io n {statenodeset | m k-State-node\(,, statenodeset) £ stateset} in
13 let insigset = {sigid | m k-Input-nodei(sigid , ,) £ nodeset} in
14 let localreach — (pid, insigset, ()) in
15 if is-w f -decision-answers(graph, level)(dict) then
16 diet" + [(pid, PROCESS) m k -ProcessDD(parm, init, maxi, graph, {localreach})]
17 else
18 ex it("§2.7.5: Answers in decision actions are not mutually exclusive”))

type : Process-definitioni Qualifiery Entity-dict —> Entity-dict

make-process-diet (pdef, level)(dict) —

O b jec tiv e Return the entitydict contribution for a process and for all its defini
tions.

P a ra m e te rs

pdef
level

A lg o rith m

Line 2

Line 3
Line 4
Line 5
Line 6

Line 8

Line 9-10

Line 11
Line 12
Line 13

The ASi process definition
A qualifier denoting the scopeunit where the process is defined.

Extract the initial number of instances (init) and the maximum
number of instances (maxi).
Construct the Identifieri denoting the process
Construct the qualifier denoting the scopeunit which is the process
Construct the Identifieris for the formal parameters
Construct the Entity-dict contributions for the formal parameters.
Note that they are treated as normal variables.
Make the entitydict which is updated with the descriptor for the
Data-type-definitioni defined in the process
Make the contributions for the contained procedure definitions
(pset), signal definitions (sigset), syntype definitions (synset), vari
able definitions (vset), and timer definitions (tset)
Let stateset denote the set of states for the process
Let nodeset denote the set of input nodes for the process
Let insigset denote the set of signals received in an input node of
the process

Fascicle X .5 — Rec. Z.XOO — A nnex F.3 47

Line 14 Let localreach denote the Reachability which is used for routing
signals to instances of this process type.

Line 15 The decision actions contained in the process graph must contain
mutual exclusive answers

Line 16 and update the constructed entitydict with the descriptor for the
process itself. Note that, at this stage, the Reachability set for the
process only contains the Reachability used for routing signals to
instances of this process type.

make-procedure-diet(procdef, level)(dict) =

1 (let m k-Procedure - definitioni (nm, fp, pset, tp, sset, vset, graph) = procdef in
2 let level' = level ^ (mk-Procedure-qualifieri(nm)) in
3 let (fparml, fdict) = make-formal-parameters(fp, level) in
4 let pid = xak-Identifieri(level, nm) in
5 let diet' = extract-sortdict(tp, level')(dict -f fdict) in
6 let diet" = merge {m ake-entity(entity, level')(dict') \ entity £ (pset U sset U vset)} in
7 if is-w f -decision-answers(graph, level)(dict) then
8 diet" -f- [(ptd, PROCEDURE) i—► mk-ProcedureDD(fparml, graph)]
9 else

10 e x it(‘‘§2.7.5: Answers in decision actions are not mutually exclusive”))

type : Procedure-definitioni Qualifier —+ Entity-dict —> Entity-dict

O b je c tiv e Return the entitydict contribution for a procedure and for all its defi
nitions.

P a ra m e te rs

procdef
level

A lg o rith m

Line 2
Line 3

Line 4

Line 5
Line 6

Line 7

Line 8

The ASi procedure definition
A qualifier denoting the scopeunit where the procedure is defined.

Construct the qualifier denoting the procedure scopeunit
Construct the information about whether the formal parameters
are IN or IN/OU T (fparml) and the entitydict descriptors for the
formal parameters (fdict).
Construct the qualifier denoting the scopeunit which is the proce
dure
Same as for a process (see above).
Construct the descriptors for the contained procedure definitions
(pset), syntype definitions (sset), and variable definitions (vset).
The decision actions contained in the procedure graph must contain
mutual exclusive answers
Construct the descriptor for the procedure itself.

(5.1.4)

48 Fascicle X .5 — R ec. Z.100 — A nnex F.3

make-formal-parameters(parml, level) = (5.1

1 (if parml = () then
2 «),□)
3 else
4 (let (parmrest, drest) = make-formal-parameters(tlparml, level) in
5 let id = mk-Identifieri(level, s-Variable-namei(hdparml)) in
6 let (p, d) =
7 cases hd parml:
8 (m k -In-parameteri(, sort)
9 -» (m k-InparmDD (id), [(id, VALUE) i-> mk- VarDD(, sort, n il,)]),

10 mk-Inout-parameteri(,)
11 -► (m k -InoutparmDD (id), [])) in
12 ((p) ^ p a rm re s t, d + drest)))

type : Procedure-formal-parameter i* Qualifier —> FormparmDD* Entity-dict

O bjective

P aram eters

parml
level

A lgorithm

Line 1
Line 4
Line 5
Line 6-10

Construct (recursively) and return a list of descriptors containing infor
mation of whether the formal parameters are IN or IN/OUT parameters
and also return the entity descriptors for them.

The ASi procedure formal parameters
A qualifier denoting the scopeunit of the procedure.

If at the end of the list of formal parameters then return nothing
Construct the descriptors for the rest of the list
Make the Identifieri for the first parameter in the list
Make the parameter descriptor and the entitydict contribution for
the first parameter joined with those for the rest in the list and
return the entitydict descriptors for the first parameter joined with
those for the rest in the list

make-block-diet(bdef, level)(diet) = (5.1

1 (let mk-Block-definitioni(bnm, pdefs, sigdefs,,, datatype, syntype, sub) = bdef in
2 let level' = level (mk-Block-qualifieri(bnm)) in
3 let sortd = extract-sortdict(datatype, level')(dict) in
4 let diet' — sortd + merge {make-entity(entity, level')(sortd) \ entity E (sigdefs U syntype U pdefs)} in
5 if sub = nil then
6 diet'
7 else
8 (let mk-Block-substructure-definitioni(snm, bdefs,,, sdefs, tp, syndefs) = sub in
9 let level" = level' (mk- Block-sub structure - qualifier (snm)) in

10 let sortd' = extract-sortdict(tp, lev el") (d id 1) in
11 sortd' + merge {make-entity(entity, level")(sortd') \ entity E (bdefs U sdefs U syndefs)}))

type : Block-definitioni Qualifieri —> Entity-dict —+ Entity-dict

O bjective

P aram eters

bdef
level

Construct and return the entitydict descriptors for the entities defined in
a block. Note that enclosed signal route definitions, channel definitions,
connections etc. are not dealt with here.

An ASi block definition
The defining qualifier for the block

Fascicle X .5 — R ec. Z.100 — A nnex F.3 49

A lg o rith m

Line 1 Decompose the block definition.
Line 2 Construct the qualifier which denotes the block.
Line 3 Update entitydict to include the Data-type-definitioni defined in

the block.
Line 4 Update entitydict to include the signals (sigdefs), syntypes (syn-

type) and processes (pdefs) defined in the block.
Line 5 If no block substructure is specified then return the Entity-diet

contribution for the block
Line 8 Decompose the block substructure
Line 9 Construct a qualifier which denotes the level of the block substruc

ture.
Line 10 Update entitydict to include the Data-type-definitioni defined in

the block substructure
Line 11 Return this updated entitydict joined with the contributions from

the blocks (bdefs), signals (sdefs) and syntypes (syndefs).

is-w f -decision-answers(graph, level)(dict) =

1 (let (starttrans, stateset) =
2 cases graph:
3 (m k-Procedure-graphi(init, stset) — (init, stset),
4 mk-Process-graphi(init, stset) -* (init, stset)) in
5 let trans — s-Transitioni(starttrans) in
6 is-wf-transition-answers(trans, level)(dict) A
7 (Vmk-State-node\(,, inputs) £ stateset)
8 ((Vinput £ inputs)(is-wf-transition-answers(&-Transitioni(input),level)(dict))))

type : (Procedure-graphi I Process-graphi) Qualifier —* Entity-dict —* Bool

O b jec tiv e Check that the answers in a decision action of a procedure or process
graph are mutual exclusive

P a ra m e te r s

graph The procedure or process graph
level The Qualifieri denoting the procedure or process

R esu lt True if success

A lg o rith m

Line 1-4 Let starttrans denote the start node of the graph and let stateset
denote the states of the graph

Line 5 Let trans denote the initial transition
Line 6 The answers in the decisions of the initial transitions must be mu

tual exclusive and
Line 7 For every state it must hold that every input node in the state
Line 8 The transition in the input node contains mutual exclusive answers

in the decisions.

(5.1.7)

50 Fascicle X .5 — R ec. Z.100 — A nnex F.3

is-wf -transition-answers(vahi-Transitioni(transy), level)(dict) = (5.1.8)

1 ('ivak-Decision-nodei(, answerset, elsetrans) G elems trans)
2 ((elsetrans ^ nil D is-wf-transition-answers(elsetrans, level)(dict)) A

3 (Vmk-l?eci«ion-an5u>eri(anstt;erl, fransl), tnk-Decision-answeri(answer2, trans2) G arwtwerset)
4 (is-w f -transition-answers(transl) level)(dict) A

5 is-wf-transition-answers(trans2, level)(dict) A
6 (ansiuerl ^ answer2 A is-iZamje-condifioni (answer 1) A is-jRan(7e-condtfioni(ansu7er2) D
7 (let mla-Range-condition\(orid, csefl) = answerl,
8 mk-i2anye-conrfi<ioni(, csef2) = answer2 in
9 (Vterm G Ground-expressioni)

10 ((let diet1 = diet -f [SCOPEUIMIT i—► level] in
11 trap exit w ith tru e in
12 let answerterml = eval-ground-expression(make-valuetest-operator(term, orid, csetl))(d ict'),
13 answerterm.2 — eval-ground-expression(make-valuetest-operator(term , orid , cset2))(dictl) in
14 is-equivalent(answerterml, answerterm2) lev el) (diet)))))))

type : Transitioni Qualifier —> Entity-dict —► Bool

O b jec tiv e

P a ra m e te rs

trans
level

A lg o rith m

Line 1
Line 2

Line 3
Line 4-5

Line 6

Line 7-8

Line 9
Line 12-13

Check that every decision action in a transition contains mutual exclu
sive answers

The actions in the transition
The qualifier denoting the surrounding scopeunit

For every decision node in the action list, line 2-line 14 must hold
The transition in the else part must contain mutual exclusive an
swers and
For every two branches in the decision line 4-line 14 must hold
The transitions in the two branches must contain mutual exclusive
answers and
If it is different branches and they both contain formal text in the
answers then
Let orid denote the Identifieri of the OR operator, csetl denote
the range conditions of one of the two branch and let cset2 denote
the range conditions of the other of the two branches in hand
For every ground term (term) it must hold that
The ground term (answerterml) derived from term and the first
condition set (line 12) must not be in the same equivalent class
as the ground term (answerterm2) derived from term and the
second condition set. make-valuetest-operator returns a Ground-
expression which is evaluated by eval-ground-expression to form a
ground term. Any exits from eval-ground-expression are trapped
(line 11) since range checks implied from syntypes should not be
applied until the decision is interpreted.

5.2 H and ling o f A b stract D a ta T yp es

This section contains the functions handling abstract data types. The entry functions are :
extract-sortdict which is applied during the construction of entitydict and which creates

the type descriptors, sort descriptors, literal descriptors and operator
descriptors.

