This electronic version（PDF）was scanned by the International Telecommunication Union（ITU）Library \＆ Archives Service from an original paper document in the ITU Library \＆Archives collections．

La présente version électronique（PDF）a été numérisée par le Service de la bibliothèque et des archives de I＇Union internationale des télécommunications（UIT）à partir d＇un document papier original des collections de ce service．

Esta versión electrónica（PDF）ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones（UIT）a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT．
（الإككترونبة النينذة هذه

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант（PDF）был подготовлен в библиотечно－архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно－архивной службы МСЭ．

REPORT

OF THE FIRST SESSION

(GENEVA 1964)

REPORT

OF THE FIRST SESSION
 (GENEVA 1964)

LIST OF CONTENTS

Pages
List of participants IV
Preamble 1
Chapter I Technical criteria on which any revision of the fre- quency allotment plan for the Aeronautical Mobile (R) Service, contained in Appendix 26 to the Radio Regula- tions (Geneva, 2959) and the orovisions relating thereto should be based.

1. Classies of emission 3
2. Power 4
3. Propagation criteria - Frequency sharing between areas - Service ranges - Interference ranges - Protection ratios 6
Recommendation NO. I relating to service ranges and inter- ference ranges, protection ratios and to interference range contours and maps for polar areas 6
4. Planning principles - Use of single sideband 47
Resolution No. I relating to the basic objectives of thenew frequency allotment plan for the Aeronautical Mobile(R) Service49
5. Basic principles of frequency ellotment 49
Resolution No. 2 relating to the use of frequencies in theसF bands allocated exclusively to the Aeronautical Mobile(R)Service .
6. Channel spacing in the Aeronautical Mobile (R) Service frequency bands between $2850 \mathrm{kc} / \mathrm{s}$ and $17970 \mathrm{kc} / \mathrm{s}$ 51
Chaptor II - Other criteria and factors which should be taken into account in any revision of the frequency Ellotment plan for the Aeronautical Mobile (R) Service and the Radio Regulations (Geneva, 1959) together with the provisions relating thereto.
7. Resolution No. 3relating to the grouping of major world air routes 53
Pages
8. Resolution No. 4 relating to the grouping of regional and domestic air routes (RDARA's) 54
9. Channels common to (R) and (OR) services 54
10. Proposed amendments to pages 38 and 41 of Appendix 26 to the Radio Regulations (Geneva, 1959) 55
11. Resolution No. 5 relating to plans for technical sys- tems which may affect the future use of high frequencies 57
12. Resolution No. 6 relating to the use of VHF for commu- nication in the Aeronautical Mobile (R) Service. 57
13. Resolution No. 7 relating to the use of very high fre- quencies for meteorological broadcasts in the Aeronautical Mobile (R) Service 58
14. Resolution No. 8 relating to the dissemination of meteorological information 59
Chapter III - Operational principles on which requirements for high frequencies for Aeronautical Mobile (R) Service communications should be assessed
15. Number of aircraft which can be served on a high fre-quency or a family of high frequencies taking intoaccount acceptable message delays61
16. Formula proposed for assessment of high frequency for RDARA operations 61
17. Determination of frequency requirements for operation in RDARA's 62Chapter IV - Form in which data relating to the determina-tion of requirements for high frequencios forAeronautical Mobile (R) Service communicationsshould be submitted to the Union before theSecond Session of the Aeronautical E.A.R.C.(1965) and the date by which they should be sub-mitted.
18. Resolution No. 9 relating to the forwarding by administrations of statistical analysis on regional and domestioflights65
19. Instructions for completing the notification form :
a) for Regional and Domestic Air Routes 67
h) for Major World Air Routes 73
Pages
20. Recommendation No. 2 relating to the information on the regional and domestic flight operations that administrations should provide to the second session of the Aeronautical E.A.R.C. (1965) 68
21. Resolution No. 10 relating to data concerning VHF usage by the Aeronautical Mobile (R) Service 69
22. Resolution No. 11 relating to the forwarding by administrations of the statistics on international flights 70
23. Distances between major airports 125
24. Determination of the requirements in MWARA operations 125
25. Resolution No. 12 relating to the information about actual use of high frequencies on major world air routes 127
Chapter V - How the information mentioned in Chapter IV should be analyzed and the results of this analysis presented to the Second Session of the Aeronautical E.A.R.C. (1965)
26. Resolution No. 13 relating to the forwarding of the results of the statistical analysis on international flights by the International Frequency Registration Board to the administrations 129
27. Resolution No. 14 relating to the forwarding by the International Frequency Registration Board to the administrations of the results of statistical analysis on regional and domestic flights 130
Chapter VI - Arranqements for the organization of the Second Session of the Aeronautical E.A.R.C. (1965)
28. Recommendation No. 3 relating to the time and duration of the Second Session of the Aeronatical E.A.R.C. (1965) 133
29. Recommendation No. 4 relating to the amendment of Appen- dix 26 to the Radio Regulations (Geneva, 1959) and associated provisions 134
30. Recommendation No. 5 relating to the examination of technical conditions governing the use of frequencies $3023.5 \mathrm{kc} / \mathrm{s}$ and $5680 \mathrm{kc} / \mathrm{s}$ 134
31. Resolution No. 15 relating to HF requirements for supersonic transport aircraft and aero-space transport vehicles 135

LIST OF PLRTICIPANTS

A. ADMINISTRITIONS

MEMBERS

ALGERIA (Democratic Popular Republic of
ARGENTINE (Republic)
AUSTRALIA (Commonwealth of)
AUSTRIA
BELGIUM
BRAZIL
BULGARIA (People's Republic of)
CAMEROON (Federal Republic of)
CANADA
CEYLON
CHINA
COLOMBIA (Republic of)
CONGO (Republic of the) (Léopoldville)
COSTA RICA
CUBA
DENMARK
GROUP OF TERRITORIES REPRESENTED BY THE FRENCH OVERSEAS POST AND TELECOMMMNICATION AGENCY

SPATN
UNITED STATES OF AMERICA
ETHIOPIA
FINLAND
FRANCE
GUATEMALA
GUINEA (Republic of)
INDIA (Republic of)
INDONESIA (Republic of)
IRAQ (Republic of)
IRELAND
ITALY
JLMAICA
JAPAN
KUWAIT (State of)

LEBANON
LUXEMBOURG
MEXICO
MONACO
NORWAY
NEW ZEALAND
NETHIERLANDS (Kingdom of the)
POLAND (People's Republic of)
FEDERAL REPUBLIC OF GERMANY
ROUMANIA (People's Republic)
UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
SWEDEN
SWITZERLAND (Confederation)
CZECHOSLOVAKIA (Socialist Republic)
TERRITORIES OF THE UNITED STATES OF AMERICA
OVERSEAS TERRITORIES FOR THE INTERNATIONAL RELATIONS OF WHICH THE GOVERNMENT OF The united Kingdom of great britain and noryhern ireland ARE RESPONSIBIE
thailand
TURKEY
UNION OF SOVIET SOCIALIST REPUBLICS
VENEZUELA (Republic of)
VIET-NAM (Republic of)
B. SPECIALIIZED AGENCIES
internationat civil aviation organization (i.c.a.o.)
C. INTERNATIONAL ORGANIZATIONS

INTERNATIONAL AIR TRANSPORT ASSOCIATION (I.A.T.A.)
INTERNATIONAL BROADCASTING AND TEIEVISION ORGANIZATION (I.B.T.O.)
D. INTERNLTIONAL TELECOMMUNICATION UNION
general secretariat
INTERNATIONAL FREQUENCY REGISTRATION BOARD (I.F.R.B.)
international radio consultative committee (c.c.i. R.)

PREAMBLE

In accordance with Resolution No, 13 of the Administrative Radio Conference, Geneve (1959), Decision No. D282 of the 17 th Session (1962) of the Administrative Council and Resolution No. 525 of the l8th Session (1963) of the said Council, the Aeronautical Extraordinary Administrative Radio Conference held its first session at Geneva from 27 January to 20 February 1964.

In accordance with its terms of reference, this First Session of the Conference :

- decided to adopt the criteria contained in this Report;
- recommends that administrations submit to the Union, in the form shown in Chapter IV, data relating to the requirements for frem quencies for communications within the high frequency bands of the Aeronautical Mobile (R) Service;
- refers this Report to the 2nd Session of this Conference for its use;
- recommends that the Administrative Council adopt the arrangements for the Second Session of the Conference suggested in Chapter VI of this Report; and
- requests the Secretary-General to bring this Report to the attention of administrations.

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

REPORT OF THE FIRST SESSION OF THE AERONAUTICAL EXTRAORDINARY ADMINISTRATIVE RADIO CONFERENCE (GENEVA, 1964)
 CHAPTER I
 TECHNICAL CRITERIA ON WHICH ANY REVISION OF THE
 FREQUENCY ALLOTMENT PLAN FOR THE AERONAUTICAL MOBILE (R) SERVICE, CONTAINED IN APPENDIX 26 TO THE RADIO REGULATIONS (GENEVA, 1959) AND THE PROVISIONS RELATING THERETO.
 SHOULD BE BISED

1. Classes of emission

In the Aeronautical Mobile (R) Service the use of emissions such as listed below is permissible, provided that such use;

- complies with the applicable provisions of Chapter I, paragraphs 4.5 and 6 ;
- does not cause harmful interference to other users of the frequency.
1.1 Telephony - Amplitude modulated
- double sideband
- single sideband, reduced carrier
- single sideband, full carrier
- single sideband, suppressed carrier
- two independent sidebands
1.2 Telegraphy (including automatic data systems)
1.2.1 Amplitude modulation
without the use of a modulating frequency (by on-off keying)

[^0]- on-off keying of an amplitude-modulating audio frequency or audio frequencies, or by the on-off keying of the modulated emission
(A2)
- multichannel voice frequency telegraphy, single sideband, reduced carrier
- multichannel voice frequency telegraphy, single sideband, full carrier
- multichannel voice frequency telegraphy, single sideband, suppressed carrier

1.2.2 Frequency modulation

- frequency shift keying without the use of a modulating audio frequency, one of two frequencies being emitted at any instant.
- by the on-off keying of a frequency modulating audio frequency or by the on-off keying of a frequency-modulated emission
1.3 Facsimile
- with modulation of the main carrier either directly or by a frequency modulated subcarrier

2. Power

2. 1 Unless otherwise indicated in Part II of Appendix 26 to the Radio Regulations (Geneva, 1959), the maximum peak envelope power supplied to the antenna transmission line is assumed to be in accordance with the following:

Class of Emission	Stations	Maximum Peak Envelope Power
Al Fl	Aeronautical Stations Aircraft	1.5 kW Stations
A3 A3H (100\% modulated)	Aeronautical Stations Aircraft	Stations
Other classes of emission	Aeronautical Stations Aircraft	6 Stations
WW		

For the purpose of indicating mean power for notification of A3 and A3H emissions, used in the eronatical Mobile (R) Service, mean power will be considered equal to 0.375 peak envelope power in the case of A3 emissions and equal to 0.5 peak envelope power in the case of A3H emissions, based on a single sine-wave oscillation modulating the emission at 100%.
2.2 Aeronautical stations serving MWARA's may, when necessary, employ directional antennas and a transmitter power, in association with such directional antennas, greater than that specified in 2.1 above, in order to provide satisfactory communication with aircraft. Whenever this is so, the administration having jurisdiction over the transmitting station shall ensure:
a) that harmful interference is not caused to stations using frequencies in accordance with the applicable provisions of the Allotment Plan;
b) that the power transmitted into other MWARA's or RDARA's allotted the same frequency (s) is not greater than that permitted under the technical criteria on which the plan is based;
c) that the radiation pattern of the directional antenna be known, or that the antenna is of a type for which a typical radiation pattern is available;
d) that the directional characteristics of the antenna is such as to minimize radiation in unnecessary directions, particularly into other MWARA's or RDARA's which have been allotted the same frequencies.
2.3 It is recognized that the power employed by aircraft transmitters may, in practice, exceed the limits specified in paragraph 2.1 above. However, the use of such increased power shall not cause harmful interference to stations using frequencies in conformity with the Allotment Plan.
3. Propagation criteria - Frequency sharing between areas - Service rangesInterference ranges - Protection ratios
3.1 Recomendation No. I relating to service ranges and interference ranges, protection ratios and to interference range contours and naps for polar areas.

The First Session of the Aeronautical P.A.R.C. (Geneva 1964) recommends:

1. that conclusions drawn from the basic technical criteria employed by the I.A.A.R.C, in developing the present Mobile (R) Service EF Allotment Plan should continue to be used, i.e.
a) Service and Interference Ranges

Frequency band in kc/s	Service range in km Day Night		Interference range in km Day Night	
$2850-3025$	100	500	700	3500
$3400-3500$	100	800	700	4000
$4650-4700$	350	1400	1200	5500
$5450-5480$	450	1800	1500	6500
$5480-5680$	450	1800	1500	6500
$6525-6685$	650	2200	1900	8000
$8815-8965$	1000	3400	3800	11000
$10005-10100$	1250	-	5500	-
11275 - 11400	1500	-	6000	-
$13260-13360$	1900	-	7700	-
17900-17970	2600	-	>10000	-

Interference ranges used in the establishment of the present allotment plan should continue to be used in the establishment of a revised plan, but some reduction could perhaps be made in the interference ranges in the 8 , $10,11,13$ and $17 \mathrm{Mc} / \mathrm{s}$ bands by day and in the 6 and $8 \mathrm{Mc} / \mathrm{s}$ by night, should it be found essential to obtain additional sharing on these frequencies (Document No. I-l4, of the First Session refers).
b) A protection ratio of 15 db is satisfactory. The Interference ranges in paragraph a) above are besed on a 15 db ratio between wanted and unwanted co-channel signals when the aircraft is at the limit of its service range, consequently, the protection ratio is actually much higher under more typical conditions.
2) Sharing conditions between areas, as shown in hppendix 26 to the Radio Regulations (Geneva 1959) (Part I, Section II, B, para.4) are satisfactory.
2. . that the interference range contours for latitudes between $60^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{S}$ which were included in that. Appendix 26 should be retained without revision;
3. that interference range contours and charts for the Polar areas should be developed and the charts for these areas should be based on a Polar gnomonic projection (see Chapter I, para. 3.2.2).

3.2 Implenentation of Recommendation No. 1

In order to give effect to this Recommendation, changes and additions to Appendix 26 to the Radio Regulations (Geneva, 1959) will be required as follows :

3.2.1 Amendments to Appondix 26 to the Radio Regulations (Geneva 1959)

B. Interference Range Contours
3. 15.. Definition of Contours
15.1 The transparencies inserted in the pocket at the end of this Appendix show contours which indicate the minimum acceptable distance separating two aeronautical stations each having an effective radiated power of 1 kW (unmodulated) for the frequencies stated and for producing a protection ratio of 15 db of desired signal to interfering signal on the same frequency ta an aircnaf operating at the limit of the service range of the desired ground transmitter. This limit is genexally assumed to be at the boundary of the area concerned.
15.2 Two types of transparencies are provided for use respectively with tho Mercator proiection world maps and the Gnomonic projection for the polar aroas. The Mercetor projection transparencies encompess the area between latitude 60° North and 60° South. The Gnomonic projection transparencies encompass the areas north of Latitude 30° North and south of Latitude 30° South. The Cnomonic projection overlaps the Mercator projection between Latitudes $30^{\circ}-60^{\circ}$ North and $30^{\circ}-60^{\circ}$ South. This over-1ap is included to provide contiruity between transparencies of the two projections.

The-genvice-nange-ig-net-inciuded-in-the-contetr.

2. 16. Type of Mavs Used

16.1 These transparencies can be used only on a Mereater-s-profeetiea world or polar map of the projection and scales given on each transparency,
 or any other projection. The world and polar maps accompanying this Appendix, depicting RDARA and NWARA boundaries, are to the correct scale and the transparencies carrying the interference range contours can be directly used on these maps.

3. 17. Change of Scale or Projection

17.1 Should any other Hereater scale be desired, then, by using the co-ordinates given in the tables shown below, new interference range contours can be drawn to fit the new scales.
17.2 It must be remembered that when the new trawsparencies are constructed, the intersection of the vertical line of symmetry, i.e. the meridisn of longitude and the horizontal line of latitude should be at 00° latitude for the 00° contour, $20^{\circ} \mathrm{N}$ for the 20° contour, $40^{\circ} \mathrm{N}$ for 40° contour, etc.
17.3 The co-ordinates shown in the above-mentioned tables are given with reference to the 180° meridian taken as the axis of symmetry for the construction of the contours.
4. 18. Sharing Conditions Between Areas
18.1 The transparencies are constructed on the basis of the following sharing conditions: agreed-at-the-Internationat-Admirristrathe-feronatiteat

 $\frac{18.2}{4.7} \mathrm{Mc} / \mathrm{s}$ are forditional contours for day included for $3 \mathrm{Mc} / \mathrm{s}, 3.5 \mathrm{Mc} / \mathrm{s}$ and $4.7 \mathrm{Mc} / \mathrm{s}$ are for determining daylight sharing possibilities.

NOTE :
The material in "Minimum and Maximum Range Charts for Use as a Guide to the Allotment of Frequencies" Annex 1 to Volume 1 of the Report of the First Session of the I.A.A.R.C. (Geneva, 1948) was used in the preparation of the allotment plan. The First Session of the Aeronautical E.A.R.C. (Geneva-1964), reviewed the conclusions draw from this material and found them to have continuing validity.
5. 12. Method of Use
19.1 Take the MWARA or the RDARA maps accompanying this Appendix and select the transparency for the frequency order and sharing conditions under consideration.
19.2 The Gnomic projections are applicable in the polar areas north of $60^{\circ} \mathrm{N}$ and south of $60^{\circ} \mathrm{S}$; and the Mercator projections are applicable between $60^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{S}$.
19.3 Place the centre of the transparency (i.e. the intersection of the axis of symmetry and the latitude line) over the boundary of the area or at the location of the transmitter. Note the latitude of this point and select the contour corresponding to this latitude.
19.4 A transmitter located at any point outside the contour will result, as defined in paragraph $\ddagger 15.1$ above, in a protection ratio of better than 15 db .
19.5 Any transmitter at a point inside the contour will result in a protection ratio of less than 15 db .
19.6 Mercator projection : For the Northern Hemisphere, the contours should be used in their natural position as published, but for the Southern Hemisphere, the transparency should be inverted. This point should be carefully observed when following the boundaries of the areas which involve the transition of the equator.
19.7 Gnomonic projection : For either the north or south polar areas, the transparency should be positioned so that the north-south line (terminated with an axrow) is parellel to the meridian of longitude, with the arrow pointing towards the pole.

6. 20 Data for tracing interferenoc contours

3.2.2... Data for plotting interference contours, gnomonic projeotion maps of polar areas, and interference range contours.

Latitude	00°		10^{0}		200		30^{0}		40°	
	Long．	Lat．								
	180，0	6，3	180， 0	16，3	180， 0	26， 3	180， 0	36，3	180.0	46，3
	178，9	6，2	173，9	16,2	178，8	26，2	178，6	36，2	178，4	46，2
	177，8	5，9	177，8	15，9	177， 6	25，9	177，3	35，9	176，9	45，9
	176，8	5，5	176，7	15，4	176，5	25，4	176，1	35，4	175，5	45， 6
	175，9	4，8	175，8	14，8	175，5	24，8	175，1	34，7	174，3	44，7
	175，2	4，0	175，0	14，0	174， 7	24，0	174，2	33，9	173，3	43，9
	174，5	3，1	174，4	13，1	174，1	23，0	173，5	33，0	172，5	42，9
Coordonnées pour le tracé des courtas Coordinates for plotting of contours	178,1 173,8	2，2	173，9	12，1	173，6	22，0	173，0	32，0	172，0	41，9
Coordinates for plotting of contours Coords nadas para el trazado de las curvas	173，8	1，1	173，7	11，0	173，4	21，0	172，8	30，9	171，8	40，8
Coordg nadas para el trazado de las curvas	173，7	0，0	173，6	9，9	173，3	19，9	172，？	29，8	171，8	39，7
	173，8	－1，1	173，7	8，8	173，4	18，8	172，9	28，7	172，0	38，6
	174，1	－2，2	174，0	7，8	173，8	17，7	173，3	27，7	172，5	37，6
	174，5	－3，1	174，5	6，8	174，3	16，8	173，9	26，7	173，2	36，6
	175，2	－4，0	175，2	5，9	175，0	15，9	174，6	25，8	174，1	35，8
	175，9	－4，8	175，9	5，2	175，8	15，1	175，5	25，1	175，1	35，1
	176，8	－5，5	176，8	4，5	176，8	14，5	176，5	24，5	176，2	34，5
	177，8	－5，9	177，8	4，1	177，8	14，1	177，6	24，1	177，4	34，0
	178，9	－6，2	178，9	3，8	178，9	13,8	178，8	23，8	178，7	33，8
	180，0	－6，3	180，0	3，7	180，0	13，7	180，0	23，7	180，0	33， 7
Latitudg	50°		60°		70°		80°		900	
	Long．	Lat．								
					180，0	76，3	180，0	86，3		83，7
	178，0	56，2	177，3	66，2	175，4	76， 2	163，9	86，1		83，7
	176，2	55，9	174，7	65，8	171， 2	75，8	152，2	85，4		83，7
	174,5 173,0	55,3 54,6	172，5	65,3 64	167，7	75，1	145，2	84，5		83，7
	173,0 171,8	54,6 53,8	170,6 169,1	64,5 63,6	164，9	74，3	141，9	83,4		83，7
	171,8 171,0	53，8 52,8	169,1	63， 6	162，9	73，4	140，8	82，4		83，7
Cosrdonnées pour le tracé des courbes	171,0 170,4	52,8 51 50	168,1 167,5	62,7 61,6	161,6 161,3	72,3	141，3	81,3	忥こ守	83,7
Coordinates for plotting of contours	170,4 170,2	51,8 50	167，5	61，6	161，3	71,2	142，8	80，2	－	83，7
Coordgnadas para el trazado de las curvas	170,2 170,3	50,7 49,6	167,3 167,5	60,5 59,4	161,5 162,1	70,1 69,1	144,9 147,6	79,2 78,2	¢	83,7 83,7
	170，6	48，5	168，1	58，3	163，2	68，0	150，5	77，3		83，7
	171，2	47，5	169，0	57，4	164，6	67，1	153，8	76，5	당응	83，7
	172，1	46，6	170，1	56，4	166，4	65， 2	157，3	75，8	产	83，$?$
	173，1	45，7	171,4	55，6	168， 3	65，5	160，3	75，2		83， 7
	174，3	45，0	172，9	55，0	170，4	64，9	164，6	74，6		83，7
	175，6．	44，5	174，6	54，4	172，7	64，4	168，4	74，2		83，7
	177，0	44，0	176，3	54，0	175，1	64，0	172，2	73，9		83， 7
	178,5 180,0	43,8 43,7	178,2 180,0	53,8 53,7	177,5 180,0	63,8 63,7	176,1 180,0	73,8 73,7		83,7 83,7

