

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT.

(ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلاً

此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ.

C.C.I.R.

NEW DELHI, 1970

RAPPORT 252-2 REPORT 252-2 INFORME 252-2

MÉTHODE PROVISOIRE DU C.C.I.R. POUR L'ÉVALUATION DU CHAMP ET DE L'AFFAIBLISSEMENT DE TRANSMISSION DE L'ONDE D'ESPACE POUR LES FRÉQUENCES COMPRISES ENTRE LES LIMITES APPROXIMATIVES DE 2 ET 30 MHz

C.C.I.R. INTERIM METHOD FOR ESTIMATING SKY-WAVE FIELD STRENGTH AND TRANSMISSION LOSS AT FREQUENCIES BETWEEN THE APPROXIMATE LIMITS OF 2 AND 30 MHz

MÉTODO PROVISIONAL DEL C.C.I.R. PARA EVALUAR LA INTENSIDAD DE CAMPO Y LA PÉRDIDA DE TRANSMISIÓN DE LA ONDA IONOSFÉRICA DE FRECUENCIAS COMPRENDIDAS ENTRE LOS LÍMITES APROXIMADOS DE 2 Y 30 MHz

UNION INTERNATIONALE DES TÉLÉCOMMUNICATIONS GENÈVE, 1970

feuille de route covering note hojas de control

secrétariat général de l'union internationale des télécommunications • general secretariat international telecommunication union • secretaría general de la unión internacional de telecomunicaciones

Objet : Subject : Asunto : GENÈVE, 20 octobre 1976 Place des Nations

CORRIGENDUM 1 au RAPPORT 252-2, New Delhi, 1970

Il conviendrait de modifier la formule 28 (page 34) qui devrait se lire comme suit :

$$L_{i} = \frac{677.2 \text{ (sec } \emptyset)}{(f + f_{H})^{1.98} + 10.2} \sum_{j=1}^{n} I_{j} \quad (dB) \quad (28)$$

Le programme de l'ordinateur se rapportant à la même formule (page 192) est correct.

CORRIGENDUM 1 to REPORT 252-2, New Delhi, 1970

Formula 28 (page 92) should be amended to read as follows:

$$L_{j} = \frac{677.2 \text{ (sec } \emptyset)}{\left(\mathbf{f} + \mathbf{f}_{H}\right)^{1.98} + 10.2} \sum_{j=1}^{n} I_{j} \quad (dB) \quad (28)$$

The computer program listing of the same formula (page 192) is correct.

CORRIGÉNDUM 1 al INFORME 252-2, Nueva Delhi, 1970

Convendría modificar la fórmula 28 (página 150), que debería leerse como sigue:

$$L_{i} = \frac{677.2 \text{ (sec } \emptyset)}{\left(f + f_{H}\right)^{1.98} + 10.2} \sum_{j=1}^{n} I_{j} \quad (dB) \quad (28)$$

El programa de computador que se refiere a la misma fórmula (página 192) es correcto.

Union internationale des télécommunications 1211 GENÉVE 20 Sulsae - Switzerland - Su

1

C.C.I.R.

NEW DELHI, 1970

RAPPORT 252-2 REPORT 252-2 INFORME 252-2

MÉTHODE PROVISOIRE DU C.C.I.R. POUR L'ÉVALUATION DU CHAMP ET DE L'AFFAIBLISSEMENT DE TRANSMISSION DE L'ONDE D'ESPACE POUR LES FRÉQUENCES COMPRISES ENTRE LES LIMITES APPROXIMATIVES DE 2 ET 30 MHz

C.C.I.R. INTERIM METHOD FOR ESTIMATING SKY-WAVE FIELD STRENGTH AND TRANSMISSION LOSS AT FREQUENCIES BETWEEN THE APPROXIMATE LIMITS OF 2 AND 30 MHz

MÉTODO PROVISIONAL DEL C.C.I.R. PARA EVALUAR LA INTENSIDAD DE CAMPO Y LA PÉRDIDA DE TRANSMISIÓN DE LA ONDA IONOSFÉRICA DE FRECUENCIAS COMPRENDIDAS ENTRE LOS LÍMITES APROXIMADOS DE 2 Y 30 MHz

UNION INTERNATIONALE DES TÉLÉCOMMUNICATIONS GENÈVE, 1970

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

TABLE DES MATIERES

- 3 -

1.	Introduction	7
	1.1 Principes de la méthode	12
2.	Données ionosphériques fondamentales	13
	2.1 Région D	13
	2.2 Région E	14
	2.3 Région F	15
	2.4 Couche Es et autres anomalies de la propagation	16
3.	Considérations géométriques fondamentales	17
	3.1 Distance et azimuts	17
	3.2 Coordonnées des zones de réflexion	18
	3.3 Distance zénithale du Soleil	19
	3.4 Types de trajet considérés	19
4.	Caractéristiques ionosphériques	20
5	Trajets de l'onde d'esnace dans l'ionosphère	21
•ر		
	5.1 Modèle à deux couches	24
	5.2 Probabilité d'existence d'un trajet de l'onde d'espace.	26
	5.3 Considérations sur les couches E sporadiques	30
	5.4 Calcul des modes de propagation mixtes	31
6.	Calcul de l'affaiblissement de transmission	31
	6.1 Affaiblissement de transmission de référence en	32
	espace libre	
	6.2 Affaiblissement dû à l'ionosphère	33
	6.3 Affaiblissement par réflexion sur le sol	<i>3</i> 5
	6.4 Surcroît d'affaiblissement du système	3 6
	6.5 Affaiblissement du système	41
7.	Intensité de champ de l'onde d'espace	42
8.	Références bibliographiques	45
9.	Appendice	51
10.	Programmes de l'ordinateur	181

TABLE OF CONTENTS

1.	Introduction	65
	1.1 Philosophy of the method	70
2.	Basic ionospheric data	71
	2.1 D Region	71
	2.2 E Region	72
	2.3 F Region	73
	2.4 Es and other anomalous propagation	74
3.	Basic geometrical considerations	75
	3.1 Great circle distance and bearings	75
	3.2 Reflection area coordinates	76
	3.3 Sun's zenith angle	77
	3.4 Types of paths considered	77
4.	Ionospheric parameters	78
5.	Sky-wave paths in the ionosphere	79
	5.1 Two-layer model	82
	5.2 Probability of a sky-wave path	84
	5.3 Sporadic-E considerations	88
	5.4 Calculation of mixed modes	89
6.	Transmission loss calculations	89
	6.1 Free-space basic transmission loss	9 0
	6.2 Ionospheric loss	91
	6.3 Ground reflection loss	93
	6.4 Excess system loss	94
	6.5 System loss	99
7.	Sky-wave field strengths	100
8.	References	103
9.	Appendix	109
10.	Computer Programme Listing	181

181

Page

ÍNDICE

		Página
1.	Introducción	123
	1.1 Principios del método	128
2.	Datos ionosféricos básicos	129
	2.1 Región D	129
	2.2 Región E	130
	2.3 Región F	131
	2.4 Propagación por reflexión en la región Es y otras	
	anomalfas \cdot	132
3.	Consideraciones geométricas fundamentales	133
	3.1 Distancia en el arco de círculo máximo y acimut	133
	3.2 Coordenadas de la zona de reflexión	134
	3.3 Ángulo cenital solar	135
	3.4 Tipos de trayectos considerados	135
4.	Parámetros ionosféricos	136
5.	Trayectos de la onda ionosférica en la ionosfera	137
	5.1 Modelo de dos capas	140
	5.2 Probabilidad de un trayecto de onda ionosférica	142
	5.3 Consideraciones sobre la capa E esporádica	146
	5.4 Cálculo de modos mixtos	147
6.	Cálculo de la pérdida de transmisión	147
	6.1 Pérdida de transmisión básica en el espacio libre	148
	6.2 Pérdida en la ionosfera	149
	6.3 Pérdida por reflexión en el suelo	151
	6.4 Pérdida en exceso del sistema	152
	6.5 Pérdida del sistema	157
7.	Intensidad de campo d e la onda ionosférica .	158
8.	Referencias bibliográficas	161
9.	Apéndice	167
10.	Programas para la Calculadora	181

.

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

METHODE PROVISOIRE DU C.C.I.R. POUR L'EVALUATION DE L'INTENSITE DE CHAMP ET DE L'AFFAIBLISSEMENT DE TRANSMISSION DE L'ONDE D'ESPACE POUR LES FREQUENCES COMPRISES ENTRE LES LIMITES APPROXIMATIVES DE 2 ET 30 MHz

1. Introduction

Conformément à la Résolution 7 (Genève, 1963), le Groupe de travail international VI/l a mis au point une méthode pour évaluer l'intensité de champ et l'affaiblissement de transmission de l'onde d'espace. C'est une méthode provisoire, c'est-à-dire que son emploi est proposé pour une durée limitée, et il est recommandé de la prendre comme base pour l'établissement de méthodes plus poussées.

Comme la plupart des méthodes d'usage courant pour l'évaluation de la qualité de fonctionnement de liaisons en ondes d'espace sont fondées sur la prévision des caractéristiques de l'ionosphère, il est souhaitable d'utiliser, chaque fois qu'on en dispose, la prévision de caractéristiques ionosphériques internationalement acceptées, pour la mise au point de cette méthode d'évaluation de l'intensité de champ ou de l'affaiblissement de transmission. Le Groupe de travail international VI/3 de la Commission d'études VI du C.C.I.R. a été institué à cet effet, et l'on dispose déjà de telles prévisions dans l'Atlas C.C.I.R. des caractéristiques ionosphériques / Rapport 340 du C.C.I.R., Oslo, 1966 / et d'un programme de calcul électronique correspondant.

Le présent Rapport a pour objet de décrire une méthode pour l'application de ces prévisions ionosphériques à l'évaluation de l'intensité de champ ou de l'affaiblissement de transmission de l'onde d'espace.

Comme l'Atlas en question couvre seulement les régions E et F de l'ionosphère, c'est aussi à ces régions qu'est limitée la méthode provisoire d'évaluation de l'intensité de champ et de l'affaiblissement de transmission.

De nombreuses méthodes ont été déjà utilisées pour prévoir la qualité de fonctionnement de liaisons en ondes décamétriques / NBS, 1948; Laitinen et Haydon, 1950; Harnischmacher, 1960; Rawer, 1952; Piggott, 1959; Beckmann, 1958, 1960, 1967; Lucas et Haydon, 1966; Kazantsev, 1947, 1956, 1957; Halley, 1965; Barghausen et autres, 1969; C.C.I.R., 1966-1969c_7.

Voici quelques particularités de ces méthodes :

La Circulaire 462 du NBS / NBS, 19487 contient une méthode applicable aux distances inférieures ou égales à environ 4000 km et une seconde méthode pour les distances supérieures. Cette dernière est présentée sous la forme d'un simple abaque et les deux méthodes comportent des corrections pour tenir compte de l'anomalie constituée par l'augmentation hivernale de l'absorption.

La méthode du RPU-9 / Laitinen et Haydon, 1950 7 est continue pour toute distance; des abaques relativement simples permettent une solution graphique directe. Les estimations de la hauteur de la région F2 en fonction du temps et de l'emplacement permettent de tenir compte du diagramme de directivité verticale des antennes d'émission et de réception. La méthode a été largement utilisée pendant environ un cycle solaire et demi et a été récemment révisée / Lucas et Haydon, 1966 7 de manière :

- à assurer un traitement spécial aux circuits auroraux et polaires,
- à inclure le calcul de l'affaiblissement de transmission.
- à être adaptée à l'utilisation d'ordinateurs.

La méthode de Kazantsev permet une évaluation directe de l'intensité de champ quand on connaît foE, ce qui rend inutile l'utilisation d'un indice arbitraire d'absorption dans la région D. Un programme d'ordinateur, élaboré en U.R.S.S. pour cette méthode, permet de déterminer la LUF et l'intensité de champ / C.C.I.R., 1963-1966 /. Une comparaison entre les résultats des calculs électroniques et ceux de la résolution graphique a fait apparaître une correspondance satisfaisante. Des études effectuées en U.R.S.S. / C.C.I.R., 1966-1969a / montrent qu'il est possible de rendre plus précis le calcul de l'absorption aurorale selon la méthode de Kazantsev.

Les études se poursuivent actuellement en U.R.S.S. / C.C.I.R., 1966-1969b / pour essayer de définir les valeurs de l'absorption et de l'intensité de champ pour la réception sous incidence oblique, d'après les renseignements fournis par des sondages sous incidence verticale.

La méthode de Piggott / 1959 / tient compte du fait que l'absorption mesurée dans les régions tropicales est plus grande que celle qu'on déduirait en supposant qu'elle dépend directement de la distance zénithale du soleil. Elle utilise des données sur l'absorption mesurée sous incidence verticale en un certain nombre d'emplacements et elle tient compte aussi de l'absorption au cours des premières heures de la nuit en supposant un temps de recombinaison fini pour l'ionosphère inférieure. Dans les expressions relatives à l'affaiblissement spatial, il est tenu compte de la focalisation à l'horizon au voisinage des limites de la propagation à un seul bond. La méthode française (élaborée initialement par Rawer au S.P.I.M.) s'applique aux fréquences inférieures à la MUF classique (JF) et aux distances inférieures ou égales à environ 10 000 km. Les modes de propagation (le long du grand cercle) sont considérés individuellement en tenant compte de l'absorption avec ou sans déviation et, s'il s'agit d'échos sur la couche F, de l'occultation par les couches E et Es. Normalement, on fournit des courbes de probabilité à 30 et 90 % (autrement, on ne pourrait pas tenir compte de l'occultation par Es). Ainsi, la prévision est essentiellement de caractère statistique. La méthode comporte des règles sur la façon d'introduire les angles de site des différents modes pour un diagramme vertical donné de l'antenne.

L'extension de la méthode conçue par Harnischmacher / 1960 7 (élaborée elle aussi initialement au S.P.I.M.) convient aux grandes distances. C'est une méthode mixte qui consiste à rechercher simultanément les conditions d'affaiblissement et de réflexion. Elle a pour principe de considérer un rayon dont on se donne la fréquence, l'angle de site et l'azimut, puis de faire varier ces paramètres. Il apparaît qu'aux très grandes distances. les fréquences les plus intéressantes sont celles qui se réfléchissent sur la couche F pendant la nuit et sur la couche E (ou Es) pendant le jour. La méthode admet dans une certaine mesure une propagation s'écartant du grand cercle, de telle sorte qu'aux distances supérieures à 16 000 km on fait la somme des contributions en provenance des différents azimuts. L'affaiblissement se calcule à partir de l'absorption locale (donnée par une loi de variation en fonction de la distance zénithale du soleil) pour la partie éclairée du trajet en faisant la moyenne des différentes réflexions sur la couche E, compte tenu de l'angle de site donné. On fait intervenir jusqu'à un certain point l'influence de forts gradients horizontaux d'ionisation en admettant une propagation s'écartant du grand cercle, mais on suppose que l'angle de site du rayon considéré reste le même pour tous les points de réflexion sur le sol.

La méthode semi-empirique de Beckmann s'applique principalement aux distances supérieures à 4000 km. Elle ne vise pas à donner une solution complète au problème du calcul de l'intensité de champ. Son principal but est d'extrapoler l'intensité de champ à partir de la LUF jusqu'à la MUF d'exploitation (MUF), en passant par toute la gamme des fréquences utilisables, la LUF étant déterminée soit par le calcul au moyen des méthodes existantes à condition qu'elle soit suffisamment inférieure à la MUF classique (JF), soit par l'observation. On tient compte des affaiblissements par diffusion au-dessous et au-dessus de la MUF classique (JF), ainsi que de l'absorption avec déviation, en introduisant un deuxième terme d'affaiblissement proportionnel à $(f/MUF d'exploitation)^2 / (f/MUF)^2 7$. La MUF d'exploitation (MUF), prise pour un certain niveau d'intensité de champ, est déterminée par l'observation ou en appliquant un facteur empirique de correction à la MUF normalisée (EJF). Ainsi, cette méthode fournit pour l'intensité de champ estimée une valeur qui est maximale au voisinage du milieu de la gamme des fréquences utilisables, et qui diminue vers les

fréquences supérieures, comme le confirment les observations. On peut aussi l'utiliser pour convertir l'intensité de champ à une fréquence quelconque à sa valeur escomptée à une autre fréquence.

La méthode japonaise considère, pour les calculs, des trajets de propagation comportant une diffusion latérale et dont la MUF est égale à la fréquence utilisée ou à une fréquence immédiatement supérieure à celle-ci dans le cas où aucune propagation normale n'est possible par la couche F2. En appliquant une équation expérimentale, on obtient l'affaiblissement relatif au mode par diffusion latérale sur le sol sous la forme d'une fonction simple de l'angle que fait l'onde normalement réfléchie avec l'onde à diffusion latérale. Il est suggéré de tenir compte de l'influence de la diffusion latérale sur le sol, dans toutes les méthodes de calcul de l'intensité de champ.

La méthode de l'Administration indienne / Rao, 1969/ utilise une expression de l'absorption sans déviation qui repose sur une longue série de mesures de l'absorption sous incidence verticale faites en Inde. Elle comporte une correction de 2,5 dB pour l'affaiblissement dû à l'absorption nocturne avec déviation et elle suppose un affaiblissement de polarisation de 3 dB. L'affaiblissement spatial est considéré comme comprenant les effets de la focalisation à l'horizon.

On a mis au point en Australie /C.C.I.R., 1966-1969c/ un programme d'ordinateur dans lequel on a utilisé les caractéristiques de l'ionosphère en chaque point de réflexion pour déterminer, d'après la théorie des couches paraboliques, le mode de propagation prédominant sur un trajet donné. Dans les différents modes étudiés, l'angle de propagation est le même d'un bond à l'autre, de telle sorte qu'avec des caractéristiques ionosphériques différentes sur le trajet, les distances calculées varient pour chaque bond. L'absorption avec et sans déviation est calculée, compte tenu de la focalisation, de la polarisation et de la réflexion au sol. Les modes de propagation couvrant jusqu'à 6 bonds sont calculés, le mode dominant étant celui pour lequel l'affaiblissement sur le trajet est le moins élevé. Les modes possibles sont les modes simples par réflexion sur les couches E ou F et des modes complexes avec possibilité d'effet d'écran par la couche E dans tous les cas.

Grâce à la représentation de l'ionosphère par des coefficients numériques / Rapport 340 du C.C.I.R., Oslo, 1966 / et à l'augmentation du nombre des ordinateurs dont on dispose pour traiter ces données, on a pu améliorer les méthodes antérieures de prévision de la qualité de fonctionnement des liaisons par propagation ionosphérique. La méthode provisoire du C.C.I.R., qui est proposée dans ce Rapport pour l'évaluation de l'intensité de champ ou de l'affaiblissement de transmission de l'onde d'espace, est fondée sur les caractéristiques ionosphériques qui sont décrites dans le Rapport 340, complétées, si nécessaire, par des estimations d'autres paramètres ionosphériques, et sur des hypothèses que l'on fait au sujet de ces paramètres en attendant que le Groupe de travail international VI/3 du C.C.I.R. ait donné de l'ionosphère une description plus définitive. Bien que le Groupe de travail international VI/3 ait considéré seulement les régions E et F2 de l'ionosphère, il est partiellement tenu compte des effets de la couche F1 dans ce rapport sous forme d'un modèle mathématique simple à deux couches, avec distribution parabolique de la densité électronique dans chacune d'elles.

Il n'entre pas dans le cadre de ce Rapport de passer en revue les diverses méthodes de prévision, mais plutôt de proposer une méthode pour l'évaluation de l'intensité de champ et de l'affaiblissement de transmission de l'onde d'espace, en partant de méthodes et de techniques existantes qui permettent d'utiliser les données mondiales disponibles et sont applicables économiquement: on s'est attaché cependant à donner à la méthode la souplesse voulue pour qu'elle soit adaptable aux progrès de la recherche ionosphérique et des techniques de rassemblement des données. Cette méthode fournit des prévisions des valeurs médianes horaires de l'intensité de champ ou de l'affaiblissement de transmission pour des systèmes de télécommunication fonctionnant au-dessous de la fréquence de jonction estimée (EJF), dans la gamme de fréquences de 2 MHz à 30 MHz. Elle est principalement destinée aux opérateurs radio, aux responsables de la répartition des fréquences et aux ingénieurs qui sont chargés de l'exploitation, de la planification et de l'étude de systèmes de télécommunication à ondes décamétriques. Le programme de l'ordinateur ainsi que des organigrammes sont annexés au Rapport (Appendice). Le programme est écrit de façon qu'on puisse le réviser facilement au fur et à mesure qu'on disposera de meilleures données ionosphériques ou de meilleures méthodes de calcul.

Il convient de souligner que de nombreux facteurs, qui devraient être traités de manière explicite dans une méthode future de prévision, ont été introduits en bloc dans la présente méthode provisoire sous la forme d'un "surcroît d'affaiblissement du système" déterminé empiriquement. Cet affaiblissement vise à exprimer statistiquement l'effet global de phénomènes tels que l'anomalie d'hiver, l'occultation par la couche E sporadique, les trajets multiples dus à la couche F diffuse, la propagation en dehors du grand cercle, la distance de saut et la focalisation à l'horizon, les variations d'un jour à l'autre de la hauteur et de l'épaisseur des couches, etc. Le surcroît d'affaiblissement du système est présenté dans des tableaux sous forme de la répartition prévue de la valeur médiane horaire du champ ou de l'affaiblissement de transmission pendant un mois à une heure donnée.

Un phénomène important dont il n'est pas tenu compte dans cette méthode provisoire, et qu'on ne peut considérer comme traité de manière suffisante au moyen du surcroît d'affaiblissement du système, est l'intensité de champ à la MUF classique ou aux environs de celle-ci. Les intensités de champ au voisinage ou au-dessus de la MUF classique nécessitent un examen attentif car, outre l'absorption sans déviation, l'onde d'espace subit certaines pertes dues à l'absorption avec déviation et à la diffusion, qui augmentent rapidement au voisinage de la MUF classique, c'est-à-dire lorsque l'onde pénètre plus profondément dans la couche réfléchissante. Par conséquent, on peut normalement observer une diminution de l'intensité de champ audessous de la MUF classique. La gamme de fréquences dans laquelle se produit cette diminution peut être étroite si les liaisons radioélectriques sont relativement courtes et permettent la propagation selon le mode à un bond et si l'ionosphère est calme / Dieminger et Rose, 1961 /. La gamme deviendra beaucoup plus large si la propagation a lieu par réflexions multiples (liaisons plus longues), ou si l'ionosphère est perturbée.

Cette question mérite un examen prioritaire si l'on veut étendre la portée de la méthode provisoire ou procéder à sa revision.

Les utilisateurs de cette méthode devraient être particulièrement conscients de ce qu'elle peut se révéler moins satisfaisante lorsque l'un quelconque des facteurs précités prédomine de manière exceptionnelle ou pour des fréquences de travail inférieures à 3 MHz environ, ou encore pour des distances beaucoup plus grandes que 10 000 km.

1.1 Principes de la méthode

Il existe une documentation étendue sur l'ionosphère et sur son rôle dans les radiocommunications en ondes décamétriques. On ne reprendra pas ici en détail les théories concernant la propagation dans l'ionosphère, mais on fournira certaines indications générales chaque fois que l'exigera la bonne compréhension des opérations de prévision et des principes même de la méthode.

On suppose, dans le modèle de référence, que l'ionosphère peut être représentée par une ou plusieurs couches à distribution parabolique / Appleton et Beynon, 1940 /, à condition qu'on ait des renseignements suffisants sur l'altitude du maximum d'ionisation, la demi-épaisseur et la densité électronique. On doit disposer de données en nombre suffisant pour prévoir la distribution moyenne des électrons en fonction de l'altitude pour n'importe quel trajet de transmission possible. Le modèle est fondé sur le théorème des trajets équivalents / Breit et Tuve, 1926; Martyn, 1935 / et sur la solution qu'il donne au tracé des courbes de transmission / Smith, 1939 /, étant donné que c'est à lui qu'on recourt le plus souvent pour mesurer et prévoir les caractéristiques ionosphériques.

Le programme calcule l'affaiblissement de transmission ou l'intensité de champ en donnant la médiane mensuelle des valeurs médianes horaires et il indique la probabilité pour que des niveaux spécifiés de la puissance d'entrée au récepteur soient égalés ou dépassés pour une fréquence donnée pendant la durée d'existence d'un trajet mormal de l'onde d'espace.

Le besoin d'avoir des estimations de l'intensité de champ de l'onde d'espace a conduit à établir des modèles nombreux et variés pour représenter les facteurs qui influencent la propagation des ondes décamétriques. Alors que certains de ces modèles sont très simples et ne comprennent qu'un petit nombre de variables, d'autres mettent en oeuvre des procédés très raffinés pour le tracé des rayons et nécessitent une connaissance détaillée et précise de paramètres géophysiques et ionosphériques.

Le modèle proposé par le Groupe de travail international VI/l est conçu pour utiliser les données dont on peut disposer à l'échelle mondiale pour prévoir un profil moyen de la densité électronique en fonction de la hauteur vraie pour le trajet considéré, ce profil devant servir à prévoir l'affaiblissement de l'onde d'espace. Ce modèle conserve le théorème des trajets équivalents et la notion de courbe de transmission, de sorte qu'il est compatible avec les méthodes utilisées pour mesurer et prévoir les caractéristiques ionosphériques, notamment celle récemment établie par le Groupe de travail international VI/3. On suppose qu'on peut représenter adéquatement par deux couches à distribution parabolique le profil de l'intensité électronique le long du trajet. L'altitude du maximum d'ionisation, l'épaisseur de la couche et la densité électronique se déterminent pour des emplacements voisins des points de réflexion effective le long du trajet.

On calcule les caractéristiques géophysiques et ionosphériques le long du trajet, ce qui donne des valeurs médianes mensuelles de la MUF normalisée (EJF) et de l'affaiblissement à des fréquences particulières. On combine ensuite ces valeurs avec les distributions d'un jour à l'autre pour prévoir le niveau du signal qui est dépassé pendant n'importe quelle fraction du nombre des jours où un trajet normal de l'onde d'espace existe dans le mois.

2. Données ionosphériques fondamentales

Les électrons libres de l'ionosphère donnent naissance à des régions réfléchissantes qui jouent un rôle important dans la propagation des ondes décamétriques. Dans les principales régions, entre les altitudes approximatives de 60 et 500 km, les électrons libres sont produits par les rayons ultraviolets et les rayons X mous émis par le Soleil. Pour plus de commodité, on divise l'ionosphère en trois régions en fonction de l'altitude et de la distribution des ions : ce sont les régions D, E et F. Chaque région est subdivisée, en fonction de l'altitude et de l'épaisseur, en plusieurs couches que l'on appelle D, E, Es, Fl et F2. Il ne s'agit pas là de couches rigoureusement distinctes, car elles présentent des parties communes; leur définition complète est donnée par un profil de la densité électronique. Le nombre des couches, leur altitude et leur densité électronique varient dans l'espace et dans le temps.

2.1 Région D

La région D est située approximativement entre 60 et 90 km d'altitude au-dessus de la surface de la Terre. La densité électronique y est relativement petite par rapport à ce qu'elle est dans les autres régions, mais l'onde électromagnétique y perd de l'énergie parce que des chocs se produisent entre les molécules de l'air et des électrons libres, qui sont accélérés par l'onde. Cette perte d'énergie s'appelle "absorption". Dans la région D, l'absorption est dite sans déviation, parce qu'elle se produit au-dessous du niveau de réflexion et elle prédomine lorsque le trajet du rayon est peu ou pas dévié. Dans les régions E et F, au fur et à mesure que l'onde s'approche de son niveau de réflexion, elle subit un retard de groupe, qui donne plus de temps aux chocs, donc aussi à l'absorption, de se produire. On appelle alors celle-ci absorption avec déviation.

A cause de sa faible densité électronique, la région D ne réfléchit pas de rayons utiles dans la gamme de fréquences supérieures à 1 MHz. Néanmoins, dans cette région, l'absorption est importante à toutes les fréquences et, comme l'ionisation y est due aux rayons ultraviolets du Soleil, le phénomène est essentiellement diurne. Le degré d'absorption, exprimé par un coefficient, est proportionnel au produit de la fréquence des chocs par la densité électronique et à peu près inversement proportionnel au carré de la fréquence de l'onde. Sa variation est fonction de la distance zénithale du Soleil. Après le coucher du Soleil pour la région D, l'ionisation décroît rapidement et l'absorption sans déviation devient négligeable deux ou trois heures plus tard.

La présente méthode tient compte de l'absorption sans déviation de la région D au moyen d'une expression analytique, semi-empirique, qui est expliquée en détail au § 6.2. Dans ce calcul de l'affaiblissement, on fait intervenir dans une certaine mesure l'affaiblissement dû à l'absorption avec déviation, notamment sous forme d'un coefficient d'incertitudé (voir le § 6.4).

Une autre caractéristique importante de la région D supérieure et de la basse région E est que l'onde ordinaire et l'onde extraordinaire, subissent une absorption différente sous l'effet du champ magnétique terrestre. Cette différence d'absorption entre les deux ondes et l'état de leur polarisation après réflexion ionosphérique sont particulièrement notables aux fréquences inférieures et dans les régions de basse latitude, où une grande partie de la puissance rayonnée peut être introduite par couplage dans l'onde extraordinaire / Barghausen, 1966 /. L'onde extraordinaire est réfléchie à un niveau plus bas, sa MUF normalisée (EJF) est quelque peu plus élevée et elle subit une absorption plus forte. Dans ce Rapport, on considère seulement la MUF normalisée (EJF) et l'absorption relatives à l'onde ordinaire.

2.2 Région E

Pour les radiocommunications, la caractéristique la plus importante de la région E est sa fréquence critique, que l'on déterminait autrefois au moyen d'une formule semi-empirique où figuraient le nombre des taches solaires et la distance zénithale du Soleil. On a constaté que cette formule ne convient pas au lever ou au coucher du soleil ni pendant la nuit. On dispose maintenant des valeurs médianes mensuelles de foE pour le monde entier, sous forme de cartes et de coefficients numériques destinés aux calculs par ordinateur, / Leftin et autres, 1969 /. Les coefficients numériques U_{SK} fournissent des valeurs de foE (MHz) en fonction de la latitude, de la longitude et du temps universel. Ces coefficients sont désignés par le symbole U_{SK} parce qu'ils résultent d'une analyse en temps universel de la caractéristique ionosphérique en question.

Les coefficients numériques représentant foE ont été établis principalement à partir de mesures faites en 1958 et en 1964. Ces années correspondent respectivement aux phases la plus active et la moins active du cycle solaire. Pour évaluer foE à d'autres phases du cycle, on procède par interpolation linéaire.

Il semble que la région E soit suffisamment stable pendant le jour pour qu'on puisse négliger la dispersion des valeurs de foE. Les données que l'on possède pour la nuit sont très peu nombreuses, mais il semble légitime / Elling, 1961; WakaT, 1966; WakaT, 1967 / d'admettre que la région E de nuit est stable également.

En ce qui concerne les transmissions, on caractérise la région E par la valeur médiane mensuelle de foE, au moyen des coefficients numériques dont il vient d'être question. L'altitude vraie de la région E est normalement comprise entre 90 et 130 km. On admet que la densité électronique atteint son maximum à 110 km et que la demi-épaisseur est de 20 km / Knecht, 1963; Frihagen, 1965/.

2.3 Région F

La région F constitue la partie la plus importante de l'ionosphère pour la propagation des ondes décamétriques; elle se compose de deux couches, Fl et F2. Alors que le principal maximum d'ionisation s'identifie avec la couche F2, la couche Fl apparaît, à certains moments, comme un rebord à la partie inférieure de la région F.

La couche Fl intéresse les radiocommunications pendant les heures du jour ou pendant les orages ionosphériques / Kelso, 1964; Wright et autres, 1960-1963; Petrie et Stevens, 1969 /; son altitude est comprise entre 170 et 230 km et ses caractéristiques varient avec les saisons et avec les phases du cycle solaire. Le programme de l'ordinateur ne met pas directement en jeu la fréquence critique de la couche Fl ni son influence sur la déviation de l'onde, mais il tient compte partiellement de l'effet de l'ionisation de la couche Fl sur la couche F2 pour la propagation pendant le jour, comme exposé au § 4. Comme toutes les régions réfléchissantes et absorbantes de l'ionosphère, la région F se forme sous l'effet des rayonnements du Soleil et reste sous leur dépendance, aussi y a-t-il un haut degré de corrélation entre les caractéristiques de la couche F et l'activité solaire. La moyenne glissante du nombre des taches solaires R de Zurich (parfois appelé nombre de Wolf), bien qu'elle soit entièrement empirique, s'est montrée intéressante pour les prévisions en matière de radiocommunications en ondes décamétriques, et c'est elle qu'on a adoptée comme paramètre d'entrée dans la méthode provisoire.

Le Rapport 340 contient les valeurs estimées des coefficients représentant la variation mondiale de la fréquence critique de la couche F2 (foF2) et du facteur correspondant M(3000)F2 pour les niveaux d'activité solaire $R_{12} = 0$ et $R_{12} = 100$. On détermine foF2 et M(3000)F2 à partir des ionogrammes sous incidence verticale en appliquant la courbe normale de transmission à 3000 km à la trace de premier ordre de l'onde ordinaire / Piggott et Rawer, 1961_7. La MUF normalisée pour un trajet de 3000 km est donc simplement le produit de foF2 et de M(3000)F2. Le facteur M(4000)F2 s'obtient en multipliant M(3000)F2 par 1,1.

On enregistre sur bande magnétique et on utilise dans le programme de l'ordinateur les caractéristiques de la couche F2 sous forme de coefficients numériques $U_{\rm SK}$ pour une activité solaire faible $(R_{12}=0)$ et forte $(R_{12}=100)$, que l'on trouve pour chaque mois de l'année dans le Rapport 340 du C.C.I.R. Pour un niveau intermédiaire de l'activité solaire, entre $R_{12}=0$ et $R_{12}=100$, ces coefficients $U_{\rm SK}$ s'obtiennent par interpolation linéaire. En revanche, on ne doit pas recourir à une extrapolation linéaire au-delà de $R_{12}=150$, car la relation entre les caractéristiques à long terme de la couche F2 et les très hauts niveaux d'activité solaire est nettement non linéaire.

2.4 Couche Es et autres anomalies de la propagation

Les considérations qui précèdent ont porté exclusivement sur les caractéristiques de premier ordre des différentes couches. Or, les radiocommunications sont influencées par d'autres phénomènes observés sur les ionogrammes (par exemple, l'ionisation sporadique de la couche E, la couche F diffuse, la diffusion dans la région F, les traces multiples et d'autres phénomènes transitoires), Piggott et Rawer, 1961. Parmi ces phénomènes, le seul pour lequel on dispose actuellement de données utilisables pour la prévision est la couche E sporadique.

La couche E sporadique / Smith et Matsushita, 1962; Bowhill, 1966; Whitehead, 1969 / se manifeste sur les ionogrammes sous incidence verticale ou oblique au voisinage de l'altitude du maximum d'ionisation de la région E normale. La couche Es est caractérisée par peu ou pas de retard à sa fréquence critique et peut être occultante (réflexion totale) ou semi-transparente (réflexion partielle), parfois jusqu'à des fréquences très élevées (supérieures à 75 MHz sous incidence oblique). Ces phénomènes peuvent être favorables ou défavorables aux radiocommunications. C'est ainsi que la couche Es occultante peut arrêter la propagation qui aurait pu s'effectuer par l'intermédiaire d'une couche régulière ou que la couche Es partiellement réfléchissante peut donner naissance à des trajets multiples, particulièrement préjudiciables aux systèmes de transmission de données. Cependant, la couche Es peut aussi favoriser les transmissions en diminuant l'influence de l'absorption avec déviation en étendant la gamme utile des fréquences et l'on peut effectivement mettre sa présence à profit dans l'étude et l'exploitation des systèmes.

On a mis au point une méthode d'estimation de la probabilité de la propagation par la conche Es, qui complète les prévisions de propagation par les couches normales / Leftin et autres, 1968 /. Les variations diurnes et géographiques de la fréquence critique foEs de la couche E sporadique ont été établies d'après les observations du réseau mondial de stations ionosphériques, pour chacun des 12 mois d'une année d'activité solaire minimale (1954) et d'une année d'activité solaire maximale (1958), sous la forme du décile supérieur de la valeur médiane et du décile inférieur de foEs calculés pour chaque heure du jour; ces variations sont représentées par les coefficients numériques U_{SK}. La foEs est la fréquence la plus élevée de l'onde ordinaire, pour laquelle une réflexion se produit sur la couche Es, sous incidence verticale.

Dans ce Rapport provisoire, on a admis à titre d'essai que l'affaiblissement dû à une propagation par la couche Es est égal à celui dû à une couche parfaitement réfléchissante.

3. Considérations géométriques fondamentales

Pour évaluer l'intensité de champ ou l'affaiblissement de transmission de l'onde d'espace, il est nécessaire de calculer d'abord les caractéristiques géométriques du trajet, c'est-à-dire sa longueur le long du grand cercle, ses azimuts et les zones de réflexion ionosphérique.

3.1 Distance et azimuts

Etant donné la latitude et la longitude géographiques des emplacements d'émission et de réception, le plus court des arcs de grand cercle passant par les deux points a pour expression :

$$\cos d = \sin x_1 \sin x_2 + \cos x_1 \cos x_2 \cos(y_1 - y_2), \qquad (1)$$

x₁ = latitude géographique de l'émetteur,

 y_2 = longitude géographique de l'émetteur,

x₂ = latitude géographique du récepteur.

y₂ = longitude géographique du récepteur,

d = arc de grand cercle.

Les deux azimuts du trajet sont définis comme suit :

 $\cos b_1 = (\sin x_2 - \sin x_1 \cos d) / \cos x_1 \sin d, \qquad (2)$

$$\cos b_2 = (\sin x_1 - \sin x_2 \cos d) / \cos x_2 \sin d, \qquad (3)$$

où :

b₁ = azimut émetteur-récepteur,

b₂ = azimut récepteur-émetteur.

3.2 Coordonnées des zones de réflexion

Pour établir un profil de la densité électronique le long du trajet, on trouve commode d'évaluer, suivant la longueur de l'arc de grand cercle, les caractéristiques ionosphériques de une à cinq zones de réflexion, qui sont :

- 1. le point milieu du trajet;
- la zone de réflexion sur la région E, la plus proche de l'émetteur pour la valeur estimée du plus petit nombre possible de bonds;
- la zone de réflexion sur la région E, la plus proche du récepteur pour le même nombre de bonds;
- 4. la zone de réflexion sur la région F, la plus proche de l'émetteur pour la valeur estimée du plus petit nombre possible de bonds;
- 5. la zone de réflexion sur la région F, la plus proche du récepteur pour le même nombre de bonds.

Pour évaluer le nombre minimum de bonds, on admet une distance de bond maximale de 2000 km pour le mode 1-E et de 4000 km pour le mode 1-F. Pour les distances inférieures à 2000 km, on considère seulement le point milieu du trajet. On détermine ainsi les zones de réflexion utilisées pour évaluer les caractéristiques ionosphériques moyennes sur l'ensemble du trajet. Pour déterminer les modes probables de propagation, on applique la théorie des couches à distribution parabolique / Rawer, 1948 et 1950; Bibl, 1950 /. Pour évaluer les caractéristiques ionosphériques de ces cinq zones de réflexion, il y a lieu de calculer comme suit leurs coordonnées géographiques et leur latitude géomagnétique :

$$x_n = 90^\circ - \arccos\left(\cos d_n \sin x_1 + \sin d_n \cos x_1 \cos b_1\right), \quad (4)$$

$$y_n = y_1 - \arccos\left(\cos d_n - \sin x_n \sin x_1 - \cos x_n \cos x_1\right), \quad (5)$$

$$g_n = 90^\circ - \arccos(\sin 78,5^\circ \sin x_n + \cos 78,5^\circ \cos x_n \cos \sqrt{y_n} - 69,0^\circ/)$$

(6)

où :

d_ = arc de grand cercle entre la zone de réflexion et l'émetteur,

x_n = latitude géographique de la zone de réflexion,

 $y_n =$ longitude géographique de la zone de réflexion,

g_n = latitude géomagnétique de la zone de réflexion.

3.3 Distance zénithale du Soleil

La distance zénithale du Soleil dans la zone de réception, qu'on utilise pour calculer le coefficient d'absorption, est donnée par :

$$\cos \psi = \sin x_n \sin s_r + \cos x_n \cos s_r \cos (s_r - y_n), \qquad (7)$$

où :

 t_g = temps universel, s_y = 15 t = 180 = longitude du point subsolaire, s_x = latitude du point subsolaire, ψ = distance zénithale du Soleil.

3.4 Types de trajet considérés

On calcule jusqu'à neuf types de trajets. Le trajet de l'onde d'espace doit être géométriquement possible c'est-à-dire que l'angle de site à l'émission doit être au moins égal à la valeur minimale indiquée comme donnée d'entrée.

Les modes de propagation par la couche E normale considérés sont : d'abord celui qui comporte le plus petit nombre possible de bonds pour la valeur donnée de l'angle de site à l'émission, puis le mode comportant le nombre de bonds immédiatement supérieur. Si les calculs montrent que l'onde d'espace, à une certaine fréquence, traverse la couche E, on peut éventuellement étudier le mode avec réflexion sur la couche Es. Cette étude fait l'objet d'une option de programme. Le premier mode F est celui qui présente le plus petit nombre de bonds géométriquement possible, compte tenu des restrictions touchant l'angle de site à l'émission imposées par les données d'entrée ou par la couche E normale. Le programme actuel ne tient pas compte de l'occultation par la couche E sporadique.

C'est seulement pour des trajets d'une longueur supérieure à 2000 km que l'on considère les modes mixtes avec une ou deux réflexions sur la couche E normale ou sporadique et une ou plusieurs réflexions sur la couche F. Le premier mode mixte se compose du bond lE ou Es, le reste du trajet comprenant le plus petit nombre possible de réflexions sur la couche F. Le second mode mixte est analogue au premier, mais avec le nombre de bonds immédiatement supérieur sur la couche F. Pour les distances plus grandes, il faut considérer des bonds E multiples dans les modes mixtes / Harnischmacher, 1960_7. Les trajets transéquatoriaux posent des problèmes particuliers.

Les trajets étudiés comportent au moins :

de	zero	a	-2	000	ĸm	1.E	T*k.	2.F		
	2 000	à	- 4	000	km	2.E	l.F	2.F	1.E + 1.F	
	4 000	à	6	000	km	3.E	2.F	3.F	1.E + 1.F	2.E + 1.F
	6 000	à	8	000	km	4.E	2.F	3.F	1.E + 2.F	2.E + 1.F
	8 000	à	10	000	km		3.F	4.F	1.E + 2.F	2.E + 2.F

4. Caractéristiques ionosphériques

Les caractéristiques ionosphériques nécessaires pour le calcul sont : la fréquence critique, l'altitude du maximum de densité électronique de la couche et l'altitude de la base de la couche.

Les fréquences critiques des couches E et F2 se lisent sur les cartes mondiales / Rapport 340 du C.C.I.R., Oslo, 1966 / / Leftin et autres, 1969 /; ce sont les valeurs médianes de ces caractéristiques. L'altitude vraie du maximum de la densité électronique de la couche F se détermine en deux opérations. On lit d'abord le coefficient M(3000)F2 sur les cartes mondiales, puis on calcule la hauteur vraie du maximum d'ionisation h_{max} de la couche / Wright et McDuffie, 1960 / au moyen de la formule suivante : / Shimazaki, 1955 / :

 $h_{\max} = \frac{1490}{M(3000)F2} - 176$ (8)

La hauteur virtuelle de la base de la région F (Fl et F2) se lit aussi sur les cartes mondiales / Leftin, 1969 /, et l'on retranche de ces deux hauteurs le retard Δh dû à la couche E sous-jacente, que l'on exprime en kilomètres et que l'on calcule au moyen d'un modèle parabolique / Kelso, 1964 / :

$$\Delta h = y_E \left[2 \log_e \left(\frac{Z+1}{Z-1} \right) - 2 \right], \qquad (9)$$

où:

Z = 0,834 (foF2)/foE

 $y_{\rm p}$ = demi-épaisseur équivalente de la couche E, soit 30 km.

On utilise les hauteurs ainsi calculées comme des hauteurs réelles et leur différence représente la demi-épaisseur de la couche.

On suppose que la région E a une forme parabolique, avec des altitudes caractéristiques constantes, soit 90 km pour la base de la région, 110 km pour le maximum de la densité électronique et 130 km pour le sommet. Pour tenir compte de l'influence de l'ionisation entre les régions E et F, on utilise en première approximation une demi-épaisseur de 30 km chaque fois que l'onde traverse la région E, $\int Bibl et autres, 1952 / 7$.

5. Trajets de l'onde d'espace dans l'ionosphère

Pour calculer la fréquence maximum utilisable (MUF normalisée), l'angle de site à l'émission β et la hauteur virtuelle h' de réflexion pour toutes les fréquences, on utilise les caractéristiques ionosphériques selon la théorie des couches à distribution parabolique, au moyen de la formule :

$$f = f_k \sec \phi \tag{10}$$

expression de la "loi de la sécante", bien connue qui est illustrée à la Fig. l,

où :

f = fréquence d'essai sous incidence oblique,

- f = fréquence équivalente sous incidence verticale,
- k = coefficient de correction pour tenir compte de la courbure de l'ionosphère,
- ϕ = demi-angle au sommet du triangle équivalent.

Comme ces grandeurs ne sont pas des données premières, plusieurs relations intermédiaires doivent être employées. Posons

$$x = f_v / f_c, \qquad (11)$$

où f_u s'obtient par un calcul itératif

f_c = fréquence critique de la couche réfléchissante.

A : Verticale B : Oblique

On peut alors tirer la hauteur virtuelle hⁱ de la formule $\langle Bibl, 1950]$: hⁱ = h₀ + y_m x arctgh(x), (12)

dans laquelle les grandeurs suivantes sont connues :

 h_0 = altitude de la base de la couche réfléchissante et y_m = demi-épaisseur de la couche réfléchissante. La valeur de ϕ se calcule ensuite par la formule suivante, qui se déduit de la Fig. 2 :

$$tg \not = \sin(d/2) / \left(1 - \cos\left(\frac{d}{2}\right) + h^{\prime}/r_{o} \right) , \qquad (13)$$

où d = arc de grand cercle

 $r_0 = rayon de la Terre (6371,2 km);$

on tire alors la hauteur réelle de réflexion h de la formule :

$$h = h_0 + y_m (1 - \sqrt{1-x^2}),$$
 (14)

enfin, le coefficient de correction a pour expression :

$$k = 1 / \sqrt{1 - \frac{2(h^{\dagger} - h)}{r_{0} + h}} tg^{2} \not a \qquad (15)$$

Si l'on désire connaître l'angle de site à l'émission et la hauteur virtuelle de réflexion pour une fréquence donnée $f = f_0$, on part d'une estimation initiale raisonnable de f_v , disons f_{vl} , et l'on calcule f au moyen de la formule (10). On obtient ainsi une correction de premier ordre Δf_v , ce qui conduit à f_{v2}

$$f_{v2} = f_{v1} + \Delta f_{v}$$

Par la méthode itérative de Newton, on obtient des approximations successives de f_{ij} en partant de :

$$f_{v_{(n+1)}} = f_{v_n} + (f_o - f) / \frac{\delta f}{\delta f_v}$$
(16)

jusqu'à ce que la valeur de f se soit rapprochée de celle de f_o au degré de précision voulu. La valeur de h's'obtient à partir de la formule (12) et l'on calcule l'angle de site à l'émission au moyen de la formule :

$$tg \beta = \left(\cos \left(\frac{d}{2}\right) - \frac{r_0}{r_0 + h!} \right) / \sin \left(\frac{d}{2}\right) \qquad (17)$$

Quand on doit calculer la MUF à partir de (10), on ne connaît aucune des deux grandeurs f_v et f. On sait toutefois que si la fréquence d'essai est égale à la MUF, sa dérivée première est nulle; on recommence donc le calcul par approximations successives à partir d'une valeur estimée de f_v , en procédant selon la méthode itérative de Newton :

$$f_{v_{(n+1)}} = f_{v_n} - \frac{\delta f / \delta f_{v}}{\delta^2 f / \delta f_{v}^2}$$
(18)

jusqu'à ce que le degré de précision voulu soit atteint.

5.1 Modèle à deux couches

Pour déterminer la réflexion sur la couche F2, on introduit dans le calcul la courbure subie par le rayon dans une couche E parabolique (de demi-épaisseur, 30 km) en procédant de nouveau par itération. On suppose que le trajet s'infléchit à ses deux extrémités.

On commence le calcul de la façon décrite au § 4 pour une réflexion sur la couche F, sans tenir compte de l'effet d'une couche E sous-jacente. On calcule ensuite la courbure produite par une couche E (voir la Fig. 3), au moyen de la formule de Rawer (1948) :

FIG, 3

FORME DU TRAJET DANS LE CAS D'UNE PROPAGATION A TRAVERS DEUX COUCHES A DISTRIBUTION PARABOLIQUE ET PARAMETRES POUR LE CALCUL DE LA DISTANCE PARCOURUE (Bibl. et autres. 1951) A : Emetteur

B : Milieu du trajet

$$\Delta = 2\left(\frac{y_E}{r_0 + hmE}\right) \left(\frac{\arctan u}{u} - 1\right) tg \alpha, \qquad (19)$$

où :

- Δ = angle dont le rayon s'est infléchi, en degrés,
- $y_E = \text{demi-épaisseur équivalente de la couche E, soit 30 km, du point de vue de la pénétration,$
- hmE = altitude du maximum de la densité électronique de la couche E, soit 110 km,

fE = fréquence critique de la couche E,

 α = angle d'incidence du rayon non réfracté, à l'altitude h_r,

 $\sin \alpha = \mathbf{r}_{0} \cos \beta / (\mathbf{r}_{0} + hmE),$

 $u = fE/f \cos \alpha$.

La longueur de l'arc de grand cercle est effectivement augmentée par l'inflexion du rayon; on tire parti de ce fait pour réduire cette longueur quand on calcule de nouveau les rayons non réfractés. On poursuit le calcul de la courbure par approximations' successives jusqu'à ce que le degré de précision voulu soit atteint. Dans l'application de cette méthode itérative, on procède à des vérifications pour voir si, en réalité, la couche E intercepte la propagation par la couche F.

5.2 Probabilité d'existence d'un trajet de l'onde d'espace

Comme le calcul de la MUF normalisée d'après la théorie des couches à distribution parabolique se fait à partir de valeurs médianes des caractéristiques ionosphériques, on admet que la probabilité pour qu'il existe un trajet de l'onde d'espace à cette fréquence est de 50 %. La fréquence à laquelle une onde aurait une probabilité de 90 % de se propager (FOT) et la fréquence à laquelle cette probabilité serait de 10 % (HPF) (fréquence probable la plus élevée) s'obtiennent en multipliant la MUF normalisée médiane (EJF) par les coefficients indiqués au Tableau l.

TABLEAU 1

COEFFICIENTS POUR LE CALCUL DE LA FOT ET DE LA MUF NORMALISEE

HEURE LOCALE

Hiver {Hémisphère nord (nov., déc., jan., fév.) Hémisphère sud (mai, juin, juil., août)

		V	aleurs	nférie	res du	nomb	re des t	taches	solaire	s (0-5	0)		Va	leurs i	interm	diaire	s du noi	nbre (les tac	hes so	aires (50-100	2		1	aleur	s super	ieures	du nor	nbre de	es tach	es sola	ires (>	> 100			
Lat.	22-	02	02-	06	06-	10	10-	14	14-	18	18-1	22	22-	02	02-	06	06-1	0	10-	-14	14-1	18	18-	22	22-	02	02-	06	- 06	10	10-	-14	14-1	18	18-	22	Lat.
geo.	Fu	Fι	Fu	Fe	Fu	Fe	F	Fe	Fu	FL	Fu	Fi	Fu	Fι	Fu	Fι	Fu	Fi	Fu	Fι	Fu	Fι	F _u	Fι	F u	FL	F u	Fι	F	Fι	Fu	F,	F.	Fe	Fu	F	geo.
≥ 75•	1,44	. 60	1, 34	. 65	1.45	. 69	1, 32	. 72	1, 33	, 68	1,40	. 67	1.45	. 76	1.39	. 78	1.44	. 68	1.40	. 67	1.33	. 6Z	1.45	. 70	1.36	. 62	1.27	. 70	1,41	. 74	1.42	. 67	1.40	. 64	1.43	. 73	≥75*
65-75*	1,37	. 68	1.29	. 71	1.38	.75	1,23	. 76	1,24	. 75	1.35	. 70	1.39	. 79	1.31	. 81	1.37	.74	1.32	. 70	1.29	. 73	1.41	. 73	1,31	. 69	1.25	. 74	1.34	. 77	1.30	. 72	1.16	. 72	1.34	. 78	65-75
55-65*	1.30	. 74	1.24	. 76	1.27	.80	1, 15	. 80	1.17	. 82	1.30	. 73	1.33	. 82	1.24	. 83	1.25	. 79	1.21	. 75	1.22	. 80	1.33	. 76	1,26	. 77	1.23	. 78	1.24	.81	1,18	. 80	1.11	. 79	1.26	. 82	55-65
45-55*	1,25	. 79	1.21	. 78	1.16	.83	1.12	.85	1.12	.84	1.25	. 76	1.30	. 84	1.19	. 82	1.14	. 83	1.15	. 81	1.16	. 84	1.29	. 78	1.19	. 83	1.19	. 80	1.16	.84	1.11	. 87	1.09	. 84	1,20	.86	45~55
35-45*	1,23	. 81	1.20	. 79	1.13	.85	1.11	. 87	1, 11	. 89	1.23	. 77	1.27	.83	1.17	. 81	1.12	.85	1.14	. 86	1, 14	. 86	1.28	. 79	1.15	. 86	1.14	. 81	1.13	. 87	1.09	. 90	1.09	. 87	1,14	. 87	35-45*
25-35*	1.28	.81	1.30	. 74	1.15	.86	1, 17	. 82	1.15	.85	1.28	.78	1.30	. 78	1.31	. 76	1.16	. 85	1.18	.85	1.18	.85	1.32	. 78	1,22	. 83	1,26	. 76	1.12	. 89	1.09	. 90	1.11	. 88	1.13	. 86	25-35*
15-25.	1.34	. 78	1.37	. 67	1,19	.87	1.20	. 75	1.24	.77	1.32	. 79	1.33	. 74	1,38	. 71	1.17	.85	1.22	. 83	1.26	. 82	1.40	. 76	1.32	. 78	1.35	.70	1,12	. 89	1,12	. 89	1,14	. 89	1.20	.83	15-25*
≤ 15*	1.27	. 71	1.38	. 70	1.18	.88	1.15	. 86	1.14	. 87	1.20	. 79	1.21	. 77	1.26	. 69	1.14	. 87	1.13	. 86	1.15	. 85	1.23	. 78	1.18	. 83	1.25	. 76	1,14	. 89	1.13	. 90	1.15	. 89	1.20	.84	≤15*

	Equinoxe (mars, avr., sept., oct.)																																				
[]		Val	eurs in	férieur	es du r	ombre	des ta	ches s	olaires	(C-50)		Va	leurs	interm	édiair	es du no	mbre	des ta	hes so	laires	(50-10	0)			Va	leurs s	upérie	ures du	nomb.	re des	taches	solaire	es (>)	100)		
Lat,	22-	02	02-	06	- 00	10	10-	-14	14-	18	18	-22	22-	02	02-	06	06-1	10	10.	-14	14-	18	18-	-22	22-	02	02-	06	06-	10	10-	14	14-	18	18-7	22	Lat.
geo.	Fu	۴ı	Fu	r.	Fu	Fι	Fu	Fι	Fu	Fι	Fu	۴ı	Fu	FL	Fu	FL	Fu	F	F _u	FL	Fu	FL	Fu	FL	Fu	۴ı	Fu	Fe	Fu	Fι	Fu	Fι	Fu	F	Fu	Fι	geo.
≥ 75*	1.42	. 67	1.32	. 72	1.29	. 74	1.26	. 73	1.33	. 80	1.48	. 65	1.45	. 64	1,31	. 61	1.27	. 73	1.28	. 74	1.30	. 74	1.47	. 67	1.46	. 66	1.37	. 67	1.35	. 75	1,40	. 66	1.38	. 70	1.46	. 72	≥ 75°
65-75*	1.38	. 70	1.25	. 75	1.25	. 76	1.23	. 74	1.26	. 82	1.40	. 69	1,41	. 68	1.22	. 71	1.23	. 77	1,26	. 74	1.26	. 78	1.38	. 70	1.42	. 67	1.31	. 71	1.30	. 73	1,31	. 70	1.33	. 70	1.37	. 72	65-75*
55-65*	1.32	. 73	1.21	. 78	1.22	. 80	1.20	. 75	1.20	. 81	1.31	. 73	1.35	. 70	1.17	.75	1.20	. 80	1.23	. 72	1.18	. 78	1.29	. 73	1.30	. 69	1.25	.75	1,27	. 71	1,24	.71	1.25	. 71	1.24	. 72	55-65°
45-55*	1.26	. 75	1.19	. 80	1,20	. 81	1.18	, 76	1.16	.81	1.26	. 76	1.28	. 73	1,15	. 77	1.17	. 81	1.21	. 74	1.13	. 76	1,20	. 75	1.18	. 73	1.20	. 78	1.25	. 70	1,20	. 72	1.16	. 74	1.17	. 73	45-55*
35-45*	1,22	. 77	1,20	. 81	1.19	. 81	1.16	. 77	1.16	. 80	1,25	. 78	1.22	. 75	1.16	. 78	1.16	. 82	1,18	. 78	1.12	. 76	1.17	. 76	1.15	. 79	1.16	. 8Z	1,17	. 75	1, 16	. 78	1,12	. 80	1.14	. 84	35-45*
25-35*	1.22	. 78	1.26	. 80	1.18	. 82	1,15	. 78	1.16	.81	1.28	. 74	1.22	. 77	1.22	. 76	1,15	. 82	1.17	. 83	1.14	. 78	1.23	. 72	1.25	. 81	1.18	. 82	1.10	. 87	1,10	. 87	1.11	. 87	1.15	. 86	25-35
15-25*	1.30	. 77	1, 32	. 75	1.16	. 83	1.14	. 81	1, 18	. 83	1.33	. 69	1.32	. 75	1.30	. 73	1.13	. 84	1.15	. 87	1.17	. 81	1.37	. 69	1,31	. 81	1.32	. 77	1.11	. 89	1.11	. 92	1.12	. 90	1.20	.85	15-25°
≤ 15*	1,23	. 76	1.40	. 66	1.13	. 86	1,13	. 89	1.19	. 86	1.16	. 75	1,18	. 79	1.39	. 68	1.11	. 86	1.13	. 89	1,20	. 84	1.23	.80	1,21	. 80	1.23	. 79	1.09	. 86	1.20	. 90	1.14	. 90	1.23	. 82	≤ 15°

															Eté	(Hé	misphèr	e sud	(nov.,	dec.	jan., i	(év.)	_														
	1	Vale	urs infe	frieur	es du n	ombre	des ta	ches se	laires	(0-50)				Val	eurs in	termée	diaires o	tu non	nbre de	es tache	s solai	res (5	0-100)			Valeu	irs sup	érieur	es du n	ombre	des tac	hes sc	laires	(>100	5		
Lat.	22	-02	02-0	6	- 60	10	10-	-14	14-	18	18-	22	22-	02	02-	06	06-1	10	10-	-14	14-	18	18-	22	22-	02	02+	-06 -	06-	10	10-	14	14-	18	18-	-22	Lat.
geo.	F	FL	Fu	FL	Fu	۴ı	Fu	Fι	F	Fe	Fu	Fι	Fu	Fi	Fu	Fi	Fu	Fι	Fu	Fe	Fu	Fi	F	Fι	Fu	Fe	F _u	Fi	Fu	Fι	Fu	Fe	Fu	FL	Fu	Fι	geo.
≥ 75*	1.26	. 68	1.24	. 79	1.15	. 84	1.17	. 87	1.21	. 85	1.22	. 76	1.27	. 82	1,23	. 80	1,20	. 82	1.18	. 85	1.24	. 80	1.23	. 79	1,30	. 73	1.27	. 74	1.17	. 82	1.15	. 83	1,23	. 79	1,24	. 75	≥ 75*
65-75*	1.22	.70	1.18	.81	1.14	. 83	1.15	, 86	1.16	. 86	1.18	. 77	1,23	. 83	1.19	. 82	1.19	. 79	1,17	. 82	1.17	. 82	1.19	. 82	1,22	. 75	1.22	. 75	1.20	. 77	1.18	. 80	1.21	.80	1.23	. 77	65-75*
55-65*	1,18	. 72	1.17	. 84	1.14	, 83	1.15	. 84	1.14	. 86	1,15	.81	1.20	. 83	1.18	. 82	1.19	. 77	1.17	. 79	1.14	. 82	1.17	. 83	1.16	. 77	1.18	. 76	1.26	. 74	1.21	. 77	1.19	. 80	1.21	. 80	55-65*
45-55*	1.17	.75	1.20	.85	1,15	. 82	1, 16	. 83	1.14	.85	1.15	. 84	1, 17	. 81	1.19	. 81	1.21	. 76	1.17	. 77	1.15	. 81	1.16	. 82	1.14	. 79	1.15	. 76	1.30	. 73	1.26	. 75	1.19	. 80	1.18	. 84	45-55°
35-45*	1,17	. 79	1,25	. 85	1.17	. 80	1.17	. 8Z	1.15	. 83	1.16	.85	1.17	. 78	1,22	. 78	1,23	. 75	1.18	. 78	1.17	. 78	1.17	. 78	1,14	. 80	1, 14	. 76	1,30	. 75	1,27	. 75	1.19	. 79	1.16	. 84	35-45°
25-35*	1, 18	. 79	1.30	. 82	1.17	. 78	1,20	. 80	1.19	. 81	1.20	. 80	1.20	. 77	1.30	. 83	1.22	. 75	1.19	. 79	1.19	. 77	1.18	. 74	1.16	. 81	1.15	. 76	1.25	. 82	1,20	. 81	1.17	. 79	1.15	. 83	25-35*
15-25*	1.20	. 77	1.34	, 78	1.14	. 77	1.24	. 79	1.22	. 79	1.23	. 73	1,26	. 77	1.38	. 69	1.17	. 78	1.23	. 82	1.23	. 78	1.28	. 73	1,21	. 81	1.22	. 77	1.18	.85	1,15	. 86	1.18	. 81	1.19	. 80	15-25*
≤15*	1.20	. 74	1.37	. 75	1.12	. 80	1.30	. 83	1.27	. 82	1.20	. 69	1.26	. 79	1.44	. 63	1.11	. 84	1.28	.85	1.28	.81	1.22	. 77	1,25	. 80	1.21	. 79	1.13	. 86	1.17	. 89	1.22	.85	1.23	. 78	≤15°

Hémisphère nord (mai, juin, juil, août) Hémisphère aud (now déc. jan féw

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Le Tableau l / Barghausen et autres, 1969 / montre la dispersion des valeurs journalières de la MUF normalisée autour de leur valeur médiane mensuelle sous forme du rapport du décile supérieur et du décile inférieur à cette valeur médiane pour une saison donnée, un niveau donné de l'activité solaire, des intervalles de 4 heures en temps local au point milieu du trajet et des latitudes géographiques nord ou sud variant de 10° à 80°, de 10° en 10°.