Fascicle X .5 — R ec. Z.100 — A nnex F.3 51

reduce-term which is used when a term is transferred to another scopeunit such as
in actual parameters, assignment to a non-local variable etc.

is-equivalent which is used when two terms should be compared such as in conditional
expressions, range check and decision nodes.

extract - s ortdict(typedef, l)(dict) = (5.2.1)

1 (let mk-Data-type-definitioni {tnm, union, sorts, signatureset, eqs) — typedef in
2 let tid = nik-Identifier (I, tnm) in
3 let (psmap, eqs') —
4 if union = {} then
5 (0, 0)
6 else
7 (let tid' £ union in
8 let mk-TypeDD(pmap, equa) = dict((tid', TYPE)) in
9 {pmap, equa)) in

10 let literald =
11 [mk-Identifieri(l,&-Literal-operator-namei(lit)) i—♦ mk-OperatorDD{{), 8-Resulti(lit)) |
12 lit £ signatureset A is-Literal-signaturei(lit)\,
13 operatord =
14 [mk-Identifieri {I, &-Operator-namei(op)) i-> mk-OperatorDD(s-Argument-listi(op), s-Resulti(op)) |
15 op £ signatureset A is-Operator-signaturei[op)\ in
16 let diet' = diet + [(id, VALUE) \-+ literald{id) \ id £ dom literald] -f-
17 [(id, VALUE) operatord(id) | id £ dom operatord] in
18 let sortd = [(id, SORT) m k-SortDD {tid) | id £ sorts) in
19 let sortset = {mk-Identifieri{l, nm) \ nm £ {sorts U dom psmap)},
20 sortmap = [sort t-* make-equivalent-classes{sort){dict') \ sort £ sortset] in
21 let equations = eqs U eqs' in
22 let sortmap' = eval-equations{sortmap, equations){dict) in
23 let diet" = diet' -f sortd + [{tid, TYPE) t—► m k -TypeDD{sortmap', equations)] in
24 if (3{mk - Ground-termi{t), m k-Error-termi{)} C union rng sortmap ') (is - Identifier {t)) then
25 e x it (‘‘§5.4.1.7: Literal is equal to the error term")
26 else
27 if is-wf-values{psmap, sortmap'){dict") then
28 diet"
29 else
30 e x it ("Z.100 §5.2.1: Generation or reduction of equivalent classes of the enclosing scopeunit”))

type : Data-type-definitioni Qualifier —► Entity-dict —* Entity-dict

O bjective

P aram eters

typedef
I

R esu lt

A lgorithm

Line 2
Line 3-9

Update entitydict to contain the descriptor for a Data-type-definitioni
and for its contained sorts, operators and literals.

A Data-type-definitioni
The level on which it is defined.

The updated entitydict

Construct the Identifieri of the data type.
Extract the Sortmap and the Equationsi of the parent (enclos
ing) data type definition. If no Type-identifieri is present in Type-
unioni then it is the system level, otherwise the parent Sortmap
and Equationsi a*e found in the descriptor of the parent.

52 Fascicle X .5 — R ec. Z.100 — A nnex F.3

Line 10-12 Construct the descriptors for all the literals defined in the data
type definition. They are considered as operators without any
arguments.

Line 13-16 Construct the descriptors for all the operators defined in the data
type definition and add them to the existing Entity-dict and give
them the entity class VALUE.

Line 18 Construct the descriptors (sortmap) for all the sorts defined in the
data type definition.

Line 19-20 Construct the initial Sortmap consisting of as many equivalent
classes for each sort as there are terms for the sort, i.e. each equiva
lent class contains one and only one term. The domain of sortmap
is the locally defined sorts (sorts) and the sorts of the enclosing
scopeunit (dom psmap).

Line 22 Modify Sortmap according to the equations.
Line 24-25 Ground terms which are literal identifiers and the error term must

not belong to the same equivalent class
Line 23 Update entitydict with descriptors for the local sorts and for the

data type definition
Line 27 If the data type is consistent with the data type of the enclosing

scopeunit (i.e. no values are changed) then return the updated
entitydict

is-equivalent (Iterm, rterm , level)(dict) =

1 (let (id, TYPE) £ dom diet be s.t. &-Qualifier\(id) = level in
2 let mk- TypeDD (sortmap,) = diet ((id, TYPE)) in
3 let termsets = union rng sortmap in
4 let Itermset £ termsets be s.t. Iterm £ Itermset,
5 rtermset £ termsets be s.t. rterm £ rtermset in
6 if xnk-Error-termi() £ (Itermset U rtermset)
7 then e x it(‘‘§5.4.1.7: Operator application is equivalent to the error term")
8 else Itermset — rtermset)

type : Ground-term\ Ground-term\ Qualifier —*• Entity-dict —► Bool

O b jec tiv e

P a ra m e te rs

Iterm, rterm
level

R esu lt

A lg o rith m

Line 1
Line 2-3

Line 4-3

Line 6
Line 8

Test whether two terms belongs to the same equivalent class.

The two terms which have to be tested for equivalence
A qualifier denoting the scopeunit in which context the test should
be performed.

True if they are equivalent.

Extract the Type-identifieri for the scopeunit denoted by level
Construct the set of all equivalent classes for all sorts visible in the
scopeunit. (All equivalent classes are disjoint in the entire system)
Extract the equivalent class for Iterm and the equivalent class for
rterm
None of these equivalent classes may include the error term.
Return true if Iterm and rterm belong to the same equivalent class.

(5.2.2)

Fascicle X .5 — Rec. Z.100 — A nnex F.3 53

reduce-ter m(sortid, term , level)(dict) = (5.2.3)

1 if term = nil then
2 nil
3 else
4 (let sortid1 == if is-SortDD(dict((sortid, SORT))) then
5 sortid
6 else
7 a-Parent-sort-identifieri(dict((sortid, SORT))) in
8 let m k -SortDD(tpid) = dict((sortid', SORT)) in
9 let mk- TypeDD (sortm ap,) = dict((tpid, TYPE)) in

10 let {tpid', q) £ dom diet be s.t. q = TYPE A s -Qualifieri(tpid') — level in
11 let mk- TypeDD (sortmap1,) = diet ((tpid ' , q)) in
12 let vset £ sortmap1 [sortid') be s.t. term £ vset in
13 let vset' £ sortmap(sortid') be s.t. vset1 C vset in
14 let term ' £ vset' in
15 term')

type : Sort-reference-identifieri [Ground-termi] Qualifier —*■ Entity-dict —* [Ground-termi]

O b jec tiv e Convert a term to another term of the same equivalent class such that
the chosen term only contains literals and operators which are defined
in the scopeunit defining sortid. This conversion is required every time
a value is transferred to a non-enclosed scopeunit. (For simplicity, the
conversion is made every time a value (may) be transferred to another
scopeunit, i.e. in assignment, evaluation of actual parameters etc.)

P a ra m e te rs

sortid

term
level

The Sort-reference-identifieri denoting the sort of the term to be
converted
The Termi to be converted
The scopeunit in which term is used.

R esu lt The new term. The result is n il if term is nil(term is nil if reduce-term
is used in an actual parameter evaluating function where the actual
parameter is unspecified)

A lg o rith m

Line 1 If no Termi is specified then return nil.
Line 4-7 If sortid denotes a Syntype-identifieri (SyntypeDD) then extract

the parent Sort-identifieri.
Line 8 Extract the Type-identifieri (tpid) defining the sort.
Line 9 Extract the Sortmap (sortmap) of the type.
Line 10-11 Extract the Sortmap (sortmap') of the type defined in the scopeunit

where term is used.
Line 12 Extract the equivalent class containing term among the equivalent

classes belonging to the type defined in the scopeunit where term
is used.

Line 13 Extract the equivalent class of the defining scopeunit for the sort
(sortid') which is contained in the other equivalent class.

Line 14 Return an arbitrary element from this equivalent class.

54 Fascicle X .5 — Rec. Z.100 — A nnex F.3

is-wf-values(survmap, vmap)(dict) — (5.2.4)

1 if survmap = [] then
2 is-w f -bool-and-pid (diet, vmap(dicf(PIDSORT)))
3 else
4 (Vid E dom. survmap)
5 ((let survsei = survmap(id),
6 vset = vmap(id) in
7 (Vclass E t>set)((3!cfass/ E survset)(class' C c/ass))))

type : Sortmap Sortmap —* Entity-dict —► Bool

O bjective

Param eters

survmap
vmap

R esult

A lgorithm

Line 1-2

Line 4-7

Line 5

Line 6

Line 7

Test whether the set of equivalent classes for the enclosing scopeunit is
the same set of as for the enclosed scopeunit.

The Sortmap denoting the values of the enclosing scopeunit
The Sortmap denoting the values of the enclosed scopeunit

True if success.

If the Sortmap of the enclosing scopeunit is empty, it is the system
level and it must hold that the Boolean True and False belongs to
different equivalent classes and that there exist an infinite number
of PiD values. In nested scopeunit these checks are just a special
case of the more general condition checked by is-wf-values.
For all Sort-identifieris belonging to the enclosing scopeunit the
condition must hold.
Extract the equivalent classes applying in the enclosing scopeunit
for the sort in hand
Extract the equivalent classes applying in the enclosed scopeunit
for the sort in hand
For every equivalent class in the enclosed scopeunit, it must hold
that it includes all the terms of a unique equivalent class of the
enclosing scopeunit

make -equivalent -classes(sort)(dict) —

1 (let termset = {term E Ground-termi \ is-of-this-sort(sort, term)(dict)} in
2 let classes = {{term} | term E termset} U {{m k-Error-termi()}} in
3 [sort i—► classes])

type : Sort-identifieri —► Entity-dict —> Sortmap

O bjective

R esu lt

A lgorithm

Line 1-

Line 2

Construct all possible Termis for a Sort-identifieri denoted by sort and
construct the Sortmap entry for sort where the Termis are put into
different equivalent classes.

The Sortmap contribution for sort

Construct a set of Ground-Termis consisting of all possible terms
for the sort
Put all the terms in the set into different equivalent-classes and
put the error term in its own equivalent class.

(5.2.5)

Fascicle X .5 — Rec. Z.100 - A nnex F.3 55

is-of -this‘sort{sort, t)(dict) = (5.2.6)

1 (let nik-G round-termi(term) = t in
2 if is-Identifieri (term) then
3 (let entry = (term, VALUE) in
4 entry £ dom diet A
5 is-OperatorDD(dict(entry)) A
6 s-Argument-list(dict(entry)) = () A
7 s-Result(dict(entry)) = sort)
8 else
9 i f is-Conditional-termi(term) then

10 false
11 else
12 (let (id, arglist) = term in
13 let entry = (id, VALUE) in
14 i f entry £ domrftcl A is -OperatorDD (diet (entry)) then
15 (let m k-OperatorDD (sortlist, result) — dict(entry) in
16 len arglist = len sortlist A
17 result = sort A
18 (Vi £ ind arglis t) (is-of-this-sort (sortlist [i], arglist[i])(dict)))
19 * else
20 false))

type : Sort-identifieri Ground-termi Entity-dict —» Bool

O b jec tiv e
A lg o rith m

Test whether a given Termi t is a term of the sort denoted by sort

Line 2 If the term is an identifier then
Line 4 The identifier must be found in entitydict
Line 5-6 as a literal (i.e. as an operator without arguments)
Line 7 and the result sort must be equal to sort
Line 9 If the term is a conditional term then it does not represent a value

(but the consequence and alternative in the conditional term does)
Line 12 If the term is an operator term then
Line 14 If the identifier in the term can be found in entitydict and it denotes

an operator then
Line 16 The number of arguments in the descriptor must be equal to the

number of arguments present in the term
Line 17 and the result sort found in the descriptor must be equal to sort
Line 18 and each argument term found in term must be of the appropriate

sort according to the argument sortlist found in the descriptor.