Latitude	00°		10^{0}		20°		30^{0}		40°	
	Long．	Lạt．	Long．	Lat．	Long．	Lat．	Long．	Lat．	Long．	Lat．
Coordonnés pour le trace des courbesCoordinates for plotting of contoursCoordenadas para el trazado de las curvas	180，0	36，0	180，0	46，0	180，0	56，0	180，0	66，0	180，0	76，0
	172，8	35，4	171，7	45，3	169，7	55，1	166，1	64，9	157，6	74，5
	166，0	33，5	164，0	43，2	160，6	52，7	154，7	62，0	142，8	70，6
	160，0	30，6	157，5	39，9	153，4	49，0	146，6	57，7	134，9	65，5
	155，0	26，8	152，3	35，7	148，1	44，4	141，5	52，6	131，2	59，9
	150，9	22，2	148，4	30，8	144，5	39，2	138，7	47，0	129，9	54，0
	147，8	17，1	145，7	25，5	142，3	33，6	137，4	41，2	130，2	48，2
	145，7	11，6	144，1	19，8	141，4	27，7	137，4	35，4	131，6	42，4
	144，4	5，9	143，4	13，9	141，4	21，9	138，3	29，5	133，8	36，7
	144，0	0，0	143，6	8，1	142，3	16，1	140，0	23，9	136，5	31，3
	144，4	－5，9	144，6	2，3	143，9	10，4	142，4	18，4	139，8	26，2
	145， 7	－11，6	146，4	－3，3	146，3	5，0	145，4	13，3	143，6	21，5
	147，8	-17.1	149，0	－8，6	149，4	0，0	149，0	8，6	147，8	17，2
	150，9	－22，2	152，4	－13，4	153，1	－ 4,5	153，2	4,4	152，4	13，3
	155，0	－26，8	156，6	$-17,6$	157，5	－8，4	157，8	0，8	157，4	10，1
	160，0	－30，6	161，6	－21，2	162，5	－11，6	162，9	－2，1	162，8	7，5
	166，0	－33，5	167，3	－23，8	168，0	－14，0	168，4	－4，2	168，3	5，6
	172，8	－35，4	173，5	－25，4	173，9	－15，5	174，1	－5，6	174，1	4，4
	180，0	－36，0	180，0	－26，0	180， 0	－16，0	180，0	－6，0	180， 0	4,0

Latitudo	500		600		70^{0}		800		90°	
	Long。	Lat．	Long．	Lat．	Long。	Lat．	Long。	Lat．	Long．	Lat．
Coordonnées pour le traoé des courbes Coordinates for plotting of contours Coordenadas para el trazado de las curvas	180，0	86，0	0 ，	84，0	0 ，	74，0	0,	64，0		54,054,054,054,054,054,054,054,054,054,054,054,054,054,054,054,054,054,054,0
	126，9	82，7	46，5	81，9	20，9	73，4	13，4	63，8		
	115，7	77， 1	69，8	77，6	39，7	71，6	26，5	63，2		
	113，9	71，3	83,0	72，8	55，5	69,1	39，2	62，3		
	114，9	65，4	92，2	67，8	68，8	66,1	51，3	61，0		
	117，1	59，6	99,7 106	62，8	80，1	62，8	62，8	59，6		
	120，1	54，0	106，4	57，9	90， 1	59，4	73， 7	58，0		
	123，5	48，5	112，6	53，2	99，0	56，0	84，1	56，3		
	127，4	43，3	118，6	48，7	107， 3	52，	93，9	54，5		
	131，5	38，3	124，5	44，5	115，2	49，5	103，4	52，8		
	135，9	33，7	130，4	40，5	122，8	46，5	112，6	51,2		
	140，7	29，4	136， 3	36，9	130，1	43，7	121，5	49，6		
	145，7	25，5	142，3	33，6	137，4	41，3	130，2	48，2		
	150，9	22，1	148，4	30，8	144，5	39，1	138，7	47，0		
	156，4	19，3	154，6	28，4	151， 6	37，3	147，1	45，9		
	162，1	17，0	160，8	26，5	158，7	35，9	155，4	45，1		
	168，0	15，3	167，2	25，1	165，8	34，8	163，6	44，5		
	174，0	14，3	173，6	24，3	172，9	34，2	171，8	44，1		
	180，0	14，0	180，0	24，0	180，0	34，0	180，0	44，0		

Latituoe	00°		100		200		30°		400	
Coordonnées pour le tracé des courbes Coordinates for plotting of contours Coordonadas para el trazado de las curvas	Long．	Lat．								
	180，0	49，5	180，0	59，5	180，0	69，5	180，0	79，5	178，7	89，5
	168，5	48，5	165，5	58，2	159，6	67，8	144，9	76，7	97，0	82，4
	158，2	45，6	153，2	54,7	144， 6	63,3	128， 3	70，？	98，${ }^{101}$	74，8
	149，？	41，2	144，1	49，6	135，4	57，2	121，5	63，5	101，0	67，2
	143，0	35，6	137，8	43，3	130， 1	50，3	119，0	56，0	104，1	59，？
	138，1	29，3	136，6	36，5	127，3	43，0	118，6	48，4	107，5	52，4
	134，6	22，3	131，1	29，？	126，	35，4	119，5	40，8	111，0	45，1
	132，3	15，1	129，8	21，6	126， 1	27，8	121，2	33，4	114，8	38，1
	130，9	7，6	129，5	14，1	127，0	20，3	123，5	26，0	118，9	31，2
	130，5	0，0	130，1	6，5	128,7	12，8	128，5	18，9	123，2	24，7
	130，9	－7，6	131，5	$-1,0$	131，2	5，6	130，0	12，1	127，9	18，4
	132，3	$-15,1$	133，8	－8，2	134，4	－1，3	134，1	5，7	132，9	12，6
	134，6	－22，3	137，0	－15，2	138， 3	－7，8	138，8	－0，3	138，4	7，3
	138，1	－29，3	141，2	－21，6	143，2	－43，7	144，2	－5，7	144，3	2，5
	143，0	－35，6	146，6	－27，4	148，9	－19，0	150，2	－10，4	150， 7	$-1,6$
	149，7	－41，2	153，2	－32，4	155，5	－23，4	156，9	－14，2	157，6	－5，0
	158，2	－45，6	161，2	－36，2	163，1	－26，7	164，2	－17，1	164，8	－7，5
	168，5	－48，5	170，3	－38，7	171，3	－28，8	172，0	－18，9	172，3	－9，0
	180，0	－49，5	180，0	－39，5	180，0	－29，5	180，0	－19，5	180，0	－9，5
Latitude	50°		60°		70°		80°		900	
Coordonnéas pour le tracé des courbes Coordinates for plotting of contours Coordenadas para el trazado de las curvas	Long．	Lat．								
	0	80，5	0,	70，5	0,	60，5	0,	50，5		40，5
	40， 2	78，2	22，2	69，5	15，3	60，0	11，9	50，3		40，5
	63，5	73，1	41，5	66，9	30，1	58，7	23，8	49，8		40，5
	77，1	67，0	57，1	63，1	43，8	56，7	35，4	48，9		40，5
	86，6	60，？	69，8	58，6	56，4	54，0	46，7	47，8		40，5
	94，2	54，3	$80^{6}, 4$	53，8	67，8	51，0	57，7	46，4		40，5
	100，8	47，9	89，6	48，8	78，4	47，8	68，3	44，9	发》	40，5
	107，0	41，7	97，9	43，8	88，2	44，4	78， 7	43，2	か灾	40，5
	112，9	35，6	105，7	38，9	97，5	41，0	88， 7	41，5	め呂	40，5
	118，8	29，8	113，1	34，2	106， 3	37，6	98，4	39，8	을 훌	40，5
	124，7	24，4	120，4	29，8	114，8	34，4	108，0	38，1		40，5
	130，8	19，3	127，6	25，6	123，1	31，4	117，3	36，5	릉	40，5
	137，1	14，7	134，8	21，9	131，3	28，7	126，5	35，0		40，5
	143，7	10，6	142，1	18，5	139，5	26，3	135，6	33，7		40，5
	150，5	7，1	149，5	15，7	147，6	24，3	144，5	32，6		40，5
	157，6	4，3	157，0	13，5	155，7	22，5	153，5	31,7		40，5
	164，9	2，2	164，6	11，8	163，8	21，5	162，3	31,0		40，5
	172，4	0，9	172，3	10，8	171，9	20，？	171，2	30,6		40，5
	180，0	0，5	180，0	10，5	180，0	20，5	180，0	30，5		40，5

[^1]

Latitude	00°		10^{0}		20°		30°		40^{0}	
	Long.	Lat.								
	180, 0	13,5	180,0	23,5	180,0	33,5	180,0	43,5	180,0	
	177,6	13,3	177,5	23, 3	177,2	33, 3	176,8	43,3	176,1	53, 2
	175, 3	12,7	175,0	22,6	174,6	32,6	173,8	42,5	172,5	52,5
	173,2	11,7	172,8	21,6	172,1	31,5	171,0	41,4	169,3	51,3
	171,2	10,3	170,8	20, 2	170,0	30,0	168, 7	39,9	166, 6	49,6
	169,6	8,6	169,1	18,5	168, 3	28, ${ }^{2}$	166,9	38, ${ }^{3}$	164,6	47,7
Coordonnées pour le tracé des courbes	168,3 167,3	6,7	167,8 166,9	16,5 14,3	167,0 166,1	26,2 24,1	165,5 164,7	36,0 33	163,2	45, 6
Coordinates for plotting of contours	166,?	2,3	166, 4	12,1	165, 1	24,1 21,8	164,7 164,4	33,7 31,4	162,4	43,3 41,0
Coordenadas para el trazado de las curvas	166,5	0,0	166, 3	9,7	165, ?	19,4	164,5	29,'1	162, 6	38, 7
Coordenadas para el trazado de las curvas	166,?	- 2,3	166, 6	7,4	166, 1	17, 1	165,1	26,8	163,4	36, 4
	167,3	- 4,6	167,3	5,2	166,9	14,9	166,0	24,6	164, 6	34,3
	168,3	-6,7	168,3	3,1	168,0	12,9	167,3	22,6	166,1	32,4
	169,6	-8,6	169,?	1,2	169,5	11,0	169,0	20,9	168, 0	30, 7
	171,2	-10,3	171,4	-0,4	171,2	9,5	170,8	19,3	170, 1	29,2
	173,2	-11,?	173,3	-1,7	173, ${ }^{175}$	8 8,	172,9	18, ${ }^{1}$	172,4	28,0
	177, 6	$-13,3$ $-13,3$	177, 7	-2,?	175,4	?,3	175,2	17,2	174,8	27, 2
	180,0	-13,5	180,0	-3,5	180,0	6,5	180,0	16,5	180,0	26,5
Latitude							80			
	Long.	Lat.								
	180,0	63,5	180,0	73,5	180,0	83,5	0,	86,5		76,5
	174,8	63,2	172,0	73,1	160, 8	82,9	35,2	86,0		76,5
	170,1	62,4	164,9 159,4	72,1	147, 7	81,4 79	59,4	84,7		76,5
	166,1 162,9	61,0 59	159,4 155,6	70, 6	140,7 137	79,4	75,5	83,1		76,5
	162,9	59,3	155,6	68,7	137,6	77,1	87,2	81,4		76,5
	160,7 159	57,3	153,3	66,5	137,0	74,8 72	96, ${ }^{\text {104, }}$	79,6	发. $=\underline{0}$	76,5
	159,3 158,7	55,1 52,8	152,3 152,3	64,2	137,8	72,5	104,9	77, 9	$\stackrel{\text { cos }}{\sim}$	76,5
Coordonnées pour le tracé des courbes	158,7 158,8	52,8 50,4	152,3 153,0	61,9 59	139,6 142,0	70, 6	112,4	76,3	¢.	76,5
Coordinates for plotting of contours	159,5	48,	154,4	57	142,0	68,	19	74,7	- $\square^{\text {B }}$	76,5
Coordinates for plotting of contours	100,7	46, 0	156,2	57,4	144,9	66,0	125,9	73,3		76,5
Coordenadas para el trazado de las curvas	162,3	43,9	158,4	53,	148,2	64,	132,2	71,9	푸ㅇㅠㅡㄹ	76,5
	164,2	42,1	161,0	53, 51	155, 4	62,4 60,9	138,4 144,5	70,7 69	등	76,5
	166,4	40,4	163,8	50,1	159,3	59,6	150,5	68,7		76,5
	168,9	39,0	166,8	48,8	163,3	58,5	156,5	67,9		76,5
	171,5	37,9	170,0	47,8	167,4	57,6	162,4	67,3		76,5
	174,3	37,1	173,3	47,1	171,6	57,0	168,3	66,9		76,5
	177,1	36,7	176,6	46,6	175,8	56,6	174,1	66,6		76,5
	180,0	36,5	180,0	46,5	180,0	56,5	180,0	66,5		76,5

Latitude	00°		10^{0}		20°		30°		40^{0}		as	－0\％	
Coordonnées pour le tracé des courbes Coordinates for plotting of contours Coordenadas para el trazado de las curvas	Leng．	Lat．	Long．	Lat．	Long．	Lat．	Long．	Lat．	Long．	Lat．			
	180，0	58，5	180，0	68，5	180，0	78，5	180，0	88，5	0	81，5	－	¢	
	164，2	57，1	158，1	66，6	144，0	75，4	102，4	81，3	46，7	78，3			
	150，8	53，2	142，2	61，6	126，6	68，7	100，1	72，8	68，5	71，？	$\begin{array}{lll} \infty & \infty & \infty \\ & \infty & 0 \\ \infty & \infty & \stackrel{\Gamma}{m} \\ 0 & 0 & 0 \end{array}$		
	140,8	47，6	132， 2	54，9	119，2	60， 8	101， 1	64，3	80,1	64，4			
	133， 6	40，8	126，2	47，2	116，0	52，4	102，9	55，8	88,0	56，7			
	128，7	33，2	122，7	39，1	114，9	43，9	105，3	47，4	94，2	49,1			
	125，3	25，2	120，8	30，7	115，1	35，4	108，0	39,1	99，7	41，5			
	123，1	17，0	120， 1	22，2	116，0	26，9	110，9	30，9	104，9	34，0	10		
	121，9	8，5	120，2	13，7	117，7	18，5	114，3	22，9	110，0	26，7			
	121，5	0，0	121，1	5，2	119，9	10，3	118，0	15，1	115，1	19，6			
	121，9	－8，5	122，8	－3，2	122，8	2，3	122，1	7，6	120，5	12，9			
	123，1	－17，0	125，2	－11，3	126，4	－5，5	126，8	0，5	126， 3	6，5			
	125，3	$-25,2$	128，6	－19，2	130，8	－12，8	132，0	－6，2	132，4	0，5			
	128，7	－33，2	133,0	$-26,7$	136，1	－19，7	138，0	－12，3	139，0	－4，8			
	133，6	－40，8	138，9	－33，5	142，5	－25，8	144，9	－17，7	146，2	－9，5			
	140，8	－47，6	146，4	． 39,5	150，2	－31，0	152，6	－22，2	154，0	$-13,3$			
	150，8	－53，2	156，0	－44，3	159，1	－35，0	161，1	－25，6	162，3	－16，1			
	164，2	－57， 1	167，4	－47，4	169，2	－37，6	170，4	－27，8	171，0	－17，9	哃		
	180，0	－58，5	180，0	－48，5	180，0	－38，5	180，0	－28，5	180，0	－18，5			
Latitude 1			60°		70 C		80°		90°		通	宗	
	Long．	Lat．	Leng．	Lat．	Leng．	Lat．	Long．	Lat．	Lung．	Lat．		三	
	0	71,5	0	61,5	0	51，5	0	41，5		31，5	플	帚	
	25，7	70,1	17，6	60,7	13，6	51，1	11，4	41，3		31，5	冎	甭	
	46,4	66,2	34，0	58， 6	26，9	49，9	22，7	40，8		31,5 31			
	61,7	61，	43，4	55，3	39，6	48，0	33，8	40，0		31，5	辟		
	73，3	55，1	61，0	51，2	51，6	45，6	44,8 55	38，9	$\stackrel{\text { 응 }}{ }$	31,5	$\frac{2}{2}$		
	82，7	48，8	71，9	46，6	62，8	42，7	55，5	37，6	® こ 은	31，5	5		
	90，7	42，4	81,7	41，7	73， 3	39，6	66，0	36，1	ぁ下砣	31,5 315		㐌	
Cocrdonnées pour le tracé des ccurbes Coordinates for plotting of contours	98,0 104,8	36,0 29,7	90,6 99	36,7 31,8	83,2 92,7	36,2 32,8	76,2 86,2	34,4 32,7	¢ 今	31,5 31,5	合	～	
Ccocrdenadas para el trazado de las curvas	111，6	23， 6	107，0	26，9	101，8	29，4	96，1	31，0	올	31，5	近	年	
	115，1	17，8	114，9	22，2	110，7	26，1	105，7	29，3	事灾若	31，5			
	124，9	12，3	122，7	17，9	119，5	23，0	115，3	27，6	－	31，5			
	131，8	7，3	130，5	13，8	128，1	20，2	124，7	26，1		31，5			
	139，2	2，7	138，4	10，3	136，7	17，7	134，0	24，9		31，5			
	146，8	$-1,1$	146，5	7，2	145，3	15，5	143，3	23，6		31，5			
	154， 7	$-4,3$	154，？	4，8	154，0	13，8	152，5	22，7		31，5			
	162，9	－6，6	163，0	3，0	162，6	12，5	161，7	22，1		31，5			
	171，4	－8，0	171，5	1，9	171，3	11，8	170，8	21，6		31，5			
	180，0	$-8,5$	180，0	1，5	180，0	11，5	180，0	21，5		31，5			

Latitude	00°		10°		20°		36		$60^{\text {c }}$	
Coordonnées pour le trac§ des ccurbes Coordinates for plotting of contours Ccordenadas para el trazado de las curvas	Long.	lat.	Lung.	Lat.	Lung.	Lat.	Leng.	Lat.	Long.	Lat.
				27.1	180, ${ }^{8}$	37.1	180,0	47,1	180,0	
	176,9	16,8	176, 7	26,9	176, 3	36, 8	175; 7	46,8	174, 7	56, 7
	174,0	16,0	173, 6	26,0	172,9	35,9	171,?	45,8	169,7	55,?
	171,3	14,8	170,7	24,0	169,7	34,5	168,1	44,3	165,5	54,0
	168,8	13,0	168,2	22,8	167,0	32,6	165,2	42,3	162,2	51,9
	166,?	10,9	166, 1	20,6	164,9	30,3	162,9	39,9	159,8	49,4
	165,1	8,5	164,5	18,1	163,3	27,?	161,3	37,2	158,	46, 6
	163,9	5,8	163,3	15,4	162,3	24,9	160,4	34,4	157,5	43,7
	163, 1	2,9	162,7	12,5	161,8	22,0	160,2	31,5	157,5	80,8
	162,9	0,0	162,	- ${ }^{\text {, }} 6$	161,9	19,1	160,4	28,5	158,1	37,9
	163,1	-2,9	163,1	6,6	162,4	16,2	161,3	25,?	159,3	35,1
	163,9	$-5,8$	163,9	3,8	163,5	13,4	162,5	23,0	160,9	32,5
	165, 1	-8,5	165,2	1,2	165,0	10,9	164,2	20,5	162,9	30,1
	166,7	$-10,9$	16?,0	-1,2	166,8	8,6	166,3	18,3	165,2	28,0
	168,8	$-13,0$	169,1	-3,2	169,0	6,6	168,6	16,4	167,8	26,2
	171,3	$-14,8$	171,5	-4,9	171,5	5,0	171,2	14,9	170,7	24,8
	174,0	$-16,0$	174,2	-6,1	174,2	3,9	174,1	13,8	173,7	23,7
	176,9	-16,8	177,1	-6,8	177,1	3,1	177,0	13,1	176,8	23,1
	180,0	-17,1	180,0	-7,1	180,0	2,9	180,0	12,9	180,0	22,9
Latitude	50°		60^{6}		70°		80°		90°	
Coordonnees pour le trace des courbes Coordinates for plotting of contours Coordenadas para el trazado de las curvas	Long.	Lat.								
	180,0	67,1	180,0	77,1	180,0	87,1	0,	82,9		72,9
	172,6	66,7	167,3	76,5	137,0	85,7	23,2	82,5		72,9
	166,0	65,5	157,1	75,0	123,8	83,1	43,5	81,6		72,9
	160,7	63,6	150,3	72,8	120,8	80, 1	60,0	80,2		72,9
	156,8	61,3	146,2	70,1	121,4	77, 2	73,5	78,6	$\stackrel{\text { 으응 }}{ }$	72,9
	154,4	58,6	144,4	67,3	123,5	74,3	84,9	76,9	¢ = ${ }_{\text {- }}^{\text {¢ }}$	72,9
	153,1	55,8	144,0	64,3	126,5	71,5	94,8	75,2	\& ${ }^{\text {¢ }}$	72,9
	152,8	52,8	144,7	61,4	130,1	68,8	103,6	73,5		72,9
	153,3	49,9	146,3	58,6	133,9	66,3	111,8	71,8		72,9
	154, 4	47,1	148,4	55,9	138,0	63,9	119,4	70, 3	垵 ${ }_{0}$	72,9
	156,1	44.4	151,0	53,3	142,3	61,7	126,8	68,8	言 ${ }^{\circ}$	72,9
	158,?	41,9	153,9	51,0	146,7	59,7	133,8	67,5		72,9
	160,?	39,6	157,2	49,0	151,3	58,0	140,7	66,3		72,9
	163,5	37,6	160,7	47,2	155,9	56,5	147,4	65,3		72,9
	166,5	36,0	164,3	45,7	160,7	55,2	154,0	64,4		72,9
	169,7	34,6	168,1	44,5	165,4	54,2	160,6	63,8		72,9
	173,1	33,7	172,0	43,6	170,3	53,5	167,1	63,3		72,9
	176,5 180,0	33,1 32,9	176,0 180,0	43,1 42,9	175,1 180,0	53,0 52,9	173,5 180,0	63,0 62,9		72,9 72,9

