

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T H.762
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/2011)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

IPTV multimedia services and applications for IPTV –
IPTV multimedia application frameworks

 Lightweight interactive multimedia environment

(LIME) for IPTV services

Recommendation ITU-T H.762

ITU-T H-SERIES RECOMMENDATIONS

AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100–H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES

General H.200–H.219
Transmission multiplexing and synchronization H.220–H.229
Systems aspects H.230–H.239
Communication procedures H.240–H.259
Coding of moving video H.260–H.279
Related systems aspects H.280–H.299
Systems and terminal equipment for audiovisual services H.300–H.349
Directory services architecture for audiovisual and multimedia services H.350–H.359
Quality of service architecture for audiovisual and multimedia services H.360–H.369
Supplementary services for multimedia H.450–H.499

MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500–H.509
Mobility for H-Series multimedia systems and services H.510–H.519
Mobile multimedia collaboration applications and services H.520–H.529
Security for mobile multimedia systems and services H.530–H.539
Security for mobile multimedia collaboration applications and services H.540–H.549
Mobility interworking procedures H.550–H.559
Mobile multimedia collaboration inter-working procedures H.560–H.569

BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610–H.619
Advanced multimedia services and applications H.620–H.629

IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV
General aspects H.700–H.719
IPTV terminal devices H.720–H.729
IPTV middleware H.730–H.739
IPTV application event handling H.740–H.749
IPTV metadata H.750–H.759
IPTV multimedia application frameworks H.760–H.769
IPTV service discovery up to consumption H.770–H.779

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T H.762 (05/2011) i

Recommendation ITU-T H.762

Lightweight interactive multimedia environment (LIME) for IPTV services

Summary

Recommendation ITU-T H.762 describes the high-level functionalities of the lightweight interactive
multimedia environment (LIME) for IPTV. LIME supports functionalities in IPTV terminal devices
to provide interactivity and a variety of content such as audio, video, graphics and text. Expected
services include additional data such as text to enrich television programmes, and two-way portal
pages.

This Recommendation describes the profile called "LIME-HTML" of W3C Recommendation
XHTML 1.0, the profile called "LIME-CSS" of cascading style sheets 1 (CSS1), and a part of CSS2,
the profile of document object model (DOM) called "LIME-DOM", and a script language called
"LIME-Script" that is a subset of ECMAScript but has functional extensions required for IPTV
services. It describes the use of IP-based protocols for transport of LIME and IPTV-related services.

This revision includes the addition of explanatory text and definitions to enhance readability and
improve the understanding of the extended functions. Specifically, the change of the string "BML" to
"LIME" and the addition of explanations of the browser pseudo-object methods were considered.
These changes do not modify any accepted functions nor introduce any new functionality.

History

Edition Recommendation Approval Study Group

1.0 ITU-T H.762 2009-12-14 16

2.0 ITU-T H.762 2011-05-14 16

Keywords

Application multimedia framework, character encoding, CSS, delivery protocol, DOM, ECMA
script, HTML, metadata, monomedia, multimedia coding, XML.

ii Rec. ITU-T H.762 (05/2011)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T H.762 (05/2011) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 3

5 Conventions .. 4

6 Overview .. 5

7 LIME-HTML .. 5

7.1 LIME-HTML document ... 5

7.2 Display control of LIME .. 16

8 Use of LIME-CSS in LIME .. 17

9 Use of LIME-Script .. 20

9.1 Profile of built-in objects .. 20

9.2 Extensions to ECMAScript .. 24

10 Use of DOM in LIME... 59

10.1 DOM HTML interface group ... 61

10.2 DOM interface specific to LIME-DOM ... 65

10.3 Interface for LIME interrupt event ... 75

10.4 LIMECSS2 properties interface for LIME-DOM .. 78

11 Specific functions for IPTV services .. 80

11.1 Licensing .. 80

11.2 Content initialization .. 80

11.3 Service registration ... 80

11.4 Communication of licence information .. 80

11.5 Page-transition control .. 80

11.6 Control of display ... 80

11.7 Parental control function .. 81

11.8 Use of URI .. 81

12 Transport of LIME document and related issues .. 81

12.1 Use of HTTP/1.1 .. 81

12.2 Supported HTTP request headers ... 82

12.3 Persistent connections .. 83

12.4 User-Agent ... 84

12.5 Supported HTTP response headers .. 84

12.6 Cookies ... 85

Annex A – LIME-HTML versions .. 87

iv Rec. ITU-T H.762 (05/2011)