56 Fascicle X .5 — R ec. Z.100 — A nnex F.3

eval-equations(sortmap, equations)(dict) = (5.2.7)

1 (let trueterm = cfict(TRUEVALUE),
2 falseterm = diet (FALSEVALUE) in
3 let quanteq = {eq £ equations | is- Quantified - equationsi (eq)} in
4 let rest = equations \ quanteq in
5 let unquant — union {eval - quantified -equation(sortmap, eq) \ eq £ quanteq} in
6 let rest' — expand-conditional-term-in-equations(rest U unquant, trueterm, falseterm) in
7 let rest" —
8 union {if \s-Conditional-equationi(eq)
9 then expand-conditional-term-in-conditions({eq}, trueterm, falseterm)

10 else {eq} | eq £ rest'} in
11 let unquanteqs = {eq £ rest" | is -Unquantified-equationi(eq)},
12 condeqs = {eq £ rest" | is-Conditional-equationi(eq)} in
13 let sortmap1 — eval-unquantified-equations(sortmap, unquanteqs) in
14 eval-conditional-equations(sortmap', condeqs))

type : Sortmap Equationsi —► Entity-dict —♦ Sortmap

O bjective

Param eters

sortmap

equations

R esult
A lgorithm

Line 1-2

Line 3
Line 5

Line 6

Line 7-10

Line 11-12

Line 13

Line 14

Reduce the number of equivalent classes for the sorts visible in a given
scopeunit according to a set of equations.

A Sortmap containing the equivalent classes which are to be re
duced
A set of equations.

The modified Sortmap.

Extract the ASi representations for the boolean literals True and
False from Entity-dict.
Extract the equations which are quantified.
Turn the set of quantified equations into a set of unquantified equa
tions
Turn all the conditional terms occurring in the modified set of equa
tions (except for those occurring in the conditions of conditional
equations) into a set of conditional equations.
Turn all the conditional equations which contain conditional terms
in the condition set, into a set of conditional equations without
any conditional terms in the conditions (see example in the text
following the function expand-conditional-term-in-conditions).
Split the resulting set of equations (rest") into a set of unquantified
equations and a set of conditional equations.
Modify sortmap in accordance with the set of unquantified equa
tions.
Return the Sortmap which is sortmap modified in accordance with
the set of conditional equations.

Fascicle X .5 - R ec. Z.100 — A nnex F.3 57

eval-unquantified-equations(sortmap, equations) ^

1 (if equations = {} then
2 sortmap
3 else
4 (let eq £ equations in
5 let mk- Unquantified-equation\ (Iterm, rterm) = eq in
6 let sort £ dom sortmap be s.t. (3 termset £ sortmap(sort))(lterm £ termset) in
7 let termset 1 be s.t. termset 1 £ sortmap(sort) A Iterm £ termset 1 in
8 let termset2 be s.t. termset2 £ sortmap(sort) A rterm £ termset2 in
9 i f term setl = termset2 then

10 eval-unquantified-equations(sortmap, equations \ {eg})
11 else
12 (let newset = sortmap(sort) \ { term setl, termset2} U {termset 1 U termset2} in
13 let sortmap' = sortmap + [sort newset] in
14 let sortmap" = eval-deduced-equivalence(sortmap1) in
15 eval-unquantified-equations(sortmap", equations \ {eg}))))

type : Sortmap Equationsi Sortmap

O b je c tiv e Modify sortmap (the equivalent classes) in accordance with equations.

A Sortmap to be modified.
A set of unquantified equations.

When through, return the modified sortmap
Extract the two Terms from one of the (remaining) equations.
Extract the sort of Iterm (which is the same as the sort of rterm).
Extract the equivalent class which contains Iterm.
Extract the equivalent class which contains rterm.
If the terms denote the same equivalent class then do not update
sortmap else
Define a new set of equivalent classes wherein the two equivalent
classes has been unified.
Modify sortmap to contain the new set of equivalent classes
Reduce the number of equivalent classes by using the information
obtained by the equation
Repeat the operation for the rest of the equations.

58 Fascicle X .5 — R ec. Z.100 — A nnex F.3

P a ra m e te rs

sortmap
equations

A lg o rith m

Line 1
Line 4-5
Line 6
Line 7
Line 8
Line 9

Line 12

Line 13
Line 14

Line 15

(5.2.8)

eval-deduced- equivalence (aortmap) = (5.2.9)

1 if (3c/assl, class2, class3 £ union rng sortmap)
2 (class 1 ^ c/ass2 A
3 (3<erml, term 2 £ class3)((3term £ class 1)(replace-term(term, te rm i, term2) £ class2))) then
4 (let (c/assl, class2, classS) be s.t. {c/assl, class2, class3} C union rng sortmap A
5 classl £ class2 A
6 (3<erml, term 2 £ classS)((3term £ classl)(replace-term(term, te rm i, term 2) € cZass2)) in
7 let sort be s.t. {class 1, c/ass2} C rng sortmap(sort) in
8 let classes = sortmap(sort) in
9 let classes' = classes \ {class 1, cZass2} U {cZassl U class2} in

10 let sortmap' = sortmap + [sort i—► c/asses'] in
11 eval-deduced-equivalence (sortmap'))
12 else
13 sortmap

type : Sortmap —► Sortmap

O bjective

Param eters

sortmap

R esult

A lgorithm

Line 1

Line 4-13
Line 4-5
Line 7

Line 8-10

Line 11

Reduce the number of the equivalent classes for sorts by using the
information that two terms of a sort are in the same equivalent class.

A Sortmap containing the equivalent classes which are to be mod
ified

The Sortmap where the number of equivalent classes for some of the
sorts has been reduced

If there exist three equivalent classes classl, class2, classS in the
Sortmap such that classl and class2 are disjoint (classS may be
equal to classl or class2 or it may denote another equivalent class,
even of another sort) and there exist two terms (term i and term2)
in classS such that when replacing term i by term2 in a term (term)
taken from classl, a term in class2 is obtained then
classl and class2 is merged into one equivalent class
Let classl, class2, classS denote three such equivalent classes
Let sort denote the sort of classl and class2. classl and class2
cannot be of different sort as line 1-3 in that case would not be
satisfied
Form a new sortmap where the two equivalent classes for the sort
have been merged
Repeat the operation (with the modified sortmap) until no more
equivalent classes can be merged

Fascicle X .5 — R ec. Z.100 — A nnex F.3 59

replace-term(term, oldterm, newterm) = (5.2.10)

1 if term = oldterm then
2 newterm
3 else
4 i f is -Identifier^ term) then
5 term
6 else
7 (let (opid, arglist) = term in
8 if (3t £ ind arglist)(replace-term(arglist[i], oldterm, newterm) ^ ar f̂o'sf [t]) then
9 (let i £ ind arglist be s.t. replace-term(arglist[i], oldterm, newterm) ^ artist[t] in

10 let arglist1 = (ary/isf [n] | 1 < n < i) ^
11 (replace-term(arglist[i], oldterm, newterm)) ^
12 (arglist[n] | i < n < len arglist) in
13 (opid, arglist1))
14 else
15 term)

type : Ground-term\ Ground-termi Ground-termi —* Ground-term\

O b jec tiv e

A lg o rith m

Zme 1
l in e ^

Line 7

Zme 8
Line 9
Line 10-12

Line 13
Line 15

Replace an occurrence of oldterm in term by newterm and return the
modified term

If the entire term is equal to oldterm then return the new term
If the term is an identifier (and it is different from oldterm) then
no replacement is made else
The term is an operator term (conditional terms cannot occur since
term is taken from an equivalent class). Let op denote the operator
identifier and let arglist denote the argument list
If there exist an argument which contains oldterm then
Let i denote the index to the argument which contains oldterm
Construct the argument list where an occurrence of oldterm in
element i has been replaced by newterm
Return the modified term
If oldterm do not occur in the argument list then the term is not
changed

eval-quantified-equation(sortmap, quanteqs) =

1 (let m k-Quantified-equationsi(nmset, sortid, equations) = quanteqs in
2 let nm £ nmset in
3 let nik-Identifieri(level, snm) = sortid in
4 let valueid = mk-Identifieri(level (mk-Sort-qualifier\(snm)), nm) in
5 let allterms = union sortmap (sortid) \ {mk-Error-termiQ} in
6 let equations' = union {union {insert-term(sortmap, eq, valueid, term) | term £ allterms}
7 eq £ equations} in
8 if nmset — {nm } then
9 equations'

10 else
11 (let quanteq = m k-Quantified-equations\(nmset \ {nm}, sortid, equations') in
12 eval-quantified-equation(sortmap, quanteq)))

type : Sortmap Quantified-equationsi —* Equationsi

O b je c tiv e Expand a quantified equation into a set of unquantified equations.

(5.2.11)

60 Fascicle X .5 — Rec. Z.100 — A nnex F.3

P aram eters

sortmap

quanteqs

R esult

A lgorithm

Line 2
Line 4
Line 5

Line 6-7

Line 8

Line 11-12

The Sortmap of the enclosing data type definition, wherein the
terms (still) are in different equivalent classes
The quantified equations.

The resulting set of unquantified equations.

Take one of the value names in the quantified equation.
Make the value identifier corresponding to the value name
Make a set (allterms) consisting of all possible terms (except the
Error-termi) for the quantifying sort.
Construct a set of unquantified equations from the set of equa
tions contained in the quantified equation by replacing the value
identifier in the set of equations by every term in allterms.
If every value name has been replaced in the equations then return
the equations (equations') else
Do the same for the rest of the value names in the quantified equa
tion.

insert-term(sortmap, equation, vid, term) =

1 cases equation:
2 (mk-Unquantified-equationi (term i, term 2)
3 -♦ {m k -Unquantified-equationi (insert-term -in-term (term l, vid, term),
4 insert-term-in-term(term2, vid, term))},
5 mk-Quantified-equationsi (, ,)
6 -* (let equations — eval - quantified-equation(sortmap, equation) in
7 u n io n {insert-term(sortmap, eq, vid, term) | eq € equations}),
8 mk-Conditional-equationi(eqs, eq)
9 -* (let mk-Unquantified-equationi(termi, term2) = eq,

10 eqs' = union {insert-term(sortmap, e, vid, term) \ e £ egs} in
11 let eq1 = mk-Unquantified-equationi(insert-term-in-term(terml, vid, term),
12 insert-term -in-term (term 2, vid, term)) in
13 {mk-Conditional-equationi (eqs1, eq')}),
14 T -* {equation})

type : Sortmap Equationi Value-identifieri Ground-termi —► Equationsi

O bjective

Param eters

sortmap

equation
vid
term

R esu lt

A lgorithm

Line 2-4

Replace a value name by a Ground-termi in an equation enclosed by a
quantified equation.

A Sortmap which is used if the equation (in turn) contains quan
tified equations
The equation to be modified
The value identifier which should be replaced
The Termi which vid should be replaced by.

A set of equations containing the modified equation. If the equation is
a quantified equation, the set might contain more that one equation.

If it is an unquantified equation then replace vid by term in the
two contained terms (term i,term2).

(5.2.12)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 61

Line 5-7 If it is a quantified equation then first expand it into a set of un
quantified equations and then replace the value identifier in every
equation in the set.

Line 8-13 If it is a conditional equation then replace the value identifier by
the term in every equation in the restriction and in the restricted
equation and construct and return a set containing the modified
conditional equation.