[^2]| Lat itude | 00° | | 10^{0} | | 20° | | 30^{0} | | 40° | | \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Long． | Lat． | Long． | Lat． | Long． | Lat． | Long． | Lat． | Leng． | Lat． | |
| | 180，0 | 34，2 | 180，0 | 44，2 | 180，0 | 54，2 | 180，0 | 64，2 | 180，0 | 74，2 | |
| | 173，3 | 33，6 | 172，3 | 43，5 | 170，6 | 53，4 | 167，5 | 63，2 | 160，6 | 72，9 | |
| | 166，9 | 31，9 | 165，1 | 41，6 | 162，1 | 51，2 | 157，0 | 60，6 | 146，8 | 69，4 | |
| | 161，2 | 29，1 | 158，9 | 38，5 | 155，3 | 47，8 | 149，3 | 56，6 | 138，8 | 64，8 | |
| | 156，4 | 25，5 | 154，0 | 34，6 | 150，2 | 43，4 | 144，2 | 51，9 | 134，6 | 59，5 | |
| | 152，5 | 21，2 | 150，2 | 30，0 | 146，6 | 38，5 | 141，2 | 46，6 | 133，0 | 53，9 | |
| | 149，5 | 16，3 | 147，6 | 24，9 | 144，4 | 33，2 | 139，8 | 41，1 | 132，9 | 48，3 | |
| | 147，4 | 11，1 | 145，9 | 119，4 | 143，4 | 27，6 | 139，6 | 35，5 | 134，0 | 42，8 | |
| Coordonnées pour le trace des courbes | 146，2 | 5，6 | 145，2 | 13，9 | 143，3 | 22，0 | 140，3 | 29，9 | 135，9 | 37，3 | $\frac{5}{80}$ |
| Coordinates for plotting of contours | 145，8 | 0，0 | 145，4 | 8，3 | 144，1 | 16，4 | 141，9 | 24，4 | 138，4 | 32，1 | |
| Coordenadas para el trazado de las curvas | 146，2 | －5，6 | 146，3 | 2，7 | 145，7 | 11，0 | 144，1 | 19，2 | 141，5 | 27，2 | |
| | 147，4 | $-11,1$ | 148，1 | －2，6 | 147，9 | 5，9 | 147，0 | 14，3 | 145，1 | 22，6 | －\％ |
| | 149，5 | $-16,3$ | 150，6 | －7，7 | 150，9 | 1，1 | 150，4 | 9，8 | 149，1 | 18，4 | 号㤩， |
| | 152，5 | －21，2 | 153，9 | －12，3 | 154，5 | －3，2 | 154，4 | 5，8 | $153,6$ | 14，8 | |
| | 156，4 | －25，5 | 157，9 | －16，3 | 158，7 | －7，0 | 158，8 | 2，3 | 158，4 | 11，6 | |
| | 161，2 | －29，1 | 162，6 | －19，6 | 163，4 | －10，1 | 163，7 | －0，5 | 163，5 | 9，1 | |
| | 166，9 | －31，9 | 169，0 | $-22,1$ | 168，7 | $-12,3$ | 168，9 | －2，5 | 168，8 | 7，3 | \dot{m} |
| | 173，3 | －33，6 | 173，9 | －23，7 | 174，2 | －13，7 | 174，4 | －3，8 | 174，4 | 6，2 | |
| | 180，0 | －34，2 | 180，0 | －24，2 | 180，0 | －14，2 | 180，0 | －4，2 | 180，0 | 5，8 | 곶 믕 |
| Lat itude | 50° | | 60° | | 70° | | 80° | | 90° | | 至 |
| | Long． | Lat． | |
| | 180，0 | 34，2 | 0 | 85，8 | 0 | 75，8 | 0 | 65，8 | | 55，8 | 롱 즐 |
| | 137，8 | 81，6 | 56，0 | 83，2 | 22，4 | 75，1 | 13，7 | 65，6 | | 55，8 | 号 |
| | 123，5 | 76，7 | 77，1 | 73，6 | 42，0 | 73，3 | 27，0 | 65，0 | | 55，8 | 尘 |
| | 119，5 | 71，2 | 88，4 | 73，7 | 58，2 | 70，7 | 39，9 | 64，0 | | 55，8 | 至蓠 |
| | 119，2 | 65，6 | 96，4 | 68，7 | 71，4 | 67，6 | 52，2 | 62，8 | | 55，8 | |
| | 120，6 | 60，0 | 103，2 | 63，8 | 82，5 | 64，3 | 63，8 | 61，3 | | 55，8 | |
| | 123，0 | 54，5 | 109，3 | 59，0 | 92，2 | 60，8 | 74，？ | 59，7 | | 55，8 | 忍 |
| | 126，0 | 49，2 | 115，1 | 54，3 | 101，0 | 57，5 | 85，1 | 58，0 | | 55，8 | |
| Coordonnées pour le tracé des courbes | 129，5 | 44，1 | 120，7 | 49，9 | 109， 1 | 54，2 | 94，9 | 56，2 | ¢ | 55，8 | |
| Coordinates for plotting of contours | 133，4 | 39，9 | 126，3 | 45，7 | 116，7 | 51，0 | 104，3 | 54，5 | 을크를 | 55，8 | |
| Coordenadas para el trazado de las curvas | 137，6 | 34，8 | 132，0 | 41，9 | 124，1 | 48，1 | 113，4 | 52，9 | 产厘 | 55，8 | 즐 |
| | 142，1 | 30，7 | 137，7 | 38，3 | 131，3 | 45，4 | 122，2 | 51，4 | 志 | 55，8 | |
| | 146，9 | 26，9 | 143，5 | 35，2 | 138，3 | 42，9 | 130，8 | 50，0 | | 55，8 | |
| | 152，0 | 23，7 | 149，3 | 32，4 | 145，3 | 40，8 | 139，2 | 48，7 | | 55，8 | |
| | 157，2 | 20，9 | 155，3 | 30，1 | 152，3 | 39，0 | 147，5 | 47，7 | | 55，8 | |
| | 162，7 | 13，7 | 161，4 | 28，2 | 159，2 | 37，6 | 155，7 | 46，9 | | 55，8 | |
| | 168，4 | 17，1 | 167，6 | 26，9 | 166，1 | 36，6 | 163，8 | 46，3 | | 55，8 | |
| | 174，2 | 16，1 | 173，3 | 26，1 | 173，1 | 36，0 | 171，9 | 45，9 | | 55，8 | |
| | 180，0 | 15，8 | 180，0 | 25，8 | 180，0 | 35，8 | 180，0 | 45，8 | | 55，8 | |

Gnomonic polar area maps - Pages $23-25$
These maps are applicable at latitudes north of $60^{\circ} \mathrm{N}$ and south of $60^{\circ} \mathrm{S}$.

Interference range contours
These contours are entitled as follows :

Frequency Band	Day or Night	Pages
$\left.\begin{array}{l}3.0 \\ 3.5\end{array}\right)$	$\begin{aligned} & \text { Day } \\ & \text { Day } \end{aligned}$	27
4.7	Day	29
5.6	Day	31
6.6	Day	33
3.0	Wight	35
9.0	Day	37
3.5	Night	39
$\left.\begin{array}{r}4.7 \\ 10.0\end{array}\right)$	$\begin{aligned} & \text { Niglitt } \\ & \text { Day } \end{aligned}$	41
11.3	Day	43
$\left.\begin{array}{l}5.6 \\ 6.6\end{array}\right)$	Night Night	45

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

P6le Nord - North Pole - Polo Norte

PROJECTIOR GNOHOHIQUE GNOMONIC PROJECTION PROYECC IO G G月OLOKIICA

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Pôle Sud - South Pole - Polo Sur

PROJECTIOA GNOMOHIQUE
GHOMOHIC PROJECTION
PROYECC ION GNOMOKICA

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

4.7
$\begin{array}{ll}\mathrm{Mc} / \mathrm{s} & \mathrm{JOUR} \\ \mathrm{Mc} / \mathrm{s} & \mathrm{DfA}\end{array}$

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

4. Planning Principles - Use of Single Sideband
4.1 The First Session of the Aeronautical R.A.R.C. (Geneva, 1964) is of the view that it is premature to decide that the Aeronautical Mobile (R) Service must convert its operations to single sideband (SSB).
4.2 Nevertheless this Session proceeded on the assumption that at some future date SSB may be required by the Aeronautical Mobile (R) Service.
4.3 As a consequence it was agreed that planning principles must be prepared by this Session by means of which the Second Session of the Aeronautical E.A.R.C. is enabled to plan so as to ensure the continued operation of double sideband (DSB) and also to permit the introduction of single sideband when it is required.
4.4 The question of fixing a date for the systemntic use of single sideband emissions is one to which the Second Session of the ferom nautical E.A.R.C. should give further consideration in the light of the requirements which will emerge from the analysis of statistics to be submittod and of the technical characteristics of other radio communication systems.

4.5 Particulars releting to Assignment

4.5.1 It is assumed that the modulation frequencies of $A 3$ emissions will be limited to 3000 cycles per second and that the sideband radiation of other authorized emissions will not exceed that of A3 omissions.
4.5.2 The use of channels for various classes of emission (see paragraph "Classes of emissions") will be subject to special arrangenents by the administrations concemed in order to avoid the interference which may result from the simultancous use of the same channel for sevcral classes of emission. No inherent priority is given to any particular class of emission.
4.5.3 It is recognized that two or more channels can be derived from each of the channels provided under the frequency separation plan.
4.5.4 The arrangements contemplated in 4.5 .2 and 4.5 .3 above should be made under the provisions of Article 43 (Special Agreements) of the International Telecominunication Convention (Geneva, 1959) and Article 4 of the Radio Regulations (Geneva, 1959).
4.5.5 The International Civil Aviation Organization (I.C.A.O.) coordinates aeronautical (R) communications with international air. operations for a large part of the world and this organization should be consulted in appropriate cases, particularly in the use of the frequencies in the Plan.
4.5.6 A single SSB emission, employed on a channel used in accordance with paragraph 4.5.5, shall be accommodated only in the upper half of that channel, the channel being designated by the centre frequency according to the Table.
4.5.7 A station using SSB emissions under the provisions of paragraph 4.5.3 may operate either in the upper half or in the lower half of the channels designated by the centre frequency in the Plan.
4.5.7.1 A station using SSB emissions in the upper half of the channel shall use upper sideband emissions with its carrier (reference) frequency at the value listed in the Plan;
4.5.7.2 A station using SSB emissions in the lower half of the channel shall use upper sideband emissions with its carrier (reference) frequency at the following value below the centre frequency listed in the Plan :

Band Carrier (Reference) Frequency
Relative to Centre Frequency of Channel

2, 3, 4, 5, 6 and $8 \mathrm{Mc} / \mathrm{s} \quad-3500$ cycles
10, 11, 13 and $17 \mathrm{Mc} / \mathrm{s} \quad-4000$ cycles

Resolution No. 1-Relating to the basic objectives of the new frequency allotment plan for the Aeronautical Mobile (R) Service.

The First Session of the Aeronautical E.A.R.C. (Geneva; i964),

considering

a) that it is essential that the frequency plan to be devised by the Second Session of the Aeronautical E.A.R.C. provide the means for the Aeronautical Mobile (R) Service to continue operating without interruption and with maximum efficiency;
b) that at the same time adequate provisions should be made to permit of the smooth introduction of systems and types of emissions most likely to replace those in current use;

resolves

that the Second Session of the Aeronautical E.A.R.C. (1965) should draw up the new frequency plan on the basis of the present usage of double sideband radiotelephony with a view to permitting the introduction of single sideband radiotelephony, without excluding the use of other types of emission (see pages 3 and 4).
5. Basic Principles of Frequency Allotment
5.1 In any revision of the Frequency Allotment Plan for the Aeronatical Mobile (R) Service in the exclusive bands between 2850 and $17970^{\circ} \mathrm{kc} / \mathrm{s} .$, the basic principle of the allotment of frequencies to geographic areas (defined as MWARA s and RDARAs in Part 1 , Section I of Appendix 26 to the Radio Regulations, Geneva, 1959) should be retained.
5.2 The Aeronautical E.A.R.C. had the opportunity at its First Session of considering reports of monitoring studies and other information showing the extent to which, in certain areas, frequencies of the Aeronautical Mobile (R) Service were subject to harmful interferfnce from stations of other services.

When dealing with Appendix 26 and related provisions in the Radio Regulations (Geneva, 1959) the Second Session (1965) should maintain Resolution No. 2, stressing the fact that the interference referred to adversely affects the safeguarding of human life in the air and regularity of air operations. The administrations and the relevant Union organs should apply all means available to ensure the elinination of this interference.

As a basic principle of frequency planning the Aeronautical E.A.R.C. must assume that all channels in the frequency bands between 2850 and $17970 \mathrm{kc} / \mathrm{s}$ allocated exclusively to the Aeronautical Mobile (R) Service remain fully available to that service.

5.3	Resolution No. 2 - Relating to the use of frequencies in the HF bands allocated exclusively to the ieronautical Mobile (R)
	Service
	The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),
	considering
a)	that monitoring observations on the use of frequencies in the
	ated exclusively to the Aeronautical Mobile (R) Service between
	$7970 \mathrm{kc} / \mathrm{s}$ show that a number of frequencies in these bands are
	by stations of services other than the Aeronautical Mobile (R)
Serv	us causing harmful interference to Aeronautical Mobile (R)
Servi	mmunications on some international air routes;

b) to which exclusive frequency bands are specially allocated in order to ensure the safety and regularity of flight along national or international civil air routes as defined in No. 429 of the Radio Regulations (Geneva) 1959);
c)
that to protect the sefety of human life a:d property in the air, and to develop aeronautical transportation services in a regular and effective manner, it is indispensable to have the aeronautical mobile communication channels kept free from harmful interference;

resolves

that the administrations, recognizing that the Aeronautical
Mobile (R) Serviceis a safety service, shall abstain from the use of frequencies in the bands ellocated exclusively to this service by stations of services other than the Aeronautical Mobile (R) Service, except under the express conditions prescribed in No. 115 or No. 415 of the Radio Regulations (Geneva, 1959).
6. Channel spacing in the Aeronautical Mobile (R) Service frequency bands between $2850 \mathrm{kc} / \mathrm{s}$ and $17970 \mathrm{kc} / \mathrm{s}$
6.1 The present channel separation of $7 \mathrm{kc} / \mathrm{s}$ should be maintained. in the bands $2850-3025 \mathrm{kc} / \mathrm{s}, 3400-3500 \mathrm{kc} / \mathrm{s}$ and $4650-4700 \mathrm{kc} / \mathrm{s}$.
6.2 A reduction in chennel widths in the bands between $5480 \mathrm{kc} / \mathrm{s}$ ($5450 \mathrm{kc} / \mathrm{s}$ Region 2) and $8965 \mathrm{kc} / \mathrm{s}$ could create a number of supplementary channels, however, this reduction will not be feasible for operational and economic reasons at the time the Revised Plan is brought into force. Therefore, the First Session of the Aeronautical E.A.R.C. (Geneva, 1964) recommends no change in the present channeling arrangements in these bands.
6.3 A channel spacing of $8 \mathrm{kc} / \mathrm{s}$ may be adopted for the bands above $10 \mathrm{Mc} / \mathrm{s}$; the spare space resulting therefrom should be ased at the top end of the $17 \mathrm{Mc} / \mathrm{s}$ band, and at the lower end of the $10 \mathrm{Mc} / \mathrm{s}$ band, to provide two additional channels of restricted bandwidth to be used by the Aeronautical Mobile (R) Service for purposes to be decided by the Second Session of the Aeronautical E.A.R.C. (1965).

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

CHAPTER II

OTHER CRITGRTA AND FACTORS BHICH SHOULD BE TAKEN INTO ACCOUNT IN ANY REVISTON OF THE FREQUETCY ALLOTTGHT PLAY FOR PRP A ERONAUPICAL
 MOBILE (R) SERVICE AND THE RADIO REGULATIONS (GOVEVA, 1059)
 TOGETHER GITH THE FROUISIONS RELETING THERETO

1. Resolution No. 3 - Relating to the grouping of major world air routes

The First Session of the Aeronautical \&.A.R.C. (Geneva, 1964),

having considered

a) Resolutions Nos. 13 and 14 of the Administrative Radio Conference (Geneva, 1959) relating to : the Preparation of Revised Allotment Plans for the Aeronautical Mobile Service, the use of Frequencies of the Aeronautical Mobile (R) Service;
b) Recommendation No. $2 / 1$ of the I.C.A.O. Special Communications Meeting (1963), Document No. 8329, COSP/II, relating to the Adjustment of MWARA Boundaries;
c) proposals and reports of studies submitted to the First Session of the Aeronautical E.A.R.C. (Geneva, 1964), Document Nos. I-1, I-3, I-7, I-8, I-11 and addendum, I-27, I-52, I-53, I-76;

considering

a) the probability of a greater representation of Administrations being present at the Second Session of the Aeronautical E.A.R.C. (1965);
b) that aircraft operational statistics for Major World Air Routes are to be submitted by Administrations for consideration by the Second Session of the Aeronautical E.A.R.C. (1965);
c) that until the statistics referred to in b) above are available, it would not be desirable to make any revision of the grouping of International Air Routes into MWARAs or to establish new MWARAs to meet operational requirements;

resolves

1. not to recommend at this time any modifications to the existing MWARA boundaries as defined in Appendix 26 to the Radio Regulations (Geneva, 1959) or the establishment of boundaries for additional MWARAs;
2. that the Second Session of the Aeronautical E.A.R.C. (1965) should examine in detail all known factors, taking into account those mentioned above, to determine appropriate revisions to the MWANA boundaries and/or the establishment of additional MAFA's.
3. Resolution No, 4 - Relating to the grouping of regional and domestic air routes (RDARA's)

The First Session of the Aeronautica? E.A.R.C. (Geneva, 1964),

having considered

a.) Resolution No. I4 of the Administrative Radio Conference (Geneva, 1959), relating to the Use of Frequencies of the Beronautical Mobile (R) Service;
b) Recommendations $2 / 8$ and $2 / 9$ of the I.C.A.O. Special Communications Meeting (1963), Document No. 3329, COSF/II, relating to changes to RDARA's;
c) proposals and reports of studies submitted to the First Session of the Aeronautical E.A.R.C. (Geneva, 1964), Document Nos. I-1, I-7, I-8, I-11 and its Addendum, I-75, I-110 Rev.:

considering

a) that until any revision of the grouping of International Air Routes into MNARA's or the establishment of any new MWARA's has been completed, it would not be desirable to make any revision to RDAFA boundaries;
b) that aircraft operational statistics for Fegional and Domestic Air Routes are to be submitted by Administrations for consideration by the Second Session of the Aeronautical E.A.R.C. (1965);

resolves

1. not to recommend, at this time, any modifications to the existing PDARA boundaries as defined in Appendix 26 of the Fadio Regulations (Geneva, 1959),
2. that the Second Session of the Aeronautical E.A.R.C. (1965) should examine in detail all of the above items as a basis for making revisions to the RDARA boundaries.

3. Channels common to (R) and (OR) services

In any revision of the Prequency Plan for the Aeronautical Nobile (R) Service in the exclusive bands between 2850 and $17970 \mathrm{kc} / \mathrm{s}$, the provision of channels comon to the (R) and (OR) services, as foreseen in paragraph 3 of Section II A in Part I of Appendix 26 to the Radio Regulations (Geneva, 1959) should be retained.
4. Proposed amendments to pares 38 and 41 of Appendix 26 to the Radio Regulations (Geneva, 1959)

The First Session of the Aeronautical E.A.R.C. (February, 1964) considers that pages 38 and 41 of Appendix 26 to the Rodio Regulations (Geneva, 1959) should be amended as follows :

Pege 38 of Appendix 26

Page 41 of Appendix 26 :

$\begin{gathered} \text { Frequency } \\ \mathrm{kc} / \mathrm{s} \\ \mathrm{I} \end{gathered}$	Authorized area of use 2	Remarks
5680	World-wide	Authorized for world-wide use for the (R) and ($O R$) services as follows : 1) aboard aircraft for: a) communications with approach and aerodrome control, b) communication with an aeronautical station when other frequencies of the station are either unavailable or unknown; 2) at aeronautical stations for aerodrome and approach control under the following conditions: a) for approach control with power limited to a value that will produce $20 \mu \mathrm{~V} / \mathrm{m}$ at 100 km and in any aase no more than 26 watts in the antenna circuit, b) for aerodrome control with the power limited to a value that will produce $20 \mathrm{p}^{\mathrm{V} / \mathrm{m}}$ at 40 km and in any case no more than 20 watts in the antenna circuit, c) special attention must be given in each case to the type of antenna used in order to avoid harmful interference, d) the power of aeronautical stations which use this frequency in the conditions mentioned above may be increased to the extent necessary to meet certain operational requirements, subject to coordination between the administrations directly concerned and those whose services may be adversely affected. 3) for intercommunication between stations in the mobile services engaged in coordinated search and rescue operations; 4) the specific application of this frequency for the above purposes may be decided at regional aeronautical conferences; 5) this channel may be used for $A 1$ or $A B$ emissions, in accordance with special arrangements. It shall not be subdivided.

5. Resolution No, 5 - Relating to plans for technical systems which may affect the future use of high frequencies

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),

considering

a) that several administrations are actively engaged in the development of communication systems making use of either HF or VHF or in other work intended to improve the Aeronautical Mobile (R) Service;
b) that the systems under consideration include: extended range VHF, long range VHF, space radiocomunication techniques and other systems including automatic data transmission;
c) that between the two sessions of the Aeronautical E.A.R.C. some of the techniques and systems mentioned above may have progressed to the point of implementation;
d) that their implementation could have a significent impact on the requirements for high frequencies;

resolves

that administrations which have plans to meet the requirements of the Aeronautical Mobile (R) Service by means either of improved techniques and/or the use of other than high frequencies be requested to submit their plans to the Second Session of the Aeronautical E.A.R.C. (1965) and indicate their anticipated jmplementation dates;
6. Resolution No. 6- Relating to the use of VHF for commication in the

The First Session of the Aeronautical Extraordinary Administrative Radic Conference (Geneva, 1964),
considering
a) that from an aeronautical viewpoint, VHF provides a more reliable and more noise-free communication system than HF ;
b) that from a technical and operational viewpoint the use of VHF by aviation has progressed appreciably since concention of the Frequency Allotment Plan in Appendix 26 to the Radio Regulations (Geneva, 1959);
c) that the use of VHF in its several modes could appreciably reduce the requirements for high frequencies in the Aeronautical Mobile (R) service;
d) that, due to development in the general telecommunication networks in many areas of the world, the possibilities of providing VHF coverage are rapidly increasing;

resolves

1. that administrations, to the maximum extent practicable, employ VHF frequencies to meet their requirements in the Aeronautical Mobile (R) Service;
2. that administrations, when subritting statistical data concerning aircraft operations, shall take into account the possibilities of meeting their communication requirements in the Aeronautical Mobile (R) Service by means of VHF techniques after due consideration of economic, technical and operational factors.
3. Resolution No. 7 - Relating to the use of very high frequencies for meteorological broadcasts in the aeronautical mobile (R) service

The First Session of the Aeronautical E.A. R.C. (Geneva, 1964), considering
a) that the number of channels evailable for the Aeronautical Mobile (R) Service in the frequency bands between 2850 and $17970 \mathrm{kc} / \mathrm{s}$ is limited;
b) that the need for frequencies for Aeronatical Mobile (R) Service communications and for meteorological broadcasts to civil aircraft is increasing;
c) that the propagation characteristics of high frequencies make them essential for civil aviation communicetion requirements over long distances;
d) that Recommendation No. 13 of the International Administrative Aeronauticel Padio Conference (Geneva, 1949) and Resolution No. 14 of the Administrative Radio Conference (Geneva, 1959) urge administrations "to make as great a use as possible of very high frequencies in order to lessen the load on the high frequency (R) bands";
e) that substantial technical progress has been made by civil aviation since 1949 in extending the useful range of very high frequencies (VHF) used for communcations within the Aeroneutical Mobile (R) Serviceg
f) : that this extension of the useful range of VHF could partially meet the increasing needs for meteoro ogical brondcests to civil aircraft;

resolves

that administrations, to the maximum extent practicable, use very high frequencies for meteorological brondcasts to civil aircraft.
8. Resolution No, Relating to the dissemination of meteorological information
The First Session of the Aeronautical E.A.R.C. (Geneva, 1964), having considered
a) the report and recomendations of the I.C.A.O. Special Communications Meeting (1963), Document No. 8329, COSF/II (Agenda Item 5);
b) the proposals submitted to the First Session of the Aeronautical E.A.R.C. (Geneva, 1964) in Documents Nos. I-1, I-3, I-9, I-11 and its Addendum, I-23, I-78 and I-115;
resolves
to refer the subject to the Second Session of the Aeronautical E.A.R.C. (1965) for consideration when aircraft operotion statistics provided by administrations are studied.