A partir des valeurs du Tableau 1, on détermine la probabilité q_f pour qu'une réflexion ionosphérique régulière se produise à une fréquence donnée, f, en calculant la fonction de distribution de probabilité quadratique en χ^2

$$q_{f} = 1 - \int_{0}^{\chi^{2}} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \exp(-z/2) z^{(\nu/2)-1} dz, \qquad (20a)$$

où :

 χ^2_{op} = grandeur liée à la fréquence de travail

v = nombre des degrés de liberté, correspondant à l'obliquité de la distribution en χ^2 .

On suppose que la MUF normalisée est toujours liée à χ^2 par la relation linéaire :

$$MUF = c + b \chi^2$$
, (20b)

où c et b sont des constantes, / Barghausen et autres, 1969.7.

Pour déterminer la valeur de v, on commence par calculer le rapport indiquant l'obliquité de la distribution de la MUF à partir de la valeur médiane et des déciles supérieur et inférieur de la MUF :

Rapport (MUF normalisée) =
$$\frac{MUF_{0,10} - MUF_{0,50}}{MUF_{0,50} - MUF_{0,90}}$$
(21)

où $MUF_{0,50}$, $MUF_{0,10}$ et $MUF_{0,90}$ sont respectivement la valeur médiane et les déciles supérieur et inférieur de la MUF. Ensuite on calcule le rapport pour des valeurs de v allant de 3 à 100 :

Rapport
$$(\chi^2) = \frac{\chi^2_{0,10} - \chi^2_{0,50}}{\chi^2_{0,50} - \chi^2_{0,90}}$$
 (22)

où $\chi^2_{0,10}$, $\chi^2_{0,50}$ et $\chi^2_{0,90}$ sont les valeurs de χ^2 respectivement à 10 %, 50 % et 90 %.

On compare le rapport (MUF) avec la table des rapports (χ^2) ainsi obtenus et l'on choisit la valeur de v à laquelle correspond le rapport (χ^2) le plus voisin du rapport (MUF). Pour calculer les valeurs fractionnaires de v dans le programme de l'ordinateur, on procède par interpolation linéaire. Pour choisir une valeur de χ^2_{op} correspondant à la fréquence de travail considérée f, on utilise les relations linéaires existant entre les valeurs de $\chi^2_{0,90}$, $\chi^2_{0,50}$, $\chi^2_{0,10}$ associées à la valeur choisie pour v et les valeurs de MUF_{0.90}, MUF_{0.50} et MUF_{0.10}.

On applique la relation (20b) dans tous les cas où la valeur du rapport (MUF) tirée de (21) est supérieure à l. Le sens d'obliquité de la distribution des χ^2 est alors le même que celui de la MUF. Dans les cas où la valeur du rapport (MUF) tirée de (21) est inférieure à l, il y a lieu d'appliquer la relation suivante :

$$MUF = c - b \chi^2.$$
 (23)

Le sens d'obliquité de la distribution de la MJF est alors opposé à celui de la distribution de χ^2 et, pour calculer ν , on utilise le rapport (MJF), qui a pour expression :

$$Rapport (MUF)^{\dagger} = 1/Rapport (MUF) .$$
 (24)

Dans le programme actuel, on a négligé la dispersion de foE et l'on a supposé que la propagation a une probabilité de 0,99 de se faire par le mode E à toutes les fréquences égales ou inférieures à la MUF classique de E.

5.3 Considération sur les couches E sporadiques

On admet dans la présente méthode provisoire qu'on a intérêt, pour évaluer l'intensité de champ de l'onde d'espace, à rester libre de faire entrer ou non en jeu une réflexion sur la couche Es sporadique; si on le fait quand on calcule la probabilité d'existence d'un trajet de l'onde d'espace c'est à seule fin d'estimer la probabilité d'occurrence de modes de propagation par Es dans les cas où la propagation par la couche E normale n'est pas possible.

La valeur médiane et les déciles supérieur et inférieur de foEs se déduisent des coefficients numériques, et on les convertit en valeurs pour le trajet oblique en appliquant la loi de la sécante. Le facteur de multiplication, sec ϕ , s'obtient par la formule :

$$\sec \phi' = \frac{1}{\cos\left(\frac{\pi}{2} - \frac{d}{2} - \beta\right)}, \qquad (25)$$

où:

 $\frac{a}{2}$ = moitié de l'arc de grand cercle,

 β = angle de site à l'émission, tiré de (17), avec hⁱ = 110 km.

En partant de cette valeur médiane et de ces déciles, on calcule alors la probabilité d'une propagation par la couche E sporadique pour la fréquence de travail, au moyen de la fonction de probabilité quadratique en χ^2 . Pour l'instant, on ne calcule pas l'affaiblissement supplémentaire dû au fait que la couche Es n'est que partiellement transparente aux ondes radioélectriques.

5.4 Calcul des modes de propagation mixtes

Si un trajet a une longueur égale ou supérieure à 2000 km, on envisage des modes de propagation mixtes. Ils consistent en bonds sur la couche E normale ou la couche Es, le reste du trajet s'effectuant par l'intermédiaire de la couche F. Si une propagation à travers la couche E régulière n'est pas possible, on détermine la probabilité d'une propagation par la couche Es, que l'on combine avec la probabilité pour que la propagation se fasse ensuite par la couche F.

6. Calcul de l'affaiblissement de transmission

Le présent paragraphe porte spécifiquement sur le calcul de l'affaiblissement de l'énergie radioélectrique d'une onde qui se propage entre un émetteur et un récepteur par l'intermédiaire de l'ionosphère et sur l'évaluation de l'intensité de champ résultante. L'affaiblissement d'une transmission radioélectrique est due presque entièrement à trois mécanismes. Normalement, l'affaiblissement principal est d'ordre géométrique, c'està-dire qu'il est causé par la dispersion de l'énergie dans un volume de plus en plus grand au fur et à mesure que l'onde s'éloigne de l'émetteur. Cet affaiblissement correspond, si l'on néglige l'influence de l'ionosphère et de la courbure de la Terre. à l'affaiblissement de transmission de référence en espace libre, L_b. Dans certaines conditions, le second mécanisme par ordre d'importance est l'absorption de l'énergie radioélectrique par l'ionosphère; enfin, l'affaiblissement qui se produit à la réflexion du signal à la surface de la Terre, constitue un troisième mécanisme, parfois important dans le cas de bonds multiples sur le sol. Les pertes au sol des antennes sont incluses dans l'évaluation de leur gain (voir la formule 32). D'autres affaiblissements, dont ces trois mécanismes ne rendent pas compte explicitement, sont groupés dans ce qu'on appelle

"surcroît d'affaiblissement du système", qu'on détermine empiriquement et qui exprime aussi la distribution statistique des valeurs médianes horaires de l'affaiblissement dans le mois.

AFFAIBLI	ISSEMENT	DE	TRANSMISSION	DE	REFE	RENCI	E SUR	LE	TRAJET	D'UN
FAISCEAU	DIVERGEN	IT C	ONFORMEMENT	AUX	LOIS	DE 1	L OPT	IQUI	GEOMET	RIQUE

A B	:	Base de l'ionosphère Angle d'incidence	D E	:	Angle de site à l'émission Surface de la Terre
C	:	Section transversale de référence (aire = 1)	F	:	Section transversale au récepteur (aire = $\Delta V \Delta H$)

6.1 Affaiblissement de transmission de référence en espace libre

L'affaiblissement en espace libre est dû à la dispersion de l'énergie dans l'espace au fur et à mesure que l'onde radioélectrique s'éloigne de l'émetteur. C'est ce qu'illustre la Fig. 4, où l'on voit un faisceau de quatre rayons issu d'un émetteur et réfléchi par l'ionosphère. On suppose qu'aucune partie de l'énergie rayonnée dans le volume défini par ce faisceau ne s'en échappe. La valeur de la densité d'énergie au récepteur est égale au quotient de sa valeur à la section transversale de référence par la superficie ΔV . ΔH de la section transversale du faisceau au récepteur. En propagation ionosphérique, l'augmentation que la section transversale du faisceau a subie au récepteur dépend des caractéristiques physiques de l'ionosphère et de la géométrie du trajet de propagation. On a fait des hypothèses simplificatrices dans le programme pour permettre de calculer l'affaiblissement de transmission de façon pratique.

Dans le modèle le plus simple représentant la propagation de l'onde d'espace, on admet que la surface de la Terre et la base de l'ionosphère sont plats et que la réflexion est spéculaire. Dans ce cas, la densité d'énergie est inversement proportionnelle au carré de la longueur du trajet du rayon / Piggott, 1959/. Autrement dit, si une antenne isotrope d'émission rayonne p watts de puissance, la densité de flux de puissance à une distance D mesurée en oblique est $p/(4\pi D^2)$. Comme la superficie totale d'une antenne isotrope de réception en espace libre est $\lambda^2/(4\pi)$, où λ est la longueur de l'onde radioélectrique, la puissance totale reçue par l'antenne est $p \lambda^2/(4\pi D)^2$. L'affaiblissement de transmission de référence en espace libre est le rapport entre la puissance rayonnée et la puissance reçue par une antenne de réception exempte de pertes, soit :

$$L_{bf} = 10 \log_{10} \left[\frac{p}{p^{\lambda}^{2} / (4 \pi D)^{2}} \right] = 20 \log_{10} \frac{4 \pi D}{\lambda} (dB) .$$
 (26)

En remplaçant la longueur d'onde λ par son expression en fonction de la fréquence f de l'onde électromagnétique, la formule (26) devient :

$$L_{bf} = 32,44 + 20 \log_{10} f + 20 \log_{10} D$$
 (dB) (27)

où f est exprimée en MHz et D en km.

Des méthodes de calcul de la focalisation à l'horizon et de la focalisation à la distance de saut se trouvent dans la littérature / Rawer, 1948; Bremmer, 1949; Davies, 1965 /. Mais une estimation quantitative de l'influence de la focalisation déborde le cadre du présent Rapport.

6.2 Affaiblissement dû à l'ionosphère

L'absorption de l'énergie dans l'ionosphère est généralement la seconde cause principale de l'affaiblissement de l'onde radioélectrique pendant sa propagation. L'affaiblissement local de l'onde varie comme le produit de la densité électronique par le nombre de chocs, divisé par l'indice de réfraction local relatif à l'onde considérée. Pour le calculer, il est commode de distinguer entre deux sortes d'absorption, l'une avec déviation et l'autre sans déviation.
Dans la région D de l'ionosphère, la densité des particules neutres est considérablement plus grande que la densité des ions positifs. aussi la plus grande partie de la perte d¹énergie radioélectrique est-elle causée par des chocs entre électrons et molécules. Dans cette région. pour les fréquences considérées ici, l'indice de réfraction de l'ionosphère est voisin de sa valeur unitaire en espace libre, l'onde radioélectrique n'y est donc ni réfractée, ni déviée. Dans ces conditions particulières, la perte d'énergie est due à une absorption dite "sans déviation". En revanche, dans les régions E et F, l'indice de réfraction est généralement inférieur à l'unité, et par suite l'onde radioélectrique subit une réfraction considérable. L'expression "absorption avec déviation" s'utilise donc normalement pour indiquer les conditions dans lesquelles l'affaiblissement local est supérieur à ce qu'il est dans le cas d'absorption sans déviation. C'est pour cette raison que la région E et même la région F peuvent contribuer sensiblement à l'absorption, en dépit du fait qu'à ces altitudes la densité des particules neutres est bien plus faible. La fréquence effective des chocs dans la région F résulte de ce que les chocs entre électrons et ions sont régis par des relations plus complexes qu'à des altitudes plus basses, où ce sont des électrons et des particules neutres qui entrent en collision.

Des mesures de l'intensité de champ effectuées sur des trajets obliques, permettent d'évaluer l'affaiblissement total dû à l'ionosphère. Cet affaiblissement ionosphérique, L_i , a pour expression / Lucas et Haydon, 1966 / :

$$L_{i} = \frac{677,2 \text{ (séc } \emptyset)}{(f + f_{H})1,98 + 10,2} \cdot \sum_{j=1}^{n} L_{j}$$
(28)

où :

n = nombre des bonds,

 \emptyset = angle d'incidence à 100 km,

f = fréquence de travail, en MHz,

 $f_{_{II}} = gyrofréquence à 100 km,$

$$I_{j} = (1 + 0,0037 R_{12}) (\cos 0,881 \psi_{j})^{1,3}$$

avec :

- R₁₂ = moyenne glissante sur 12 mois du nombre des taches solaires,
- ψ_j = distance zénithale du Soleil dans la zone de pénétration de la région absorbante.

L'analyse de relevés de l'intensité de champ nocturne a montré que l'absorption ionosphérique ne cesse pas, mais tend à devenir constante au fur et à mesure que l'indice d'absorption I, tel que défini ci-dessus, s'approche de la valeur d'un dixième. La formule (28) a donc son application limitée aux valeurs de I égales ou supérieures à 0,1. _Cette hypothèse concorde bien avec_les résultats des travaux de Wakaï / Wakaï, 1961_/ / Lucas et Haydon, 1966_/.

D'après certaines mesures, l'absorption pendant les mois d'hiver est supérieure à celle que l'on attendrait d'après sa variation en fonction de la distance zénithale du Soleil. On ne voit pas nettement si cet écart est dû à un accroissement de l'ionisation dans la région absorbante pendant les mois d'hiver ou s'il est dû à un allongement des trajets dans cette région parce que les altitudes de réflexion sont plus basses en hiver.

6.3 Affaiblissement par réflexion sur le sol

La troisième cause d'affaiblissement, dans une propagation à plusieurs bonds, est due au processus de réflexion sur la surface de la Terre. On suppose que les ondes d'espace incidentes ont une polarisation aléatoire et que l'énergie radioélectrique est répartie également entre le champ polarisé horizontalement et le champ polarisé verticalement. L'affaiblissement correspondant est exprimé en décibels par la formule :

$$L_{g} = 10 \log_{10} \left[\frac{|R_{v}|^{2} + |R_{h}|^{2}}{2} \right] \quad (dB)$$
 (29)

où R_v est le coefficient de réflexion pour l'onde polarisée verticalement (vecteur électrique parallèle au plan d'incidence) et R_h le coefficient de réflexion pour l'onde polarisée horizontalement (vecteur électrique perpendiculaire au plan d'incidence). Par définition, le coefficient de réflexion est le rapport de la grandeur scalaire du vecteur électrique de l'onde réfléchie à la grandeur scalaire du vecteur électrique de l'onde réfléchie à la grandeur scalaire du vecteur électrique de l'onde incidente. Un coefficient de réflexion est généralement un nombre complexe puisque l'indice de réfraction de la Terre est une grandeur complexe. Les grandeurs R_v et R_h sont données par les formules de Fresnel :

$$R_{\mathbf{v}} = \frac{n^{2} \sin \beta - (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}}{n^{2} \sin \beta + (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}},$$

$$R_{\mathbf{h}} = \frac{\sin \beta - (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}}{\sin \beta + (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}},$$
(30)

où β est l'angle de site du rayon au-dessus de la Terre à l'émission. La grandeur n est l'indice de réfraction complexe. En admettant que le champ électrique varie en fonction du temps proportionnellement à exp (j ω t), on a :

$$n^2 = \epsilon_r - j \ 18 \ 000 \ \sigma/f,$$
 (31)

où ϵ_r est la constante diélectrique relative de la Terre, σ la conductibilité effective de la Terre (mho/m) et f la fréquence de l'onde (MHz) / Schelkunoff et Friis, 1952/.

Pour chaque zone de réflexion à la surface de la Terre, on détermine s'il s'agit de sol ou de mer, et l'on utilise les valeurs suivantes de ε et σ :

eau de mer $\sigma = 5,0$ mho/m; $\varepsilon = 80$

sol $\sigma = 0,001 \text{ mho/m}; \varepsilon = 4$.

6.4 Surcroît d'affaiblissement du système (Yp)

On a analysé des données expérimentales pour expliquer les variations des signaux d'un jour à l'autre par rapport à la valeur médiane mensuelle et pour rendre compte d'autres pertes qui, apparemment, ne sont pas attribuables aux phénomènes décrits ci-dessus. C'est ainsi que des variations de la direction d'arrivée du signal entraînent des variations de la valeur du gain des antennes. Les résultats de cette analyse ont montré que la distribution du surcroît d'affaiblissement est fonction de la latitude géomagnétique, de la saison, de l'heure locale et de la longueur du trajet. Les Tableaux 2 et 3 / Barghausen et autres, 1969 / montrent les écarts par rapport à la valeur médiane de l'affaiblissement de transmission qui sont dépassés pendant 84 % du temps, Sl , et pendant 16 % du temps, Su. Comme on le voit, les affaiblissements tendent à être maximaux pour les trajets compris entre 65° et 70° de latitude géomagnétique, le maximum diurne du surcroft d'affaiblissement se produisant entre 0400 et 1000 heures (temps moyen local). Le maximum saisonnier de l'affaiblissement se produit à l'équinoxe, que les trajets soient longs ou courts, et les trajets courts présentent généralement un surcroft d'affaiblissement plus grand aux latitudes élevées. Etant donné la distribution géographique des données, c'est probablement entre 15° et 55° de latitude géomagnétique nord que les valeurs sont les plus dignes de confiance.

TABLEAU 2

VALEURS PROBABLES DU SURCROIT D'AFFAIBLISSEMENT DE SYSTEME (dB)

(TRAJETS D'UNE LONGUEUR INFERIEURE A 2500 km)

Hiver (nov., déc., jan., fév.)

Lat.	01-	04 TN	лL	04	-07 T	ML	07.	-10 T	ML	10-	13 TI	ML	13-	16 TI	ЛL	16-	19 TI	ML	19-	22 TI	ML	22-	01 T	ML	Lat.
gm.	Med.	s _i	s _u	Med.	s _l	s _u	Med.	s _i	s _u	Med.	s _e	s _u	Med.	s _i	s _u	Med.	s _i	s _u	Med.	s,	s _u	Med.	s,	s _u	gm.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.3	9.0	9.1	4.3	8.3	9.1	4.6	8.6	9.0	4.5	7.1	9.0	4.2	6.2	9.0	4.6	8.1	9.0	4.6	7.9	9.0	4.2	9.1	40-45
45-50	9.1	4.7	9.1	9.3	4.6	9.0	9.6	5.2	9.6	9.0	5.1	7.8	9.1	4.4	6.5	9.1	5.2	8.6	9.3	5.2	8.3	9.1	4.5	9.2	45-50
50-55	9.6	5.1	9.2	9.8	5.0	9.7	10.6	5.9	10.7	9.1	5.7	8.7	9.3	4.6	6.9	9.6	5.8	9.1	10.0	5.8	3.7	9.3	4.8	9.3	50-55
55-60	10.5	5.3	10.0	11.1	6.7	9.6	13.4	8.2	14.6	9.7	5.0	10.6	9.8	4.8	7.2	11.2	6.5	9.0	11.5	5.4	10.6	10.3	5.1	9.5	55-60
60-65	13.8	8.0	13.5	17.2	12.7	13.0	19.5	12.3	23.7	11.7	6.8	20.5	10.6	5.8	8.7	14.7	8.3	14.1	16.3	8.9	17.2	14.2	7.2	9.9	60-65
65-70	15.7	7.7	14.6	20.0	13.5	13.2	22.5	11.8	22.5	12.0	6.0	22.0	10.7	5.4	8.2	14.8	7.8	11.3	17.6	7.8	18.6	15.0	6.8	11.5	65-70
70-75	14.7	6.3	9.4	16.9	8.9	15.2	19.7	9.9	14.3	10.7	5.4	13.9	9.9	4.8	7.5	12.6	6.5	10.5	13.1	5.8	14.8	13.0	6.0	9.0	70-75
75-80	11.5	5.6	9.4	14.0	7.7	8.8	16.1	8.4	10.2	9.9	6.3	10.7	9.3	4.7	6.7	10.9	5.4	8.6	11.3	4.9	11.5	11.0	5.4	8.5	75-80

Equinoxe (mars, avr., sept.. oct.)

Let	01-0	04 TM	۸L	04-	07 TI	ИL	07-	-10 TI	ИL	10-	-13 TI	ML	13-	16 TN	иL	16-	-19 TI	ML	19-	22 TI	ML	22-	01 T	ML	Let
g,-m.	Med.	s _i	s _u	Med.	s _e	s _u	Med.	s,	s _u	Med.	່ ເ	s _u	Med.	s _i	s _u	Med.	s,	s _u	Med.	s,	s _u	Med.	s.	s _u	gm.
00-40	9.0	4.0	9.0	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.5	10.0	9.1	4.4	11.5	9.2	5.3	9.8	9.1	4.7	9.0	9.1	4.5	8.9	9.3	5.0	11.3	9.2	4.8	10.0	9.1	4.7	10.0	40-45
45-50	9.4	5.0	11.1	9.4	4.8	14.1	9.9	6.6	12.0	9.6	5.4	11.6	9.4	5.0	11.4	10.3	6.0	15.0	9.9	5.6	12.5	9.8	5.4	11.0	45-50
50-55	10.0	5.6	12.2	10.0	5.2	16.6	11.7	8.0	14.3	10.8	6.2	14.2	10.2	5.6	13.9	11.7	7.0	18.7	11.1	6.4	15.0	11.1	6.2	12.0	50-55
55-60	11.0	5.7	17.6	12.0	6.4	22.0	15.2	8.3	15.3	12.7	7.6	18.3	11.6	5.6	15.5	13.5	7.5	20.2	13.0	7.7	19.5	14.0	7.4	13.3	55-60
60-65	13.7	7.7	30.3	17.0	9.5	29.3	21.0	14.0	23.4	16.5	10.6	33.0	14.6	8.3	19.2	16.8	10.3	27.0	18.0	11.3	29.0	20.8	13.0	26.7	60-65
65-70	15.8	8.1	28.0	20.6	11.1	31.0	28.6	18.2	26.9	17.8	10.0	27.9	15.3	7.0	18.0	16.8	8.4	24.0	19.3	11.3	28.8	23.6	11.2	17.5	65~70
70-75	13.9	7.0	21.7	20.7	13.8	20.8	29.0	12.8	20.2	15.2	8.8	18.9	12.3	6.2	14.2	13.9	7.2	18.0	16.7	8.6	22.0	18.5	8.0	16.5	70-75
75-80	11.0	6.1	15.5	16.5	7.5	18.7	18.2	9.7	14.4	12.9	7.5	13.6	10.6	5.4	12.0	1Z.0	6.2	14.1	13.2	6.4	20.6	13.1	6.3	15.7	75-80

Eté (mai, juin, juil., août)

Lat.	01-0	04 TM	лL	04-	07 TI	ЛL	07-	10 TJ	ML	10-	13 TI	ML	13-	16 TI	ML	16-	19 TI	мL	19-	22 TI	ML	22-0	01 TI	ML	Lat.
gm.	Med.	s,	s _u	Med.	s _i	s _u	Med.	s _i	s _u	Med.	s,	s _u	Med.	s,	s _u	Med.	s _i	s _u	Med.	sι	s _u	Med.	s _i	s _u	gm.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.1	4.4	9.8	9.1	4.3	9.9	9.0	4.7	9.1	9.1	4.5	7.2	9.1	4.5	8.1	9.2	5.1	8.6	9.1	4.9	9.5	9.0	4.7	10.0	40-45
45-50	9.5	4.8	10.6	9.4	4.7	12.2	9.5	5.5	10.7	9.4	5.0	8.1	9.5	5.0	9.8	10.1	6.2	9.7	10.0	5.9	11.4	9.3	5.4	11.0	45-50
50-55	10.3	5.3	11.4	10.1	5.1	14.6	10.4	6.3	12.3	10.0	5.5	9.0	10.1	5.5	11.6	12.0	7.3	10.8	11.9	6.9	13.4	9.7	6.1	12.0	50-55
55-60	11.9	5.5	17.8	11.4	5.5	16.1	12.0	7.2	15.6	11.6	6.0	10.6	11.9	5.8	13.5	14.8	8.5	11.0	14.8	7.8	14.1	10.8	6.4	15.0	55-60
60-65	15.0	7.5	24.5	13.1	5.8	22.7	15.0	10.7	26.0	14.3	7.8	18.8	13.3	6.2	19.9	17.4	9.1	14.2	17.6	10.1	20.5	13.4	8.9	21.1	60-65
65-70	15.0	6.5	22.1	13.6	6.2	21.8	16.3	9.2	26.7	14.0	6.7	19.5	13.2	5.7	16.6	16.2	7.2	13.8	17.8	7.9	21.9	14.0	7.8	19.0	65-70
70-75	12.7	5.4	15.6	12.8	5.8	15.0	14.0	6.8	18.2	12.5	6.2	12.0	12.2	5.5	13.3	13.8	6.9	11.1	15.0	7.6	17.8	12.4	6.8	16.0	70-75
75-80	11.4	5.7	12.8	11.8	6.0	11.3	12.1	5.3	16.8	11.7	5.7	9.5	11.3	5.3	12.1	12.8	7.0	10.2	13.3	7.2	11.8	11.1	6.8	12.7	75-80

- 37 -

VALEURS PROBLABLES DU SURCROIT D'AFFAIBLISSEMENT DE SYSTEME (dB) (TRAJETS D'UNE LONGUEUR SUPERIEURE A 2500 km)

Lat.	01-	-04 T	ML	04-	-07 T	ML	07-	-10 T	ML	10-	-13 T	ML	13	-16 T	ML	16	-19 TI	ML	19-	-22 т	ML	2Ż.	-01 T	ML	Lat
gm.	Med.	sł	su	Med.	sł	s _u	Med.	sı	s _u	Med.	sł	Su	Med.	sl	Su	Med.	sı	Su	Med.	sı	su	Med.	Sį	su	gm.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.2	9.1	9.0	4.3	7.8	9.0	4.2	9.0	9.0	4.2	7.3	9.0	4.0	6.5	9.0	4.3	7.7	9.0	4.3	7.6	9.0	4.3	9.2	40-45
45-50	9.1	4.4	9.3	9.1	4.6	8.0	9.1	4.5	10.4	9.0	4.4	8.2	9.1	4.1	6.7	9.1	4.7	7.8	9.2	4.6	7.6	9.2	4.6	9.4	45-50
50-55	9.4	4.6	9.5	9.4	5.0	8.2	9.2	4.8	11.9	9.0	4.6	9.2	9.4	4.1	6.9	9.4	5.1	7.9	9.9	4.9	7.6	9.8	4.9	9.6	50-55
55-60	10.1	4.7	9.6	10.8	5.5	8.3	9.9	5.6	12.4	9.2	5.2	10.4	10.2	4.6	7.4	10.4	5.5	7.6	11.0	5.0	7.9	11.3	5.3	9.8	55-60
60-65	12.3	5.7	11.4	15.2	6.8	9.5	11.6	7.3	14.1	10.3	5.2	15.2	11.6	4.1	8.3	12.4	6.7	8.0	12.6	5.6	8.9	16.6	7.8	13.8	60-65
65-70	14.5	6.5	10.2	15.4	6.3	10.9	13.1	8.3	14.2	11.0	4.4	15.8	13.1	5.1	7.7	12.6	6.2	7.3	13.4	6.1	8.5	18.9	8.6	11.1	65-70
70-75	12.9	3.4	9.7	13.6	6.5	7.8	12.3	6.8	11.2	10.3	4.8	11.2	13.0	4.7	7.1	11.2	5.4	7.4	12.1	5.1	8.6	17.0	6.5	9.2	70-75
75-80	11.2	5.1	9.2	12.2	5.9	8.1	10.9	5.7	10.2	9.7	4.8	9.2	11.7	4.4	7.0	10.2	5.0	7.5	10.3	4.8	8.2	11.9	5 .0	9.7	75-80

Hiver (nov., déc., jan., fév.)

Equinoxe (mars, avr, sept, oct.)

Lat	01	-04 T	ML	04	-07 T	ML	07-	-10 T	ML	10.	-13 T	ML	13	-16 T	ML	16-	-19 T	ML	19-	-22 т	ML	22.	01 T	ML	Let
gm.	Med.	s_{ℓ}	s _u	Med.	s_t	s _u	Med.	st	Su	Med.	sł	Su	Med.	si	Su	Med.	si	su	Med.	sł	Su	Med.	s.	s_u	gm
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.1	10.0	9.0	4.1	8.5	9.0	4.2	8.3	9.1	4.4	7.9	9.0	4.3	8.8	9.1	4.5	9.0	9.0	4.3	8.9	9.0	4.2	10.6	40-45
45-50	9.2	4.2	11.0	9.2	4.2	9.4	9.2	4.5	9.0	9.2	4.9	9.4	9.1	4.6	10.7	9.5	4.9	10.4	9.6	4.6	10.2	9.4	4.4	11.5	45-50
50-55	9.5	4.4	12.1	9.6	4.3	10.3	9.5	4.8	9.7	9.6	5.4	11.0	9.5	5.0	12.3	10.6	6.1	11.9	10.8	5.5	10.9	10.1	5.6	12.2	50-55
55-60	10.0	4.5	13.2	10.3	4.6	10.6	10.3	5.7	9.8	10.7	6.0	11.2	10.3	5.6	13.2	12.4	7.8	12.5	12.8	7.2	11.6	11.4	7.5	13.8	55-60
60-65	11.9	5.7	15.5	12.8	5.9	10.8	13.2	7.9	11.4	13.1	8.5	13.4	11.9	8.6	14.7	15.3	9.5	15.2	17.4	9.8	14.7	16.3	9.7	16.6	60-65
65-70	13.3	5.7	14.3	14.6	6.6	10.6	15.4	7.7	13.8	14.1	8.1	12.4	13.4	7.5	16.1	15.3	8.6	13.2	18.2	8.5	14.3	18.3	8.4	16.2	65-70
70-75	12.0	4.9	13.1	13.7	5.3	9.8	14.0	6.1	10.9	12.0	7.1	10.5	11.4	6.7	11.7	12.4	6.9	12.2	14.4	6.0	13.8	13.8	7.8	15.8	70-75
75-80	10.3	4.8	11.0	10.9	4.6	9.0	11.2	5.7	10.6	9.8	6.3	10.2	9.8	5.7	11.2	9.8	6.1	11.0	10.2	5.4	13.7	10.1	6.9	15.4	75-80

Eté (mai, juin, juil., août)

Lat.	01-	-04 T	ML	04-	-07 T	LM	07	-10 Т	LM	10	-13 Т	'LM	13-	16 T	LM	16-	-19 T	LM	19-	-22 T	LM	22-	01 T	LM	Lat.
gm	Med.	sł	su	Med.	sł	s_u	Med.	Sł	Su	Med.	si	Su	Med.	sł	Su	Med.	si	Su	Med.	sł	Su	Med.	s _e	su	gm.
00-40	9.0	4.0	9.Ó	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.1	4.4	9.1	9.0	4.4	9.1	9.0	4.5	8.1	9.0	4.2	6.9	9.0	4.5	7.6	9.0	4.2	8.1	9.0	4.9	8.2	9.1	4.4	9.6	40-45
45-50	9.5	4.8	9.2	9.3	4.9	10.6	9.4	5.0	8.6	9.2	4.4	7.5	9.4	5.0	8.8	9.1	4.5	8.6	9.6	5.8	8.9	9.5	4.9	10.3	45-50
50-55	10.1	5.2	9.4	10.1	5.4	12.2	10.1	5.6	9.2	9.6	4.7	8.1	10.2	5.6	10.1	9.4	4.8	9.1	10.9	6.7	9.6	10.3	5.4	11.0	50-55
55-60	11.5	5.4	9.6	11.9	6.2	13.0	11.6	6.5	9.7	10.1	4.9	9.2	11.5	5.9	12.3	10.2	5.1	10.7	12.8	6.8	11.8	11.9	5.7	13.4	55-60
60-65	13.9	6.7	9.8	16.5	8.8	16.8	15.2	9.3	13.8	11.2	6.4	13.1	12.8	6.8	16.4	11.6	6.1	14.3	14.2	7.1	17.2	14.0	7.2	18.4	60-65
65-70	14.0	6.1	10.0	16.8	7.4	16.7	15.1	8.2	16.5	11.3	6.2	13.1	12.8	6.3	12.0	11.7	5.4	12.4	13.8	6.4	15.2	14.0	6.4	15.1	65-70
70-75	12.2	4.8	8.9	14.4	6.5	11.9	12.4	5.9	14.1	10.5	5.8	10.1	11.2	5.5	9.2	9.9	5.1	11.0	11.6	5.8	12.3	12.2	5.3	12.1	70-75
75-80	11.0	5.3	8.2	13.1	6.0	10.0	10.5	5.5	13.1	10.1	5.6	8.6	9.8	5.4	8.4	9.1	5.0	10.2	9.9	5.6	9.9	10.4	5.5	10.3	75-80

- 39 -

.

6.5 Affaiblissement du système

L'affaiblissement de système d'une liaison radioélectrique est, par définition, la puissance de signal disponible aux bornes de l'antenne de réception, rapportée à la puissance disponible aux bornes de l'antenne d'émission, en décibels (C.C.I.R., 1966). Ne s'y trouve pas inclus l'affaiblissement sur la ligne d'alimentation de l'antenne d'émission ou de réception, que l'on considère comme étant facile à mesurer. En revanche, l'affaiblissement du système comprend l'affaiblissement qui se produit dans tous les circuits de l'antenne d'émission ou de réception, c'est-à-dire non seulement l'affaiblissement de transmission causé par le rayonnement de l'antenne d'émission et le re-rayonnement de l'antenne de réception, mais aussi l'affaiblissement éventuellement dû aux pertes dans le sol, aux pertes diélectriques, aux pertes dans la bobine de charge des antennes, aux pertes dans la résistance terminale des antennes en losange, etc. (C.C.I.R., 1966).

L'affaiblissement du système a pour expression :

 $L_{S} = L_{bf} + L_{i} + L_{g} + Y_{p} - (G_{t} + G_{r})$ (dB) (32)

où :

- L_{bf} = affaiblissement de transmission de référence en espace libre, qui se produirait normalement entre des antennes d'émission et de réception isotropes, sans pertes, parfaites, isolées dans l'espace,
- L_i = affaiblissement causé par l'absorption ionosphérique,

 L_{σ} = affaiblissement causé par réflexion sur le sol,

Y_n = surcroît d'affaiblissement du système,

- G_t = gain de puissance de l'antenne d'émission par rapport à une antenne isotrope isolée dans l'espace,
- G_r = gain de puissance de l'antenne de réception par rapport à une antenne isotrope isolée dans l'espace libre.

Dans le présent Rapport, les gains G_t et G_r s'entendent dans la direction du trajet de propagation et comprennent toutes les pertes_des antennes, de sorte que la somme $G_t + G_r$ est égale au gain de trajet $G_p / Rice$ et autres, 1967_/. Il est nécessaire de connaître les valeurs de G_t et G_r pour tous les angles de site et toutes les directions azimutales.

Dans les liaisons de radiocommunication en ondes décamétriques, il arrive souvent que plusieurs trajets de propagation sont possibles; ce sont, par exemple, une réflexion unique sur la région F (lF), une réflexion unique sur la région E (lE), plusieurs réflexions sur les régions E ou F (lF, 3F, 2E, etc.) ou une ou plusieurs réflexions sur les deux régions (lEIF, lE2F, etc.). La probabilité pour que la propagation ait lieu sur tel ou tel trajet dépend de la forme des couches ionosphériques et de l'ionisation relative de ces couches.

Dans la pratique, pour la plupart des systèmes, les opérations suivantes sont généralement suffisantes : l) évaluation de L_{bf} , L_{1} , L_{g} , G_{t} et G_{r} pour chaque mode pour lequel la probabilité d'existence d'un trajet d'onde d'espace est $\geq 0,05$; 2) choix du plus petit affaiblissement calculé comme affaiblissement du système pour la liaison en question, et 3) addition, à l'affaiblissement ainsi calculé, du surcroît d'affaiblissement du système, Y_{p} . Comme il a été indiqué plus haut, Y_{p} tient compte de l'influence des variations d'un jour à l'autre des caractéristiques utilisées pour évaluer L_{bf} , L_{1} , L_{g} , G_{t} et G_{r} , et des facteurs tels que la focalisation ionosphérique, l'absorption avec déviation, les pertes par polarisation et la contribution de signaux acheminés par d'autres trajets.

7. Intensité de champ de l'onde d'espace

L'intensité de champ de l'onde d'espace dépend directement de l'affaiblissement de transmission / Norton, 1959 /. Une fois évalué l'affaiblissement L_s (selon la méthode décrite au § 6, en supposant que les antennes d'émission et de réception sont isotropes, sans pertes et parfaites), de manière à déterminer l'affaiblissement de transmission de référence L_b , l'intensité de champ peut se calculer par la formule :

$$E = 107,2 + 20 \log_{10} f + G_t + P_t - L_b$$

où

- E = intensité de champ efficace, en dB par rapport à un microvolt par mètre;
- G_t = gain de l'antenne d'émission dans la direction du trajet de propagation utilisé pour calculer L_s, en décibels par rapport au gain d'une antenne isotrope;
- P_t = puissance fournie par l'émetteur à l'antenne d'émission, en décibels par rapport à un watt;
- f = fréquence de travail, en MHz.

Si l'intensité de champ de référence est de 300 mV/m à un kilomètre (valeur efficace du champ produit par une puissance d'entrée de l kW appliquée à un dipôle court monté au-dessus d'un sol parfait), l'intensité de champ de l'onde d'espace, E, a pour expression : $E = 142 + 20 \log_{10} f - L_b$.

De même, si l'intensité de champ de référence est de 222 mV/m à un kilomètre, l'intensité de champ de l'onde d'espace, E, a pour expression :

 $E = 139,4 + 20 \log_{10} f - L_b$

8. <u>Références bibliographiques</u>

APPLETON, E.V. et BEYNON, W.J.G.	<u>/</u> 1940_7	The application of ionospheric data to radiocommunication problems : Part I; Proc. Phys. Soc., <u>52</u> , 518-533.
BARGHAUSEN, A.F.	<u>[</u> 1966_7	Medium frequency sky wave propagation in middle and low latitudes; <u>IEEE Trans.</u> Broadcasting BC-12, 1-14.
BARGHAUSEN, A.F. et autres	<u>[</u> 1969 <u></u>]	Predicting long-term operational parameters of high-frequency sky-wave telecommuni- cation systems; <u>ESSA Tech. Report ERL</u> <u>110-ITS 78</u> (U.S. Government Printing Office, Washington, D.C. 20402).
BECKMANN, B.	<u>[</u> 1958 <u></u>]	Uber Beziehungen der Feldstärke zu den Grenzen des Übertragungsfrequenzbereiches (LUF-MUF) (Relations entre l'intensité de champ et les limites de la gamme de fréquence utilisable); <u>NTZ</u> , <u>11</u> , 523-528.
BECKMANN, B.	<u>/</u> 1960_/	Ergebnisse zur näherungweisen Berechnung der Raumwellenfeldstärke aus den Grenzen des Übertragungsfrequenzbereiches (Résul- tats de calculs approximatifs de l'inten- sité de champ de l'onde d'espace à partir des limites de la gamme des fréquences uti- lisables); <u>NTZ</u> , <u>13</u> , 470.
BECKMANN, B.	<u>[</u> 1967 _7	Notes on the relationship between the receiving-end field strength and the limits of the transmission frequency range MUF-LUF, <u>MTZ - CJ</u> , <u>6</u> , 37-47.
BIBL, K.	[1950_7	Le parcours d'un rayon dans une couche ionosphérique courbée; <u>Rev.Sci., 88</u> , 27-29.
BIBL, K., RAWER, K. et THEISSEN, E.	<u>[</u> 1951 <u></u>]	Le rôle de l'occultation dans la propaga- tion des ondes décamétriques; <u>Rapport du</u> <u>Service de prévision ionosphérique mili-</u> <u>taire SPIM</u> - R 11.
BIBL, K. , RAWER, K. et THEISSEN, E.	<u>[</u> 1952_7	An improved method for the calculation of the field-strength of waves reflected by the ionosphere; <u>Nature, 169</u> , S. 147-150.

BOWHILL, S.A. (ed.)	[1966]7	Papers of the Estes Park Seminar on Sporadic E; <u>Radio Sci., 1</u> (New Series), 248-249.
BREIT, G. et TUVE, M.A.	<u>[</u> 1926_7	A test of the existence of the conducting layer; <u>Phys. Rev., 28</u> , 554.
BREMMER, H.	<u>[</u> 1949_7	Terrestrial radio waves; Elsevier Publ. Co., Inc., New York, N.Y.
C.C.I.R.	[1963- 1966_7	Doc. VI/73 (U.R.S.S.).
C.C.I.R.	<u>[1966]</u>	Notion d'affaiblissement de transmission dans l'étude des systèmes radioélectriques; Avis 341, Doc. de la XIE Assemblée plé- nière, Vol. III, Oslo, 1966 (U.I.T., Genève).
C.C.I.R.	[1966 , 1967_[Atlas des caractéristiques ionosphériques; Rapport 340, Oslo, 1966, (U.I.T., Genève).
C.C.I.R.	[1966- 1969a_7	Doc. VI/77 (U.R.S.S.).
C.C.I.R.	/ 1966 1969b_/	Doc. VI/79 (U.R.S.S.).
C.C.I.R.	[1966- 1969c_7	Doc. VI/180 (Australie).
DAVIES, K.	<u>[</u> 1965 <u></u>]	Ionospheric radio propagation; <u>NBS Mono-</u> <u>graph 80</u> (U.S. Government Printing Office, Washington, D.C. 20402).
DIEMINGER, W. et ROSE, G.	<u>[</u> 1961 <u></u>]	Zum Feldstärkeverlauf am Rande der toten Zone (Variations de l'intensité de champ à la limite de la zone de silence); <u>MTZ</u> , <u>20</u> , 170-180.
ELLING, W.	<u>∕</u> 1961 <u></u> ∕	Scheinbare Reflexionshöhen und Reflexions- vermögen der Ionosphäre über Tsumeb, Südwest Afrika, ermittelt mit Impulsen im Frequenzband von 350 bis 5.600 kHz; (Hauteur apparente des réflexions au- dessus de Tsumeb, Afrique du Sud-Ouest, obtenues par des impulsions dans la bande 350-5.600 kHz); <u>Arch. Elekt. Über.</u> , 15, 115-124.

		- 47 -
FRIHAGEN, J. (ed.)	<u>[</u> 1965 <u></u>]	Electron density profiles in ionosphere and exosphere; Proc. NATO Advanced Study Inst., Finse, Norway, April 1965 (North Holland, John Wiley and Sons, New York, N.Y.).
HALLEY, R.	<u>[</u> 1965 <u></u>]	Méthode de calcul des prévisions de point à point aux distances comprises entre 2500 et 10 500 km; <u>Centre National d'Etudes</u> <u>des Télécommunications</u> , Division des Prévisions Ionosphériques, France.
HARNISCHMACHER, E.A.	[1960]7	A calculation method of ionospheric propagation conditions for very high and antipode distance; <u>Electromagnetic Wave</u> <u>Propagation</u> , Academic Press, London, 527.
KAZANTSEV, A.N.	<u>/</u> 1947_/	The absorption of short radiowaves in the ionosphere and the field strength at the place of reception; <u>Translation</u> (juillet 1958) from <u>Bulletin of Academy of Sciences</u> <u>of the USSR</u> . Division of Technical Sciences, N° 9, 1107-1138.
KAZANTSEV, A.N.	<u>[</u> 1956 <u>]</u>	Developing a method of calculating the electrical field strength of short radio waves; <u>Trudy IRE</u> , Transactions of the Institute of Radio Engineering and Elec- tronics of the Academy of Sciences, USSR, 2, 134.
KAZANTSEV, A.N.	[1957 _ 7	Instruction for the calculation of the coefficients of ionospheric absorption and field intensity of short radio waves; Working Group of CCIR (Lepechinsky group), Geneva.
KELSO, J.M.	<u>[</u> 1964_]	Radio ray propagation in the ionosphere; McGraw Hill, New York, N.Y.
KNECHT, R.W.	[1963 _]	The distribution of electrons in the lower and middle ionosphere; <u>Progress in Radio</u> <u>Science</u> , 1960-1963, Vol. III, Elsevier.
LAITINEN, P.O., et HAYDON, G.W.	[1950_7	Analysis and prediction of sky-wave field intensities in the high frequency band; <u>Technical Report 9</u> , <u>U.S. Army Signal Radio</u> <u>Propagation Agency</u> , Ft. Monmouth, N.J.

LEFTIN, M.	<u>/</u> 1969_/	Numerical maps of monthly median h ^{\$} F for solar cycle minimum and maximum (à paraître).
LEFTIN, M., OSTROW, S.M., et PRESTON, C.	[1968_7	Numerical maps of foEs for solar cycle minimum and maximum; ESSA Tech. Report ERL 73-IIS 63 (U.S. Government Printing Office, Washington, D.C. 20402).
LEFTIN, M., OSTROW, S.M., et STEWART, F.G.	<u>[</u> 1969_7	Numerical maps of foE for solar cycle minimum and maximum (à paraître).
LUCAS, D.L. et HAYDON, G.W.	<u> </u>	Predicting statistical performance indexes for high frequency ionospheric tele- communications systems; ESSA Tech. Report <u>IER 1-ITSA 1.</u> (U.S. Government Printing Office, Washington, D.C. 20402).
MARIYN, D.F.	[1935_7	The propagation of medium radio waves in the ionosphere; <u>Proc. Phys. Soc.</u> , <u>47</u> , 323.
NBS	<u>[</u> 1948 <u></u>]	Ionospheric radio propagation; National Bureau of Standards Circular 462 (juin, 1948).
NORTON, K.A.	<u>[</u> 1959_7	Transmission loss in radio propagation; <u>NBS Tech. Note 12</u> (U.S. Government Printing Office, Washington, D.C. 20402).
PETRIE, L.E. et STEVENS, E.E.	<u>[</u> 1969 _]	An Fl layer MUF prediction system for northern latitudes; <u>IEEE Trans. AP-13</u> , 542.
PIGGOTT, W.R.	[1959_7	The calculation of the median sky wave field strength in tropical regions; <u>Radio</u> <u>Research Special Report Nº 27</u> , H.M.S.O. London.
PIGGOTT, W.R. et RAWER, K.	<u>[</u> 1961_7	URSI Handbook of ionogram interpretation and reduction; (Elsevier, New York, N.Y.).
RAO, M.K.	<u>[</u> 1969_7	Nomographs for calculation of field strength; <u>J. Inst. Telecom. Engrs.</u> (Inde), <u>15</u> , 729-740.
RAWER, K.	<u>[1948_7</u>	Optique géométrique de l'ionosphère; Revue scientifique, <u>86</u> , 585-600.

RAWER, K.	<u>/</u> 1950_7	Geometrical optics of ionospheric propagation; <u>Nature</u> , <u>166</u> , Nº 4216, 316.
RAWER, K.	<u>[</u> 1952 <u>]</u>	Calculation of sky-wave field strength; <u>Wireless Engineer, 29</u> , 287.
RICE, P.L., LONGLEY, A.G., NORTON, K.A. et BARSIS, A.P.	<u>[</u> 1967 <u></u>]	Transmission loss predictions for tropospheric communication circuits, Vols. 1 and 2; <u>NBS Tech. Note 101 (Révisée</u>) (U.S. Government Printing Office, Washington, D.C. 20402).
SCHELKUNOFF, S.A. et FRIIS, H.T.	<u>[</u> 1952_7	Antennas-theory and practice; (John Wiley and Sons, Inc., New York, N.Y.).
SCHIMAZAKI, T.	<u>[</u> 1955_7	World-wide daily variations in the height of the maximum electron density of the ionospheric F2 layer; <u>J. Radio Res. Labs.</u> , <u>Japan, Nº 7</u> , <u>2</u> , 85-97.
SMITH, E.K. et MATSUSHITA, S. (eds.)	∠¯1962_¯/)	Ionospheric Sporadic E; (Pergamon Press, New York, N.Y.).
SMITH, N.	<u>[</u> 1939_7	The relation of radio sky-wave transmission to ionospheric measurements; <u>Proc. IRE</u> , <u>27</u> , 332-347.
WAKAI, N.	[1961] 7	Non-deviative absorption at night; <u>J. Radio</u> <u>Research Labs</u> , <u>Japan</u> , <u>8</u> , Nº 37, 213.
WAKAI, N.	<u>[</u> 1966 <u></u>]	Mean variations of the nighttime iono- spheric E layer; <u>Proc. Conf. Ground-based</u> <u>Propagation Studies of the Lower Iono-</u> <u>sphere</u> , Defence Research Telecommunications Establishment, Ottawa, Canada.
WAKAI, N.	[1967 _7	Quiet and disturbed structure and variations of the nighttime E region; J. Geophys. Res. 72, 4507-4517.
WHITEHEAD, J.D.	<u>[</u> 1969 _7	Report on the production and prediction of sporadic E (à paraître).
WRIGHT, J.W. et McDUFFIE, R.E.	<u>/</u> 1960 <u>/</u>	The relation of h _{max} F2 to M(3000)F2 and h _p F2; <u>J. Radio Res. Labs.</u> , Japan, <u>7</u> , 409-420.

- 49 -

WRIGHT, J.W., WESCOTT, L.R. et BROWN, D.J.

/ 1960-1963_7

Mean electron density variations of the quiet ionosphere; <u>NBS Tech. Notes</u> 40-1 through 40-13 (U.S. Government Printing Office, Washington, D.C. 20402).

9. Appendice

<u>Méthode avec ordinateur pour évaluer l'intensité de champ et l'affaiblissement de transmission de l'onde d'espace pour les fréquences</u> comprises entre les limites approximatives de 2 et 30 MHz.

La "méthode provisoire du C.C.I.R. pour l'évaluation de l'intensité de champ et de l'affaiblissement de transmission de l'onde d'espace pour les fréquences comprises entre les limites approximatives de 2 et 30 MHz" a servi de base à l'établissement d'un programme d'ordinateur.

Les données d'entrée pour le programme figurent sur des cartes perforées et sur une bande magnétique. On peut se procurer la bande magnétique, où les données sont présentées sous forme décimale codée binaire, en s'adressant au Secrétariat du C.C.I.R. Un programme permettant de convertir ces données pour les présenter sous la forme binaire ainsi qu'un dossier relatif aux données sont joints à la bande magnétique.

L'organigramme du programme est représenté à la Fig. A-1. Ledit programme comprend l routine directrice, 10 routines secondaires et 18 routines de bibliothèque. La fonction de chacune de ces routines est indiquée ci-après :

Routine directrice

Programme HFMLOSS

- 1. Calcul des constantes
- 2. Lecture des cartes de données
 - a) carte "contrôle du programme"
 - b) carte "fréquences"
 - c) cartes des données du circuit à enregistrer sur la bande magnétique
 - d) carte du mois et de l'indice ionosphérique.
- 3. Lecture de la bande de données et interpolation pour l'indice ionosphérique
- 4. Lecture des données du circuit d'après la bande
- 5. Calculs relatifs au trajet
 - a) longueur du trajet

- b) azimuts
- c) points de réflexion
 - 1) latitude géographique
 - 2) longitude géographique
 - 3) latitude géomagnétique
- 6. Calculs relatifs à la boucle de l'heure
 - a) heure locale et foF2 à la réception
 - b) calculs concernant la boucle des régions de réflexion
 - 1) heure locale
 - 2) distance zénithale du Soleil
 - 3) indice d'absorption
 - 4) foE
 - 5) fEs
 - 6) hauteur du début de la couche F
 - 7) hauteur du maximum de la couche F2
 - 8) fréquence gyromagnétique
 - 9) fréquence critique de la couche F
 - c) MUF de la couche E
 - d) MUF de la couche F2
 - e) détermination de la MUF la plus élevée
- 7. Passage à la routine secondaire LUFFY
- 8. Retour pour lecture d'autres données du circuit.

Routines secondaires

<u>VERSY</u> - évalue les coefficients pour les cartes mondiales de fEs et de foF2, le facteur M(3000)F2, h'F et foE, établis en fonction du temps universel et de la latitude (géographique ou inclinaison magnétique).

<u>MAGFIN</u> - calcule les composantes du champ magnétique terrestre pour toute altitude et toute latitude et longitude géographiques.

LUFFY - commande de la façon suivante la seconde moitié du programme :

- 1. Calcul des constantes
- 2. Etablit les données suivantes :
 - a) puissance de l'émetteur (exprimée en décibels)
 - b) affaiblissement lors de la réflexion au sol
- 3. Boucle de l'heure
 - a) établissement des paramètres nécessaires
 - b) calcul de l'affaiblissement additionnel du système
 - c) calcul de la boucle des modes (9 modes)
 - 1) hauteur virtuelle
 - 2) angle de départ
 - 3) parties de la journée
 - 4) temps de propagation
 - 5) affaiblissement lors de la réflexion au sol
 - 6) absorption
 - 7) affaiblissement en espace libre
 - 8) gains des antennes
 - 9) affaiblissement de transmission
 - 10) intensité de champ
 - 11) puissance du signal
 - 12) probabilité d'obtention du niveau requis du signal
 - d) détermination du mode le plus probable

e) passage à SORTIE

f) retour à HFMLOSS

OUTPUT - imprime les listes de données de sortie.

<u>BEMUF</u> - calcule, sur la base de la théorie des couches à distribution parabolique, la MUF, l'angle de départ, la hauteur virtuelle de réflexion, ou, pour une fréquence donnée, les deux derniers seulement de ces trois paramètres.

LANDY - détermine les régions terrestres d'après les cartes établies selon une série de Fourier.

CHISQ - détermine la fonction de probabilité χ^2 .

<u>F2DIS</u> - calcule la HPR et la FOT d'après la MUF, en se fondant sur un tableau de facteurs représentant les valeurs des déciles en fonction de la latitude géographique, de l'activité solaire, de l'hémisphère et de l'heure locale.

<u>SYSSY</u> - tire d'un tableau les valeurs du surcroît moyen d'affaiblissement du système et les écarts types supérieur et inférieur.

<u>GLOS</u> - calcule les affaiblissements lors de la réflexion au sol pour les modes à plusieurs bonds.

Routines pour les unités d'entrée et de sortie

sortie	CALL EXIT
retour aux données	CALL BACKFILE (I)
passage aux données suivantes	CALL SKIPFILE (I)
de "flottant" à "fixe"	XFIXF (X)
racine carrée	SQRIF (X)
sinus	SINF (X)
valeur minimale	MINIF (X, Y)
logarithme naturel	LOGF (X)
cosinus	COSF (X)
tangente de l'arc	ATANF (X)
cosinus de l'arc	ACOSF (X)
sinus de l ¹ arc	ASINF (X)
tangente	TANF (X)
exponentiel	EXPF (X)
module d'un nombre complexe	CABS (Z)
argument d'un nombre complexe	CANG (Z)
racine carrée d'un nombre	
complexe	CSQRT (Z)
logarithme sur la base de 10	ALOG 10 (X)

Les données indiquant les calculs à effectuer sont perforées sur des cartes qui suivent la carte "contrôle du programme". La Fig. A-2 représente une série de cartes d'entrée. Les données sont perforées dans les colonnes appropriées, à partir de la droite $\angle I =$ nombre entier, F = virgule flottante, A = alphanumérique (à partir de la gauche), R = alphanumérique (à partir de la droite), X = espace blanc (saut)/.