Line 14 If it is informal text then do not touch it.

insert-term -in-term (term , vid, vterm) =

1 (if is-Ground-termi(term) V is-Error-termi{term) then
2 term
3 else
4 (let mk-Composite-termi(term ') = term in
5 if is -Identifier^ term') then
6 i f term' = vid then vterm else term
7 else
8 if is -Conditional-termi(term') then
9 (let mk-Conditional-termi(cond, <1, t2) = term ' in

10 let cond' = insert-term-in-term{cond, vid, vterm),
11 t l ' = insert-term -in-term (tl, vid, vterm),
12 t 2' = insert-term -in-term (t2, vid, vterm) in
13 let term" = m k -Conditional-term\{cond', t l ', 12') in
14 if is-Ground-termi(cond') A is -Ground-termi (^1;) A is - Ground-termi {t 2') then
15 mk- Ground-term\{term")
16 else
17 mk- Composite-termi (term"))
18 else
19 (let {opid, arglist) = term' in
20 let arglist' =
21 {insert-term-in-term(arglist[i], vid, vterm) \ 1 < i < len arglist) in
22 i f {3arg 6 elem s arglist){i%-Composite-termi{arg)) then
23 mk-Composite-termi{{opid, arglist'))
24 else
25 mk-Ground-term\{{opid, arglist')))))

type : Termi Value-identifieri Ground-termi —♦ Termi

O bjective

P aram eters

term
vid
vterm

R esu lt

A lgorithm

Line 1
Line 5-6

Line 8-13

Replace a value identifier {vid) by a (ground) term {vterm) in a term
{term).

The Termi which should have its value identifier replaced.
The value identifier to be replaced
The Termi which should be inserted instead of the value identifier.

The modified term.

If it is a ground term or an error term then do not modify it.
If it is an identifier and it is equal to vid then return the new term
else do not modify it.
If it is a conditional term then construct the conditional term
wherein occurrences of vid in the three contained terms has been
replaced by vterm.

(5.2.13)

62 Fascicle X .5 - R ec. Z.100 - A nnex F.3

Line 14-17 If all the three contained terms have become ground terms then
return the new conditional term as a ground term else return it as
a composite term.

Line 19-25 Else term must be an operator term in which case vid in the argu
ment terms is replaced by vterm and if all the modified argument
terms have become ground terms then return the new operator
term as a ground term else return it as a composite term.

expand-conditional-term-in-equations(equations, trueterm, falseterm) = (5.2

1 (if equations = {} then
2 {}
3 else
4 (let eq G equations in
5 let (condset, eq') —
6 cases eq:
7 (ink-Unquantijied-equationi (,)
8 -» ({}> eq),
9 m k-Conditional-equation\(condeq, eqs)

10 — (condeq, eqs)) in
11 let mk-Unquantified-equationi (t l , 12) = eq' in
12 let (t l 1, t l " , condl) = expand-conditional-in-terms(tl),
13 (t2', t2", cond2) = expand-conditional-in-terms(t2) in
14 i f condl = nil A cond2 = nil then
15 {e?} U expand-conditional-term-in-equations(equations \ {eq}, trueterm, falseterm)
16 else
17 (let (cond, term, nterm l, nterm2) be s.t. (cond, term, nterm l, nterm2) G
18 {(cond2, t l , t2', t2"), (condl, t2, t l ', t l") } A cond ^ nil in
19 let eql = m k -Unquantified-equationi(cond, trueterm),
20 eq2 = m k -Unquantified-equationi(cond, falseterm) in
21 let condeql =
22 mk-Conditional-equationi (condset U {egl}, mk- Unquantified-equationi(term, n term l)),
23 condeq2 —
24 mk-Conditional-equationi (condset U {eq2}, mk- Unquantified-equationi(term, nterm2)) in
25 let equations' = equations U {condeql, condeq2} \ {eg} in
26 expand-conditional-term-in-equations(equations', trueterm, falseterm))))

type : Equationsi Literal-operator-identifieri Literal-operator-identifieri —*• Equationsi

O b jec tiv e Replace every Conditional-termi by two Conditional-equations.

example :

the equation

if a then b else c == d

is expanded into

a == True ==> b == d;
a == False ==> c == d;

P aram eters

equations The set of equations to be replaced
trueterm,falseterm The two ground terms denoting the boolean True and False

Fascicle X .5 — R ec. Z.100 — A nnex F.3 63

R e su lt The modified set of equations which does not contain any Conditional-
terms

A lg o rith m

Line 1
Line 4-9

Line 12-13

Line 14-15

Line 17

Line 19-20

Line 21-23

Line 26

When the set of equations is empty, return nothing
Take a equation from the set and extract the set of restriction
{condset) and the restricted equation {eq[). If it is an unquantified
equation, the restriction set is empty.
Modify the terms in the restricted equation, condl and cond2 are
the conditions to be tested upon. A condition is n il if the term do
not contain any conditional terms. t l ’,t2! are the original terms
{ tl ,t2) wherein a conditional term has been replaced by the “then”
part of the conditional term and t l " , t2f' are the original terms
wherein a conditional term has been replace by the “else” part of
the conditional term.
If none of the two terms contained any conditional terms then do
not change the equation and continue with another equation in
equations
Choose one of the two terms to deal with. The other one will not
be changed in this call.
Construct the two unquantified equations, which must hold for the
two modified equations.
Construct two conditional equations wherein eql respective eq2 has
been added as an extra condition. (condeql) contains an equation
wherein one of the original terms {tl or t2) has been replaced by a
term containing the “then” part and {condeq2) contains an equa
tion wherein one of the original terms has been replaced by a term
containing the “else” part.
Include the two new conditional equations in the set of remaining
equations to be considered (because one of the terms in eq has
not been expanded and because the expanded term may contain
further conditional terms).

64 Fascicle X .5 — R ec. Z.100 — A nnex F.3

expand - conditional-in-terms (t) = (5.2.15)

1 (if is-Error-term \(t) then
2 { t ,t , nil)
3 else
4 (let m k -Ground-termi(term) — t in
5 cases term :
6 (m k-Identifieri(,)
7 ^ (t , t ,n i l) ,
8 mk-Conditional-termi(cond, <1 , t 2)
9 -» (t l , t2, cond),

10 (id , arglist)
11 -* if (3arg £ elems arglist)
12 ((let (, ,cond) =
13 expand-conditional-in-terms(arg) in
14 cond ^ nil)) then
15 (let (*, t l , t2, cond) be s.t. i £ ind arglist A
16 cond ^ nil A
17 expand-conditional-in-terms (arglist[i\) = (t l , t2, cond) in
18 let arglist1 =
19 (arglist[n] | 1 < n < i) ^ (t l) (arglist[n] | i < n < len arglist),
20 arglist" =
21 (arglist[n] | 1 < n < i) (t2) ^ (arglist[n\ \ i < n < len arglist) in
22 (mk-Ground-term\{{id , arglist')), m k -Ground-term\{{id, arglist")), cond))
23 else
24 (t, t, nil))))

type : Termi —> Term\ Termi [Ground-termi]

O b jec tiv e

R esu lt

A lg o rith m

Line 1-6

Line 8
Line 10-14

Line 15-17

Line 18-20

Line 22

Split a term (t) into three terms. If t does not contain a conditional
term then the two first terms are not relevant and the third one is nil.
Otherwise the result is t modified to contain the “then” part, t modified
to contain the “else” part and the boolean condition term.

The three new terms.

If it is an error term then do not modify it and indicate that it does
not contain a conditional term by returning n il as the condition
term.
If it is a conditional term then return its three parts.
If it is an operator term and one of its arguments contain a condi
tional term then
Take an argument term which contains a conditional term and split
it. i is the position in the argument list.
Construct the argument lists corresponding to the “then” part
(arglist!) and to the “else” part (arglist") and
Return the two operator terms corresponding to the “then” part,
to the “else” part and the boolean condition in the conditional
term in the argument.

Fascicle X .5 — Rec. Z.100 — A nnex F.3 65

expand-conditional-term-in-conditions(equations, trueterm, falseterm) = (5.2.16)

1 (if equations = {} then
2 {}
3 else
4 (let eq £ equations in
5 let mk-Conditional-equationi (condset, eq') = eq in
6 i f (3cond £ condset)
7 ((let xtik-Unquantified-equationi (t l , t2) — cond in
8 let (, , condl) =
9 expand - conditional-in-terms(tl),

10 (, ,cond2) =
11 expand-conditional-in-terms(t2) in
12 condl nil V cond2 ^ nil)) then
13 (let (condeq, cond, term, n term l, nterm2) be s.t. condeq £ condset A
14 (let rak-Unquantified-equationi(tl, t2) =
15 condeq in
16 let (t l ' , t l " , condl) —
17 expand - conditional - in-terms (11),
18 (t2', t2", cond2) =
19 expand-conditional-in-terms(t2) in
20 (cond, term, n term l, nterm2) = (if condl = nil
21 then (cond2, t l , t2 ', t2")
22 else (condl, t2, t l ', t l ,;))) in
23 let eql — mk-Unquantified-equationi(cond, trueterm),
24 eq2 = mk-Unquantified-equationi(cond, falseterm) in
25 let condset' = condset \ {condeq} U {eql, xtik-Unquantified-equationi (term, n term l)},
26 condset" = condset \ {condeq} U {eq2, m k -Unquantified-equationi (term, nterm2)} in
27 let equations' — equations \ {eq} U {xak-Conditional-equationi(condset', eq'),
28 mk-Conditional-equationi (condset", eq')} in
29 expand-conditional-term-in-conditions(equations', trueterm, falseterm))
30 else
31 {e?} U expand-conditional-term-in-conditions(equations \ {eg}, trueterm, falseterm)))

type : Conditional-equationi Literal-operator-identifieri Literal-operator-identifieri —* Equationsi

P a ra m e te rs

tions if they contain any conditional terms in the Restrictioni.

example :

the equation

if b then c else d == e ==> f == g

is expanded into

b == True, c == e ==> f == g;
b == False,d == e ==> f == g

P a ra m e te rs

equations The set of conditional equations
trueterm,falseterm The two ground terms denoting boolean True and False.

R e su lt The expanded set of equations.

A lg o rith m

trueterm,falseterm The two ground terms denoting boolean True and False.

66 Fascicle X .5 — Rec. Z.100 — A nnex F.3

Line 1 When through, return the empty set
Line 4-1% • Take a conditional equation from the set and if it does not contain

a conditional term in the restriction part then continue with the
rest of equations in the set (line 31)

Line 13-21 Extract the unquantified equation from the set of restrictions which
contains the conditional term (condeq), the condition in the condi
tional term (cond), the “then” version of the term in the unquanti
fied equation containing the conditional term (nterm l), the “else”
version of the term in the unquantified equation containing the
conditional term (nterm2) and the other term of the unquantified
equation (term).

Line 23-24 Construct the two additional restrictions to be included in the
respective restriction sets.

Line 25-26 Construct the two modified restriction sets.
Line 27 Replace the old conditional equation by the two new conditional

equations in the equation set.
Line 29 Repeat the operation with the modified equation set.

(5.2.17)

1 if (3 condeq G condequations)(restriction-holds(condeq, sortmap)) then
2 (let condeq G condequations be s.t. restriction-holds(condeq, sortmap) in
3 let m k -Conditional-equation\(, eq) = condeq in
4 let sortmap' — eval-unquantified-equations(sortmap,{eq}) in
5 eval-conditional-equations(sortmap', condequations \ {condeq}))
6 else
7 sortmap

ty p e: Sortmap Conditional-equationi-set Sortmap

eval-conditional-equations(sortmap, condequations) —

O b jec tiv e

P a ra m e te rs

sortmap
condequations

Reduce the number of equivalent classes in a Sortmap in accordance
with the conditional equations for a scopeunit.

A Sortmap
A set of conditional equations.