 Page

Annex B – Multimedia resources... 88

B.1 Use of monomedia .. 88

Annex C – Character encoding and font specification .. 89

C.1 Character specifications .. 89

C.2 Font specifications .. 90

Annex D – Data type definition (DTD) for LIME-HTML .. 91

Appendix I – Browser functions for LIME .. 95

I.1 Video and graphics display .. 95

I.2 Audio playback ... 96

I.3 Remote controller ... 97

I.4 Key masks .. 97

I.5 Character entry function ... 97

Appendix II – An example of a LIME document .. 98

Appendix III – Implementation example of LIME-Script ... 99

III.1 Implementation example of LIME-Script .. 99

III.2 Operational general rule of implementation-dependent behaviour 100

III.3 Main syntax .. 100

III.4 Host object .. 100

III.5 Built-in object ... 101

III.6 Implementation of event handler .. 101

Appendix IV – Example of user-agent information ... 102

Bibliography... 103

 Rec. ITU-T H.762 (05/2011) 1

Recommendation ITU-T H.762

Lightweight interactive multimedia environment (LIME) for IPTV services

1 Scope

This Recommendation describes the high-level functionalities of the lightweight interactive
multimedia framework (LIME) for IPTV. LIME supports functionalities in IPTV terminal devices
to provide interactivity and a variety of content such as audio, video, graphics and text. Expected
services include additional data such as text to enrich TV programmes, and two-way portal pages.

This Recommendation describes the profile (called "LIME-HTML") of XHTML1.0
[b-W3C XHTML], the profile (called "LIME-CSS") of cascading style sheets 1(CSS1), and a part
of CSS2, the profile of document object model (DOM) (called "LIME-DOM"), and a script
language (called "LIME-Script") that is a subset of ECMAScript but has functional extensions
required for IPTV services. It describes the use of IP-based protocols for transport of LIME and
IPTV-related services.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.262] Recommendation ITU-T H.262 (2000) | ISO/IEC 13818-2:2000,
Information technology – Generic coding of moving pictures and associated
audio information: Video.

[ITU-T H.264] Recommendation ITU-T H.264 (2011), Advanced video coding for generic
audiovisual services.

[ITU-T H.720] Recommendation ITU-T H.720 (2008), Overview of IPTV terminal devices
and end systems.

[ITU-T H.721] Recommendation ITU-T H.721 (2009), IPTV terminal devices: Basic
model.

[ITU-T H.760] Recommendation ITU-T H.760 (2009), Overview of multimedia application
frameworks for IPTV services.

[ITU-T H.761] Recommendation ITU-T H.761 (2011), Nested context language (NCL) and
Ginga-NCL.

[ITU-T T.81] Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994, Information
technology – Digital compression and coding of continuous-tone still
images – Requirements and guidelines.

[IETF RFC 2616] IETF RFC 2616 (1999), Hypertext Transfer Protocol – HTTP/1.1.

[IETF RFC 2965] IETF RFC 2965 (2000), HTTP State Management Mechanism.

[ISO/IEC 9899] ISO/IEC 9899:1999, Programming languages-C.

2 Rec. ITU-T H.762 (05/2011)

[ISO/IEC 15948] ISO/IEC 15948:2004, Information technology – Computer graphics and
image processing – Portable Network Graphics (PNG): Functional
specification.

[ISO/IEC 11172-3] ISO/IEC 11172-3:1993, Information technology – Coding of moving
pictures and associated audio for digital storage media at up to about
1,5 Mbit/s – Part 3: Audio.

[ISO/IEC 13818-7] ISO/IEC 13818-7:1997, Information Technology – Generic coding of
moving pictures and associated audio information – Part 7: Advanced
Audio Coding (AAC).

[ARIB STD-B24] ARIB STD-B24 V.5.2 (2008), Data coding and Transmission Specification
for Digital Broadcasting.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 application [b-ITU-T Y.101]: A functional implementation realized as software running in
one or spread over several interplaying hardware entities.

3.1.2 broadcast markup language (BML) [ARIB STD-B24]: The XML application language
specified in [ARIB STD-B24] is to be solely responsible for tags and attributes for multimedia
representation.

3.1.3 ECMAScript [b-ISO/IEC 16262]: The programming language defined by
[b-ISO/IEC 16262].

3.1.4 electronic programme guide (EPG) [b-ITU-T Y.1901]: A structured set of data, intended
to provide information on available content that may be accessed by end-users.