Carte "Contrôle du programme"

Colonnes	Nom	Format	Description						
1 - 5*	METHOD	15	ne perforer que le chiffre 3 indica-						
6 - 10	NCDTP	15	tion si les données du circuit se trouvent sur des cartes perforées ou sur la bande magnétique						
11 - 15	IHRO	I5	heure de début - temps universel						
16 - 20	IHRE	I5	heure de fin - temps universel						
21 - 25	IHRS	I5	intervalle (en heures)						
26 - 30		5X	espace blanc						
31 - 35	NUMO	15	nombre de blocs de données sur une page						
36 - 40	NPAGO	I5	numéro de la page						
41 - 45	NES	15	option couche Es						

* Réservé pour d'autres méthodes de présentation des données. Seule la méthode "3" est normalement utilisée.

Carte "Jeu de fréquences"

Colonnes	Nom	Format	Description				
1 - 7	FREL (1)	F7.3	Première fréquence du jeu				
0 - 14 15 - 21	$\frac{FREL}{FREL}$	F7.3	Troisième fréquence du jeu				
22 - 28	FREL (4)	F7.3	Quatrième fréquence du jeu				
29 - 35	FREL (5)	F7.3	Cinquième fréquence du jeu				
36 - 42	FREL (6)	F7.3	Sixième fréquence du jeu				
43 - 49	FREL (7)	F7.3	Septième fréquence du jeu				
50 - 56	FREL (8)	F7.3	Huitième frequence du jeu				
57 - 63	FREL (9)	F7•3	Neuvième frèquence du jeu				
64 - 70	FREL (10)	F7.3	Dixième fréquence du jeu				
71 - 77	FREL (11)	F7.3	Onzième fréquence du jeu				

Carte "Circuit"

<u>Colonnes</u>	Nom	Format	Description					
1 - 16	ITRAN	2A8	Nom de la station d ['] émission					
17 - 32	IRCVR	2A8	Nom de la station de réception					
33 - 36	TLATD	F4.2	Latitude de l'émetteur (en degrés)					
37	ITLAD	Rl	Hémisphère (N ou S) dans lequel est situé l'émetteur					
38 - 42	TLONGD	F5.2	Longitude de l'émetteur (en degrés)					
43	ITLONG	Rl	Hémisphère (W ou E) dans lequel est situé le récepteur					
44 - 47	RLATD	F4.2	Latitude du récepteur (en degrés)					
48	IRLAT	Rl	Hémisphère (N ou S) dans lequel est situé le récepteur					
49 - 53	RLONGD	F5.2	Longitude du récepteur (en degrés)					
54	IRLONG	Rl	Hémisphère (W ou E) dans lequel est situé le récepteur					
55 - 57	AMIND	F3.1	Angle de départ minimal (en degrés)					
58 - 63	PWR	F6.2	Puissance de l'émetteur (en kW)					
64 - 69	RSN	F6.1	Puissance de signal requise (en décibels)					

Carte "Mois et Indice ionosphérique"

Colonnes	Nom	Format	Description
1-3		3X	espace blanc
4 - 5	MONTH	12	mois
6		1X	espace blanc
7 - 10	NYEAR	I 4	année
11 - 15		5X	espace blanc
16 - 20	SSN	F5.1	nombre de taches solaires

On trouvera un exemple de calcul à la Fig. A-3. C'est là la seule méthode disponible de présentation des données de sortie. Les calculs découlant du programme sont normalement enregistrés sur bande magnétique pour être ensuite imprimés sur du papier spécial. Au haut de chaque page se trouvent les données du circuit qui ont été utilisées dans les calculs. La page contient, après l'indication du jeu de fréquences, l'heure choisie (temps universel) et la MUF normalisée (EJF), les renseignements suivants :

MODE

- mode le plus probable en supposant l'existence de l'onde d'espace et une puissance de signal suffisante à la réception. Le nombre est celui du total des bonds. Pour désigner les modes de propagation on utilise les symboles suivants : F - uniquement par la couche F

S - uniquement par la couche E sporadique

X - un bond par la couche E, le reste par la couche F

Y - un bond par la couche Es, le reste par la couche F

V - 2 bonds par la couche E, le reste par la couche F

W - 2 bonds par la couche Es, le reste par la couche F

(exemples : 3×1 = un bond par la couche E et deux bonds par la couche F, 5W = deux bonds par la couche Es et trois bonds par la couche F).

- ANGLE angle vertical (en degrés) associé au mode de propagation listé.
- DELAY temps de propagation (en millisecondes).
- <u>VIRT HT</u> hauteur virtuelle de la réflexion (en km). S'il s'agit de modes complexes, cette valeur concerne les réflexions sur la couche F.
- F. DAYS journées du mois où il est probable que l'onde d'espace existe pour le mode de propagation envisagé.
- LOSS DB affaiblissement de transmission minimal (en décibels), compte tenu des neufs modes de propagation possibles.
- <u>DBU</u> intensité moyenne du champ incident à l'emplacement de réception (en décibels par rapport à $l \mu V/m$).
- <u>SIG.DBW</u> puissance moyenne du signal aux bornes de l'antenne de réception (en décibels par rapport à 1 W).
- <u>F. SIG</u> journées du mois pendant lesquelles la puissance du signal requise sera atteinte ou dépassée à l'heure et à la fréquence spécifiées.

On trouvera à la Fig. A-3 la représentation complète du programme. On peut soit obtenir les séries de cartes en s'adressant au Secrétariat du C.C.I.R., soit les perforer en se servant du programme. On a utilisé le langage normalisé FORTRAN IV. La mémoire à ferrites de l'ordinateur doit cependant être remise à zéro avant la compilation.

Figure A-l - Organigramme du programme d'ordinateur

- 59 -

JEU DE CARTES D'ENTREE POUR LE PROGRAMME D'ORDINATEUR FIG. A.2

δ Ē

8													
					JULY :	1968		SUNSPO	DT NU	1BER	90.0		
MONR	OVTA.L	IPER	IA TO	ADDTS	S ABAI	BA.ET	н.	1	AZÍMU	THS	MIL	FS	KM.
6.5	0N -	11.0	W	9.0	IN -	34.8	DĒ	83.7	70 2	70.87	341	1.7	5490.3
MT	NTMUM	ANGL	F 0.0	DEGE	FES	POW	FR= 2	50.00	CW 1	2F0.5	1611	15.0 1	NRW
FROUENCES IN DECEMBER - 200 UNW REUSIDE-10300 UNW													
υT	MUF	2.0	3.0	5.0	7.5	10.0	12.5	15.0	17.5	20.0	25.0	30.0	
•						1000	1203			2000	2200		
05	13.1												
	2 F	55	3E	2F	2F	28	28	2F	25	25	75	75	MODE
	7.7	25.1	14.0	5.0	5.0	0.3	0.7	7.3	2.7	2.7	2.7	2.7	ANGLE
	10.3	21.0	10.6	10.0	10.0	18.7	18.8	10.7	18.6	18.6	18 6	18 6	
	776	2109	256	25.	26%	272	204	376	440	440	44.0	440	VIDT HT
	500	200	290	220	204	€. I € ● I	271	330	27	4.0	40	110	E DAVE
	4.0	• · · ·	• 77 201	474	- 120 120	462	460	460	41.0	440	450	4 5 4	F . 17413
	71	-75	- 77	1/1	120	192	190	247	70	147	120	121	
	-05	- 499	- 4 5 0	-147	- 101	-09	-06	-05	- 04	- 05	-06	40	
	- 45	-107	-150	-117	-104	- 40	- 40	-95	-94	- 95	-90	-97	SIG-DRM
	• 40	•00	• 0 0	•00	• 77	• 6 2	• 7 9	• 91	• 92	• 90	•89	• 57	F. 516
0.0	10.4	75		20	05								
	21	31	6F	31	21	21	21	2X	21	35	35	35	MODE
	8.0	1.5	29.5	14.1	6.4	5.4	5.2	0.5	6.4	2.1	2.1	2.(ANGLE
	19.4	18.5	21.9	19.6	19.0	19.0	19.0	17.8	19.2	18.6	18.6	18.6	DELAY
	353	91	252	253	255	260	268	277	309	110	110	110	VIRT HT
	• 50	•99	• 99	.99	• 99	• 99	.99	.97	• 67	• 34	.18	• 0 9	F. DAYS
	151	385	586 2	205	172	162	157	153	152	151	154	153	LOSS DB
	35	-217	-115	-30	7	19	27	31	- 34	36	35	37	DBU
	- 97	-331	-?32	-152	-118	-108	-103	-99	-98	- 97	-100	-99	SIG.DBW
	• 85	•00	•00	•00	•00	•27	•65	•79	• 84	• 86	•77	•79	F. SIG
07	24.0												
	2F	3E	3E	5F	3F	3F	2F	2F	2 X	2F	24	3S	NODE
	9. 0	1.5	1.5	24.5	13.7	12.6	5.8	5.4	0.7	5.9	5.0	2.7	ANGLE
	19.5	18.5	18.5	20.9	19.5	19.4	19.0	19.0	18.8	19.1	18.9	18.6	DELAY
	380	90	91	249	250	255	256	263	270	290	332	110	VIRT HT
	• 50	•99	•99	•99	•99	•99	•99	.99	• 99	• 91	•34	.25	F. DAYS
	153	536	431	270	203	185	165	160	157	155	153	156	LOSS DB
	35	- 368	-260	-94	-?4	-4	18	24	29	32	36	34	DBU
	-99	-482	-377	-216	-149	-131	-111	-106	-103	-101	-99	-102	SIG.DBW
	• 79	.00	• 0 0	•00	•00	•00	•03	•40	• 61	•72	.80	•66	F. SIG
05	25.9												
	2Y	3E	3E	7F	4F	3F	3F	2F	2F	2F	2Y	35	MODE
	2.0	1.5	1.5	33.6	19.4	13.2	12.8	6.0	5.8	6.0	1.7	2.7	ANGLE
	18.9	18.5	18.5	22.R	20.1	19.5	19.5	19.0	19.0	19.1	18.8	18.6	DELAY
	324	90	91	244	246	251	257	260	266	281	313	110	VIRT HT
	.62	.99	• 99	•99	•99	.99	•99	•99	•99	• 96	.68	.62	F. DAYS
	156	677	535	339	235	197	183	166	162	159	156	155	LOSS DB
	34	-510	-364	-164	-56	-16	- 0	18	24	28	33	36	DBU
	-102	-623	-481	-285	-181	-143	-129	-112	-108	-105	-102	-101	SIG.DBW
	•70	.00	.00	.00	.00	•00	.00	.00	.28	. 49	.69	•73	F. SIG

FIG. A-3

EXEMPLE DE CALCUL DES DONNEES DE SORTIE OBTENUES AU MOYEN DU PROGRAMME D'ORDINATEUR

.

C.C.I.R. INTERIM METHOD FOR ESTIMATING SKY-WAVE FIELD STRENGTH AND TRANSMISSION LOSS AT FREQUENCIES BETWEEN THE APPROXIMATE LIMITS OF 2 AND 30 MHz

1. Introduction

In accordance with Resolution 7 (Geneva, 1963), International Working Party VI/1 has developed a method for estimating sky-wave field strength and transmission loss. The provisional method proposed is for interim use and is recommended as a basis for the development of more comprehensive methods.

Since most methods currently in use for estimating the performance of sky-wave circuits depend upon prediction of the characteristics of the ionosphere, it is desirable that prediction of ionospheric characteristics which have international acceptance be used whenever available for the development of this field strength or transmission loss prediction method. International Working Party VI/3 of C.C.I.R. Study Group VI was established for this purpose, and such predictions have become available in a C.C.I.R. Atlas of Ionospheric Characteristics / Report 340, Oslo - 1966 and an appropriate computer programme.

It is the purpose of this report to outline a method for the use of these ionospheric predictions in the estimating of sky-wave field strength or transmission loss.

Since the above atlas is limited to a consideration of the E and F regions of the ionosphere, the initial method of estimating field strength or transmission loss proposed in this report is also limited to a consideration of these ionospheric regions.

Many methods have been used for predicting the performance of highfrequency telecommunication circuits / NBS, 1948; Laitinen and Haydon, 1950; Harnischmacher, 1960; Rawer, 1952; Piggott, 1959; Beckmann, 1958, 1960, 1967; Lucas and Haydon, 1966; Kazantsev, 1947, 1956, 1957; Halley, 1965; Barghausen et al., 1969; C.C.I.R., 1966-1969c /.

Special features of some of these methods include :

NBS Circular $462 \ / \ NBS$, $1948 \ / \ contains$ one procedure for distances up to about 4000 km and a second procedure for longer distances. The longdistance procedure is presented in a simple nomogram and both procedures have adjustments for the anomaly of increased absorption during winter.

The method of RPU-9 / Laitinen and Haydon, 1950 / is continuous throughout the entire distance range and relatively simple nomograms permit a direct manual solution. Estimates of the height of the F2 region, as a function of time and location, permit the consideration of the vertical pattern of the transmitting and receiving antennae. The method has been used extensively for approximately one and one half solar cycles and has been recently revised / Lucas and Haydon, 1966 / :

- to give special consideration to auroral and polar circuits,
- to include the calculation of transmission loss, and
- to be adapted for electronic computers.

The Kazantsev method permits a direct estimate of field strengths when foE is known and therefore no arbitrary index of D-region absorption is required. A computer calculation for this method has been worked out in the U.S.S.R. for the calculation of the lowest usable high frequency (LUF) and the field strength \angle C.C.I.R., 1963-1966 \angle . A comparison of the results of the computer and manual calculations showed a satisfactory correspondence. Work in the U.S.S.R. \angle C.C.I.R., 1966-1969a \angle shows the possibility of refining the calculation of auroral absorption according to the method of Kazantsev.

Work is now being carried out in the U.S.S.R. <u>C.C.I.R.</u>, 1966-1969b <u>defining the values of absorption and field strength for reception at oblique incidence using information from vertical soundings of the ionosphere</u>.

The method of Piggott / 1959 / incorporates an allowance for the greater absorption experienced in tropical regions than would be expected assuming a direct dependence upon the zenith angle of the Sun. It makes use of vertical incidence absorption data obtained at a number of locations and allows for absorption in the early night hours by assuming a finite recombination time for the lower ionosphere. Expressions for spatial attenuation take account of horizon focusing near the limits of one-hop propagation.

The French method originally developed by Rawer at S.P.I.M. is applied to frequencies below the classical MUF (JF) and distances up to about 10 000 km. The modes of propagation (on the great circle) are considered individually taking account of deviative and non-deviative absorption and, in so far as F-layer echoes are concerned, of blanketing by E- and Eslayers. Curves of 30 and 90% probability are normally given (otherwise blanketing by Es could not be taken into account). Thus the prediction is essentially a statistical one. Rules are given as to how the angles of elevation for the different modes can be included for a given vertical antenna diagram.

The extension of the method developed by Harnischmacher (also originally developed at S.P.I.M.) is suitable for larger distances. It is a combined method of looking for the attenuation and the reflection conditions at the same time. Essentially, a ray with a given frequency, angle of elevation and azimuth is considered, and these parameters are then It appears that for very large distances those frequencies are varied. the most interesting ones which are reflected from the F-layer on the night-side and from the E (or Es) layer on the day-side. The method admits off-great circle propagation to a certain amount such that, for distances above 16 000 km the contributions from different azimuths are summed up. The attenuation is computed from the local absorption (given by a solar zenith angle law) on the day-side by averaging over the different E-layer reflections, taking account of the given angle of elevation. Whilst the influence of steep horizontal ionization gradients is considered in some way by admitting off-great circle propagation, the angle of elevation of the considered ray is supposed to be the same for all earth reflection points.

Beckmann's semi-empirical method applies mainly to distances beyond 4000 km. It does not attempt to give a full answer to the problem of field strength calculation. Its main intention is to extrapolate the field strength from the LUF through the usable frequency range up to the operational MUF (MUF), the LUF being determined either by calculation using existing methods, provided that the LUF is sufficiently below the classical MUF (JF), or by observation. Scatter losses below and above the classical MUF (JF) are taken into account together with deviative absorption, by introducing a second attenuation term proportional to (f/opera $tional MUF)^2 / (f/MUF)^2 /$. The operational MUF (MUF), taken for a certain level of field strength, is determined by observation or by applying an empirical correction factor to the standard MUF (EJF). So the method yields a maximum of the estimated field strength near to the middle of the usable frequency range and a decrease for higher frequencies, as is confirmed by observations. The method can also be used for converting the field strength at any one frequency to that which is to be expected at another.

The Japanese method considers the calculation for propagation paths involving side-scatter the MUF of which is equal to the frequency used, or the least value above that frequency, when no F2 normal propagation can take place. By application of an experimental equation, the attenuation of the ground side-scatter mode is given as a simple function of the angle between the normal reflecting wave and the side-scattering wave. It is suggested that an allowance for the effects of ground side-scatter should be incorporated in all field-strength calculation methods.

The method of the Indian Administration / Rao, 1969 / uses an expression for non-deviative absorption, based upon a long series of vertical absorption measurements in India. An allowance of 2.5 dB, for losses due to deviative absorption by night, is incorporated and there is assumed to be a 3 dB polarization loss. Spatial attenuation is taken as including the effects of horizon focusing.

A computer programme has been developed $\sum C.C.I.R.$, 1966-1969c \sum in Australia which makes use of the characteristics of the ionosphere at each reflection point to determine, using the parabolic layer theory, the dominant mode propagated over any given path. Modes examined preserve the same angle of propagation from hop to hop, so that with different ionospheric characteristics over the path, varying distances are computed for each hop. Both deviative and non-deviative absorption are computed and allowances are made for focusing, polarization and ground reflection. Modes up to 6 hops are computed, the dominant mode being that one experiencing least path loss; possible modes include simple E, F and complex types, with the possibility in all cases of E-layer screening.

The representation of the ionosphere by numerical coefficients <u>C.C.I.R.</u> Report 340, Oslo, 1966 and the increased availability of electronic computers to process these data have made it possible to improve previous methods of predicting the performance of ionospheric telecommunication circuits. The C.C.I.R. interim method proposed in this report for the estimation of sky-wave field strength or transmission loss is based on ionospheric characteristics as shown in C.C.I.R. Report 340, supplemented by estimates of additional ionospheric parameters, as required, and assumptions concerning these parameters pending more definitive descriptions of the ionosphere, by C.C.I.R. International Working Party VI/3. Although International Working Party VI/3 has considered only the E and F2 regions of the ionosphere, the effects of the Fl layer is partially accounted for in the report by a simple two-region model with a parabolic distribution of the electron density within each region.

It is not the intent of this report to review the various prediction methods but rather to propose a method of estimating sky-wave field strength and transmission loss, drawing from existing methods and techniques which are consistent with available world-wide data and which can be used economically while maintaining the flexibility to incorporate advances in ionospheric research and data collection techniques. The method provides estimates of the hourly median field strength or transmission loss for communication systems operating below the estimated junction freouency (EJF) in the 2 MHz to 30 MHz frequency range, and it is primarily directed to radio communicators, frequency managers, and engineers who are responsible for the operation, planning and design of HF communication systems. A complete listing of the computer programme and flow charts are appended to the report (Appendix). The programme is written in a way that revisions can easily be made as new or improved ionospheric data or computational methods become available.

It should be emphasized that many factors which should be explicitly treated in an eventual prediction method are collectively included in this interim method by an empirically determined "excess system loss". This loss is designed to statistically express the aggregate effects of such phenomena as, the winter anomaly, sporadic-E blanketing, spread F multipath, off-great circle propagation, skip distance and horizon focusing, day-to-day variation of layer heights and thickness, etc. The excess system loss is tabulated as an expected distribution of hourly median field strength or transmission loss within a month at a given hour.

One important phenomenon which is not included in this interim method nor can be considered as treated adequately by the excess system loss is the field strength at or near the classical MUF. Field strengths near and above the classical MUF require special consideration since in addition to the non-deviative absorption, the sky-wave suffers certain losses due to deviative absorption and scattering whose intensity increases rapidly in the proximity of the classical MUF, that is, with growing depth of penetration into the reflecting layer. Therefore, a decrease of the field strength can normally be observed already below the classical MUF. The
frequency range in which this decrease occurs can be very narrow if the radio links are comparatively short and enable propagation by the 1-hop mode and if the ionosphere is quiet / Dieminger and Rose, 1961 /. If the propagation takes place by multiple reflection (longer links) or if the ionosphere is disturbed, the range will become considerably wider.

This matter merits priority consideration in the extension or revision of this interim method.

Users of this method should be especially alert that it may prove less satisfactory where or when any of the above factors are unusually prevalent or for operating frequencies below about 3 MHz or distances much greater than 10 000 km.

1.1 Philosophy of the method

The literature on the ionosphere and its role in HF sky-wave radio communications is extensive. Theories concerning ionospheric propagation are not repeated here in detail, but some background material is given where necessary for an understanding of the prediction processes and the philosophy of the programme.

In the basic model, it is assumed that the ionosphere can be represented by one or more parabolic layers <u>/</u>Appleton and Beynon, 1940<u>/</u>, given sufficient information concerning the height of maximum ionization, semi-thickness, and electron density. Sufficient data must be available to predict an average electron density distribution with height for any possible transmission path. The model retains the equivalent path theorem <u>/</u>Breit and Tuve, 1926; Martyn, 1935<u>/</u> and its transmission curve solution <u>/</u>Smith, 1939<u>/</u> since this is the method most extensively used for measuring and predicting ionospheric characteristics.

The programme predicts transmission loss or field strength in terms of the monthly median of the hourly median values, and the probability that a specified receiver input power level will be equalled or exceeded for a given frequency during the period a regular sky-wave path exists.

The need for estimates of sky-wave field strength has resulted in the development of many diverse models to represent the factors affecting the sky-wave propagation of high-frequency signals.

The models range from very simple ones, using only a few variables, to very elaborate ray-tracing techniques which require a precise detailed knowledge of geophysical and ionospheric parameters.

The model proposed by International Working Party VI/1 is designed to use such data as are available on a worldwide basis to predict an average profile of electron density versus true height for the path being considered and to use this profile in the prediction of sky-wave losses. This model retains the equivalence theorem and transmission curve concept to remain consistent with the methods used to measure and predict ionospheric characteristics such as recently completed by International Working Party VI/3. The electron density profile along the path is assumed to be adequately represented by two parabolic layers. The height of maximum ionization, thickness, and electron density are derived from locations near the points of actual reflection along the path.

Geophysical and ionospheric parameters are determined along the path to yield monthly median values of standard MUF (EJF) and losses at specific frequencies. These values are combined with the day-to-day distributions to predict the signal level exceeded for any fraction of days a regular sky-wave path exists within the month.

2. Basic ionospheric data

Free electrons in the ionosphere produce reflecting regions important to high-frequency radio-wave propagation. In the principal regions, between the approximate heights of 60 km and 500 km, the free electrons are produced by ultraviolet light and soft x-rays from the sun. For convenience, the ionosphere is divided into three regions according to height and ion distribution : the D, E and F regions. Each region is sub-divided into layers called D, E, Es, Fl, and F2, according to height and thickness. These layers are not distinct but rather overlapping with a complete description being given by an electron density profile. The number of layers, their heights, and their electron density vary geographically and with time.

2.1 D Region

The D region lies between the approximate limits of 60 and 90 km above the earth's surface. The electron density is relatively small

compared with that of the other regions but, because of collisions between the molecules of the atmosphere and free electrons accelerated by the electromagnetic wave, the wave loses energy. This energy loss is termed "absorption". Absorption in the D region is called non-deviative since it occurs below the level of reflection and predominates when little or no bending of the ray path takes place. In the E and F regions, as the wave nears its reflecting level, there is a slowing down or group retardation effect which allows additional time for collisions to occur and thus for absorption to take place. Absorption of this type is called deviative absorption.

Because of the low electron density, the D region does not reflect useful transmissions in the frequency range above 1 MHz. However, D region absorption is important at all frequencies and, because its ionization is produced by ultraviolet solar radiation, it is primarily a daytime phenomenon. The degree of absorption, expressed by the absorption factor, is proportional to the product of the collision frequency and electron density, and approximately inversely proportional to the square of the wave frequency. Its variation depends on the zenith angle of the sun. After sunset on the D region, ionization decreases rapidly and nondeviative absorption becomes negligible two to three hours later.

Non-deviative D-region absorption is accounted for in this method by an analytical, semi-empirical expression which is explained in detail in § 6.2. Deviative absorption losses are included to a certain extent in these loss calculations and also as an uncertainty factor (see § 6.4).

Another important property of the upper D and lower E regions is the different absorption for the ordinary and extraordinary waves produced by the earth's magnetic field. These different absorption properties of the two waves and their downcoming state of polarization are especially important at lower frequencies and in low-latitude regions where an important part of the radiated power may be coupled into the extraordinary wave \angle Barghausen, 1966.7. The extraordinary wave is reflected at a lower level, its standard MUF (EJF) is somewhat higher, and it suffers greater absorption. In this report, only the ordinary wave standard MUF (EJF) and absorption properties are considered.

2.2 E Region

For communication, the most important characteristic feature of the E region is its critical frequency. In the past, the E-layer critical

frequency has been determined by a semi-empirical equation involving the sunspot number and the zenith angle of the sun. Such a relationship has proven to be inadequate at sunrise or sunset and during night-time. Contour maps and numerical coefficients for computer applications of the monthly median foE values are now available on a world-wide basis / Leftin et al., 1969. The numerical coefficients (USK) yield values of the foE (MHz) in terms of the latitudes, longitude, and universal time. The designation U_{SK} refers to numerical coefficients resulting from a universal-time analysis of the ionospheric characteristic.

The numerical coefficients representing foE were derived primarily from measurements during 1958 and 1964. These years are representative of the high (1958) and low (1964) phases of the sunspot cycle. Linear interpolation is used to obtain foE estimates at other phases of the solar cycle.

In daytime, the E-layer appears to be sufficiently regular that the distribution of foE may be considered negligible. Night-time data are very limited, but it appears justified / Elling, 1961; Wakai, 1966; Wakai, 1967_7 to assume a similar regularity for the night-time E-layer.

E-layer characteristics for communication purposes are represented by the foE monthly median numerical coefficients. The true-height range of the regular E-layer is between 90 and 130 km. It is assumed that the maximum electron density occurs at 110 km and that the semi-thickness is 20 km $\sqrt{}$ Knecht, 1963; Frihagen, 1965_7.

2.3 F Region

For high-frequency sky-wave propagation, the F region is the most important part of the ionosphere, consisting of two layers, Fl and F2. While the main peak in the region is identified with F2, the Fl-layer appears at certain times as a ledge at the lower level in region F.

The Fl layer is of importance to communications during daylight hours or during ionospheric storms / Kelso, 1964; Wright et al., 1960-1963; Petrie and Stevens, 1969_7; it lies in the height range of about 170 to 230 km and undergoes both seasonal and solar-cycle variations. The programme does not include directly the Fl-layer critical frequency nor the bending effects of Fl-region ionization on the propagated wave. The programme, however, partially accounts for the effect of Fl-region ionization on the F2-layer during daylight hours as described in § 4. The F region, like all reflecting and absorbing regions of the ionosphere, is produced and controlled by radiation from the sun, and there is a high correlation between solar activity and F-region characteristics. The smoothed Zurich sunspot number R (sometimes referred to as the Wolf number), although entirely empirical, has proved useful in HF radio communication predictions and is retained as an input parameter in this interim method.

C.C.I.R. Report 340 contains predicted coefficients for world-wide variation of the F2-layer critical frequency (foF2) and its related M(3000)F2 factor for solar activity levels of R₁₂=0 and R₁₂=100. The foF2 and M(3000)F2 factors are determined by scaling vertical incidence ionograms and applying the standard 3000-km transmission curve to the first-order ordinary wave trace / Piggott and Rawer, 1961 /. Therefore, the standard MUF for a 3000-km path is simply the product of foF2 and M(3000)F2. The M(4000)F2 is obtained by multiplying M(3000)F2 by 1.1.

The F2-layer characteristics in the form of numerical coefficients (U_{SK}) for low solar activity $(R_{12}=0)$ and high solar activity $(R_{12}=100)$ for each month of the year from C.C.I.R. Report 340 are stored on the data tape and used in the programme. The solar activity dependence factor may be approximated by linear interpolation for any level of solar activity between $R_{12}=0$ and $R_{12}=100$. However, the long-term U_{SK} coefficients should not be linearly extrapolated beyond $R_{12}=150$ since there is a marked non-linear relationship between the long-term F2-layer characteristics and high solar activity.

2.4 Es and other anomalous propagation

The preceding discussion concentrated on the first-order characteristics of the various layers. Other phenomena (e.g. sporadic-E, spread F, F scatter, multiple traces, and other transients), as observed on ionosonde records / Piggott and Rawer, 1961, are important in radio communications. Of these phenomena, the only one currently available for prediction purposes is the sporadic-E layer.

Sporadic-E / Smith and Matsushita, 1962; Bowhill, 1966; Whitehead, 1969 / is seen on vertical and oblique ionograms near the height of maximum ionization of the regular E layer. Sporadic-E (Es) is characterized by little or no retardation at its critical frequency and may be either blanketing (totally reflecting) or semi-transparent (partially reflecting), or both, sometimes up to very high frequencies (>75 MHz at oblique incidence). These characteristics can be helpful or harmful to radio communications. For example, blanketing Es may block propagation via a more favourable regular layer mode, or partially reflecting Es can cause multipath, which may be especially detrimental to data transmission systems. However, Es also may be beneficial by decreasing effects of deviative absorption or by extending the useful frequency range, and its presence can be effectively used in system design and operations.

A method for estimating the probability of occurrence of Es propagation, which supplements the regular layer propagation predictions, has been developed / Leftin <u>et al.</u>, 1968_7. Numerical coefficients, USK, representing the diurnal and world-wide variations in the critical frequency of the sporadic-E layer (foEs) obtained from the world network of ionosonde stations for each of 12 months during a solar-cycle minimum year (1954) and a solar-cycle maximum year (1958), represent the upper decile, median, and lower decile values of foEs calculated for each hour of the day for each month. The foEs is the highest ordinary-wave frequency for which reflection occurs from Es at vertical incidence.

In this interim report, estimates of losses associated with Es propagation are tentatively estimated as equal to those for a perfectly reflecting layer.

3. Basic geometrical considerations

To estimate sky-wave field strength or transmission loss, it is first necessary to calculate the geometrical parameters of the path, e.g. great circle distance path, bearings, and ionospheric reflection areas.

3.1 Great circle distance and bearings

Given the geographic latitude and the longitude of the transmitting and receiving locations, the shorter of the great-circle distances between the two points is computed as follows :

$$\cos d = \sin x_1 \sin x_2 + \cos x_1 \cos x_2 \cos(y_1 - y_2), \quad (1)$$

where :

 $x_1 = geographic latitude of transmitter,$

 $y_1 = geographic longitude of transmitter,$

 x_2 = geographic latitude of receiver,

 y_{0} = geographic longitude of receiver,

d = great circle arc.

The two bearings are :

$$\cos b_1 = (\sin x_2 - \sin x_1 \cos d) / \cos x_1 \sin d, \qquad (2)$$

$$\cos b_{p} = (\sin x_{1} - \sin x_{p} \cos d) / \cos x_{p} \sin d, \qquad (3)$$

where :

- b₁ = bearing transmitter-to-receiver,
- b_{0} = bearing receiver-to-transmitter.

3.2 Reflection area coordinates

In the development of a profile of electron density along the path, for convenience the ionospheric parameters at from one to five reflection areas along the path are evaluated depending upon the great circle distance. These five areas are :

- 1. the midpoint of the path;
- 2. the E-region reflection area nearest the transmitter for the estimated least possible number of hops;
- 3. the E-region reflection area nearest the receiver for the same number of hops;
- 4. the F-region reflection area nearest the transmitter for the estimated least possible number of hops;
- 5. the F-region reflection area nearest the receiver for the same number of hops.

The estimated least possible number of hops is determined assuming a maximum hop distance of 2000 km for one E mode and 4000 km for one F mode. For distances less than 2000 km, only the midpoint is considered. This establishes the reflection areas for estimating the average ionospheric characteristics for the entire path. Parabolic-layer theory is applied to determine the probable modes of propagation \angle Rawer, 1948; 1950; Bibl, 1950.

To evaluate the ionospheric parameters of these five reflection areas, their geographic coordinates and geomagnetic latitude have to be computed as follows :

$$\mathbf{x}_{n} = 90^{\circ} - \arccos \left(\cos d_{n} \sin \mathbf{x}_{1} + \sin d_{n} \cos \mathbf{x}_{1} \cos b_{1} \right), \qquad (4)$$

$$y_n = y_1 - \arccos(\sqrt{cos} d_n - \sin x_n \sin x_1 - \sqrt{cos} x_n \cos x_1),$$
 (5)

$$g_n = 90^\circ - \arccos(\sin 78.5^\circ \sin x_n + \cos 78.5^\circ \cos x_n \cos \sqrt{y_n} - 69.0^\circ)$$
(6)

where :

 $d_n = \text{great circle arc between reflection area and transmitter,}$ $x_n = \text{geographic latitude of reflection area,}$ $y_n = \text{geographic longitude of reflection area,}$ $g_n = \text{geomagnetic latitude of reflection area.}$

3.3 Sun's zenith angle

The zenith angle of the sun at the reflection area, used in calculating the absorption factor, is :

$$\cos \psi = \sin x_n \sin s_x + \cos x_n \cos s_x \cos (s_y - y_n), \qquad (7)$$

where :

 t_g = universal time, $s_y = 15 t_g - 180$ = subsolar longitude, s_x = subsolar latitude for the middle of the month, ϕ = sun's zenith angle.

3.4 Types of paths considered

Up to nine ray paths are evaluated. The ray path must be geometrically possible for a takeoff angle equal to or greater than the minimum value given as input data.

The E-layer modes considered are : first, the mode with the least number of hops possible for the given takeoff angle; and second, the mode with the next greater number of hops. If the calculations indicate that the ray, at any particular frequency, penetrates the E-layer, then the sporadic-E mode may be investigated if desired. This is included as a programme option.

- 77 -

The first F-layer mode has the least number of hops geometrically possible including the vertical takeoff limitations imposed by the input data or the regular E-layer. The present programme does not take account of blanketing by sporadic-E.

The mixed modes are considered only for paths longer than 2000 km and consist of one or two E-layer, or Es-layer reflections, and one or more F-layer reflections. The first mixed mode consists of the lE, or Es, hop and the remainder of the path by the least possible number of F-layer reflections. The second mixed mode is similar, but for the next greater number of F hops. For the greater distances, it is necessary to consider multiple E hops in the mixed modes / Harnischmacher, 1960/. Transequatorial paths present special problems.

The analysed paths involve at least :

from	zero	to	2000	km	l.E	l.F	2.F		
	2000	to	4000	km	2.E	l.F	2.F	1.E + 1.F	
	4000	to	6000	km	3.E	2.F	3.F	1.E + 1.F	2.E + 1.F
	6000	to	8000	km	4.E	2.F	3.F	1.E + 2.F	2.E + 1.F
	8000	to	10000	km		3.F	4.F	1.E + 2.F	2.E + 2.F

4. Ionospheric parameters

The parameters of the ionosphere needed for computation are : the critical frequency of the layer; height of the maximum electron density of the layer and height of the bottom of the layer.

The critical frequencies of the F2 and E-layers are obtained from world maps \angle C.C.I.R. Report 340, Oslo, 1966; Leftin <u>et al.</u>, 1969 \angle and are median values of these parameters. The true height of the maximum electron density of the F-layer is developed in two steps. First, the M(3000)F2 factor is obtained from world maps, and then the true height of the maximum ionization h_{max} in the layer \angle Wright and McDuffie, 1960 \angle is calculated on the basis of the following relationship \angle Shimazaki, 1955 \angle :

$$h_{\max} = \frac{1490}{M(3000)F^2} - 176$$
(8)

The virtual height of the bottom of the F region (Fl and F2) is also obtained from world maps \angle Leftin, 1969 \angle 7, and both F-layer heights are reduced by the retardation (Δ h) in kilometres caused by the underlying E-layer, computed with a parabolic model \angle Kelso, 1964 \angle 7:

$$\Delta h = y_E \left[Z \log_e \left(\frac{Z+1}{Z-1} \right) - 2 \right], \qquad (9)$$

where :

Z = 0.834 (foF2)/foE,

$$y_{E} = effective semi-thickness of E layer = 30 km.$$

The results of the calculations are then used as the true heights, and their difference is the semi-thickness of the layer.

The shape of the E-layer is assumed to be parabolic with constant height, namely 90 km for the bottom, 110 km for the point of maximum electron density, and 130 km for the top. As a first approximation to include the effects of ionization between the E and F regions an E region semi-thickness of 30 km is used whenever the wave penetrates the E region /Bibl. et al., 1952.

5. Sky-wave paths in the ionosphere

The ionospheric parameters are used with parabolic layer theory to calculate the maximum usable frequency (standard MUF) and the takeoff angle β and virtual height h' of reflection for all frequencies, using the equation :

$$\mathbf{f} = \mathbf{f} \mathbf{k} \sec \phi \tag{10}$$

which is the well-known "secant law" illustrated in Fig. 1,

where :

f = the probing frequency at oblique incidence,

f = the equivalent vertical-incidence frequency,

- k = a correction factor resulting from the curvature of the ionosphere,
- ϕ = the semi-vertex angle of the equivalent triangle.

Since these quantities are not immediately available, several intermediate relationships must be used. Let

$$x = f_v / f_c, \tag{11}$$

where f is evaluated iteratively,

 f_{a} = the critical frequency of the reflecting layer.

A : Vertical B : Oblique

Then the virtual height h' is obtained from the equation \sum Bibl, 1950 \sum :

$$h' = h_{o} + y_{m} x \operatorname{arctanh}(x), \qquad (12)$$

where we know from data :

 $h_o =$ the height of the bottom of the reflecting layer, and $y_m =$ semi-thickness of the reflecting layer.

Next, the value of
$$\phi$$
 is obtained, as shown in Fig. 2, by $//$

$$\tan \phi = \sin \left(\frac{d}{2}\right) / \left(1 - \cos\left(\frac{d}{2}\right) + \frac{h'}{r_o}\right), \quad (13)$$

where d = great circle arc,

 r_{o} = radius of the earth (6371.2 km);

then, from :

$$h = h_0 + y_m (1 - \sqrt{1 - x^2}),$$
 (14)

we obtain h, the true height of reflection.

Finally, the correction factor is determined as follows :

$$k = 1 / \left(\frac{2(h' - h)}{r_0 + h} \right) \tan^2 \phi$$
(15)

Where the takeoff angle and virtual height are desired for a specific frequency $f = f_0$, we start with a suitable initial estimate of f_V , say f_{Vl} , and calculate f from (10). This gives a first order correction Δf_V leading to f_{V2} .

$$f_{v2} = f_{v1} + \Delta f_{v}$$

Using Newton's iteration method, we obtain successive approximations of \mathbf{f}_{ν} from :

$$f_{v_{(n+1)}} = f_{v_n} + (f_0 - f) / \frac{\delta f}{\delta f_v} , \qquad (16)$$

until the value of $(f_0 - f)$ reaches the point of the desired accuracy. The value of h' is obtained in the process from (12), and the takeoff angle is then computed by :

$$\tan \beta = \left(\cos \left(\frac{d}{2} \right) - \frac{r_o}{r_o + h} \right) / \sin \left(\frac{d}{2} \right)$$
 (17)

When the MUF is to be calculated from (10), neither the quantity f_v nor f is known. However, at the MUF, the value of the first derivative of the probing frequency is known to be zero; therefore, the iteration is again started with an estimated value of f_v and the step is obtained using Newton's iteration method :

$$f_{v_{(n+1)}} = f_{v_n} - \frac{\delta f / \delta f_v}{\delta^2 f / \delta f_v^2}$$
(18)

until the desired accuracy is attained.

5.1 <u>Two-layer model</u>

In determining reflection from the F2-layer, the bending of the ray from a parabolic E-layer (semi-thickness 30 km) is introduced into the calculations by an additional iteration procedure. The bending is assumed to take place at both ends of the path.

First, a calculation is made as described in § 4 for an F-layer reflection without regard to an underlying E-layer. Then the bending produced by an E-layer (see Fig. 3), is calculated from Rawer's (1948) formula :

FIG. 3

PATH GEOMETRY AND PARAMETERS FOR CALCULATING RANGE EQUATION FOR TWO PARABOLIC LAYERS (Bibl. et al., 1951)

> A : Transmitter B : Path midpoint

$$\Delta = 2\left(\frac{y_E}{r_0 + hmE}\right) \left(\frac{\arctan u}{u} - 1\right) \tan \alpha, \quad (19)$$

where :

 Δ = angle by which ray is bent in degrees,

 $y_E = 30$ km = effective semi-thickness of the E-layer for penetration, hmE = 110 km = height of maximum electron density of the E-layer, fE = critical frequency of the E-layer,

 α = angle of incidence of the unrefracted ray at the E-layer maximum,

$$\sin \alpha = r_0 \cos \beta / (r_0 + hmE)$$

 $u = fE/f \cos \alpha$

The bending, in effect, increases the great circle distance and is used to reduce this distance for new calculation of unrefracted rays. The bending calculations are iterated until the desired precision is reached. During this iteration procedure, steps are taken to determine if the Elayer does indeed cut off the F-layer propagation.

5.2 Probability of a sky-wave path

Since the standard MUF calculated from parabolic layer theory is based upon median values of the ionospheric characteristics, the probability of a sky-wave path for this frequency is assumed to be 50%. The frequency that would have a 90% probability of propagating (FOT) and the frequency which has 10% probability (highest probable frequency - HPF) is obtained by multiplying the median standard MUF by the factors given in Table I.

Table 5.1 Factors for Calculating FOT and HPF from MUF Local Time

Winter { N. Hemisphere (Nov., Dec., Jan., Feb.) S. Hemisphere (May, June, July, Aug.)

						Low (C	- 50) S	unspot	Numbe	r							M	edium (50-10	0) Suns	pot Nu	mber		• • •						ligh (:	> 100) :	Sunspot	Numb	er				1
GE	o. I	22	-02	02-	06	06-	10	10-	14	14-	18	18-	22	22-	-02	02-	06	06-	10	10	-14	14-	18	18	-22	22.	-02	02 -	06	06-	-10	10-	14	14-	18	18-	-22	GEO.
LA	г.	F	F	F	F	F	F	F	F	F	F	F	F	F	F.	F	F.	F	F.	F	F.	F	F.	F	F.	F	F.	F	F.	F	F,	F	F.	F	F.	F	- F.	LAT.
		и	l	u	Ł	u	1	^u	i	<u>u</u>	- L	- u	-ι	u	ંદ	u u	l	u u	. l	u	τ.	<u>u</u>	i	u	ι	u	i.	u	· ·	<u>u</u>	i	u u	ί.	<u> </u>	<u></u>	<u> </u>	C	
2.	75 •	1.44	. 60	1.34	. 65	1.45	. 69	1.32	. 72	1.33	. 68	1.40	67	1.45	. 76	1,39	. 78	1.44	. 68	1.40	. 67	1, 33	. 62	1.45	. 70	1.36	. 62	1.27	. 70	1.41	. 74	1.42	. 67	1.40	. 64	1.43	. 73	≥75*
65-	75.	1.37	. 68	1.29	. 71	1.38	.75	1.23	. 76	1.24	. 75	1.35	. 70	1.39	. 79	1.31	. 81	1.37	. 74	1.32	. 70	1.29	. 73	1.41	. 73	1.31	. 69	1.25	. 74	1.34	. 77	1.30	. 72	1.16	. 72	1.34	. 78	65-75
55-	65*	1.30	. 74	1.24	. 76	1,27	. 80	1.15	. 80	1.17	. 82	1.30	. 73	1.33	. 82	1.24	. 83	1.25	. 79	1.21	. 75	1.22	. 80	1.33	. 76	1.26	. 77	1.23	. 78	1.24	. 81	1.18	. 80	1.11	. 79	1.26	. 82	55-65
45-	55.	1.25	. 79	1.21	. 78	1.16	. 83	1.12	.85	1.12	. 84	1.25	. 76	1.30	. 84	1.19	. 82	1.14	. 83	1.15	. 81	1.16	. 84	1.29	. 78	1.19	. 83	1.19	. 80	1.16	. 84	1.11	. 87	1.09	. 84	1.20	. 86	45-55
35-	45°	1,23	. 81	1.20	. 79	1.13	.85	1.11	. 87	1.11	. 89	1.23	. 77	1.27	.83	1.17	. 81	1.12	.85	1.14	. 86	1.14	. 86	1.28	. 79	1,15	. 86	1.14	. 81	1, 13	. 87	1.09	. 90	1.09	. 87	1.14	. 87	35-45
25-	35.	1.28	. 81	1.30	. 74	1.15	. 86	1, 17	. 82	1.15	.85	1.28	. 78	1.30	. 78	1, 31	. 76	1.16	. 85	1.18	. 85	1.18	. 85	1.32	. 78	1.22	. 83	1.26	. 76	1, 12	. 89	1.09	. 90	1.11	. 88	1.13	. 86	25-35
15-	25*	1.34	. 78	1,37	. 67	1.19	. 87	1.20	. 75	1.24	. 77	1.32	. 79	1.33	. 74	1.38	. 71	1.17	. 85	1.22	. 83	1.26	. 82	1.40	. 76	1.32	. 78	1.35	. 70	1,12	. 89	1.12	. 89	1.14	. 89	1.20	.83	15-25
1 1	15.	1.27	. 71	1.38	. 70	1.18	. 88	1,15	. 86	1,14	. 87	1.20	. 79	1.21	. 77	1.26	. 69	1.14	.87	1, 13	. 86	1.15	. 85	1, 23	. 78	1.18	. 83	1.25	. /6	1.14	. 89	1.13	. 90	1.15	. 89	1.20	.84	\$15.

																	Ec	uunox (i	Mar.,	Apr.,	Sept.,	Oct.)																
Γ				Low (0-50) Sunspot Number High (>100) Sunspot Number																																		
	GEO.	22-	02	02-	06	06-	10	10	-14	14-	18	18	-22	22-	02	02-	06	06-	0	10-	14	14-	18	18-	22	22-	02	02-	06	06-	10	10-	14	14-	18	18-	-22	GEO.
	LAT.	Fu	۴ı	Fu	۴ı	Fu	۴ı	F	Fι	Fu	۴ı	Fu	Fι	Fu	۶	Fu	Fi	F	FL	Fu	Fi	F	Fi	Fu	Fi	Fu	Fι	Fu	Fι	Fu	Fι	Fu	FL	Fu	۴	Fu	F	LAT.
Γ	≥ 75*	1,42	. 67	1.32	. 72	1.29	. 74	1.26	. 73	1.33	. 80	1.48	. 65	1.45	. 64	1.31	. 61	1.27	. 73	1.28	. 74	1.30	. 74	1.47	. 67	1.46	. 66	1.37	. 67	1.35	. 75	1.40	. 66	1.38	. 70	1.46	. 72	≥ 75*
6	5-75*	1.38	. 70	1.25	. 75	1.25	. 76	1.23	. 74	1.26	. 82	1.40	. 69	1.41	. 68	1.22	. 71	1.23	. 77	1.26	. 74	1.26	. 78	1,38	. 70	1.42	. 67	1.31	. 71	1.30	. 73	1.31	. 70	1.33	. 70	1.37	. 72	65-75*
5	5-65*	1, 32	. 73	1.21	. 78	1.22	. 80	1.20	. 75	1.20	. 81	1.31	. 73	1.35	. 70	1.17	. 75	1.20	. 80	1.23	. 72	1.18	. 78	1.29	. 73	1.30	. 69	1.25	. 75	1.27	. 71	1.24	. 71	1.25	. 71	1.24	. 72	55-65*
4	5-55	1.26	.75	1.19	, 80	1.20	. 81	1.18	. 76	1.16	. 81	1.26	. 76	1.28	. 73	1.15	. 77	1.17	.81	1.21	. 74	1.13	. 76	1.20	. 75	1.18	. 73	1.20	. 78	1.25	. 70	1.20	. 72	1.16	. 74	1.17	. 73	45-55*
3	5-45*	1.22	. 77	1,20	. 81	1.19	. 81	1.16	. 77	1.16	. 80	1.15	. 78	1.22	. 75	1.16	. 78	1.16	. 82	1.18	. 78	1.12	. 76	1.17	. 76	1.15	. 79	1.16	. 82	1.17	. 75	1.16	. 78	1. 12	. 80	1.14	. 84	35-45*
2	5-35*	1.22	. 78	1,26	. 80	1,18	. 82	1.15	. 78	1.16	. 81	1.28	. 74	1.22	. 77	1.22	. 76	1.15	. 82	1.17	. 83	1.14	. 78	1.23	. 72	1.25	. 81	1.18	. 82	1.10	. 87	1.10	. 87	1.11	. 87	1.15	. 86	25-35*
1	5-25*	1.30	. 77	1.32	. 75	1.16	. 83	1.14	. 81	1.18	. 83	1.33	. 69	1.32	.75	1.30	. 73	1.13	. 84	1.15	. 87	1.17	. 81	1.37	. 69	1.31	. 81	1.32	. 77	1.11	. 89	1.11	. 92	1.12	.90	1.20	.85	15-25*
	≤ 15°	1.23	. 76	1.40	. 66	1.13	. 86	1.13	. 89	1.19	. 86	1.16	. 75	1.18	. 79	1.39	. 68	1.11	. 86	1.13	. 89	1.20	. 84	1.23	. 80	1.21	. 80	1,23	. 79	1.09	. 86	1 20	. 90	1, 14	. 90	1.23	. 82	≤ 15*

														:	Summe	r { <mark>N.</mark> s.	Hemisp Hemisp	ohere (May, J Nov.,	une, J Dec.,	uly, A Jan.,	ug.) Feb.)															
					Low ()-50) S	unspot	Numbe	r							м	edium (50-10) Suns	pot Nu	nber							ł	ligh (>	100) S	unspot	Numbe	r				
GEO.	Ž2-	-02	02-0	6	06-	10	10.	-14	14-	18	18-	22	22-	02	02 -	06	06-	10	10.	-14	14-	-18	18-	-22	22.	-02	02-	06	06-	10	10-	14	14-	18	18-	22	GEO.
LAT.	Fu	Fi	F	FL	F	۴ı	Fu	Fι	F	۴ı	Fu	۴ı	F	F	Fu	Fi	F	FL	F	Fe	F	Fi	F	Fi	Fu	Fi	Fu	Fi	Fu	۴	F	۴ı	F	Fe	Fu	F	LAT.
≥ 75*	1.26	. 68	1,24	. 79	1.15	. 84	1, 17	, 87	1,21	. 85	1, 22	. 76	1.27	. 82	1.23	. 80	1,20	. 82	1.18	. 85	1.24	. 80	1,23	. 79	1.30	. 73	1.27	. 74	1.17	. 82	1.15	. 83	1.23	. 79	1.24	. 75	≥ 75*
65-75°	1,22	. 70	1, 18	. 81	1.14	. 83	1, 15	. 86	1.16	. 86	1.18	. 77	1,23	.83	1.19	. 82	1.19	. 79	1.17	. 82	1.17	. 82	1.19	. 82	1.22	. 75	1.22	. 75	1.20	. 77	1.18	. 80	1.21	. 80	1.23	. 77	65-75
55-65*	1,18	. 72	1.17	.84	1.14	. 83	1, 15	. 84	1.14	. 86	1.15	.81	1,20	. 83	1.18	. 82	1.19	. 77	1, 17	. 79	1,14	. 82	1, 17	. 83	1.16	. 77	1.18	. 76	1.26	. 74	1.21	. 77	1.19	. 80	1.21	. 80	55-65*
45-55*	1,17	. 75	1.20	. 85	1.15	. 82	1.16	. 83	1.14	. 85	1, 15	. 84	1,17	. 81	1.19	. 81	1.21	. 76	1.17	. 77	1.15	. 81	1.16	. 82	1,14	. 79	1.15	. 76	1.30	. 73	1.26	. 75	1.19	. 80	1.18	. 84	45-55
35-45*	1.17	. 79	1,25	. 85	1, 17	. 80	1, 17	. 82	1.15	. 83	1.16	.85	1.17	. 78	1.22	. 78	1.23	. 75	1.18	. 78	1.17	. 78	1.17	. 78	1.14	. 80	1.14	. 76	1.30	.75	1.27	. 75	1.19	. 79	1.16	. 84	35-45*
25-35*	1,18	. 79	1.30	. 82	1.17	. 78	1.20	. 80	1.19	. 81	1.20	. 80	1.20	. 77	1.30	. 83	1.22	.75	1.19	. 79	1.19	. 77	1.18	. 74	1.16	. 81	1.15	. 76	1.25	. 82	1.20	. 81	1.17	. 79	1.15	. 83	25-35*
15-25*	1,20	. 77	1, 34	. 78	1.14	. 77	1.24	. 79	1,22	. 79	1,23	. 73	1.26	. 77	1.38	. 69	1.17	. 78	1.23	. 82	1.23	. 78	1.28	. 73	1,21	. 81	1, 22	. 77	1,18	.85	1.15	. 86	1.18	. 81	1.19	.80	15-25*
≤15*	1,20	. 74	1.37	. 75	1.12	. 80	1.30	. 83	1.27	. 82	1.20	. 69	1.26	. 79	1.44	. 63	1.11	. 84	1.28	.85	1.28	. 81	1.22	. 77	1.25	. 80	1.21	. 79	1.13	. 86	1.17	. 89	1,22	.85	1.23	. 78	≤15*

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Table I / Barghausen <u>et al.</u>, 1969/ shows distribution of daily values of standard MUF about their monthly median as the ratios of upper and lower decile MUF's to median MUF for a given season, a given solar activity, 4hour local time blocks at the path midpoint and each 10° of geographic latitude from 10° to 80°, north or south.

Based on the values in Table I, the probability of regular ionospheric reflection, q_f , for a given frequency, f, is determined by evaluating the chi-squared probability distribution function.

$$q_{f} = 1 - \int_{0}^{\chi^{2}} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \exp(-z/2) z^{(\nu/2)-1} dz, \qquad (20a)$$

where :

$$\chi^2_{op}$$
 = a value related to the operating frequency,

 ν = number of degrees of freedom and describes the skewness in the χ^2 distribution.

It is assumed that any standard MUF is related to a χ^2 value by the linear relation :

$$MUF = c + b\chi^2, \qquad (20b)$$

where c and b are constants / Barghausen et al., 1969_7.

The value of ν is selected as follows. First the ratio indicating the skewness of the MUF distribution is computed using the median and upper and lower decile MUF's as follows :

Ratio (standard MUF) =
$$\frac{MUF.10}{MUF.50}$$
, (21)

where MUF.50, MUF.10 and MUF.90 are the median, upper and lower decile MUF's, respectively. Ratios are then computed for values of v from 3 to 100 :

Batio
$$(\chi^2) = \frac{\chi^2_{.10} - \chi^2_{.50}}{\chi^2_{.50} - \chi^2_{.90}}$$
 (22)

where $\chi^2_{.10}$, $\chi^2_{.50}$, and $\chi^2_{.90}$ are the 10, 50 and 90% values of χ^2 , respectively.

Ratio (MUF) is compared with the Table of Ratio (χ^2) , and the value of ν with a Ratio (χ^2) closest to the Ratio (MUF's) is then selected. In the computer programme, linear interpolations are made to determine fractional values of ν . The linear relationships between the values of $\chi^2_{.90}$, $\chi^2_{.50}$, and $\chi^2_{.10}$, associated with the chosen value of ν , and the values of MUF.90, MUF.50 and MUF.10 are used to select a value of χ^2_{0p} corresponding to the operating frequency, f, under consideration.

Equation (20b) is applied in all cases where the ratio (MUF) from (21) is greater than 1. In these cases the direction of skewness of the χ^2 distribution is the same as that of the MUF. In cases where ratio (MUF) found from (21) is less than 1 the following equation applies :

$$MUF = c - b\chi^2$$
 (23)

In these cases the direction of skewness of the MUF distribution is opposite to that of the χ^2 distribution, and Ratio (MUF)' is used to determine ν where :

$$Ratio (MUF)' = 1/Ratio (MUF)$$
(24)

The dispersion of foE is neglected in this programme and the E-layer mode is assumed to have a probability of 0.99 at all frequencies at or below the classical MUF of E.

5.3 Sporadic-E considerations

This interim method suggests that reflection by sporadic-Es be considered as an option in estimating sky-wave field strength and, when calculating the probability of a sky-wave path, its inclusion is suggested simply to estimate the probability of occurrence of E modes in cases where regular E-layer propagation is not possible.

The median and upper and lower decile values of foEs are obtained from the numerical coefficients and converted into values for the oblique path by the secant law relationship. - 89 -

The multiplicative factor, sec ϕ , is computed as follows :

$$\sec \phi = \frac{1}{\cos\left(\frac{\pi}{2} - \frac{d}{2} - \beta\right)} , \qquad (25)$$

where :

The probability of sporadic-E propagation is then calculated for the operating frequency from these median and decile values, using the chi-squared probability function. Currenbly, no additional loss is determined for the partial transparency of the Es layer to radio waves.

5.4 Calculation of mixed modes

For path lengths equal to or greater than 2000 km, mixed modes of propagation are considered. This type consists of E or Es hops, with the remainder of the propagation path via the F-layer. If regular E-layer propagation is not possible, the probability of Es propagation is determined and combined with the probability of subsequent F-layer propagation.

6. Transmission loss calculations

This section directly concerns the calculation of loss of radio energy in ionospheric propagation between a transmitter and a receiver, and in the estimation of the resultant field strength. Three mechanisms account for almost all the energy losses of a radio transmission. Normally, the major energy loss is geometrical and is caused by spreading of the energy over progressively larger areas as the signal propagates from the transmitter. Neglecting ionospheric and earth curvature effects this loss is the free-space basic transmission loss and is designated L. Under certain conditions, the second major loss mechanism is the absorption of the radio energy by the ionosphere; finally, losses caused by the reflection of the signal at the earth's surface (third mechanism) may be important for multiple hops over land. Ground losses of the antennae are included in the antenna gains (see Formula 32). Other losses, not explicitly calculated by these three loss mechanisms, are considered by an empirically determined "excess system loss" which also expresses the statistical distribution of hourly median losses within the month.

FIG. 4

BASIC TRANSMISSION LOSS CAUSED BY THE GEOMETRICAL OPTICS OF AN INCREMENTAL RAY BUNDLE

A :	Bottom of ionosphere	D : Departure angle
B :	Angle of incidence	E : Earth
C :	Reference ross section	F : Cross section at receiver
	(Area = 1)	$(\mathbf{Area} = \Delta \mathbf{V} \Delta \mathbf{H})$

6.1 Free-space basic transmission loss

Free-space losses result from the geometrical spreading of energy as the radio wave progresses away from the transmitter. This is illustrated in Fig. 4, which shows a bundle of four rays originating from a transmitter and being reflected from the ionosphere. The assumption is made that all the energy radiated into the bundle remains within it. The energy density at the receiver is reduced from the value at the reference area by a factor proportional to the receiver cross-sectional area $\Delta V \Delta H$. In ionospheric propagation, the incremental cross section of the ray bundle at the receiver depends upon the physical properties of the ionosphere and the geometry of the propagation path. Simplifying assumptions are made in the programme so that transmission losses can be calculated in a practical manner.