R esu lt

A lg o rith m

Line 1
Line 2
Line 3-4

Line 5

The modified Sortmap

If there exist a conditional equation which holds then
Let condeq denote the conditional equation which holds
Update Sortmap with the properties reflected by the restricted
equation (eq)
Repeat the operation until there are no more conditional equations
in the remaining set which holds

restriction-holds (xtik-Conditional-equationi (eqs,)> sortmap) = (5.2.18)

1 (let termpairs = {{term i, term2} \ (3eq G eqs)(nik-Unquantified-equationi(terml, term2) = eg)} in
2 (Wpairs G termpairs)((3class G union rng sortmap)(pairs C class)))

type : Conditional-equationi Sortmap —♦ Bool

O b jec tiv e Test whether the set of restrictions for a conditional equation holds

Fascicle X .5 — R ec. Z.100 — A nnex F.3 67

P aram eters

eqs
sortmap

R esu lt

A lgorithm

Line 1

Line 2

The set of restrictions
The Sortmap used for checking whether the restrictions hold

True if success

Construct a set of pairs of terms each containing the left-hand side
term and the right-hand side term of a restriction in the set of
restrictions
The restrictions hold if it for each restriction holds that the right-
hand side term is in the same equivalent class as the left-hand side
term.

is-w f -bool-and-pid(dict, pidvalueset) =

1 (let trueterm — dict(TRUEVALUE),
2 falseterm = diet (FALSEVALUE),
3 mk-Identifieri(level,) = trueterm in
4 (Vs £ Sortmap)(s C pidvalueset D (3n £ N i)(n > card s)) A
5 -iis-equivalent(trueterm, falseterm, level)(dict))

type : Entity-dict Term-class-set —► Bool

O bjective

R esu lt

A lgorithm

Line 1-2

Line 3
Line 4

line 5

Test whether the boolean True belongs to the same equivalent class as
the boolean False and whether there exist an infinite number of PiD
values
True if those conditions are satisfied.

Construct the ground terms corresponding to the literals True and
False
Let level denote its qualifier.
The set of PiD values must be infinite, i.e. for each (finite) subset s
of pidvalueset there must exist an Ni value n such that n is greater
that the cardinality of the subset.
The boolean literal True must not belong to the same equivalent
class as the boolean literal false.

68 Fascicle X .5 — R ec. Z.100 — A nnex F.3

5.3 S e lectio n o f C on sisten t Subset
select-consistent-subset(bset, subset, level) =

1 i f bset = {} then
2 {}
3 else
4 (let block £ bset in
5 let rest = select-consistent-subset(bset \ {block}, subset, level) in
6 let nik-Block-definitioni(bnm, pdefs,, , , , , sub) = block in
7 let pset = {mk-Identifieri(level (m k- Block-qualifier i(bnm)), s-Process-namei(pdef)) \
8 pdef £ pdefs} in
9 let bid = mk-Identifieri(level, bnm) in

10 if bid £ subset then
11 ex it(‘‘§3.2.1: Sub-block is not in consistent subset”)
12 else
13 i f sub = nil then
14 rest U pset
15 else
16 (let jxik-Block-substructure-definitioni(subnm, bset1, , , , ,) = sub in
17 let level1 =
18 level (mk-Block-qualifier\(bnm), m k-Block-substructure-qualifieri(subnm)) in
19 i f m.k-Identifieri(level, subnm) £ subset then
20 rest U select-consistent-subset(bset', subset, level')
21 else
22 if pset = {} then
23 ex it(‘‘§3.2.1: Leaf block contains no processes")
24 else
25 rest Upset))

ty p e: Block-definitioni-set Block-identifieri-set Qualifieri —► Process-identifieri-set

O bjective Check that the given set of block identifiers and block substructure
identifiers denotes a consistent subset and return the identifiers of the
processes contained in the consistent subset. The function traverse
recursively through the system definition

P aram eters

bset

subset

level

A lgorithm

Line 1
Line 4
Line 5
Line 6

Line 7

Line 9-11
Line 13
line 14
Line 16

Fascicle X .5 — R ec. Z.100 — A nnex F.3 . 69

The set of block definitions for the system definition or for a block
substructure definition
The (assumed) consistent subset represented by a set of block iden
tifiers and block substructure identifiers.
The Qualifieri of the scopeunit which contains the blocks bset

When through, return the empty set of process identifiers
Let block denote the next block definition to be considered
Select consistent subset for the rest of the block definitions
Let bnm denote the block name, let pdefs denote the set of pro
cess definitions and let sub denote the optional block substructure
definition
Let pset denote the set of Process-identifieris corresponding to
pdefs.
The block (or sub-block) must be in the consistent subset
If no substructure is present in the block then
The processes in the block is in the consistent subset
If a substructure is specified then let subnm denote its name and
let bset' denote its block definitions

(5.3.1)

Line 17-20

Line 22-23

If the substructure is in the consistent subset then consider the
blocks in the substructure else
There must exist at least one process definition in the block

5.4 C o n stru ctio n o f C om m u nication P ath s

This section contains the functions which updates every process descriptor (ProcessDD) to
include a set of Reachabilitys

In every scope unit which contains channels between two blocks, the incoming paths for
the channels are constructed, the outgoing paths are constructed, the paths are joined and
finally the process descriptors associated to the processes contained in the block from the
outgoing paths are updated. The incoming paths and outgoing paths (partial paths) contain,
before they are joined, a channel at one of the endpoints and a signal route at the other
endpoint. The intermediate identifiers are all sub-channel identifiers, make-structure-paths
is the entry function which is applied in extract-dict.

make-structure-paths(bset, cset, level)(dict) = (5.4.1)

1 (if cset = {} then
2 diet
3 else
4 (let ch £ cset in
5 let irik-Channel-definitioni(nm,nik-Channel-pathi(bl, b2,) ,) = ch in
6 i f (61 = ENVIRONMENT V 62 = ENVIRONMENT) A -iis-System-qualifieri(level[len level]) then
7 make-structure-paths(bset, cset \ {c/i}, level)(dict)
8 else
9 (let chid = nik-Identifieri(level, nm) in

10 let (reachset 1, diet') = out-going-paths(chid, 61, bset, ())(dict) in
11 let (reachsetV, diet") — out-going-paths(chid, 62, bset, §)(dict') in
12 let reachset2 = in-coming-paths(chid, 62, bset, ())(dict) in
13 let reachset2' = in-coming-paths(chid, 61, bset, ())(dict) in
14 if is-consistent-refinement(reachset 1, reachset2) A
15 is-consistent-refinement(reachset2,reachset2') then
16 (let d = update-processd(reachset 1, reachset2)(dict") in
17 let d' — update-processd(reachsetl', reachset2')(d) in
18 make - structure -paths(bset, cset \ {ch}, level)(d'))
19 else
20 exit(“Z.100 §3.3 : Illegal refinement of channel”))))

type : Block-definitioni-set Channel-definitioni -set Qualifier —> Entity-dict —> Entity-dict

O bjective For all channels in a scopeunit which are connected to two blocks or
are connected to the system environment, update the Reachabilities for
the processes which are able to send signals via the channels.

P aram eters

bset The block definitions
cset The channel definitions for a scopeunit
level A qualifier denoting the scopeunit.

R esu lt The entitydict wherein the appropriate ProcessDD descriptors have
been updated.

A lgorithm

Line 1 When through then return the updated entitydict

70 Fascicle X .5 — R ec. Z.100 — A nnex F.3

Line 4-5 Take a channel definition from the remaining set of definitions
Line 6-7 If the channel is a sub-channel then do nothing, since sub-channels

are handled by in-coming-path and outgoing-path.
Line 10-11 Extract the Reachabilities containing those processes which are ca

pable of sending via the channel and containing the appropriate
Path and the entitydict updated with information of Reachabili
ties corresponding to local communication paths in bl (line 10)
respectively b2 (line 11).

Line 12-13 Extract the Reachabilities containing those process in the block b2
respectively bl which are capable of receiving via the channel and
containing the appropriate Path.

Line 14 For both directions, any refinement subset selections must be con
sistent.

Line 16 Update the process descriptors in reachsetl respectively reachsetf
with Reachabilities containing of the possible receivers which are
deduced from reachset2 respectively reachset2! .

Line 18 Do the same for the rest of the channel definitions.

is-consistent-refinement(reachsetl,reachset2) = (5.4.2)

1 (let sigsetl = {sig | (3(, sse t,) G reachsetl)(sig G sset)},
2 sigset2 = {sig | (3(, sse t,) G reachset2)(sig G sset)} in
3 let env 1 = card reachsetl = 1 A (3(p , ,) G reachsetl)(p — ENVIRONMENT),
4 ent>2 = card reachset2 = 1 A (3(p, ,) G reachset2)(p = ENVIRONMENT) in
5 ~‘(3mk-Identifieri (q u a il,), m k-Identifier (qual2, nm2) G sigset 1)
6 (len quail > len qual2 A qual2 (mk-Signal-qualifier1(nm2)) = (quall[i] | 1 < t < len qual2 + 1)) A
7 -'(3irik-Identifieri(quall,), ink-Identifier(qual2, nm2) G sigset2)
8 (len quail > len qual2 A qual2 /"x (mk-Signal-qualifier\(nm2)) = (gua/l[ij | 1 < * < len qual2 + 1)) A
9 (env 1 V env2 V sigsetl = sigset2))

type : Reachabilities Reachabilities —► Bool

O bjective Check that the signals in the signal routes of each endpoint of a channel
do not include signals on different refinement levels of the same signal
and check that the set of signals from the outgoing endpoint of the
channel is the same as the set of signals at the incoming endpoint.

P aram eters

reachsetl The Reachabilities for the outgoing end of the channel.
reachset2 The Reachabilities for the incoming end of the channel.

R esu lt true if the above described conditions are satisfied.

A lgorithm

Let sigsetl denote the set of signals in the outgoing end of the
channel.
Let sigset2 denote the set of signals in the incoming end of the
channel.
Let envl be true if the outgoing end of the channel is the system
environment.
Let env2 be true if the incoming end of the channel is the system
environment.
For every two outgoing signals it must hold that they must not be
subsignals of each other.
For every two incoming signals it must hold that they must not be
subsignals of each other.
Unless one of the endpoints is the system environment it must hold
that the set of outgoing signals equals the set of incoming signals.

Line 1

Line 2

Line 3

Line 4

Line 5-6

Line 7-8

Line 9

Fascicle X .5 — R ec. Z.100 — A nnex F.3 71

out-going-paths(chid, b, bset, path)(diet) — (5.4.3)

1 if 6 = ENVIRONMENT then
2 ({(ENVIRONMENT, (chid))}, diet)
3 else
4 (let nik-Identifieri (level, bnm) = b in
5 let bdef G bset be s.t. s-Block-namei(bdef) = bnm in
6 let xtik-Block-definitioni (, , , connects, srdefs,,, sub) = bdef in
7 let path1 = path (chid) in
8 let bqual = level /' x (mk-Block-qualifieri(bnm)) in
9 if (3(mk-Identifieri(qual,), PROCESS) G dom diet)(qual = bqual) then

10 (let nik-Channel-to-route-connection (ch, routeset) G connects be s.t. ch = chid in
11 let (rset, diet') — make-out-reaches(routeset, srdefs, path')(dict) in
12 (rset, diet'))
13 else
14 (let nik-Block-substructure-definitioni (, bset', connects', c se t,, ,) = sub in
15 let vcik-Channel-connectioni(cid, cidset) G connects' be s.t. cid = chid in
16 let diet' = make-structure-paths(bset', cset, level)(dict) in
17 make-out-connect-paths(cidset, cset, bset', path')(dict')))

type : Channel-identifieri (Block-identifieri I ENVIRONMENT)
Block-identifieri-set Path —♦
Entity-dict —» Reachability -set Entity-dict

O b jec tiv e

P a ra m e te r s

chid
b
bset
path

R e su lt

A lg o rith m

Line 1-2

Line \-6

Line 7

Construct the Reachabilities corresponding to signals leading out of a
block via a given channel (chid). The channel is part of the Paths in
the Reachabilities. The constructed (temporary) Reachabilities are dif
ferent from the Reachabilities found in the process descriptors because
the Path is only a partial communication path (the destination part is
missing) and because the Process-identifieri in the Reachabilities is the
sending process. The complementary function incoming-path constructs
the “inverse” Reachability wherein the Path is the originating part and
in the function update-processd the two Reachabilities are merged to
form the Reachabilities which are inserted in the descriptor of the send
ing process, outgoing-path also updates the process descriptors, but
only with the Reachabilities local to the block from which the channel
originates. As several channels may originate from the same block, the
process descriptors may be updated several times with the same local
Reachabilities, but it does not m atter as Reachabilities is a set.