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

CHAPTER III

OPERATIONAL PRINCIPLES ON WHICH REQUIRENENTS FOR HIGH FREQUENCIES FOR AERONAUTICAL MOBILE (R) SERVICE
 COMMUNICATIONS SHOULD BE ASSESSED

1. Number of aircraft which can be served on a high frequency or a family of high frequencies taking into account acceptable message delays
1.1

In Major World Air Route Areas (nNARA!s) :

- a family of high frequencies may be expected to serve a maximum number of 12 aircraft in one hour,
- a single high frequency may be expected to serve a maximum number of 10 aircraft in one hour.
1.2 In Regional and Domestic Air Route Areas (RDARA's) :
- the maximum number of aircraft which can be served on a family of high frequencies or a single high frequency may be highly variable, hence the figures in respect of MWARA's may not be applicable in all RDARA's. Because of the uncertainty on this question, it was agreed that further consideration should be given by the Second Session (see Recommendation No. 2, Chapter IV, page 68).

2. Formula proposed for assessment of high frequency for RDARA operations

2.1 Introduction

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964) examined in detail a number of proposed formulae. In view of the different types of flight operations existing in various areas of the world, it became obvious that only a very simple and general formula could be used. The simplicity of the formula finally adopted should facilitate the collection of statistics by administrations.

It was agreed that since information on the hours flown by registered aircraft was generally available from all administrations, that this should form the basis of a simple formula.

2.2 Suggested formula

N, the number of aircraft requiring $H F$ service in a particular RDARA area at the peak hour may be expressed by :
$N=\frac{T_{B}}{52 \times 7 \times 24} \mathrm{~K}$
where :
$T_{a}=$ annual total of hours flown by $H F$-equipped aircraft carrying a Certificate of Airworthiness.
$\mathrm{K}=$ a correction factor relating the peak hour activity to the average hourly activity throughout the year.
$52 \times 7 \times 24=$ approximate number of hours in a year.

2.3

Comment

It was recognised that the requirements for HF channels sub. mitted by administrations to the Second Session of the Aeronautical E.A.R.C. (1965) could exceed the number of channels available in the Plan. Accuracy in the value assigned to factor K , therefore, was not believed to be of prime importance. Although this factor may vary considerably from area to area, it is of paramount importance to adopt a oniform constant value for K in order to ensure the equitable distribution of frequencies between areas. The specific value of K was not considered to be critical and a value of 2.9 was tentatively adopted as being a reasonable average figure for all areas.

In its final form, the suggested formula may be written as :

$$
\mathbb{N}=\frac{2.9 \mathrm{~T}_{\mathrm{a}}}{8736}
$$

or
$N=\frac{T_{a}}{3000} \quad$ (approximately)
3. Determination of frequency requirements for operation in RDARA's

Application of the formula

The rirst Session of the Aeronautical E.A.R.C. (Geneva, 1964) studied the formula (see 2 above) in the light of operational and other factors apart from the technical and mathematical considerations from which the formula had been derived.

As a result, it appeared that the inclusion of the numbers of hours flown by HF-equipped aircraft in areas where communication service was assured on VHF could result in statistics which would not be sufficiently accurate for use at the Second Session.

The First Session of the Aeronautical E.A R.C. (Geneva, 1964) accordingly decided that the term " T_{a} " in the above formula will have the following meaning :
T_{a} = annual total hours flown by HF-equipped aircraft less the annual total hours during which communication service was assured by VHF.

Accordingly a special notification form was adopted for the collection of aircraft operation statistics as set out in Chapter IV of this Report (see Resolution No. 9, page 65).

It was concluded that whereas a uniform constant value for K (the RDARA correction factor) was desirable there was not sufficient evidence on which to establish this figure nor to confirm the tentative value of 2.9. Consequently, administrations are invited to collect additional facts to enable the Second Session of the Aeronautical E.A.R.C. to examine this question (see Recommendation No. 2, page 58).

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

CHAFTER IV

FORM IN WHICH DATA RELATING TO THE DETERMINATION OF REQUIRERENTS FOR HIGH FREQUENCIES FOR AERONAUTICAL MOBILE (R) SERVICE COMMUNICATIONS
SHOULD BE SUBMITTED TO THE UNION BEFORE THE SECOND SESSION OF THE AERONAUTICAL E.A.R.C. (1965) AND THE DATE BY WHICH THEY SHOULD BE SUBMITTED

1. Resolution No. 9 - Relating to the forwarding by administrations of Statistical analysis on Regional and Domestic flights

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),

considering

a) the Resolution No. 525 of the Eighteenth Session of the Administrative Council (1963) relative to the establishment of the operational principles on which requirements for high frequencies for Aeronautical Mobile (R) Service communications are to be assessed;
b) the form in which actual operational statistics should be submitted to the I.F.R.B.;
c) that such operational statistics should be provided for a continuous period of twelve months beginning not earlier than I January 1963;
resolves
that administrations are asked to take the necessary steps to furmish the data on operational statistics of Regional and Domestic flights of aircraft within their jurisdictions on the prescribed form (see pages 66 and 67) so as to reach the I.F.R.B. not later than 1 November 1964.

AIRCRAFT OPERATING STATISTICS

REGIONAL $\triangle N D$ DOMESTIC LIR ROUTE $/$ REAS

NOT IFICATION FORM*)

1. Administration providing data
2. Twelve months period of record
3. Operational information regarding the hours flown by the HF equipped aircraft carrying a valid certificate of operation of aircraft station.

RDARA, sub-RDARA or area used as a basis of reporting	Total of hours flown during the twelve months period of record by HF equipped aircraft (in hours per year) $\left.\left(\mathrm{T}_{\text {total }}\right) * *\right)$	Total of hours flown during the twelve months period of record when VHF communication was used by HF-equipped aircraft (in hours per year) $\left.\left(T_{v h f}\right) * *\right)$	Total of hours flown during the twelve months period of record when high frequency communication was required (in hours per year) $\left(T_{a}\right)$
1	2	3	4

*) Instructions for completion of this form are contained on page 67.
**) In countries where the statistics of T_{a} are directly determined, the columns for $T_{\text {total }}$ and $T_{\text {vhf }}$ may be left blank. ${ }^{a}$

2. Instmuctions for completing the notification form

The form for notifying the aircraft operating statistics over Regional and Domestic Air Routes in order to be able to determine the high frequency communication requirements can be divided into two sections from the standpoint of the information to be provided :

- the first section, Items 1 and 2, is meant for information of an administrative nature;
- the second section, Item 3, seeks information conceming the total time that high frequency communication was used for operations.

Item	Instructions
1	The administration providing the data should be identified here.
2	The twelve-month period selected by the reporting administration, for submitting operational statistics on the Regional and Domestic Air Routes should be entered here. Note : The data on operational statistics is required for a continous period of twelve months, beginning not earlier than 1 January 1963. The reporting administration should thus choose the twelve-month period suitable to it noting that the desired date for the submission of data to the I. F.R.B. is 1 November 1964.
3	Column 1 : The symbol of relevant RDARA or sub-RDARA, as shown on Map II, Appendix 26 to the Radio Regulations (Geneva, 1959) should be entered in this column. In the case where administrations find difficulty on account of the overlapping of two or more RDARA boundaries, they may choose any other suitable geographical area of reference for this purpose. Such administrations should furnish a chart showing the boundaries of selected area(s). More than one such area, however, should not be created in any country where the longest air route in the country does not exceed 1000 nautical miles. Column 2 : The total number of hours flown during the twelvemonth period of record chosen by the administration (see Item 2 above), by the HF-equipped aircraft, should be entered here.

Item	Instructions
(contd. $)$	Column 3 : The total number of hours flown during the twelve-month period of record chosen by the administration (see Item 2 above), by the HF-equipped aircraft, when VHF communication was used, should be entered here.
$\frac{\text { Column 4 : The total number of hours flown during the twelve-month }}{\text { period of record chosen by the administration (see Item } 2 \text { above) }}$ by the HF-equipped aircraft, requiring high frequency communica- tion should be entered here. Note : If the reporting administration can directly provide the information requested under Column 4, the Columns 2 and 3 may be left blank.	

3. Recommendation No. 2-Relating to the information on the Regional and Domestic flight operations that administrations should provide to the Second Siession of the Aeronautical E.A.R.C. (1965)

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),

considering

a) that the experience of administrations with respect to the use of high frequencies for the Regional and Domestic flights can be of value to the Second Session of the Aeronautical E.A.R.C.;
b) that the studies cerried out by administrations on the traffic density in their areas can be useful for assessing the correction factor K relating the peak hour activity to the average hourly activity throughout the year;

recommends

1. that factor K be the same for all RDARA's, and that the Second Session should examine the feasibility of using for all RDARA's the same figures for the maximum number of aircraft which may be served :

- by a frequency, and/or
- by a family of frequencies;

2. that adminjstrations shall continue such studies concerning the assessment of an improved approximation of the correction factor K as mentioned above, and determination of the maximum number of aircraft which can be served on a frequency or a family of frequencies in one hour, having in mind that these figures should be the same for all RDARA's
3. that administrations should supply data based on their experiences of the use of high frequencies in RDARA's (specifying the order in Mc/s) in order that the Second Session of the Aeronautical E.A.R.C. (1965) can take into account these data when allotting the frequencies for a given RDARA.
4. Resolution No. 10 - Relating to data concerning VHF usage by the Aeronautioal Mobile (R) Service

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),

considering

a) the impact of very high frequencies (VHF) on the requirement for high frequencies (HF) to be allotted by the Second Session of the Aeronautical E.A.R.C. (1965);
b)
that the data concerning VHF coverage of Major World Air Routes should be made available at the Second Session of the Aeronautical E.A.R.C. (1965) when the Conference examines the statistics concerning intermational air operations for the purpose of determining the requirement for high frequencies (HF);
c) the desirability for all administrations to use uniform criteria in reporting the VHF en route coverage provided by the facilities under their jurisdiction;

resolves

1. that during the early stages of the Second Session of the Aeronautical E.A.R.C. (1965) administrations shall be prepared to submit data for use of the Conference concerning the effective range of those VHF Aeronautical Mobile facilities in their own countries serving intermational air routes (Air Traffic Control and Operational Control);
2. that the effective range shall be considered to be that distance at which VHF communications are available during at least 90% of the time at a specified minimum en route altitude;
3. that the data supplied by administrations be in the form of contours on charts or by diagrams; as appropriate, indicating the orientation of the coverage areas.
4. Resolution No. 11 - Relating to the forwarding by Administrations of the statistics on international flights

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),

considering

a) the Resolution No. 525 of the Eighteenth Session of the Administrative Council, (1963), relative to the es Sablishment of the operational principles on which requirements for high frequencies for feronautical Mobile (R) Service communications are to be assessed;
b) the form in which actual operational statistics should be submitted to the I.F.R.B.;
c). that such operational statistics should be provided for the period $0001 \mathrm{GMT}, 2$ August, 1964, to 2400 GMT, 8 August 1964;

resolves

that administrations are asked to take the necessary steps to furnish the data on operational statistics of international flights on the prescribed form*) so as to reach the I.F.R.B. not later than 1 October, 1964;

[^3]| | $\begin{aligned} & \text { 交 } \\ & \text { 产 } \end{aligned}$ | SERIAL NUMEER | FLIGHT identification | | | ORIGIN | | stage LENGTH N.H. | | | | | STAGE LENGTH N.H. | STOP | | | | STOP | | | STAGE LENGTH N.M. | STOP | | | Stage LENGTH N.M. | | |
| :---: |
| | | | | | | NUMPER
 OF THE
 SQUARE | | | | NUHEER OF THE SQUARE | | | | MUHEER OF THE SQUARE | | | | NUMBER OF THE SQUARE | | | | NMBER OF THE SQUARE | | | | NUM BER OF THE Square | |
| | $12^{2} 3^{3}{ }^{4}$ | ${ }^{5} 6{ }^{7}{ }^{8}{ }^{8}$ | | 1819 | 19 | ${ }^{21} 1^{22} 1^{23}{ }^{24}$ | ${ }^{25}{ }^{25}{ }^{27}$ | 2728 | $8{ }^{29}$, 30,31 | 2, 33×3435 | 3637 | 3 | ${ }^{40,41}{ }^{A_{2}}$ | | 47 40.40 | 30 | 0, 51, 52,53 | $4^{65}{ }^{36}, 57{ }^{57}$ | 50.890 | 5090061 | 61, 62, 63, 64 | 5, 60, 67 ,68 | 680970 | 771 | 172, 73, 74,78 | 76,71,78,79 | |
| | | 1 | + | | | -1, | | | - | 1 | | | 1 | 1 | | | -1. | 1 | | | | 1 | | | 1 | 1 | |
| | 1 | - | $\underline{+1}$ | | | 1 | | | 1 | , | | | 1 | 1 | | | 1 | 1 | | | - | + | | | +1 | - | |
| | 1 | $\underline{1}$ | +1/ | | | 1-1 | | | +1, | + | | | + | + | | | - | 1 | | | + | | | | +1 | 1-1 | |
| | 1 | $1+1$ | 1 1 1 + + + | | | 1 | | | - | 1, | | | - | 1 | | | 1 | | | | + | + | | | 1 | - | |
| | 1 | -1.1 | -1, | | | | | | | | | | | | | | - | + | | | -1 | -1 | | | 1 | $\underline{1}$ | |
| | 1 | -1, | -1, | | | | | | - | 1 | | | -1 | 1 | | | -1 | -1 | | | -1 | -1 | | | +1, | , | |
| | 1 | 1-1.1.1 | \underline{L} | | | 1.1 | | | +1.1. | 1 | | | 1-1 | +1 | | | -1 | -1 | | | +1, | +1.1 | | | 1 | - | |
| | | 1×1 | - , +1-1 | | | 1 | | | 1 | 1-1 | | | 1-1 | 1-1 | | | -1 | $\xrightarrow{+1}$ | | | -1/ | -1 | | | 1 | - | |
| | 1 | -1 | -1 | | | $\underline{1}$ | | | 1 | $\underline{1}$ | | | $\xrightarrow{1}$ | 1 | | | $\xrightarrow{1}$ | 1 | | | 1 | $\underline{1}$ | | | + | - | |
| | 1 | 1-1.1. | - , + , +1 | | | | | | | $\underline{+}$ | | | - | 1 | | | -1, | +1, | | | 1 | 1 | | | +1.1. | $\underline{+1}$ | |
| | , | -1 | +1-1 | | | 1 | | | $\underline{1}$ | 1 | | | 1-1. | 1 | | | $\xrightarrow{1}$ | 1-1, | | | 1, | 1 | | | 1 | $1+1$ | |
| | 1 | 1, , , , | 1, , , , , , , | | | L | | | -1 | - | | | - | + | | | - | 1 | | | 1, 1 | 1 | | | +1-1 | 1 | |
| | 1 | L | L-i_1 | | | 1 | | | 1 | L + | | | - | 1 | | | -1 | - | | | +1.1. | - | | | + | + | |
| | 1 | +1. | $\underline{+1}$ | | | 1 1 | | | - | 1-1 | | | - | 1 | | | , | 1 | | | 1 | 1 | | | + | + | |
| | 1 | $1+1$ | - , 1 1 , , 1 | | | 1 | | | 1 | , | | | +1 | +1.1 | | | - | - | | | - | + | | | + | $\underline{.}$ | |
| | - | - , +1. | L | | | 1 | | | 1 | -1 | | | + | + | | | - | 1 | | | + | 1.1.1. | | | +1, | L | |
| | - | -1.1.1.1 | + | | | $\xrightarrow{1}$ | | | 1 | 1 | | | + | + | | | + | 1 | | | + + | 1 | | | + | 1 | |
| | 1 | $\underline{1}$ | $\underline{+1}+1$ | | | $\xrightarrow{1}$ | | | $\xrightarrow{1}$ | $\underline{1}$ | | | 1 | +1.1 | | | - | + | | | , | , +1.1. | | | , | + | |
| | + | -1,1 | + | | | 1 | | | - | - | | | +1.1. | + | | | -1 | L | | | - | +1.1.1 | | | + | +1.1. | |
| | 1 | +1.1 | +1, +1, +1, | | | + | | | L | L | | | + | 1 | | | 1 | 1 | | | 1-1. | +1, | | | + | + | |
| | 1 | + | +1. | | | - | | | - - | + | | | 1 + | 1 | | | 1,1 | 1 | | | 1 | 1 1 1 | | | 1 | +1.1 | |
| | 1 | +1, +1 | L_L | | | 1-1 | | | 1 | - +1.1 | | | + | 1-1 | | | +1.1 | - | | | 1.1.1. | +1.1.1. | | | , | 1-1 | |
| | $\underline{1}$ | + | +1 | | | - | | | 1 | 1 | | | - | 1 | | | +1 | 1 | | | 1 | 1, 1, | | | 1-1. | +1, | |
| | | $\underline{+1}$ | | | | + | | | - | - | | | 1 | 1 | | | $\xrightarrow{1}$ | +1.1 | | | 1 | 1 1 | | | 1 | 1. | |
| | 1 | +1. | +1. | | | 1 | | | - | 1 | | | 1 | 1 | | | 1 | $\underline{+1}$ | | | 1 | -1 | | | + | - | |
| 6 | $\underline{+}$ | +1 | + | | | - | | | 1 | $\xrightarrow{1}$ | | | 1 | - | | | - | 1 | | | +1. | - | | | 1 | 1.1.1. | |
| | 1 | - | - | | | + | | | + | - | | | - | 1 | | | +1.1 | + | | | + | -1.1. | | | + | - | |
| 8 | 1 | 1-1 | +1, | | | 1 1 | | | - | 1 , | | | 1 | , 1, | | | - | - . | | | +1.1.1. | 1 | | | - | + | |
| | L | - | L | | | - | | | - | $\underline{1}$ | | | 1 | + | | | + | 1 +1.1 | | | 1-1 | 1-1. | | | 1 | + | |
| | | | + | | | + | | | + | - | | | - | 1 | | | - | + | | | +1.1. | +1.1.1. | | | - | + | |
| | | | - | | | 1 | | | + | - | | | 1.1.1 | , | | | 1 | , | | | + | 1 | | | - | - | |
| | 1 | - | + | | | - | | | 1 | - | | | | + | | | | 1-1 | | | + | +1.1. | | | + | +1. | |
| | 1 | - | + | | | 1 | | | - +1. | - | | | +1.1. | + | | | - | + | | | +1.1. | +1.1.1 | | | 1 1 1 | 1 | |
| | + | + | - | | | - | | | + | +1.1. | | | +1. | + | | | 1 | 1 | | | +1.1.1. | +1, | | | 1, +1 | - | |
| | , | L | + | | | - | | | + | - | | | -1, | - | | | - | - | | | +1. | 1 | | | 1-1 | - | |
| | | + | L L + , + | | | +1. | | | 1 | - | | | - | | | | | L | | | 1, , | L | | | , | + | |
| | 1 | +1.1.1 | | | | -1.1.1. | | | + , + | | | | 1 | 1 | | | . | 1. | | | - | 1.1.1 | | | 1 | 1 1 | |
| | 1 | 1 1 +1, | +1 | | | 1 | | | + | , | | | 1 | - | | | + | 1 | | | 1-1 | +1.1. | | | + | L | |
| | L | | L | | | - | | | 1 | +1 | | | - | + | | | +1.1 | L | | | - | + 1 | | | + | - | |
| | | +1. | | | | 1-1 | | | 1 | 1-1 | | | -1 | - | | | +1.1. | - | | | - | - | - | - | -1 | +1.1. | |
| | | | $10,11,12,13,14,1516,17$ | 1819 | 1920 | ,29,23,24, | [25 26.27 | | 29,30,31 | 2,33,34,35 | 33637 | 37) 38 | 39,40,41,42 | (43,44,45,46 | 4748 | - | 50,51,52,33 | 4,55,50,57] | 75859 | sabor | b1, $62,65,64$ | 5,60,67,60 | S016970 | 70 | 7172,73,74,75 | 76,77,70,79 | |
| * INOICATE BY CATEGORY | |

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

ANMEX 2 TO CHAPTER IV

IMSTRUCIIONS FOR COMPLETING

THE NOTIFICATION FORM (SEE ANNEX 1 TO CHAPTER IV)

I. General Remarks

1.I In view of the great volume of data which will have to be processed and the short time which will be available for such processing, a form has been devised which will enable the informetion to be punched directly on to 80 Column Data Cards without any intermediate processing. It is, therefore, very important that administrations exercise extreme care to avoid the entering of information in a faulty or inaccurate way.
1.2 The form is divided into 80 columns to correspond with the 80 Column Data Card to be used for data input to an Electronic Data Processing System. The columns are numbered from I to 80 and guide lines are provided to facilitate inclusion of the information to be furnished.
1.3 The form for notifying the operations of aircraft which use high frequency communications in Major World Air Routes can be broadly divided into four sections from the standpoint of the information required :

- the first section, Columns 1 to 20; provides for information of a general and administrative nature;
- the second section, Columns 21 to 26 , provides for information concerming the point of origin of the flight;
- the third section, Columns 27 to 75 , provides for information regarding any intermediate stops or zones of ancijosis overflown;
- the fourth section, Columns 76 to 80 , provides for information regarding the termination of the flight.
1.4 Aircraft flights should normally be reported by the administration to which the aircraft belongs. However, in the case of leased aircraft where the administration authorizing the operation or operating the aircraft is different from the administration under which the aircraft is registered, the administration operating or authorizing the operation shall be responsible for supplying the aircraft operation statistics.
1.5 There is no need for stotistics relating to flights for which the nir-ground communications (ATC and OPN) are conducted on VHF exclusively. Examples areflights between London and Paris and between Chicago and Montreal.