In the simplest model of sky-wave propagation, it is assumed that the earth and the ionosphere are both flat and that the reflection is specular (mirror-like). For this type of propagation, the energy density diminishes as the inverse square of the ray-path distance / Piggott, 1959/. This means that for an isotropic transmitting antenna radiating p watts of power, the power flux density at a slant range distance D is $p/(4 \pi D^2)$. The total area of an isotropic receiving antenna in free space is $\lambda^2/(4 \pi)$, where λ is the wavelength of the radio wave. Therefore, the total power received by the antenna is $p \lambda^2/(4 \pi D)^2$. The basic free-space transmission loss is the ratio between the power radiated and the power received by a loss-free receiving antenna, and is given by :

$$L_{bf} = 10 \log_{10} \left[\frac{p}{p \lambda^2 / (4 \pi D)^2} \right] = 20 \log_{10} \frac{4 \pi D}{\lambda} (dB)$$
(26)

Expressing the wavelength λ in terms of the frequency f of the electromagnetic wave, (26) becomes :

$$L_{bf} = 32.44 + 20 \log_{10} f + 20 \log_{10} D \qquad (dB) (27)$$

where f is in Megahertz and D is in kilometres.

Techniques for calculating horizon focusing and skip distance focusing are available in the literature / Rawer, 1948; Bremmer, 1949; Davies, 1965/. Quantitative estimates of the effects of focusing are not explicitly calculated in this interim report.

6.2 Ionospheric loss

Absorption of energy is usually the second major loss in radio-wave propagation via the ionosphere. The local wave attenuation depends on the product of electron density and effective collision number, divided by the local refractive index for the wave. For calculation purposes, it is convenient to distinguish between two types of absorption; deviative and nondeviative.

In the D region of the ionosphere, the neutral particle density is considerably greater than the positive ion density, and most of the radio energy loss is therefore caused by collisions between electrons and molecules. In the D region, on frequencies as considered here, the refractive index of the ionosphere is near its free-space value of unity. which means that the radio wave is not refracted or deviated from its trajectory. Energy loss under this particular condition is called "nondeviative absorption". In the E and F regions, the refractive index usually is less than unity, and the radio wave is refracted (or deviated) considerably. The term "deviative absorption" is therefore normally used to denote conditions where the local attenuation is greater than in the nondeviative case. For this reason, the E-region and even the F-region may give significant contributions to the absorption, in spite of the much lower neutral particle densities at these altitudes. The effective collision frequency of the F-region is determined by collisions between electrons and ions giving more complicated relations than at the lower altitudes for collisions of electrons and neutral particles.

As a result of field strength measurements on oblique paths it is possible to estimate the total ionospheric loss. This ionospheric loss, L_i , is computed as follows / Lucas and Haydon, 1966 /:

$$L_{i} = \frac{677.2 \text{ (sec } \emptyset)}{(f + f_{H})1.98 + 10.2} \cdot \sum_{j=1}^{n} I_{j}$$
(28)

where :

n = number of hops

 \emptyset = angle of incidence at 100 km

f = operating frequency in MHz

fH = full gyro frequency at 100 km in MHz

$$I_{j} = / 1 + .0037 R_{12} / Cos 0.881_{\psi j} / 1.3$$

where :

 $R_{12} = 12$ -month running average sunspot number

 ψ_j = Zenith angle of the sun at the penetration area of the absorbing region.

The analysis of observations of nighttime field intensities has indicated that ionospheric absorption does not cease, but tends to level off as the absorption index I as defined above approaches a value of onetenth. Equation (28) is therefore restricted to values of I equal to or greater than 0.1. This assumption checks well with the work of Wakai / Wakai, 1961/ / Lucas and Haydon, 1966/.

There are measurements which indicate greater absorption in the winter months than would be expected by the variation of the solar zenith angle. It is not clear whether this variation is due to enhanced ionization in the absorption region during the winter months or if it may result from greater path lengths in the absorbing region due to lower reflection heights during the winter.

6.3 Ground reflection loss

The third major loss for multiple-hop propagation is at the earth's surface in the ground reflection process. We assume that the incident sky waves are randomly polarized and that the radio energy is distributed equally in the horizontally and vertically polarized fields. This loss is given by :

$$L_{g} = 10 \log_{10} \left[\frac{|R_{v}|^{2} + |R_{h}|^{2}}{2} \right]$$
 (dB) (29)

where R_v is the reflection coefficient for the vertically polarized wave (electric vector parallel to the plane of incidence), and R_h is the reflection coefficient for the horizontally polarized wave (electric vector perpendicular to the plane of incidence). The reflection coefficients are defined as the ratios of the magnitude of the electric vector in the reflected wave to the magnitude of the electric vector in the incident wave. Generally, the reflection coefficients are complex numbers since the refractive index of the earth is a complex quantity. The quantities R_v and R_h are given by the Fresnel formulae :

$$R_{v} = \frac{n^{2} \sin \beta - (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}}{n^{2} \sin \beta + (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}},$$

$$R_{h} = \frac{\sin \beta - (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}}{\sin \beta + (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}},$$
(30)

where β is the takeoff angle of the ray above the earth. The quantity n is the complex refractive index. Assuming a time variation of the electric field proportional to exp (j ω t), we have

$$n^{2} = \varepsilon_{r} - j \, 18000 \, \sigma \, / f, \qquad (31)$$

where ε_r is the relative dielectric constant of the earth, σ is the real conductivity of the earth (mhos/metre), and f is the wave frequency in Megahertz / Schelkunoff and Friis, 1952/.

At each area of reflection at the earth's surface it is determined whether the area is land or sea and the following values of ϵ and σ are used :

sea water $\sigma = 5.0$ mho /m; $\varepsilon = 80$ land $\sigma = 0.001$ mho /m; $\varepsilon = 4$

6.4 Excess system loss (Yp)

Experimental data were analyzed to account for the day-to-day variations in signals from the monthly median and other losses not explicitly attributable to the above mechanisms. For example variations in the direction of arrival of the signal introduce variations in the path antenna gains. The results showed that the distributions of excess loss were functions of geomagnetic latitude, season, local time, and length of path. Tables 2 and 3 / Barghausen et al., 1969 7 show the differences from the median of the transmission loss exceeded 84% of the time, S ρ , and the transmission loss exceeded 16% of the time, S_{11} . As we see, the losses tend to be greatest for paths in the range of 65° to 70° geomagnetic latitude, with the diurnal maximum of excess loss falling between 0400-1000 local mean time. The seasonal maximum loss occurs at equinox for both long and short paths, and the short path generally shows greater excess loss at high latitudes. Because of the geographical distribution of the data, the values are probably most reliable in the 15° to 55° range of north geomagnetic latitude.

EXPECTED EXCESS SYSTEM LOSS (dB) (Paths less than 2500 km)

WINTER (NOV., DEC., JAN., FEB.)

	01-	04 LN	1T	04	-07 L	мт	07	-10 L	мт	10-	13 LI	ТM	13-	16 LN	IT	16-	19 LM	мт	19-	22 LN	лт	22-	01 LN	ЛТ	
LAT.	Med.	s _i	su	Med.	s	su	Med.	si	Su	Med.	s _e	s _u	Med.	s _ł	s _u	Med.	si	S _u	Med.	s.	su	Med.	s _i	s _u	G.M. LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.3	9.0	9.1	4.3	8.3	9.1	4.6	8.6	9.0	4.5	7.1	9.0	4.2	6.2	9.0	4.6	8.1	9.0	4.6	7.9	9.0	4.2	9.1	40-45
45-50	9.1	4.7	9.1	9.3	4.6	9.0	9.6	5.2	9.6	9.0	5.1	7.8	9.1	4.4	6.5	9.1	5.2	8.6	9.3	5.2	8.3	9.1	4.5	9.2	45-50
50-55	9.6	5.1	9.2	9.8	5.0	9.7	10.6	5.9	10.7	9.1	5.7	8.7	9.3	4.6	6.9	9.6	5.8	9.1	10.0	5.8	8.7	9.3	4.8	9.3	50-55
55-60	10.5	5.3	10.0	11.1	6.7	9.6	13.4	8.2	14.6	9.7	5.0	10.6	9.8	4.8	7.2	11.2	6.5	9.0	11.5	5.4	10.6	10.3	5.1	9.5	55-60
60-65	13.8	8.0	13.5	17.2	12.7	13.0	19.5	12.3	23.7	11.7	6.8	20.5	10.6	5.8	8.7	14.7	8.3	14.1	16.3	8.9	17.2	14.2	7.2	9.9	60-65
65-70	15.7	7.7	14.6	20.0	13.5	13.2	22.5	11.8	22.5	12.0	6.0	22.0	10.7	5.4	8.2	14.8	7.8	11.3	17.6	7.8	18.6	15.0	6.8	11.5	65-70
70-75	14.7	6.3	9.4	16.9	8.9	15.2	19.7	9.9	14.3	10.7	5.4	13.9	9.9	4.8	7.5	12.6	6.5	10.5	13.1	5.8	14.8	13.0	6.0	9.0	70-75
75-80	11.5	5.6	9.4	14.0	7.7	8.8	16.1	8.4	10.2	9.9	6.3	10.7	9.3	4.7	6.7	10.9	5.4	8.6	11.3	4.9	11.5	11.0	5.4	8.5	75-80

EQUINOX (MAR., APR., SEPT., OCT.)

	01-0)4 LN	ΛT	04-	07 LN	лт	07-	10 LN	TN	10-	-13 LM	TIM	13-	16 LI	TM	16-	-19 LI	мт	19-	-22 LI	мт	22.	01 LI	мт	
LAT	Med.	s,	s _u	Med.	s _e	s _u	Med.	s _e	su	Med.	. s	s _u	Med.	s _i	s _u	Med.	s,	s _u	Med.	s _l	s _u	Med.	s.	s _u	G.M. LAT.
00-40	9.0	4.0	9.0	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.5	10.0	9.1	4.4	11.5	9.2	5.3	9.8	9.1	4.7	9.0	9.1	4.5	8.9	9.3	5.0	11.3	9.2	4.8	10.0	9.1	4.7	10.0	40-45
45-50	9.4	5.0	11.1	9.4	4.8	14.1	9.9	6.6	12.0	9.6	5.4	11.6	9.4	5.0	11.4	10.3	6.0	15.0	9.9	5.6	12.5	9.8	5.4	11.0	45-50
50-55	10.0	5.6	12.2	10.0	5.2	16.6	11.7	8.0	14.3	10.8	6.2	14.2	10.2	5.6	13.9	11.7	7.0	18.7	11.1	6.4	15.0	11.1	6.2	12.0	50-55
55-60	11.0	5.7	17.6	12.0	6.4	22.0	15.2	8.3	15.3	12.7	7.6	18.3	11.6	5.6	15.5	13.5	7.5	20.2	13.0	7.7	19.5	14.0	7.4	13.3	55-60
60-65	13.7	7.7	30.3	17.0	9.5	29.3	21.0	14.0	23.4	16.5	10.6	33.0	14.6	8.3	19.2	16.8	10.3	27.0	18.0	11.3	29.0	20.8	13.0	26.7	60-65
65-70	15.8	8.1	28.0	20.6	11.1	31.0	28.6	18.2	26.9	17.8	10.0	27.9	15.3	7.0	18.0	16.8	8.4	24.0	19.3	11.3	28.8	23.6	11.2	17.5	65-70
70-75	13.9	7.0	21.7	20.7	13.8	20.8	29.0	12.8	20.2	15.2	8.8	18.9	12.3	6.2	14.2	13.9	7.2	18.0	16.7	8.6	22.0	18.5	8.0	16.5	70-75
75-80	11.0	6.1	15.5	16.5	7.5	18.7	18.2	9.7	14.4	12.9	7.5	13.6	10.6	5.4	12.0	12.0	6.2	14.1	13.2	6.4	20.6	13.1	6.3	15.7	75-80

SUMMER (MAY, JUNE, JULY, AUG.)

<u>G. м.</u>	01-0	04 LN	1T	04-	07 LN	ЛТ	07-	10 LM	лт	10-	13 LI	тM	13-	16 LN	лт	16-	19 LI	мт	19-	22 LI	мт	22-	01 LI	ЛТ	GM
LAT.	Med.	s,	Su	Med.	s _i	Su	Med.	s _t .	s _u	Med.	s _i	. S _u	Med.	s _e	s _u	Med.	s _i	Su	Med.	s,	s _u	Med.	s _i	s _u	LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.1	4.4	9.8	9.1	4.3	9.9	9.0	4.7	9.1	9.1	4.5	7.2	9.1	4.5	8.1	9.2	5.1	8.6	9.1	4.9	9.5	9.0	4.7	10.0	40-45
45-50	9.5	4.8	10.6	9.4	4.7	12.2	9.5	5.5	10.7	9.4	5.0	8.1	9.5	5.0	9.8	10.1	6.2	9.7	10.0	5.9	11.4	9.3	5.4	11.0	45-50
50-55	10.3	5.3	11.4	10.1	5.1	14.6	10.4	6.3	12.3	10.0	5.5	9.0	10.1	5.5	11.6	12.0	7.3	10.8	11.9	6.9	13.4	9.7	6.1	12.0	50~55
55-60	11.9	5.5	17.8	11.4	5.5	16.1	12.0	7.2	15.6	11.6	6.0	10.6	11.9	5.8	13.5	14.8	8.5	11.0	14.8	7.8	14.1	10.8	6.4	15.0	55-60
60-65	15.0	7.5	24.5	13.1	5.8	22.7	15.0	10.7	26.0	14.3	7.8	18.8	13.3	6.2	19.9	17.4	9.1	14.2	17.6	10.1	20.5	13.4	8.9	21.1	60-65
65-70	15.0	6.5	22.1	13.6	6.2	21.8	16.3	9.2	26.7	14.0	6.7	19.5	13.2	5.7	16.6	16.2	7.2	13.8	17.8	7.9	21.9	14.0	7.8	19.0	65-70
70-75	12.7	5.4	15.6	12.8	5.8	15.0	14.0	6.8	18.2	12.5	6.2	12.0	12.2	5.5	13.3	13.8	6.9	11.1	15.0	7.6	17.8	12.4	6.8	16.0	70-75
75-80	11.4	5.7	12.8	11.8	6.0	11.3	12.1	5.3	16.8	11.7	5.7	9.5	11.3	5.3	12.1	12.8	7.0	10.2	13.3	7.2	11.8	11.1	6.8	12.7	75-80

TABLE 2

- 95 -

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

EXPECTED EXCESS SYSTEM LOSS (dB) (Paths greater than 2500 km)

WINTER (NOV., DEC., JAN., FEB.)

G.M.	01	-04 L	MT	04	-07 L	мт	07-	-10 L	мт	10	-13 L	MT	13	-16 L	ΜТ	16	-19 L	MT	19	-22 L	мт	22	-01 L	мт	
LAT.	Med.	s _l	Su	Med.	s _l	s _u	Med.	sı	Su	Med.	sį	Su	Med.	Sł	Su	Med.	sı	Su	Med.	sı	s _u	Med.	sı	s _u	LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.2	9.1	9.0	4.3	7.8	9.0	4.Z	9.0	9.0	4.2	7.3	9.0	4.0	6.5	9.0	4.3	7.7	9.0	4.3	7.6	9.0	4.3	9.Z	40-45
45-50	9.1	4.4	9.3	9.1	4.6	8.0	9.1	4.5	10.4	9.0	4.4	8.2	9.1	4.1	6.7	9.1	4.7	7.8	9.2	4.6	7.6	9.2	4.6	9.4	45-50
50-55	9.4	4.6	9.5	9.4	5.0	8.2	9.2	4.8	11.9	9.0	4.6	9.2	9.4	4.1	6.9	9.4	5.1	7.9	9.9	4.9	7.6	9.8	4.9	9.6	50-55
55-60	10.1	4.7	9.6	10.8	5.5	8.3	9.9	5.6	12.4	9.2	5.2	10.4	10.2	4.6	7.4	10.4	5.5	7.6	11.0	5.0	7.9	11.3	5.3	9.8	55-60
60-65	12.3	5.7	11.4	15.2	6.8	9.5	11.6	7.3	14.1	10.3	5.2	15.2	11.6	4.1	8.3	12.4	6.7	8.0	12.6	5.6	8.9	16.6	7.8	13.8	60-65
65-70	14.5	6.5	10.2	15.4	6.3	10.9	13.1	8.3	14.2	11.0	4.4	15.8	13.1	5.1	7.7	12.6	6.2	7.3	13.4	6.1	8.5	18.9	8.6	11.1	65-70
70-75	12.9	3.4	9.7	13.6	6.5	7.8	12.3	6.8	11.2	10.3	4.8	11.2	13.0	4.7	7.1	11.2	5.4	7.4	12.1	5.1	8.6	17.0	6.5	9.2	70-75
75-80	11.2	5.1	9.2	12.2	5.9	8.1	10.9	5.7	10.2	9.7	4.8	9.2	11.7	4.4	7.0	10.2	5.0	7.5	10.3	4.8	8.2	11.9	5.0	9.7	75-80

EQUINOX (MAR., APR., SEPT., OCT.)

C N	01	-04 L	лт,	04	-07 L	MT	07.	-10 L	MT	10	-13 L	мт	13	-16 L	мт	16	-19 L	MT	19-	-22 L	MT	22	-01 L	MT	
LAT.	Med.	sı	Su	Med.	sį	s _u	Med.	sı	Su	Med.	sı	Su	Med.	si	Su	Med.	sı	Su	Med.	sį	Su	Med.	s,	Su	G.M. LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.1	10.0	9.0	4.1	8.5	9.0	4.2	8.3	9.1	4.4	7.9	9.0	4.3	8.8	9.1	4.5	9.0	9.0	4.3	8.9	9.0	4.2	10.6	40-45
45-50	9.2	4.2	11.0	9.Z	4.2	9.4	9.2	4.5	9.0	9.2	4.9	9.4	9.1	4.6	10.7	9.5	4.9	10.4	9.6	4.6	10.2	9.4	4.4	11.5	45-50
50-55	9.5	4.4	12.1	9.6	4.3	10.3	9.5	4.8	9.7	9.6	5.4	11.0	9.5	5.0	12.3	10.6	6.1	11.9	10.8	5.5	10.9	10.1	5.6	12.2	50-55
55-60	10.0	4.5	13.2	10.3	4.6	10.6	10.3	5.7	9.8	10.7	6.0	11.2	10.3	5.6	13.2	12.4	7.8	12.5	12.8	7.2	11.6	11.4	7.5	13.8	55-60
60-65	11.9	5.7	15.5	12.8	5.9	10.8	13.2	7.9	11.4	13.1	8.5	13.4	11.9	8.6	14.7	15.3	9.5	15.2	17.4	9.8	14.7	16.3	9.7	16.6	60-65
65-70	13.3	5.7	14.3	14.6	6.6	10.6	15.4	7.7	13.8	14.1	8.1	12.4	13.4	7.5	16.1	15.3	8.6	13.2	18.2	8.5	14.3	18.3	8.4	16.2	65-70
70-75	12.0	4.9	13.1	13.7	5.3	9.8	14.0	6.1	10.9	12.0	7.1	10.5	11.4	6.7	11.7	12.4	6.9	12.2	14.4	6.0	13.8	13.8	7.8	15.8	70-75
75-80	10.3	4.8	11.0	10.9	4.6	9.0	11.2	5.7	10.6	9.8	6.3	10.2	9.8	5.7	11,2	9.8	6.1	11.0	10.2	5.4	13.7	10.1	6.9	15.4	75-80

SUMMER (MAY, JUNE, JULY, AUG.)

G.M.	01.	-04 L	MT	04	-07 L	MT	07	-10 1	лт	10.	-13 L	MT	13-	-16 L	мт	16	-19 L	MT	19-	-22 L	MT	22-	01 L	мт	GM
LAT.	Med.	sı	su	Med.	sl	Su	Med.	si	Su	Med.	si	Su	Med.	sł	S_{u}	Med.	sį	Su	Med.	si	Su	Med.	sı	Su	LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.1	4.4	9.1	9.0	4.4	9.1	9.0	4.5	8.1	9.0	4.2	6.9	9.0	4.5	7.6	9.0	4.2	8.1	9.0	4.9	8.2	9.1	4.4	9.6	40-45
45-50	9.5	4.8	9.2	9.3	4.9	10.6	9.4	5.0	8.6	9.2	4.4	7.5	9.4	5.0	8.8	9.1	4.5	8.6	9.6	5.8	8.9	9.5	4.9	10.3	45-50
50-55	10.1	5.2	9.4	10.1	5.4	12.2	10.1	5.6	9.2	9.6	4.7	8.1	10.2	5.6	10.1	9.4	4.8	9.1	10.9	6.7	9.6	10.3	5.4	11.0	50-55
55-60	11.5	5.4	9.6	11.9	6.2	13.0	11.6	6.5	9.7	10.1	4.9	9.2	11.5	5.9	12.3	10.2	5.1	10.7	12.8	6.8	11.8	11.9	5.7	13.4	55-60
60-65	13.9	6.7	9.8	16.5	8.8	16.8	15.2	9.3	13.8	11.2	6.4	13.1	12.8	6.8	16.4	11.6	6.1	14.3	14.2	7.1	17.2	14.0	7.2	18.4	60-65
65~70	14.0	6.1	10.0	16.8	7.4	16.7	15.1	8.2	16.5	11.3	6.2	13.1	12.8	6.3	12.0	11.7	5.4	12.4	13.8	6.4	15.2	14.0	6.4	15.1	65-70
70-75	12.2	4.8	8.9	14.4	6.5	11.9	12.4	5.9	14.1	10.5	5.8	10.1	11.2	5.5	9.2	9.9	5.1	11.0	11.6	5.8	12.3	12.2	5.3	12.1	70-75
75-80	11.0	5.3	8.2	13.1	6.0	10.0	10.5	5.5	13.1	10.1	5.6	8.6	9.8	5.4	8.4	9.1	5.0	10.2	9.9	5.6	9.9	10.4	5.5	10.3	75-80

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

6.5 System loss

The system loss of a radio circuit is defined as the signal power available at the receiving antenna terminals relative to the available power at the transmitting antenna terminals, in decibels / C.C.I.R.,1966/. This excludes any transmitting or receiving antenna transmission line losses, since such losses are considered readily measurable. The system loss does include all the losses in the transmitting and receiving antenna circuits - not only the transmission loss caused by radiation from the transmitting antenna and reradiation from the receiving antenna, but also any ground losses, dielectric losses, antenna loading coil losses, terminating resistor losses in rhombic antenna, etc. / C.C.I.R., 1966 /.

The system loss is summarized as :

$$L_{s} = L_{pf} + L_{i} + L_{g} + Y_{p} - (G_{t} + G_{r})$$
 (dB) (32)

where :

- L = The basic free-space transmission loss expected between ideal, loss-free, isotropic, transmitting and receiving antennae in free space,
- L, = losses caused by ionospheric absorption,
- L_{σ} = losses caused by ground reflection,
- Y = excess system loss,
- G_t = transmitting antenna power gain relative to an isotropic antenna in free space,
- G = receiving antenna power gain relative to an isotropic antenna in free space.

In this report, G_t and G_r are in the direction of the propagation path and include all antenna losses so that $G_t + G_r$ is the path antenna gain $G_p / Rice et al.$, 1967/. The values G_t and G_r are required for any elevation angle and azimuth direction.

In HF communication circuits, several propagation paths are often

possible; e.g. a single reflection from the F region (1F), a single reflection from the E region (1E), multiple reflection from the E and F regions (1F, 3F, 2E, etc.), or reflection from both regions (1E1F, 1E2F, etc.). The probable paths depend upon the geometry of the ionospheric layers and the relative ionization within these layers.

For most systems applications, it is usually sufficient to : 1) evaluate \mathbf{L}_{Df} , \mathbf{L}_{i} , \mathbf{L}_{g} , \mathbf{G}_{t} , and \mathbf{G}_{r} for each mode for which the probability of a sky-wave path is ≥ 0.05 ; 2) select the smallest calculated loss as the system loss for the circuit; and 3) add to the loss the empirically determined excess system loss Y_{p} . As indicated earlier, Y_{p} includes the effects of the day-to-day variations in the parameters used in estimating \mathbf{L}_{bf} , \mathbf{L}_{i} , \mathbf{L}_{g} , \mathbf{G}_{t} , and \mathbf{G}_{r} , and, in addition, such factors as ionospheric focusing, deviative absorption, polarization losses, and the contribution of signals from different paths.

7. Sky-wave field strengths

The sky-wave field strength is directly related to the transmission loss / Norton, 1959 /. If the loss (L_s) is determined (according to the steps outlined in § 6, assuming ideal, loss free isotropic transmitting and receiving antennae), so as to determine basic transmission loss (L_b) the field strength is :

$$E = 107.2 + 20 \log_{10} f + G_{t} + P_{t} - L_{b}$$

where :

- E = r.m.s. field strength in dB referred to one microvolt per metre;
- Gt = transmitting antenna gain in the direction of the ray path used to determine L_s (decibels referred to an isotropic antenna);
- Pt = transmitter power delivered to the transmitter antenna in decibels referred to one Watt;

f = operating frequency in Megahertz.

In cases when the reference field strength is 300 millivolts per metre at one kilometre (r.m.s. field produced by 1 kW input to a short dipole over perfect earth), the sky-wave field strength, E, is : $E = 142 + 20 \log_{10} f - L_b$

Likewise when the reference field strength is 222 millivolts per metre at one kilometre, the sky-wave field strength, E, is :

$$E = 139.4 + 20 \log_{10} f - L_{b}$$

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

APPLETON, E. BEYNON, W.J.	V. and G.	<u>/</u> 1940_7	The application of ionospheric data to radiocommunication problems : Part I; Proc. Phys. Soc., 52, 518-533.
BARGHAUSEN,	A.F.	<u>/</u> 1966_7	Medium frequency sky wave propagation in middle and low latitudes; <u>IEEE Trans.</u> <u>Broadcasting BC-12</u> , 1-14.
BARGHAUSEN, et al.	A.F.	_1969_7	Predicting long-term operational para- meters of high-frequency sky-wave tele- communication systems; ESSA Tech. Report ERL 110-ITS 78 (U.S. Government Printing Office, Washington, D.C. 20402).
BECKMANN, B.		1958_7	Über Beziehungen der Feldstärke zu den Grenzen des Übertragungsfrequenzbereiches (LUF-MUF) (Concerning the relation of the field intensity to the limits of the transmission frequency range (LUF-MUF)); <u>NTZ, 11</u> , 523-528.
BECKMANN, B.		<u>_</u> 1960 <u></u> _	Ergebnisse zur Näherungsweisen Berechnung der Raumwellenfeldstärke aus den Grenzen des Übertragungsfrequenzbereiches (Results of approximate calculations of the sky-wave field strength from the limits of the usable frequency range); <u>NTZ</u> , <u>13</u> , 470.
BECKMANN, B.		_1967_7	Notes on the relationship between the receiving-end field strength and the limits of the transmission frequency range MUF-LUF; <u>MTZ - CJ</u> , <u>6</u> , 37-47.
BIBL, K.		<u> </u>	Le parcours d'un rayon dans une couche ionosphérique courbée; <u>Rev. Sci., 88</u> , 27-29.
BIBL, K. RAWER, K. an THEISSEN, E.	ıd	<u>/</u> 1951_7	Le rôle de l'occultation dans la propaga tion des ondes décamétriques. <u>Rapport</u> <u>du Service de prévision ionosphérique</u> <u>militaire SPIM</u> - R 11.
BIBL, K. RAWER, K. an THEISSEN, E.	d	<u>[</u> 1952 <u></u>]	An improved method for the calculation of the field-strength of waves reflected by the ionosphere. Nature, 169 , S. 147-150.

		- 104 -
BOWHILL, S.A. (ed.)	<u>[</u> 1966 <u></u>]	Papers of the Estes Park Seminar on Sporadic-E; <u>Radio Sci., 1</u> (New Series), 248-249.
BREIT, G. and TUVE, M.A.	<u>[</u> 1926 <u></u>]	A test of the existence of the conducting layer; <u>Phys. Rev., 28, 55</u> 4.
BREMMER, H.	<u> </u>	Terrestrial radio waves; Elsevier Publ. Co., Inc., New York, N.A.
C.C.I.R.	_ 196 3, 1966_7	Doc. VI/73 (U.S.S.R.).
C.C.I.R.	<u>_</u> 1966 <u>7</u>	The concept of transmission loss in studies of radio systems; Rec. 341, Doc. of the XIth Plenary Assembly, III, Oslo, 1966 (I.T.U., Geneva).
C.C.I.R.	_ 1966 , 1967_7	Atlas of ionospheric characteristics; Report 340, Oslo 1966, (I.T.U., Geneva).
C.C.I.R.	_ 1966- 1969a_7	Doc. VI/77 (U.S.S.R.).
C.C.I.R.	_ 1966- 1969b_7	Doc. VI/79 (U.S.S.R.).
C.C.I.R.	_ 1966- 1969¢_7	Doc. VI/180 (Australia).
DAVIES, K.	<u>/</u> 1965_7	Ionospheric radio propagation; <u>NBS</u> <u>Monograph 80</u> (U.S. Government Printing Office, Washington, D.C. 20402).
DIEMINGER, W. and ROSE, G.	<u>_</u> 1961 <u>7</u>	Zum Feldstärkeverlauf am Rande der toten Zone (On the variation of field strength near the border of the skip zone); <u>NTZ</u> , <u>20</u> , 170-180.
ELLING, W.	<u>_</u> 1961 <u>_</u> 7	Scheinbare Reflexionshöhen und Reflexions- vermögen der Ionosphäre über Tsumeb, Südwest Afrika, ermittelt mit Impulsen im Frequenz-band von 350 bis 5,600 kHz; (Pulse measurements of virtual heights and reflection coefficients of the ionosphere over Tsumeb, South-West Africa, in the frequency range from 350- 5,600 kHz); <u>Arch. Elekt. Über.</u> , 15, 115-124.

÷

		- 105 -
FRIHAGEN, J. (ed.)	<u>[</u> 1965 <u></u>]	Electron density profiles in ionosphere and exosphere; Proc. NATO Advanced Study Inst., Finse, Norway, April 1965 (North Holland, John Wiley and Sons, New York, N.Y.).
HALLEY, R.	<u>[</u> 1965 <u></u>]	Méthode de calcul des prévisions de point à point aux distances comprises entre 2500 et 10 500 km; <u>Centre National</u> <u>d'Etudes des Télécommunications</u> , Division des Prévisions Ionosphériques, France.
HARNISCHMACHER, E.A.	<u>[1960]</u>	A calculation method of ionospheric propagation conditions for very high and antipode distance; <u>Electromagnetic Wave</u> <u>Propagation</u> , Academic Press, London, 527.
KAZANTSEV, A.N.	<u></u> 1947 <u></u>	The absorption of short radiowaves in the ionosphere and the field strength at the place of reception; <u>Translation</u> (July 1958) from <u>Bulletin of Academy of Sciences</u> <u>of the U.S.S.R.</u> Division of Technical Sciences, No. 9, 1107-1138.
KAZANTSEV, A.N.	<u>_</u> 19 5 6_7	Developing a method of calculating the electrical field strength of short radio waves; <u>Trudy IRE</u> , Transactions of the Institute of Radio Engineering and Electronics of the Academy of Sciences, U.S.S.R., 2, 13 ⁴ .
KAZANTSEV, A.N.	<u> </u> 1957]	Instruction for the calculation of the coefficients of ionospheric absorption and field intensity of short radio waves; <u>Working Group of C.C.I.R. (Lepechinsky</u> group), Geneva.
KELSO, J.M.	1964_7	Radio ray propagation in the ionosphere; McGraw-Hill, New York, N.Y.
KNECHT, R.W.	<u> </u>	The distribution of electrons in the lower and middle ionosphere; <u>Progress in</u> <u>Radio Science</u> , 1960-1963, Vol. III, Elsevier.
LAITINEN, P.O., and HAYDON, G.W.	<u>[</u> 1950 <u></u>]	Analysis and prediction of sky-wave field intensities in the high frequency band; <u>Technical Report</u> 9, <u>U.S. Army</u> <u>Signal Radio Propagation Agency</u> , Ft. Monmouth, N.J.
LEFTIN, M.	<u>/</u> 1969_7	Numerical maps of monthly median h'F for solar cycle minimum and maximum (to be published).
--	--------------------------	--
LEFTIN, M. OSTROW, S.M., and PRESTON, C.	<u>_</u> 1968_7	Numerical maps of foEs for solar cycle minimum and maximum; <u>ESSA Tech. Report</u> <u>ERL 73-ITS 63</u> (U.S. Government Printing Office, Washington, D.C. 20402).
LEFTIN, M. OSTROW, S.M., and STEWART, F.G.	<u> </u>	Numerical maps of foE for solar cycle minimum and maximum (to be published).
LUCAS, D.L., and HAYDON, G.W.	<u> </u>	Predicting statistical performance indexes for high frequency ionospheric telecommunications systems; <u>ESSA Tech.</u> <u>Report IER 1-ITSA 1.</u> (U.S. Government Printing Office, Washington, D.C. 20402).
MARTYN, D.F.	<u>[1935]</u>	The propagation of medium radio waves in the ionosphere; <u>Proc. Phys. Soc.</u> , <u>47</u> , 323.
NBS	<u>_</u> 1948_7	Ionospheric radio propagation; National Bureau of Standards Circular 462.
NORION, K.A.	<u>[</u> 1959 <u></u>]	Transmission loss in radio propagation; <u>NBS Tech. Note 12</u> (U.S. Government Printing Office, Washington, D C. 20402).
PETRIE, L.E., and STEVENS, E.E.	<u>[</u> 1969 <u></u>]	An Fl layer MUF prediction system for northern latitudes, <u>IEEE Trans., AP-13</u> , 542.
PIGGOTT, W.R.	<u>[</u> 1959_7	The calculation of the median sky wave field strength in tropical regions; <u>Radio</u> <u>Research Special Report No. 27</u> , H.M.S.O., London.
PIGGOTT, W.R. and RAWER, K.	[1961 _ 7	URSI Handbook of ionogram interpretation and reduction; (Elsevier, New York, N.Y.).
RAO, M.K.	<u>[</u> 1969 <u></u>]	Nomographs for calculation of field strength; <u>J. Inst. Telecom. Engrs.</u> (India), 15, 729-740.
RAWER, K.	<u> </u>	Optique géométrique de l'ionosphère; <u>Revue scientifique, 86</u> , 585-600.

· ·

		- 107 -
RAWER, K.	<u>_</u> 1950 <u></u> _	Geometrical optics of ionospheric propagation; <u>Nature, 166</u> , No. 4216, 316.
RAWER, K.	1952_7	Calculation of sky-wave field strength; Wireless Engineer, 29, 287.
RICE, P.L., LONGLEY, A.G., NORTON, K.A. and BARSIS, A.P.	<u>[</u> 1967 <u></u>]	Transmission loss predictions for tropospheric communication circuits; Vols. 1 and 2, <u>NBS Tech. Note 101</u> (<u>Revised</u>) (U.S. Government Printing Office, Washington, D.C. 20402).
SCHELKUNOFF, S.A., an FRIIS, H.T.	nd _ 1952_7	Antennas-theory and practice (John Wiley and Sons, Inc., New York, N.Y.).
SCHIMAZAKI, T.	<u>_</u> 1955_7	World-wide daily variations in the height of the maximum electron density of the ionospheric F2 layer; J. Radio Res. Labs., Japan, No. 7, 2, 85-97.
SMITH, E.K. and MATSUSHITA, S. (eds.	<u>[</u> 1962 <u></u>]	Ionospheric Sporadic-E (Pergamon Press, New York, N.Y.).
SMITH, N.	<u>[</u> 19 3 9_7	The relation of radio sky-wave trans- mission to ionospheric measurements; <u>Proc. IRE</u> , <u>27</u> , 332-347.
WAKAI, N.	<u>_</u> 1961_7	Non-deviative absorption at night; <u>J. Radio Research Labs.</u> , <u>Japan</u> , <u>8</u> , 37, 213.
WAKAI, N.	<u>_</u> 1966 <u></u> _	Mean variations of the nighttime iono- spheric E-layer; <u>Proc. Conf. Ground-</u> <u>based Propagation Studies of the Lower</u> <u>Ionosphere</u> , Defence Research Telecom- munications Establishment, Ottawa, Canada.
WAKAI, N.	_1967_7	Quiet and disturbed structure and variations of the nighttime E region; J. Geophys. Res., 72, 4507-4517.
WHITEHEAD, J.D.	<u>[</u> 1969 <u></u>]	Report on the production and prediction of sporadic-E (to be published).
WRIGHT, J.W. and McDUFFIE, R.E.	<u>_</u> 1960_7	The relation of h_{max} F2 to M(3000)F2 and h_p F2; <u>J. Radio Res. Labs.</u> , Japan, <u>7</u> , 409-420.

.

.

WRIGHT, J.W., WESCOTT, L.R., and BROWN, D.J.

.

__1960-___ 1**963_**_ Mean electron density variations of the quiet ionosphere; <u>NBS Tech. Notes</u> 40-1 through 40-13 (U.S. Government Printing Office, Washington, D.C. 20402).

9. Appendix

A computer method for estimating sky-wave field strength and transmission loss at frequencies between the approximate limits of 2 and 30 MHz.

A computer programme has been written which is based upon the C.C.I.R. interim method for estimating sky-wave field strength and transmission loss at frequencies between the approximate limits of 2 and 30 MHz.

The input data to the programme consist of data cards and a magnetic tape. The magnetic tape can be supplied by the C.C.I.R. Secretariat, with the data in binary coded decimal (BCD) form. A programme to convert these data to a binary tape will be supplied with the data tape, together with a data file record.

A flow chart of the programme is shown in Fig. A-1. The programme consists of one main routine, 10 subroutines, and 18 library routines. The function of each routine and subroutine is as follows :

Main routine

Programme HFMLOSS

- 1. Calculates constants.
- 2. Read in data cards.
 - a) Method card.
 - b) Frequency card.
 - c) Circuit cards to tape.
 - d) Month and sunspot card.

3. Read in data from tape and interpolate on sunspot number.

- 4. Read circuit information from tape.
- 5. Calculate path information.
 - a) Path length.

- b) Path bearings.
- c) Reflection points.
 - 1) Geographic latitude.
 - 2) Geographic longitude.
 - 3) Geomagnetic latitude.
- 6. Hour loop calculations.
 - a) Local time and foF2 at receiver.
 - b) Reflection area loop calculations.
 - 1) Local time.
 - 2) Sun's zenith angle.
 - 3) Absorption index.
 - 4) foE.
 - 5) fEs.
 - 6) Height of bottom of F-layer.
 - 7) Height of maximum of F2.
 - 8) Gyro-frequency.
 - 9) F-layer critical.
 - c) E-layer MUF.
 - d) F-2 layer MUF.
 - e) Determine highest MUF.
- 7. Go to subroutine LUFFY.
- 8. Go back to read more circuit data.

Subroutines

<u>VERSY</u> - evaluates the coefficients for the world maps of fEs, foF2, M(3000)F2 factor, h'F, and foE that have been generated as a function of universal time and latitude (geographic or magnetic dip).

<u>MAGFIN</u> - computes the magnetic field components of the earth at any height and geographic latitude and longitude.

LUFFY - controls the second half of the programme as follows :

- 1. Calculates constants.
- 2. Prepares following information :
 - a) Transmitter power in decibels.
 - b) Ground reflection loss.

3. Hour loop.

- a) Initialize needed parameters.
- b) Calculates excess system loss.
- c) Mode loop calculations (9 modes).
 - 1) Virtual height.
 - 2) Takeoff angle.
 - 3) Fraction of days.
 - 4) Delay time.
 - 5) Ground reflection loss.
 - 6) Absorption.
 - 7) Free-space loss.
 - 8) Antenna gains.
 - 9) Transmission loss.
 - 10) Field strength.
 - 11) Signal power.
 - 12) Probability that the given required signal level will be achieved.
- d) Choose most probable mode.

e) Go to OUTPUT.

f) Return to HFMLOSS.

OUTPUT - produces all of the tabulated output.

<u>BEMUF</u> - calculates on the basis of parabolic layer theory the maximum usable frequency, takeoff angle, and virtual height of reflection, or, for a specific frequency, only the last two parameters.

LANDY - evaluates land areas that have been mapped by a Fourier series.

CHISQ - evaluates the chi-square probability function.

<u>F2DIS</u> - calculates the HPF and FOT from the MUF, based on a table of factors representing the decile values in terms of geographic latitude, sunspot number, hemisphere, and local time.

 \underline{SYSSY} - obtains from a table the values of the median excess system loss and the upper and lower standard deviations.

GLOS - calculates ground reflection losses for multiple hop modes.

Library routines

exit	CALL EXIT				
backfile	CALL BACKFILE (1)				
skipfile	CALL SKIPFILE (I)				
floating to fixed	XFIXF (X)				
square root	SQRTF (X)				
sine	SINF (X)				
minimum value	MIN1F (X, Y)				
natural logarithm	LOGF (X)				
cosine	COSF (X)				
arc tangent	ATANF (X)				
arc cosine	ACOSF (X)				
arc sine	ASINF (X)				
tangent	TANF (X)				
exponential	EXPF (X)				
magnitude of complex number	CABS (Z)				
argument of a complex number	CANG (Z)				
complex square root	CSQRT (Z)				
common logarithm	ALOG 10 (X)				

The data describing the calculations to be made are punched on cards. These are placed after the cards of the programme. Fig. A-2 is an illustration of a sample input card deck. The data are punched on the cards in the columns allocated, right adjusted / I = integer, F = floating point, A = alphanumeric (left-adjusted), R = alphanumeric (right-adjusted), X = blank (skip)/.

Programme control card

Columns	Name	Format	Description
1 - 5*	METHOD	I5	punch 3 only
6 - 10	NCDTP	I5	if path data on cards or tape
11 - 15	IHRO	I5	beginning hour UT
16 - 20	IHRE	I5	ending hour UT
21 - 25	IHRS	I5	step in hours
26 - 30		5X	blank
31 - 35	NUMO	I5	number of blocks of data on
			a page
36 - 40	NPAGO	I5	beginning page number
41 - 45	NES	15	sporadic-E option

* Reserved for other methods of output display, currently only Method 3 is available.

Frequency complement card

Columns	Name	Format	Description
1-7	FREL (1)	F7.3	first frequency of complement
8 - 14	FREL (2)	F7.3	second frequency of complement
15 - 2 1	FREL (3)	F7.3	third frequency of complement
22 - 28	FREL (4)	F7.3	fourth frequency of complement
29 - 35	FREL (5)	F7.3	fifth frequency of complement
36 - 42	FREL (6)	F7.3	sixth frequency of complement
43 - 49	FREL (7)	F7.3	seventh frequency of complement
50 - 56	FREL (8)	F7.3	eighth frequency of complement
57 - 63	FREL (9)	F7.3	ninth frequency of complement
64 - 70	FREL (10)	F7.3	tenth frequency of complement
71 - 77	FREL (11)	F7.3	eleventh frequency of complement

Circuit card

Columns	Name	Format	Description
1 - 16	ITRAN	2A8	name of transmitting location
17 - 32	IRCVR	2A8	name of receiving location
33 - 36	TLATD	F4.2	latitude of transmitter in degrees
37	ITLAT	Rl	northern (N) or southern (S) hemisphere of transmitter
38 - 42	TLONGD	F5.2	longitude of transmitter in degrees
43	TTLONG	Rl	western (W) or eastern (E) hemisphere of transmitter
44 - 47	RLATD	F4.2	latitude of receiver in degrees
48	IRLAT	Rl	northern (N) or southern (S) hemisphere of receiver
49 - 53	RLONGD	F5.2	longitude of receiver in degrees
54	IRLONG	Rl	western (W) or eastern (E) hemi- sphere of receiver
55 - 57	AMIND	F3.1	minimum takeoff angle in degrees
58 - 6 3	PWR	F6.2	transmitter power in kilowatts
64 - 69	RSN	F6.1	required signal power in decibels
Month and su	nspot card		

Columns Name Format Description 1 -3X 3 blank 4 - 5 MONTH 12 month 6 lΧ blank 7 - 10 I4 NYEAR year 11 - 15 5X blank 16 - 20 SSN F5.1 sunspot number

A sample calculation is shown in Fig. A-3. This is the only output display method available. The calculations obtained from the programme are normally written on magnetic tape for later printing on special paper. Circuit information used in the calculations are described at the top of each page. The body of the print-out contains the following information after the frequency complement heading, selected hour (universal time), and standard MUF (EJF).

<u>MODE</u> - the most likely mode present, based on the probability that the sky-wave will exist and the probability that the required signal power will be available at the receiver. The number indicates the total number of hops and the symbols used to denote the propagation modes are as follows : - 115 -

- E regular E-layer only
- F F-layer only
- S sporadic-E only
- X 1 E-layer hop and the rest via the F-layer
- Y 1 Es-layer hop and the rest via the F-layer
- V 2 E-layer hops and the rest via the F-layer
- W 2 Es-layer hops and the rest via the F-layer

(Examples : 3X indicates one E-layer hop and two F-layer hops; 5W indicates two Es-layer hops and three F-layer hops).

- ANGLE vertical angle in degrees associated with listed mode.
- DELAY time delay in milliseconds.
- <u>VIRT HT</u> virtual height of reflection in kilometres (in mixed modes this value is for F-layer reflections).
- F. DAYS fraction of days of the month that the sky-wave for the listed mode is expected to exist.
- LOSS DB lowest transmission loss in decibels of all nine modes.
- <u>DBU</u> median incident field strength at receiving location in decibels relative to one microvolt per metre.
- <u>SIG. DBW</u>- median signal power available at the terminals of the receiving antenna in decibels relative to one watt.
- F. SIG fraction of days within the month at the specified hour and frequency that the required signal power will be equalled or exceeded.

The complete programme listing follows Fig. A-3. A card deck may be obtained from the C.C.I.R. Secretariat or punched from the listing. Standard computer language (FORTRAN IV) was used. However, the computer core storage has to be set to zero before compilation.

FIG. A.2 INPUT CARD DECK FOR COMPUTER PROGRAM

							8						
					JULY	1968	•	SUNSPO	OT NUP	19ER	90.0		
MONR		TRERT		ANDTS	S ARAI	BA.FTI	н.		ATT MU	THS	MTL	ES	KM.
6 6	0 N _	44.01		0. 0		78.8	n E	87.	70 23	70.87	341	1.7	54.90.3
0.07	914 - NTMIIM	ANCIE		9000	DEEC	000	50- 21		79 21 VU 0	260 C'	10 -11		1904.0
LL T .	NIHOH	ANGL		DEGR	(FE3 ED4	FUNC	17- 13 1760 1	700000 78 Mu'	 7	CCQ+3.	1011	19.0 0	
				~ •					47 6			70 0	
01	MOF	2.0	3.0	2.0	1.5	10.0	12.5	17.0	1/05	20.0	29•U	30.0	
05	13.1												
	2.F	5F	3F	2F	2F	2X	2X	2F	35	35	35	3S	NODE
	7.3	25.1	14.0	5.9	5.0	0.3	0.7	7.3	2.7	2.7	2.7	2.7	ANGLE
	19.3	21.0	19.6	19.0	19.0	18.7	18.8	19.3	18.6	18.6	18.6	18.6	DELAY
	336	256	256	258	264	272	291	336	110	110	110	110	VIPT HT
	.50	. 99	. 99	.99	.93	. 84	-65	.33	.23	.18	.10	.06	F. DAYS
	140	242	204	171	158	152	150	169	148	149	150	151	1055 08
	36	-75	- 77	£, 7	20	20	77	36	7.8	38	10		DRU
	- 05	- 4 9 9	-460	-447	-104	-0.	-06	-05	_04	- 95	-06	-07	STC DBW
	- 47	-107	-120	-11/	-104	- 70	- 40		- 74	- 75	- 70	• 7	510.00
	• 90	•90	•00	•00	• 77	• 7 2	• 7 9	• 91	• 92	• 90	•09	• 0 /	F • 210
06	18.4												
	2F	3E	6F	3F	ZF	ZF	2F	8 X	ZF	32	32	3S	MODE
	8.0	1.5	29.5	14.1	6.4	5.4	5.2	0.5	6.4	5.2	2.7	2.7	ANGLE
	19.4	18.5	21.9	19.6	19.0	19.0	19.0	18.8	19.2	18.6	18.6	18.6	DELAY
	353	91	252	253	255	260	268	277	309	110	110	110	VIPT HT
	. 50	.99	.99	.99	.99	.99	.99	.97	.67	. 34	.18	.09	F. DAYS
	151	385	286	205	172	162	157	153	152	151	154	153	LOSS DB
	35	-217	-115	-30	7	19	27	31	34	36	35	37	DBU
	- 97	- 331	-232	-152	-118	-108	-117	-99	-98	- 97	-100	-99	STG.DRW
	- 77	- 001	-2.52	-175	-110	27	- 100	70		86	.77	. 79	F. STG
	• 0 2	•09	• • • •	• 0 0	•00	• 2 1	•09	• ()	4 Urg	• 00	• • •	• / 2	• • 310
	<u>.</u>												
U r	24.0	-			76	36				25	24	70	MODE
	21	5E	3E	58	35	31	21	24	2.	25	21	33	ANGLE
	9.0	1.5	1.5	24.5	13.1	12.6	5.0	5.4	0.1	2.9	2.0	2.1	ANGLE
	19.5	18.5	18.5	20.9	19.5	19.4	19.0	19.0	18.8	19.1	18.9	18.6	DELAY
	380	90	91	249	250	255	256	263	270	290	332	110	VIRT HT
	• 50	•99	•99	•99	•99	•99	•99	•99	• 99	• 91	•34	•25	F. DAYS
	153	536	431	270	203	185	165	160	157	155	153	156	LOSS DR
	- 35	- 368	-260	-94	-24	-4	18	24	29	32	36	34	DBU
	-99	-482	-377	-216	-149	-131	-111	-106	-103	-101	-99	-102	SIG.DBW
	.79	.00	.00	.00	.00.	.00	.03	.40	.61	.72	.80	.66	F. SIG
	• • •	• • •											
08	25.9												
	29	3E	3E	7F	4F	٦F	3F	2F	2F	2F	24	35	MODE
	2 1	4 5	4 5	77.6	10.4	17.2	12 .	6.0	5.8	6.0	1.7	2.7	ANGIE
	4 8 0	1.07	1.07	22 0	20 4	1010	40 E	40.0	40 0	40.4	10 0	18.6	
	10.9	10.00	10.0	22.0	CU+1	1202	1707	1.20	1200	1701	247	1040	VTOT NY
	324	90	91	244	246	271	271	200	200	201	313	110	ATKI HI
	• 62	.99	• 99	.99	•99	• 99	•99	•99	• 99	• 96	•08	• 62	F. UAYS
	156	677	535	339	235	197	183	166	162	159	156	155	LUSS 09
	34	-510	-364	-164	-56	-16	-0	18	24	28	33	36	080
	-102	-623	-481	-285	-181	-143	-129	-112	-108	-105	-102	-101	SIG.DBW
	.70	.00	.00	.00	.00	•00	.00	•00	• 28	.49	•69	.73	F. SIG

FIG. A-3

SAMPLE CALCULATION OF COMPUTER PROGRAMME OUTPUT

MÉTODO PROVISIONAL DEL C.C.I.R. PARA EVALUAR LA INTENSIDAD DE CAMPO Y LA PÉRDIDA DE TRANSMISIÓN DE LA ONDA IONOSFÉRICA EN LAS FRECUENCIAS COMPRENDIDAS ENTRE LOS LÍMITES APROXIMADOS DE 2 Y 30 MHz

1. Introducción

En cumplimiento de la Resolución 7 (Ginebra, 1963), el Grupo internacional de trabajo VI/l ha establecido un método para evaluar la intensidad de campo y la pérdida de transmisión de la onda ionosférica. Se recomienda utilizar el método provisional propuesto como base para desarrollar métodos más completos.

Como la mayoría de los métodos que se utilizan para evaluar el funcionamiento de los circuitos ionosféricos dependen de la predicción de las características de la ionosfera, para el desarrollo de este método de predicción de la intensidad de campo o de la pérdida de transmisión conviene emplear, en lo posible, predicciones de las características ionosféricas que tengan una aceptación internacional. Con este objeto se creó el Grupo internacional de trabajo VI/3 de la Comisión de estudio VI del C.C.I.R., y tales predicciones figuran en el Atlas C.C.I.R. de las características ionosféricas _ Informe 340, Oslo, 1966_7 y en un programa apropiado de calculadora.

En el presente Informe se expone un método de utilización de estas predicciones ionosféricas en la evaluación de la intensidad de campo o de la pérdida de transmisión de la onda ionosférica.

Como quiera que en el citado Atlas sólo se consideran las regiones E y F de la ionosfera, el método inicial propuesto en el presente Informe para la evaluación de la intensidad de campo o de la pérdida de transmisión se circunscribe también a dichas regiones ionosféricas.

Se han utilizado con buenos resultados muchos métodos de predicción de la calidad de los circuitos de telecomunicación por ondas decamétricas / NBS, 1948; Laitinen y Haydon, 1950; Harnischmacher, 1960; Rawer, 1952; Piggott, 1959; Beckmann, 1958, 1960, 1967; Lucas y Haydon, 1966; Kazantsev, 1947, 1956, 1957; Halley, 1965; Barghausen y otros, 1969; C.C.I.R., 1966-1969c 7.

Entre las características especiales de algunos de estos métodos cabe mencionar las siguientes:

La Circular NBS 462 <u>____NBS</u>, 1948 7 contiene un método aplicable a las distancias inferiores o iguales a unos 4000 km, y un segundo método para distancias mayores, que es un simple ábaco. Ambos métodos entrañan correcciones para el aumento anormal de la absorción en invierno.

El método del RPU-9 / Laitinen y Haydon, 1950 7 es continuo para cualquier distancia. Ábacos relativamente sencillos permiten la solución gráfica directa. Las evaluaciones de la altura de la región F2, en función del tiempo y de la ubicación, permiten tener en cuenta el diagrama de directividad vertical de las antenas de transmisión y recepción. Este método se ha utilizado ampliamente durante ciclo y medio solar, poco más o menos y ha sido revisado recientemente / Lucas y Haydon, 1966 7 para tratar de manera especial los circuitos aurorales y polares, incluir el cálculo de la pérdida de transmisión y adaptarlo para calculadoras electrónicas.

El método de Kazantsev permite evaluar directamente la intensidad de campo cuando se conoce foE, lo que hace superfluo el uso de un índice arbitrario de absorción para la región D. En la U.R.S.S. se ha preparado para este método un programa de calculadora que permite determinar la LUF y la intensidad de campo <u>C.C.I.R.</u>, 1963-1966<u>7</u>. La comparación entre los resultados obtenidos con calculadora electrónica y los de resolución gráfica ha puesto de manifiesto una correspondencia satisfactoria. Los estudios hechos en la U.R.S.S. <u>C.C.I.R.</u>, 1966-1969a<u>7</u> muestran que es posible aumentar la precisión del cálculo de la absorción auroral según el método de Kazantsev.

Se prosiguen los estudios en la U.R.S.S./C.C.I.R., 1966-1969b/7 para tratar de definir los valores de absorción y de intensidad de campo correspondiente a la recepción con incidencia oblicua utilizando datos obtenidos mediante sondeos ionosféricos verticales.

El método de Piggott / 1959 /tiene en cuenta que la absorción medida en las regiones tropicales es mayor de la que se deduciría suponiendo que depende directamente de la distancia cenital del Sol. Este método entraña la utilización de los datos sobre la absorción obtenida con incidencia vertical en cierto número de ubicaciones y tiene también en cuenta la absorción durante las primeras horas de la noche, suponiendo un tiempo finito de recombinación para la ionosfera inferior. En las expresiones relativas a la atenuación espacial, se tiene en cuenta el enfoque al horizonte en las proximidades de los límites de propagación de un solo salto. El método francés (preparado inicialmente por Rawer en el S.P.I.M.) se aplica a las frecuencias inferiores a la MUF clásica (JF) y a distancias inferiores o iguales a unos 10.000 km. Los modos de propagación (a lo largo del círculo máximo) se consideran individualmente teniendo en cuenta la absorción con o sin desviación y, si se trata de ecos en la capa F, la ocultación por las capas E y Es. Normalmente, hay que disponer de curvas de probabilidad de 30 y 90%, pues, de lo contrario, no se podría tener en cuenta la ocultación por Es. La predicción es, pues, esencialmente estadística. El método comprende normas para incluir los ángulos de elevación de los distintos modos para un diagrama de directividad vertical determinado de la antena.

La extensión del método concebido por Harnischmacher (también elaborado inicialmente en el S.P.I.M.) conviene para grandes distancias. Es un método mixto que consiste en buscar simultáneamente las condiciones de atenuación y de reflexión y su principio es considerar un rayo del que se conocen la frecuencia, el ángulo de elevación y el acimut, y hacer variar luego estos parámetros. Parece que, para distancias muy grandes, las frecuencias más interesantes son las que se reflejan por la noche en la capa F, y en la E (o en las Es) durante el día. Hasta cierto punto, el método admite una propagación que se desvía del círculo máximo, de tal modo que, a distancias superiores a 16.000 km, se suman las contribuciones procedentes de diferentes acimuts. La atenuación se calcula partiendo de la absorción local (dada por una ley de variación en función de la distancia cenital del Sol) en el periodo diurno, para lo cual se extrae la media de las distintas reflexiones en la capa E teniendo en cuenta el ángulo de elevación. Aunque al admitir que la propagación se desvía del círculo máximo se hace intervenir hasta cierto punto la influencia de fuertes gradientes horizontales de ionización, se supone constante el ángulo de elevación del rayo considerado para todos los puntos de reflexión en el suelo.

El método semiempírico de Beckmann se aplica principalmente a las distancias superiores a 4000 km, y su principal objeto no es dar una solución completa al problema de cálculo de la intensidad de campo, sino extrapolar ésta a partir de la LUF, que se determina por los métodos existentes de cálculo cuando es bastante inferior a la MUF clásica (JF), o por observación, hasta la MUF de explotación (MUF), pasando por toda la gama de frecuencias utilizables. Introduciendo un segundo término de atenuación proporcional a (f/MUF) de explotación $^2 / (f/MUF)^2 /$, se tienen en cuenta las pérdidas debidas a la dispersión por encima y por debajo de la MUF clásica (JF) y la absorción con desviación. La MUF de explotación (MUF), para cierto nivel de intensidad de campo, se determina por observación o aplicando a la MUF normalizada (EJF) un factor de corrección empírico. Así, con este método la intensidad de campo calculada es máxima cerca del centro de la gama de frecuencias utilizables, y disminuye en las frecuencias más altas, como lo confirman las observaciones. También puede utilizarse este método para convertir la intensidad de campo en cualquier frecuencia al valor que es de esperar en otra.

En el método japonés se consideran, para los cálculos, trayectos de propagación con dispersión lateral cuya MUF es igual a la frecuencia utilizada o a la superior más próxima a ésta cuando por la capa F2 no puede haber ninguna propagación normal. Aplicando una ecuación experimental se obtiene la atenuación relativa para la dispersión lateral en el suelo, como una función simple del ángulo que forman la onda reflejada normalmente y la onda con dispersión lateral. Se sugiere que en todos los métodos de cálculo de la intensidad de campo se tenga en cuenta la influencia de la dispersión lateral en el suelo.

Con el método de la Administración india / Rao, 1969/ se utiliza una expresión de la absorción sin desviación, basada en una larga serie de medidas de la absorción vertical realizadas en la India. Este método entraña una corrección de 2,5 dB para la atenuación que causa la absorción nocturna con desviación, y supone una atenuación de polarización de 3 dB. Se considera que la atenuación espacial comprende los efectos del enfoque en el horizonte.