The channel identifier which the function constructs Paths from
The block identifier which the channel originates from
A set of block definitions among which the block can be found
The path constructed so far which leads out of the enclosing block
(if the channel is not a sub-channel the path only contains chid).

The (temporary) Reachabilities and the entitydict updated with the
communication paths local to the block.

If the originating endpoint is the system environment then return
a Reachability containing ENVIRONMENT as the originating end-
pointand the unchanged diet.
Extract the block definition from bset which correspond to the
block identifier b.
Add the channel identifier (chid) to the Path (which denotes the
path from a channel different from a sub-channel to chid).

72 Fascicle X .5 — R ec. Z.100 — A nnex F.3

Line 8 Let bqual denote the qualifier of the entities defined in the block
bnm

Line 9-12 If the processes in the block are selected then return the Reacha
bilities containing the processes (rset) and the Entity-dict updated
with Reachabilities for the processes capable of sending to other
processes in the block.

Line 14-15 Decompose the block substructure definition and the connection
point to which the channel (chid) is connected.

Line 16 Update Entity-dict with Reachabilities containing Paths which are
local to the block substructure. Note that the process descriptors
are (harmlessly) updated with the same Reachabilities several times
if several channels are connected to the block.

Line 17 Continue the creation of Reachabilities by entering the sub-blocks
connected to the sub-channels cidset.

make-out-connect-paths(cidset, cset, bset,path)(diet) =

1 (if cidset — {} then
2 ({}, diet)
3 else
4 (let cid € cidset in
5 let (reachsetrest, dictrest) = make-out-connect-paths(cidset \ {cid}, cset, bset,path)(diet) in
6 let cdef € cset be s.t. s- Channel-namei(cdef) = s-Name\(cid) in
7 let nik-Channel-definitioni (, m k-Channel-pathi(b\, 62 ,),) = cdef in
8 let block — if 62 = ENVIRONMENT then 61 else 62 in
9 let (rset, diet') — out-going-paths(cid, block, bset, path)(dictrest) in

10 (reachsetrest U rset, diet1)))

type : Channel-identifieri-set Channel-definitioni -set Block-definitioni -set Path —»
Entity-dict —> Reachability -set Entity-dict

O b jec tiv e

P a ra m e te rs

cidset
cset
bset
path

R esu lt
A lg o rith m

Line 1

Line 4~5

Line 6-7

Line 8
Line 9

Construct the temporary Reachabilities corresponding to the signals
conveyed by the sub-channels of a block substructure. The comple
mentary function is make-in-connect-paths.

The set of sub-channels
The set of channel definitions for the block substructure
The set of block definitions for the block substructure
The (partial) Path leading from the block substructure to the first
channel different from a sub-channel.

As for out-going-paths.

When through then return no Reachabilities, no signals and the
unchanged Entity-dict. (The result is created recursively).
Take a channel (cid) from the set of sub-channels and construct
(recursively) Reachabilities for the rest of the sub-channels.
Extract the channel definition corresponding to the sub-channel in
hand.
Extract the originating block of the sub-channel.
Construct the temporary Reachabilities (rset) wherein the pro
cesses are those processes which send via the channel (cid) and
which are contained in the block (block) and the Paths are path
updated with the rest of the path from the channel to the sig
nal routes connected to the processes. Furthermore, construct the

(5.4.4)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 73

Entity-dict which is updated with Reachabilities local to the block
(block).

Line 10 Return the Reachabilities and Entity-dict (as described above) for
the sub-channel in hand, joined with those for all the other sub
channels.

in-coming-paths(cid, block, bset, path)(dict) =

1 if block = ENVIRONMENT then
2 {(ENVIRONMENT, (cid))}
3 else
4 (let mk-Identifieri(qual, bnm) = block in
5 let bdef £ bset be s.t. s-Block-namei(bdef) = bnm in
6 let mk-Block-definition^, > > connects, srdefs, , , sub) = bdef in
7 let path' = path /'"x (cid) in
8 let bqual = qual /"x (mk-Block-qualifieri(bnm)) in
9 if (3(mk-Identifieri (qual,), PROCESS) £ dom diet)(qual = bqual) then

10 (let mk-Channel-to-route-connectioni (ch, routeset) £ connects be s.t. ch = cid in
11 make-in-reaches(routeset, srdefs, path'))
12 else
13 (let mk-Block-substructure-definitioni(, ftset', connects', cdefs,, ,) = in
14 let mk-Channel-connectioni (ch, cset) £ connects' be s.t. ch = cid in
15 make-in-connect-paths(cset, cdefs, bset', path')(diet)))

type : Channel-identifieri (Block-identifieri I ENVIRONMENT)
Block-identifieri-set Path —* Entity-dict —► Reachability -set

O b je c tiv e Construct and return Reachabilities wherein the processes are those
which are contained in a given block. As opposed to out-going-paths,
in-coming-paths construct “real” Reachabilities because they contain
receiving processes. The Paths in the Reachabilities are partial and
denotes the paths from the first channel different from a sub-channel
to the receiving process. The “other end” of the path is constructed in
the complementary function out-going-paths.

The channel for which the Reachabilities are constructed
The destination block of the channel
The set of block definitions among which block can be found
The set of possible paths.

If the destination endpoint is the system environment then return
a set only containing one Reachability wherein the receiver is the
environment.
Extract and decompose the block definition corresponding to the
block identifier Block.
Add the channel identifier to the path which is going to be used
inside the block.
Let bqual denote the qualifier of the entities defined in the block
bnm
If there exist a descriptor of a process defined in the block then the
substructure is not selected
Extract and return the Reachabilities which correspond to the sig
nal routes (routeset) connected to the channel (ch).

P a ra m e te rs

cid
block
bset
path

A lg o rith m

Line 1-2

Line 4-6

Line 7

Line 8

Line 9

Line 10-11

(5.4.5)

74 Fascicle X .5 — R ec. Z.100 — A nnex F.3

Line 13-14 Decompose the block substructure definition and the channel con
nection which connects the channel (chid) to the block substruc
ture.

Line 15 Continue the creation of Reachabilities by entering the sub-blocks
(bset!) connected to the sub-channels cset.

make-in-connect-paths(cidset, cset, bset, path)(diet) =

1 if cidset — {} then
2 {}
3 else
4 (let cid £ cidset in
5 let reachsetrest — make-in-connect-paths(cidset \ {cid}, cset, bset, path)(dict) in
6 let cdef £ cset be s.t. &-Channel-name\(cdef) = s-Namei(cid) in
7 let mk-Channel-definitioni (, ink-Channel-pathi(bl, 62 ,),) = cdef in
8 let block = if 62 = ENVIRONMENT then 61 else 62 in
9 let inblockreach = in-coming-paths(cid, block, bset, path)(dict) in

10 reachsetrest U inblockreach)

ty p e : Channel-identifieri -set Channel-definitioni-set
Block-identifieri-set Path —* Entity-dict —> Reachability -set

O b jec tiv e Construct the Reachabilities corresponding to the signals conveyed by
the sub-channels for a block substructure. The complementary function
is make-out-connect-paths.

The set of sub-channels
The set of channel definitions for the block substructure
The set of block definitions for the block substructure
The (partial) Path leading from the first channel different from a
sub-channel to the block substructure.

When through then return no Reachabilities (the result is created
recursively).
Take a sub-channel identifier from the set of sub-channels and cre
ate Reachabilities (recursively) for the rest of the sub-channels.
Take the channel definition from cset which correspond to the sub
channel identifier in hand. Note that the information about which
signals the channel conveys is not used, since it is the signal routes
which determines which signals ac tu a lly is conveyed by the chan
nel.
Extract the destination block.
Construct the Reachabilities (inblockreach) wherein the processes
are those processes which receive via the channel (cid) and which
are contained in the block (block) the signals are those which are
received by the processes via the channel (cid) and the appropri
ate signal routes and the Paths are path updated with the rest of
the path from the channel to the signal routes connected to the
processes.

Line 10 Return the Reachabilities (as described above) for the sub-channel
in hand, joined with those for all the other sub-channels.

P a ra m e te rs

cidset
cset
bset
path

A lg o rith m

Line 1

Line ^-5

Line 6-7

Line 8
Line 9

(5.4.6)

Fascicle X .5 — R ec. Z.100 — A nnex F.3 75

make-in-reaches(routeset, srdefs, path) = (5.4.7)

1 if routeset = {} then
2 ({},{})
3 else
4 (let route £ routeset in
5 let reachrest = make-in-reaches(routeset \ {route}, srdefs, path) in
6 let m k-Identifieri(, rnm) = route in
7 let mk-Signal-route-definitioni (nm, pathl, path2) 6 srdefs be s.t. nm = rnm in
8 let mk-Signal-route-pathi(el, e2, sigset) = pathl in
9 let (signalset, dest) =

10 if e l = ENVIRONMENT then
11 (sigset, e2)
12 else
13 if path2 = nil then
14 ({},el)
15 else
16 (let mk-Signal-route-pathi (, > sigset') = path2 in
17 (sigset1, e l)) in
18 reachrest U {(dest, signalset, path (route))})

type : Signal-route-identifieri-set Signal-route-definitioni-set Path —> Reachabilities

O b je c tiv e

P a ra m e te rs

routeset
srdefs
path

R e su lt

A lg o rith m

Line 1
Line 4-5

Line 6-8

Line 9-17

Line 18

Construct the Reachabilities for a partial Path leading to a signal route
connection point. There are as many constructed Reachabilities as
there are signal route identifiers in the signal route connection point.
The complementary function handling the outgoing signals is make-out-
reaches.

The set of signal route identifiers for a signal route connection
Their corresponding signal route definitions
The Paths to which the signal routes are added.

The constructed Reachabilities.

When through, return nothing (the result is created recursively).
Take a Signal-route-identifieri from routeset and construct the
Reachabilities for the rest of the signal route identifiers.
Extract and decompose the signal route definition corresponding
to the signal route identifier.
Extract the incoming signals (signalset) and the destination process
from the signal route definition.
Return the Reachability corresponding to the signal route identifier
in hand, joined with the Reachabilities corresponding to the rest of
the signal route identifiers.