2. Explanation of the titles and subtitles used in the Notification Form

2.1 COUNTRY - This column is provided for the country designator of the country submitting the Notification Form. A copy of the Table of Country Designators from the Preface to the International Frequency List is given in (Annex 4 to Chapter IV).
2.2 SERIAL NO. - indicates the sequential number of all flights pertaining to one country.
2.3 FLIGHT IDENTIFICATION - for airline flights, consists of the two letter airline designator followed by the flight number. Annex 5 to Chapter IV lists such designators. If the name of an airline dces nct appear in Annex 5, the administrations should indicate an appropriate national flight identification. Where a flight number is not available, administrations should provide a flight identification with not more than eight characters.
2.4 TYPE OF FLIGHP - Flights are grouped into two categories :

Category l. scheduled flights;
Category 2. non-scheduled flights, including general aviation and military transports flying along international civil air routes.
2.5 AIRCRAFT SPEED - Aircraft speeds have been grouped into three categories :

Category 1. speeds less than 350 knots;
Category 2. speeds from 350 knots to 500 knots;
Category 3. speeds greater than 500 knots.
2.6 LINE CODE - This column is provided for entering the number of the line or lines on the form which contain information concerming one flight.
2.7 ORIGIN - indicates the location and day of commencement of a flight if it takes place during the week of record; if, however, the flight commenced before 0001 G.M.T., 2 August, 1964, the ORIGIN for the record will be the first departure of the aircraft which occurs after the beginning of the week of record.
2.8 NUMBER OF THE SQUARE - refers to one of the sub-divisions, numbered 2 to 1818, shown on the World Map in Annex 3 to Chapter IV.
$2.9 \quad$ ZA - is the abbreviation for "Zone of Analysis", A to U, as shown on the World Map in Annex 3 to Chapter IV. These Zones are used solely for the analysis of statistical data to be submitted by Administrations according to the Form given in Annex 1 to Chapter IV.
2.10 DAY OF FLIGHP (G.M.T.) - indicates the day of the week on which each stage of the flight commences.
2.11 OVERFIOWN ZA - indicates flight over a Zone of Analysis without a stop.
2.12 STAGE IENGTH - indicates the distance of each stage of flight in nautical miles.
2.13 TERMINAL - indicates the end of a flight if it takes place during the week of record; if, however, the flight ended after 2400 G.H.T., 8 August, 1964, the TERMINAL for the record will be the first stop of the aircraft which occurs after the end of the week of record.
3. Detailed Instructions concerning information to be entered in the specific columns of the form

Title	Column (s)	Instructions
NUMBER OF THE SQUARE	32 to 35	The number of the square on the World Map in Annex 3 to Chapter $I V$, of the intermediate stop, if any, should be entered here in a sirilor manner as explained for Columns 21 to 24.
ZA	36	The letter corresponding to the Zone of Analysis Annex 3 to Chapter IV in mich the stop tokes place should he entered here.
DAY OF FLIGHT	37	The day (G.M.T.) of the week on which the flight departs after the first intermediate stop should be indicated here by one of the digits 1 to 7 , as explained under Column 26.
$\begin{gathered} \text { OVERFLOWN } \\ \mathrm{ZA} \end{gathered}$	38	The letter corresponding to the Zone of Analysis should be entered in this column whenever a ZA is overflown between two consecutive stops. This column should be left blank if there is no such overflight.
STAGE LENGTH	39 to 42	The distance, in nautical miles, between tho two airports, corresponding to the stage of flight, originating in the square shown in Columns 32 to 35 and terminating in the square shown in Columns 43 to 46 , should be entered here. If, however, the subsequent stop is not an intermediate stop, but is the termination of flight, the figures showing the stage length should be entered in Columns 72 to 75, and Columns 39 to 42 should be left blank.
STOP	43 to 48	The particulars of the second intermediate stop, if any, should be entered in Columns 43 to 48 in the same manner as for the preceding STOP, (Columns 32 to 37).
$\begin{aligned} & \text { OVERFLOWN } \\ & \text { ZA. } \end{aligned}$	49	The particulars of any ZA overflown should be enter:d here in the same manner as for Column 38.
STAGE LENGTH	50 to 53	The distance, in nautical miles, between the two airports corresponding to the stage of flight, should be entered here in the same manner as for Columns 39 to 42.
STOP	54 to 59	The particulars of the third intermediate stop, if any, should be entered in Columns 54 to 59 in the same manner as for the preceding STOP, (Columns 43 to 48).

Title	Column (s)	Instructions
OVERFLOWN ZA	60	The particulars of any ZA overflow should be entered here in the same manner as for Column 38.
STAGE LENGTH	61 to 64	The distance, in nautical miles, between the two airports corresponding to the stage of flight, should be entered here in the same manner as for Columns 39 to 42.
STOP	65 to 70	The particulars of the fourth intermediate stop, if any, should be entered in Columns 65 to 70 in the same manner as for the preceding STOP, (Columns 54 to 59).
OVERFLOWN	71	The particulars of any ZA overflown should be entered in this column in the same manner as in Column 38.
STAGE LENGTH	72 to 75	The distance, in nautical miles, between the two airports corresponding to the last stage of flight should be entered here.
TERMINAL	76 to 80	The information relevant only to the termination of the flight should be entered in Columns 76 to 80. If the flight consists of more than four intermediate stops, then Columns 72 to 80 on the first line should be left blank and the particulars of subsequent Stops should appear on the second and following lines, if necessary; the termination should appear in Columns 76 to 80 on the last line only. (See 2.13, page 75).

4. Instructions concerning flights with more than four intermediate stops

4.1 If the number of intermediate stops is more than four and the flight does not terminate on the first line, the particulars of subsequent stops should be entered on the second line in the following manner :

- the information contained in Columns 2 to 19 (inclusive) of the first line should be repeated in the same Columns of the second line;
- the digit 2 should be entered in Column 20 of the second line;
- the remainder of the flight information should be entered on the second line, commencing in Column 28;
- if the number of intermediate stops does not exceed eight, the information relevant to the termination of the flight should be entered in Columns 76 to 80 of the second line.
4.2 If the number of intermediate siops is more than eight and the flight does not terminate on the second line, the remainder of the flight information should be entered on the third line in the following manner:
- the information contained in Columns 2 to 19 (inclusive) of the second line should be repeated in the same columns of the third line;
- the digit 3 should be enterad in Column 20 of the third line;
- the remainder of the flight information should be entered on the third line, commencing with Column 28;
-. the information relevant to the termination of the flight should be entered in Columns 76 to 80 of the third line.

ANNEX 3 to Chap. IV

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

ANNEX 4 TO CHAPTER IV.

COUNTRY DESIGNATORS

N.B. : The following designators have a geographical significance only

$\begin{gathered} \text { Designa- } \\ \text { tor } \end{gathered}$	Name of the country	Designator	Name of the country
ADN	Aden	BOL	Bolivia
AFG	Afghanistan	BRM	Union of Burma
AFS	Republic of South Africa and	BRN	Sabah (North Borneo)
	Territory of South-West Africa	BRU	Brunei
AGL	Angola	BUL	People's Republic of Bulgaria
ALB	People's Republic of Albania		
ALS	State of Alaska, United States	CAF	Central African Republic
	of America	CAN	Canada
ALG	Algeria	CAR	Caroline Islands
AMS	New Amsterdam Island	CBG	Cambodia
AND	Andorra	CGO	Republic of the Congo (Leopoldville)
AMF	French Territories in the Antarctic	CHL	Chile (except Easter Island)
AOE	Spanish Province in West Africa	CHN	China
ARG	Argentine Republic	CHR	Christmas Island (Indian Ocean)
ARS	Saudi Arabia	CKH	Cock Islands
ASC	Ascension	CKN	Cook Islands (Northern Group)
ATN	Netherlands Antilles	CLM	Republic of Colombia
AUS	Commonwealth of Australia	CLN	Ceylon
AUT	Austria.	CME	Federal Republic of the Cameroon
AZR	Azores	CNR	Canaries
	Brazil	$\begin{aligned} & \text { COG } \\ & \text { COM } \end{aligned}$	Republic of the Congo(Brazzaville) Comores
		CPV	Cape Verde Islands:
ВАН	Bahamas	CTI	Republic of the Ivory Coast
BAS	Basutoland	CTR	Costa Rica
BCH	Bechuanaland	CUB	Cuba
BEL	Belgium	CVA	Vatican City State
BER	Bermuda	CYP	Republic of Cyprus
BDI	Kingdom of Burundi.		
BLR	Bielorussian Soviet Socialist Republic	D ${ }_{\text {D }}$	Germany Eastern Germany
		DAH	Republic of Dahomey

$\begin{gathered} \text { Designa- } \\ \text { tor } \end{gathered}$	Name of the country	Designator	Name of the country
DNK	Denmark	GUI	Republic of Guinea
DOM	Dominican Republic	GUM	Guam
E	Spain	HKG	Hongkong
EGY	United Arab Republic	HNB	British Honduras
EQA	Ecuador	HND	Republic of Honduras
ETH	Ethiopia	HNG	Hungarian People's Republic
		HOL	Netherlands
F	France	HTI	Republic of Haiti
FJI	Fiji Islands	HVO	Republic of Upper Volta
FLK	Falkland Islands \& Dependencies	HWA	State of Hawaii, United States of America
FNL	Finland	HWL	Howland Island
G	United Kingdom of Great Britain and Northern Island	I	Italy
GAB	Gabon Republic	ICO	Cocos Keeling Islands
GCA	Territories \& Colonies of the United Kingdom in Region 1	IND	India
		INP	Portuguese India
GCB	Territories \& Colonies of the United Kingdom in Region 2	INS	Republic of Indonesia
GCC	Territories \& Colonies of the United Kingdom in Region 3	IOB	British West Indies
		IRL	Ireland
GDL	French Department of Guadeloupe	IRN	Iran
GHA	Ghana	IRQ	Iraq
GIB	Gibraltar	ISE	Iceland
GIL	Gilbert \& Ellice Islands Colony	ISR	State of Israel
GLP	Persian Gulf	IWA	Iwo-Jima
GNB	Gambia (Bathurst)	J	Japan
GNE	Spanish Province in the Gulf of Guinea	JAR	Jarvis Island
GNP	Portuguese Guinea Greece	JMC	Jamaica
GRC		JON	Johnston Island
GRL	Greenland	JOR	Jordan
GTM	Guatemala		
		KEN	Kenya
GUF	French Department of Guiana	KER	Kerguelen Islands
		KOR	Republic of Korea

Designator	Name of the country	Designator	Name of the country
KRE	People's Demooratic Republic	NOR	Norway
	of Korea	NPL	Nepal
KTVT	Kuwait (State of)	NYA	Nyasaland
JaO	Laos	NZI	New Zealand
IBN	Lebanon		
LBR	Liberia	OCT	French Polynesia
LBY	Libya	ONC	Stations of the "United Nations Military Observer Group in
LUX	Luxerabourg		India and Pakistan"
MAC	Macao	PAK	Pakistan
MAU	Mauritius	PAP	Territories of Papua
MCO	Monaco	PiQ	Chile (Easter Island)
MCS	Marcus Island	PHL	Republic of the Philippines
VDG	Malagasy Republic	PHX	Phoenix Islands
MDR	Madeira	PLIT	Palmyra Island
MDW	Midway Islands	PNR	Republic of Panama
MEX	Mexico	PNZ	Panama Canal Zone
MLA	Malaysia	POL	Pcople's Republic of Poland
MLD	Maldive Islands	POR	Portugal
MLI	Republic of Mali	PRG	Paraguay
MLT	Malta	PRU	Peru
MNG	Mongolian People's Republic	PTC	Pitcairn Island
MOZ	Mozambique	PTR	Puerto Rico
MRA	Mariana Islands		
MRC	Kingdon of Morocco	REU	French Department of Reunion
MRT	Marshall Islands	RHN	Northern Phodesia
MRNT	Marion Island	RHS	Southern Rhodesia
MRT	French Department of	ROD	Rodrigues
	Martinique	ROU	Roumanian People's Republic
MPN	Islanic Republic of Mauritania	RPW	Republic of Rwanda
		RYU	Ryu-Kyu Islands
NCG	Nicaragua	S	Sweden
NCE	New Caledonia \& Dependencies	SDN	Republic of Sudan
NGR	Republic of the Niger	SEN	Republic of the Senegal
NGU	Territory of Hew Guinea		
NHB	$\begin{aligned} & \text { New Hebrides (British-French } \\ & \text { Condominium) } \end{aligned}$		
NIG	Federation of Nigeria		

Designator	Name of the country	Designator	Name of the country
SEY	Seychelles	TKL	Tokelau islands
SHN	S. Helena	TMP	Portuguese Timor
SLI	Solomon Islands	TON	Tonga
SIV	Republic of El Salvador	TRC	Tristan da Cunha (Station of the Republic of South Africa)
SMA	American Samoa	TRD	Trinidad and Tobago
SMF	French Somaliland	TUN	Tunisia
SinO	Western Samoa	IUR	Turkey
SMR	Republic of San Marino		
SNG	Singapore	UGA	Uganda
SOM	Somali Republic	UKR	Ukrainian Soviet Socialist Republic
SPM	S. Pierre and Miquelon	URG	Uruguay
SRL	Sierra Leone	URS	Union of Soviet Socialist Republics
SRW	Sarawak	USA	The 48 contiguous States of the
STP	S. Thome and Principe		United States of America (excludes the States of Alaska and
SUI	Switzerland		Hawaii)
SUR	Surinam		
SWN	Swan Island	VEN	Venezuela
SYR	Syrian Arab Republic	VIR	Virgin Islands
		VTN	Republic of Viet-Nam
TCD	Republic of the Chad		
TCH	Czechoslovak Socialist Republic	WAK	Wake Island
TGK	Tanganyika		
TGO	Togolese Republic	YEM	Yemen
THA	Thailand	YUG	Yugoslavia
		ZAN	Zanzibar

	Signification Signification Significado		Signification Signification Significado
A		C	
AA	American Airlineo Inc.	CA	Caledonian Airwayo Ltd.
AB	Manila Aviation Service, Inc.	CB	Caribbean-Atlantic Airlines Inc.
AC	Aerovras Nacionaleo de Colombia, S. A.	CC	Lloyd Aereo Colombiano, S. A.
AD	Aden Airwayo Ltd.	CD	Cordova Airlines, Inc.
AE	Air Ceylon Ltd.	CE	Central African Airwaya Corporation
AF	Air France	CF	Compafia de Aviacion, "FAUCETT", S. A.
AG	Gueot Aeroviao MÉxico, S. A.	CG	Compania Aeronática Uruguaya, S. A.
AH	Air-Algerie	CH	Chicago Helicopter Airwayo Inc.
AI	Air India	CI	China Air Lines
AJ	Aerovias Internacional Balbao, S. A.	CJ	Caribbean Air Transport Co. Inc.
AK	Alaska Coastal - Ellio Airlineo	CK	Connellan Airwayo Ltd.
AL	Allegheny Airlineo Inc.	CL	Capitol Airways, Inc.
AM	Aeronaves de México, S. A.	CM	Compafira Panamefia de Aviacion, S. A.
AN	Australian National Airwayo Pty. Led. / Ansett Airways Pty. Ltd.	$\begin{aligned} & \text { CN } \\ & \text { CO } \end{aligned}$	Central Airlines, Inc. Continental Air Lineo Inc.
AO	Aviación y Comercio, S. A.	CP	Canadian Pacific Airlineo Ltd.
AP	Belgian International Air Service Cy.	CQ	(reserved - réservé - reservada)
$A Q$	Schreiner Aerocontractora N. V.	CR	Rhodesian United Air Carriero
AR	Aerolineas Argentinas	CS	Cambrian Airwayo, Ltd.
AS	Alaska Airlines Inc.	CT	Civil Air Transport Company Led.
AT	Compagnie Nationale de Tranoports Aériena Royal Air Maroc	$\begin{aligned} & \mathrm{CU} \\ & \mathrm{CV} \end{aligned}$	Empresa Consolidada Cubana de Aviación Campling Bros. and Vanderwall Ltd.
AU	Compania Argentina de Transporte Aéreo S. A.C. e Y. - Austral	$\begin{aligned} & \text { CW } \\ & \text { CX } \end{aligned}$	Channel Airways Lt . Cathay Pacific Airwayo Ltd.
AV	Compagnie Senégalaise de Tranoporto Aériens	CY	Cyprus Airways Ltd.
AW	Catalina Air Lines, Inc.		
AX	AAXICO Airlines, Inc.		
AY	Aero O/Y Finnish Airlineo (FINNAIR)		
AZ	ALITALIA-Aerolinee Italiane Internazionali		
B		D	
BA	British Overseas Airwayo Corporation	DA	Dan-Air Serviceo Ltd.
BB	Balair S. A.	DB	Darbhanga Aviation
BC	British Insulated Callender's Cablea Ltd.	DC	Department of Civil Aviation Auotrolia (Aircraft)
BE	British European Airwavs Corporation	DD	
BF	Bees Flight Ltd.	DE	Continentale Luftreederei GmbH.
BG	British Guiana Airways Ltd.	DF	Condor Flugdienst Gmbh.
BH	Bahamas Airways Ltd.	DG	
BI	Bharat Commerce and Industries Ltd.	DH	
BJ		DI	
BK	B.K.S. Air Transport Ltd.	DJ	
BL	Bonanza Air Lines Inc.	DK	Scanair Ltd.
BM		DL	Delta Air Lines, Inc.
BN	Braniff International Airways Inc. Société Air-Brousse	DM	Departamento de Comunicacioneo (Argentina)
BP		DN	AIR LLOYD, Deutsche Nah-Luft-Verkehro
BQ	Blidberg, Metcalfe \& Co., A. B.		GmbH.
BR	British United Airways Ltd.	DO	Compafia Dominicana de Aviación
BS	Borneo Airways Ltd.	DP	Dunlop Rubber Company Ltd. (Aviation Diviaion)
BU	Braathens South-American and Far Eaot Airtransport A/S	DQ DR	Derby Aviation Ltd.
BV		DS	
BW $\mathbf{B X}$	British West Indian Airways Ltd.	DT	Divisia de Tranoportes Aerreon (Angola) Duncan Logan (Contractore) Ltd.
BY		DV	Deutsche Taxiflug GmbH, Mannhein
B 2		DW	
		DY	
		D2	

E		G	
EA	Eastern Air Lines Inc.	GA	Garuda Indonesian Airwayo
EB	Avitour Air Services Ltd.	GB	Societe de Tranoport Aerien du Gabon
EC	East African Airways Corporation	GC	Direccao-Geral da Aeronautical Civil
ED	Directorate of Civil Aviation East Africa (Aircraft)	GD	Portugal (Aircraft) Granada TV Network Ltd.
EL	Executair (Nigeria) Ltd.	GE	Tranoportea Aereos da Guint Portugueda
EF		GF	Gulf Aviation
EG	Cunard Eagle Airways Ltd.	GG	Globe-Air S. A.
EH		GH	Ghana Airwaye Led.
EI	Aer Lingus Teoranta	GI	Air Guinee
EJ		GJ	
EK		GK	
EL	Eacadrille Mercure	GL	Gronlandofly Ltd.
EM		GM	Tyne Tees Air Charter Ltd.
EN	Cunard Eagle (Bahamas) Ltd.	GN	J.C. Brouillet/Tranogabon
EO	Eros Airline (U. K.) Ltd.	GO	
EP	Aerolineas Peruanas, S. A.	GP	Groupement d'études et de concultations
EQ	Aeroviras Ecuatorianas C.A.		ae ronautiques Airnautic
ER	Don Everall (Aviation Ltd.)	GO	
ES	Solair Flying Services Ltd.	GR	
ET	Ethiopian Air Lines Inc.	GS	Societa ALIS Aerolinee Siciliane
EU	Comparia Ecuatoriana de Aviación, S. A.	GT	Gibraltar Airwayo Ltd.
EV	ELIVIE-Societa italiana d'esercizio elicotteri East West Airlines Ltd.	GU	Empresa Guatemalteca de Aviación (AVLATECA)
EX	Expreso Aéreo Inter Americano	GV	Government of Northern Rhodeoia (Aircraft)
EY	Euravia (London) Ltd.	GW	
EZ	Executive Air Tranoport Ltd.	$\begin{aligned} & \mathbf{G X} \\ & \mathbf{G Y} \\ & \mathbf{G Z} \end{aligned}$	Gyrafrique Nord
F		H	
FA	Air America, Inc.	HA	Hawaiian Airlines Ltd.
FB	Ferranti Ltd.	HB	
FC		HC	Air Eoterel
FD		HD	
FE	Flying Enterpribe	HE	
FF	American Flyere Aitline Corp.	HF	
FG	Ariana Afghan Airlineg	HG	
FH	Foshing Airlines	${ }_{\mathbf{H I}}$	
FI	Flugfelag Iolando h. f. (Icelandair)	HI	
FJ	Fiji Airways Ltd.	HJ	
FK	Austria-Flugdienst GmbH.	HK	
FL	Frontier Airlines, Inc.	HL	
FM	Flying Syndicate Twente ${ }^{\text {a }}$	${ }_{\text {HM }}$	Iran National Airines Corporation
FN	Flota Aérea Nicaraguense, S. A. Fred. Olsen Flyselskap A/S	HN HO	
FP	Fred. Olsen Flyselakap A/S	HP	Aerovtas Panama
FQ		HO	
FR	Flight Refuelling Ltd.	HR	
FS	Field Aircraft Serviceo Ltd.	HS	Aero Sale (Pty.) Ltd.
FT	Flying Tiger Line Inc., The	HT	TranaAir Limited (Canada)
FU		HU	
FV	Falck's Flyvetjeneste	HV HW	
FW		HW	
FX	Svensk Flygtjanst AB	HX	
FY FZ	Fairey Air Surveys Ltd.	$\begin{aligned} & \mathbf{H Y} \\ & \mathbf{H Z} \end{aligned}$	Herto and Eocos: Aero Club Ltd.