En Australia se ha elaborado un programa de calculadora / C.C.I.R., 1966-1969c 7 en el que se han utilizado las características de la ionosfera en cada punto de reflexión para determinar, según la teoría de las capas parabólicas el modo predominante de propagación en un trayecto dado. En los diferentes modos estudiados, el ángulo de propagación es igual para todos los saltos, con lo cual, con diferentes características ionosféricas en el trayecto, las distancias calculadas varían para cada salto. La absorción con y sin desviación se ha calculado teniendo en cuenta el enfoque, la polarización y la reflexión en el suelo. Se han calculado los modos de propagación que cubren hasta 6 saltos y considerándose modo dominante al modo para el cual la atenuación en el trayecto es menos elevada. Entre los modos de propagación figuran la propagación simple por reflexión en la capa E o F y diversos modos complejos; en todos los casos puede existir un efecto de pantalla de la capa E.

Con la representación de la ionosfera por coeficientes numéricos / Informe 340, Oslo, 1966 / y la existencia de un número, cada vez mayor, de calculadoras electrónicas para tramitar estos datos, se han podido mejorar los anteriores métodos de predicción de la calidad de los circuitos de telecomunicación que utilizan la propagación ionosférica. El método provisional del C.C.I.R., propuesto en el presente Informe, para evaluar la intensidad de campo, o la pérdida de transmisión de la onda ionosférica, se basa en las características ionosféricas que figuran en el Informe 340 del C.C.I.R., completadas con los necesarios parámetros ionosféricos adicionales y con hipótesis relativas a estos parámetros, en espera de que el Grupo internacional de trabajo VI/3 llegue a descripciones más completas de la ionosfera. Aunque el Grupo internacional de trabajo VI/3 sólo ha considerado las regiones E y F2 de la ionosfera, en el presente Informe también se tienen en cuenta, parcialmente, los efectos de la región F1 en un modelo simple de dos regiones, con una distribución parabólica de la densidad electrónica en cada región.

El presente Informe no tiene por objeto revisar los distintos métodos de predicción, sino más bien, proponer un método de evaluación de la intensidad de campo y de la pérdida de transmisión de la onda ionosférica, partiendo de métodos y técnicas existentes. compatibles con los datos mundiales de que se dispone y que se pueden utilizar, de forma económica, sin menoscabo de su flexibilidad, para introducir en ellos los progresos realizados en materia de investigación ionosférica y técnicas de obtención de datos. El método permite evaluar la mediana horaria de la intensidad de campo, o la pérdida de transmisión para los sistemas de telecomunicación que funcionan por debajo de la frecuencia de conjunción estimada (EJF) en la gama de frecuencias de 2 MHz a 30 MHz, y está destinado, principalmente, a los organismos de radiocomunicación, a los administradores de frecuencias y a los ingenieros encargados de la explotación, planificación y construcción de sistemas de comunicación por ondas decamétricas. E1 Informe lleva anexo una lista completa del programa y organigramas para calculadora (apéndice). El programa está escrito de forma que se puede revisar fácilmente, a medida que se disponga de nuevos datos ionosféricos o de nuevos métodos de cálculo.

Debe subrayarse que muchos factores, que habría que considerar explicitamente en un método eventual de predicción, están colectivamente incluidos en este método provisional por una "pérdida en exceso del sistema" empíricamente determinada. Esta pérdida tiene por objeto expresar estadísticamente los efectos adicionales de ciertos fenómenos, como la anomalía hibernal, la ocultación por la capa E esporádica, los trayectos múltiples de la capa F difusa, la propagación fuera del círculo máximo, la distancia de salto y el enfoque en el horizonte, la variación de uno a otro día de las alturas y espesores de las capas, etc. La pérdida en exceso del sistema se ha llevado a unas tablas de distribución previsible del valor mediano horario de la intensidad de campo o de la pérdida de transmisión, dentro de un mes, a una hora dada.

La intensidad de campo en la MUF clásica, o en sus proximidades, es un fenómeno importante, no incluido en este método provisional y que no está tampoco debidamente considerado en la pérdida en exceso del sistema. Las intensidades de campo en las proximidades y por encima de la MUF clásica tienen que ser consideradas de manera especial, pues la onda ionosférica experimenta, además de la absorción sin desviación, otras pérdidas debidas a la absorción con desviación y a la dispersión, cuya intensidad crece rápidamente en las proximidades de la MUF clásica, es decir, a medida que aumenta la penetración en la capa reflectora. Por consiguiente, se puede observar ya, normalmente, un decrecimiento de la intensidad de campo por debajo de la MUF clásica. La gama de frecuencias en que este decrecimiento ocurre puede ser muy estrecha si los enlaces radioeléctricos son relativamente cortos y permiten la propagación por un salto, y si la ionosfera está en calma / Dieminger y Rose, 1961 / . Cuando la propagación se efectúa por reflexiones múltiples (trayectos más largos) y cuando la ionosfera está perturbada, la gama será considerablemente más ancha.

Este punto merece primordial consideración al ampliar o revisar este método provisional.

Los usuarios de este método no deben olvidar, sobre todo, que puede resultar menos satisfactorio donde y cuando prevalece extraordinariamente alguno de los factores mencionados, o cuando se trabaja con frecuencias inferiores a unos 3 MHz o a distancias mucho mayores de 10.000 km.

1.1 Principios del método

Se han publicado muchos trabajos sobre la ionosfera y el papel que ésta desempeña en las comunicaciones por ondas decamétricas que utilizan la propagación ionosférica. No se repiten aquí con detalle las teorías relativas a esta propagación, pero en los casos necesarios se indican algunos elementos de base para mejor comprender el proceso de las predicciones y los principios del programa.

En el modelo básico se supone que la ionosfera puede representarse por una o más capas parabólicas / Appleton y Beynon, 1940 /, dada suficiente información sobre la altura de ionización máxima, el semiespesor y la densidad electrónica. Hay que disponer de datos suficientes para predecir una distribución de la densidad electrónica media, en función de la altura, para todo trayecto posible de transmisión. El modelo retiene el teorema del trayecto equivalente / Breit y Tuve, 1926; Martyn, 1935 / y su solución de la curva de transmisión / Smith, 1939 /, ya que este método es el que más se emplea para las mediciones y predicciones de las características ionosféricas.

El programa permite predecir la pérdida de transmisión o la intensidad de campo, expresada en valores medianos mensuales de los medianos horarios y la probabilidad de que en una frecuencia dada se alcancen o rebasen, durante el periodo en que la propagación de la onda ionosférica es regular, niveles especificados de potencia en la recepción.

La necesidad de estimar la intensidad de campo de la onda ionosférica ha llevado a elaborar modelos muy diversos para representar los factores que influyen en la propagación ionosférica de las señales de ondas decamétricas.

- 128 -

Estos modelos van desde los más sencillos, que utilizan sólo unas pocas variables, hasta técnicas muy perfeccionadas de trayectografía, que requieren un conocimiento preciso y detallado de los parámetros geofísicos e ionosféricos.

El modelo propuesto por el Grupo internacional de trabajo VI/l permitirá utilizar los datos mundiales de que se dispone para predecir un perfil medio de la densidad electrónica, en función de la altura real para el trayecto considerado y utilizar este modelo en la predicción de las pérdidas de la onda ionosférica. Este modelo retiene el teorema de la equivalencia y la noción relativa a la curva de transmisión, con el fin de que sea compatible con los métodos empleados en las mediciones y predicciones de las características ionosféricas, como las que recientemente ha preparado el Grupo internacional de trabajo VI/3. El perfil de la densidad electrónica a lo largo del trayecto se supone que está representado de forma adecuada por dos capas parabólicas. La altura de ionización máxima, el espesor y la densidad electrónica se han derivado de ubicaciones próximas a los puntos de reflexión efectivos a lo largo del trayecto.

Los parámetros geofísicos e ionosféricos se determinan, a lo largo del trayecto, para obtener los valores medianos mensuales de la MUF normalizada (EJF) y de las pérdidas en frecuencias específicas. Estos valores se combinan con las distribuciones diarias para predecir el nivel de señal rebasado en cualquier fracción de los días del mes en que la propagación de la onda ionosférica se hace por un trayecto regular.

2. Datos ionosféricos básicos

Los electrones libres en la ionosfera, crean regiones de reflexión importantes para la propagación de las ondas decamétricas. En las principales regiones, entre unos 60 y 500 km de altura, los electrones libres los producen los rayos ultravioleta y los rayos X del Sol. Para simplificar, la ionosfera está dividida en tres regiones, según la altura y la distribución iónica: regiones D, E y F. Cada región está dividida, a su vez, en capas llamadas D, E, Es, Fl y F2, según la altura y el espesor. Estas capas, que no son distintas, sino que más bien se superponen, se describen de manera detallada, por medio de perfiles de densidad electrónica. El número de capas, su altura y su densidad electrónica varían geográficamente y en función del tiempo.

2.1 Región D

La región D se sitúa entre los límites aproximados de 60 y 90 km de altura. Su densidad electrónica es relativamente pequeña, comparada con la de las otras regiones, pero a causa de las colisiones entre las moléculas de la atmósfera y los electrones libres acelerados por la onda electromagnética, se producen pérdidas de energía. Estas pérdidas de energía se denominan "absorción". La absorción en la región D se considera no desviativa, dado que se produce por debajo del nivel de reflexión y predomina cuando el trayecto del rayo se curva un poco o no se curva. En las regiones E y F, cuando la onda se aproxima al nivel de reflexión, se produce una aminoración o un efecto de retardo de grupo, que aumenta el tiempo en que pueden producirse colisiones y, por consiguiente, absorción. La absorción de este tipo se considera desviativa.

A causa de su poca densidad electrónica, la región D no refleja las señales transmitidas en frecuencias superiores a l MHz, pero su absorción es muy importante en todas las frecuencias. Este fenómeno es principalmente diurno, ya que son los rayos ultravioleta del Sol los que producen la ionización de esta región. El grado de absorción, expresado por el factor de absorción, es proporcional al producto de la frecuencia de colisión por la densidad electrónica y más o menos inversamente proporcional al cuadrado de la frecuencia de la onda. Su variación depende del ángulo cenital del Sol. Después del ocaso, en la región D, la ionización disminuye con rapidez y, dos o tres horas después, el valor de la absorción no desviativa es despreciable.

La absorción no desviativa de la región D se tiene en cuenta en este método mediante una expresión analítica y semiempírica que se explica de forma detallada en el § 6.2. Las pérdidas por absorción desviativa están incluidas en cierta medida en estos cálculos de pérdidas y también como un factor de incertidumbre (véase el § 6.4).

Otra propiedad importante de las regiones D superior y E inferior es la absorción diferente para las ondas ordinaria y extraordinaria que produce el campo magnético terrestre. Estas propiedades de absorción diferentes de las dos ondas y su estado decreciente de polarización en la atmósfera, son muy importantes en las frecuencias inferiores y en las bajas latitudes, en las que una parte importante de la potencia radiada puede estar acoplada a la onda extraordinaria / Barghausen, 1966 /. Ésta se refleja en un nivel inferior; su MUF normalizada (EJF) es algo más alta y sufre mayor absorción. En el presente informe sólo se consideran la MUF normalizada (EJF) de la onda ordinaria y las propiedades de absorción.

2.2 Región E

Para las comunicaciones, la característica más importante de la región E es su frecuencia crítica. La frecuencia crítica de la capa E

venía determinada por una ecuación semiempírica, en la que intervenía el número de manchas solares y el ángulo cenital del Sol. Esta relación se ha revelado inadecuada para el orto y el ocaso y para las horas nocturnas. En la actualidad se dispone de mapas de contornos mundiales y de coeficientes numéricos para los cálculos de los valores medianos mensuales foZ Leftin y otros, 1969. Los coeficientes numéricos (U_{SK}) dan los valores de la foZ (MHz) en función de la latitud, la longitud y el tiempo universal. La designación U_{SK} se refiere a los coeficientes numéricos resultantes de un análisis de las características ionosféricas en tiempo universal.

Los coeficientes numéricos que representan foE se derivan principalmente de mediciones efectuadas en 1958 y 1964. Estos años son representativos de las fases de alta (1958) y baja (1964) actividad del ciclo solar. Se ha empleado la interpolación lineal para obtener los valores de foE correspondientes a otras fases del ciclo solar.

Durante el día, la capa E parece tan regular que se puede considerar despreciable la distribución de foE. Son muy limitados los datos correspondientes a la noche, pero parece lícito suponer / Elling, 1961; Wakai, 1966; Wakai, 1967 / una regularidad similar de la capa E durante la noche.

Las características de la capa E, para fines de comunicación, están representadas por los coeficientes numéricos medianos mensuales de foE. La altura real de la capa regular E se sitúa entre 90 y 130 km. Se supone que la densidad máxima electrónica está a unos 110 km y que el semiespesor es de 20 km / Knecht, 1963; Frihagen, 1965 /.

2.3 Región F

La región F es la parte más importante de la ionosfera para la propagación de las ondas decamétricas. Consta de dos capas distintas, Fl y F2. Mientras que la cresta principal de la región se identifica con la capa F2, la capa Fl reviste, en algunas ocasiones, la forma de un borde del nivel inferior de la región F.

La capa Fl es importante para las comunicaciones durante el día o durante las tormentas ionosféricas/ Kelso, 1964; Wright y otros, 1960-1963; Petrie y Stevens, 1969/; se sitúa entre unos 170 y 230 km de altura, y sufre variaciones estacionales y variaciones ligadas al ciclo de actividad solar. Aunque el programa no comprende directamente la frecuencia crítica de la capa Fl ni sus efectos en la desviación de la onda propagada, se tiene en cuenta parcialmente del efecto de la capa Fl sobre la capa F2 durante el día, como queda descrito en el § 4. La región F, al igual que las demás regiones de reflexión y de absorción de la ionosfera, es producida y está determinada por la radiación solar, y existe una estrecha correlación entre la actividad solar y las características de la región F. La media móvil del número de manchas solares R, comunicada por Zurich (a veces designada por número de Wolf), aunque totalmente empírica, se ha revelado útil para las predicciones destinadas a las comunicaciones en ondas decamétricas y se ha retenido como parámetro en este método provisional.

El Informe 340 del C.C.I.R. contiene coeficientes estimados para la variación mundial de la frecuencia crítica de la capa F2 (foF2) y su factor conexo M(3000)F2 para los niveles de actividad solar $R_{12} = 0$ y $R_{12} = 100$. Los factores foF2 y M(3000)F2 se han determinado por escalas de ionogramas de incidencia vertical y aplicando la curva normalizada de transmisión para 3000 km al trazo de la onda ordinaria de primer orden / Piggott y Rawer, 1961. Por consiguiente, la MUF normalizada para un trayecto de 3000 km no es más que el producto de la foF2 y M(3000)F2. M(4000)F2 se obtiene multiplicando M(3000)F2 por 1,1.

En la cinta figuran los datos correspondientes a las características de la capa F2 en forma de coeficientes numéricos (U_{SK}), extraídos del Informe 340 del C.C.I.R., para baja actividad solar ($R_{12} = 0$) y alta actividad solar ($R_{12} = 100$) y cada mes del año, que se utilizan en el programa. El factor de dependencia de la actividad solar se puede obtener aproximadamente por interpolación lineal, para cualquier nivel de actividad solar, comprendido entre $R_{12} = 0$ y $R_{12} = 100$. No obstante, los coeficientes U_{SK} a largo plazo no deben extrapolarse linealmente por encima de $R_{12} = 150$ ya que existe una marcada relación no lineal entre las características de la capa F2 a largo plazo y una alta actividad solar.

2.4 Propagación por reflexión en la región Es y otras anomalías

Lo que queda expuesto se refiere a las características de primer orden de las distintas capas. Existen otros fenómenos (por ejemplo, capa E esporádica, capa F difusa, dispersión en la capa F, trazos múltiples y otros fenómenos transitorios), observados en los registros de ionosondas / Piggott y Rawer, 1961 /, que son importantes para las radiocomunicaciones. De estos fenómenos, el único que en la actualidad se tiene en cuenta para las predicciones es la capa E esporádica.

En los ionogramas de incidencia vertical y oblicua / Smith y Matsushita, 1962; Bowhill, 1966; Whitehead, 1969 / se ve la capa E esporádica cerca de la altura de máxima ionización de la capa E normal. La capa E esporádica (Es) se caracteriza por el poco o ningún retardo que se produce en su frecuencia crítica, y puede ser total o parcialmente reflectora, o ambas cosas al mismo tiempo, a veces hasta en frecuencias muy altas (> 75 MHz con incidencia oblícua). Estas características lo mismo pueden ser útiles que perjudiciales para las radiocomunicaciones. Por ejemplo, la capa Es, cuando es totalmente reflectora, puede bloquear la propagación por una capa normal más favorable y cuando es parcialmente reflectora, causar propagación por trayectos múltiples, lo que puede resultar especialmente perjudicial para los sistemas de transmisión de datos. No obstante, la capa Es puede también ser útil al reducir los efectos de la absorción con desviación o al ampliar la gama de frecuencias útiles, y se puede aprovechar eficazmente en la explotación y proyecto de sistemas.

Se ha establecido un método / Leftin y otros, 1968 / para evaluar la probabilidad de ocurrencia de la propagación por la capa Es, que es un complemento de las predicciones de propagación por reflexión en la capa normal. Los coeficientes numéricos $U_{\rm SK}$, que corresponden a las variaciones diurnas y mundiales de la frecuencia crítica de la capa E esporádica (foEs), registradas por la red mundial de estaciones de sondeos ionosféricos para cada uno de los 12 meses, durante un año de mínima actividad solar (1954) y un año de máxima actividad solar (1958), representan los valores de los decilos superior, mediano e inferior de foEs, calculados para cada hora del día de cada mes. La foEs es la frecuencia más alta de la onda ordinaria que puede reflejarse en la capa Es con incidencia vertical.

En el presente informe provisional, las pérdidas correspondientes a la propagación por reflexión en la capa Es se estiman provisionalmente iguales a las correspondientes a una capa perfectamente reflectora.

3. Consideraciones geométricas fundamentales

Para evaluar la intensidad de campo o la pérdida de transmisión de la onda ionosférica, en primer lugar es necesario calcular los parámetros geométricos del trayecto, o sea, la distancia siguiendo el círculo máximo, el acimut y las zonas de reflexión ionosférica.

3.1 Distancia en el arco de círculo máximo y acimut

Conocidas la latitud y la longitud geográficas de las ubicaciones del transmisor y del receptor, la distancia más corta, en un arco de círculo máximo, entre los dos puntos se calcula como sigue:

$$\cos d = \operatorname{seno} x_1 \operatorname{seno} x_2 + \cos x_1 \cos x_2 \cos(y_1 - y_2), \quad (1)$$

en donde: x_1 = latitud geográfica del transmisor,

 $y_1 =$ longitud geográfica del transmisor,

 x_{2} = latitud geográfica del receptor,

- 133 -

y₂ = longitud geográfica del receptor

d = arco de círculo máximo.

Los dos acimutes son:

 $\cos b_1 = (\operatorname{seno} x_2 - \operatorname{seno} x_1 \cos d) / \cos x_1 \operatorname{seno} d, \qquad (2)$

 $\cos b_2 = (\operatorname{seno} x_1 - \operatorname{seno} x_2 \cos d) / \cos x_2 \operatorname{seno} d, \qquad (3)$

en donde:

b₁ = acimut transmisor-receptor,

 $b_{0} = acimut receptor-transmisor.$

3.2 Coordenadas de la zona de reflexión

Para establecer un perfil de la densidad electrónica a lo largo del trayecto, se evalúan, para mayor facilidad, los parámetros ionosféricos en un número de zonas de reflexión, comprendido entre uno y cinco, según el arco del círculo máximo. Estas cinco zonas son las siguientes:

- 1. El punto medio del trayecto;
- 2. La zona de reflexión en la región E más próxima al transmisor, para el menor número posible de saltos;
- 3. La zona de reflexión en la región E más próxima al receptor, para el mismo número de saltos;
- La zona de reflexión en la región F más próxima al transmisor, para el menor número posible de saltos;
- 5. La zona de reflexión en la región F más próxima al receptor, para el mismo número de saltos.

El menor número posible de saltos se determina suponiendo una distancia máxima de salto de 2000 km para un modo E y de 4000 km para un modo F. Para distancias de menos de 2000 km, sólo se considera el punto medio. Se determinan así las zonas de reflexión para evaluar las características ionosféricas medias para todo el trayecto. Se aplica la teoría de la capa parabólica para determinar los modos probables de propagación (Rawer, 1948, 1950; Bibl , 1950 7. Para evaluar los parámetros ionosféricos de estas cinco zonas de reflexión, sus coordenadas geográficas y su latitud magnética se tienen que calcular como sigue:

$$x_{n} = 90^{\circ} - \arccos \left(\cos d_{n} \operatorname{seno} x_{1} + \operatorname{seno} d_{n} \cos x_{1} \cos b_{1} \right), \quad (4)$$

$$y_{n} = y_{1} - \arccos \left(\sum \cos d_{n} - \operatorname{seno} x_{n} \operatorname{seno} x_{1} - \sum \cos x_{n} \cos x_{1} \right), \quad (5)$$

$$g_{n} = 90^{\circ} - \arccos \left(\operatorname{seno} 78,5^{\circ} \operatorname{seno} x_{n} + \cos 78,5^{\circ} \cos x_{n} \cos x_{1} \right), \quad (6)$$

en donde:

- d = arco de círculo máximo entre la zona de reflexión y el transmisor;
- x = latitud geográfica de la zona de reflexión;
- y_ = longitud geográfica de la zona de reflexión;
- g_ = latitud magnética de la zona de reflexión.

3.3 Angulo cenital solar

El ángulo cenital del Sol, en la zona de reflexión, utilizado en el cálculo del factor de absorción, es el siguiente:

$$\cos \psi = \operatorname{seno} x_{n} \operatorname{seno} s_{x} + \cos x_{n} \cos s_{x} \cos (s_{y} - y_{n}), \qquad (7)$$

en donde:

 $t_g = tiempo universal,$ $s_y = 15 t_g - 180 = longitud subsolar,$ $s_x = longitud subsolar correspondiente a mitad del mes,$ $\psi = angulo cenital del Sol.$

3.4 Tipos de trayectos considerados

Se evalúan hasta nueve trayectos de rayo. El trayecto del rayo debe ser geométricamente posible para un ángulo de elevación igual o mayor que el valor mínimo indicado en los datos de entrada.

Los modos de la capa E considerados son: primero el modo con el menor número posible de saltos para el ángulo de elevación indicado, y, segundo, el modo con el número mayor siguiente de saltos. Si los cálculos indican que, en determinada frecuencia, el rayo penetra en la capa E, si se quiere puede estudiarse el modo por la capa E esporádica. Esto se incluye con carácter facultativo en el programa. El primer modo de la capa F tiene el mínimo número de saltos geométricamente posibles, incluidas las limitaciones impuestas por los datos de entrada o por la capa E regular. El presente programa no tiene en cuenta la ocultación por la capa E esporádica.

Los modos mixtos sólo se consideran para trayectos superiores a 2000 km y se componen de una o dos reflexiones en la capa E o en la capa Es, y una o más reflexiones en la capa F. El primer modo mixto se compone del salto lE o Es y el resto del trayecto con el menor número posible de reflexiones en la capa F. El segundo modo es similar al primero, pero para el mayor número de saltos siguiente por la capa F. Para mayores distancias se necesita considerar múltiples saltos E en los modos mixtos /Harnischmacher, 1960/. Los trayectos trans-ecuatoriales presentan problemas especiales.

Los trayectos analizados comprenden, por lo menos:

de	cero	а	2,000	km	1.E	l.F	2 . F		
	2.000	a	4.000	km	2.E	l.F	2 . F	1.E + 1.F	
	4.000	a	6.000	km	3.E	2.F	3.F	1.E + 1.F	2.E + 1.F
	6,000	a	8.000	km	4.E	2 . F	3.F	1.E + 2.F	2.E + 1.F
	8.000	a	10.000	km		3.F	4.F	1.E + 2.F	2.E + 2.F

4. Parámetros ionosféricos

Los parámetros ionosféricos que se necesitan para la evaluación son: la frecuencia crítica de la capa; la altura de la densidad máxima electrónica de la capa, y la altura de la parte inferior de la capa.

Las frecuencias críticas de las capas F2 y E se obtienen a partir de mapas mundiales / Informe 340 del C.C.I.R., Oslo 1966/ /Leftin y otros, 1969 / y son valores medianos de estos parámetros. La altura real de la densidad máxima electrónica de la capa F se determina en dos fases. Primero se obtiene de los mapas mundiales el factor M(3000)F2, y después se calcula la altura real de la ionización máxima h_{max} en la capa / Wright y McDuffie, 1960 / sobre la base de la siguiente relación / Shimazaki, 1955/:

$$h_{\text{max}} = \frac{1490}{M(3000)F2} - 176$$
(8)

La altura virtual del límite inferior de la región F (Fl y F2) también se obtiene de mapas mundiales / Leftin, 1969 / y ambas alturas de la capa F se reducen por el retardo (Δ h) en kilómetros producido por la capa E subyacente, calculado con un modelo parabólico / Kelso, 1964 /: - 137 -

$$\Delta h = y_{E} \left[Z \log_{e} \left(\frac{Z+1}{Z-1} \right) - 2 \right], \qquad (9)$$

en donde:

Z = 0,834 (foF2)/foE,

 $y_{\rm p}$ = semiespesor de la capa E = 30 km.

Los resultados de los cálculos se utilizan como alturas verdaderas, y su diferencia es el semiespesor de la capa.

La forma de la capa E se supone parabólica con una altura constante, a sabor, 90 km el límite inferior, 110 km para el punto de densidad máxima electrónica y 130 km el límite superior. Como primera aproximación, para incluir los efectos de ionización entre las regiones E y F, se utiliza un semiespesor de la región E de 30 km cuando la onda penetra en la región E. / Bibl y otros, 1952 /.

5. Trayectos de la onda ionosférica en la ionosfera

Los parámetros ionosféricos se utilizan con la teoría de la capa parabólica para calcular la frecuencia máxima utilizable (MUF normal), el ángulo de elevación β y la altura virtual de reflexión h¹ para todas las frecuencias, mediante la siguiente ecuación:

$$f = f_{v} k \sec \phi, \qquad (10)$$

que es la conocida "ley de la secante" que se ilustra en la Fig. 1, siendo

- f = frecuencia de sondeo en incidencia oblicua,
- f = frecuencia equivalente de incidencia vertical,
- k = factor de corrección que resulta de la curvatura de la ionosfera,
- ϕ = ángulo de semivértice del triángulo equivalente.

Como estos valores no se obtienen directamente, hay que utilizar varias relaciones intermedias. Sea

$$x = f_{v}/f_{a}, \qquad (11)$$

en donde f, se calcula iterativamente,

f = frecuencia crítica de la capa reflectora.

FIG. 1

Entonces la altura virtual h' se obtiene por la ecuación \angle Bibl, 1950 \angle h' = h₀ + y_m x arctang(x), (12)

de la que por los datos sabemos que:

 $h_o = altura del límite inferior de la capa reflectora, y$ $y_m = semiespesor de la capa reflectora.$ A continuación se obtiene el valor de ϕ , como se muestra en la Fig. 2, mediante la ecuación:

$$\tan \phi = \operatorname{seno}(d/2) / \left(1 - \cos\left(\frac{d}{2}\right) + \frac{h'}{r_0} \right), \quad (13)$$

en donde

d = arco de círculo máximo,

 $r_0 = radio de la Tierra (6371,2 km);$

Después, de la ecuación:

$$h = h_0 + y_m (1 - \sqrt{1 - x^2})$$
 (14)

se halla h, altura verdadera de reflexión, y por último se determina como sigue el factor de corrección:

$$k = 1 / \left(\frac{2(h' - h)}{r_0 + h} \right) \tan^2 \phi$$
(15)

Cuando se necesitan el ángulo de elevación y la altura virtual para una frecuencia específica $f = f_0$, se empieza por hacer un cálculo inicial adecuado de f_v , por ejemplo f_{vl} , y se calcula f mediante la ecuación (10). Esto da una corrección de primer orden Δf_v que lleva a f_{v2} .

$$f_{v2} = f_{v1} + \Delta f_v$$

Con el método de iteración de Newton se obtienen aproximaciones sucesivas de f $_{\rm V}$ con la fórmula

$$\mathbf{f}_{\mathbf{v}(\mathbf{n}+\mathbf{l})} = \mathbf{f}_{\mathbf{v}_{\mathbf{n}}} + (\mathbf{f}_{\mathbf{o}} - \mathbf{f}) / \frac{\delta \mathbf{f}}{\delta \mathbf{f}_{\mathbf{v}}}$$
(16)

hasta que el valor de $(f_0 - f)$ alcanza el punto de precisión deseado. El valor de h' se obtiene durante el proceso por la ecuación (12), y después se calcula el ángulo de elevación con la ecuación

$$\tan \beta = \left(\cos \left(\frac{d}{2} \right) - \frac{r_0}{r_0 + h'} \right) / \operatorname{seno} \left(\frac{d}{2} \right) . \tag{17}$$

Cuando la MUF se calcula por la ecuación (10), no se conoce ni el valor de f_v ni el de f. No obstante, en la MUF se sabe que el valor de la primera derivada de la frecuencia de sondeo es cero; por consiguiente, se comienza de nuevo la iteración con un valor estimado de f_v , y se utiliza el método de iteración de Newton

$$f_{v_{(n+1)}} = f_{v_n} - \frac{\delta f / \delta f_{v}}{\delta^2 f / \delta f_{v}^2}$$
(18)

hasta que se alcanza la precisión deseada.

5.1 Modelo de dos capas

Para determinar la reflexión en la capa F2, la curvatura del rayo (un semiespesor de 30 km) de una capa E parabólica se introduce en los cálculos por un procedimiento de iteración adicional. Se supone que la curvatura se produce en ambos extremos del trayecto.

Primero, se hace un cálculo como se indica en el § 4 para una reflexión en la capa F, sin tener en cuenta la capa E subyacente. Después se calcula, con la fórmula de Rawer (1948), la curvatura producida por una capa E (véase la Fig. 3):

FIG. 3

CEOMETRIA Y PARAMETROS DEL TRAYECTO PARA CALCULAR LA ECUACION DE LA DISTANCIA PARA DOS CAPAS PARABOLICAS (Bibl. y otros, 1951)

> A : Transmisor B : Punto medio del trayecto

$$\Delta = 2 \left(\frac{y_E}{r_0 + hmE} \right) \left(\frac{\arctan u}{u} - 1 \right) \quad \tan \alpha, \tag{19}$$

en donde:

 Δ = ángulo de curvatura del rayo, en grados,

 $y_E = 30$ km = semiespesor efectivo de la capa E a efectos de penetración,

hmE = 110 km = altura de la densidad máxima electrónica de la capa E,
fE = frecuencia crítica de la capa E,

 α = ángulo de incidencia del rayo no refractado en el máximo de la capa E,

seno $\alpha = r_0 \cos \beta / (r_0 + hmE)$,

 $u = fE/f \cos \alpha$

La curvatura aumenta efectivamente la distancia de círculo máximo, y se emplea para reducir esta distancia para nuevos cálculos de rayos no refractados. Los cálculos de curvatura se repiten hasta alcanzar la precisión deseada. Durante este proceso, se toman medidas para determinar si efectivamente la capa E no corta la propagación por la capa F.

5.2 Probabilidad de un trayecto de onda ionosférica

Como la MUF normalizada calculada por la teoría de la capa parabólica se basa en valores medianos de las características ionosféricas, la probabilidad de un trayecto de onda ionosférica para esta frecuencia se supone que es de 50%. La frecuencia correspondiente a una probabilidad de propagación de 90% (FOT) y la frecuencia con una probabilidad de 10% (frecuencia de mayor probabilidad - HPF) se obtienen multiplicando la MUF mediana normal por los factores del Cuadro I.

FACTORES PARA CALCULAR LA FOT Y LA HPF A PARTIR DE LA MUF NORMALIZADA

HORA LOCAL

Invierno { Hemisferio boreal (noviembre, enero, febrero) Hemisferio austral (mayo, junio, julio, agosto)

			Num	ro baj	o de m	anchas	solare	s (0-5	0)					Núme	ro med	io de r	nanchas	solar	es (50-	-100)						Nd	mero a	lto de	mancha	s solar	res (> 1	100)					
GEO.	22	-02	02.	.06	06-	10	10-	14	14-	18	18-	22	22-	02	02-	06	06-	10	10-	-14	14-	-18	18-	-22	22-	02	02-	06	- 06	10	10-	14	14-	18	18-	22	GEO.
LAT.	Fu	۴ı	F	Fe	F	۴ı	F	Fe	Fu	Fi	Fu	FL	Fu	۴	Fu	۴ı	F.	F.	Fu	Γι	Fu	Fι	F	Fι	F U	۴	F	۴ı	F	Fe	Fu	Fi	Fu	۴	F	F	LAT.
> 75*	1.44	. 60	1.34	. 65	1.45	. 69	1.32	. 72	1.33	. 68	1.40,	. 67	1.45	. 76	1.39	. 78	1.44	. 68	1.40	. 67	1.33	. 62	1.45	. 70	1,36	. 62	1.27	. 70	1.41	. 74	1.42	. 67	1.40	. 64	1.43	. 73	≥75*
65-75*	1.37	. 68	1.29	. 71	1.38	. 75	1.23	. 76	1.24	. 75	1.35	. 70	1.39	. 79	1.31	. 81	1.37	. 74	1.32	. 70	1.29	. 73	1.41	.73	1.31	. 69	1.25	. 74	1.34	. 77	1.30	. 72	1.16	. 72	1.34	. 78	65-75*
55-65*	1.30	. 74	1.24	. 76	1.27	. 80	1.15	. 80	1.17	. 82	1.30	. 73	1.33	. 8Z	1.24	. 83	1.25	. 79	1.21	. 75	1.22	. 80	1.33	. 76	1.26	. 77	1.23	. 78	1.24	.81	1.18	. 80	1.11	. 79	1.26	. 82	55-65
45-55*	1.25	. 79	1.21	. 78	1.16	. 83	1.12	. 85	1.12	.84	1.25	. 76	1.30	. 84	1.19	. 82	1.14	. 83	1.15	. 81	1.16	. 84	1.29	. 78	1.19	. 83	1.19	. 80	1.16	. 84	1.11	. 87	1.09	. 84	1.20	. 86	45-55*
35-45*	1.23	. 81	1.20	. 79	1.13	.85	1.11	. 87	1.11	. 89	1,23	. 77	1.27	. 83	1.17	. 81	1.12	.85	1, 14	. 86	1.14	. 86	1.28	. 79	1.15	. 86	1.14	. 81	1.13	. 87	1.09	. 90	1.09	. 87	1.14	. 87	35-45°
25-35*	1.28	. 81	1.30	. 74	1.15	. 86	1.17	. 82	1.15	.85	1.28	. 78	1.30	. 78	1.31	. 76	1.16	.85	1.18	.85	1.18	.85	1.32	. 78	1.22	. 83	1.26	. 76	1.12	. 89	1.09	. 90	1.11	. 88	1.13	. 86	25-35
15-25*	1,34	. 78	1.37	. 67	1.19	. 87	1.20	. 75	1.24	. 77	1.32	. 79	1.33	. 74	1.38	. 71	1.17	.85	1.22	. 83	1.26	. 82	1.40	. 76	1.32	. 78	1.35	. 70	1.12	. 89	1,12	. 89	1,14	. 89	1.20	. 83	15-25*
≤ 15*	1.27	. 71	1.38	. 70	1.18	. 88	1.15	. 86	1.14	. 87	1.20	. 79	1.21	. 17	1.26	. 69	1.14	. 87	1.13	. 86	1.15	. 85	1.23	. 78	1.18	. 83	1.25	. 76	1.14	. 89	1.13	. 90	1,15	. 89	1.20	. 84	≤ 15*

															Equi	noccie	(marzo	, abr	il, sep	tiembr	e, octu	bre)															
		N	dmero	bajo de	manel	has so	lares (0-50)						Núm	ero me	dio de	mancha	s sola	res (50	-100)							Núme	ro alto	de mar	ichas s	olares	(>100	1)			T	
GEO.	22.	-02	02-	06	06-	10	10-	-14	14-	18	18	-22	22-	02	02-	06	06-1	0	10	-14	14-	18	18-	-22	22.	-02	02 -	-06	06-	10	10-	14	14-	18	18-	22	GEO.
LAT.	Fu	FL	F.	Fι	Fu	Fι	Fu	Fi	Fu	۴ı	Fu	FL	Fu	Fι	Fu	Fι	.F u	F	Fu	Fι	F	Fi	Fu	Fe	Fu	F	F	Fι	F _u	Fι	F	Fi	F	Fe	Fu	FL	LAT.
> 75*	1.42	. 67	1.32	. 72	1.29	. 74	1.26	. 73	1.33	. 80	1.48	. 65	1.45	. 64	1,31	. 61	1.27	. 73	1.28	. 74	1.30	. 74	1.47	. 67	1.46	. 66	1.37	. 67	1.35	. 75	1.40	. 66	1.38	. 70	1.46	. 72	- 75*
65-75*	1.38	. 70	1.25	. 75	1.25	. 76	1.23	. 74	1.26	. 82	1.40	. 69	1,41	. 68	1.22	. 71	1.23	. 77	1.26	. 74	1.26	. 78	1.38	. 70	1.42	. 67	1.31	. 71	1.30	. 73	1.31	. 70	1,33	. 70	1.37	. 72	65-75°
55-65*	1.32	. 73	1.21	. 78	1.22	. 80	1.20	. 75	1,20	. 81	1, 31	. 73	1.35	. 70	1,17	. 75	1.20	.80	1.23	. 72	1.18	. 78	1,29	. 73	1.30	. 69	1.25	. 75	1.27	. 71	1.24	. 71	1.25	. 71	1.24	. 72	55-65*
45-55*	1.26	. 75	1.19	. 80	1.ZO	. 81	1.18	, 76	1,16	. 81	1.26	. 76	1.28	. 73	1.15	. 77	1.17	. 81	1.21	. 74	1.13	. 76	1.20	. 75	1.18	. 73	1.20	. 78	1.25	. 70	1.20	. 72	1.16	. 74	1.17	. 73	45-55*
35-45*	1.22	. 77	1.ZO	. 81	1.19	. 81	1.16	. 77	1.16	. 80	1.25	. 78	1.22	. 75	1.16	. 78	1,16	. 82	1,18	. 78	1.12	. 76	1.17	. 76	1.15	. 79	1.16	. 82	1.17	. 75	1.16	. 78	1.12	.80	1.14	. 84	35-45*
25-35*	1.22	. 78	1.26	. 80	1.18	. 82	1.15	. 78	1.16	. 81	1.28	. 74	1.22	. 77	1.22	. 76	1.15	. 82	1,17	. 83	1.14	. 78	1.23	. 72	1.25	. 81	1.18	. 82	1.10	. 87	1.10	. 87	1.11	. 87	1.15	. 86	25-35*
15-25*	1.30	. 77	1.32	. 75	1.16	. 83	1,14	. 81	1.18	. 83	1.33	. 69	1.32	.75	1.30	. 73	1.13	. 84	1.15	. 87	1.17	. 81	1,37	. 69	1.31	. 81	1.32	. 77	1,11	. 89	1.11	. 92	1.12	. 90	1.20	85	15-25*
\$ 15*	1,23	. 76	1,40	. 66	1.13	. 86	1.13	. 89	1.19	. 86	1.16	.75	1.18	. 79	1.39	. 68	1.11	. 86	1.13	, 89	1.20	. 84	1.23	. 80	1.21	. 80	1.23	. 79	1,09	.86	1.20	. 90	1.14	. 90	1.23	. 82	s 15*

													Ver	ano { H	emisfer emisfer	rio bor rio aus	eal (ma tral (no	yo, ju viemb	nio, ju re, die	lio, ag	osto) e, ener	ro, feb	rero)							`							
	1	, P	lámero	bajo c	e man	chas se	olares ((0-50)						Ni	mero r	nedio d	ie mano	has so	lares	(50-10	0)					Ňt	imero a	lto de	manch	as sola	res (>	100)					
GEO.	22-	02	02-0	6	06-	+10	10-	-14	14-	18	18-	.2.2	22-	02	Y02-	06	06-	10	10	-14	14.	-18	18	-22	22.	-02	02-	06	06-	10	10-	14	14-	18	18-	-22	GEO.
LAT.	F	FL	Fu	Fi	Fu	Fι	Fu	Fι	Fu	Fι	Fu	Fι	Fu	F	F	Fe	Fu	Fi	Fu	F	F	Fe	F	Fι	F u	Fi	F	Fι	F u	FL	Fu	۴ı	Fu	F	F	F	LAT.
- 75*	1.26	. 68	1.24	. 79	1.15	. 84	1.17	. 87	1.21	. 85	1,22	. 76	1.27	. 82	1,23	. 80	1,20	. 82	1.18	.85	1.24	. 80	1.23	. 79	1.30	. 73	1.27	. 74	1.17	. 82	1,15	. 83	1,23	. 79	1.24	. 75	> 75*
65-75*	1,22	. 70	1, 18	. 81	1.14	. 83	1.15	. 86	1.16	. 86	1, 18	. 77	1.23	.83	1.19	. 82	1,19	. 79	1.17	. 82	1.17	. 82	1.19	. 82	1.22	. 75	1.22	. 75	1.20	. 77	1.18	. 80	1.21	. 80	1,23	. 77	65-75*
55-65*	1,18	. 72	1.17	. 84	1.14	. 83	1.15	. 84	1.14	. 86	1.15	. 81	1.20	. 83	1.18	. 82	1.19	. 77	1.17	. 79	1.14	. 82	1.17	. 83	1,16	. 77	1.18	. 76	1.26	. 74	1.21	. 77	1.19	. 80	1.21	. 80	55-65
45-55*	1.17	. 75	1.20	. 85	1.15	. 82	1.16	. 83	1.14	. 85	1.15	. 84	1.17	. 81	1.19	. 81	1.21	.76	1.17	. 77	1.15	. 81	1.16	. 82	1.14	. 79	1.15	. 76	1.30	. 73	1.26	. 75	1.19	. 80	1.18	. 84	45-55
35-45*	1.17	. 79	1.25	. 85	1.17	. 80	1.17	. 82	1.15	. 83	1.16	. 85	1.17	. 78	1.22	. 78	1.23	. 75	1.18	. 78	1,17	. 78	1,17	. 78	1.14	. 80	1.14	. 76	1.30	. 75	1.27	. 75	1.19	. 79	1.16	. 84	35-45*
25-35*	1.18	. 79	1.30	. 82	1.17	. 78	1.20	. 80	1.19	. 81	1,20	. 80	1,20	. 77	1.30	. 83	1,22	. 75	1.19	. 79	1.19	. 77	1.18	. 74	1,16	. 81	1.15	. 76	1.25	. 82	1.20	. 81	1.17	. 79	1.15	. 83	25-35*
15-25*	1.20	. 77	1.34	. 78	1, 14	. 77	1.24	. 79	1.22	. 79	1.23	. 73	1.26	. 77	1.38	. 69	1.17	. 78	1.23	. 82	1.23	. 78	1.28	. 73	1.21	. 81	1.22	. 77	1.18	.85	1.15	. 86	1.18	. 81	1.19	. 80	15-25*
< 15*	1.20	. 74	1.37	. 75	1, 12	. 80	1.30	. 83	1.27	. 82	1.20	. 69	1,26	. 79	1.44	. 63	1,11	. 84	1.28	. 85	1.28	. 81	1.22	. 77	1,25	. 80	1.21	. 79	1.13	. 86	1.17	. 89	1.22	.85	1.23	. 78	≤ 15°

CUADRO 1

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

En el Cuadro I [Barghausen y otros, 1969] figura la distribución de los valores diarios de la MUF normalizada alrededor de su valor mediano mensual, como relaciones entre los decilos superior e inferior de la MUF y la MUF mediana para determinada estación del año, actividad solar, bloques de tiempo de 4 horas (hora local) en el punto medio del trayecto, y cada 10° de latitud geográfica de 10° a 80° Norte o Sur.

Basándose en los valores del Cuadro I, la probabilidad de reflexión ionosférica regular, q_f , en determinada frecuencia f, se determina evaluando la función de distribución de probabilidad chi-cuadrado.

$$q_{f} = 1 - \int_{0}^{\chi^{2}} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \exp(-z/2) z^{(\nu/2)-1} dz,$$
 (20a)

en donde:

- χ^2_{op} = valor relacionado con la frecuencia de explotación,
 - ν = número de grados utilizable que describe la oblicuidad en la distribución χ^2 .

Se supone que toda MUF normalizada está relacionada con un valor χ^2 por la relación lineal

$$MUF = c + b\chi^2, \qquad (20b)$$

en donde c y b son constantes, / Barghausen y otros, 1969_7.

El valor de v se elige como sigue. Primero se calcula la relación indicativa de la asimetría de la distribución de la MUF, usando los decilos mediano, superior e inferior de la MUF:

Relación (MUF normal) =
$$\frac{MUF_{0,10} - MUF_{0,50}}{MUF_{0,50} - MUF_{0,90}}$$
 (21)

siendo $MUF_{0,50}$, $MUF_{0,10}$ y $MUF_{0,90}$ los decilos mediano, superior e inferior de la MUF, respectivamente. Después se calculan las relaciones para los valores de v de 3 a 100:

Relación
$$(\chi^2) = \frac{\chi^2_{0,10} - \chi^2_{0,50}}{\chi^2_{0,50} - \chi^2_{0,90}}$$
 (22)

siendo $\chi^2_{0,10}$, $\chi^2_{0,50}$ y $\chi^2_{0,90}$ los valores de 10, 50 y 90% de χ^2 , respectivamente.

La relación (MUF) se compara con el cuadro de la relación (χ^2) y se elige el valor de v con la relación (χ^2) que más se aproxime a la relación (MUF). En el programa de calculadora se hacen interpolaciones lineales para determinar valores fraccionarios de v. Las relaciones lineales entre los valores $\chi^2_{0,90}$, $\chi^2_{0,50}$ y $\chi^2_{0,10}$, asociados al valor elegido de v, y los valores de MUF_{0,90}, MUF_{0,50} y MUF_{0,10} se emplean para elegir un valor de χ^2_{00} que corresponda a la frecuencia de explotación, f, considerada.

La ecuación (20b) se aplica en todos los casos en que la relación (MUF) de (21) es superior a l. En tales casos la dirección de oblicuidad de la distribución χ^2 es igual que la de la MUF. Cuando la relación (MUF) hallada a partir de (21) sea inferior a l, se aplica la siguiente ecuación:

$$MUF = c - b\chi^2$$
 (23)

En tales casos, la dirección de la oblicuidad de la distribución de la MUF es opuesta a la de la distribución de χ^2 y la relación (MUF) se utiliza para determinar v donde

$$Relación (MUF)' = 1/Relación (MUF)$$
(24)

La dispersión de foE se desprecia en este programa y al modo capa E se le atribuye una probabilidad de 0,99, en todas las frecuencias en la MUF clásica de E o por debajo de ella.

5.3 Consideraciones sobre la capa E esporádica

Este método provisional sugiere que se considere la reflexión por la capa E esporádica Es, como una opción para evaluar la intensidad de campo de la onda ionosférica y, al calcular la probabilidad de un trayecto de onda ionosférica, su inclusión se sugiere sencillamente para estimar la probabilidad de aparición de los modos E, en casos en que no existe posibilidad de propagación por la capa E regular.

Los valores medianos y de los decilos superior e inferior de foEs se obtienen de los coeficientes numéricos y se convierten en valores del trayecto oblicuo mediante la relación de la ley de la secante. El factor multiplicativo, sec ϕ , se calcula como sigue:

$$\sec \phi = \frac{1}{\cos\left(\frac{\pi}{2} - \frac{d}{2} - \beta\right)},$$
(25)

donde:

 $\frac{d}{d}$ = arco de medio círculo máximo,

β ;

= ángulo de salida obtenido de (17), con h' = 110 km.

La probabilidad de propagación de la capa E esporádica, se calcula entonces, para la frecuencia de explotación, basándose en esos valores medianos y de decilos, utilizando la función de probabilidad chi-cuadrada. Por lo general, no se determina pérdida adicional para la transparencia parcial de la capa Es a las ondas radioeléctricas.

5.4 Cálculo de modos mixtos

Para las longitudes de trayecto de 2000 km o superiores, se consideran modos de propagación mixtos. Este tipo consiste en saltos E o Es con el resto del trayecto de propagación via capa F. Si la propagación normal por la capa E no es posible, se determina la probabilidad de propagación de Es y se combina con la probabilidad de la subsiguiente propagación por la capa F.

6. Cálculo de la pérdida de transmisión

Este párrafo se refiere, directamente, al cálculo de la pérdida de energía radioeléctrica en la propagación ionosférica, entre un transmisor y un receptor, y la evaluación de la intensidad de campo resultante. Tres mecanismos son los que originan casi todas las pérdidas de energía de una transmisión radioeléctrica. Generalmente, la mayor pérdida de energía es geométrica y se origina al extenderse dicha energía sobre zonas cada vez más amplias, a medida que la señal se propaga desde el transmisor. Despreciando los efectos de la curvatura de la ionosfera y de la Tierra, esta pérdida es la pérdida de transmisión básica en el espacio libre y se designa por Lb. En ciertas condiciones, el segundo mecanismo principal de pérdida es la absorción, por la ionosfera, de la energía radioeléctrica; finalmente, las pérdidas causadas por la reflexión de la señal en la superficie del suelo (tercer mecanismo) pueden ser importantes en el caso de saltos múltiples sobre el suelo. Las pérdidas de tierra de las antenas están incluidas en las ganancias de las antenas (véase la fórmula 32). Otras pérdidas no calculadas explícitamente con estos tres mecanismos de

pérdida, se toman en consideración en una "pérdida en exceso del sistema" determinada empíricamente y que expresa también la distribución estadística de las pérdidas medianas horarias para un mes.

FIG. 4

PERDIDA BÁSICA DE TRANSMISIÓN CAUSADA POR LA OPTICA GROMETRICA DE UN HAZ DE RAYOS INCREMENTAL

A 1	Parte inferior de la ionosfera	D:	<u>Angulo</u> de salída
B :	Angulo de incidencia	Е:	Tierra
C :	Sección transversal de referencia	F :	Sección transversal en el
	(Area = 1)		receptor (Area = $\Delta V \Delta H$)

6.1 Pérdida de transmisión básica en el espacio libre

Las pérdidas en el espacio libre se deben a la diseminación geométrica de energía, a medida que la onda radioeléctrica se separa del transmisor. La Fig. 4 ilustra esto al mostrar un haz de cuatro rayos, procedentes de un transmisor y reflejados por la ionosfera. Se supone que toda la energía radiada en el haz permanece dentro de él. Un factor proporcional al área transversal del receptor $\Delta V \Delta H$, hace que la densidad de energía en el receptor quede por debajo del valor del área de referencia. En la propagación ionosférica, la sección transversal adicional del haz de rayos en el receptor depende de las propiedades físicas de la ionosfera y de la geometría del trayecto de propagación. En el programa se hacen supuestos simplificadores para calcular de un modo práctico las pérdidas de transmisión.

Para el modelo más sencillo de propagación de la onda ionosférica se supone que tanto la Tierra como la ionosfera, son planas y que la reflexión es especular (en forma de espejo). En este tipo de propagación, la densidad de la energía disminuye como la inversa al cuadrado de la distancia del trayecto del rayo / Piggott, 1959 /. Esto significa que, para una antena transmisora isotrópica, que radie una potencia de p vatios, la densidad de flujo de potencia a una distancia de alcance real D, es $\rho/(4 \pi D^2)$. El área total de una antena receptora isotrópica en el espacio libre es $\lambda^2/(4\pi)$, donde λ es la longitud de onda de la onda radioeléctrica. Por consiguiente, la potencia total recibida por la antena es $\rho \lambda^2/(4 \pi D)^2$. La pérdida básica de transmisión en el espacio libre es la relación entre la potencia radiada y la recibida por una antena receptora exenta de pérdidas, y viene dada por:

$$L_{\rm bf} = 10 \, \log_{10} \left[\frac{\rho}{\rho \lambda^2 / (4 \, \pi \, \mathrm{D})^2} \right] = 20 \, \log_{10} \, \frac{4 \, \pi \, \mathrm{D}}{\lambda} \, (\mathrm{dB})$$
(26)

Si se expresa la longitud de onda λ en función de la frecuencia f de la onda electromagnética, (26) se convierte en:

$$L_{bf} = 32,44 + 20 \log_{10} f + 20 \log_{10} D$$
 (dB) (27)

en la que f viene expresada en MHz y D en kilómetros.

En la literatura / Rawer, 1948; Bremmer, 1949 y Davies, 1965 / se dan técnicas para calcular el enfoque del horizonte y el enfoque de la distancia de salto. No obstante, la estimación cuantitativa de los efectos de enfoque, no está calculada explícitamente en este Informe provisional.

6.2 Pérdida en la ionosfera

Habitualmente la absorción de energía es la segunda causa fundamental de pérdida en la propagación de la onda radioeléctrica por la ionosfera. La atenuación local de las ondas depende del producto de la densidad electrónica por el número efectivo de colisiones, dividido por el índice de refracción local de las ondas. Para efectuar los cálculos, conviene distinguir entre dos tipos de absorción: la absorción con desviación y la absorción sin desviación.

La densidad de partículas neutras en la región D de la ionosfera es considerablemente mayor que la densidad de iones positivos y, por lo tanto, la mayor parte de la pérdida de energía radioeléctrica se debe a las colisiones entre electrones y moléculas. En la región D en las frecuencias aquí consideradas, el índice de refracción de la ionosfera se acerca a su valor unidad en el espacio libre, lo que significa que la onda radioeléctrica no se refracta ni desvía de su trayectoria. La pérdida de energía en esta condición particular se llama absorción sin desviación. No obstante, en las regiones E y F, el índice de refracción suele ser inferior a la unidad. y la onda radioeléctrica se refracta (o desvía) considerablemente. Por consiguiente, la expresión "absorción con desviación" se utiliza normalmente para referirse a condiciones en que la atenuación local es superior que en el caso "sin desviación". Por este motivo, la región E e incluso la F pueden contribuir considerablemente a la absorción a pesar de las densidades de partículas neutras muy inferiores en esas altitudes. La frecuencia de colisión efectiva de la región F se determina por colisiones entre electrones e iones que dan relaciones más complejas que en menores altitudes para colisiones de electrones y partículas neutras.

Como resultado de las medidas de intensidad de campo, en trayectos oblicuos, es posible estimar la pérdida ionosférica total. Esta pérdida ionosférica, L_i, se calcula como sigue / Lucas y Haydon, $1966_{-}7$:

$$L_{j} = \frac{677.2 \text{ (sec } \emptyset)}{(f + f_{H})1,98 + 10,2} \cdot \sum_{j=1}^{n} \sum_{j=1}^{l_{j}}$$
(28)

donde:

n = número de saltos,

 \emptyset = ángulo de incidencia a 100 km,

f = frecuencia de trabajo en MHz,

 $f_{\rm H}$ = girofrecuencia plena a 100 kilómetros en MHz

$$I_{1} = (1 + 0,0037 R_{12}) (\cos 0,881 \psi_{1})^{1,3}$$

donde:

 R_{12} = media móvil de manchas solares de 12 meses,

El Análisis de las observaciones de las intensidades de campo de noche revela que la absorción ionosférica no cesa sino que tiende a nivelarse cuando el índice de absorción, I, ya definido se aproxima al valor un décimo. La ecuación (28) se aplica por tanto sólo a valores de I iguales o superiores a 0,1. Este supuesto concuerda satisfactoriamente con los trabajos de Wakai / Wakai, 1961 7 / Lucas y Haydon, 1966 7.

Hay mediciones que indican una mayor absorción en los meses de invierno que la que cabría esperar de la variación del ángulo cenital del Sol. No está claro si esta variación se debe a la mayor ionización en la región de absorción durante los meses de invierno o si pueden causarla las mayores longitudes de trayectos, en la región de absorción, debido a las menores alturas de reflexión, durante el invierno.

6.3 Pérdida por reflexión en el suelo

La tercera de las pérdidas importantes en la propagación por saltos múltiples tiene lugar en la superficie de la Tierra por el proceso de reflexión en ésta. Suponemos que las ondas ionosféricas incidentes están polarizadas aleatoriamente y que la energía radioeléctrica está distribuida por igual entre los campos polarizados horizontal y verticalmente. Esta pérdida viene dada por:

$$L_{g} = 10 \log_{10} \left[\frac{|R_{v}|^{2} + |R_{h}|^{2}}{2} \right] \quad (dB)$$
 (29)

donde R_v es el coeficiente de reflexión para la onda polarizada verticalmente (vector eléctrico paralelo al plano de incidencia), y R_h es el coeficiente de reflexión para la onda polarizada horizontalmente (vector eléctrico perpendicular al plano de incidencia). Los coeficientes de reflexión se definen como los cocientes entre el valor del vector eléctrico en la onda reflejada y el valor del vector eléctrico en la onda incidente. Generalmente, los coeficientes de reflexión son números complejos puesto que el índice de refracción de la Tierra es una cantidad compleja. Las magnitudes R_v y R_h vienen dadas por las fórmulas de Fresnel:

$$R_{v} = \frac{n^{2} \operatorname{seno} \beta - (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}}{n^{2} \operatorname{seno} \beta + (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}},$$
(30)
$$R_{h} = \frac{\operatorname{seno} \beta - (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}}{\operatorname{seno} \beta + (n^{2} - \cos^{2} \beta)^{\frac{1}{2}}},$$

donde β es el ángulo de salida del rayo por encima de la Tierra. La amplitud n es el índice de refracción complejo. Suponiendo que el campo eléctrico varía con el tiempo proporcionalmente a exp (jut), tendremos

$$n^{2} = \varepsilon_{r} - j \quad 18 \quad 000 \quad \sigma/f, \tag{31}$$

donde ε_r es la constante dieléctrica relativa de la Tierra, σ es el valor real de la conductividad de la tierra (mhos/metro), y f es la frecuencia de la onda en MHz/Schelkunoff y Friis, 1952/.

Los valores típicos de ε y σ empleados, lo mismo si se trata de una zona terrestre que de una zona marítima, son las siguientes:

agua de mar $\sigma = 5,0$ mho/m; $\varepsilon = 80$ tierra $\sigma = 0,001$ mho/m; $\varepsilon = 4$ 6.4 Pérdida en <u>exceso del sistema</u> (Y_p)

Se han analizado datos experimentales para explicar las variaciones que ocurren a diario en las señales debidas al valor mediano mensual y a otras pérdidas no atribuibles a los procesos anteriores. Por ejemplo, las variaciones en la dirección de llegada de la señal introducen variaciones en las ganancias de antena por trayecto. Los resultados pusieron de manifiesto que la distribución de la pérdida en exceso era función de la latitud geomagnética, estación, hora local y longitud de la trayectoria. Los cuadros 2 y 3 / Barghausen y otros, 1969 7 muestran las diferencias sobre el valor mediano de la pérdida de transmisión excedida el 84% del tiempo, S l, y de la pérdida de transmisión excedida el 16% del tiempo Su. Como vemos, las pérdidas tienden a ser mayores para trayectorias comprendidas en un margen de latitud geomagnética de 65° y 70°, estando comprendida la máxima diurna de la pérdida en exceso entre 0400 y 1000 de la hora local media. La pérdida máxima estacional tiene lugar en los equinoccios para las trayectorias largas y cortas, y la trayectoria corta presenta, generalmente, una pérdida en exceso mayor en latitudes grandes. Debido a la distribución geográfica de los datos, los valores son más confiables probablemente en el margen de 15° a 55° de la latitud Norte geomagnética.