76 Fascicle X .5 — R ec. Z.100 — A nnex F.3

make-out-reaches(routeset, routedefs, path)(diet) = (5.4.8)

1 (if routedefs = {} then
2 ({}, diet)
3 else
4 (let route E routedefs in
5 let (restr, restd) = make-out-reaches(routeset, routedefs \ {route}, path)(dict) in
6 let m k-Signal-route-definitioni(rnm, m k-Signal-route-pathi(pi, p2, sset), path2) — route in
7 if p i = ENVIRONMENT V P2 = ENVIRONMENT then
8 if (3ic? E routeset)(s-Namei(id) = rnm) then
9 (let id E routeset be s.t. s-Namei(id) = rnm in

10 if path2 = nil then
11 if p i = ENVIRONMENT then
12 (restr, restd)
13 else
14 (restr U {(pi, sset, (id) path)}, restd)
15 else
16 (let mk-Signal-route-pathi(, , sset1) = path2 in
17 let (originp, sset11) =
18 if p i = ENVIRONMENT then
19 (p2, sset')
20 else
21 (p i, sset) in
22 (restr U {(originp, sset", (id) path)}, restd)))
23 else
24 (restr, restd)
25 else
26 (let mk-Identifieri(level,) = p i in
27 (restr, make-local-reach(mk-Identifieri(level, rnm), route)(restd)))))

type : Signal-route-identifieri-set Signal-route-definition^-set Path —►
Entity-dict —+ Reachability -set Entity-dict

O b jec tiv e Construct the Reachabilities for a partial Path originating from a signal
route connection point. There are as many constructed Reachabilities
as there are signal route identifiers in the signal route connection point.
The complementary function handling the incoming signals is make-in-
reaches. Furthermore, update the process descriptors in Entity-dict
with Reachabilities corresponding to the signal routes between pro
cesses. If the block has several signal route connections, the process
descriptors are updated several times.

P a ra m e te rs

routeset The set of signal route identifiers for a connection point
routedefs The set of signal route definitions for the block
path The partial Path originating from the connection point.

R esu lt

A lg o rith m

Line 1

The constructed Reachabilities and the Entity-dict updated with Reach
abilities corresponding to the signal routes between processes.

Every signal route definition in the block is considered. When
through, return no Reachabilities and the unchanged Entity-dict.

Line 4 Take a signal route definition from routeset and construct the
Reachabilities (restr) and the updated Entity-dict (restd) for the
rest of the signal route definitions.

Line 7-24 Cover the case where the signal route is connected to a channel.

Fascicle X .5 — R ec. Z.100 — A nnex F.3 77

Line 8 and line 24 If the signal route is not mentioned in this connection point (rep
resented by routeset) then return the information for the rest of
the signal route definitions (i.e. do nothing about the signal route
definition in hand).

Line 9 Extract the signal route identifier from routeset.
Line 10-14 If the signal route is unidirectional then if the signal route is “in

coming” (line 11-12) then do nothing about the signal route def
inition in hand else return the Reachabilities from the rest of the
signal route definitions joined with a Reachability containing the
sending process (pi) , the signals conveyed by the signal route
(sset) and the Path where the signal route identifier (id) has been
added. Also return the possible updated Entity-dict

Line 16-22 If the signal route is bidirectional then extract the originating pro
cess (originp) from the appropriate Signal-route-pathi and then do
the same as in line 14.

Line 26-27 If the signal route is connecting processes then no new Reachability
is created, but the process descriptors in Entity-dict are updated
with reachabilities for the communication paths between the two
processes (handled in make-local-reach).

make-local-reach(id, mk-Signal-route-definitioni(rnm, pathl, path2))(dict) = (5.4.8)

1 (let mk-Signal-route-pathi(pl, p2, sset) = pathl in
2 let m k -ProcessDD(parm, in it, maxi, graph, inrset) = dict((pl, PROCESS)) in
3 let reach = (p2, sset, (id)) in
4 let diet1 — diet + [(pi, PROCESS) t—» m k -ProcessDD(parm, in it, maxi, graph, inrset U {reach})] in
5 if path2 = nil then
6 diet'
7 else
8 make-local-reach(id, m k-Signal-route-definitioni (rnm, path2, nil))(dict'))

type : Signal-route-identifieri Signal-route-definitioni —♦ Entity-dict —* Entity-dict

O b jec tiv e

P a ra m e te rs

Update one or two process descriptors in Entity-dict with Reachabilities
for the other process endpoint. Two process descriptors are updated
only if the signal route is bidirectional.

id The identifier of the signal route
Signal-route-definitioni The signal route definition containing

rnm
pathl
path2

R e su lt

A lg o rith m

Line 1-4

Line 5-8

The name of the signal route
The first Signal-route-pathi
The second (optional) Signal-route-pathi

The Updated Entity-dict

Update Entity-dict with Reachabilities for one of the directions.
The Reachability which is added to the process descriptor for the
sending process (pi) contains the receiving process (p2), the signals
(sset) and a Path only containing the signal route identifier (id).
If the signal route is unidirectional then return the updated Entity
dict else do the same where the signal route is regarded as unidi
rectional and the contained Signal-route-pathi is the one which has
not been treated so far.

78 Fascicle X .5 — R ec. Z.100 — A nnex F.3

update-processd(outrset, inrset)(dict) = (5.4.10)

1 if outrset = {} then
2 diet
3 else
4 (let outreach (E outrset in
5 let (pid, sigset, path) = outreach in
6 let inrset' =
7 {tnr € inrset | (let (, ,path!) = inr in
8 path' [len path1] = hd path)} in
9 let m k -ProcessDD(parmd, init, maxi, graph, rset) = dict((pid, PROCESS)) in

10 let reachabilityset = extract-reachabilities(sigset, path, inrset') in
11 let diet' = diet +
12 [(pid, PROCESS) h-* m k -ProcessDD(parmd, in it, maxi, graph, rset U reachabilityset)] in
13 update-processd(outrset \ {outreach}, inrset)(dict'))

type : Reachability -set Reachability-set —* Entity-dict —► Entity-dict

O b jec tiv e

P a ra m e te rs

outrset
inrset

R esu lt
A lg o rith m

Line 1

Line 4-5
Line 6

Line 9
Line 10

Line 11-13

Update process descriptors in Entity-dict with the reachabilities pos
sible from Reachabilities containing outgoing (partial) Paths and from
Reachabilities containing incoming (partial) Paths.

The Reachabilities containing the outgoing Paths
The Reachabilities containing the incoming Paths.

The Updated Entity-dict

Each Reachability containing outgoing Paths is examined. When
through the set then return the (updated) Entity-dict
Take a reachability from outrset.
Extract those incoming Reachabilities which contain the continua
tion of the Path in the Reachability in hand, that is, extract those
Reachabilities which has the same channel identifier at the end of
the Path as the channel identifier at the beginning of the Path in
hand (path).
Decompose the process descriptor of the sending process.
Go through all the incoming Reachabilities in order to construct
the possible (complete) Reachabilities.
Update Entity-dict with the new Reachabilities and use this up
dated Entity-dict when treating the rest of the outgoing Reacha
bilities.

extract-reachabilities(sigset, path, inrset) = (5.4.11)

1 if inrset = {} then
2 {}
3 else
4 (let inr (E inrset in
5 let (pid, sigset', path') = inr in
6 let reach — if sigset fl sigset' — {} then
7 {}
8 else
9 {(p^d, sigset D sigset', path '“M lpath')} in

10 {reach} U extract-reachabilities(sigset, path, inrset \ {inr}))

type : Signal -identifieri -set Path Reachability -set —> Reachability -set

Fascicle X .5 — R ec. Z.100 — A nnex F.3 79

O b je c tiv e Construct Reachabilities from an outgoing (partial) Path and a set of
incoming Reachabilities.

P a ra m e te rs

sigset The set of signals on the outgoing Path
path The outgoing Path
inrset The set of incoming Reachabilities.

R e su lt The constructed Reachabilities.

A lg o rith m

Line 1 When through the set of Reachabilities, return nothing.
Line 4-5 Take an incoming Reachability from inrset.
Line 5-6 Construct a Reachability which is empty if the incoming Reacha

bility has no signals in common with the outgoing Path, otherwise
it contains the receiver (pid), the intersection of signals possible in
the incoming Reachability and in the outgoing Path and the com
plete Path constructed by concatenating the outgoing path (path)
with the incoming path (path) except for the first element (i.e.
the channel identifier which also occurs as the last element in the
outgoing path).

Line 10 Return the constructed Reachability together with the Reachabili
ties constructed from the rest of the incoming Reachabilities.

80 Fascicle X .5 — R ec. Z.100 — A nnex F.3

Dom ain Index

Active-Answer 3, 23, 40
Active-Request 3, 19, 40
Arglist 3, 19, 22, 23
Argument-list 8, 56
Argument-listi Z.100, 52
Assignment-statementi Z.100, 32, 34
Auxiliary-information A n n ex F.2, 9

Block-definitioni Z.100, 46, 49, 69, 70,
72, 73, 74

Block-identifier! Z.100, 9, 44, 69, 72, 74,
75

Block-namei Z.100, 72, 74
Block-qualifieri Z.100, 49, 69, 72, 74
Block-substructure-definitioni Z.100, 49,

69, 72, 74
Block-substructure-qualifier! Z.100, 49, 69
Bool 3, 10, 18, 19, 22, 32, 43, 50, 51, 53,

55, 56, 67, 68, 71

Call-nodei Z.100, 32, 36
Channel-connection! Z.100, 72, 74
Channel-definition! Z.100, 70, 73, 75
Channel-identifier! Z.100, 9, 72, 73, 74,

75
Channel-namei Z.100, 73, 75
Channel-pathi Z.100, 70, 73, 75
Channel-to-route-connection! Z.100, 72,

74
Closed-rangei Z.100, 31
Composite-termi Z.100, 62
Condition! Z.100, 31
Conditional-equationi Z.100, 57, 61, 63,

66, 67
Conditional-expression! Z.100, 37
Conditional-termi Z.100, 38, 56, 62, 65
Create-Instance-Answer 2, 15, 35
Create-Instance-Request 2, 11, 35
Create-Pid 4, 11
Create-request-nodei Z.100, 32, 35

Data-type-definition! Z.100, 52
Decision-answeri Z.100, 30, 31, 51
Decision-nodei Z.100, 29, 30, 51
Decision-question! Z.100, 31
Decli A n n e x F .2 , 46
Die 4, 16, 17
Direct-viai Z.100, 3, 13
Discard-Signals 5, 17, 18

Else-answeri Z.100, 30
ENVIRONMENT 6, 8, 9, 10, 12, 13, 14, 70,

71, 72, 73, 74, 75, 76, 77
Entity-dict 6, 10, 11, 12, 13, 15, 16, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44,
46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 68, 70, 72, 73, 74, 75,
77, 78, 79

Equationi Z.100, 61
Equations! Z.100, 7, 57, 58, 60, 61, 63,

66
Equivalent-test 3, 19, 22, 23
Error-termi Z.100, 7, 52, 53, 55, 60, 62,

65
EXPIREDF 6, 26, 44
Expression! Z.100, 31, 32, 37, 40, 41

FALSEVALUE 6, 40, 44, 57, 68
FormparmDD 7, 41, 49

Graph-nodei Z.100, 29, 32
Ground-expressioni Z.100, 37, 38, 51
Ground-termi Z.100, 2, 3, 7, 37, 38, 39,

40, 52, 53, 54, 55, 56, 60, 61, 62,
65

Identifier! Z.100, 6, 8, 13, 26, 36, 37, 38,
40, 41, 42, 46, 47, 48, 49, 52, 56,
60, 62, 65, 68, 69, 70, 71, 72, 74,
76, 77

In-parameteri Z.100, 49
Informal-texti Z.100, 32, 34
Initial 8
Inout-parameter! Z.100, 49
InoutparmDD 7, 41, 49
InparmDD 7, 41, 49
Input-Signal 3, 21, 29
Input-nodei Z.100, 29, 47
Intg 8
Is-expired A n n ex F .2, 6, 19, 24, 44

Literal-operator-identifier! Z.100, 6, 63,
66

Literal-operator-namei Z.100, 52
Literal-signaturei Z.100, 52

Maximum 8

Namei Z.100, 73, 75, 77
Next-Signal 3, 19, 29
Nextstate-nodei Z.100, 29
Now-expression! Z.100, 37
NULLVALUE 6, 16, 26, 35, 44
Number-of-instances! Z.100, 47
No 9
N i 68