1		K	
14	Irogi Aliroays	KA	Kalinga Airlines
18	L'́neas Aóreas de E®poina, SoAo (IEERIA)	KB	
IC	Indian Airlines Corporation	KC	
10		KD	
IE	Dorolineas IPI	KE KF	Korean Air Lines, inc.
IF	Gosellschaft für Internationalon Flugvertehr - D.BoH. (IMTERFLUG)	${ }_{\text {KF }}^{\text {KF }}$	Aero-Transport, Flugbetriebsgesellschaft mbH., Ltd.
16		KH	
IH		KI	
11	Airoays (India) Ltd.	KJ	Crescent Air Transport
IJ		KK	
IT	Air Links Ltd.	KL	K. L. M. Royal Dutch Airlines (Koninklijke Luchtvaart Maatschappij N. V.)
IL	International Airlines Inc.	KM	
10		KN	Korean National Airlines
10	Aerlinte EIreann	KO	Kodiak Airways Inc.
10	Interecean Alroays, So Ao	KP	
1 P	Tronsportos Aéroos da India Portuguesa	KO	
10		KR	KAR-AIR O/Y (KAR-AIR)
IR	Iranian Alroays Coopany	KS	
IS	Air Survey Conpany of India Ltd.	KU	Kuwait Airways
17	Socírté AIR İTER	KV	Modern Air Transport Inc.
IV	Intercont inental U.So, Inco	KW	
18 10		KX	
10		KY KZ	
IX			
12	Artio Inland Airlinos		
J		L	
JA	Trans-Asiatic Airlines (Siam) Ltd.	LA	Liñea Aérea Nacional (LAN)
JB	Aero-Nord AB	LB	Lloyd Aéreo Boliviano, S. A.
JC	Jamair Company Lte.	LC	Lake Central Airlines, Inc.
JD		LD	Lineas Aéreas del Estado
JE		LE	Lebanese International Airwaye (LIA)
JF	Johnsons Flying Service Inc.	LF	Linjeflyg AB
JG		LG	Luxembourg Airlines (Compagnie luxembourgeoise de Navigation aérienne) - Luxair
JI	Aerovías Sud Americana Inc.	LH	Deutsche Lufthansa A. G.
JJ		LI	Air Laos
JK	African Air Cars Ltd.	LJ	Sierra Leone Airways Ltd.
JL	Japan Air Lines Company, Ltd.	LK	Air Ferry Ltd.
JM	Air Jamaica	LL	Loftleidir, Icelandic Airlines Ltd.
JN	JORDANIAN (Jordan Airways)	LM	Air Liban
JP	Adria Aviopromet	LO	Polskie Linie Lotnicze (LOT)
JQ		LP	
JR		LQ	Transports Aériens Libanais
JS	Service des Transports et de Travail Aérien	LR	Lİneas Aéreas Costarricenses, S. A.
JT	Jamaica Air Services	LS	Atlas Air Express
JU	Jugoslovenski Aerotransport (JAT)	LT	Luftransport Unternehmen, GmbH.
JV	Aero Club of East Africa	LU	Línea Internacional Aéreo "LIA"
JW	Trek Airways (Pty.) Ltd.	LV	Línea Aeropostal Venezolana
JX	Aero Exploration	LW	Lloyd International Airways Ltd.
JY	British United (C.I.) Ltd.	LX	Lois Angeles Airways Inc.
		L2	Transport Aérien Civil Bulgare - TABSO

M		0	
MA	Hungarian Air Transport (MALEV)	OA	Olympic Airways S. A.
MB	Malaysia Air Charter Company Ltd.	OB	
MC	Civil Aviation Flying Unit	UC	Aircraft Operating Co. (Aerial Surveys) Ltd.
MD	Société Nationale Malgache de Transports Aériens - Air-Nadagascar	OD	"Aerocondor" Aerovías Condor de Colombia Ltda.
ME	Middle East Airlines (MEA)	OE	
MF	Marshall's Flying Services Ltd.	OF	
MG	MacRobertson Miller Airlines Ltd,	OG	
MH MiI	Macau Air Transport (H. K.) Ltd. Mercury Airlines Ltd.	OH	San Fransisco and Oakland Helicopter Airlines Inc.
MJ	Manchester Airport Agencies	O1	
MK	Mackey Airlines, Inc.	OJ	
ML	Malayan Airways Ltd.	OK	Ceskoslovenske Aerolinie
MM	Sociedad Aeronautica de Medellin, S. A. (SAM)	OL	
MN	Commercial Air Services (Pty.) Ltd.	OM	
MO	Mohawk Airlines Inc.	ON	
MP	Martin's Air Charter	00	
MQ	Societa Aerea Mediterranea	OP	
MR	Maritime Central Airways Ltd.	OQ	
MS	United Arab Airlines	$\begin{aligned} & \text { OR } \\ & \text { OS } \end{aligned}$	Austrian Airlines
MU	Malta Aviation Services	OT	Servicio de Transportes Aereos de S. Tome
MV		OU	AUTAIR (Luton) Ltd.
MW	Maya Airways Companía Mexicana de Aviación, S. A.	$\begin{aligned} & \text { OV } \\ & \text { OW } \end{aligned}$	Overseas National Airways Inc. Owenair (Pty.) Ltd.
$\begin{aligned} & M Y \\ & M Z \end{aligned}$	Air Mali	$\begin{aligned} & \text { OX } \\ & \text { OY } \\ & \text { OZ } \end{aligned}$	Ozark Airlines, Inc.
N		P	
NA	National Airlines Inc.	PA	Pan American World Airways Inc.
NB	Sterling Airways Ltd.	PB	Panair do Brasil, S. A.
NC	Northern Consolidated Airlines Inc.	PC	Pacific Airlines, Inc
ND	Nordair Ltd.	PD	
NE NF	Northeast Airlines Inc.	PE	N. V. Philips' Gloeilampenfabrieken, Flight Division
NG		PF	
NH	All Nippon Airways Co. . Ltd	PG	Pan American Grace Airways Inc.
NI	Líneas Aéreas de Nicaragua, S. A.	PH	Polynesian Airlines Ltd.
NJ		PI	Piedmont Aviation, Inc.
NK	Nordic Airways, Nordair Ltd.	PJ	Polar-Air O/Y
NL	Liberian National Airlines	PK	Pakistan International Airlines Corporation Plymouth Aero Club Ltd
NN		PM	
NO	North Central Airlines Inc.	PN	Pacific Northern Airlines Inc.
NP	Nuclear Power Group	PO	Protea Lugdiens (Edms.) Bpk.
NQ	New Zealand Civil Aviation Administration Operations Fleet	PP	Pilatue S. A. Air Scrvice South Pacific Airlines of New Zealand Ltd.
NR	Northern Rhodesia Aviation Services Ltd.	PR	Philippine Air Lines Inc.
NS	North Sea Air Transport Ltd.	PS	Pacific Southwest Airlines
NT		PT	Provincetown-Boston Airlines Inc.
NU NV		PU	Primeras Lineas Uruguayas de Navegacion Aérea (PLUNA)
NW	Northwest Airlines Inc.	PV	Eastern Provincial Airways Ltd.
NX		PW	Pacific Western Airlines Ltd.
NY	New York Airways, Inc. New Zealand National Airways Corporation	PX	Pressed Steel Co. Ltd. (Aviation Diviaion) Oxford
		$\begin{aligned} & \mathbf{P Y} \\ & \mathbf{P Z} \end{aligned}$	Surinaamse Luchtvaart Maatochappij N.V. Persian Air Services

Q Q $Q A$ $Q B$ $Q C$ $Q D$ $\square F$.	Aerovřa "Q", S. A. Quebecair, Inc. Societé Air Congo (Léopoldville) Sadia Transportes Aerreos S. A.	S SA SB SC SD SE	South African Ai rways Seabord World Airlines Inc. Serviçios Aéreos Cruzeiro de Sul S. A. Sudan Airways Sociedad de Transportes Aéreos Ltd. (ALA)
QF	Qantas Empire Airways Ltd.	SF	South Pacific Airlines Inc.
QG		SG	Aerotransportes Litoral Argentino, S. A.
QH		SH	Servicio Aéreo de Honduras, S. A.
QI		SI	Slick Airways
QJ		SJJ	Southern Air Transport Inc.
QK		SK	Scandinavian Airlines System
QL		SL	Scottish Airlines
QM		SM	Southend Municipal Flying School
$\begin{aligned} & \mathrm{QN} \\ & \mathrm{QO} \end{aligned}$		SN	Société Anonyme Belge d'Exploitation de la Navigation Aérienne (SABENA)
QP	Caspair Ltd.	SO	Southern Airways, Inc.
$Q \mathrm{Q}$		SP	Sociedade Açoriana de Transportes Aéreos
QR	Paraense Transportes Aéreos S. A.	SQ	Saskatchewan Government Airways
QS	Transportes Aéreon Salvador S. A. Transportes Aereos Catarinense	SR	SWISSAIR (Société Anonyme Suisse pour la Navigation Aérienne)
QU	Air Couriers Ltd.	SS	Standard Airways Inc.
QV QW QX	Viação Aérea Gaucha S. A.	ST SU	Société Transports Aériens en ExtremeOrient AEROFLOT
QY		SV	Saudi Arabian Airlines
QZ		$\begin{aligned} & \text { SW } \\ & S X \\ & S Y \\ & \text { SZ } \end{aligned}$	South West Air Transport (Pty.) Lid Samoan Airlines Limited Skyways Ltd. Suddeutsche Fluggesellschaft mbH. (Sudflug)
R		T	
RA		TA	TACA International Airlines, S. A.
RB	Syrian Arab Airlines	TB	Transair Sweden AB
RC	Royal Air Cambodge	TC	Trans-Canada Air Lines (TCA)
RD	Riddle Airlines Inc.	TD	"Taxader" Líneas Aéreas Taxader S. A.
RE	Rhodesian Air Services (Private) Ltd.	TF	Compagnie Air Transport
RG	Viação Aéreo Rio Grandense S. A. (VARIG)	TG	Thai Airways International, Ltd.
RH		TH	Thai Airways Co. Ltd.
RI	Rutas Internacionales Peruanas S. A. (RIPSA)	TI	
RJ		TJ	Transair Copenhagen
RL	Real Aerovias Nacional S. A.	TK	Turk Hava Yollari (Turkish Airlines)
RM	Rotterdamse Luchtvaart Expeditie	TL	Trans Mediterranean Airlines (TMA)
RN	Maatschappij Rutas Aéreas Nacionales, S. A.	TM	Divisão de Exploração dos Transportes Aéreos (Moça mbique)
RO	Roumanian Air Transport	TN	Trans-Australia Airlines
RP	M. Robert Petrelluzzi, Antilles Air Services	TO	Trans-Meridian Flying Services Ltd.
RQ	Compagnie Aérienne "AIR CONGO" (Brazzaville)	TP	Transportes Aéreos Portugueses, S. A. R. L. Tradair Ltd.
RR	Aircarries Ltd.	TR	Trans Caribbean Airways Inc.
RS	Rutas Aéreas de Colombia Limitada	TS	Aloha Airlines Inc.
RT	Transportes Aéreos de Timor	TT	Societe Tunisienne de l'Air (TUNLS-AIR)
RV	Reeve Aleutian Airways Inc.	TV	Trans International Airlines Inc.
R W		TW	Trans World Airlines Inc.
$\begin{aligned} & R X \\ & R Y \\ & R Z \end{aligned}$	Royal Air Laos	$\begin{aligned} & \text { TX } \\ & \text { TY } \end{aligned}$	Transportes Aéreos Nacionales, S. A. Société Calédonienne de Transport AérienTranspac

U $U A$ $U A$ $U B$ $U C$ $U D$ $U E$ $U F$ $U G$ $U H$ $U I$ $U J$ $U K$ $U L$ $U E$ $U E$ $U O$ $U P$ $U Q$ $U R$ $U S$ $U T$ $U U$ $U V$ $U D$ $U X$ $U Y$ $U Z$	Unitod Air Lines Iac. Union of Buma Airoay Universal Flying Sorvicos Ltd. Unitod Statos Ovorsoas Airlines inc. Stuttgarter Flagdienst GabH. Uraba, Dedellín and Central Aimays Union des Transports Aeriens (UTA) United Steel Coopanies Ltd. Alr Transport		Western Airlines Inc. Weat Coant Airlines, Inc. Wardair Canada Ltd. Wien Alacka Airlines Widerdés Flyveselokap A/S Wilken Air Serviceo Led. Weatern Alanka Airlines, Inc. Woods of Colchester Malta Metropolitan Airlineo Ltd. Weatern Airwaya Ltd. World Airwayo Inc. Weatpoint Airlines Ltd. Sky Van Airways Wiltehire School of Flying Ltd. W. A. A. C. (Nigeria) Ltd. Nigeria Alrways Starwayo Ltd.
V		K	
$\begin{aligned} & \text { VA } \\ & \text { VB } \\ & \text { VC } \end{aligned}$	Venezolana Internaci onal de Aviación S. A.	$\begin{aligned} & \mathrm{XA} \\ & \mathrm{XB} \end{aligned}$	Aeronautical Radio Inc. International Air Tranoport Adsociation (IATA)
VD	Société Générale d'affretement Aérien SGAA	xc	Compaňa Radío Aeronáutica Costarricense, S. A.
VE	Aerovias Venezolanas, S. A.	XD	
VF VG	British United Air Ferries Ltd.	XE $\mathbf{X F}$ \mathbf{X}	
VH		XG	
VI	Panama Aeronautica	XH	Special Handling Service for aircraft
VJ VK	Société Aérotechnique	XI XJ	International Aeradio Ltd.
VL	Société commerciale aérienne du Litoral	XK	
VM	Societé aéronautique "Air Caen"	XL	
VN	Air Viet-Nam	$\begin{aligned} & \mathbf{X M} \\ & \mathbf{X N} \end{aligned}$	Radio Aeronática de México, S. A. (RAMSA)
VP	fNavegaç ao Aérea Brasileira S. A. Viaçao Aérea Sáo Paulo, S. A.	$\begin{aligned} & \mathrm{XO} \\ & \mathrm{XP} \end{aligned}$	Radio Aeronđutica Paraguaya (RAPSA)
VQ	Société Áerienne de Tranoporto GuyaneAntilles	$\begin{aligned} & \mathrm{XQ} \\ & \mathbf{X R} \end{aligned}$	Radio Aeronsutica de Cuba, S. A. (RACSA)
$\begin{aligned} & \text { VR } \\ & \text { VS } \\ & \text { VT } \end{aligned}$	Société de Liaison et Tranoporto Aérieno Servicios Aéreos, S. A. Réseau Aérien Interinsulaire	XS	Société Internationale de Télécommunications Aéronautiquer, Société Coopérative (S.I. T. A.)
VU	Air Ivoire Société Algérienne de constructions aéronautiques "AFRIC AIR"SACA	XT XU	Servicoo Auriliares de Tranaporteo Aéreos (SATA) Empreoa Consolidada de Servicioo
$\begin{aligned} & v W \\ & V X \\ & V Y \\ & V Z \end{aligned}$	Viet-Narm Air Transport (VIAT) Sociéte Anonyme des Avions Meyer et Co. (Air Cameroun)	XV $\mathbf{X W}$ $\mathbf{X X}$ $\mathbf{X Y}$ $\mathbf{X Z}$	Aeronáticos Civiles (ECSAC)

AMIEX 6 TO CHAPTER IV

TABLE SHOWITG APPROXIMATE CORRESPONDEICE BITHEEN MWARA'S AND ZONES OF 'ANALYSIS

Zones of analysis	MWARA	Comments
A	NaT	Arctic routes
B		Outside MARA or I.C.A.O. Plan
0	NAT \& NP	Arctic routes and North American continent
D	EU	
E	NSA 1	
F	NSA 2	
G	ME	
H	FE 2	
I	FE 1	
J	CWP	
K	NP	Sea routes
L	SP	
M	CEP	
N	CAR	I.C.A.O. Plan
0	NAT	Central routes
P	NAT	Southerm routes
Q	SA	
R	NSAM 1	
S	NSAM 2	
T		E. Antartic Area
U		W. Antartic Area

N.B. : The above is a mere indication, offered to facilitate classification of flights in the zones of analysis, especially those which overlap (D and O, H and I or J), (Q and S or E).

Thus : Flight from LISBON to LONDON is in Zone D. Flight from LISBON to DAKAR is in Zone Q. Flight from LONDON to NEW YORK is in Zone 0.

- 96 -

ANNEXE 7 AU CHAPITRE IV
 ANNEX 7 TO CHAFTER IV
 ANEXO 7 AL CAPITULO IV

IISTE DES AEROPORTS PRINCIPAUX

LIST OF MAJOR AIRPORTS

LISTA DE LOS PRINCIPALES AEROPUERTOS

Nom des aéroports principaux Name of major airport Nombre de los aeropuertos principales	Symbole du pays *) Country symbol *) Símbolo del pais *)	Numéro de la case Number square Numero del cuadro	$\begin{gathered} \text { Zone d'analyse**) } \\ \text { Zone of } \\ \text { analysis **) } \\ \text { Zona de } \\ \text { análisis **) } \end{gathered}$
1	2	3	4
Aalborg Abadan Abbotsford	DNK IRN CAN	$\begin{aligned} & 151 \\ & 444 \\ & 216 \end{aligned}$	$\begin{gathered} D-0 \\ G \\ K \end{gathered}$
Abidjan Accra Adana	CTI GHA TUR	$\begin{aligned} & 817 \\ & 816 \\ & 341 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{D} \end{aligned}$
Addis Ababa Aden Ahmedabad	ETH ADN IND	$\begin{aligned} & 789 \\ & 687 \\ & 560 \end{aligned}$	F
Ajaccio Akyab Aleppo	F BRM SYR	$\begin{aligned} & 320 \\ & 557 \\ & 341 \end{aligned}$	$\begin{gathered} D \\ H-I \\ G \end{gathered}$
Alexandria Alger Alicante	EGY ALG E	$\begin{aligned} & 448 \\ & 346 \\ & 346 \end{aligned}$	$\begin{gathered} F \\ E \\ D-E \end{gathered}$

*) Les symboles de cette colonne ont une signification purement géographique.
*) The symbols in this column are of geographical significance only.
*) Los simbolos de esta columna sólo tienen un significado geográfico.
**) Voir la note insérée au bas de la page 95 relative aux indications à retenir dans le choix de la zone d'analyse pour un vol intéressant un aérodrome principal situé dans une partie du monde comprise dans deux zones d'analyse qui se recouvrent.
**) See the footnote to page 95 regarding the data to be considered in selecting the zone of analysis for a flight concerning a major airport in a part of the world lying between two overlapping zones of analysis.
**) Véase la nota al pie de la página 95 relativa a las indicaciones que se han de seguir para elegir las zonas de análisis de un vuelo concerniente a un aerodromo principal, situado en una parte del mundo comprendida entre dos zonas de análisis que se superpongan.

1	2	3	4
Amapa	B	895	S
Amman	JOR	447	F
Amritsar	Ind	440	G
Ansterdam	HOL	170	D - 0
Anchorage	AIS	118	C
Ankara	TUR	323	D
Antigua	IOB	649	N
Antofagasta	CHL	1258	R
Anvers	BEL	230	D - 0
Apia	SPio	1119	L
Arad	ROU	251	D
Arica	CHL	1194	R
Aruba	ATN	707	N
Asmara	ETH	688	F
Assab	ETH	687	F
Asunción	PRG	1314	$S-Q$
Athinai	GRC	343	D
Auckland	NZL	1474	I
Bagdad	TRQ	427	G
Bahía Blanca	$\cdots \mathrm{ARG}$	1491	S
Bahrain	GLP	547	F
Bakersfield Cal	USA	404.	C
Bâle-mulhouse	F	231	D
Baltimore Mã	USA	357	C
Bamako	MLI	696	E
Bangkok	THA	678	I - H
Bangui	CAF	813	E

1	2	3	4
Barcelona Barcelona Barranquilla	E VEN CLM	$\begin{aligned} & 319 \\ & 771 \\ & 770 \end{aligned}$	D
Basrah Bastia Bata	IRQ F GNE	$\begin{aligned} & 445 \\ & 320 \\ & 905 \end{aligned}$	$\begin{aligned} & \dot{G} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$
Bathurst Batouri Beira	GMB CME MOZ	$\begin{array}{r} 697 \\ 906 \\ 1276 \end{array}$	$\begin{gathered} E-Q \\ E \\ F \end{gathered}$
Beirut Belem Belet Uen	$\begin{aligned} & \text { LBN } \\ & \text { B } \\ & \text { SOM } \end{aligned}$	$\begin{aligned} & 426 \\ & 946 \\ & 809 \end{aligned}$	$\begin{gathered} D-G \\ S \\ F \end{gathered}$
Belfast Belize Belo Horizonte	G HNB B	$\begin{array}{r} 172 \\ 645 \\ 1189 \end{array}$	$\begin{gathered} D-0 \\ N \\ S-Q \end{gathered}$
Benghazi Benjamin Constant Beograd	$\begin{aligned} & \text { LBY } \\ & B \\ & \text { YUG } \end{aligned}$	$\begin{array}{r} 424 \\ 1013 \\ 251 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{D} \end{aligned}$
Bergen Berlin/Schönefeld Berlin/Tempelhof	NOR	$\begin{aligned} & 105 \\ & 169 \\ & 169 \end{aligned}$	$\begin{gathered} D-0 \\ D \\ D \end{gathered}$
Bhuj Biak Biarritz	IND INS F	$\begin{aligned} & 561 \\ & 975 \\ & 319 \end{aligned}$	$\begin{gathered} G \\ I \\ D-O \end{gathered}$
Bilbao Birmingham Bissau	$\begin{aligned} & E \\ & G \\ & G N P \end{aligned}$	$\begin{aligned} & 319 \\ & 171 \\ & 780 \end{aligned}$	$\begin{gathered} D-0 \\ D-0 \\ E \end{gathered}$

1	2	3	4
Blántyre Bloemfontein Boa Vista	NYA AFS E	$\begin{array}{r} 1154 \\ 1397 \\ 893 \end{array}$	$\begin{aligned} & F \\ & \mathrm{~F} \\ & \mathrm{~S} \end{aligned}$
Bocas del Toro Bodoe Bogotá	PNR NOR CLM	$\begin{array}{r} 768 \\ 90 \\ 828 \end{array}$	$\begin{aligned} & \mathbb{N} \\ & D \\ & S \end{aligned}$
Boke Bombay Bêne	GUI IND ALG	$\begin{aligned} & 780 \\ & 673 \\ & 345 \end{aligned}$	E
Bora Bora Bordeaux Boxicon Mass	$\begin{gathered} \text { OCE } \\ \text { F } \\ \text { USA } \end{gathered}$	$\begin{array}{r} 1208 \\ 254 \\ 310 \end{array}$	$\begin{gathered} L \\ D-0 \\ 0 \end{gathered}$
Bouar Bournemouth Brasilia	$\begin{gathered} C A F \\ G \\ B \end{gathered}$	$\begin{array}{r} 814 \\ 230 \\ 1140 \end{array}$	$\begin{gathered} E \\ D-0 \\ Q-S \end{gathered}$
Bratislava Brazzaville Bremen	$\begin{gathered} \mathrm{TCH} \\ \mathrm{COG} \\ \mathrm{D} \end{gathered}$	$\begin{array}{r} 232 \\ 1027 \\ 170 \end{array}$	$\begin{gathered} D \\ E \\ D-0 \end{gathered}$
Bridgetown Brindisi Brisbane	$\begin{gathered} \text { IOB } \\ \text { I } \\ \text { AUS } \end{gathered}$	$\begin{array}{r} 705 \\ 321 \\ 1340 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{D} \\ & \mathrm{I} \end{aligned}$
Bruxelles Bucuresti Budapest	BEL ROU HNG	$\begin{aligned} & 230 \\ & 251 \\ & 251 \end{aligned}$	$\begin{gathered} D-0 \\ D \\ D \end{gathered}$
Buenos Aires Buffalo Ny Bu.jumbura.	$\begin{aligned} & \text { ARG } \\ & \text { USA } \\ & \text { BDI } \end{aligned}$	$\begin{array}{r} 1434 \\ 309 \\ 933 \end{array}$	$\begin{gathered} \mathrm{I}-\mathrm{S} \\ \mathrm{C} \\ \mathrm{~F} \end{gathered}$

1	2	3	4
Bulawayo Burbank Cal Burlington Vt	RIIS USA USA	$\begin{array}{r} 1275 \\ 404 \\ 310 \end{array}$	F
Cagliari Cairo Calama	$\begin{gathered} \mathrm{I} \\ \mathrm{EGY} \\ \mathrm{CHL} \end{gathered}$	$\begin{array}{r} 345 \\ 447 \\ 1258 \end{array}$	D
Calcutta Cali Camagtiey	IND CLM CUB	$\begin{aligned} & 558 \\ & 830 \\ & 586 \end{aligned}$	$\begin{gathered} I \\ R-S \\ N \end{gathered}$
Campo Grande Caracas Cardiff	$\begin{gathered} \text { B } \\ \text { VEN } \\ \text { G } \end{gathered}$	$\begin{array}{r} 1261 \\ 771 \\ 229 \end{array}$	$\begin{aligned} & Q-S \\ & \mathbb{N} \\ & D-0 \end{aligned}$
Carmen Cartagena Casablanca	MEX CLH MRC	$\begin{aligned} & 644 \\ & 770 \\ & 420 \end{aligned}$	$\begin{gathered} \mathbb{N} \\ \mathbb{N} \\ \mathbb{Q}-E \end{gathered}$
Catania Cayenne Cebu	$\begin{gathered} I \\ \text { GUF } \\ \text { PHi } \end{gathered}$	$\begin{aligned} & 344 \\ & 825 \\ & 742 \end{aligned}$	$\begin{gathered} D \\ S \\ \mathrm{E}-\mathrm{J} \end{gathered}$
Chenguinola Charlotte Amalie Cherbourg	$\begin{gathered} \text { PNR } \\ \text { VIR } \\ F \end{gathered}$	$\begin{aligned} & 768 \\ & 649 \\ & 2.30 \end{aligned}$	$\begin{gathered} \mathbb{N} \\ \mathbb{N} \\ D-0 \end{gathered}$
Chetumal Chicago Ill Chiclayo	$\begin{aligned} & \text { MRX } \\ & \text { USA } \\ & \text { PRU } \end{aligned}$	$\begin{array}{r} 645 \\ 308 \\ 1011 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C} \\ & \mathrm{R} \end{aligned}$
Chitose Chittagong Christchurch	$\begin{gathered} J \\ \text { PAK } \\ \text { NZL } \end{gathered}$	$\begin{array}{r} 292 \\ 557 \\ 1553 \end{array}$	$\begin{gathered} \text { B } \\ H-I \\ L \end{gathered}$