CUADRO 2

VALOR ESPERADO DE LA PERDIDA EN EXCESO DEL SISTEMA (dB)

(TRAYECTORIAS INFERIORES A 2.500 km)

INVIERNO (noviembre, diciembre, enero, febrero)

Lat	01-	04 TN	ЛL	04	-07 T	ML	07.	-10 T	ML	10-	13 TI	ML	13-	16 TI	ЛL	16-	19 TI	ML	19-	22 TI	ML	22-	01 T	ML	Lat
gm.	Med.	s _i	s _u	Med.	s _e	s _u	Med.	s _i	s _u	Med.	s,	s _u	Med.	sį	su	Med.	s _i	s _u	Med.	s _i	s _u	Med.	s _i	s _u	gm.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.3	9.0	9.1	4.3	8.3	9.1	4.6	8.6	9.0	4.5	7.1	9.0	4.2	6.2	9.0	4.6	8.1	9.0	4.6	7.9	9.0	4.2	9.1	40-45
45-50	9.1	4.7	9.1	9.3	4.6	9.0	9.6	5.2	9.6	9.0	5.1	7.8	9.1	4.4	6.5	9.1	5.2	8.6	9.3	5.2	8.3	9.1	4.5	9.2	45-50
50-55	9.6	5.1	9.2	9.8	5.0	9.7	10.6	5.9	10.7	9.1	5.7	8.7	9.3	4.6	6.9	9.6	5.8	9.1	10.0	5.8	8.7	9.3	4.8	9.3	50-55
55-60	10.5	5.3	10.0	11.1	6.7	9.6	13.4	8.2	14.6	9.7	5.0	10.6	9.8	4.8	7.2	11.2	6.5	9.0	11.5	5.4	10.6	10.3	5.1	9.5	55-60
60-65	13.8	8.0	13.5	17.2	12.7	13.0	19.5	12.3	23.7	11.7	6.8	20.5	10.6	5.8	8.7	14.7	8.3	14.1	16.3	8.9	17.2	14.2	7.2	9.9	60-65
65-70	15.7	7.7	14.6	20.0	13.5	13.2	22.5	11.8	22.5	12.0	6.0	22.0	10.7	5.4	8.2	14.8	7.8	11.3	17.6	7.8	18.6	15.0	6.8	11.5	65-70
70-75	14.7	6.3	9.4	16.9	8.9	15.2	19.7	9.9	14.3	10.7	5.4	13.9	9.9	4.8	7.5	12.6	6.5	10.5	13.1	5.8	14.8	13.0	6.0	9.0	70-75
75-80	11.5	5.6	9.4	14.0	7.7	8.8	16.1	8.4	10.2	9.9	6.3	10.7	9.3	4.7	6.7	10.9	5.4	8.6	11.3	4.9	11.5	11.0	5.4	8.5	75-80

EQUINOCCIO (marzo, abril, septiembre, octubre)

	01-	04 TN	۸L	04-	.07 TI	ML	07-	-10 TI	ML	10-	-13 TI	ML	13-	16 TN	ИL	16-	-19 TI	ML	19-	22 TI	ML	22-	01 T	ML	
gm.	Med.	s _i	su	Med.	sį	s _u	Med.	s,	s _u	Med.	s i	s _u	Med.	s _i	s _u	Med.	s _i	s _u	Med.	s _e	s _u	Med.	s,	s _u	gm.
00-40	9.0	4.0	9.0	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.5	10.0	9.1	4.4	11.5	9.2	5.3	9.8	9.1	4.7	9.0	9.1	4.5	8.9	9.3	5.0	11.3	9.2	4.8	10.0	9.1	4.7	10.0	40-45
45-50	9.4	5.0	11.1	9.4	4.8	14.1	9.9	6.6	12.0	9.6	5.4	11.6	9.4	5.0	11.4	10.3	6.0	15.0	9.9	5.6	12.5	9.8	5.4	11.0	45-50
50-55	10.0	5.6	12.2	10.0	5.2	16.6	11.7	8.0	14.3	10.8	6.2	14.2	10.2	5.6	13.9	11.7	7.0	18.7	11.1	6.4	15.0	11.1	6.2	12.0	50-55
55-60	11.0	5.7	17.6	12.0	6.4	22.0	15.2	8.3	15.3	12.7	7.6	18.3	11.6	5.6	15.5	13.5	7.5	20.2	13.0	7.7	19.5	14.0	7.4	13.3	55-60
60-65	13.7	7.7	30.3	17.0	9.5	29.3	21.0	14.0	23.4	16.5	10.6	33.0	14.6	8.3	19.2	16.8	10.3	27.0	18.0	11.3	29.0	20.8	13.0	26.7	60-65
65-70	15.8	8.1	28.0	20.6	11.1	31.0	28.6	18.2	26.9	17.8	10.0	27.9	15.3	7.0	18.0	16.8	8.4	24.0	19.3	11.3	28.8	23.6	11.2	17.5	65-70
70-75	13.9	7.0	21.7	20.7	13.8	20.8	29.0	12.8	20.2	15.2	8.8	18.9	12.3	6.2	14.2	13.9	7.2	18.0	16.7	8.6	22.0	18.5	8.0	16.5	70-75
75-80	11.0	6.1	15.5	16.5	7.5	18.7	18.2	9.7	14.4	12.9	7.5	13.6	10.6	5.4	12.0	1 Z. 0	6.2	14.1	13.2	6.4	20.6	13.1	6.3	15.7	75-80

VERANO (mayo, junio, julio, agosto)

Lat	01-0	04 TI	ML	04-	07 TI	ИL	07-	10 T	ML	10-	13 TI	мГ	13-	16 TI	ML	16-	19 T	ML	19-	.22 TI	ML	22-	01 TI	ML	Lat.
gm.	Med.	s _l	s _u	Med.	s,	su	Med.	sł	s _u	Med.	s _i	s _u	Med.	s,	s _u	Med.	s _i	s _u	Med.	si	s _u	Med.	s _i	S _u	gm.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.1	4.4	9.8	9.1	4.3	9.9	9.0	4.7	9.1	9.1	4.5	7.2	9.1	4.5	8.1	9.2	5.1	8.6	9.1	4.9	9.5	9.0	4.7	10.0	40-45
45-50	9.5	4.8	10.6	9.4	4.7	12.2	9.5	5.5	10.7	9.4	5.0	8.1	9.5	5.0	9.8	10.1	6.2	9.7	10.0	5.9	11.4	9.3	5.4	11.0	45-50
50-55	10.3	5.3	11.4	10.1	5.1	14.6	10.4	6.3	12.3	10.0	5.5	9.0	10.1	5.5	11.6	12.0	7.3	10.8	11.9	6.9	13.4	9.7	6.1	12.0	50-55
55-60	11.9	5.5	17.8	11.4	5.5	16.1	12.0	7.2	15.6	11.6	6.0	10.6	11.9	5.8	13.5	14.8	8.5	11.0	14.8	7.8	14.1	10.8	6.4	15.0	55-60
60-65	15.0	7.5	24.5	13.1	5.8	22.7	15.0	10.7	26.0	14.3	7.8	18.8	13.3	6.2	19.9	17.4	9.1	14.2	17.6	10.1	20.5	13.4	8.9	21.1	60-65
65-70	15.0	6.5	22.1	13.6	6.2	21.8	16.3	9.2	26.7	14.0	6.7	19.5	13.2	5.7	16.6	16.2	7.2	13.8	17.8	7.9	21.9	14.0	7.8	19.0	65-70
70-75	12.7	5.4	15.6	12.8	5.8	15.0	14.0	6.8	18.2	12.5	6.2	12.0	12.2	5.5	13.3	13.8	6.9	11.1	15.0	7.6	17.8	12.4	6.8	16.0	70-75
75-80	11.4	5.7	12.8	11.8	6.0	11.3	12.1	5.3	16.8	11.7	5.7	9.5	11.3	5.3	12.1	12.8	7.0	10.2	13.3	7.2	11.8	11.1	6.8	12.7	75-80

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

CUADRO 3

VALOR ESPERADO DE LA PERDIDA EN EXCESO (dB) (TRAYECTORIAS SUPERIORES A LOS 2.500 km)

INVIERNO (noviembre, diciembre, enero, febrero)

GM	01.	-04 L	мт	04	-07 L	мт	07-	-10 L	MT	10.	-13 L	мт	13	-16 L	мт	16	-19 LI	мт	19-	-22 LI	мт	22	-01 L	MT	CN
LAT.	Med.	s_{ℓ}	s_u	Med.	sı	s _u	Med.	Sł	s _u	Med.	sł	su	Med.	sı	Su	Med.	sı	Su	Med.	sı	s _u	Med.	sı	s _u	LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.2	9.1	9.0	4.3	7.8	9.0	4.2	9.0	9.0	4.2	7.3	9.0	4.0	6.5	9.0	4.3	7.7	9.0	4.3	7.6	9.0	4.3	9.2	40-45
45-50	9.1	4.4	9.3	9.1	4.6	8.0	9.1	4.5	10.4	9.0	4.4	8.2	9.1	4.1	6.7	9.1	4.7	7.8	9.2	4.6	7.6	9.2	4.6	9.4	45-50
50-55	9.4	4.6	9.5	9.4	5.0	8.2	9.2	4.8	11.9	9.0	4.6	9.2	9.4	4.1	6.9	9.4	5.1	7.9	9.9	4.9	7.6	9.8	4.9	9.6	50-55
55-60	10.1	4.7	9.6	10.8	5.5	8.3	9.9	5.6	12.4	9.2	5.2	10.4	10.2	4.6	7.4	10.4	5.5	7.6	11.0	5.0	7.9	11.3	5.3	9.8	55-60
60-65	12.3	5.7	11.4	15.2	6.8	9.5	11.6	7.3	14.1	10.3	5.2	15.2	11.6	4.1	8.3	12.4	6.7	8.0	12.6	5.6	8.9	16.6	7.8	13.8	60-65
65-70	14.5	6.5	10.2	15.4	6.3	10.9	13.1	8.3	14.2	11.0	4.4	15.8	13.1	5.1	7.7	12.6	6.2	7.3	13.4	6.1	8.5	18.9	8.6	11.1	65-70
70-75	12.9	3.4	9.7	13.6	6.5	7.8	12.3	6.8	11.2	10.3	4.8	11.2	13.0	4.7	7.1	11.2	5.4	7.4	12.1	5.1	8.6	17.0	6.5	9.2	70-75
75-80	11.2	5.1	9.2	12.2	5.9	8.1	10.9	5.7	10.2	9.7	4.8	9.2	11.7	4.4	7.0	10.2	5.0	7.5	10.3	4.8	8.2	11.9	5.0	9.7	75-80

EQUINOCCIO (marzo, abril, septiembre, octubre)

	01-	-04 L	мт	04	-07 L	мт	07-	-10 L	MT	10.	-13 L	мт	13.	-16 L	мт	16	-19 L	мт	19-	-22 L	мт	22.	-01 L	мт	
LAT.	Med.	sı	s _u	Med.	sı	s _u	Med.	s _ł	s _u	Med.	s _l	Su	Med.	s _l	Su	Med.	sł	su	Med.	s _ł	s _u	Med.	s,	s_u	LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.0	4.1	10.0	9.0	4.1	8.5	9.0	4.2	8.3	9.1	4.4	7.9	9.0	4.3	8.8	9.1	4.5	9.0	9.0	4.3	8.9	9.0	4.2	10.6	40-45
45-50	9.2	4.2	11.0	9.2	4.2	9.4	9.2	4.5	9.0	9.2	4.9	9.4	9.1	4.6	10.7	9.5	4.9	10.4	9.6	4.6	10.2	9.4	4.4	11.5	45-50
50-55	9.5	4.4	12.1	9.6	4.3	10.3	9.5	4.8	9.7	9.6	5.4	11.0	9.5	5.0	12.3	10.6	6.1	11.9	10.8	5.5	10.9	10.1	5.6	12.2	50-55
55-60	10.0	4.5	13.2	10.3	4.6	10.6	10.3	5.7	9.8	10.7	6.0	11.2	10.3	5.6	13.2	12.4	7.8	12.5	12.8	7.2	11.6	11.4	7.5	13.8	55-60
60-65	11.9	5.7	15.5	12.8	5.9	10.8	13.2	7.9	11.4	13.1	8,5	13.4	11.9	8.6	14.7	15.3	9.5	15.2	17.4	9.8	14.7	16.3	9.7	16.6	60-65
65-70	13.3	5.7	14.3	14.6	6.6	10.6	15.4	7.7	13.8	14.1	8.1	12.4	13.4	7.5	16.1	15.3	8.6	13.2	18.2	8.5	14.3	18.3	8.4	16.2	65-70
70-75	12.0	4.9	13.1	13.7	5.3	9.8	14.0	6.1	10.9	12.0	7.1	10.5	11.4	6.7	11.7	12.4	6.9	12.2	14.4	6.0	13.8	13.8	7.8	15.8	70-75
75-80	10.3	4.8	11.0	10.9	4.6	9.0	11.2	5.7	10.6	9.8	6.3	10.2	9.8	5.7	11.2	9.8	6.1	11.0	10.2	5.4	13.7	10.1	6.9	15.4	75-80

VERANO (mayo, junio, julio, agosto)

GM	01-	-04 L	мт	04	-07 L	мт	07	-10 I	MT	10.	-13 L	мт	13-	16 LI	лт	16	-19 L	,MT	19-	-22 L	MT	22-	01 L	мт	G.M.
LAT.	Med.	sį	su	Med.	sį	s _u	Med.	sł	Su	Med.	s _ł	su	Med.	Sł	Su	Med.	s _ł	Su	Med.	st	Su	Med.	s_{ℓ}	Su	LAT.
00-40	9.0	4.0	9.0	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	6.4	9.0	4.0	6.4	9.0	4.0	7.6	9.0	4.0	7.6	9.0	4.0	9.0	00-40
40-45	9.1	4.4	9.1	9.0	4.4	9.1	9.0	4.5	8.1	9.0	4.2	6.9	9.0	4.5	7.6	9.0	4.2	8.1	9.0	4.9	8.2	9.1	4.4	9.6	40-45
45-50	9.5	4.8	9.2	9.3	4.9	10.6	9.4	5.0	8.6	9.2	4.4	7.5	9.4	5.0	8.8	9.1	4.5	8.6	9.6	5.8	8.9	9.5	4.9	10.3	45-50
50-55	10.1	5.2	9.4	10.1	5.4	12.2	10.1	5.6	9.2	9.6	4.7	8.1	10.2	5.6	10.1	9.4	4.8	9.1	10.9	6.7	9.6	10.3	5.4	11.0	50-55
55-60	11.5	5.4	9.6	11.9	6.2	13.0	11.6	6.5	9.7	10.1	4.9	9.2	11.5	5.9	12.3	10.2	5.1	10.7	12.8	6.8	11.8	11.9	5.7	13.4	55-60
60-65	13.9	6.7	9.8	16.5	8.8	16.8	15.2	9.3	13.8	11.2	6.4	13.1	12.8	6.8	16.4	11.6	6.1	14.3	14.2	7.1	17.2	14.0	7.2	18.4	60-65
65-70	14.0	6.1	10.0	16.8	7.4	16.7	15.1	8.2	16.5	11.3	6.2	13.1	12.8	6.3	12.0	11.7	5.4	12.4	13.8	6.4	15.2	14.0	6.4	15.1	65-70
70-75	12.2	4.8	8.9	14.4	6.5	11.9	12.4	5.9	14.1	10.5	5.8	10.1	11.2	5.5	9.2	9.9	5.1	11.0	11.6	5.8	12.3	12.2	5.3	12.1	70-75
75-80	11.0	5.3	8.2	13.1	6.0	10.0	10.5	5.5	13.1	10.1	5.6	8.6	9.8	5.4	8.4	9.1	5.0	10.2	9.9	5.6	9.9	10.4	5.5	10.3	75-80

- 155 -

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

6.5 Pérdida del sistema

Se define la pérdida del sistema, en un circuito radioeléctrico, como la potencia disponible de señal en los terminales de la antena receptora dividida por la potencia disponible en los terminales de la antena transmisora, en decibelios (C.C.I.R., 1966). Esto excluye las pérdidas en la línea de transmisión de las antenas transmisora y receptora, puesto que se considera que tales pérdidas son fácilmente medibles. La pérdida del sistema incluye todas las pérdidas en los circuitos de las antenas transmisora y receptora, no solamente la pérdida de transmisión causada por la radiación de la antena transmisora y re-radiación de la antena receptora, sino también cualesquiera de las pérdidas de tierra, pérdidas en los dieléctricos, pérdidas en las bobinas de carga de la antena, pérdidas en la resistencia de terminación de las antenas rómbicas, etc. (C.C.I.R., 1966).

La pérdida del sistema queda resumida así:

 $L_{s} = L_{bf} + L_{i} + L_{g} + Y_{p} - (G_{t} + G_{r})$ (dB) (32)

donde:

- L_{bf} = pérdida básica esperada de transmisión, en el espacio libre, entre antenas isotrópicas ideales, transmisoras y receptoras, sin pérdidas en el espacio libre,
- L, = pérdidas debidas a la absorción ionosférica,
- L_{p} = pérdidas debidas a la reflexión del suelo,
- Y_{p} = pérdida en exceso del sistema,
- G_t = ganacia de potencia de la antena transmisora relativa a una antena isotrópica en el espacio libre,
- G_r = ganancia de potencia de la antena receptora relativa a una antena isotrópica en el espacio libre.

En este Informe, $G_t y G_r$ se dan para la dirección del trayecto de propagación e incluyen todas las pérdidas de antena de modo que $G_t + G_r$ es la ganancia de la antena por trayecto / Rice y otros, 1967 /. Los valores de $G_t y G_r$ son necesarios para cualquier ángulo de elevación y dirección acimutal.

En los circuitos por ondas decamétricas suelen haber varios posibles trayectos: por ejemplo, una sola reflexión en la capa F (lF), una sola reflexión en la capa E (lE), reflexiones múltiples en las capas E y F (lF, 3F, 2E, etc.) o reflexión en ambas capas (lElF, lE2F, etc.). Las trayectorias probables dependen de la geometría de las capas ionosféricas y de la ionización relativa en el interior de tales capas.

Para la mayoría de las aplicaciones, por lo general basta con: (1) evaluar L_{bf} , L_1 , L_g , G_t y G_r para cada modo en que la probabilidad del trayecto ionosférico sea $\geq 0,05$, (2) elegir la pérdida mínima calculada como pérdida del sistema para el circuito, y (3) añadir a éstas la pérdida excesiva del sistema Y_p, determinada empíricamente. Como ya queda indicado, Y_p comprende los efectos de las variaciones diarias en los parámetros utilizados para calcular L_{bf} , L_i , L_g , G_t y G_r y los factores de enfoque ionosférico, absorción con desviación, pérdidas de polarización y la contribución de las señales de distintos trayectos.

7. Intensidad de campo de la onda ionosférica

La intensidad de campo de la onda ionosférica está relacionada directamente con la pérdida de transmisión / Norton, 1959_7. Si la pérdida (Lg) se determina (de acuerdo con las medidas indicadas en el \$ 6, suponiendo antenas isotrópicas ideales, sin pérdidas, transmisora y receptora) como para determinar la pérdida básica de transmisión (L_b), la intensidad de campo es:

$$E = 107, 2 + 20 \log_{10} f + G_{+} + P_{t} - L_{b}$$

en donde:

- E = intensidad eficaz de campo (en dB, con relación a l microvoltio por metro);
- G_t = ganancia de la antena transmisora en dirección del trayecto del rayo utilizado para determinar (L_S) (en dB, con relación a una antena isotrópica);
- Pt = potencia suministrada a la antena transmisora (en dB, con relación a l vatio);
- f = frecuencia de explotación en MHz.

Cuando la intensidad de campo de referencia es de 300 milivoltios por metro a un kilómetro (campo eficaz creado por 1 kW aplicado a un dipolo corto sobre una tierra perfecta) la intensidad de campo de la onda ionosférica es: $E = 142 + 20 \log_{10} f - L_{b}$

Del mismo modo, cuando la intensidad de campo de referencia es de 222 milivoltios por metro a un kilómetro, la de la onda ionosférica, E, es:

 $E = 139,4 + 20 \log_{10} f - L_{b}$

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

8. <u>Referencias bibliográficas</u>

APPLETON, E.V. y BEYNON, W.J.G.	<u>[</u> 1940 <u></u>]	The application of ionospheric data to radio- communication problems : Part I; <u>Proc. Phys.</u> <u>Soc.</u> , <u>52</u> , 518-533
BARGHAUSEN, A.F.	<u>[</u> 1966 <u>7</u>	Medium frequency sky wave propagation in middle and low latitudes; <u>IEEE Trans.</u> Broadcasting BC-12, 1-14.
BARGHAUSEN, A.F., y otros	<u>[</u> 1969 <u></u>]	Predicting long-term operational parameters of high-frequency sky-wave telecommunication systems; ESSA Tech. Report ERL 110-ITS 78 (U.S. Government Printing Office, Washington, D.C. 20402).
BECKMANN, B	<u>[</u> 1958 <u>7</u>	Über Beziehungen der Feldstärke zu den Grenzen des Übertragungsfrequenzbereiches (LUF-MUF) (Relación entre la intensidad de campo y los límites de la gama de frecuencia utilizable (LUF-MUF)); <u>NTZ</u> , <u>11</u> , 523-528.
BECKMANN, B.	<u>[1960_7</u>	Ergebnisse zur Näherungsweisen Berechnung der Raumwellenfeldstärke aus den Grenzen des Übertragungsfrequenzbereiches (Resulta- dos de cálculos aproximados de la intensidad de campo de la onda ionosférica en los lími- tes de la gama de frecuencia utilizable); <u>NTZ</u> , <u>13</u> , 470.
BECKMANN, B.	<u>[1967_7</u>	Notes on the relationship between the receiving-end field strength and the limits of the transmission frequency range MUF-LUF; <u>NTZ-CJ; 6</u> , 37-47.
BIBL, K.	[1950]7	Le parcours d'un rayon dans une couche ionosphérique courbée; <u>Rev. Sci., 88</u> , 27-29.
BIBL, K., RAWER, K. y THEISSEN, E	<u> </u>	Le rôle de l'occultation dans la propagation des ondes décamétriques; <u>Rapport du Service</u> <u>de prévision ionosphérique militaire</u> <u>SPIM</u> - R 11.
BIBL, K. RAWER K. y THEISSEN, E.	[1952]7	An improved method for the calculation of the field-strength of waves reflected by the ionosphere; <u>Nature</u> , <u>169</u> , S. 147-150.

BOWHILL, S.A.(ed.)	[1966_7	Papers of the Estes Park Seminar on Sporadic E; <u>Radio Sci., 1</u> (New Series), 248-249.
BREIT, G. y TUVE, M.A.	<u>[1926]</u>	A test of the existence of the conducting layer; Phys. Rev., 28, 554.
BREMMER, H.	<u>[1949]</u>	Terrestrial radio waves; Elsevier Publ. Co., Inc., New York, N.Y.
C.C.I.R.	∑1963, 1966_7	Doc. VI/73 (U.R.S.S.).
C.C.I.R.	<u>[1966]</u>	Noción de las pérdidas de transmisión en los proyectos de sistemas radioeléctricos; Rec. 341, Doc. de la XI Asamblea Plenaria, Vol. III, Oslo, 1966 (U.I.T., Ginebra).
C.C.I.R.	∑1966 , 1967_7	Atlas de las características ionosféricas; Informe 340, Oslo, 1966, (U.I.T., Ginebra).
C.C.I.R.	/1966 , 1969 a_ /	Doc. VI/77 (U.R.S.S.).
C.C.I.R.	∑1966 , 1969⊅_7	Doc. VI/79 (U.R.S.S.).
C.C.I.R.	∑1966, 1969c_7	Doc. VI/180 (Australia).
DAVIES, K.	<u>[1965]</u>	Ionospheric radio propagation; <u>NBS Mono-</u> <u>graph 80</u> (U.S. Government Printing Office, Washington, D.C. 20402).
DIEMINGER, W. y ROSE, G.	<u>_</u> 1961_7	Zum Feldstärkeverlauf am Rande der Toten Zone (Variaciones de la intensidad de campo en las cercanías de la zona de silencio); <u>NTZ</u> , <u>20</u> , 170-180.
EILING, W.	<u>_</u> 1961 <u></u> _7	Scheinbare Reflexionshöhen und Reflexions- vermögen der Ionosphäre über Tsumeb, Südwest Afrika, ermittelt mit Impulsen im Frequenz- band von 350 bis 5600 kHz (Altura aparente de las reflexiones e Indice de reflexión sobre Tsumeb, Africa del Sudoeste, obtenidos por impulsos en la banda de 350-5600 kHz); Aroh. Elekt. Über., 15, 115-124.

•

.

	FRIHAGEN, J. (ed.)	<u>[1965]</u> 7	Electron density profiles in ionosphere and exosphere; Proc. NATO Advanced Study Inst., Finse, Norway, abril 1965 (North Holland, John Wiley and Sons, New York, N.Y.).
	HALLEY, R.	<u>[1965]</u>	Méthode de calcul des prévisions de point à point aux distances comprises entre 2500 et 10 500 km; <u>Centre National d'Etudes</u> <u>des Télécommunications</u> , Division des Prévisions Ionosphériques, France.
	HARNISCHMACHER, E.A.	<u>[1960]</u> 7	A calculation method of ionospheric propa- gation conditions for very high and antipode distance; <u>Electromagnetic Wave Propagation</u> , Academic Press, London, 527.
·	KAZANISEV, A.N.	<u>[</u> 1947 <u>]</u>	The absorption of short radiowaves in the ionosphere and the field strength at the place of reception; <u>Translation</u> (julio 1958) from Bulletin of Academy of Sciences of the <u>USSR</u> , Division of Technical Sciences, N.° 9, 1107-1138.
	KAZANTSEV, A.N.	<u>[1956_7</u>	Developing a method of calculating the electrical field strength of short radio waves; <u>Trudy IRE</u> , Transactions of the Institute of Radio Engineering and Electro- nics of the Academy of Sciences, USSR, <u>2</u> , 134.
	KAZANTSEV, A.N.	<u>[1957_7</u>	Instruction for the calculation of the coefficients of ionospheric absorption and field intensity of short radio waves; Working Group of CCIR (Lepechinsky group), Geneva.
	KELSO, J.M.	[1964]	Radio ray propagation in the ionosphere; McGraw-Hill, New York, N.Y.
	KNECHT, R.W.	<u>[</u> 1963 <u>]</u>	The distribution of electrons in the lower and middle ionosphere; <u>Progress in Radio</u> <u>Science</u> , 1960-1963, Vol. III, Elsevier.
	LAITINEN, P.O., y HAYDON, G.W.	<u>[1950]</u>	Analysis and prediction of sky-wave field intensities in the high frequency band; <u>Technical Report</u> 9, <u>U.S. Army Signal Radio</u> Propagation Agency, Ft. Monmouth, N.J.

LEFTIN, M.	<u>[1969_7</u>	Numerical maps of monthly median h ^f F for solar cycle minimum and maximum (se publicara).
LEFTIN, M. OSTROW, S.M., y PRESTON, C.	<u>[1968_7</u>	Numerical maps of foEs for solar cycle minimum and maximum; <u>ESSA Tech. Report</u> <u>ERL 73-ITS 63</u> (U.S. Government Printing Office, Washington, D.C. 20402).
LEFTIN, M. OSTROW, S.M., y STEWART, F.G.	<u>[</u> 1969_7	Numerical maps of foE for solar cycle minimum and maximum (se publicara).
LUCAS, D.L., y HAYDON, G.W.	<u></u> 1966_7 -	Predicting statistical performance indexes for high frequency ionospheric telecom- munications systems; <u>ESSA Tech. Report</u> <u>IER 1-ITSA 1.</u> (U.S. Government Printing Office, Washington, D.C. 20402).
MARTYN, D.F.	<u>[</u> 1935_7	The propagation of medium radio waves in the ionosphere; Proc. Phys. Soc., <u>47</u> , 323.
NBS	<u>_</u> 1948_7	Ionospheric radio propagation; National Bureau of Standards Circular 462 (junio, 1948).
NORTON, K.A.	<u>[1959_7</u>	Transmission loss in radio propagation; <u>NES Tech. Note 12</u> (U.S. Government Printing Office, Washington, D.C. 20402).
PETRIE, L.E. y STEVENS, E.E.	<u>[1969_7</u>	An Fl layer MUF prediction system for northern latitudes; <u>IEEE Trans., AP-13</u> , 542.
PIGGOTT, W.R.	<u>[1959]</u>	The calculation of the median sky wave field strength in tropical regions; <u>Radio Research</u> <u>Special Report N.º 27</u> , H.M.S.O., London.
PIGGOTT, W.R. y RAWER, K.	<u>[1961]</u>	URSI Handbook of ionogram interpretation and reduction; (Elsevier, New York, N.Y.).
RAO, M.K.	<u>[</u> 1969_7	Nomographs for calculation of field strength; <u>J. Inst. Telecom. Engrs.</u> (India), <u>15</u> , 729-740.
RAWER, K.	<u>[</u> 1948_7	Optique géométrique de l'ionosphère; <u>Revue scientifique, 86</u> , 585-600.

RAWER, K.	<u>[1950_7</u>	Geometrical optics of ionospheric propaga- tion; <u>Nature</u> , <u>166</u> , N.º 4216, 316.
RAWER, K.	<u>[1952]</u>	Calculation of sky-wave field strength; <u>Wireless Engineer, 29</u> , 287.
RICE, P.L., LONGLEY, A.G., NORTON, K.A. y BARSIS, A.P.	<u>[</u> 1967 <u>7</u>	Transmission loss predictions for tropos- pheric communication circuits, Vols. 1 and 2; <u>NBS Tech. Note 101 (Revisado)</u> (U.S. Government Printing Office, Washington, D.C. 20402).
SCHELKUNOFF, S.A. y FRIIS, H.T.	<u>[1952]</u>	Antennas-theory and practice; (John Wiley and Sons, Inc., New York, N.Y.).
SCHIMAZAKI, T.	<u>[1955]</u>	World-wide daily variations in the height of the maximum electron density of the ionospheric F2 layer; <u>J. Radio Res. Labs</u> , <u>Japan, N.° 7</u> , <u>2</u> , 85-97.
SMITH, E.K. y MATSUSHITA, S. (eds.	/1962/)	Ionospheric Sporadic E;(Pergamon Press, New York, N.Y.).
SMITH, N.	<u>[</u> 1939 <u></u>]	The relation of radio sky-wave transmission to ionospheric measurements; <u>Proc. IRE</u> , <u>27</u> , 332-347.
WAKAI, N.	<u>[1961]</u>	Non-deviative absorption at night; <u>J. Radio</u> <u>Research Labs</u> , <u>Japan</u> , <u>8</u> , N.º 37, 213.
WAKAI, N.	<u>[</u> 1966_7	Mean variations of the nighttime ionos- pheric E layer; <u>Proc. Conf. Ground-based</u> <u>Propagation Studies of the Lower Ionosphere</u> , Defence Research Telecommunications Establishment, Ottawa, Canada.
WAKAI, N.	<u>[1967]</u>	Quiet and disturbed structure and variations of the nighttime E region; <u>J. Geophys. Res.</u> <u>72</u> , 4507-4517.
WHITEHEAD, J.D.	<u>[1969]</u>	Report on the production and prediction of sporadic E (se publicara).
WRIGHT, J.W. y McDUFFIE, R.E.	<u>[1960_7</u>	The relation of h_{max} F2 to M(3000)F2 and h_{p} F2; <u>J. Radio Res. Labs.</u> , Japan, <u>7</u> , 409-420.

WRIGHT, J.W., WESCOTT, L.R. y BROWN, D.J.

1960 1963

Mean electron density variations fo the quiet ionosphere; <u>NBS Tech. Notes</u> 40-1 through 40-13 (U.S. Government Printing Office, Washington, D.C. 20402).

9. Apéndice

Método de calculadora para evaluar la intensidad de campo y la pérdida de transmisión de la onda ionosférica en las frecuencias comprendidas entre los límites aproximados de 2 y 30 MHz.

Se ha preparado un programa de calculadora a base del método provisional del C.C.I.R. para evaluar la intensidad de campo y la pérdida de transmisión de la onda ionosférica en las frecuencias comprendidas entre los límites aproximados de 2 y 30 MHz.

Los datos de entrada del programa figuran en tarjetas perforadas y en cinta magnética. Esta cinta magnética la puede suministrar la Secretaría del C.C.I.R., con los datos en forma decimal binaria codificada (BCD). La cinta va acompañada de un programa que permite la conversión de estos datos en forma binaria y de una lista de dichos datos.

La Fig. A-l constituye un organigrama del programa que está constituido por una rutina principal, 10 subrutinas y 18 rutinas de biblioteca. La función de cada una de estas rutinas es la siguiente:

Rutina principal

Programa HFMLOSS

- 1. Cálculo de constantes
- 2. Registro de fichas de datos
 - a) Tarjeta "control del programa"
 - b) Tarjeta "frecuencias"
 - c) Tarjeta de los datos de circuitos que han de grabarse
 - d) Tarjeta del mes y del índice ionosférico.
- 3. Lectura de la cinta de datos e interpolación para índice ionosférico
- 4. Lectura, a base de la cinta, de los datos sobre el circuito
- 5. Cálculos relativos al trayecto
 - a) Longitud del trayecto

- b) Acimutes
- c) Puntos de reflexión
 - 1) Latitud geográfica
 - 2) Longitud geográfica
 - 3) Latitud geomagnética

6. Cálculos relativos al bucle horario

- a) Hora local y foF2 en el punto de recepción
- b) Cálculos relativos al bucle de las zonas de reflexión
 - 1) Hora local
 - 2) Angulo cenital del Sol
 - 3) Índice de absorción
 - 4) foE
 - 5) fEs
 - 6) Altura del límite inferior de la capa F
 - 7) Altura del máximo de la capa F2
 - 8) Frecuencia giromagnética
 - 9) Frecuencia crítica de la capa F
- c) MUF de la capa E
- d) MUF de la capa F2
- e) Determinación de la MUF más elevada
- 7. Paso a la subrutina LUFFY
- 8. Retorno para la lectura de otros datos del circuito

Subrutinas

<u>VERSY</u> - Evaluación de los coeficientes para los mapas mundiales de fEs, foF2, factor M(3000)F2, h'F y foE, establecidos en función del Tiempo Universal y de la latitud (geográfica o inclinación magnética). <u>MAGFIN</u> - Cálculo de las componentes del campo magnético terrestre para toda altura, latitud y longitud geográficas.

LUFFY - Control de la segunda mitad del programa como sigue:

- 1. Cálculo de constantes
- 2. Preparación de la siguiente información:
 - a) Potencia del transmisor (en decibelios)
 - b) Pérdida por reflexión en el suelo
- 3. Bucle horario
 - a) Establecimiento de los parámetros necesarios
 - b) Cálculo de la pérdida adicional del sistema
 - c) Cálculo del bucle de modo (9 modos)
 - 1) Altura virtual
 - 2) Ángulo de salida
 - 3) Partes del día
 - 4) Tiempo de propagación
 - 5) Pérdida por reflexión en el suelo
 - 6) Absorción
 - 7) Pérdida en el espacio libre
 - 8) Ganancias de antena
 - 9) Pérdida de transmisión
 - 10) Intensidad de campo
 - 11) Potencia de la señal
 - 12) Probabilidad de obtener el nivel de señal necesario
 - d) Determinación del modo más probable

e) Paso a SALIDA

f) Retorno a HFMLOSS.

OUTPUT - Salida en forma tabulada.

<u>BEMUF</u> - Cálculo, sobre la base de la teoría de capas de distribución parabólica, de la MUF, del ángulo de salida y de la altura virtual de reflexión, o, para una frecuencia específica, de los dos últimos parámetros únicamente.

<u>IANDY</u> - Evaluación de las zonas terrestres cartografiadas mediante una serie de Fourier.

CHISQ - Evaluación de la función de probabilidad chi-cuadrado.

<u>F2DIS</u> - Cálculo de la HPF y de la FOT a partir de la MUF, basándose en un cuadro de factores que representan los valores de decilo en función de la latitud geográfica, del índice ionosférico, del hemisferio y de la hora local.

<u>SYSSY</u> - Obtención, a partir de un cuadro, de los valores medianos de la pérdida en exceso del sistema y las desviaciones estándar inferior y superior.

<u>GLOS</u> - Cálculo de la pérdida por reflexión en el suelo para los modos con saltos múltiples.

Rutinas de biblioteca

salida	CALL EXIT
retorno a datos	CALL BACKFILE (I)
paso a los datos siguientes	CALL SKIPFILE (I)
de "flotante" a "fijo"	XFIXF (X)
raíz cuadrada	SQRTF (X)
seno	SINF (X)
valor mínimo	MIN1F (X, Y)
logaritmo natural	LOGF (X)
coseno	COSF (X)
tangente del arco	ATANF (X)
coseno del arco	ACOSF (X)
seno del arco	ASINF (X)
tangente	TANF (X)
exponencial	EXPF (X)
magnitud de un número complejo	CABS (Z)
argumento de un número complejo	CANG (Z)
raiz cuadrada compleja	CSQRT (Z)
logaritmo usual	ALOG 10 (X)

Los datos que indican los cálculos a efectuar se perforan en tarjetas que siguen a las del programa. La Fig. A-2 representa una serie de fichas de entrada. Los datos se perforan en las columnas apropiadas $\angle I =$ número entero, F = coma flotante, A = alfanumérico (a partir de la izquierda), R = alfanumérico (a partir de la derecha), X = en blanco (salto) $\angle /$.

Ficha de Control del programa

Columnas	Nombre	Formato	Descripción
1 - 5*	METHOD	I5	Perforar 3, solamente
6 - 10	NCDTP	15	Comprobar si los datos del circuito figuran en tarjetas perforadas o en la cinta
11 - 15	IHRO	I5	Hora de comienzo TU
16 - 20	IHRE	I5	Hora de c ese TU
21 - 25	IHRS	I5	Intervalo (en horas)
26 - 30		5X	Espacio en blanco
31 - 35	NUMO	15	Número de bloques de datos en una página
36 - 40	NPAGO	I5	Número de la página
41 - 45	NES	I 5	Opción capa Es

* Reservadas para otros métodos de presentación de los datos. Normalmente sólo se utiliza el Método 3.

Ficha de Juego de frecuencias

Columnas	Nombre	Formato		Descripción
1 - 7	FREL (1)	F7.3	Primera	frecuencia del juego
8 - 14	FREL (2)	F7.3	Segunda	frecuencia del juego
15 - 21	FREL (3)	F7.3	Tercera	frecuencia del juego
2 2 - 28	FREL (4)	F7.3	Cuarta	frecuencia del juego
29 - 35	FREL (5)	F7.3	Quinta	frecuencia del juego
36 - 42	FREL (6)	F7.3	Sexta	frecuencia del juego
43 - 49	FREL (7)	F7.3	Séptima	frecuencia del juego
50 - 5 6	FREL (8)	F7.3	Octava	frecuencia del juego
57 - 63	FREL (9)	F7.3	Novena	frecuencia del juego
64 - 70	FREL (10)	F7.3	Décima	frecuencia del juego
71 - 77	FREL (11)	F7.3	Undécima	frecuencia del juego

Ficha del Circuito

Columnas	Nombre	Formato	<u>Descripción</u>
1 - 16	ITRAN	2A8	Nombre de la estación transmisora
17 - 32	IRCVR	2 A 8	Nombre de la estación receptora
33 - 36	TLATD	F4.2	Latitud del transmisor, en grados
37	ITLAT	RL	Hemisferio (N o S) en que se halla el transmisor
38 - 42	TLONGD	F5.2	Longitud del transmisor, en grados
43	ITLONG	R1	Hemisferio (E u O) en que se halla el transmisor
44 - 47	RLATD	F4.2	Latitud del receptor, en grados
48	IRLAT	RL	Hemisferio (N o S) en que se halla el receptor
49 - 53	RLONGD	F5.2	Longitud del receptor, en grados
54	IRLONG	R1	Hemisferio (E u O) en que se halla el receptor
55 - 57	AMIND	F3.1	Ángulo mínimo de salida en grados
58 - 63	PWR	F6.2	Potencia del transmisor, en kilovatios
64 - 69	RSN	F6.1	Potencia necesaria de la señal, en decibelios

Tarjeta del Mes y del Índice ionosférico

<u>Columnas</u>	Nombre	Formato	Descripción
1 - 3		3X	Espacio en blanco
4 - 5	MONTH	12	Mes
6		1X	Espacio en blanco
7 - 10	NYEAR	I 4	Año
11 - 15		5X	Espacio en blanco
16 - 20	SSN	F5.1	Número de manchas solares

En la Fig. A-3 se da un ejemplo de cálculo. Este es el único método disponible de presentación de los datos de salida. Los cálculos obtenidos con el programa se registran normalmente en cinta magnética para su ulterior impresión en papel especial. La información de circuito utilizada en los cálculos se indica en la parte superior de cada página. La salida impresa comprende la siguiente información después del encabezamiento de juego de frecuencias, hora elegida (tiempo universal) y MUF normalizada (EJF):

<u>MODE</u> - modo más probable presente, basado en la probabilidad de existencia de la onda ionosférica y de la potencia requerida para la señal en el receptor. El número indica la cantidad total de saltos. Para designar los modos de propagación se utilizan los siguientes símbolos: F - capa F, únicamente

S - capa E esporádica, únicamente

X - 1 salto por la capa E y los demás por la capa F

Y - 1 salto por la capa Es y los demás por la capa F

V - 2 saltos por la capa E y los demás por la capa F

W - 2 saltos por la capa Es y los demás por la capa F

(Ejemplos: 3 X significa un salto por la capa E y dos por la capa F; 5W, dos saltos por la capa Es y tres por la capa F).

- ANGLE ángulo vertical, en grados, asociado al modo indicado.
- DELAY tiempo de propagación en milisegundos.
- <u>VIRT HT</u> altura virtual de reflexión en kilómetros (en los modos complejos este valor concierne a las reflexiones en la capa F).
- <u>F. DAYS</u> días del mes en que es probable que exista la onda ionosférica para el modo de propagación previsto.
- LOSS DB pérdida mínima de transmisión, en decibelios, de los nueve modos.
- DBU intensidad de campo media incidente en la ubicación de recepción, en decibelios, con relación a l uV/m.
- <u>SIG.DBW</u> potencia media de la señal disponible en los terminales de la antena receptora, en decibelios, con relación a 1 W.
- <u>F. SIG</u> días del mes en que se obtendrá o rebasará la potencia requerida de la señal a la hora y en la frecuencia especificadas.

La lista del programa completo se indica en la Fig. A-3. Las series de tarjetas pueden obtenerse de la Secretaría del C.C.I.R. o perforarlas utilizando el programa. Se ha empleado el lenguaje normalizado FORTRAN IV. No obstante la memoria de ferrita de la calculadora debe ajustarse a cero antes de efectuar la compilación.

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

FIG. A.2 JUEGO DE FICHAS DE ENTRADA PARA PROGRAMA DE CALCULADORA
PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

							8						
					JULY :	1968	•	SUNSPO	DT NUP	18ER	90.0		
MONR	OVTA.I	TRERT	TA TO	ADDTS	S ARAI	BA.FTI	4.	1	AZTHU	THS	MITL	ES	KM.
6.5	0 N -	44.00		9.01	1N -	78.81	n F	83.7	70 2	70.87	341	1.7	5490.3
- U+ J MT	NTNIM	ANCIS			DE E C	DOUI	50- 21	50 000		DE0.5	1611		
. n T	NTHON	ANGL		UL OF	67 L 3 E 01		DTEC 1	TN MU'	7		10	1900	
		~ ~			7 7			10 00 <i>1</i>	47 5		0E 0	70 0	
01	M0+	2.0	3.0	5.0	1.5	10.0	12.5	12.0	1/.5	20.0	25.0	30.0	
05	13.1												
	2 F	5F	3F	2F	2F	2¥	2X	2F	35	35	35	3S	MODE
	7.3	25.1	14.0	5.9	5.0	0.3	0.7	7.3	2.7	2.7	2.7	2.7	ANGLE
	19.3	21.0	19.6	19.0	19.0	18.7	18.8	19.3	18.6	18.6	18.6	18.6	DELAY
	336	256	256	258	264	272	291	336	110	110	110	110	VIPT HT
	.50	. 99	. 99	.99	.93	. 84	.65	.33	.23	.18	.10	.06	F. DAYS
	140	242	204	171	158	152	150	149	148	149	150	151	80 2201
	21.	-75	- 77	111	20	20	77	76	74	7.	70		0000
	05	400	- 33	- 4 4 7	401	- 0 9	- 06	-05	- 06	- 05	-06	- 07	STC DDW
	- 45	-101	-150	-117	-104	- 40	-90	-97	- 94	- 95	-90	-97	510.004
	• 40	•00	•00	•00	• > >	• 82	• 7 9	•91	• 92	• 90	•89	• 5 /	F. S16
_													
06	18.4												
	2F	3E	6F	3F	2F	2F	2F	2X	2F	35	3S	3S	MODE
	8.0	1.5	29.5	14.1	6.4	5.4	5.2	0.5	6.4	2.7	2.7	2.7	ANGLE
	19.4	18.5	21.9	19.6	19.0	19.0	19.0	18.8	19.2	18.6	18.6	18.6	DELAY
	353	91	252	253	255	260	268	277	309	110	110	110	VIRT HT
	. 50	. 99	. 99	.99	. 99	. 99	.99	. 97	. 67	. 34	.18	.09	F. DAYS
	151	785	286	205	172	162	157	153	152	151	154	153	1055 08
	76	-247	-145	-30	7	10	27	34	34	76	76	27	nau Nau
	-07	- 274	- 272	-152	_ + + 0	-100	-407	-00	-09	- 07	-100	-00	STC DOM
	- 97	- 331	- (32	-126	-110	-104	-10.5		- 30	- 71	-100	- 77	510.004
	• 6 5	•09	•00	• 0 0	•00	• 2 1	•07	• 7 9	• 54	• 60	• ()	• / 9	F. 516
07	24.0												
	2.F	3E	3E	5F	3F	3F	2F	2F	2 X	2 F	24	3S	MODE
	9.0	1.5	1.5	24.5	13.7	12.6	5.8	5.4	0.7	5.9	2.0	2.7	ANGLE
	19.5	18.5	18.5	20.9	19.5	19.4	19.0	19.0	18.8	19.1	18.9	18.6	DELAY
	380	90	91	249	250	255	256	263	270	290	332	110	VIRT HT
	.50	.99	.99	.99	.99	.99	.99	.99	.99	• 91	•34	•25	F. DAYS
	153	536	431	270	203	185	165	160	157	155	153	156	LOSS DR
	35	- 368	-260	-94	-24	-4	18	24	29	32	36	34	DRU
	-99	-482	-377	-216	-149	-131	-111	-106	-103	-101	-99	-102	SIG.DBW
	. 79						.03	- 4 0	- 61	.72	- 80	.66	F. STG
	• • •		•	•••			•••		•••	•••	••••		
n e	25 0												
0.0	27.9	76	75	76		70	76	25	25	25	24	76	MODE
	21	JE	SE		41	35	35	21	25	2F		35	
	2.1	1.5	1.5	33.0	14.4	13.2	12.3	0.0	2.0	0.0	1.1	2.1	ANGLE
	18.9	18.5	18.5	55.8	20.1	19.5	19.5	19.0	19.0	19.1	10.0	18.6	UELAY
	324	90	91	244	246	251	257	260	266	281	313	110	VIRT HT
	•62	•99	• 99	•99	•99	•99	•99	•99	• 99	• 96	•68	• 62	F. DAYS
	156	677	535	339	235	197	183	166	162	159	156	155	LDSS D9
	34	-510	-364	-164	-56	-16	-0	18	24	28	33	36	080
	-102	-623	-481	-285	-181	-143	-129	-112	-108	-105	-102	-101	SIG.DBW
	.70	.00	.00	.00	.00	.00	.00	.00	.28	. 49	•69	.73	F. SIG
			-			-	-	-		-			

FIG. A-3

EJEMPLO DE CALCULO OBTENIDO A LA SALIDA CON EL PROGRAMA

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PROGRAMME DE L'ORDINATEUR - COMPUTER PROGRAM LISTING

PROGRAMAS PARA LA CALCULADORA

PROGRAM HFMLOSS HFM 1 PROGRAM FOR HE SYSTEM PERFORMANCE PREDICTIONS. HEM 2 DIMENSION E(9,22,2), ES(7+61+2), ESL(5+55+2), ESU(5+55+2)+ F2(13+7HFM 3 16,2), FM3(9,49,2), HPO(13,29,2), IE(10,2), IES(10,2), IESL(10,2), HFM 4 2IESU(10,2), IF2(10,2), IFM3(10,2), IHPO(10,2), MONS(2,12), NCARD(1HFM 5 30), SUN(2,12), WCONS(4,2) HEM 6 COMMON /111/ ISFE(10,8)+SFE(2981)+F2D(16+6+6)+PKO(8+7+6)+SLP(8+7+6HFM 7 1) + CCR(8,7+6) + P(29,16+7) + ABP(2+7) + DUD(5+12+5) + FAM(14+12) + SYS(9+16+6HFM 8 9 2),PERR(9,4,6) HEM COMMON /BON/ CLG+CLT+DER+FREL(11)+GAMMA(7)+GMT+HIGY+IGRAPH+IHRE+IHHFM 10 1R0, IHRS, IVM, IVO, JO, METHOD, MONPR(2), NES, NPAGE, NUMBER, NUMO, NYEAR, SECHEM 11 HEM 2E,SSN,UNE(3) 12 COMMON /CON/ D2R, DCL, GAMA, PI, PI2, PI02, R2D, R0, VOFL HFM 13 COMMON /DON/ ABI(24), ABIY(5, 24), ALATD, AMIN, AMIND, BRTD, BTR, BTRD, CLAHFM 14 1T(5),CLCK(5,24),CLONG(5),DLONG,EC(24),EMF(5,24),ESC(24),ESDL(24),EHFM 15 2SDU(24),FC(24),FM(24),FMM(5,24),FOES(5,24,3),FOT(24),GCD+GCDKM,GLAHFM 16 3T(5),GMA(5,24),GY(5,24),GYR(24),HO(24),HPFR(24),HY(5,24),IRCVR(2),HFM 17 4IRLAT, IRLONG, ITLAT, ITLONG, ITRAN (2), LUFP, NOISE, PWR, RD(5), REX(4), RLAHFM 18 5TD,RLONGD,RSN,TEX(4),TLAT,TLATD,TLONG,TLONGD,XMUF(24),YM(24),ZEC(2HFM 19 64), IEA HEM 20 EQUIVALENCE (ISFE, IESU), (ISFE(11), IES), (ISFE(21), IESL), (ISFE(31HFM 1), IF2), (ISFE(41), IFM3), (ISFE(51), IE), (ISFE(61), IHPO), (SFE, ESU) HFM 21 22 2, (SFE(276), ES), (SFE(703), ESL), (SFE(978), F2), (SFE(1966), FM3), (HFM 23 3SFE(2407),E), (SFE(2605),HPO) HEM 24 DATA (SUN=-23.04,-17.49,-17.21,-8.11,-7.73,4.00,4.39,14.65,14.96,2HFM 25 11.86,22.00,23.20,23.14,18.37,18.13,8.79,8.43,-2.64,-3.03,-13.98,-1HFM 26 24.31,-21.58,-21.75,-23.13) HFM 27 +HFM DATA (MONS=8H +8HJANUARY +8H F,8HEBRUARY ,8H 28 18H MARCH ,8H 28H JUNE ,8H +8H APRIL +8H +8H JULY +8H +8H MAY +8H +8H AUGUST +8H , HFM •8H 29 SE+HFM 30 38HPTEMBER ,8H +8HOCTOBER +8H N.8HOVEMBER .8H D+HFM 31 48HECEMBER) HEM 32 DATA (IEC=1RE),(ISC=1RS) HFM 33 CONSTANTS HFM 34 R0=6371.2 HFM 35 HEM PI=3.14159265359 36 VOFL=2.997925E5 HFM 37 DCL=1.28 HEM 38 GAMA=0.5772156649 HEM 39 NZ8=8HZZZZZZZZ HEM 40 P12=2.0+PI HEM 41 PI02=PI/2.0 HEM 42 D2R=PI/180.0 HFM 43 R2D=180.0/PI HEM 44 GLT=78.5+D2R HEM 45 GLG=69.0+D2R HFM 46 D2500R=2500+0/RO HFM 47 HFM D5000R#5000+0/R0 48 CZA=90.0/100.8 HFM 49 TAPE DESIGNATIONS....JC=CIRCUITS, JD=DATA, JO=OUTPUT HFM 50 JD=2 HFM 51 JC=3 HFM 52 J0=20 HEM 53 REWIND JC HEM 54

c

С

c

IO.

	MONIN=0	HFM	55
1	READ 37, METHOD, NCDTP, IHRO, IHRE, IHRS, IGRAPH, NUMO, NPAGO, NES	HFM	56
	IF (METHOD.EQ.0) CALL EXIT	HEM	57
	NUMBER=0	HEM	58
	IF (NPAGO.GT.O) NPAGE=NPAGO	HEM	59
			60
			60
		HE M	61
	ITS=IHRS	HFM	62
	READ 38, FREL	HFM	63
	IF (NCDTP•EQ•0) GO TO 3	HFM	64
2	READ 39, NCARD	HFM	65
	WRITE (JC+39) NCARD	HEM	66
	IF (NZ8-NE-NCARD(1)) GO TO 2	HEM	67
3	REWIND JC	HEM	68
-	DEAD 40. MONTHANYEAD.SCN	LEM	40
			70
	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	HE M	70
	IF INDIANES MUNINGURAMUNINGEWGI' GU IU 4	HF M	11
	CALL BACKFILE (JD)	HFM	72
	CALL BACKFILE (JD)	HFM	73
	CALL SKIPFILE (JD)	HFM	74
	GO TO 7	HFM	75
4	IF (MONTH.GT.MONIN) GO TO 5	HEM	76
	REWIND JD	HFM	77
	MONIN=0	HEM	78
5		HEM	79
-	MON IN-MON TH	HEM	eÓ.
			81
		UEM	93
		HE M	02
		HPM	83
		HEM	84
6	CALL SKIPFILE (JD)	HFM	85
7	READ (JD) IESU+ESU	HFM	86
	DO 8 I=1,5	HFM	87
	DO 8 J=1,55	HFM	88
8	ESU(I,J,1)=(ESU(I,J,1)*(150.0-SSN)+ESU(I,J,2)*(SSN-10.0))/140.0	HFM	89
	READ (JD) IES,ES	HFM	90
	DO 9 [=1.7	HEM	91
	D0 9 J=1+61	HEM	92
9	FS(1,J,1) = (FS(1,J,1)) + (150,0-SSN) + FS(1,J,2) + (SSN-10,0)) / 140,0	HEM	93
•		NEM	04
			74
			77
10		HE M	76
10	ESC(1) 31/= (ESC(1) 31/= (190+0-SSN)+ESC(1) 372/= (SSN-10+0)//140+0	nrm	71
	READ (JD) IF29F2	HFM	98
	DO 11 I=1,13	HFM	99
	DO 11 J=1+76	HFM	100
11	F2(I,J,1)=(F2(I,J,1)*(100,0-SSN)+F2(I,J,2)*SSN)/100,0	HFM	101
	READ (JD) IFM3,FM3	HFM	102
	DO 12 I=1,9	HFM	103
	DO 12 J=1,49	HFM	104
12	FM3(I,J,1)=(FM3(I,J,1)*(100.0-SSN)+FM3(I,J,2)*SSN)/100.0	HFM	105
-	READ (JD) IE+E	HEM	106
		HEM	107
		HEM	108
	to as the state	1 11 1-1	- • •

13	E(I,J,1)=(E(I,J,1)*(150.0-SSN)+E(I,J,2)*(SSN-10.0))/140.0	HFM	109
	READ (JD) IHPO,HPO	HFM	110
	DO 14 I=1,13	HFM	111
	DO 14 J=1,29	HFM	112
14	$HPO([,J_{J}]) = (HPO([,J_{J}]) + (180_{0} - SSN) + HPO([,J_{J}]) + (SSN - 10_{0}) / (170_{0})$	HFM	113
	READ (JD) F2D+PKO+SLP+CCR	HFM	114
	READ (JD) P+ABP+DUD+FAM+SYS+PERR	HFM	115
	CALL SKIPFILE (JD)	HFM	116
15	READ (JC,41) ITRAN, IRCVR, TLATD, ITLAT, TLONGD, ITLONG, RLATD, IRLAT, RI	OHEW	117
	1NGD+IRLONG+AMIND+PWR+RSN	HFM	118
	IF (TLATD.GT.90.0) GO TO 3	HFM	119
	IF (METHOD.GE.3.AND.METHOD.LE.5.OR.METHOD.EQ.7) NUMBER=0	HFM	120
	AMIN=AMIND#D2R	HFM	121
	COSE=SQRT(1+0-({RO#SIN(AMIN+PIO2})/(RO+110+0))##2)	HFM	122
	IF (ABSF(COSE).GT.1.0) COSE=SIGNF(1.0,COSE)	HFM	123
	SECE=1.0/COSE	HFM	124
	DER=PIO2-AMIN-ACOS(COSE)	HFM	125
	IF (LUFP.EQ.O) LUFP=90	HFM	126
	TLAT=TLATD#D2R	HFM	127
	IF (ITLAT.EQ.ISC) TLAT=-TLAT	HFM	128
	TLONG=TLONGD#D2R	HFM	129
	IF (ITLONG.EQ.IEC) TLONG=-TLONG	HFM	130
	RLAT=RLATD#D2R	HFM	131
	IF (IRLAT•EQ•ISC) RLAT=-RLAT	HFM	132
	RLONG=RLONGD+D2R	HFM	133
	IF (IRLONG.EQ.IEC) RLONG=-RLONG	HFM	134
C	GREAT CIRCLE DISTANCE AND BEARINGS.	HFM	135
	DLONG=TLONG-RLONG	HFM	136
	IF (ABSF(DLONG).GT.PI) DLONG=DLONG~SIGNF(PI2,DLONG)	HFM	137
	QCOS=SIN(TLAT)#SIN(RLAT)+COS(TLAT)#COS(RLAT)#COS(DL ON G)	HFM	138
	IF (ABSF(QCOS).GT.1.0) QCOS=SIGNF(1.0,QCOS)	HFM	139
	GCD=ACOSF(QCOS)	HFM	140
	GCDKM=GCD#RO	HFM	141
	QCOS=(SIN(RLAT)-SIN(TLAT)*COS(GCD))/(COS(TLAT)*SIN(GCD))	HFM	142
	IF (ABSF(QCOS).GT.1.0) QCOS=SIGNF(1.0),QCOS)	HFM	143
	BTR=ACOSF(QCOS)	HFM	144
	IF (DLONG+LT+0+0) BTR=PI2-BTR	HFM	145
	QCOS=(SIN(TLAT)-SIN(RLAT)+COS(GCD))/(COS(RLAT)+SIN(GCD))	HFM	146
	IF (ABSF(QCOS).GT.1.0) QCOS=SIGNF(1.0,QCOS)	HFM	147
	BRT=ACOSF(QCOS)	HFM	148
	IF (DLONG.GT.0.0) BRT=PI2-BRT	HFM	149
	BTRD=BTR=R2D	HFM	150
	BRTD=BRT+R2D	HFM	151
¢	DETERMINATION OF REFLECTION AREAS.	HFM	152
	ND=XFIXF(GCDKM/4000.0+1.0)*2	HFM	153
	RD(1)=GCD/2+0	HFM	154
	RU(2)=GCD/(2+U*ND)	HFM	125
			120
			154
			150
	N===== TE (GCDVM-(T-4000-0) VM=3		127
			141
c	REFECTION AREA COORDINATES AND GEOMAGNETIC LATITUDES	HFM	162
-	VELECTION VER CONVINTIONES AND GEOMAGNETTE ENTITOPES	111 M	

...