Offspring-Value 2
Offspring-expression! Z.100, 37
Open-rangei Z.100, 31
OperatorDD 6, 8, 38, 39, 52, 56
Operator-application! Z.100, 31, 37, 39
Operator-identifier! Z.100, 31
Operator-namei Z.100, 52

Fascicle X .5 — D om ain Index 81

Operator-signaturei Z.100, 52
Output-nodei Z.100, 32, 34

PARENT 6, 26, 37
ParameterDD 8, 28
Parent-expressioni Z.100, 37
Parent-sort-identifieri Z.100, 7, 54
Path 8, 14, 72, 73, 74, 75, 76, 77, 79
Path-identifier 8
PIDSORT 6, 16, 39, 44, 55
Pid-Created 4, 12
Pid-Value 2, 3, 4, 5, 9, 11, 13, 15, 16, 17,

18, 19, 20, 21, 23, 26
PORT 6, 26, 29, 33, 40
Port 2, 4, 5, 9, 17, 18
PROCEDURE 6, 36, 48
PROCESS 6, 10, 13, 15, 26, 35, 44, 47, 72,

74, 78, 79
ProcedureDD 6, 7, 36, 48
Procedure-definitioni Z.100, 46, 48
Procedure-formal-parameteri Z.100, 49
Procedure-graphi Z.100, 7, 36, 50
Procedure-qualifieri Z.100, 36, 48
Procedure-start-nodei Z.100, 36
ProcessDD 6, 8, 10, 15, 26, 35, 47, 78, 79
Process-Initiated 2, 15, 26
Process-definitioni Z.100, 46, 47
Process-graphi Z.100, 8, 28, 47, 50
Process-identifieri Z.100, 2, 8, 9, 14, 15,

26, 69
Process-namei Z.100, 69
Process-qualifieri Z.100, 26, 47
Process-start-nodei Z.100, 28

Qualifieri Z.100, 6, 26, 27, 46, 47, 48, 49,
50, 51, 52, 53, 54, 69, 70

Quantified-equationsi Z.100, 57, 60, 61
Queue-Signal 5, 13, 18

Range-conditioni Z.100, 7, 31, 32, 43, 51
RETURN 29, 36
REVEALED 8, 42
Reachabilities 6, 8, 13, 71, 76
Reachability 8, 72, 73, 74, 75, 77, 79
Release-Pid 4, 11
Reset-Tim er 3, 19, 33
Reset-nodei Z.100, 32, 33
Result 8, 56
Resulti Z.100, 52
Return-nodei Z.100, 29
Reveal 4, 17, 42

Save-signalseti Z.100, 29
SCOPEUNIT 6, 26, 27, 31, 33, 34, 35, 36,

39, 40, 42, 43, 51
SELF 6, 26, 37, 42
Self-expressioni Z.100, 37
Send-Signal 3, 11, 34
Sender- Value 3, 5
Sender-expressioni Z.100, 37

Set-Tim er 3, 19, 33
Set-nodei Z.100, 32, 33
SIGNAL 6, 33, 34, 40, 46
SignalDD 6, 7, 33, 34, 40, 46
Signal-Delivered 5, 13, 18, 19
Signal-definitioni Z.100, 46
Signal-identifier! Z.100, 3, 5, 8, 13, 18,

19, 20, 21, 23, 29, 79
Signal-qualifieri Z.100, 46, 71
Signal-refinementi Z.100, 46
Signal-route-definitioni Z.100, 76, 77, 78
Signal-route-identifieri Z.100, 76, 77, 78
Signal-route-pathi Z.100, 76, 77, 78
SORT 6, 16, 43, 46, 52, 54
SortDD 6, 7, 16, 52, 54
Sort-identifieri Z.100, 6, 7, 55, 56
Sort-qualifieri Z.100, 60
Sort-reference-identifieri Z.100, 7, 8, 35,

43, 47, 54
Sortmap 7, 55, 57, 58, 59, 60, 61, 67, 68
STOP 26, 29
State-namei Z.100, 28, 36
State-nodei Z.100, 29, 47, 50
Stg 8, 26, 36, 41
Stop 3, 11, 26
Stop-Queue 5, 16, 19
Stop-nodei Z.100, 29
Syn-type-definitioni Z.100, 46
SyntypeDD 6, 7, 43, 46
System-definitioni Z.100, 9, 44
System-qualifieri Z.100, 44, 70

Task-nodei Z.100, 32
Term-class 7, 68
Term-information A n n ex F.2, 44
Termi Z.100, 62, 65
Terminatori Z.100, 29
Time 5, 25
Time-Answer 4, 24, 25, 41
Time-Request 4, 19, 25, 41
Time-information A n n ex F .2, 25
Timeout-value 3
Timer-active-expressioni Z.100, 37, 40
Timer-definitioni Z.100, 46
Timer-identifieri Z.100, 3, 19, 22, 23
TRUEVALUE 6, 31, 40, 43, 44, 57, 68
Transitioni Z.100, 28, 29, 30, 36, 50, 51
TYPE 6, 16, 52, 53, 54
TypeDD 6, 7, 16, 52, 53, 54
Type-identifieri Z.100, 7

UNDEFINED 4, 17, 26, 38, 39, 42, 43
Unquantified-equationi Z.100, 57, 58, 61,

63, 66, 67

VALUE 6, 26, 27, 35, 36, 38, 39, 41, 42, 46,
47, 49, 52, 56

Value 2, 3, 4, 5, 17, 19, 22, 23, 24, 25, 26,
37, 38, 39, 40, 41, 42, 43

82 Fascicle X .5 — D om ain Index

Value-List 2, 3, 5, 13, 15, 18, 19, 20, 21,
26, 28

Value-identifieri Z.100, 61, 62
VarDD 6, 8, 26, 27, 38, 41, 42, 46, 47, 49
Variable-definitioni Z.100, 46
Variable-identifieri Z.100, 4, 7, 8, 17
Variable-namei Z.100, 47, 49
View-Answer 4, 17, 39
View-Request 4, 17, 39
View-expressioni Z.100, 37, 39

Fascicle X .5 - D om ain Index 83

Function Index

delaying-path 13, 14
discard-signals-to-port 11, 16, 17

establ-dyn-diet 36, 41
eval-active-expression 37, 40
eval-conditional-equations 57, 67
eval-conditional-expression 37, 38, 40
eval-deduced-equivalence 58, 59
eval-equations 52, 57
eval-expression 31, 33, 34, 35, 37, 38, 39,

40, 41, 43
eval-ground-expression 37, 38, 43, 51
eval-now-expression 37, 41
eval-operator-application 37, 39
eval-quantified-equation 57, 60, 61
eval-unquantified-equations 57, 58, 67
eval-variable-identifier 37, 38
eval-view-expression 37, 39
expand-conditional-in-terms 63, 65, 66
expand-conditional-term-in-conditions 57,

66
expand-conditional-term-in-equations 57,

63
extract-diet 9, 44
extract-reachabilities 79
extract-sortdict 44, 47, 48, 49, 52

getpid 12, 15, 16

handle-active-request 19, 23
handle-create-from-environment 11, 12
handle-create-instance-request 10, 11, 15
handle-inputs 9, 11
handle-queue-extract 19, 20, 21
handle-queue-insert 19, 20, 24
handle-remove-timer-from-queue 22, 23
handle-reset-timer 19, 22
handle-send-signal 11, 13
handle-set-timer 19, 22
handle-stop 11, 16
handle-stops-in-environment 11
handle-time-request 19, 24

in-coming-paths 70, 74, 75
init-process-decls 26, 27
init-process-parms 26, 28
insert-term 60, 61
insert-term -in-term 61, 62
int-assign-stmt 32, 34
int-call-node 32, 36
int-create-node 32, 35
int-decision-node 29, 30
int-graph-node 29, 32
int-inform al-text 32, 34
int-output-node 32, 34
int-procedure-graph 36
int-process -graph 26, 28

int-reset-node 32, 33
int-set-node 32, 33
int-state-node 28, 29, 36
int-task-node 32
int-transition 28, 29, 30, 36
is-consistent-refinement 70, 71
is-equivalent 31, 33, 40, 43, 51, 53, 68
is-of-this-sort 55, 56
is-wf-bool-and-pid 55, 68
is-w f -decision-answers 47, 48, 50
is-w f -transition-answers 50, 51
is-wf-values 52, 55

make-block-diet 46, 49
make-entity 44, 46, 47, 48, 49
make-equivalent-classes 52, 55
make-formal-parameters 48, 49
make-in-connect-paths 74, 75
make-in-reaches 74, 76
make-local-reach 77, 78
make-out-connect-paths 72, 73
make-out-reaches 72, 77
make-procedure-diet 46, 48
make-process-diet 46, 47
make-signal-diet 46
make-structure-paths 44, 70, 72
make-valuetest-operator 31, 43, 51
matching-answer 30, 31

out-going-paths 70, 72; 73

pathd 9, 10

range-check 33, 34, 38, 39, 42, 43
reduce-term 33, 34, 35, 39, 40, 42, 54
replace-term 59, 60
restriction-holds 67

same-argument-values 21, 22, 23
select-consistent-subset 44, 69
start-initial-processes 9, 10

text-equality 31, 32

update-processd 70, 79
update-stg 27, 28, 29, 34, 41, 42

84 Fascicle X .5 — Function Index

Processor Index

p ro c esso r input-port 2, 6, 19, 26
p ro c esso r path 9, 10, 18
p ro c esso r sdl-process 9, 13, 15, 16, 17,

19, 20, 21, 22, 23, 26
p ro c e sso r system 9, 17, 18, 26, 34, 35
p ro c e sso r tick 25
p ro c e sso r timer 9, 19, 24, 25, 41
p ro c e sso r view 9, 16, 17, 39, 42

Fascicle X .5 — Processor Index

Variable Index

instancemap 9, 11, 12, 13, 15, 16

newstg 36

offspring 26, 35, 37

pathm ap 9, 10, 13, 17
pendingset 19, 20, 21
pidno 9, 15, 16
pidset 9, 16
pqueue 18

queue 19, 20, 21, 22, 23
queuemap 9, 11, 12, 13, 15, 16

sender 26, 29, 37
stg 26

time-now 25
timers 19, 21, 22, 23, 24

viewmap 17

waiting 19, 20, 21

86 Fascicle X .5 — Variable Index

Error M essages

§2.7.4
§2 .7.4
§2 .7.5
§2 .7.5

§3 .2 .1:
§3 .2 .1:
§3.3 :

§5 .2 .1:
§5 .4 .1.7
§5 .4 .1.7
§5 .4 .1.9
§5 .5 .2.2
§5 .5 .2.2
§5 .5 .2.3
§5 .5 .4.4

Multiple receivers found 13
No receiver found 13
Answers in decision actions are not mutually exclusive 47, 48
No matching answer 30

Leaf block contains no processes 69
Sub-block is not in consistent subset 69
Illegal refinement of channel 70

Generation or reduction of equivalent classes of the enclosing scopeunit 52
Literal is equal to the error term 52
Operator application is equivalent to the error term 53
Value is not within the range of the Syntype 33, 34, 38, 39, 42
The viewed value is undefined 39
Value of accessed variable is undefined 38
Condition must evaluate to TRUE or FALSE 40
Revealing process is not alive 17

Fascicle X .5 — Error M essages 87

ISBN 92-61-03791-7

	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)
	CONTENTS OF FASCICLE X.5 OF THE BLUE BOOK
	Contents
	Introduction
	1. Domains for the process communication
	2. Domains for the entity information
	3. The underlying system
	4. The SDL-process
	5. Construction of Entity-dict and handling of abstract data types