NOTE – In some traditional broadcast services, EPG is defined as an on-screen guide used to display
information on scheduled live broadcast television programmes, allowing a viewer to navigate, select and
discover programmes by time, title, channel, genre. This traditional definition does not cover "catalogues"
for on-demand and download services (sometimes called electronic content guide (ECG) and broadband
content guide (BCG) and bidirectional interactive service (sometimes called interactive programme guide
(IPG)) for end-user interaction with a server or head-end.

3.1.5 Internet protocol television (IPTV) [b-ITU-T Y.1901]: Multimedia services such as
television/video/audio/text/graphics/data delivered over IP-based networks managed to support the
required level of QoS/QoE, security, interactivity and reliability.

3.1.6 IPTV terminal device [b-ITU-T Y.1901]: A terminal device which has IPTV terminal
function (ITF) functionality, e.g., a set-top box (STB).

3.1.7 IPTV terminal function (ITF) [b-ITU-T Y.1901]: The end-user function(s) associated
with a) receiving and responding to network control channel messages regarding session set-up,
maintenance, and tear-down, and b) receiving the content of an IP transport from the network and
rendering.

3.1.8 video-on-demand (VoD) [b-ITU-T Y.1901]: A service in which the end-user can, on
demand, select and view a video content and where the end-user can control the temporal order in
which the video content is viewed (e.g., the ability to start the viewing, pause, fast forward,
rewind, etc.).

NOTE – The viewing may occur some time after the selection of the video content.

 Rec. ITU-T H.762 (05/2011) 3

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 LIME-CSS: The profile of cascading style sheets (CSS) defined in this Recommendation
that composes lightweight interactive multimedia environment (LIME).

3.2.2 LIME-DOM: The profile of the document object model (DOM) defined in this
Recommendation that composes lightweight interactive multimedia environment (LIME).

3.2.3 LIME-HTML: The profile of extensible hypertext markup language (XHTML) defined in
this Recommendation that composes lightweight interactive multimedia environment (LIME).

3.2.4 LIME-Script: The subset of ECMAScript defined in this Recommendation that composes
lightweight interactive multimedia environment (LIME).

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AAC-LC Advanced Audio Coding – Low Complexity

API Application Programming Interface

BCG Broadband Content Guide

BML Broadcast Markup Language

CAS Conditional Access System

CSS Cascading Style Sheets

DII Download Info Indication

DOM Document Object Model

DRM Digital Rights Management

DTD Data Type Definition

ECG Electronic Content Guide

ECMA European Computer Manufacturers Association

EIT Event Information Table

EPG Electronic Programme Guide

ES Elementary Stream

EUC-JP Extended UNIX Code – Japanese

GMT Greenwich Mean Time

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

IPG Interactive Programme Guide

IPTV Internet Protocol TeleVision

ISDB-T Integrated Services Digital Broadcasting – Terrestrial

ISP Internet Service Provider

4 Rec. ITU-T H.762 (05/2011)

ITF Internet protocol television Terminal Function

LIME Lightweight Interactive Multimedia Environment for IPTV

MAFR Multimedia Application Framework

MHEG Multimedia and Hypermedia information coding Experts Group

MNG Multiple-image Network Graphics

NPT Normal Play Time

OSD On-Screen Display

PES Packetized Elementary Stream

PNG Portable Network Graphics

SSL Secure Socket Layer

STB Set-Top Box

TCP Transport Control Protocol

TLS Transport Layer Security

TS Transport Stream

URI Uniform Resource Identifier

URL Uniform resource locator

VoD Video on demand

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

5 Conventions

The following conventions are used to describe operational guidelines:

R1 Basic service required item. An IPTV terminal device designed for basic service should
appropriately interpret the attribute if it is present in the content.

R2 Basic service required item. It is assumed that the value for this attribute is not present in
the content. An IPTV terminal device designed for basic service assumes the default value
for this attribute.

– Item not required for basic service. It is assumed the value for this attribute is not present in
the content. An IPTV terminal device designed for basic service does not need to handle the
attribute, even if it is present in the content.

The following conventions apply to operational restrictions on attributes and properties:

RW Read/write for basic services. The corresponding attribute or property can be read and
written. An IPTV terminal device designed for basic services should support the ability to
read and write the corresponding attribute or property in the content.

R Read for basic services. The corresponding attribute can be read but cannot be written. An
IPTV terminal device designed for basic services should support the ability to read and
write the corresponding attribute or property in the content. Write operations to this item
may be ignored.