		HPM 1	63
		HFM 1	64
	QCUS=CUS(DRF/=SIN(ILA)/+SIN(DRF)=CUS(ILA))=CUS(BIR)	HFM 1	65
	IF (ABSF(QCOS).GT.1.0) QCOS=SIGNF(1.0,QCOS)	HFM 1	66
	RFLT=PIO2-ACOSF(QCOS)	HFM 1	67
	QCOS=(COS(DRF)-SIN(RFLT)*SIN(TLAT))/(COS(RFLT)*COS(TLAT))	HFM 1	68
	IF (ABSF(QCOS).GT.1.0) QCOS=SIGNF(1.0,QCOS)	HFM 1	69
	RFLG=ACOSF(QCOS)	HFM 1	70
	IF (DRF.GE.PI) RFLG=PI2-RFLG	HFM 1	71
	RFLG=TLONG-SIGNF(RFLG+DLONG)	HFM 1	72
	IF (ABSF(RFLG).GT.PI) RFLG=RFLG-SIGNF(PI2.RFLG)	HEM 1	73
	QCOS=SIN(GLT)*SIN(RFLT)+COS(GLT)*COS(RFLT)*COS(RFLG-GLG)	HEM 1	74
	IF $(ABSE(QCOS) \circ GT \circ 1 \circ 0) \circ QCOS = SIGNE(1 \circ 0 \circ QCOS)$	WEM 1	75
	GAT #ACOSE (QCOS)	NEM 1	74
		MEM 1	77
16		UEM 1	70
10			17
	$TE (YM_NC_1) \land TATABEE(//(AT/1)AC(AT/2)AC(AT/2)) / (AT/2) / (AT/$	HEM 1	80
~	HOLD LOOD	HEM 1	01
C		HFM 1	82
		HFM 1	83
		HEM I	84
	SSL=(15.+GM1-180.)+DZR	HFM 1	85
	DO 17 IA=1,5	HFM 1	86
	CLCK(IA,IT)=0.0	HFM 1	87
	ABIY(IA,IT)=0.0	HFM 1	88
	EMF(IA,IT)=0.0	HFM 1	89
	$HY(IA \bullet IT) = 0 \bullet 0$	HFM 1	90
	FMM(IA)IT)=0.0	HFM 1	91
	GY(IA,IT)=0.0	HFM 1	92
17	GMA(IA,IT)=0.0	HFM 1	93
С	REFLECTION AREA LOOP	HFM 1	94
	DO 23 IA=1,KM	HFM 1	95
	CLT=CLAT(IA)	HFM 1	96
	ACLTD=ABSF(CLT#R2D)	HFM 1	97
	XLG=CLONG(IA)	HFM 1	98
	CLG=PI2-XLG	HFM 1	99
	IF (XLG+LT+0+0) CLG=ABSF(XLG)	HFM 2	00
	DOG=ABSF(CLT-SUN(1,MONTH)#D2R)	HFM 2	01
	CAT=ABSF(CLT-SUN(2.MONTH)+D2R)	HFM 2	02
	SSP=SUN(2.MONTH)#D2R	HEM 2	03
	ZAN=CAT	HEM 2	04
	IF (CATAGTADOG) GO TO 18	HEM 2	05
	SSD=SLIN(1, MONTH)#D2P	WEM 2	04
		UFM 2	07
c	LOCAL TIME AT THE REFLECTION AREA	HEM 2	08
18	CLOCK=GMT-XLG#R2D/15.0	HEM 2	09
		HFM 2	10
		HEM 2	îĭ
	CLCK(TA.TT)=CLOCK	HFM 2	12
c	SLINS 7FNTTH ANGLE	HEM 2	13
~	QCOS=SIN(CLT)#SIN(SSP)+COS(CLT)#COS(SSP)#COS(SSI-¥) @}	HEM 2	14
	1E (ABSE(0C0S)_6T_1_0) 0C0S#SIGNE(1_0_0C0S)	HEM 2	15
		HEM 2	16
	- NAAALIMAAAA.		

	ZA=ABSF(Z)	HEM	217
	ZD=Z#R2D	HFM	218
С	ABSORPTION FACTOR.	HFM	219
	IF (IA+GT+3) GO TO 22	HFM	220
	IF (ZA•GE•(100•8#D2R)) GO TO 19	HFM	221
	ABIY(IA,IT)=(1.0+0.0037#SSN)#COS(CZA#ZA)##1.3	HFM	222
19	IF (ABIY(IA+IT)+LT+0+1) ABIY(IA+IT)=0+1	HFM	223
с	E-LAYER CRITICAL FREQUENCY.	HFM	224
	HIGY=100+0	HEM	225
	CALL MAGFIN	HEM	226
	GY(IA,IT)=2.8#SQRT(UNE(1)##2+UNE(2)##2+UNE(3)##2)	HEM	227
	IF $(IA \cdot EQ \cdot 1)$ $GY1 = GY(1 \cdot IT)$	HEM	228
	HIGY=110.0	HEM	229
	IV0=6	HEM	230
	IVM=6	HEM	231
	CALL VERSY	HEM	232
	EME(IA,IT)=GAMMA(6)	HEM	233
c	ES-LAYER VALUES.	MEM	224
-	LE (NES-E0-0) GO TO 21	MEM	235
			235
			227
			220
			230
			237
20	EOES(TA, T, T) = GAMMA(T)		240
21	$[\mathbf{F} (\mathbf{I}_{\mathbf{A}}, \mathbf{N}_{\mathbf{C}}, \mathbf{I}_{\mathbf{C}})] \in [\mathbf{I}_{\mathbf{C}}, \mathbf{I}_{\mathbf{C}}, \mathbf{I}_$		242
<i>c</i>	TA TIMENT OF E-PERION PAPAMETERS - DETCHT OF BOTTOM AND MAXIMUM		242
č	ELECTION OF A REGION PARMETERS - MEIGHT OF BOTTOM AND PARMEM		244
~ ~ ~	HIGH-200 DENOTITION EXTERN STRUCT REGULACT AND CRITICAL TREGULACT.		244
~~			245
		HE M	240
		HF M	241
	CALL VERST	HEM	248
			249
		HEM	250
		HEM	221
		HEM	252
	CALL VERSI EMM(1, T) = (1400, 0/(GAMMA/E)) = 176, 0	HE M	273
		HE H	234
		HPM	275
	CALL MAGEIN CV/14.11)-2.08CORT/UNE/138824(NE/238824(NE/23882))		220
	GTA(TA)TT = 2 + G = S GR T(ORE(T) = 2 + ORE(T) = 2 + OR		251
~~		nr m	230
25	CONTINUE	HP M	259
C		HFM	260
		HEM	261
		HFM	262
	EC(1)/=EMF(1)1/7	HFM	263
	IF (KM&EU&I/ GU (U 24) ADI((T)=/ADIV(1,TT)_ADIV(2,TT)_ADIV(2,TT)_ADIV(2,T))	HEM	264
	ADI\II/=\ADI\\IFI//ADI\\FADI\\491\/7ADI\\391\///3eV CVD/1T)=/CV14CV/2.1T\4CV/2.1T\\/2 A		264
	UTRIII-IUIITUII29117UII39117730U EC(17)+EME(2.17)		200
	CULII/-CMF(3)I// 76/111/-CMF(3,11)		201
	254-2		200
	15474 15 (545(2,17)) 5 545(2,17)) 60 70 24	HP M	209
	IP (EMP(3)I)/OLEOEMP(Z)IT// GO TO Z4	HFM	270

	EC(IT)=EMF(2,IT)	HEM	271
	ZEC(IT)=EMF(3,IT)	HFM	272
•	IEA=3	HFM	273
24	HOP=1.0	HFM	274
25	D=GCD/HOP	HFM	275
	IF (D.GT.D2500R) GO TO 26	HEM	276
	CALL BEMUF (XX+XX+XX+EC(IT)+D+3+EMUF+XX+EBTA+NN)	HFM	277
	IF (EBTA.GE.AMIN.AND.NN.EQ.0) GO TO 27	HEM	278
	IF (NN+GE+1) GO TO 27	HEM	279
26	HOP=HOP+1+0	HEM	280
	GO TO 25	HEM	281
c	ES-LAYER PARAMETERS - MEDIAN AND UPPER AND LOWER DECILES OF FES.	HEM	282
27	IF (NES.EQ.0) GO TO 30	HEM	283
	IF (KM+NE+1) GO TO 28	HEM	284
	ESDU(IT)=FOES(1,IT,1)	HFM	285
	ESC(IT)=FOES(1,IT,2)	HFM	286
	ESDL(IT)=FOES(1+IT+3)	HFM	287
	GO TO 30	HEM	288
28	IF (FOES(2+IT+2)+GT+FOES(3+IT+2)) GO TO 29	HFM	289
	ESDU(IT)=FOES(2,IT,1)	HFM	290
	ESC(IT)=FOES(2,IT,2)	HFM	291
	ESDL(IT)=FOES(2,IT,3)	HEM	292
	GO TO 30	HFM	293
29	ESDU(IT)=FOES(3,IT,1)	HFM	294
	ESC(IT)=FOES(3,IT,2)	HFM	295
	ESDL(IT)=FOES(3,IT,3)	HFM	296
С	F-LAYER MUF	HFM	297
30	FC(IT)=GMA(1,IT)	HFM	298
	FM(IT)=FMM(1,IT)	HFM	299
	HO(IT)=HY(1,IT)	HFM	300
	IMK=1	HFM	301
	IF (KM+NE+5) GO TO 31	HFM	302
	FC(IT)=MINIF(GMA(4+IT)+GMA(5+IT))	HFM	303
	FM(IT)=(FNM(4,IT)+FNM(5,IT))/2.0	HFM	304
	HO(IT)=(HY(4+IT)+HY(5+IT))/2+0	HFM	305
		HFM	306
	IF (FC(IT)+EU+GMA(5+IT)) IMK=5	HFM	307
31		HFM	308
	$\frac{1}{1} + \frac{1}{1} + \frac{1}$	HFM	309
		HPM	310
		MEM	210
		HEM	312
	IM(1) = FM(1) = FM(1)		314
		HPM	214
	IM(11/=33+0		212
32			217
33		HEM	318
	IF (DeGTeD5000R) GO TO 34	HEM	319
	CALL BEMUE (YM(IT), FM(IT), FC(IT), EC(IT), D, 4, FMUE, XX, FBTA, NN)	HFM	320
	IF (FBTA.GE.AMIN.AND.NN.EQ.0) GO TO 35	HFM	321
	IF (NN.GE.1) GO TO 35	HFM	322
34	HOP=HOP+1	HFM	323
	GO TO 33	HFM	324

35		HFM	325
	CALL FZDIS (FHUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT)	HFM	326
	FOT (IT)=FFOT	HFM	327
	CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FHPF)	HFM	328
	HPFR(IT)=FHPF	HFM	329
	IF (EMUF.GT.FMUF) XMUF(IT)=EMUF	HEM	330
	IF (EMUF.GT.FFOT) FOT(IT)=EMUF	HEM	331
	IF (FMUE_GT_FHPF) HPFR(IT)=FMUE	HEM	332
36		MEM	222
			222
		HE H	334
-	60 10 15	HFM	335
C		HFM	336
37	FORMAT (915)	HFM	337
38	FORMAT (11F7+3)	HFM	338
39	FORMAT (10A8)	HFM	339
40	FORMAT (3X+12+1X+A4+5X+F5+1)	HFM	340
41	FORMAT (4A8+2(F4+2+R1+F5+2+R1)+F3+1+2F6+2)	HFM	341
	END	HEM	342-
	SUBROUTINE VERSY	VFR	1
	DIMENSION AB(76), $C(8)$, $G(76)$, $TA(7)$, $TB(7)$, $S(8)$	VER	5
	COMMON /111/ ISEE (10.8) SEE (2981) SEC /16.6.6.6. PKO (8.7.6) SE P(8.7.	AVED	2
			2
	1) CCC (0) / (0) / (27) 10) / / ADF (27//) DUD(3) 12) 3/ (AM(14) 12/) 3/3(3) 100	DVER	4
	2) •PERR (9 • 4 • 6)	VER	5
	COMMON /BON/ CLG, CLI, DER, FREL(11), GAMMA(7), GMT, HIGY, IGRAPH, IHRE, I	HVER	6
	1R0, IHRS, IVM, IVO, JO, METHOD, MONPR (2), NES, NPAGE, NUMBER, NUMO, NYEAR, SEC	CVER	7
	2E,SSN,UNE(3)	VER	8
	COMMON /CON/ D2R,DCL,GAMA,PI,PI2,PI02,R2D,R0,VOFL	VER	9
	DATA (IA=1,276,703,978,1966,2407,2605),(IB=5,7,5,13,9,9,13)	VER	10
	TIME=(15.0+GMT-180.0)+D2R	VER	11
	S(1) = SIN(TIME)	VFR	12
	C(1) = COS(TIME)	VED	12
		VED	14
		VER	14
		VER	15
		VER	16
	CALL MAGFIN	VER	17
	X=ATANF(ATANF(-UNE(1)/SQRT(UNE(2)++2+UNE(3)++2))/SQRT(COSLT))	VER	18
1	SX=SIN(X)	VER	19
	Y=CLG	VER	20
	DO 10 IO=IVO+IVM	VER	21
	J=ISFE(10,IO)	VER	22
	I=ISFE(9+10)+1	VFR	23
	K=ISEE(1-10)	VED	24
		VED	25
	C (14) = C (14 - 1) = S (1) = S (14 - 1)	VED	22
2	C(10) - C(1) + C(10 - 1) - C(1) + C(10 - 1)	VER	20
2		VER	21
		VER	28
	IDB=IA(IO)+IB(IO)+(JB=1)	VER	29
	AD(JD)=SFE(IJD)	VER	30
	DO 3 KATIJ	VER	31
	IKA=IA(IO/+2#KA-1+IB(IO/#(JB-1)	VER	32
3	AB(JB)=AB(JB)+SFE(IKA)#S(KA)+SFE(IKA+1)#C(KA)	VER	33
	G(1)=1+0	VER	34
	G(2)=SX	VER	35
	IF (K.EQ.1) GO TO 5	VER	36

	DO 4 KB=2.K	VFR	37
4	$G(KB+1)=SX^{+}G(KB)$	VER	38
5	KDIF=ISFE(2+10)-K	VER	39
-	IF (KDIF-EQ-0) GO TO 9	VER	40
	JG=1	VER	41
	CX=COSLT	VER	42
	T=Y	VER	43
6	KK=1SFE(JG+IO)+4	VER	44
-	G(KK-2)=CX=COS(T)	VER	45
	G(KK-1)=CX+SIN(T)	VER	46
	LO = ISFE(JG+1+IO)	VER	47
	IF (KDIF+EQ+2) GO TO 8	VER	48
	DO 7 KC=KK,LO,2	VER	49
	G(KC)=SX+G(KC-2)	VER	50
7	G(KC+1)=SX#G(KC-1)	VER	51
8	IF (JG+EQ+8) GO TO 9	VER	52
	KDIF=ISFE(JG+2,IO)-LO	VER	53
	IF (KDIF.EQ.0) GO TO 9	VER	54
	CX=CX+COSLT	VER	55
	JG=JG+1	VER	56
	T=JG+Y	VER	57
_	GO TO 6	VER	58
9	GAMMA(IO) = G(1) * AB(1)	VER	59
• -	D0 10 JC=2,I	VER	60
10	GAMMA(IO)=GAMMA(IO)+AB(JC)=G(JC)	VER	61
	RETORN	VER	62
		VER	63-
	SUBRULINE MAGIN SUBRULA $AOP(T)$, $OP(T)$, $OT(T,T)$, $OP(T,T)$, $O(T,T)$, $H(T,T)$, $P(T,T)$,	MAG	1
	DIMENSION AURITY CELTY CELTY DELIVITY GLIVITY HUNTY PLIVITY	MAG	2
	COMMON / PON/ CLGACI TADEPAEPEI (11) AGAMMA(7) AGNTAUTOVATOPADUA 19PEAT	MAG	5
	1904 THES I TWA TVO A TO WETHON WONDER (2) A NESA NDAGE AN IMPED AN MONO AVEAD ASE	MAG	Ē
		MAG	4
		MAG	7
	DATA ((1=2(0,0),0,33333333,0,26666667,0,25714286,0,25396825,0,252	MAG	8
	12525,3(0,0),0,2,0,22857142,0,23809523,0,24242424,4(0,0),0,14285714	MAG	9
	2,0,19047619,0,21212121,5(0,0),0,11111111,0,1616161616,6(0,0),0,09090	MAG	10
	3909+14(0+0)	MAG	11
	DATA (G=0.0,0.304112,0.024035,-0.031518,-0.041794,0.016256,-0.019	MAG	12
	123,0.0,0.021474,-0.051253,0.062130,-0.045298,-0.034407,-0.004853,2	MAG	13
	2(0.0),-0.013381,-0.024898,-0.021795,-0.019447,0.003212,3(0.0),-0.0	MAG	14
	306496,0.007008,-0.000608,0.021413,4(0.0),-0.002044,0.002775,0.0010	MAG	15
	451,5(0.0),0.000697,0.000227,6(0.0),0.001115)	MAG	16
	DATA (H=8(0.0),-0.057989,0.033124,0.014870,-0.011825,-0.000796,-0.	MAG	17
	1005758,2(0.0),-0.001579,-0.004075,0.010006,-0.002000,-0.008735,3(0	MAG	18
	2.0, 0.000210 , 0.000430 , 0.004597 , -0.003406 , $4(0.0)$, 0.001385 , 0.002421 , 0.001385 , 0.001385 , 0.002421 , 0.001385 , 0.002421 , 0.001385 , 0.002421 , 0.001385 , 0.002421 , 0.001385 , 0.002421 , 0.001385 , 0.002421 , 0.0001385 , 0.0001385 , 0.000000000 , $0.00000000000000000000000000000000000$	MAG	19
	3-0.000118,5(0.0),-0.001218,-0.001116,6(0.0),-0.000325)	MAG	20
	AR=RO/(RO+HIGY)	MAG	21
	SINLT=SIN(CLT)	MAG	22
	COSLT=COS(CLT)	MAG	23
	SINLG=SIN(CLG)	MAG	24
		MAG	27
	DD(1-1)=0-0	MAG	20
		UAM	~ 1

	SP(1)=0.0	MAG	28
	CP(1)=1.0	MAG	29
	AOR (1)=AR##2	MAG	30
	DO 1 NA=2,7	MAG	31
	MA=NA-1	MAG	32
	SP(NA)=SINLG*CP(MA)+COSLG*SP(MA)	MAG	33
	CP(NA)=COSLG*CP(MA)-SINLG*SP(MA)	MAG	34
1	AOR (NA)=AR+AOR (MA)	MAG	35
	BV=0+0	MAG	36
	BN=0+0	MAG	37
	BPHI=0+0	MAG	38
	DO 5 N=2,7	MAG	39
	AN=N	MAG	40
	N1=N-1	MAG	41
	N2=N-2	MAG	42
	SUMR=0+0	MAG	43
	SUM1=0+0	MAG	44
	SUMP=0+0	MAG	45
		MAG	46
	IF (NoNe-M) GO TO Z	MAG	47
		MAG	48
		MAG	49
-		MAG	50
2	P(N,M) = S(NL) = P(N) M	MAG	21
		MAG	52
	IF $(N \in Q \circ Z)$ GO TO 3	MAG	23
	$P(N \circ M) = P(N \circ M) = C(N \circ M) = P(N 2 \circ M)$	MAG	24
-		MAG	22
3		MAG	20
		MAG	5/
	SUM = SUM + DY (N SM / = 1 S CIMD-CIMD-CAMBO / N SM / U (N SM / = C/M SM /	MAG	50
-	SUMF=SUMF+AN*F(N9M)=(A(N9M)=CF(M)=C(N9M)=SF(M))	MAG	27
		MAG	61
E		MAG	61
2		MAG	62
		MAG	44
		MAG	4 6
	DETION	MAG	66
		MAG	67-
	SUBPOLITING LUFFY	LUE	1
	DIMENSION ER(21.7). NEFX(7). SIGNA(21.7)	LUF	2
	COMMON / RON/ CLG+CLT+DER+EREL(11)+GAMMA(7)+GMT+HIGY+IGRAPH+IHRE+I	HLUF	3
	180 + THRS + TVM + TVO + JO + METHOD + MONPR (2) + NES + NPAGE + NUMBER + NUMO + NYEAR + SE	CLUF	Ă
	2F • SSN • UNF (3)	LUF	5
	COMMON /CON/ D2R.DCL.GAMA.PI.PI2.PI02.R2D.RO.VOFL	LUF	ñ
	COMMON /DON/ ABI(24), ABIY(5,24), ALATD, AMIN, AMIND, BRTD, BTR, BTRD, CL	ALUF	ž
	1T(5), CLCK(5,24), CLONG(5), DLONG, EC(24), EMF(5,24), ESC(24), ESDL(24),	ELUF	8
	2SDU(24) +FC(24) +FM(24) +FMM(5+24) +FOES(5+24+3) +FOT(24) +GCD+GCDKM+GL	ALUF	9
	3T(5),GMA(5,24),GY(5,24),GYR(24),HO(24),HPFR(24),HY(5,24),IRCVR(2)	+LUF	10
	4IRLAT, IRLONG, ITLAT, ITLONG, ITRAN(2), LUFP, NOISE, PWR, RD(5), REX(4), RL	ALUF	11
	5TD,RLONGD,RSN,TEX(4),TLAT,TLATD,TLONG,TLONGD,XMUF(24),YM(24),ZEC(2LUF	12
	64),IEA	LUF	13
	COMMON /TON/ ABPS(9)+ADJ+ADS+ANGLE(12)+B(9)+CPROB(12)+CREL(9)+DBL	OLUF	14

```
1S(12),DBU(12),DBW(12),DELAY(12),FREQ,FSLOS(9),GRLOS(9),HN(9),HNP(1LUF
                                                                              15
22), HP(9), IT, MODE(12), NF, PROB(9), PWRDB, RELY(9), RGAIN(9), SL, SLS, SN(9LUF
                                                                              16
3) + SNPROB(12) + SU, SUS, TGAIN(9) + TIMED(9) + TLOSS(9) + VHIGH(12) + XTLOS
                                                                        LUF
                                                                              17
 IF (METHOD.EQ.1.OR.METHOD.EQ.8) GO TO 41
                                                                         LUF
                                                                              18
                                                                         LUF
 D5000R=5000+0/R0
                                                                              19
 IF (METHOD.EQ.5) GO TO 6
                                                                         LUF
                                                                              20
 PWRDB=10.0#ALOG10(1000.0#PWR)
                                                                         LUF
                                                                              21
 DO 4 I=1,21
                                                                         LUF
                                                                              22
 IF (I.EQ.15) GO TO 4
                                                                         LUF
                                                                              23
                                                                         LUF
 IK = I
                                                                              24
 IHPE=0
                                                                         LUF
                                                                              25
 IF (1.LT.8) GO TO 1
                                                                         LUF
                                                                              26
 IF (GCDKM.LT.2000.0) GO TO 5
                                                                         LUF
                                                                              27
 IK=1-7
                                                                         LUF
                                                                              28
 IHPE=1
                                                                         LUF
                                                                              29
 IF (I.LT.15) GO TO 1
                                                                         LUF
                                                                              30
 IF (GCDKM+LT+4000+0) GO TO 5
                                                                         LUF
                                                                              31
                                                                         LUF
                                                                              32
 IK=1-14
 IHPE=2
                                                                         LUF
                                                                              33
 DT=GCD/(IK+1-IHPE/2)
                                                                         LUF
                                                                              34
 DO 4 K=1+IK
                                                                         LUF
                                                                              35
 D=DT#K
                                                                         LUF
                                                                              36
 IF (1.LT.7) GO TO 3
                                                                         LUF
                                                                              37
 IF (IEA.EQ.3) GO TO 2
                                                                         LUF
                                                                              38
 D=D-DT/2.0
                                                                         LUF
                                                                              39
 IF (K.GT.1.AND.I.GT.14) D=D-DT/2.0
                                                                         LUF
                                                                              40
 GO TO 3
                                                                         LUF
                                                                              41
 IF (K.EQ.IK.AND.I.GT.14) D=D-DT/2.0
                                                                         LUF
                                                                              42
 QCOS=COS(D)#SIN(TLAT)+SIN(D)#COS(TLAT)#COS(BTR)
                                                                         LUF
                                                                              43
 IF (ABSF(QCOS).GT.1.0) QCOS=SIGNF(1.0,QCOS)
                                                                         LUF
                                                                              44
 GRLT=PIO2-ACOSF(QCOS)
                                                                         LUF
                                                                              45
 QCOS=(COS(D)-SIN(GRLT)+SIN(TLAT))/(COS(GRLT)+COS(TLAT))
                                                                         LUF
                                                                              46
 IF (ABSF(QCOS).GT.1.0) QCOS=SIGNF(1.0,QCOS)
                                                                         LUF
                                                                              47
 GRLG=ACOSF(QCOS)
                                                                         LUF
                                                                              48
 GRLG=TLONG-SIGN(GRLG,DLONG)
                                                                         LUF
                                                                              49
 IF (ABSF(GRLG).GT.PI) GRLG=GRLG-SIGNF(PI2.GRLG)
                                                                              50
                                                                         LUF
 GRLT=GRLT#R2D
                                                                         LUF
                                                                              51
                                                                         LUF
 GRLG=GRLG#R2D
                                                                              52
 IF (GRLG.GT.0.0) GRLG=360.0-GRLG
                                                                         LUF
                                                                              53
 IF (GRLG.LT.0.0) GRLG=ABSF(GRLG)
                                                                              54
                                                                         LUF
 CALL LANDY (7, GRLT, GRLG, WLD)
                                                                         LUF
                                                                              55
 SIGMA(I+K)=5.0
                                                                         LUF
                                                                              56
 ER(I+K)=80+0
                                                                         LUF
                                                                              57
 IF (WLD.LT.0.0) GO TO 4
                                                                         LUF
                                                                              58
 SIGMA(I.K)=0.001
                                                                         LUF
                                                                              59
 ER(1+K)=4+0
                                                                         LUF
                                                                              60
 CONTINUE
                                                                         LUF
                                                                              61
 GO TO (41+7+6+6+6+7+7+43) + METHOD
                                                                         LUF
                                                                              62
 NUMBER=0
                                                                         LUF
                                                                              63
                                                                         LUF
 HOUR LOOP
                                                                              64
 DO 42 IT=IHRO, IHRE, IHRS
                                                                         LUF
                                                                              65
 NF=1
                                                                         LUF
                                                                              66
 FREQ=XMUF(IT)
                                                                         LUF
                                                                              67
 DO 8 I=1,12
                                                                         LUF
                                                                              68
```

```
2
3
```

1

45

		1.1.10	40
		LUF	27
8	HODE (I/=IH-	LUP	10
	IF (GCDKM+GE+2000+0) GO TO 9	LUF	71
	CALL SYSSY (GLAT(1),CLCK(1,IT),GCDKM,ADJ,SU,SL,ADS,SUS,SLS)	LUF	72
	GO TO 10	LUF	73
9	CALL SYSSY (GLAT(2),CLCK(2,IT),GCDKM,ADJ,SU,SL,ADS,SUS,SLS)	LUF	74
	CALL SYSSY (GLAT(3) +CLCK(3+1T) +GCDKM+XADJ+XSU+XSL+XADS+XSUS+XSLS)	LUF	75
		LUE	74
			70
		LUF	
	SU=XSU	LUF	18
	SL=XSL	LUF	79
	ADS=XADS	LUF	80
	SUS=XSUS	LUF	81
	SL S=XSL S	LUF	82
10		LUE	83
-0		LUE	
			96
		LUP	07
		LUF	86
	HN(3)=1.0+XFIXF(GCDKM/5000.0)	LUF	87
	HN(4)=HN(3)+1•0	LUF	- 88
	HN(5)=HN(4)+1.0	LUF	89
	HN(6)=0.0	LUF	90
	HN (7)=0_0	LUF	91
	HN (A) = 0 - 0	LUE	92
		LUE	01
		LUE	94
			05
		LUP	72
		LUP	70
	TIMED(IM)=0.0	LUF	97
	TLOSS(IM)=1000+0	LUF	- 98
	SN(IM)=-1000+0	LUF	99
	PROB(IM)=0.0	LUF	100
11	RELY(IM)=0.0	LUF	101
с	MODE LOOP	LUF	102
-	DO 24 IM=1.5	LUF	103
12	HOP=HN(TM)	LUF	104
	IE (HOP, GT, 7-0) GO TO 24	LIF	105
		LUE	104
		LUP	107
	$\frac{1}{2} \left(\frac{1}{2} - 1$	LUP	107
	CALL BENUT (AAAAAAAAEC(II))DIIFREWAHP(IH)B(IH)AAA	LUP	100
	IF (NN.GE.I' GO TO 14	LUF	109
	IF (B(IM)-GE-AMIN) GO TO I3	LUF	110
	HN(1)=HN(1)+1.0	LUF	111
	HN(2)=HN(1)+1.0	LUF	112
	GO TO 12	LUF	113
13	NEFX(IM)=1HE	LUF	114
	PROB(IM)=0.995	LUF	115
	GO TO 21	LUF	116
14	IF (NES-EQ.0) GO TO 24	LUF	117
	HP(1M)=110-0	LUF	118
	$B(1M) = ATANF((COS(D/2_0) - RO/(RO+110_0))/SIN(D/2_0))$	LUF	119
	IF (B(IN) GEAMIN) GO TO 15	LUE	120
		LUE	121
		LUP	122
	UU/2/=UU/7/470A	LUP	162

.

<pre>G0 T0 12 SECPHE=1,0/COS(PI02-(D/2,0)-B(IM)) ESMUF=ESC(IT)*SECPHE ESF0T=ESDL(IT)*SECPHE CALL CHISQ (FREG+ESF0T+ESMUF+ESHPF+PROBES) IF (PROBESLIC.0.05) G0 T0 24 PROB(IM)=PROBES NEFX(IM)=INS G0 T0 21 IF (NF*EQ+1*AND+IM*EQ+3) IB=4 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+IB,FREQ+HP(IM)+B(IM), IF (NN*EQ+1) G0 T0 24 IF (NN*EQ+1) G0 T0 27 IF (NN*EQ+1) G0 T0 27 IF (NN*EQ+1) G0 T0 27 IF (NN*EQ+1) G0 T0 27 IF (NN*EQ+1) G0 T0 20 HP(IM)=HPRIME B1(IM)=BETA CALL F2DIS (FMUF+SSN*CLAT(1)+0+CLCK(1+T)+FF0T) CALL F2DIS (FMUF+SSN*CLAT(1)+0+CLCK(1+T)+FF0T) CALL F2DIS (FREQ+FF0T+FMUF+FFPROB) PROB(IM)=FROB IF (FPROB*EQ+0+0) G0 T0 24 NEFX(IM)=1HF PATH=2+0+H0P*SIN(D/2+0)*(HP(IM)+R0)/C0S(B(IM)) TIME0(IM)=CALL CHISC(IM)+CALCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC</pre>				
<pre>15 SECPHE=1,0/COS(F)02-(D/2,0)-B(IM)) ESMUF=SC(IT)*SECPHE ESF0T=ESDL(IT)*SECPHE CALL CMISQ (FRE0+ESF0T,ESMUF+ESMPF+PROBES) IF (PROBES.LT.0.05) GO TO 24 PROB(IM)=PROBES NEFX(IM)=1M5 GO TO 21 16 IB=2 IF (PR-EGD.1AMD-IM-EO.3) IB=4 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+IB+FRE0+HP(IM)+B(IM)+ IF (NN-EG.2) GO TO 19 IF (B(IM)-BE-AMIN) GO TO 19 17 CO 18 I=3-5 18 HN(1)=HN(1)+1+0 GO TO 21 19 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX IF (NX-EG.2) GO TO 24 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FHFF) CALL CMISQ (FRE0+FFOT+FMUF+HPF+FPROB) PROB(IM)=FFROB IF (FPROB=E0.0+0) GO TO 24 NEFX(IM)=1HF 21 PATH=2:0+HOP*SIN(D/2+0)*(HP(IM)+R0)/COS(B(IM)) TIME(IM)=(PATH/VOFL)*1000.0 IF (MOP-E0.1+0) GO TO 23 IH0PHDP-1.0 GO TO 23 IH0PHDP-1.0 GO TO 23 SN(IM)=677.2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFRE0+GRUS(IM)=FROPS(IM)+FEOS(IM)+RABF(GLOSS) 23 ABPS(IM)=677.2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFRE0+GOP=XILOS CALL GLOS (IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=PROBIM)+CRELIMM 24 CONTINUE 25 MIN =PROBIM)+CRELIMM 24 CONTINUE 25 MIN =PROBIM)+CRELIMM 24 CONTINUE 25 MIN =PROBIM)+CRELIMM 24 CONTINUE 25 MIN =PROBIM)+CREUCIMA 24 MEKELIMA 24</pre>	_	GO TO 12	LUF	123
ESMUF=ESC(II)*SECPHE ESFOF=ESDU(II)*SECPHE CALL CHIS0 (FRE0=ESFOT=ESMUF=ESHPF=PROBES) IF (PROBES.LT=0=05) GO TO 24 PROB(IM)=PROBES NEFX(IM)=IHS GO TO 21 IF (N=EQ=1=AND=IM=EQ=3) IB=4 IF (N=EQ=1) GO TO 24 IF (N=EQ=1) GO TO 24 IF (N=EQ=1) GO TO 24 IF (N=EQ=1) GO TO 24 IF (BIIM=GE=AMIN) GO TO 19 IF (BIIM=GE=AMIN) GO TO 19 IF (BIIM=GE=AMIN) GO TO 19 IF (BIIM=FRE0=1) GO TO 24 IF (N=EQ=1) GO TO 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF=SSN=CLAT(1)+0=CL(K(1+)T)+FFOT) CALL F2DIS (FMUF=SSN=CLAT(1)+1=CL(K(1+)T)+FFOT) CALL CHIS0 (FRE0=FFOT=FMUF=FHPF=FPROB) PROBE(IM)=FPROB IF (FPROB=EQ=0=0) GO TO 24 NEFX(IM)=IHF 21 PATH=2=0+HOP=SIN(D/2=0)+(HP(IM)+RO)/COS(B(IM)) TIMEO(IM)=(PATH/VOFL)*1000=0 IF (HOP=EO=0=0) GO TO 24 GRLOS(IM)=0=0 IF (HOP=EO=1=0) GO TO 24 GRLOS(IM)=6TT=2*HOP=ABI(IT)/(COS(ASIN(RO*COS(B(IM)))/(RO+100=0))) IFRC=CQRLOS(IM)=6TT=2*HOP=ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100=0)))) IFRC=CQRLOS(IM)=4BF5(IM)+FSLOS(IM)=RGAIN(IM)=TGAIN(IM)=ADJ TLOS=GRLOS(IM)=4BF5(IM)+FSLOS(IM)=RGAIN(IM)=TGAIN(IM)=ADJ TLOS=GRLOS(IM)=4BF5(IM)+FSLOS(IM)=RGAIN(IM)=TGAIN(IM)=ADJ TLOS=GRLOS(IM)=4BF5(IM)+FSLOS(IM)=RGAIN(IM)=TGAIN(IM)=ADJ TLOS=SRLOS(IM)=4BF5(IM)+FSLOS(IM)=RGAIN(IM)=TGAIN(IM)=ADJ TLOS=SN(IM)=FROB(IM)=CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM=LT=2000=0) GO TO 34 HM(6)=HN(3)	5	SECPHE=1.0/COS(PI02-(D/2.0)-B(IM))	LUF	124
ESF07=ESDL(1T)*SECPHE ESNPF=ESDL(1T)*SECPHE CALL CHISQ (FRE0,ESF07,ESNUF,ESNPF,PROBES) IF (PROBES,LT.0.0.05) GO TO 24 PROB(IM)=PROBES NEFX(IM)=IHS GO TO 21 IF (NF.EQ.1.AND.IM.EQ.3) IB=4 CALL BEMUF (YM(IT))FM(IT)+FC(IT)+EC(IT)+D.IB.FREQ.HP(IM)+B(IM), IF (NN.EQ.1) GO TO 24 IF (NN.EQ.1) GO TO 24 IF (NN.EQ.2) GO TO 19 IF (B(IM).GE.AMIN) GO TO 19 I7 DO 18 I=3-5 I8 HN(I)=HN(I)+1.0 GO TO 12 I9 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4.FMUF+HPRIME+BETA+NX IF (NX.EQ.1) GO TO 24 IF (NX.EQ.1) GO TO 24 IF (NX.EQ.1) GO TO 24 IF (IN)=HPRIME B(IM)=BETA CALL F2DIS (FMUF,SSN.CLAT(1)+0.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF,SSN.CLAT(1)+0.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF,SSN.CLAT(1)+1.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF,SSN.CLAT(1)+0.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF,SSN.CLAT(1)+0.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF,SSN.CLAT(1)+0.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF,SSN.CLAT(1)+1.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF,SSN.CLAT(1)+1.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CLCK(1+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CCS(1)+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CCS(1)+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CCS(1)+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CCS(1)+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CCS(1)+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.CCS(1)+IT)+FFOT) CALL F2DIS (FMUF)+SSN.CLAT(1)+1.FEO)/COS(B(IM)) TIMED IM)=(FAT)/OC) D0 Z X = 1.HOP CALL GLOS (B(IM)+FREQ.SIGMA(IMOP+K)+ER(IMOP+K)+GLOSS) 23 ABPS(IM)=32+45+20.0*ALOGIO(PATH#FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRUOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=32+45+20.0*ALOGIO(PATH#FREQ) TGAIN(IM)=0.0 CALL CHISO (SN(IM)+3DPO,RSN.DI0,CREL(IM)) RELY(IM)=PROBCMIN]=CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM=LT-2000.0) GO TO 34 HN(6)=HN(3)		ESMUF=ESC(IT)+SECPHE	LUF	125
ESHPF=ESDU(IT)*SECPHE CALL CHISQ (FRE0=ESFOT=ESMUF=ESHPF+PROBES) IF (PROBES.LT=0=05) GO TO 24 PROB(IM)=PROBES NEFX(IM)=IHS GO TO 21 IF=2 IF (N=EQ=1=AND=IM+EQ=3) IB=4 CALL BEMUF (YM(IT)=FM(IT)=FC(IT)=C(IT)=D=IB+FREQ=HP(IM)=B(IM)= IF (NN=EQ=1) GO TO 24 IF (NN=EQ=1) GO TO 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL BEMUF (YM(IT)=FN(IT)=FC(IT)=C(IT)=D=4+FMUF=HPRIME=BETA=NX IF (NN=EQ=0) GO TO 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF=SSN=CLAT(I)=0=CLCK(I=IT)=FFOT) CALL F2DIS (FMUF=SSN=CLAT(I)=0=CLCK(I=T)=FFOT) CALL F2DIS (FMUF=SSN=CLAT(I)=0=CLCK(I=T)=FFOT) CALL F2DIS (FMUF=SSN=CLAT(I)=0=CLCK(I=T)=FFOT) CALL CHISQ (FRE0=FFOT=FMUE=FHPF=FPROB) PROB(IM)=FPROB IF (FPROB=EQ=0=0) GO TO 24 NEFX(IM)=IHF 21 PATH=2=0=HOP=SIN(D/2=0)=(HP(IM)=RO)/COS(B(IM)) TIMED(IM)=FATH/VOFL)=1000=0 IF (HOP=EQ=1=0) GO TO 23 IHOP=HOP=1=0 DO 22 K=1=IHOP CALL GLOS (B(IM)=FRE0=SIGMA(IHOP=K)=FR(IHOP=K)=GLOSS) 23 ABPS(IM)=GRLOS(IM)=ABSF(IDOSS) 24 ABPS(IM)=GRLOS(IM)=ABSF(IM)=FSLOS(IM)=TGAIN(IM)=TGAIN(IM)=0=0 RCAIN(IM		ESFOT=ESDL(IT)+SECPHE	LUF	126
<pre>CALL CHISQ (FRE0.#CSFOT.EESMUF #ESMPF.#PROBES) IF (PROBES.LT.0.0.5) GO TO 24 PROB(IM)=PROBES NEFX(IM)=IHS GO TO 21 IF (N*.EQ.1.AND.*IM.EQ.3) IB=4 CALL BEMUF (YM(IT).FM(IT).FC(IT).EC(IT).D.*IB.FRE0.HP(IM).B(IM). IF (N*.EQ.1) GO TO 24 IF (N*.EQ.0) GO TO 20 HP(IM)=HPRIME BI(IM)=BETA ZO CALL F2DIS (FMUF.SSN.CLAT(1).*CLCK(1.*IT).*FHOF) CALL F2DIS (FMUF.SSN.CLAT(1).*1.CLCK(1.*IT).*FHOF) CALL F2DIS (FMUF.SSN.CLAT(1).*1.CCS(1.*IT).*FHOF) CALL GOS (B(IM).*FHOF.SSN.CLAT(1).*1.CCS(1.*IT).*FHOF) CALL GOS (B(IM).*FHOF.SSN.CLAT(1).*1.CCS(1.*IT).*FHOF) CALL GLOS (B(IM).*FHOF.SSN.CLAT(1).*1.CCS(1.*IT).*FHOF) IF (HCP.EQ.1.0) GO TO 23 IHOP+HOP-1.0 DO 22 K=1.1HOP CALL GLOS (B(IM).*FEQ.SIGMA(1HOP.K).*ER(1HOP.K).*GLOSS) ZG GRLOS(IM)=ACT.SCN.SIM.*ABSF(GLOSS) ABPS(IM)=67.7.2*HOPABI(1T)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0))) IFRECHCYNLIN =0.0 XTLOSCRUSS(IM)+ABSS(IM).*FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=72.45+20.0*ALOG10(PATH*FREQ) TGAIN(IM)=0.0 XTLOSCRUSS(IM)+ABSS(IM).*FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=74.CEL(IM) 24 CONTINUE CM IXED MODES</pre>		ESHPF=ESDU(IT)+SECPHE	LUF	127
<pre>IF (PROBES.LT.0.05) GO TO 24 PROBES NEFX(IM)=IHS GO TO 21 IF (N=ROBES NEFX(IM)=IHS GO TO 21 IF (N=ROBES NEFX(IM)=IHS CALL BEMUF (YM(IT)=FM(IT)=FC(IT)=C(IT)=D=IB=FREQ=HP(IM)=B(IM)= IF (N=ROS] GO TO 19 IF (N=ROS] GO TO 19 IF (B(IM)=GE=AMIN) GO TO 19 IF (B(IM)=HRIME GO TO 12 CALL BEMUF (YM(IT)=FM(IT)=FC(IT)=C(IT)=D=A=FMUF=HPRIME=BETA=NX IF (NX=ROS] GO TO 24 IF (NX=ROS] GO TO 24 IF (NX=ROS] GO TO 20 HP(IM)=HPRIME B(IM)=BETA CALL FZDIS (FMUF=SSN=CLAT(I)=0=CLK(I)=T)=FHOF) CALL FZDIS (FMUF=SSN=CLAT(I)=0=CLK(I)=T)=FHOF) CALL FZDIS (FMUF=SSN=CLAT(I)=1=CLK(I)=T)=FHOF) CALL FZDIS (FMUF=SSN=CLAT(I)=1=CLK(I)=FHOF) CALL GLOS (B(IM)=FHOF=SIN(D)=CLK(I)=T)=FREQ=SIGMA(IHOP=K)=FR(IHOP=K)=GLOSS) CALL GLOS (IM)=GRLOS(IM)=FREQ=SIGMA(IHOP=K)=FR(IHOP=K)=GLOSS) CALL GLOS (IM)=GRLOS(IM)=FREQ=SIGMA(IHOP=K)=FREQ) TGAIN(IM)=0=0 RGIN(IM)=0=0 RGIN(IM)=0=0 RGIN(IM)=0=0 RGIN(IM)=0=0 RGIN(IM)=0=0 CALL GLOS (IM)=FREQ=SIGMA(IM)=FREQSIGMA(IM)=TGAIN(IM)=TGAIN(IM)=AD TLOSS(IM)=SREQ=SILOS CALL CHISQ (SN(IM)=CREL(IM) CALL CHISQ (SN(IM)=CREL(IM) CALL CHISQ (SN(IM)=CREL(IM)) RELY(IM)=PROB(IM)=CREL(IM) CALL CHISQ (SN(IM)=CREL(IM) CALL CHISQ (SN(IM)=CREL(IM) CALL CHISQ (SN(IM)=CREL(IM) CALL FZON=D) GO TO 34 HN(G)=HN(G)=HN(G) CALL GIN(IM)=TGAOO) GO TO 34 HN(G)=HN(G)=HN(G) CALL FZON=D) GO TO 34 HN(G)=HN(F) CALL FZON=D) GO TO 34 HN(G)=HN(F) CALL FZON=D) GO TO 34 HN(F)=TTOCS CALL FZON=D)</pre>		CALL CHISQ (FREQ+ESFOT+ESMUF+ESHPF+PROBES)	LUF	128
<pre>PROB(IM)=PROBES NEFX(IM)=INS G0 T0 21 16 IB=2 IF (NF=EQ+1=AND+IM+EQ+3) IB=4 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+IB+FREQ+HP(IM)+B(IM)+ IF (NN+EQ+2) G0 T0 24 IF (NN+EQ+2) G0 T0 19 17 D0 IB I=3+5 18 HN(I)=HN(I)+1+10 G0 T0 12 19 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX IF (NX+EQ+1) G0 T0 24 IF (BETA+IT+AMIN) G0 T0 17 IF (BETA+IT+AMIN) G0 T0 17 IF (NX+EQ+1) G0 T0 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF+SSN+CLAT(I)+0+CLCK(I+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(I)++0+CLCK(I+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(I)++1+CLCK(I+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(I)++0+CLCK(I+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(I)++0+CLCK(I+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(I)++0+CLCK(I+IT)+FFOT) CALL CHISQ (FREQ+FFOT+FMUF+FHPF+FPROB) PROBE(IM)=PROB IF (FPROB+EQ+0+0) G0 T0 24 NEFX(IM)=1HF 21 PATH=2+0*HOP*SIN(D/2+0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH+VOFL)*1000+0 IF (HOP+EQ+1+0) G0 T0 23 IHOP=HOP-1+0 CALL GLOS (IM)=0+0 G0 T0 23 IHOP=HOP-1+0 CALL GLOS (IM)=0+D0 G0 T0 23 IHOP=HOP-1+0 CALL GLOS (IM)=0+D0 G0 T0 23 IHOP=HOP-1+0 CALL GLOS (IM)=0+D0 G0 T0 23 IHOP=HOP-1+0 CALL GLOS (IM)+ABSF(IDOS) 23 ABS(IM)=67LOS(IM)+ABSF(IDOS) 24 GRLOS(IM)=2++2+0+0+ALGI0(PATH+FREQ) TGAIN(IM)=0+0 RGAIN(IM)=0+0 XILOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABPS(IM)+FRUE(IM) 24 CONTINUE C MIXED MODES IF (GCDRM+</pre>		IF (PROBES.LT.0.05) GO TO 24	LUF	129
<pre>NEFX(IM'=1HS G0 T0 21 IF (NF+EQ+1+AND+IM+EQ+3) IB=4 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+IB+FREQ+HP(IM)+B(IM)+ IF (NN+EQ+2) G0 T0 24 IF (NN+EQ+2) G0 T0 19 IF (B(IM)+GE+AMIN) G0 T0 19 IF (B(IM)+GE+AMIN) G0 T0 19 IF (B(IM)+GE+AMIN) G0 T0 17 IF (NX+EQ+1) G0 T0 24 IF (NX+EQ+1) G0 T0 20 HP(IM)+HPRIME B(IM)+BETA 20 CALL F2DIS (FMUF+SSN+CLAT(1)+0+CL(IT)+FOT) CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CCCS(B(IM)) TIMED(IM)=1+FFCA+SIGNA(1+OP+K)+FFCO)(S(B(IM)) TIMED(IM)=FATH=2+FFCA+SIGNA(1+OP+K)+FFCOS(B(IM))/(RO+100+O))) IFREQ+GYR(IT)++BS+10+2) FSLOS(IM)+ABFS(IM)+FSLOS(IM)+FSLOS(IM)+AGIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)-TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+RGAIN(IM)+TGAIN(IM)+ADJ TLOS=GRLOS(IM)+ABFS(IM)+FSLOS(IM)+ C MIXED MODES</pre>		PROB(IM)=PROBES	LUF	130
GO TO 21 IB=2 IF (NF.EQ.1.AND.IM.EQ.3) IB=4 CALL BEMUF (YM(IT).FM(IT).FC(IT).EC(IT).D.IB.FREQ.HP(IM).B(IM). IF (NN.EQ.1) GO TO 24 IF (NN.EQ.2) GO TO 19 IF (B(IM).GE.AMIN) GO TO 19 7 DO 18 1=3.5 18 HN(1)=HN(1)+1.0 GO TO 12 9 CALL BEMUF (YM(IT).FM(IT).FC(IT).EC(IT).D.4.FMUF.HPRIME.BETA.NX IF (NN.EQ.0) GO TO 24 IF (BTA.LT.AMIN) GO TO 17 IF (NN.EQ.0) GO TO 24 IF (BTA.LT.AMIN) GO TO 17 IF (NN.EQ.0) GO TO 24 IF (BTA.LT.AMIN) GO TO 17 IF (NN.EQ.0) GO TO 20 HP(IM)=HPRIME B(IM)=BETA CALL F2DIS (FMUF.SSN.CLAT(1).0.CLCK(1.IT).FFOT) CALL F2DIS (FMUF.SSN.CLAT(1).1.CLCK(1.IT).FFOT) CALL F2DIS (FMUF.SSN.CLAT(1).1.CLCK(1.IT).FFOT) CALL F2DIS (FMUF.SSN.CLAT(1).1.CLCK(1.IT).FFOT) CALL F2DIS (FMUF.SSN.CLAT(1).0.CLCK(1.IT).FFOT) CALL F2DIS (FMUF.SSN.CLAT(1).CLCK(1.IT).FFOT) CALL CHISQ (FREQ.FFOT.FMUF.FHPF.FPROB) PROBCIM!=FPROB IF (FPROB.EQ.0.0) GO TO 24 NEFX(IM)=1HF 21 PATH=2.0*HOP*SIN(D/2.0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH.V/OFL)*1000.0 IF (HOP.EQ.5) GO TO 24 GRLOS(IM)=0.0 IF (HOP.EQ.5) GO TO 23 IHOP=HOP-1.0 DO 22 K=1.THOP CALL GLOS (B(IM).FREQ.SIGMA(IHOP.K).FR(IHOP.K).GLOSS) 23 ABPS(IM)=GRLOS(IM)+ABSF(GLOSS) 24 ABF(IM)=FRCBABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0))): IFREQ.GRLOS(IM)=841.0.2)) FSLOS(IM)=32.*5+20.0*ALOGIO(PATH#FREQ) TGAIN(IM)=0.0 XILOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PROB.TLOS CALL CHISQ (SN IM).D90.RSN.DI0.CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM.T.2000.0) GO TO 34 HN(6)=HN(3)		NEFX(IM)=1HS	LUF	131
<pre>16 IB=2 IF (NF*EQ*1*AND*IM*EQ*3) IB=4 CALL BEMUF (YM(IT)*FM(IT)*FC(IT)*EC(IT)*D*IB*FREQ*HP(IM)*B(IM)* IF (NN*EQ*1) GO TO 24 IF (NN*EQ*2) GO TO 19 IF (B(IM)*GE*AMIN) GO TO 19 IF (B(IM)*GE*AMIN) GO TO 19 CALL BEMUF (YM(IT)*FM(IT)*FC(IT)*EC(IT)*D*4*FMUF*HPRIME*BETA*NX IF (NX*EQ*1) GO TO 24 IF (BETA*LT*AMIN) GO TO 17 IF (NN*EQ*0) GO TO 20 HP(IM)*HPRIME B(IM)*BETA 20 CALL F2DIS (FMUF*SSN*CLAT(1)*0*CLCK(1*IT)*FFOT) CALL F2DIS (FMUF*SSN*CLAT(1)*1*CLCK(1*IT)*FFOT) CALL F2DIS (FMUF*SSN*CLAT(1)*1*CLCK(1*IT)*FFOT) CALL F2DIS (FMUF*SSN*CLAT(1)*1*CLCK(1*IT)*FHFF) CALL CHISQ (FREQ*FFOT*FMUF*FHFF*FPROB) PROB(IM)*FPROB IF (FPROB*EQ*0*0) GO TO 24 NEFX(IM)*IHF 21 PATH*2*0*HOP*SIN(D/2*0)*(HP(IM)*R0)/COS(B(IM)) TIMED(IM)*CA+1HOP*C0*0) IF (METHOD*EQ*5) GO TO 23 IHOP*HOP=1*0 DD 22 K*1*HOP CALL GLOS (B(IM)*FREQ*SIGMA(IHOP*K)*ER(IHOP*K)*GLOSS) 22 GRLOS(IM)*GO*O*ALOGIO(PATH*FREQ) TGAIN(IM)*0*0 XTLOS*GRLOS(IM)*ABFS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)*ADJ TLOS*GRLOS(IM)*ABFS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)*ADJ TLOS*GRLOS(IM)*ABFS(IM)*FSLOS(IM)-RGAIN(IM)-TGAIN(IM)*ADJ TLOS*GRLOS(IM)*CO*CO*CEL(IM) ABDES IF (GCDKN*LT*2000*0) GO TO 34 HN(6)*HN(3)</pre>		GO TO 21	LUF	132
<pre>IP (NP+EQ+1=AND=IM+EQ+3) IB=4 CALL BEMUF (YM(IT)+FK(IT)+FC(IT)+D+IB+FREQ+HP(IM)+B(IM)+ IF (NN+EQ+2) GO TO 19 IF (B(IM)+EQ+2) GO TO 19 IF (B(IM)+EQ+2) GO TO 19 17 DO 18 I=3+5 18 HN(I)=HN(I)+1+0 GO TO 12 19 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX IF (NX+EQ+1) GO TO 24 IF (BETA+LT+AMIN) GO TO 17 IF (NX+EQ+1) GO TO 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF+SSN+CLAT(I)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CCCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CCCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CCCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CCCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CCK(1+IT)+FFOT) CALL GLOS (B(IM)+FFOOS) CALL GLOS (B(IM)+FFOOS) CALL GLOS (B(IM)+FFOOS) CALL GLOS (B(IM)+FFOOS) CALL GLOS (B(IM)+FFOOS) CALL GLOS (B(IM)+FSUS)(IM)+FSLOS(IM)-FGAIN(IM)+CGAIN(IM)+ADJ TLOSSI(IM)=FVOBS SN(IM)=FVOBS-STLOS CALL CHISQ (SN(IM)+ABPS(IM)+FSLOS(IM)-FGAIN(IM)+ADJ TLOSSI(IM)=FVOBS CALL GHOSS (SN+DI0+CREL(IM)) RELY(IM)=PVOBC+STLOS CALL CHISQ (SN(IM)+CREL(IM) C MIXED MODES IF (GCDKM+LT*2000+0) GO TO 34 HN(G)=HN(3)</pre>	6		LUF	133
<pre>CALL BEMUF (TMIT)*FCIT)*FCIT)*EFMEG*ENDETA*NX IF (NN*E0*1) GO TO 24 IF (NN*E0*1) GO TO 24 IF (NN*E0*1) GO TO 24 IF (NN*E0*1) GO TO 24 IF (NN*E0*1) GO TO 27 HP(IN)*HPRIME B(IM)*EFTA 20 CALL F2DIS (FMUF*SN*CLAT(1)*0*CLCK(1*IT)*FFOT) CALL F2DIS (FMUF*SN*CLAT(1)*0*CLCK(1*IT)*FFOT) CALL F2DIS (FMUF*SN*CLAT(1)*1*CLCK(1*IT)*FFOT) CALL F2DIS (FMUF*SN*CLAT(1)*1*CLCK(1*IT)*FHPF) CALL CHISQ (FREG*FFOT*FMUF*FHPF*FPROB) PROB(IM)*FPROB IF (FPROB*EQ*0*0) GO TO 24 NEFX(IM)*1HF 21 PATH=2*0*HOP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TIME0(IM)*CP*SIN(D/2*0)*(HP(IM)*RO)/COS(B(IM)) TF(HOP*EQ*1*0) GO TO 23 IH0P*HOP=1*0 DO 22 K*1*HOP CALL GLOS (B(IM)*FRE0*SIGMA(IHOP*K)*ER(IHOP*K)*GLOSS) 23 ABPS(IM)*CRLOS(IM)*ABF(GLOSS) 24 ABPS(IM)*CP*SICO*ALOGIO(PATH*FRE0) TGAIN(IM)*0*0 RGAIN(IM)*0*0 RGAIN(IM)*0*0 RGAIN(IM)*D*CP*SICO CALL CHISQ (SN(IM)*ABPS(IM)*FSLOS(IM)*RGAIN(IM)*TGAIN(IM)*ADJ TLOS*GRLOS(IM)*ABPS(IM)*FSLOS(IM)*RGAIN(IM)*TGAIN(IM)*ADJ TLOS*GRLOS(IM)*ABPS(IM)*FSLOS(IM)*RGAIN(IM)*TGAIN(IM)*ADJ TLOS*GRLOS(IM)*RDB*SICO CALL CHISQ (SN(IM)*D*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDK*LT*2000*0) GO TO 34 HN(6)**HN(3)</pre>		IF $(NF \in Q \circ I \circ ANU \circ IM \circ EQ \circ 3)$ IB=4	LUF	134
<pre>IF (NN+EQ:] GO TO 24 IF (NN+EQ:] GO TO 19 IF (B(IM)+GE+AMIN) GO TO 19 IF (B(IM)+GE+AMIN) GO TO 19 GO TO 12 GO TO 12 IP CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX IF (NX+EQ:1) GO TO 24 IF (NX+EQ:1) GO TO 24 IF (NN+EQ:1) GO TO 20 HP(IM)=HPRIME B(IM)=HPRIME B(IM)=HPRIME B(IM)=HPRIME B(IM)=FBTA CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FHPF) CALL CHISQ (FREQ+FFOT+FMUF+FHPF,FPROB) PROB(IM)=FPROB IF (FPROB+EQ=0+0) GO TO 24 NEFX(IM)=1HF 21 PATH=2.0*HOP*SIN(D/2.0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (METHOD+EQ=5) GO TO 24 GRLOS(IM)=0+O IF (MOP+EQ=1+0) GO TO 23 IHOP=HOP=1.0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+FR(IHOP+K)+GLOSS) 23 ABPS(IM)=67T+2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFREQ+GYR(IT))*1+98+10+2)) FSLOS(IM)=32+45+20+0*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFREQ+GYR(IT))*1+98+10+2)) FSLOS(IM)=ADD=XTLOS SN(IM)=PWRDB=XTLOS CALL CHISQ (SN(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB=XTLOS CALL CHISQ (SN(IM)+CREL(IM) ACONTINUE C MIXED MODES IF (GCKM+LT-2000+0) GO TO 34 HM((6)=HN(3)</pre>		CALL BEMOF (TM(II)) FM(II)) FC(II)) EC(II) DOIB, FREU, HP(IM) B(IM) NN	LUF	135
<pre>IF (NN+EG+2) GO TO 19 IF (B(IM)+GE+AMIN) GO TO 19 IF (B(IM)+GE+AMIN) GO TO 19 I7 DO 18 I=3+5 18 HN(I)+HN(I)+1+0 GO TO 12 19 CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX IF (NX+EG+1) GO TO 24 IF (BETA+LT+AMIN) GO TO 17 IF (NN+EG+0) GO TO 20 HP(IM)+HPRIME B(IM)+BETA 20 CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FHPF) CALL CHISQ (FRE0+FFOT+FMUF+FHPF+FPROB) PROB(IM)+FPROB IF (FPROB+EQ+0+0) GO TO 24 NEFX(IM)+1HF 21 PATH=2+0*HOP*SIN(D/2+0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)+(PATH/VOFL)*1000+00 IF (MCTHOD+EQ+5) GO TO 24 GRLOS(IM)=0+0 IF (HOP+CQ+1+0) GO TO 23 IHOP+HOP-1+0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FRE0+SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 23 ABPS(IM)=G77+2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFRE0+GYR(IT)+*9+10+2)1 FSLOS(IM)=32+45+20+0*ALOG10(PATH+FRE0) TGAIN(IM)=0+0 RGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=XTLOS SN(IM)=XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=ROBOLIM)+CREL(IM) 24 CONTINUE C MIXED MODES IF (GCKM+LT+2000+0) GO TO 34 HN((6)=HN(3)</pre>		$IF (NN \in G_0 I) GO TO 24$	LUF	136
<pre>IP (B(IM)+GE+AMIN) GO 10 19 17 DO 18 I=3+5 18 HN(I)=HN(I)+I+0 GO TO 12 GO TO 12 GO TO 12 GALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX IF (NX+EG+1) GO TO 24 IF (BETA+AMIN) GO TO 17 IF (NX+EG+0) GO TO 20 HP(IM)=HPRIME B(IM)+BETA 20 CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL CHISQ (FREG+FFOT+FMUF+FFPROB) PROB(IM)=FPROB IF (FPROB+EG+0+0) GO TO 24 NEFFX(IM)=1HF 21 PATH=2.0#HOP*SIN(D/2.0)#(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (METHOD+EG+5) GO TO 24 GRLOS(IM)=0+0 IF (HOP+eG+1+0) GO TO 23 IHOP=HOP-1+0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FREG+SIGMA(IHOP+K)+FR(IHOP+K)+GLOSS) 23 ABPS(IM)=677+2#HOP#ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFREG+GVR(IT)+1+98+10+2)) FSLOS(IM)=32+45+20+0#ALOG10(PATH#FREQ) TGAIN(IM)=0+0 RGAIN(IM)=0+0 XTLOS=GLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=FROB-XTLOS CALL CHISQ (SN(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=FROBCMIN)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS CALL CHISQ (SN(IM)+CREL(IM) 24 CONTINUE C MIXED MODES IF (GCKM+LT+2000+0) GO TO 34 HN(6)=HN(3) </pre>		$IF (NN \in Eq. 2) GO TO 19$	LUF	137
<pre>17 D0 18 1#3+5 B HN(1)=HN(1)+1.0 G0 T0 12 P CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX IF (NX-E0.1) G0 T0 24 IF (NX-E0.1) G0 T0 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F20IS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F20IS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL CHISQ (FREQ+FFOT+FMUF+FHPF+FPROB) PROB(IM)=FPROB IF (FPROB=EQ+0.0) G0 T0 24 NEFX(IM)=1HF 21 PATH=2+0#HOP*SIN(D/2+0)*(HP(IM)+R0)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (METHOD+EQ+5) G0 T0 24 GRL0S(IM)=0+0 IF (HOP+EQ+1+0) G0 T0 23 IHOP=HOP-1+0 D0 22 K=1+IHOP CALL GL0S (B(IM)+FREQ+SIGMA(IHOP+K)+ER(IHOP+K)+GL0SS) 23 ABPS(IM)=G77+2#HOP*ABI(T1)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFRC+GYR(IT))*1+98+10-2)) FSL0S(IM)=0+0 RGAIN(IM)=0+0 XTL0S=GRL0S(IM)+ABSF(IM)+FSL0S(IM)-RGAIN(IM)=TGAIN(IM)+ADJ TL0SS(IM)=XTL0S SN(IM)=PROB=XTL0S CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) G0 T0 34 HN(6)=HN(3)</pre>	~	IF (B(IM)-GE-AMIN) GO TO I9	LUF	138
<pre>15 HN(1)*HN(1)*1.0 G0 T0 12 19 CALL BEMUF (YM(IT)*FM(IT)*FC(IT)*EC(IT)*D*4*FMUF*HPRIME*BETA*NX IF (NX*E0*1) G0 T0 24 IF (NX*E0*1) G0 T0 20 HP(IM)*HPRIME B(IM)*BETA 20 CALL F2DIS (FMUF*SSN*CLAT(1)*0*CLCK(1*IT)*FFOT) CALL F2DIS (FMUF*SSN*CLAT(1)*1*CLCK(1*IT)*FFOT) CALL CHISQ (FREQ*FFOT*FMUF*FHPF*FPROB) PROB(IM)*FPROB IF (FPROB*E0*0*0) G0 T0 24 NEFX(IM)*FHF 21 PATH*2*0*HOP*SIN(D/2*0)*(HP(IM)*R0)/COS(B(IM)) TIMED(IM)*CPATH/VOFL)*1000*0 IF (METHOD*E0*5) G0 T0 24 GRL0S(IM)*0*0 IF (HOP*E0*1*0) G0 T0 23 IHOP*HOP-1*0 D0 22 K*1*IHOP CALL GLOS (B(IM)*FRE0*SIGMA(IHOP*K)*ER(IHOP*K)*GLOSS) 23 ABPS(IM)*G7*2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100*0)))* IFRE0*GYR(IT))**1*98*10*2)) FSL0S(IM)*32*45*20*0*ALOG10(PATH*FREQ) TGAIN(IM)*0*0 RCALN(IM)*0*0 XTL0S*GRL0S(IM)*ABSF(IM)*FSL0S(IM)-RGAIN(IM)*TGAIN(IM)*ADJ TLOSS(IM)*TLOS SN(IM)*FROB*IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GDCM*LT*2000*0) G0 T0 34 HN(6)*HN(3)</pre>	. (LUF	139
<pre>G0 10 12 G0 10 12 G0 10 12 G0 10 12 G1 0 12 G1 0 10 12 G1 0 10 10 10 10 10 10 10 10 10 10 10 10</pre>	8	HN(1)=HN(1)+1.0	LUF	140
<pre>IF CALL BEMOP (IN(I)) = (II) = (</pre>	•		LUF	141
<pre>IF (WA+EGAL) GO 10 24 IF (BETAALT-AMIN) GO TO 17 IF (NN+EQ+0) GO TO 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FHPF) CALL CHISQ (FREQ+FFOT+FMUF+FHPF+FPROB) PROB(IM)=FPROB IF (FPROB+EQ+0+0) GO TO 24 NEFX(IM)=THF 21 PATH=2+0+HOP*SIN(D/2+0)+(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (MD+EQ+1+0) GO TO 24 GRLOS(IM)=0+OO IF (HOP+EQ+1+0) GO TO 23 IHOP=HOP-1+0 DO 22 K=1+1HOP CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+FR(IHOP+K)+GLOSS) 23 ABPS(IM)=67T+2#HOP#ABI(IT)/(COS(ASIN(RO+COS(B(IM))/(RO+100+0)))) IFRE0+GYR(IT))*1+98+10+2)) FSLOS(IM)=32+45+20+0#ABI(IT)/(COS(ASIN(RO+COS(B(IM))/(RO+100+0)))) IFRE0+GYR(IT))*1+98+10+2)) FSLOS(IM)=32+45+20+0#ALOGI0(PATH#FREQ) TGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3) </pre>	9	CALL BEMUF (TM(I)) FM(I)) FC(I)) EC(I)) U 44FMUF (HPRIME) BEIA(NX)	LUP	142
<pre>IF (DELAALIA, NO, GO TO 2) IF (NA, EG, O) GO TO 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF,SSN,CLAT(1)+0,CLCK(1,IT)+FFOT) CALL F2DIS (FMUF,SSN,CLAT(1)+1,CLCK(1,IT)+FHPF) CALL CHISQ (FREQ,FFOT,FMUF,FHPF,FPROB) PROB(IM)=FPROB IF (FPROB.EQ.0.0) GO TO 24 NEFX(IM)=1HF 21 PATH=2.0*HOP*SIN(D/2.0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000.0 IF (METHOD.EQ.5) GO TO 24 GRLOS(IM)=0.0 IF (HOP.EQ.1.0) GO TO 23 IHOP=HOP=1.0 DO 22 K=1.HOP CALL GLOS (B(IM)+FREQ.SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 23 ABPS(IM)=67.02*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0)))) IFREQ+GYR(IT))*1.98+10.2)) FSLOS(IM)=32.45+20.0*ALOG10(PATH#FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=FNOB(IM)+D90,RSN+D10,CREL(IM)) RELY(IM)=PROB(IM)+CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT-2000.0) GO TO 34 HN(6)=HN(3) </pre>		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		143
<pre>IF (INVECUO) GO TO 20 HP(IM)=HPRIME B(IM)=BETA 20 CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FFOT) CALL CHISQ (FREQ+FFOT+FMUF+FHPF+FPROB) PROB(IM)=FPROB IF (FPROB+EQ=0+0) GO TO 24 NEFX(IM)=1HF 21 PATH=2.0#HOP*SIN(D/2.0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (METHOD+EQ=5) GO TO 24 GRLOS(IM)=0+HOP=1+0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=G77-2#HOP#ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0))) IFREQ+GYR(IT))**1+98+10+2)) FSLOS(IM)=32+45+20+0*ALOG10(PATH#FREQ) TGAIN(IM)=0+0 RGAIN(IM)=0+0 RGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+O90+RSN+D10+CREL(IM)) RELY(IM)=PWRDB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)</pre>			LUF	144
<pre>B(IM)=BETA 20 CALL F2DIS (FMUF+SSN+CLAT(1)+0+CLCK(1+IT)+FFOT) CALL F2DIS (FMUF+SSN+CLAT(1)+1+CLCK(1+IT)+FHPF) CALL CHISQ (FREQ+FFOT+FMUF+FHPF+FPROB) PROB(IM)=FPROB IF (FPROB+EQ+0+0) GO TO 24 NEFX(IM)=1HF 21 PATH=2+0*HOP*SIN(D/2+0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (METHOD+EQ+5) GO TO 24 GRLOS(IM)=0+0 IF (METHOD+EQ+5) GO TO 24 GRLOS(IM)=0+0 CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=G77+2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFREQ+GYR(IT))*1+98+10+2)) FSLOS(IM)=32+45+20+0*ALOG10(PATH*FREQ) TGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)</pre>		$\frac{1}{10} \left(\frac{1}{10} - \frac{1}{10} \right) = \frac{1}{10} \left(\frac{1}{10} - \frac{1}{10} \right)$	LUF	145
<pre>Dot Im * Bot is find for the formation of the format</pre>				140
<pre>CALL f2DIS (FMUF+SSN+CLAT(1)+1,CLCK(1+IT)+FHPF) CALL CHISQ (FREQ+FFOT+FMUF+FHPF+FPROB) PROB(IM)=FPROB IF (FPROB+EQ+0+0) GO TO 24 NEFX(IM)=1HF 21 PATH=2+0*HOP*SIN(D/2+0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (METHOD+EQ+5) GO TO 24 GRLOS(IM)=0+0 IF (HOP+EQ+1+0) GO TO 23 IHOP=HOP-1+0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+FR(IHOP+K)+GLOSS) 22 GRLOS(IM)=GT7+2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))* IFREQ+GYR(IT))*1+98+10+2)) FSLOS(IM)=GT7+2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))* IFREQ+GYR(IT))*1+98+10+2)) FSLOS(IM)=32+45+20+0*ALOG10(PATH#FREQ) TGAIN(IM)=0+0 RGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWOB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)</pre>	0	CALL FORTS (FMUERSSNACLAT(1),0,CLCK(1,TT),FEOT)		147
CALL (12) SIN (FRE0+FFOT+FMPF+FPROB) PROB(IM)=FPROB IF (FPROB+EQ+0+0) GO TO 24 NEFX(IM)=1HF 21 PATH=2+0#HOP*SIN(D/2+0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000+0 IF (METHOD+EQ+5) GO TO 24 GRLOS(IM)=0+0 IF (HOP+EQ+1+0) GO TO 23 IHOP=HOP-1+0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=677-2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100+0)))) IFREQ+GYR(IT))**1+98+10+2)) FSLOS(IM)=32+45+20+0*ALOG10(PATH#FREQ) TGAIN(IM)=0+0 RGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)+TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL (HISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=POB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)	U	CALL F2DIS (FMUEASON) $C = AT(1) + 1 - C + C + (1 - T) + C + C + C + C + C + C + C + C + C + $	1115	140
PROB(IM)=FPROB IF (FPROB.EQ.0.0) GO TO 24 NEFX(IM)=IHF 21 PATH=2.0#HOP*SIN(D/2.0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000.0 IF (METHOD.EQ.5) GO TO 24 GRLOS(IM)=0.0 IF (HOP.EQ.1.0) GO TO 23 IHOP=HOP=1.0 DO 22 K=1.1HOP CALL GLOS (B(IM).FREQ.SIGMA(IHOP.K).ER(IHOP.K).GLOSS) 22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=677.2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0))) IFREQ.GYR(IT))**1.98+10.2)) FSLOS(IM)=32.45+20.0*ALOG10(PATH*FREQ) TGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM).D90.RSN.D10.CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)			LUE	160
<pre>IF (FPROB.EQ.0.0) GO TO 24 NEFX(IM)=1HF 21 PATH=2*0*HOP*SIN(D/2*0)*(HP(IM)+R0)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000*0 IF (METHOD*EQ*5) GO TO 24 GRLOS(IM)=0*0 IF (HOP*EQ*1*0) GO TO 23 IHOP=HOP=1*0 DO 22 K=1*IHOP CALL GLOS (B(IM)*FREQ*SIGMA(IHOP*K)*ER(IHOP*K)*GLOSS) 22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=677*2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100*0)))* IFREQ+GYR(IT))*1*9*10*21) FSLOS(IM)=32*45*20*0*ALOG10(PATH*FREQ) TGAIN(IM)=0*0 RGAIN(IM)=0*0 RGAIN(IM)=0*0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)*D90*RSN*D10*CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM*LT*2000*0) GO TO 34 HN(6)=HN(3)</pre>			LUP	161
<pre>NETX(IM)=1HF NETX(IM)=1HF NETX(IM)=1HF NETX(IM)=1HF NETX(IM)=1HF NETX(IM)=1HF NETX(IM)=1HF NETX(IM)=1HF NETX(IM)=1HP NETX(IM)=0+0 IF (HOP+EQ+1+0) GO TO 23 IHOP=HOP-1+0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) CALL GLOS (B(IM)+ABSF(GLOSS) ABPS(IM)=677.2#HOP#ABI(IT)/(COS(ASIN(RO#COS(B(IM))/(RO+100+0)))) IFREQ+GYR(IT))#1+98+10+2)) FSLOS(IM)=32+45+20+0#ALOG10(PATH#FREQ) TGAIN(IM)=0+0 RGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)#CREL(IM) C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)</pre>			LUP	162
<pre>NLTINGETING 21 PATH=2:0#HOP#SIN(D/2:0)*(HP(IM)+RO)/COS(B(IM)) TIMED(IM)=(PATH/VOFL)*1000.0 IF (METHOD.EQ.5) GO TO 24 GRLOS(IM)=0.0 IF (HOP=C0.1:0) GO TO 23 IHOP=HOP=1:0 DO 22 K=1:HOP CALL GLOS (B(IM)+FREQ.SIGMA(IHOP+K),ER(IHOP+K)*GLOSS) 22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=677.2*HOP#ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0))) IFREQ+GYR(IT))**1.98+10.2)) FSLOS(IM)=32:45+20:0*ALOG10(PATH#FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 RGAIN(IM)=0.0 RTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM),D90*RSN*D10*CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM*LT*2000*0) GO TO 34 HN(6)=HN(3)</pre>				162
<pre>TIMED(IM)=(PATH/V0FL)*1000.0 IF (METHOD.EQ.5) GO TO 24 GRLOS(IM)=0.0 IF (HOP.EQ.1.0) GO TO 23 IHOP=HOP-1.0 DO 22 K=1.IHOP CALL GLOS (B(IM)+FREQ.SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 22 GRLOS(IM)=GT.2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0))) IFREQ+GYR(IT))**1.98+10.2)) FSLOS(IM)=32.45+20.0*ALOG10(PATH*FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT-2000.0) GO TO 34 HN(6)=HN(3)</pre>	1	NEL A 1 17 - 110 PATHE - A GENOPESIN (N/2-A) E (HP (TM)+RO) /COS(B (TM))		154
<pre>Information (Information) (Information) IF (METHOD.EQ.5) GO TO 24 GRLOS(IM)=0.0 IF (HOP.EQ.1.0) GO TO 23 IHOP=HOP=1.0 DO 22 K=1.1HOP CALL GLOS (B(IM)+FREQ.SIGMA(IHOP.K).ER(IHOP.K).GLOSS) 22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=677.2#HOP#ABI(IT)/(COS(ASIN(RO#COS(B(IM))/(RO+100.0)))) IFREQ+GYR(IT))#1.98+10.2)) FSLOS(IM)=32.45+20.0#ALOG10(PATH#FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM).D90.RSN.D10.CREL(IM)) RELY(IM)=PROB(IM)#CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)</pre>	•		LUF	166
GRLOS(IM)=0.0 IF (HOP+EQ+1+0) GO TO 23 IHOP=HOP=1.0 DO 22 K=1+IHOP CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 23 ABPS(IM)=G77+2#HOP#ABI(IT)/(COS(ASIN(RO#COS(B(IM))/(RO+100+0)))) IFREQ+GYR(IT))#1+98+10+2)) FSLOS(IM)=32+45+20+0#ALOG10(PATH#FREQ) TGAIN(IM)=0+0 RGAIN(IM)=0+0 RGAIN(IM)=0+0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)#CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)		IF (METHOD, EQ.5) GO IO 24	LUE	156
<pre>Site State St</pre>			LUE	167
<pre>IND * UP = 1 * 0 D0 22 K=1 * IHOP CALL GLOS (B(IM) * FREQ * SIGMA(IHOP * K) * ER(IHOP * K) * GLOSS) 22 GRLOS(IM) = GRLOS(IM) * ABSF(GLOSS) 23 ABPS(IM) = 677 * 2*HOP * ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100 * 0))) 1FREQ+GYR(IT)) ** 1 * 9 * 10 * 2)) FSLOS(IM) = 32 * 45 + 20 * 0*ALOG10(PATH*FREQ) TGAIN(IM) = 0 * 0 RGAIN(IM) = 0 * 0 XTLOS=GRLOS(IM) + ABPS(IM) + FSLOS(IM) - RGAIN(IM) - TGAIN(IM) + ADJ TLOSS(IM) = XTLOS SN(IM) = XTLOS SN(IM) = WRDB-XTLOS CALL CHISQ (SN(IM) * D90 * RSN * D10 * CREL(IM)) RELY(IM) = PROB(IM) * CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM*LT * 2000 * 0) GO TO 34 HN(6) = HN(3)</pre>		IF (HOP = 0.1 + 0.1) = 0 = 10 = 23	LUF	158
D0 22 K=1 • IHOP CALL GLOS (B(IM) • FREQ•SIGMA(IHOP•K)•ER(IHOP•K)•GLOSS) 22 GRLOS(IM) = GTT•2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100•0))) 1FREq+GYR(IT))*1•98+10•2) FSLOS(IM) = 32•45+20•0*ALOG10(PATH*FREQ) TGAIN(IM) = 0•0 RGAIN(IM) = 0•0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM) = XTLOS SN(IM) = XTLOS SN(IM) = PWRDB-XTLOS CALL CHISQ (SN(IM)+D90•RSN•D10•CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM*LT•2000•0) GO TO 34 HN(6)=HN(3)			LUF	159
CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+ER(IHOP+K)+GLOSS) 22 GRLOS(IM)=GT+2#HOP#ABI(IT)/(COS(ASIN(RO#COS(B(IM))/(RO+100+0))) 33 ABPS(IM)=677.2#HOP#ABI(IT)/(COS(ASIN(RO#COS(B(IM))/(RO+100+0))) 34 IFREQ+GYR(IT))##1+98+10+2) 35 FSLOS(IM)=32+45+20+0#ALOG10(PATH#FREQ) 36 TGAIN(IM)=0+0 37 RGAIN(IM)=0+0 37 RGAIN(IM)=0+0 37 RGAIN(IM)=0+0 37 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 37 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 38 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 38 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 38 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 38 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 38 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 39 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 39 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 30 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 30 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 30 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 30 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 30 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 31 TLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ 32 TLOS=GRLOS(IM)+BPROB(IM)+CREL(IM) 34 CONTINUE 35 TLOS=GRLOS(IM)+FSLOS(IM)+FSLOS(IM)+FSLOS(IM)+ADJ 35 TLOS=GRLOS(IM)+FSLOS(I		DO 22 KalaTHOP	LUF	160
<pre>22 GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS) 23 ABPS(IM)=677.2*HOP#ABI(IT)/(COS(ASIN(RO#COS(B(IM))/(RO+100.0))) 1FREQ+GYR(IT))#1.98+10.2)) FSLOS(IM)=32.45+20.0#ALOG10(PATH#FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM).D90.RSN.D10.CREL(IM)) RELY(IM)=PROB(IM)#CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)</pre>		CALL GLOS (B(IM)+FREQ+SIGMA(IHOP+K)+FR(IHOP+K)+GLOSS)	LUF	161
<pre>23 ABPS(IM)=677.2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0)))) 1FREq+GYR(IT))**1.98+10.2)) FSLOS(IM)=32.45+20.0*ALOG10(PATH*FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90.RSN+D10,CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)</pre>	2	GRLOS(IM)=GRLOS(IM)+ABSF(GLOSS)	LUF	162
<pre>1FREQ+GYR(IT))**1.98+10.2)) FSLOS(IM)=32.45+20.0*ALOG10(PATH*FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=XTLOS CALL CHISQ (SN(IM),090,RSN.010,CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)</pre>	3	ABPS(IM)=677.2*HOP*ABI(IT)/(COS(ASIN(RO*COS(B(IM))/(RO+100.0)))*(LUF	163
FSLOS(IM)=32.45+20.0*ALOG10(PATH*FREQ) TGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=WRDB-XTLOS CALL CHISQ (SN(IM).D90.RSN.D10.CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)		1FREQ+GYR(IT))**1.98+10.2))	LUF	164
TGAIN(IM)=0.0 RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)+CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)		FSLOS(1M)=32+45+20+0#ALOG10(PATH#FREQ)	LUF	165
RGAIN(IM)=0.0 XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)+CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)		TGAIN(IM) = 0.0	LUF	166
XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)#CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)		RGAIN(IM)=0+0	LUF	167
TLOSS(IM)=XTLOS SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM),D90,RSN,D10,CREL(IM)) RELY(IM)=PROB(IM)#CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)		XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ	LUF	168
SN(IM)=PWRDB-XTLOS CALL CHISQ (SN(IM)+D90+RSN+D10+CREL(IM)) RELY(IM)=PROB(IM)*CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)		TLOSS(IM)=XTLOS	LUF	169
CALL CHISQ (SN(IM),D90,RSN,D10,CREL(IM)) RELY(IM)=PROB(IM)=CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)		SN(IM)=PWRDB-XTLOS	LUF	170
RELY(IM)=PROB(IM)=CREL(IM) 24 CONTINUE C MIXED MODES IF (GCDKMoLTo200000) GO TO 34 HN(6)=HN(3)		CALL CHISQ (SN(IM), D90, RSN, D10, CREL(IM))	LUF	171
24 CONTINUE C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)		RELY(IM)=PROB(IM)+CREL(IM)	LUF	172
C MIXED MODES IF (GCDKM.LT.2000.0) GO TO 34 HN(6)=HN(3)	4	CONTINUE	LUF	173
IF (GCDKM+LT+2000+0) GO TO 34 HN(6)=HN(3)	:	MIXED MODES	LUF	174
HN(6)=HN(3)		IF (GCDKM+LT+2000+0) GO TO 34	LUF	175
		HN(6)=HN(3)	LUF	176