1	2	3	4
Christiansted Cienfuegos Clark Air Base	VIR CUB PHL	$\begin{aligned} & 648 \\ & 586 \\ & 735 \end{aligned}$	$\begin{array}{r} N \\ \mathrm{~N} \\ \mathrm{H}-\mathrm{J} \end{array}$
Cleveland Ohio Cochabamba Cocos I	USA BOL ICO	$\begin{array}{r} 309 \\ 1193 \\ 1164 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \\ & \mathrm{I} \end{aligned}$
Cold Bay Colombo Colonia	ALS CLN URG	$\begin{array}{r} 190 \\ 803 \\ 1434 \end{array}$	$\begin{gathered} K \\ I \\ S-Q \end{gathered}$
Conakry Córdoba Cork	GUI ARG IRL	$\begin{array}{r} 780 \\ 1382 \\ 229 \end{array}$	$\begin{gathered} E \\ R \\ D-0 \end{gathered}$
Corrientes Corumba Cotonou	ARG B DAH	$\begin{array}{r} 1315 \\ 1192 \\ 816 \end{array}$	$\begin{gathered} S-Q \\ R \\ E \end{gathered}$
Cozumel Cuenca Curaçao Curitiba	$\begin{gathered} \text { MEX } \\ \text { ARA } \\ \text { ATN } \end{gathered}$	$\begin{array}{r} 587 \\ 951 \\ 707 \\ 1313 \end{array}$	$\begin{gathered} N \\ R \\ R \\ \mathrm{~N} \\ \mathrm{Q}-\mathrm{S} \end{gathered}$
Dacca. Dakar Dallas Tex	PAK SEN USA	$\begin{aligned} & 557 \\ & 697 \\ & 407 \end{aligned}$	$\begin{gathered} I-H \\ Q-E \\ N \end{gathered}$
Daly Waters Damas Dar-es-Salaam	AUS SYR TGK	$\begin{array}{r} 1221 \\ 426 \\ 1031 \end{array}$	I
Darwin David Deauville	AUS PNR F	$\begin{array}{r} 1109 \\ 768 \\ 230 \end{array}$	$\begin{gathered} I \\ R \\ D-0 \end{gathered}$

1	2	3	4
Delhi	IND	4.40	I
Detroit Mich	USA	309	C
Dhahran	ARS	547	F
Dili	TMIP	1100	I
Dinard	F	229	D - 0
Dire Dawa	ETH	789	F
Djakarta	IINS	982	H-I
Djerba	TUN	422	E
Djibouti	SWF	790	F
Doha	GLP	547	F
Douala	CNE	815	E
Dublin	IRL	172	D - 0
Dubrovnik	YUG	321	D
Durban	AFS	1398	E
Duesselidort	D	230	D - 0
Edinburgh	G	171	D - 0
Edmonton	CAN	184	C
Eilat	ISR	447	F
Elisabethville	OGO	1055	F
Entebbo	UGA	909	F
Esmeraldas	EQA	890	R
Espiritu Santo	NHB	1115	L
Fairbanks	ALS	77	C
Foz do Iguacu	B	1314	$S-Q$
Frankfurt Main	D	231	D
Freetown	SRL	780	E
Fresno Cal	USA	363	C

- 104 -

1	2	3	4
Frobisher Bay Formosa Et Archambault	CAN ARG TCD	$\begin{array}{r} 111 \\ 1315 \\ 785 \end{array}$	$\begin{gathered} C \\ S-Q \\ E \end{gathered}$
Ft de France Ft Lamy Pt Lauderdale Fla	MRT TCD USA	$\begin{aligned} & 705 \\ & 692 \\ & 525 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{E} \\ & \mathrm{~N} \end{aligned}$
Fukuoka Galveston Tex Gander	J USA CAN	$\begin{aligned} & 388 \\ & 468 \\ & 223 \end{aligned}$	$\begin{gathered} \mathrm{H}-\mathrm{J} \\ \mathrm{~N} \\ 0 \end{gathered}$
Garoua Gaya Genève	CME IND SUI	$\begin{aligned} & 785 \\ & 553 \\ & 253 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{I} \\ & \mathrm{D} \end{aligned}$
Georgetown Gibraltar Gizan	GJB GIB ARS	$\begin{aligned} & 826 \\ & 347 \\ & 668 \end{aligned}$	$\begin{aligned} & S \\ & \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
Glasgow Goa Goeteborg	$\begin{gathered} G \\ G O A \\ S \end{gathered}$	$\begin{aligned} & 171 \\ & 682 \\ & 152 \end{aligned}$	$\begin{gathered} D-0 \\ I \\ D-0 \end{gathered}$
Golfito Goose Graz	CTR CAN AUT	$\begin{aligned} & 768 \\ & 178 \\ & 252 \end{aligned}$	$\begin{aligned} & R \\ & 0 \\ & D \end{aligned}$
Gr Cayman Grenada Groningen	IOB IOB HOL	$\begin{aligned} & 646 \\ & 705 \\ & 170 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{D}-\mathrm{O} \end{gathered}$
Guam Guatemala City Guayaquil	GOM GTM EQA	$\begin{aligned} & 731 \\ & 710 \\ & 551 \end{aligned}$	J N R

1	2	3	4
Habana	CUB	586	N
Halifax	CAN	262	0
Hamburg	D	170	D - 0
Hannover	D	170	D -0
Hanoi	VITV	616	H
Hargeisa	SOM	790	F
Helsinki	PNL	103	D
Herat	AFG	430	G
Hilo	HWA	634	M
Hodeida	YEM	687	F
Hong Kong	HKG	614	I - H
Honiara	SLM	1087	L
Honolulu	HWA	599	J
Houston Tex	USA	468	N
I do Pascua	PAQ	1323	L
Indianapolis Ind	USA	359	C
Innsbruck	AUT	252	D
Iraklion	GRC	342	D
Isfahan	IRN	428	G
Isle of Man	G	171	D - 0
Istambul	TUR	323	D
Iwakuni	J	388	H-J
Izmir	TUR	342	D
Jacksonville Fla	USA	466	N
Jack Tar	BAH	526	1 N
Jaffna	CLIN	796	I
Jedda	ARS	566	F
Jersey	G	229	D - 0

1	2	3	4
Jerusalem Johannesburg Kaboul	JOR AFS AFG	$\begin{array}{r} 447 \\ 1300 \\ 431 \end{array}$	$\begin{aligned} & F \\ & E \\ & G \end{aligned}$
Kagoshima Kahului Kalgoorlie	J HWA AUS	$\begin{array}{r} 491 \\ 599 \\ 1352 \end{array}$	$\begin{gathered} H-J \\ M \\ I \end{gathered}$
Kamaran I Kandahar Kan Kan	ADN AFG GUI	$\begin{aligned} & 687 \\ & 442 \\ & 781 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$
Kano Karachi Kathmandu	iVIG PAK INPL	$\begin{aligned} & 693 \\ & 550 \\ & 553 \end{aligned}$	$\begin{aligned} & E \\ & G \\ & I \end{aligned}$
Keflavik Kemi Kermanshah	ISL FNS IRIV	$\begin{array}{r} 87 \\ 91 \\ 428 \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D} \\ & \mathrm{G} \end{aligned}$
Key West Fla Khartoum Kiev	USA SDN UKR	$\begin{aligned} & 525 \\ & 689 \\ & 233 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathrm{F} \\ & \mathrm{D} \end{aligned}$
Kindley Field King Salmon Kingston	BBR ALS JMC	$\begin{aligned} & 412 \\ & 136 \\ & 647 \end{aligned}$	$\begin{gathered} N-0-P \\ K \\ N \end{gathered}$
Kissidougou Klagenfurt Kodiak	GUI AUT ALS	$\begin{aligned} & 781 \\ & 252 \\ & 136 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{~K} \end{aligned}$
Koebenhavn Koeln Kota Baru	DNK D IIVS	$\begin{aligned} & 169 \\ & 231 \\ & 974 \end{aligned}$	$\begin{gathered} D-0 \\ D-0 \\ I \end{gathered}$

1	2	3	4
Kristiansand Kuala Lumpur Kuching	NOR MLA SRW	$\begin{aligned} & 151 \\ & 920 \\ & 861 \end{aligned}$	$\begin{aligned} & D-0 \\ & H-I \\ & H-I \end{aligned}$
Kuwait La Baule La Paz	$\begin{gathered} \text { KWT } \\ F \\ \text { BOL } \end{gathered}$	$\begin{array}{r} 444 \\ 254 \\ 1194 \end{array}$	$\begin{gathered} F \\ D-0 \\ R \end{gathered}$
La Serena L Charles La Labuan	CHL USA BRN	$\begin{array}{r} 1381 \\ 468 \\ 857 \end{array}$	$\begin{gathered} R \\ N \\ H-I \end{gathered}$
Lae Lagos Lahore	NGU NIG PAK	$\begin{aligned} & 988 \\ & 816 \\ & 440 \end{aligned}$	I
Lajes Laoag. Las Palmas	AZR PHL CNR	$\begin{aligned} & 350 \\ & 620 \\ & 536 \end{aligned}$	$\begin{gathered} O \\ H-J \\ Q-E \end{gathered}$
Las Vegas Nev Lcopoldville Le Touquet	$\begin{gathered} \text { USA } \\ \text { CGO } \\ F \end{gathered}$	$\begin{array}{r} 363 \\ 1027 \\ 230 \end{array}$	$\begin{gathered} C \\ E \\ D-O \end{gathered}$
Leticia Libreville Lima	CLM GAB PRU	$\begin{array}{r} 1013 \\ 905 \\ 1135 \end{array}$	R
Linz Lisboa Liverpool	AUT POR G	$\begin{aligned} & 231 \\ & 347 \\ & 171 \end{aligned}$	$\begin{gathered} D \\ Q-O-P \\ D-0 \end{gathered}$
Livingstone Lomé London	$\begin{gathered} \text { RHN } \\ \text { TGO } \\ G \end{gathered}$	$\begin{array}{r} 1177 \\ 816 \\ 230 \end{array}$	$\begin{gathered} E \\ E \\ D-0 \end{gathered}$

1	2	3	4
Long Beach Cal Los Angeles Cal Lourenço Marques	USA USA MOZ	$\begin{array}{r} 404 \\ 404 \\ 1299 \end{array}$	\mathbb{N}
Luanda Lucknow Lumbo	AGL IND MOZ	$\begin{array}{r} 1057 \\ 552 \\ 1155 \end{array}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{I} \\ & \mathrm{~F} \end{aligned}$
Lurembourg Luxor Luv	LUX EGY UKR	$\begin{aligned} & 230 \\ & 544 \\ & 232 \end{aligned}$	$\begin{gathered} D-0 \\ F \\ D \end{gathered}$
Lyon Maastricht Mactan I.	$\begin{gathered} \text { F } \\ \text { HOL } \\ \text { PHL } \end{gathered}$	$\begin{aligned} & 253 \\ & 230 \\ & 742 \end{aligned}$	$\begin{gathered} D \\ D-0 \\ H-J \end{gathered}$
Madras Madrid Mafraq	$\begin{gathered} \text { IND } \\ \mathbb{E} \\ \text { JOR } \end{gathered}$	$\begin{aligned} & 681 \\ & 319 \\ & 426 \end{aligned}$	$\begin{gathered} I \\ D-0 \\ F \end{gathered}$
Mahebourg Majunga Málaga	$\begin{gathered} \text { MAU } \\ \text { MDG } \\ \mathrm{E} \end{gathered}$	$\begin{array}{r} 1280 \\ 1156 \\ 347 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{D} \end{aligned}$
Malakal Malmoe Maita	$\begin{gathered} \mathrm{SDN} \\ \mathrm{~S} \\ \mathrm{MLT} \end{gathered}$	$\begin{aligned} & 789 \\ & 169 \\ & 423 \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { D } \\ & \text { D } \end{aligned}$
Managua Manaus Manchester	$\begin{gathered} \text { NCG } \\ \text { B } \\ \text { G } \end{gathered}$	$\begin{aligned} & 710 \\ & 948 \\ & 171 \end{aligned}$	$\begin{gathered} N \\ S \\ D-0 \end{gathered}$
Mandalay Mangalore Manila	BRNI AUS PHL	$\begin{array}{r} 556 \\ 1470 \\ 735 \end{array}$	$\begin{gathered} H-I \\ I \\ H-J \end{gathered}$

1	2	3	4
Manta Maracaibo Mar del Plata	EQA VEN ARG	$\begin{array}{r} 951 \\ .770 \\ 1492 \end{array}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~N} \\ & \mathrm{~S} \end{aligned}$
Mariehamn Maroua Harrakech	FNL CME MRC	$\begin{aligned} & 104 \\ & 785 \\ & 454 \end{aligned}$	$\begin{gathered} D \\ E \\ Q-E \end{gathered}$
Marseille Mashhae Maturin	F IRN VEN	$\begin{aligned} & 320 \\ & 338 \\ & 772 \end{aligned}$	$\begin{aligned} & D \\ & G \\ & N \end{aligned}$
Medan Medellín Medina	IHS CLM ARS	$\begin{aligned} & 920 \\ & 829 \\ & 545 \end{aligned}$	I
Meknes Melbourne Plemphis Tenn	MRC AUS USA	$\begin{array}{r} 420 \\ 1469 \\ 488 \end{array}$	E
Mendoza Mérida Mersa Matruh	ARG MEX EGY	$\begin{array}{r} 1435 \\ 588 \\ 448 \end{array}$	$\begin{gathered} R-Q \\ N \\ F \end{gathered}$
Mexicali México City Miami Fla	IEX MEX USA	$\begin{aligned} & 404 \\ & 643 \\ & 525 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$
Milano Milwaukee Wis Minya	$\begin{gathered} \text { I } \\ \text { USA } \\ \text { EGY } \end{gathered}$	$\begin{aligned} & 253 \\ & 308 \\ & 447 \end{aligned}$	D
Misawa Mobile Ala Mogadiscio	$\begin{gathered} J \\ \text { USA } \\ \text { SOM } \end{gathered}$	$\begin{aligned} & 292 \\ & 467 \\ & 911 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { iv } \\ & \text { F } \end{aligned}$

1	2	3	4
Mombasa	KEN	1031	F
Monrovia	LBR	818	E
Montego Bay	JMC	647	N
Monterrey	IEX	522	N
Montevideo	URG	1434	$S-Q$
Montreal	CAN	263	C
Moskva	URS	167	D
Moulmein	BRM	677	H - I
Mtwara	TGK	1053	F
Muenchen	D	231	D
Maltan	PAK	441	G
Nunda	SLM	1095	I
Muskat	GLP	563	F
N'gaoundéré	CME	814	E
N'zerekore	GUI	818	E
Nador	MRC	420	E
Nagoya	J	388	H - J
Nairobị	KEN	932	F
Nandi	FJI	1213	L
Napoli	I	321	D
Nassau	BAH	526	N
Natal	B	1018	$S-Q$
Nawabshah	jAK	550	G
Ndola	RHN	1153	F
How Onluaus In	USA	468	N
New York NY	USA	310	$\mathrm{C}-\mathrm{N}-\mathrm{O}$
Newark NJ	USA	310	C-N

1	2	3	4
Nha-Trang Niamey Nico Niegria	$\begin{gathered} \hline \text { VTN } \\ \text { NGR } \\ F \\ \text { CYP } \end{gathered}$	$\begin{aligned} & 737 \\ & 694 \\ & 320 \\ & 426 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { E } \\ & \dot{D} \\ & \text { D } \end{aligned}$
Norfolk I. Nouakchott Noumea	AUS MTN NCL	$\begin{array}{r} 1360 \\ 658 \\ 1230 \end{array}$	$\begin{gathered} \mathrm{L} \\ \mathrm{Q}-\mathrm{E} \\ \mathrm{~L} \end{gathered}$
Nuernberg Odessa Oiapcque	$\begin{gathered} \text { D } \\ \text { UKR } \\ \text { B } \end{gathered}$	$\begin{aligned} & 231 \\ & 250 \\ & 946 \end{aligned}$	$\begin{aligned} & D \\ & D \\ & S \end{aligned}$
Okinawa Ontario Cal Oradea	RYU USA. ROD	$\begin{aligned} & 500 \\ & 404 \\ & 251 \end{aligned}$	$\begin{gathered} H-J \\ C \\ D \end{gathered}$
Oran Osska OsIo	$\begin{gathered} \mathrm{ALG} \\ \mathrm{~J} \\ \mathrm{NOR} \end{gathered}$	$\begin{aligned} & 421 \\ & 388 \\ & 151 \end{aligned}$	$\begin{gathered} \mathrm{E} \\ \mathrm{H}-\mathrm{J} \\ \mathrm{D}-\mathrm{O} \end{gathered}$
ostende Ottawa Ouagadougou	BEL CAN HVO	$\begin{aligned} & 230 \\ & 263 \\ & 695 \end{aligned}$	$\begin{gathered} D-0 \\ C \\ E \end{gathered}$
Oujda Pago Pago Pakse	MRC SMA LAO	$\begin{array}{r} 421 \\ 1119 \\ 738 \end{array}$	$\begin{gathered} E \\ \mathrm{~L} \\ \mathrm{H}-\mathrm{I} \end{gathered}$
Pala Palembang Palermo	$\begin{gathered} \text { TCD } \\ \text { INS } \\ \text { I } \end{gathered}$	$\begin{aligned} & 785 \\ & 980 \\ & 344 \end{aligned}$	$\begin{gathered} \mathrm{E} \\ \mathrm{H}-\mathrm{I} \\ \mathrm{D} \end{gathered}$
Palma Son Paimdale Cal Panamá City	E USA PNR	$\begin{aligned} & 346 \\ & 404 \\ & 769 \end{aligned}$	D

1	2	3	4
Paramaribo	SUR	825	S
Paris	F	230	D - 0
Patna	IND	553	I
Patrai	GRC	343	D
Pelotas	B	1384	Q-S
Penang	MLA	859	H - I
Perth	RUS	1351	I
Philadelphia PA	USA	357	N
Pisa	I	320	D
Pisco	PRU	1135	R
Pittsburg Pa	USA	309	C
Pnom Penh	CBG	739	H-I
Pnt à Pitre	GDL	649	N
Pnt Arenas	CHL	1668	R
Pnt del Este	URG	1433	$S-Q$
Pnt Noire	COG	1027	E
Pori	FNL	203	D
Portland Ore	USA	269	M
Porto	POR	318	D - 0
Poznan	POL	169	D
Praha	TCH	231	D
Prestwick	$\stackrel{\text { जे }}{ }$	171	D - 0
Pt Alegre	B	1384	$S-Q$
Pt Armuelles	PNR	768	R
Pt au Prince	HTI	648	N
Pt Gentil	GAB	936	E
Ft Limen	GTR	768	N

1	2	3	4
Pt of Spain Pt Saïd Pt Santo	TRD EGY VIDR	$\begin{aligned} & 772 \\ & 447 \\ & 419 \end{aligned}$	$\begin{gathered} N \\ F \\ Q-E \end{gathered}$
Pt Sudan Pt Vila Quebec	SDN NHB CAN	$\begin{array}{r} 667 \\ 1215 \\ 263 \end{array}$	$\begin{aligned} & \text { F } \\ & L \end{aligned}$
Quito Rebat Roboul	EQA irRC IGU	$\begin{aligned} & 951 \\ & 420 \\ & 909 \end{aligned}$	R E 工
Rangoon Rarotonga Récife	BRM CKH B	$\begin{array}{r} 677 \\ 1243 \\ 1066 \end{array}$	$\begin{gathered} H-I \\ L \\ Q-S \end{gathered}$
Reims Resistencia Reykjavik	$\begin{gathered} \text { F } \\ \text { ARG } \\ \text { ISL } \end{gathered}$	$\begin{array}{r} 230 \\ 1315 \\ 87 \end{array}$	$\begin{aligned} & D-0 \\ & Q-S \end{aligned}$
Rhodoe Riga Rio de Janeíro	GRC URS B	$\begin{array}{r} 342 \\ 153 \\ 1263 \end{array}$	$\begin{gathered} D \\ D \\ Q-S \end{gathered}$
Rio Galleges Rio Grande Robore	ARG ARG BOL	$\begin{aligned} & 1627 \\ & 1668 \\ & 1192 \end{aligned}$	$\begin{aligned} & R \\ & R \\ & R \end{aligned}$
Roma Rotterdam S Andres	$\begin{gathered} \text { I } \\ \text { HOL } \\ \text { CLM } \end{gathered}$	$\begin{aligned} & 321 \\ & 230 \\ & 709 \end{aligned}$	$\begin{gathered} D \\ D-0 \\ N \end{gathered}$
S Antonio Tex S Cruz S Domingo	USA BOL DOM	$\begin{array}{r} 469 \\ 1193 \\ 648 \end{array}$	$\begin{aligned} & N \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$

1	2	3	4
$\begin{aligned} & \text { S Denis } \\ & \text { S Diego Cal } \\ & \text { S Francisco Cal } \end{aligned}$	REU USA USA	$\begin{array}{r} 1280 \\ 404 \\ 364 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$
$\begin{array}{\|ll} \text { S Isabel } \\ \text { S José } \\ \text { S José } \end{array}$	GNE CTR GTM	$\begin{aligned} & 905 \\ & 768 \\ & 710 \end{aligned}$	E
S Juan S Kitts S Louis Mo	PTR IOB USA	$\begin{aligned} & 649 \\ & 649 \\ & 359 \end{aligned}$	\mathbb{N}
S Lucia S Luis S Maarten	$\begin{gathered} \text { IOB } \\ B \\ \text { ATN } \end{gathered}$	$\begin{aligned} & 705 \\ & 945 \\ & 649 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~S} \\ & \mathrm{~N} \end{aligned}$
S María S Nazaire S Paulo	$\begin{gathered} \text { AZR } \\ \mathrm{F} \\ \mathrm{~B} \end{gathered}$	$\begin{array}{r} 350 \\ 254 \\ 1262 \end{array}$	$\begin{gathered} 0 \\ D-0 \\ Q-S \end{gathered}$
S Pedro Sula S Salvador S Tomé	$\begin{aligned} & \text { HTVD } \\ & \text { SLV } \\ & \text { STP } \end{aligned}$	$\begin{aligned} & 710 \\ & 710 \\ & 905 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathrm{E} \end{aligned}$
Saigon Sal I Salalah	VTN CPV GLP	$\begin{aligned} & 739 \\ & 657 \\ & 670 \end{aligned}$	$\begin{gathered} H-I \\ P-Q \\ F \end{gathered}$
Salisbury Salta Salzburg	RHS ARG AUT	$\begin{array}{r} 1176 \\ 1316 \\ 252 \end{array}$	F
Santiago Santiago de Cuba Saudarkrokur	$\begin{aligned} & \text { CHL } \\ & \text { CUB } \\ & \text { ISL } \end{aligned}$	$\begin{array}{r} 1436 \\ 647 \\ 87 \end{array}$	$\begin{gathered} R-Q \\ N \\ 0 \end{gathered}$