	$IE (HN(6) - (I_2 - 2)) HN(6) = 2 - 0$	LUE	177
	HN(7) = HN(6) + 1	LUF	178
	HN(8)=HN(7)	LUF	179
	HN(9)=HN(8)+1	LUF	180
	DO 33 IM=6+9	LUF	181
	EHPS=1.0	LUF	182
	NEFX(IM)=1HX	LUF	183
	IF (IM+LT+B) GO TO 25	LUF	184
	IF (GCDKM+LT+4000+0) GO TO 34	LUF	185
	EHPS=2+0	LUF	186
2 E		LUF	187
25	IF (HN(IM)-GI-8) GO 10 33	LUF	188
		LUF	189
	$D = G(D) (2 \cdot 0^{-n} D) + D + D + D = 0$	LOF	190
	TE (DE+GI+(D2000K/2+0)) GU IO 26 CALL REMUE (XX+XX+XX-7EC(IT)+DE+1+ERE(A+MPE+RE+NN)		102
	TE (NN.GE.1) GO TO 28	LUE	102
	IF (BE-GE-AMIN) GO TO 27	LUE	194
26	H_{1} (H_{2} = H_{1} (H_{2} = H_{1} (H_{2} = H_{2} (H_{2} = H_{2} (H_{2} = H_{2} = H_{2} (H_{2} = H_{2} = H_{2} = H	LUF	105
	$HN(1N+1) = HN(1N) + 1 \circ O$	LUF	196
	GO TO 25	LUF	197
27	FPR08=0-995	I UF	198
	GO TO 29	LUF	199
28	IF (NES.EQ.0) GO TO 33	LUF	200
	NEFX(IM)=1HY	LUF	201
	IF (IM.GT.7) NEFX(IM)=1HW	LUF	202
	HPE=110.0	LUF	203
	BE=ATANF((COS(DE/2.0)-RO/(RO+110.0))/SIN(DE/2.0))	LUF	204
	IF (BE+LT+AMIN) GO TO 26	LUF	205
	SECPHE=1.0/COS(PI02-DE/2.0-BE)	LUF	206
	ESMUF=ESC(II)*SECPHE	LUF	207
	ESFOT=ESDL(IT)+SECPHE	LUF	208
	ESHPF=ESDU(IT)+SECPHE	LUF	209
	CALL CHISQ (FREG, ESFOI) ESMOF (ESHPF (EPROB)	LUF	210
20	IF (EPROB-LI-0-05) GO TO 33		211
29	U=2+0+UE CALL DEMIE (YM(IT),EM(IT),EC(IT),EC(IT),D,2,EDEO,HD(IM),B(IM),NN)	LUF	212
	$I = (NN - FO_1) = GO TO 33$	LUE	214
	IF (NN=E0-2) 60 TO 30	LUF	215
	IF (B(IM) LT-AMIN) GO TO 26	LUF	216
30	CALL BEMUF (YM(IT)+FM(IT)+FC(IT)+EC(IT)+D+4+FMUF+HPRIME+BETA+NX)	LUF	217
	IF (NX.EQ.1) GO TO 33	LUF	218
	IF (BETA.LT.AMIN) GO TO 26	LUF	219
	IF (NN+EQ+0) GO TO 31	LUF	220
	HP(IM)=HPRIME	LUF	221
	B(IM)=BETA	LUF	222
31	CALL F2DIS (FMUF, SSN, CLAT(1), 0, CLCK(1, IT), FFOT)	LUF	223
	CALL F2DIS (FMUF,SSN,CLAT(1),1,CLCK(1,IT),FHPF/	LUF	224
	CALL CHISU (FREW)FFOI)FMUF (FMPF)FPKUB/	LUP	223
	$\frac{PROB(1M) = PROB = PROB}{PROB = PROB}$	LUF	227
	PATH=2.0*(HOP*SIN(D/2.0)*(HP(IM)+RO)/COS(B(IM))+FHPS*SIN(DF/2.0)*	LUF	228
	1HPE+R0)/COS(BE))	LUF	229
	TIMED(IM)=(PATH/VOFL)+1000.0	LUF	230
	,		
	· ·		

	1F (METHOD_EQ.5) GO TO 33	LUE	231
	BG=(B(IM)+BE)/2-0	LUE	232
	GRIOS(IM)=0	1115	222
		LUE	224
			234
		LOP	222
22	CPL GUG (DG) = CPU = C	LUF	230
52	GRUSS(IM)=GRUSS(IM)+ABSF(GLUSS)		237
	ABPS(IH) = 677.2 + (HOPTABI(II)) (COS(ASIN(ROTCOS(B(IH))) (ROTIO0.0))) TLUF	238
	1((FREU+GTR(11))#1.98+10.2))+(EHPS#ABI(11)/(COS(ASIN(RO*COS(BE)	/(LUF	239
	2RO+100+0)))*((FREQ+GYR(IT))**1+98+10+2)))	LUF	240
	FSLOS(IM)=32+45+20+0#ALOG10(PATH#FREQ)	LUF	241
	TGAIN(IM)=0+0	LUF	242
	RGAIN(IM)=0+0	LUF	243
	XTLOS=GRLOS(IM)+ABPS(IM)+FSLOS(IM)-RGAIN(IM)-TGAIN(IM)+ADJ	LUF	244
	TLOSS(IM)=XTLOS	LUF	245
	SN(IM)=PWRDB-XTLOS	LUF	246
	CALL CHISQ (SN(IM),D90,RSN,D10,CREL(IM))	LUF	247
	RELY(IM)=PROB(IM)+CREL(IM)	LUF	248
33	CONTINUE	LUF	249
с	MOST PROBABLE MODE	LUF	250
34	TRE=RELY(1)	LUF	251
	TLO=TLOSS(1)	LUF	252
	MI=1	LUF	253
	XTLOS=TLOSS(1)	LUF	254
	DO 38 I=2+9	LUF	255
	IF (TLOSS(1)+GT+XTLOS) GO TO 35	LUF	256
	XTLOS=TLOSS(I)	LUF	257
35	IF (RELY(I)-TRE) 38,36,37	LUF	258
36	IF (TLOSS(]).GT.TLO) GO TO 38	LUF	259
37	MI=I	I UF	260
•••	TRE=RELY(I)	LUF	261
	TLO=TLOSS(1)	LUF	262
38	CONTINUE	LUE	263
50	$IE (PROB(MI)) = LT_{0} = 0.5 = AND_{0} NE_{0} NE_{0} IE (0.5) = 0.5 = $	LUE	264
		LUE	265
		LUE	266
		LUE	267
		1115	269
		LUE	240
		LUP	207
		LOP	271
	DDLUS(NF/=A/LUS DDLUNE)=107-24DWDDD+20-0#410610/EDE0)_VTLOS_DGATN(NT)	LUE	272
	DDU(NE)-DWDD9-WTID52000*ALOGIO(FREQ/-AILOS-RGAIN(MI)	LUP	279
	DW(NC) = FWRUD = A (LUS)	LOP	213
r	CALL CHISG (DOW(RF/)DOURSNIDIO)SNEROB(NF/)	LOP	276
20	TE (NE EGO 13) CO TO 41		213
37	37 \NF\$EW\$127 GU TU 41		277
	NF=NF+1 FDF0-FDF1 (NF-1)		276
	TREW=TRELINF-1/ TE (FREG 50.0.0) CO TO A)		270
	17 17REW+EW+U+U+U 10 41		200
4.0	GU 10 10 16 (5550 (1.1.)Mus(11)) 60 10 29		201
4 0	IT ITREWOLIOAMUTIII// UV IV 37		201
41			202
72			203
43	RETURN	LOF	404

		OUT	
		001	24
		001	25
	ENCODE (3+5+NHNP(I) /HNP(I)	001	26
	ENCODE (5+6+NANGLE(I))ANGLE(I)	001	57
	ENCODE (5+6+NDELAY(I))DELAY(I)	OUT	58
	ENCODE (5+7+NVHIGH(I))VHIGH(I)	OUT	59
	ICPROB=(CPROB(I)+1.004)#100.0	OUT	60
	ENCODE (5+8+NCPROB(I))ICPROB	OUT	61
	ENCODE (5+7+NDBLOS(T))DBLOS(T)	OUT	62
		OUT	63
			64
			46
		001	05
	ENCODE (5,8, NSNPROB(1)) ISNPROB	001	00
	CONTINUE	100	67
	WRITE (J0,9) IG(IT), XMUF(IT), (NHNP(I), MODE(I), I=1,12), LINE(1), N	ANGOUT	68
	<pre>ile,Line(2),NDELAY,LINE(3),NVHIGH,LINE(4),NCPROB,LINE(5),NDBLOS,</pre>	LINOUT	69
	2E(6) +NDBU +LINE(7) +NDBW +LINE(8) +NSNPROB +LINE(11)	OUT	70
	NUMBER=NUMBER-1	OUT	71
	RETURN	OUT	72
c		OUT	73
5	FORMAT (2X+F1+0)	OUT	7.
		001	75
7		001	70
2		001	
	FORMAT (3H +)12/	001	10
9	FURMAT (1HU)144,42,53,4F4,17194,12(A3,A1,13),487(194,12A5,48))	001	18
10	FORMAT (1H1,48X,14)	OUT	79
11	FORMAT (28X)2A8,A4,6X,15HSUNSPOT NUMBER ,F5,1/15X,2A8,4H TO ,2A	8,80UT	80
	1X+BHAZIMUTHS+5X+5HMILES+5X+3HKM+/15X+2(F5+2+R1+3H - +F6+2+R1+4)),20UT	81
	2(F6+2+2X)+F7+1+2X+F7+1)	OUT	82
12	FORMAT (17X)14HMINIMUM ANGLE)F4.1,8H DEGREES,3X,6HPOWER=,F7.2,	2HKOUT	83
	1W+3X+8HREQ-SIG++F6+1+4H DBW)	OUT	84
13	FORMAT (15X+27X+18HEREQUENCIES IN MH7/15X+2HUT+4X+3HMUE+11A5)	OUT	85
	END	OUT	86-
	CHRDONITINE REMUE (EYMAENMAYAECAECADANEEAERECANN)	DEM	1
	CONTROL DEPORT TO THE PHARMAN CONCEPTION RECEIPTING THE	DEM	2
	COMMON /CON/ DZRJDCLJGAMAJFIJFIZJFIDZJRZDJROJVOFL	DEM	2
		BEM	3
	DATA (EHMAX=110.07)(ETM=20.07)(ETM=30.07)	BEM	4
	D01R=0+1+D2R	BEM	5
	NT=1	BEM	6
	NN=0	BEM	7
	NS=1	BEM	8
	GO TO (2.4.1.3), NEF	BEM	9
1	FREQ=0.0	BEM	10
-	FV=0.99+FC	BEM	11
2	YU-FYM	BEM	12
2		DEM	12
		DEM	16
		DEM	14
2			17
5		BEM	10
		BEM	17
4		BEM	18
	CF=FC	BEM	19
	HO=FHMAX~FYM	BEM	20
	BETAT=-PIO2	BEM	21

	NSNPROB(1)=NDASH	OUT	54
	$IF (HNP(I) = EQ_{2}Q_{2}Q_{3}) = GQ_{1} = Q_{2}$	OUT	55
	FNCODE (3.5.NHNP(1))HNP(1)	OUT	56
	ENCODE (5+6+NANGLE(1)) ANGLE(1)	OUT	57
		OUT	59
		OUT	50
			27
			60
		001	01
		001	62
		OUT	63
	ENCODE (5+/+NDBW(1) /DBW(1)	OUT	64
	ISNPROB = (SNPROB(1)+1.004) + 100.0	OUT	65
	ENCODE (5,8,NSNPROB(I)) ISNPROB	OUT	66
	CONTINUE	OUT	67
	WRITE (J0,9) IG(IT),XMUF(IT),(NHNP(I),MODE(I),I=1,12),LINE(1),NAM	IGOUT	68
	<pre>ILE+LINE(2)+NDELAY+LINE(3)+NVHIGH+LINE(4)+NCPROB+LINE(5)+NDBLOS+L</pre>	NOUT	69
	2E(6),NDBU,LINE(7),NDBW,LINE(8),NSNPROB,LINE(11)	OUT	70
	NUMBER=NUMBER-1	ουτ	71
	RETURN	OUT	72
с		OUT	73
5	FORMAT (2X+F1+0)	OUT	74
6	FORMAT (1X+F4+1)	OUT	75
7	FORMAT (1X+F4+0)	OUT	76
8	FORMAT (3H +12)	OUT	77
<u>9</u>	FORMAT (1H0+14X+A2+3X+F4+1/19X+12(A3+A1+1X)+A8/(19X+12A5+A8))	OUT	78
10	FORMAT (1H1+48X+1A)	OUT	70
iĭ	FORMAT (281+248+44+64+15HSUNSPOT NUMBER +55-1/154+248+4H TO +248	ROUT	
••		2011	91
	1/10/02/00/02/02/02/02/02/02/02/02/02/02/02	011	01
12	CODAT (174-1404141400 ANCIE - 54 1.00 DECDEEC.24 4000000- 57 2.2		02
12	THE AN ANDER STOLET IN ANDER STATIST DEGREES \$34,000000000000000000000000000000000000		03
12	INFJAFGREGGJIGGFFGGIGREGUERETES IN MUTULEN DUNT (N. DUMUE 1145)	001	84
13		001	82
		OUT	86-
	SUBROUIINE BEMUF (FYM)FHMAX;FC;EC;D;NEF;FREG;HPRIME;BEIA;NN)	BEM	1
	COMMON /CON/ D2R+DCL+GAMA+PI+PI2+PI02+R2D+R0+VOFL	BEM	2
	REAL K	BEM	3
	DATA (EHMAX=110.0),(EYM=20.0),(EEYM=30.0)	BEM	4
	D01R=0.1+D2R	BEM	5
	NT=1	BEM	6
	NN=0	BEM	7
	NS=1	BEM	8
	GO TO (2,4,1,3), NEF	BEM	9
1	FREQ=0.0	BEM	10
	FV=0+99*EC	BEM	11
2	YMEFYM	BEM	12
-	CF=EC	BEM	13
	HQ=EHMAX-EYM	BEM	14
	50 TO 5	BEM	15
3	FREAD	BEM	16
-		BEM	17
•		REM	18
-		REM	10
		BEM	20
			20
	DEIAI#~PIUZ	DEM	Z I

5	HALFD=D/2.0	BEM	22
	SIND=SIN(HALFD)	BEM	23
	COSD=COS(HALFD)	BEM	24
	ROHO=RO+HO	BEM	25
	IF (NEF.GT.2) GO TO 6	BEM	26
	COSI=SQRT(1+0-((RO#SIND)##2/(ROHO##2+RO##2-2+0#RO#ROHO#COSD)))	BEM	27
	FV=FREQ#COSI	BEM	28
6	IF (FV+GE+CF) GO TO 16	BEM	29
	IF (FV+LT+0+0) FV=0+01	BEM	30
	IF (NS+GT+10) GO TO 15	BEM	31
	NS=NS+1	BEM	32
	X=FV/CF	BEM	33
	X2=X++2	BEM	34
	XQ=1.0-X2	BEM	35
	SXQ=SQRT(XQ)	BEM	36
	DX=1+0/CF	BEM	37
	ATANHX=0.5+LOGF((1.0+X)/(1.0-X))	BEM	38
	DATANHX=DX/XQ	BEM	39
	HP=HO+YM#X#ATANHX	BEM	40
	DHP=YM#(X+DATANHX+ATANHX+DX)	BEM	41
	TANI=SIND/(1.0-COSD+HP/RO)	BEM	42
	TAN I 2= TAN I # # 2	BEM	43
	DTANI=-(TANI2*DHP)/(RO*SIND/	BEM	44
	SECI=SQRT(1+0+TANI2)	BEM	45
	DSECI=(TANI+DTANI)/SECI	BEM	46
	$H=HO+YM*(1_0O-SXQ)$	BEM	41
	HPH=HP-H	BEM	48
	DH=(YM+X+DX)/SXQ	BEM	49
	DHPH=DHP-DH	BEM	50
	K=1.0/SQRT(1.0-(2.0#HPH/ROHO)#TANI2)	BEM	51
	DK=((K++3+TANI)/ROHO)+(2.0+HPH+DTANI+DHPH+TANI)	BEM	52
	F=FV+K+SECI	BEM	53
	DF=FV#R#DSECI+FV#SECI#DK+K#SECI	BEM	54
	IF (NEF+GT+2) GO TO 7	BEM	55
	IF (DF-LT-0.0) GO TO 16	BEM	26
	$[F ((FREQ-F) \cdot L) \cdot O \cdot O], GO (O 9)$	BEM	21
	FV=FV+(FREQ=F)/DF	BEM	28
-		BEM	29
'		BEM	00
		BEM	01
		BEM	62
•	$GO = 10 \ B$	DEM	60
0		DEM	04
	PREQ#F D2ATANUV_2 0.5V#(DV/V0)##2	DEM	07
	$D_{2A} + A N \Pi A = 2 \cdot 0^{+} A^{+} (D_{2} / A_{2} / \pi^{+} 2)$	DCM	47
	DZMPTTMM(ATDZALANNATZ&UTDATDALANIANA/ DZMPTTMM(ATDZALANNATZ&UTDATDALANIANIAN)	OCM	40
	02140111401/00-3100//*(1401-0207426)/SEC1	BEM	60
	D2H=(YM/SYG)#((Y#DX)##2/YG+DX##2)	BEM	70
	D2K=(K##3#TANT/R0H0)#(2,0#HPH#D2TANT+3,0#DHPH#DTANT+(D2HP=D2H)#T	ANREM	71
	11)+DK+(DIANI/TANI+3,0+DK/K)	BFM	72
	DF = FV # (K + D2SEC1 + 2 + 0 + DK + DSEC1 + SEC1 + D2K) + 2 + 0 + (K + D2SEC1 + SEC1 + DK)	BEM	73
		BEM	74
	GO TO 6	BEM	75

9	BETA=ATANF((COSD-RO/(RO+HP))/SIND)	BEM	76
• .	GO 10 (14,10,13,10), NEF	BEM	77
10	IF (ABSF(BETAT-BETA).LT.DOIR) GO TO 12	BEM	78
	BETAT=BETA	BEM	79
	COSB=COS(BETA)	BEM	80
	IF (BETA.LT.0.0) COSB=1.0	BEM	81
	EI=ASIN((RO#COSB)/(RO+EHMAX))	BEM	82
	Q=(EC/F)/COS(EI)	BEM	83
	IF (Bal Faba975) 60 TO 11	BEM	84
	0=0.975	BEM	86
11	$ATANHOPO_{2}57(0,0+0)/(1,0+0))$	BEM	86
••		BCM	97
	DEND-200* (ELTH) (NOTEMPAK) /* TANF (ELT*((ATANNW/W/=100)	DEM	07
	$\frac{1}{10} = \frac{1}{10} $	DEM	00
		BEM	89
		BEM	90
	SINDESIN(D)	BEM	91
	COSD=COS(DI)	BEM	92
	NS=1	BEM	93
	GO TO 6	BEM	94
12	IF (Q+EQ+0+975) BETA=-PIO2	BEM	95
	IF (NEF•EQ•2) GO TO 14	BEM	96
13	FREQ=F	BEM	97
14	HPR I ME=HP	BEM	98
	GO TO 17	BEM	99
15	NN=1	BEM	100
	GO TO 17	BEM	101
16	NN = 2	BEM	102
17	RETURN	BEM	103
•	END	BEM	104-
		NOT	1
c	CONDICE VARIARIES AND ATMOSPHERIC PARTO NOTCE	NOT	-
C	NUMENCION CV/JEL 27/201	NOI	2
	COMMON (11)/ ISCE(10.0) SEE(2001) COM/A.4.4) DV0(0.7.4) SED(0	T CNOT	5
	COMMON / 111/ 13FE(10)0/37E(270)/9F20(10)000/9F0(0)/96/32E(0)	ST SONUT	4
	1) CCR(0) / 0/ F(23) 10/// ABF(2//) DUD(3) 12/3/ (FAM(14)12/) 3/3(3)	10,0001	2
		NOI	6
-	COMMON /CON/ D2R+DCL+GAMA+P1+P12+P102+R2D+R0+V0FL	NOI	
1	ALF=ABP(1,N(B)	NOI	8
	BET=ABP(2+NTB)	NOI	9
	LM=29	NOI	10
	LN=15	NOI	11
	QA=XLG+D2R/2+0	NOI	12
	C1=COS(QA)	NOI	13
	S1=SIN(QA)	NOI	14
	SX(1)=S1	NOI	15
	CX=C1	NOI	16
	DO 2 K=2,LN	NOT	17
	TX=SX(K-1)	NOT	18
	SX(K)=TX+C1+CX+S1	NOT	19
2		NOT	20
-		NOT	21
		NOT	22
		NOT	22
	$D = D + c \gamma (x) + D (1 + x + NTR)$		24
2		MO1	24
3		FUI	£7

ZZ(J)=R+P(J+16+NTB)	NOI	26
CONTINUE	NOI	27
QA=(XLT+90+0)+D2R	NOI	28
S1=SIN(QA)	NOI	29
C1=COS(QA)	NOI	30
SX=51	NOI	31
CX=C1	NOI	32
R=0+0	NOI	33
DO 5 K=1+LM	NOI	34
R=R+SX+ZZ(K'	NOI	35
SS=SX+C1+CX+S1	NOI	36
CX=CX+C1-5X*51	NOI	37
58=55	NOI	38
ATNO=R+ALF+BEI#QA	NOI	39
RETURN	NOI	40
	CUI	41~
SUBROUTINE CHISQ $(D_X,D_Y,0)$, $D_Y,D_Y,D_Y,D_Y,D_Y,D_Y,D_Y,D_Y,D_Y,D_Y,$	2CH1	1
DIMENSION CHII(32/) CHI3(35/) CHI3(35/) DNU(35/) H(8/) K(32/) W(1	2011	2
$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		3
DATA (UNU=3.0.14.0.17.0.10.0.17.0.17.0.17.0.17.0.17		- 2
10,10,0,0,17,0,0,10,0,0,17,0,0,20,0,0,0,0,0,20,0,0,20,0,0,0,0,0,0		2
2 + 2 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	CHI	7
U_{A} (A = 2 + 1000 + 1 + 5 + 2 + 3 + 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 0	2041	6
1404451144551441645151716414201165715716515111165012011654455167	2011	ő
20371.0327271.03101371.03071771.02707271027172371020714714027147771227	ACH1	10
J 14609-1 14677.1 1988	CHI	11
-161732071613057716120007	6CHT	12
1.4. A 6518.5.57770.4.20380.7.0450.7.78853.8.56675.0.31223.10.08520	-CHT	12
	CHI	16
347340 , 17, 29190, 18, 11380, 18, 93920, 19, 76770, 20, 59920, 29, 05050, 37, 68	ACH1	15
460 • 46 • 45890 • 55 • 32900 • 64 • 27780 • 73 • 29120 • 82 • 35810)	СНІ	16
DATA (CH15=2,36597,3,35670,4,35146,5,34812,6,34581,7,34412,8,3428	3CH1	17
1.9.34182.10.34100.11.34030.12.33980.13.33930.14.33890.15.33850.16	•CHI	18
233810,17,33790,18,33760,19,33740,20,33720,21,33700,22,33690,23,33	6CHI	19
370,24,33660,25,33640,26,33630,27,33630,28,33620,29,33600,39,33540	,CHI	20
449.33490.59.33470.69.33440.79.33430.89.33420.99.33410)	CHI	21
DATA (CH11=6.25139.7.77944.9.23635.10.64460.12.01700.13.36160.14.	6CHI	22
18370,15,98710,17,27500,18,54940,19,81190,21,06420,22,30720,23,541	8CHI	23
20.24.76900.25.98940.27.20360.28.41200.29.61510.30.81330.32.00690.	зснт	24
33.19630,34.38160,35.56310,36.74120,37.91590,39.08750,40.25600,51.	8ČHI	25
40500,63.16710,74.39700,85.52710,96.57820,107.56500,118.49800)	CHI	26
DATA (H=577191652,.988205891,897056937.918206857,756704078	•CHI	27
1•482199394•-•193527818••035868343)	CHI	28
DATA (W=.04717533639,.10693932600,.16007832854,.20316742672,.2334	9CHI	29
1253654,2(.24914704581),.23349253654,.20316742672,.16007832854,.10	6CHI	30
293932600,.04717533639)	CHI	31
DATA (X=98156063425,90411725637,76990267419,58731795429,-	•CHI	32
136783149900,12523340851,.12523340851,.36783149900,.58731795429,	•CHI	33
276990267419••90411725637••98156063425)	CHI	34
A90=D90	CHI	35
A50=D50	CHI	36
A10=D10	CHI	37
MIEST=0	CHI	38

.

4

	NTEST-A	CU1	
	ECTP-A.A	CHI	39
	TE (A00 T A60, AND A10 CT A50) CO TO D	CHI	40
	$\frac{1}{10} + \frac{1}{10} $	CHI	41
	IF (ALU-LI-ADU-AND-AYU-GI-ADU) GU IO 1	CHI	42
	IF (DX+LE+A50) PROB=0+50	CHI	43
	IF (DX+GT+A50) PROB=0+00	CHI	44
	GO TO 24	СНІ	45
1	MTEST=1	СНІ	46
	A10=D90	CHI	47
	A90=D10	CHI	49
2	DMAX=A50+3+125#(A10-A50)	CHI	40
-	DMIN=450-3.125#(450-490)	CHI	- F O
	TE (DY.IT.DNAY) GO TO A	CHI	50
•		CHI	51
2		СНІ	52
		СНІ	53
•	IF (DX+GT+DMIN) GO TO 6	CHI	54
5	PROB=1+000	CHI	55
	GO TO 24	CHI	56
6	ESTR=(A10-A50)/(A50-A90)	CHI	57
	IF (ESTR.GE.1.0) GO TO 7	СНІ	58
	NTEST=1	CHI	59
	ESTR=1+0/ESTR	CHT	60
7	A=00	CHT	41
•	TE (ESTP. (T.1.13) (0 TO 8		42
	ANI(=100.0	CHI	402
		CHI	03
		CHI	64
	CCH15=CH15(35)	СНІ	65
	CCH19=CH19(35)	СНІ	66
_	GO TO 12	CHI	67
8	IF (ESTR.LT.2.18) GO TO 9	CHI	68
	ANU=3.0	CHI	69
	CCHI1=CHI1(1)	СНІ	70
	CCH15=CH15(1)	CHI	71
	CCH19=CH19(1)	CHT	72
	GO TO 12	CHI	72
9	00 10 1=2.35	CHI	74
	$IE (ESTR_1(T_P(T))) = CO_TO_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O$	CHI	76
		CHI	15
		CHI	10
		CHI	17
10		СНІ	78
11	ANU=DNU(J)+((R(J)-ESTR)/(R(J)-R(I)))+(DNU(I)-DNU(J))	СНІ	79
	FCTR=(ANU-DNU(J))/(DNU(I)-DNU(J))	CHI	80
	CCHI1=FCTR#(CHI1(I)-CHI1(J))+CHI1(J)	СНІ	81
	CCH15=FCTR*(CH15(1)-CH15(J))+CH15(J)	СНІ	82
	CCHI9=FCTR*(CHI9(I)-CHI9(J))+CHI9(J)	CHI	83
12	IF (DX+LT+A50) GO TO 14	снт	84
	IF (NTEST-EQ-1) GO TO 13	CHI	85
	BCOFF=(A10-A50)/(CCH11-CCH15)	CHI	86
	C=A50-BCOFF#CCH15		87
			0/
12			00
12	C-AFA:8CAEE#CCUIF	CHI	97
	C-ADUTOLUEF=CUMID	CHI	90
	GO TO 16	СНІ	91
14	IF (NTEST-EQ-1) GO TO 15	CHI	92

	BCOEF=(A50-A90)/(CCH15-CCH19)	СНІ	93
	C=A50-BCOEF*CCH15	CHI	94
	GO TO 16	CHI	95
15	BCOEF=(A50-A90)/(CCHI1-CCHI5)	ĊHI	96
	C=A50+BCOEF*CCH15	CHI	97
16	IF (NTEST.EQ.1) GO TO 17	CHI	98
	CHI=(DX-C)/BCOEF	CHI	99
	IF (CHI+LT+0+0) GO TO 5	CHI	100
	GO TO 18	CHI	101
17	CHI=(C-DX)/BCOEF	CHI	102
	IF (CHI+LT+0+0) GO TO 3	CHT	103
18	Z=ANU/2.0	CHI	104
-	FACTOR=1.0	CHT	105
19	IF (Z.GE.1.0) GO TO 20	CHI	106
	FACTÓR=FACTOR/Z	CHI	107
	Z=Z+1.0	CHI	108
	GO TO 19	CHT	109
20	IF (Zalfaza) GO TO 21	CHI	110
	Z=Z-1+0	CHT	111
	FACTOR=FACTOR#7	CHI	112
		CHI	112
21		CHI	114
21			114
22	$G_{\mathbf{z}} = \left[G_{\mathbf{z}} + G$		112
~~	GANMAFEACTORY (GAL 0)		110
			110
		CHI	110
	Y = (CMT = A) = Y(1) + CMT = A) = 0.5	CHI	120
22		CHI	120
23	900-10 54(41-4)5(11) (12 054(4)(2 0 1)6(7)	CHI	120
	FRUD-10-2*1CH1-A**SUM*/112+0**(ANU/2+0/**GAMMA)	CHI	122
24	$\frac{1}{10} (\text{MTESI} = 0.00 \text{ PROB} = 1.0 \text{ PROB}$	CHI	123
24	$IF (M \in S \cup e \subseteq W \cup I) (M \in S \cup e \subseteq P \cup E \subseteq E \cup E \cup$	CHI	124
		CHI	125
		CHI	120
		CHI	127
	END CIRPONITING FORTS / EMUSESCAL AT NEOD TIMP STC)	CHI	128-
		4620	1
	Control (111) = IOFE(100) IOFE(2001) ICU(10000) IFC(00) IOF(0)	66720	2
	2) • FFD (0.4.4.6)	53D	5
	COMMON COM/ D2R+DCI+GAMA+PT+PT2+PT02+R2D+R0+V0EL	F20	4 5
		520	
	16 (1CT-1)	620	
		F 20	
		r 20	
		F20	.,,
		F 20	10
		F 20	11
	17 INF2062000 ILF=0 177=171176	F20	12
		r 20	13
	16-1 16 (SCN-67-60-0) 1/S-2	r 20	14
		F 20	15
	15 (CIATITAD) 1(C=1) 15 (CIATITAD) 1(C=1)	F 20	10
		F 20	10
	310-FMUF*F2V112110111/	F 20	10

```
RETURN
                                                                         F2D
                                                                              19
END
                                                                              20-
                                                                         F2D
 SUBROUTINE SYSSY (GLAT, TIME, PATH, ADJ, SU, SL, ADS, SUS, SLS)
                                                                         SYS
                                                                               1
 COMMON /111/ ISFE(10,8) + SFE(2981) + F2D(16+6+6) + PKO(8+7+6) + SLP(8+7+6SYS
                                                                               2
1) +CCR(8,7+6) +P(29+16+7) +ABP(2+7) +DUD(5+12+5) +FAM(14+12) +SYS(9+16+6SYS
                                                                                3
2) .PERR (9.4.6)
                                                                         SYS
                                                                               4
 COMMON /CON/ D2R+DCL+GAMA+PI+PI2+PI02+R2D+R0+VOFL
                                                                         SYS
                                                                               5
KL=((ABSF(GLAT)#R2D-40.0)/5.0)+2.0
                                                                         SYS
                                                                               6
 IF (KL+LE+0+0) KL=1
                                                                         SYS
                                                                               7
 IF (KL.GT.9) KL=9
                                                                         SYS
                                                                               8
 KT=(TIME-1.0)/3.0+1.0
                                                                         SYS
                                                                                9
 IF (KT.LT.1) KT=8
                                                                         SYS
                                                                              10
 IF (KT.GT.8) KT=8
                                                                         SYS
                                                                              11
KTP=(KT+1)/2
                                                                         SYS
                                                                              12
 KP=0
                                                                         SYS
                                                                              13
 IF (GLAT.GE.0.0) GO TO 1
                                                                         SYS
                                                                              14
 KT=KT+8
                                                                         SYS
                                                                              15
KP=3
                                                                         SYS
                                                                              16
KS=2
                                                                         SYS
                                                                               17
 IF (PATH.GT.2500.0) KS=5
                                                                         SYS
                                                                              18
 ADJ=SYS(KL+KT+KS)
                                                                         SYS
                                                                              19
 SU=SYS(KL +KT+KS+1)
                                                                         SYS
                                                                              20
 SL=SYS(KL +KT +KS-1)
                                                                         SYS
                                                                              21
 ADS=PERR(KL+KTP+KP+1)
                                                                         SYS
                                                                              22
 SUS=PERR(KL +KTP+KP+2)
                                                                         SYS
                                                                               23
 SLS=PFRR(KL+KTP+KP+3)
                                                                         SYS
                                                                              24
 RETURN
                                                                         SYS
                                                                               25
 END
                                                                         ŜYŜ
                                                                              26-
 SUBROUTINE GLOS (DELTA, FMC, SIGMA, ER, RAIN)
                                                                         GAI
                                                                               1
 GROUND REFLECTION LOSS.
                                                                         GAI
                                                                               2
COMPLEX ACSQ+DIF+QPAR+QPER
                                                                         GAI
                                                                                3
 COMMON /CON/ D2R+DCL+GAMA+PI+PI2+PI02+R2D+R0+VOFL
                                                                         GAI
                                                                                4
 WAVE=(VOFL#0.001)/FMC
                                                                         GAI
                                                                                5
 Q=SIN(DELTA)
                                                                         GAI
                                                                                6
 T=COS(DELTA)
                                                                         GAI
                                                                                7
 DIF=CMPLX(ER+-60+0#SIGMA+WAVE)
                                                                         GAI
                                                                                .
 ACSQ=CSQRT(DIF-T+T)
                                                                         GAI
                                                                                Q
 QPER=(DIF#Q-ACSQ)/(DIF#Q+ACSQ)
                                                                         GAI
                                                                              10
 CV=CABS(QPER)
                                                                         GAI
                                                                              11
 PSIV=CANG(QPER)
                                                                         GAI
                                                                              12
 QPAR=(Q-ACSQ)/(Q+ACSQ)
                                                                         GAI
                                                                              13
                                                                         GAI
 CH=CABS(QPAR)
                                                                              14
 PSIH=CANG(QPAR)
                                                                         GAI
                                                                               15
 RAIN=10.0*ALOG10(0.5*(CH**2+CV**2))
                                                                         GAI
                                                                              16
RETURN
                                                                         GAI
                                                                              17
 END
                                                                         GAI
                                                                              18-
```

с

1