1	2	3	4
Seattle Wash Sebha Seoul	USA LBY KOR	$\begin{aligned} & 269 \\ & 541 \\ & 380 \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { E } \\ & \text { J } \end{aligned}$
Seno Sevilla Sfax	$\begin{gathered} \text { LAO } \\ E \\ \text { TUN } \end{gathered}$	$\begin{aligned} & 617 \\ & 347 \\ & 422 \end{aligned}$	$\begin{gathered} H-I \\ D-O \\ E \end{gathered}$
Shannon Sharjah Shemya	IRL GLP ALS	$\begin{aligned} & 172 \\ & 548 \\ & 193 \end{aligned}$	$\begin{gathered} D-0 \\ G-F \\ K \end{gathered}$
Sisi Ifni Siem Reap Singapore	AOE CBG SNG	$\begin{aligned} & 454 \\ & 738 \\ & 860 \end{aligned}$	$\begin{aligned} & Q-E \\ & H=I \\ & H=I \end{aligned}$
Skopje Soendrestroem-Fjord Sofia	YUG GRI BUL	$\begin{array}{r} 322 \\ 85 \\ 322 \end{array}$	$\begin{aligned} & D \\ & 0 \\ & D \end{aligned}$
Songkhla Spokane Wash Stanleyville	THA USA CGO	$\begin{aligned} & 859 \\ & 269 \\ & 908 \end{aligned}$	$\begin{gathered} \mathrm{H}-\mathrm{I} \\ \mathrm{C} \\ \mathrm{~F} \end{gathered}$
Stavanger Stephenville Stockholm	IVOR CAiv s	$\begin{aligned} & 151 \\ & 223 \\ & 152 \end{aligned}$	$\begin{gathered} D-0 \\ 0 \\ 0 \end{gathered}$
Stockton Cal Strasbourg Stuttgart	$\begin{gathered} \text { USA } \\ \mathrm{F} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & 364 \\ & 231 \\ & 231 \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { D } \\ & \text { D } \end{aligned}$
Sundsvall Suva Sydney	$\begin{gathered} \mathrm{S} \\ \text { FJI } \\ \text { AUS } \end{gathered}$	$\begin{array}{r} 104 \\ 1213 \\ 1456 \end{array}$	$\begin{aligned} & \text { D } \\ & \text { I } \\ & I \end{aligned}$

1	2	3	4
Sydney Taegu Tahiti	$\begin{aligned} & \text { CAN } \\ & \text { KOR } \\ & \text { OCE } \end{aligned}$	$\begin{array}{r} 261 \\ 387 \\ \cdot 1208 \end{array}$	$\begin{aligned} & 0 \\ & J \\ & \text { L } \end{aligned}$
Tainan Taipei Taiz	CHN CHN YEM	$\begin{aligned} & 613 \\ & 499 \\ & 687 \end{aligned}$	$\begin{gathered} H-J \\ H-J \\ F \end{gathered}$
Talara Tampa Fla Tampere	PRU USA FNL	$\begin{array}{r} 1011 \\ 525 \\ 103 \end{array}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~N} \\ & \mathrm{D} \end{aligned}$
Tampico Tananarive Tanger	MEX MDG MRC	$\begin{array}{r} 589 \\ 1173 \\ 420 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~F} \\ & \mathrm{E} \end{aligned}$
Tapachula Tarbes Tavoy	$\begin{gathered} \text { MEX } \\ \mathrm{F} \\ \text { BRM } \end{gathered}$	$\begin{aligned} & 711 \\ & 319 \\ & 678 \end{aligned}$	$\begin{gathered} N \\ D-0 \\ H-I \end{gathered}$
Tegucigalpa Téhóran Tel Aviv	HND IRN ISR	$\begin{aligned} & 710 \\ & 428 \\ & 426 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & G \\ & F \end{aligned}$
Tenerife Tetuan Thessaloniki	CNR MRC GRC	$\begin{aligned} & 455 \\ & 420 \\ & 322 \end{aligned}$	$\begin{gathered} Q-E \\ Q-E \\ D \end{gathered}$
Thies Tijuana Tirana	$\begin{aligned} & \text { SEN } \\ & \text { MEX } \\ & \text { ALB } \end{aligned}$	$\begin{aligned} & 697 \\ & 404 \\ & 322 \end{aligned}$	$\begin{gathered} Q-E \\ N \\ D \end{gathered}$
Miruohirapalli Tokyo Tongatabu I.	$\begin{gathered} \text { TIID } \\ \mathrm{J} \\ \text { TON } \end{gathered}$	$\begin{array}{r} 795 \\ 389 \\ 1241 \end{array}$	$\begin{gathered} I \\ H-J \\ L \end{gathered}$

1	2	3	4
Torino	I	253	D
Toronto	Cait	309	C
Toulouse	F	319	D - 0
Tourane	VmT	738	H
Tours	F	254	D - 0
Townsville	AUS	1219	I
Treviso	I	252	D
Tripoli	LBY	423	E
Tunis	TUN	345	E
Turku	FNL	103	D
Udon Thani	THA	617	H-I
Uruguaiana	B	1384	Q-S
Vaasa	FNL	103	D
Valencia	E	346	D
Vancouver	CAN	215	K
Varadero	CUB	586	N
Venecia	I	252	D
Veracruz	MEX	644	N
Vichy	F	253	D
Vientiane	LAO	617	$\mathrm{H}-\mathrm{I}$
Vilnius	URS	168	D
Villa Cisneros	AOE	575	$Q-E$
Visby	S	152	D
Vitoria	B	1263	Q-S
W Palm Beach Fla	USA	525	N
Wadi Halfa	SDN	567	F
Wake I.	WAK	627	J
Wallis I.	NCL	1118	L

1	2	3	4
Warszawa	POL	169	D
Washington DC	USA	357	C
Wellington	NZL	1553	L
Wematc	NGU	974	I
Wien	AUT	252	D
Windhoek	AFS	1273	E
Winnipeg	CAN	218	C
Yacuiba	BOL	1259	R
Yagoua	CNE	785	E
Yaoundé	CME	905	E
Zagreb	YUG	252	D
Zahedan	IRN	442	G
Zamboanga	PHL	856	H-I
Ziguinchor	SEN	697	Q-E
Zurich	SUI	253	D

Administration providing data

Period selected: G. M. T. 00012 August 1964 to 24008 August 1964

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

ANNEX 8 TO CHAPTER IV

EXPIANATION

Example 1: It is the first of the flights reported by Switzerland (column 9) and has the following specifications:

1. The flight identification is SR 800 (Columns 10 to 14);
2. It is a scheduled flight (Column 18);
3. The aircraft speed is more than 500 knots (Column 19);
4. The flight originates, on the first day of the week of record (Column 26) in Zürich which is in the Square Number 253 (Columns 22 to 24) and Zone of Analysis "D" (Column 25);
5. There are no intermediate stops between the origin and termination of the flight (Columns 27 to 71 left blank);
6. The flight terminates, after covering a distance of 3410 nautical miles (Columns 72 to 75) in New York, which is in the Square Number 310 (Columns 77 to 79) and Zone of Analysis "0" (Column 80).
(By way of clarification, references to columns are inserted in Example 1 only.)

Example 2: It is the second of the flights reported by Switzerland and has the following specifications :

1. The flight identification is SR 800;
2. It is a scheduled flight;
3. The aircraft speed is more than 500 knots;
4. The flight originates, on the second day of the week of record, in Zürich which is situated in the Square Number 253 and Zone of Analysis "D";
5. There are no intermediate stops between the origin and termination of the flight;
6. The flight terminates, after covering a distance of 3410 nautical miles, in New York which is in the Square Number 310 and Zone of Analysis "O".

Note: Example 1 and Example 2, taken together, indicate that the flight SR 800 operated on the first and second day of the week of record.

Example 3: It is the 202nd of the flights reported by France and has the following specifications :

1. The flight identification is AF 140;
2. It is a scheduled flight;
3. The aircraft speed is between 350 and 500 knots;
4. The flight originates, on the seventh day of the week of record, in Paris which is in the Square Number 230 and Zone of Analysis "D";
5. There is one intermediate stop between the origin and termination of the flight;
5.1.1 The intermediate stop takes place in Rome which is in the Square Number 321 and Zone of Analysis "D";
5.1.2 The distance between the point of origin and the intermediate stop is 597 nautical miles;
5.1.3 The flight departs, after this stop, on the seventh day of the week of record;
6. The flight terminates, after covering a distance of 1203 nautical miles from the last stop, in Beirut which is in the Square Number 426 and Zone of Analysis "D".

Example 4: It is the 25th of the flights reported by Italy and has the following specifications :

1. The flight identification is AZ 770;
2. It is a scheduled flight;
3. The aircraft speed is more than 500 knots;
4. The flight originates, on the fourth day of the week of record, in Rome which is in the Square Number 321 and Zone of Analysis "D";
```
of flight;
```

5.1.1 - The first intermediate stop takes place in Teheran which is situated in the Square Number 428 and Zone of Analysis "G";
5.1.2 - The distance between the point of origin and the first intermediate stop is 1853 nautical miles;
5.1 .3 - The flight departs, after this stop, on the fourth day of the week of record;
5.2.1 - The second intermediate stop takes place in Karachi which is in the Square Number 550 and Zone of Analysis "G".;
5.2.2-The distance between the first and second intermediate stops is 1044 nautical miles;
5.2 .3 - The flight departs, after this stop, on the fifth day of the week of record;
5.3.1 - The third intermediate stop takes place in Bombay which is in the Square Numbri 673 and Zone of Analysis "G";
5.3.2 - The distance between the second and third intermediate stops is 472 nautical miles;
5.3.3 - The flight departs, after this stop, on the fifth day of the week of record;
5.4.1 - The fourth intermediate stop takes place in Banslrok which is in the Square Number 678 and Zone of Analysis "I";
5.4.2 - The distance between the third and fourth intermediate stops is 1627 nautical miles;
5.4.3-The flight departs, after this stop, on the fifth day of the week of record;
5.5.2 - The fifth intermediate stop takes place in Singapore which is in the Square Number 860 and Zone of Analysis "I";
5.5 .2 - The distance between the fourth and fifth intermediate stops is 775 nautical miles;
5.5.3 - The flight departs, after this stop, on the fifth day of the week of record;
5.6.2 - The sixth intermediate stop takes place in Darwin which is in the Square Number 1109 and Zone of Analysis "F";
5.6.2 - The distance between the fifth and sixth intermediate stops is 1820 nautical miles;
5.6.3 - The flight departs, after this stop, on the fifth day of the week of record;
6. The flight terminates, after covering a distance of 1705 nautical miles from the last stop, in Sydney which is in the Square Number 1456 and Zone of Analysis "I".

Example 5 : It is the 3lst of the flights reported by the United Kingdom of Great Britain and Northern Ireland and has the following specifications :

1. The flight identificqtion is BA 910 ;
2. It is a scheduled flight;
3. The aircraft speed is more than 500 knots;
4. The flight originates, on the sixth day of the week of record, in San Francisco which is in the Square Number 364 and Zone of Analysis "M";
5. The Zone of Analysis "C" is overflown betreen the origin and the first stop;
6. Thtre is one intermediate stop between the origin and termination of the flight;
6.1.1 - The intermediate stop takes place in New York which is situated in the Square Number 310 and Zone of Analysis "0";
6.1.2 - The distance between the point of origin and the point of intermediate stop is 2244 nqutical miles;
6.1.3 - The flight departs, after the stop, on the sixth day of the week of record;

7: The flight terminates, after covering a distance of 2984 nautical miles, from the last stop, in London which is in the Square Number 230 and Zone of Analysis "0".

6. Distances between major airports

A tabulation showing great circle distances, in statute miles, between airports of the world, is issued by the Traffic Director, International Air Transport Association (I.A.T.A.), Montreal, under the name TABULATIONT OF GREAT CIRCLE DISTANCES, and may be used by the administrations, when determining the relevant information to be entered in the columns titled "Stage Length N.M." on the Notification Form for Major World Air Routes (Annex l to Chapter IV). Care should, however, be taken to convert the distance obtained from this tabulation into nautical miles by using the formula:

I statute mile $=0.86841$ nautical mile
7. Determination of the requirements in MWARA operations

The Conference took note of the recommendation of the International Civil Aviation Organization that within NWARA's the expected peak number (N) of aircraft that would require communication in any one hour might be given by the following formula:

$$
\mathbb{N}=\frac{K\left(L-L_{v h f}\right)}{7 \times 24}\left(\frac{F_{S}+F_{n s}}{V_{s} V_{n s}}\right)
$$

where:
K = Concentration factor
I = total route length
$I_{\text {vhf }}=$ route length covered by VHF $\quad\{$ expressed in
$V_{s} \quad=$ aircraft speed of scheduled flights same
$V_{n s}=$ aircraft speed of unscheduled flights $\{$
$F_{S} \quad=$ number of scheduled flights per week
F_{ns} = number of non-scheduled flights per week

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964) considered the foregoing formula in the light of known technical and mathematical factors and confirmed its suitability for use at the Second Session of the Aeronautical E.A.R.C. (1965). It was recognized, when considering the operational factors bearing upon the collection of statistics, that that element of the formula ($L-I_{\text {vhf }}$) presented certain difficulties.

As a result the instructions for completing the notification form contain a specific mention concerning flights conducted entirely within VHF coverage and Resolution 10 was framed to cater for the situation where communications for part of the flights are conducted on VHF.

It was emphasized that the factor $K=$ Concentration factor in the above formula is not the same as that to be found in the formula for RDARA operations appearing on page 61. The considerations of I.C.A.O. leading to a recommendation that further studies were necessary regarding the value for factor K in the MWARA formula were noted but in the absence of alternative proposals at this Session the value of 2.4 was confirmed.

8. Resolution No. 12 - Relating to the information about actual use of high frequencies on Ma.jor World Air Routes

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964), considering
1.
that the experience of administrations operating international flights with respect to the use of high frequencies can be of value to the Second Session of the Aeronautical E.A.R.C. (1965), when it considers the allotment of high frequencies;
2. that the availability of such information will be useful to other administrations while considering the problems of high frequency allotment;

resolves

that administrations shall provide available data based on their experience on the use of high frequencies for Aeronautical Mobile (R) Service communication under their authority, to the Second Session of the Aeronautical E.f.R.C. (1965).

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

CHEPER V

MANNER IN THICH THP INFOPMATION MTNTIONED IN CHAPTER IV SHOULD BE ANALYZZD AND THE RESULTS OF THIS NNLYSIS PRESENTED TO THE SECOND SESSION OF THE ARRONAUTICAL E.A.R.C. (1965)

1. Resolution No. 13 - Relating to the forwarding of the results of the statistical analysis on international flights by the International Frequency Registration Board to the Λ drinistrations

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),

considering

a)
the Resolution No. 525 of the Eighteenth Session of the Administrative Council, (1963), relative to the establishraent of the operational principles on which requirements for high frequencies for Aeronautical Mobile (R) Service comunications are to be assessed;
b) the form in which actual operational statistics should be subnitted to the I.F.R.B.;
c) that such operational statistics should be provided for the period 0001 GMT, 2 August, 1964, to 2400 GIIT, 8 August, 1964;

resolves

1. that the I.F.R.B. process the data received from the Administrations and prepare the following documents :

1.1 Master List by Countries

The statistics of international flights, requiring the use of high frequencies, listed according to the country submitting the data. This list would serve as basic information of the flights reported to the I.F.R.B. for the week of record and as a check by the Administrations concerned that the data submitted had been correctly recorded.
1.2 Numerical Square Master List

The statistics of international flights requiring the use of high frequencies listed according to the number of the square in which the flight or stage of flight commences. This list would provide information on flights commencing from the international airports in each country and would assist in the detailed analysis of the data.

1.3 Numerical Square Flight Density List

The statistics of international flights requiring the use of high frequencies listed according to the number of the squares in which the flight or stage of flight comences and tormintes. The numbers of flights in both directions between any two squares would be added together in order to provide the volume of air traffic betweon the two squares.

1.4 Flight Density Chart

A graphic representation of the infomation shown in the Numerical Square Flight Density List (Soe 1.3) and any consist of a number of charts in which the volume of fligits is shown by means of lines joining the squares concerned, each line being endorsed with the numbor of flights made during the week.

1.5 List of Flights by Zonos of Mnalysis

The statistics of international flights requiring the use of high frequencios grouped accordinc to the zones of analysis. This list would serve as information on the broad grouping of flights which, together with operational information, would assist in the detemination of any revision of existing boundaries of MIRA's in the creation of new MNR's or the adjustment of the boundaries of existing MMAN's and with the allotrent of the frequencies that will be required in these areas.
2. that the I.F.R.B. should despatch these documents to the Administrations by 15 Decenber, 1964.
2. Resolution No. 14 - Relating to the forwarding by the International Frequency Registration Bocrd to the Adninistrations of the rosults of statistical anolysis on Regional and Domestic flichts

The First Session of the Leronoutical E.A.R.C., (Geneva, 1964), considering
a) the Resolution No. 525 of the Eighteenth Session of the Administrative Council (1963) relative to the establishment of the operationel principles on which requirenents for high frequencies for Aeronautical Ilobile (R) Service conrunications aro to be assessed;
b) the form in which actual operational statistics should be subritted to the I.F.R.B.;
c) that such operational statistics should be provided for a continuous period of twelve nonths beginning not earlier than 1 January, 1963;

resolves

1. that the I.F.R.B. process the data received from the adninistrations and draw up the following docunents:

1.1 Master List by Countries

The tabulation of tho total number of hours flown by Regional and Domestic flights requiring the use of high frequency communication during the twelve months period of record, listed according to the country subnitting the dato.

1.2 Master List by Reporting Arca

The statistical record of Regional and Domestic flights during the twelve months period of record. This list shall contain the following information:

- the hours flow by aircraft, requiring HF comunications, within each area of roporting, during the twelve nonths period of record;
- taking the formula for assessment of frequency recuirenent for RDARA operations, the nurnber of aircraft requiring $H E$ commuications in a particular $R D_{2}^{A} R A$ or area of reporting at the peak hour.

2. that the I.F.R.B. should despatch these documents to the administrations before 15 December, 1964.

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

CHAPTER VI

ARRANGENENTS FOR THE ORGANIZATION OF THE SECOND
SESSION OF THE AERONAUTICAL E.A.R.C. (1965)

1. Recommendation No. 3-Regarding the time and duration of the Second Session of the Aeronautical E.A.R.C. (1965)

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964) :

considering

1. that the First Session has been compelled to remit to the Second Session of the Conference a number of importent technical and operational problems which can only be solved in the light of a prior analysis of additional statistical information which has been requested from Administrations;
2. that this analysis, and the subsequent consideration and application of the results, will be a lengthy process even with the maximum assistance of the I F.R.B.'s electronic computer;
3. that a solution of these problems, by the Seeond Session, is an essential premrequisite to the evolution of a revised high frequency Allotment Plan for the Aeronautical Mogile (R) Service;
4. that, while recognising the need for the exercise of the maximum economy in expenditure, it is nevertheless in the over-all interest of the Union that the duration of the Second Session should be adequate to ensure the establishment of a revised high frequency Allotment Plan which will: provide, to the maximum possible extent, for the requirements of all Administrations;

recommends to the Administrative Council

1. that in order to provide adequate time for the study of the Report of the First. Session and for the collection, processing and analysis of the technical and operational data required by the Second Session, the latter Session of the Conference should not convene prior to 1 February, 1965:
2. that the Second Session should not last more than ten weeks.
3. Recommendation No. 4-Relating to the amendment of Appendix 26 to the Radio Regul tions (Geneva, 1959) and Associated Provisions.

The First Session of the Aeronautical E.A.R.C. (Geneve, 1964) :

recognizing

a) that under its terms of reference, changes to the Aeronautical Mobile (OR) Plan and its associated provisions are outside the competence of the Aeroneutical E.A.R.C.
b) that a number of the technical and operational principles used for the establishment of the present Plan, as now contained in Appendix 26 to the Radio Reguletions (Geneva, 1959) are common to the Aeronautical Mobile (R) and (OR) Services and that certain of these principles with respect to the Aeronautical Mobile (R) Service will need to be revised by the Second Session.

being of the opinion

that the best procedure would be to dissociate the revised Plan for the Aeronautical Mobile (R) Service, and the provisions relating thereto, from the Plan for the Aeronautical Mobile (OR) Service to which the relevant provisions of Appendix 26 could continue to apply;

recommends

that the Second Session, when revising. Appendix 26 and the associated provisions pertaining to the Aeronautical Mobile (R) Service, should ensure that the new Appendix and provisions are separate from, and independent of, those pertaining to the Aeronautical Mobile (OR) Service.
3. Recommendation No. 5- Relating to the exemination of technical conditions governing the use of frequencies $3023.5 \mathrm{kc} / \mathrm{s}$ and $5680 \mathrm{kc} / \mathrm{s}$

The First Session of the Aeronautical E.A.R.C. (Geneva, 1964),

considering

that some anomalies appear to exist in the conditions prescribed for the use of the frequencies $3023.5 \mathrm{kc} / \mathrm{s}$ and $5680 \mathrm{kc} / \mathrm{s}$ as contained in Column 3, clauses $2(a)$ and $2(b)$ of the frequency allotment plan in Appendix 26 to the Radio Regulations (Geneve, 1959), pages 38 and 4.1 respectively;
noting
that the particular channels in question are common to the Aeronautical Mobile (R) and (OR) Services and therefore the Aeronautical E.A.R.C. is not competent to make alterations to the above-mentioned provisions which might adversely affect the use by the Aeronautical Mobile (OR) Service of the channels concerned;

recommends

that administrations should establish their position with respect to possible changes to these provisions, in order to permit further consideration of the matter at the Second Session of the Aeronautical E.A.R.C. (1965).
4. Resolution No. 15 - Relating to HF requirements for supersonic transport aircraft and aero-space transport vehicles

The First Session of the Aeronautical E.A.R.C. (Geneva) 1964),

having considered

a) Recommendation No. 6A of the Extraordinary Administrative Space Radio Conference (Geneva, 1963), relating to the frequency requirements in the HF bands exclusively allocated to the Aeronautical Mobile (R) Service;
b) Recommendation No. $3 / 2$ of the I.C.A.O, Special Cotmunications Meeting (1963) relating to the revision of HF Allotment Plan to provide for supersonic transport aircraft use of frequencies and which noted that there was no requirement, at that time, for the allotment of high frequencies exclusively for communications with supersonic transport aircraft;
c) the proposals and recommendations submitted to the First Session of the Aeronautical E.A.R.C. (Geneva, 1964) in Documents Nos. I-1, I-4, I-30;
notes
that at this time there is no known requirement for the allotment of Aeronautical Mobile (R) Service high frequencies exclusively for communications with supersonic transport aircraft and aero-space transport vehicles;
and regolves
to refer the subject to the Second Session of the Aeronautical
E.A.R.C. (1965) for further and more detailed study.

[^0]: *) In this Report the abbreviation "Aeronautical E.A.R.C." means the "Aeronautical Extraordinary Administrative Radio Conference".

[^1]:

[^2]:

 6, 6 CHz jour - DOABEES POUR LE TRACE OES COURBES DE BROUILLAGE $A 1900$ to

[^3]: *) Annexes 1 to 8 given below are a guide to the implementation of this Resolution :

 Annex 1 : Notification Form (p. 71)
 Annex 2 : How the notification form should be filled in (p. 73)
 Annex 3 : World map for presentation of aircraft operating statistics with the following sub-divisions :
 a) areas numbered 2 to 1818
 b) zones of analysis

 Annex 4 : Country designators (p. 85)
 Annex 5 : Airline company designators (p. 89)
 Annex 6 : Table showing approximate correspondence between MWARA's and zones of analysis (p.95)
 Annex 7 : List of major airports (with reference of numbered areas on world map) (p. 96)
 Distances between airports in nautical miles (p. 125)
 Annex 8: Example of how the form should be filled in (p. 119)