 Rec. ITU-T H.762 (05/2011) 5

6 Overview

This Recommendation describes the lightweight interactive multimedia environment (LIME) for
IPTV services, the services such as those described in [ITU-T H.720]. It is expected to provide
interactivity using multimedia to embedded IPTV terminal devices, such as those described in
[ITU-T H.721]. LIME has been specified especially for the operation of portal service, as is
described in [ITU-T H.721]. LIME has evolved from [b-ARIB TR-B14] volume 3, Section 2
(profile A), as well as [ARIB STD-B24], the so-called BML, but due to the differences in
requirements and the environment between the data broadcasting service targeted by the original
BML specifications and the IPTV service, some modifications were needed, resulting in LIME.

The main part of LIME consists of the following components:

– The profile hereinafter called "LIME-HTML" of XHTML 1.0. This profile is compliant
with the "HTML for IPTV services" Recommendation of the multimedia application
framework (MAFR) series currently under development.

– The profile hereinafter called "LIME-CSS" of CSS1 and a part of CSS2. This profile is
compliant with the "CSS for IPTV services" Recommendation of the MAFR series
currently under development.

– The profile of DOM, hereinafter called "LIME-DOM". This profile is compliant with the
"DOM for IPTV services" Recommendation of the MAFR series currently under
development.

– The script language hereinafter called "LIME-Script", which is a subset of ECMAScript but
has functional extensions required for IPTV services. LIME-Script is compliant with the
"ECMAScript for IPTV services" Recommendation of the MAFR series currently under
development.

7 LIME-HTML

7.1 LIME-HTML document

A LIME-HTML document is an XHTML document, which includes CSS and script, i.e.,
ECMAScript. This clause describes requirements for a LIME-HTML document as an XHTML
document.

7.1.1 Character encoding scheme

Refer to Annex C for the character encoding scheme used. Only one scheme must be used in any
single LIME-HTML document and any external data, including LIME-Script files and LIME-CSS
files, referenced by the document.

7.1.2 Declarations in a LIME-HTML document

7.1.2.1 XML declaration

A LIME-HTML document is required to begin with an XML declaration which specifies the
version of XML being used. The XML version in the XML declaration is required to be 1.0.

In an encoding declaration, if the encoding is in the various encodings and transformations of
Unicode/ISO/IEC 10646, the values "UTF-8", "UTF-16", "ISO-10646-UCS-2", and
"ISO-10646-UCS-4" are required to be used. If the encoding is in JIS X-0208-1997, the value
"euc-jp" is required to be used. It is recommended that character encodings registered (as charsets)
with the Internet Assigned Numbers Authority (IANA), other than those just listed above, be
referred to using their registered names.

7.1.3 XHTML elements of LIME-HTML

This clause describes elements that can be used in a LIME-HTML document.

6 Rec. ITU-T H.762 (05/2011)

7.1.3.1 Core modules

7.1.3.1.1 Structure module

This module includes elements: "body", "head" and "title".

7.1.3.1.2 Text module

This module includes elements: "br", "div", "p" and "span".

7.1.3.1.3 Hypertext module

This module defines an element for specifying hypertext links to other LIME-HTML documents.
The module consists of the element: "a".

7.1.3.1.4 List module

This module defines elements for providing list-style presentations. This module does not include
elements used in a LIME-HTML document.

7.1.3.2 Text extension modules

These modules are used to add textual presentations. A LIME-HTML document does not use
elements from these modules.

7.1.3.3 Forms modules

7.1.3.3.1 Basic forms module and forms module

These modules define elements for controlling interactive data input operations. These modules for
LIME-HTML include the element "input".

7.1.3.4 Table module

7.1.3.4.1 Basic table module and tables module

These modules define elements for providing table-style presentations. The elements from these
modules are not used in LIME-HTML.

7.1.3.5 Image module

This module defines an element for embedding images in a LIME-HTML document. The module
consists of the "img" element.

7.1.3.6 Client-side map module

This module defines elements for ensuring image mapping that is responsible for an IPTV terminal
device or client. The elements from this module are not used in a LIME-HTML document.

7.1.3.7 Server-side map module

This module defines elements for ensuring image mapping that is responsible for a server. The
elements from this module are not used in a LIME-HTML document.

7.1.3.8 Object module

This module defines elements for generic objects that represent images, video and audio. The
module consists of the "object" element.

7.1.3.9 Frames module

This module defines elements for frame-style presentations. The elements from this module are not
used in a LIME-HTML document.

 Rec. ITU-T H.762 (05/2011) 7

7.1.3.10 Target module

This module defines attributes for describing target-related information. The elements from this
module are not used in a LIME-HTML document.

7.1.3.11 Iframe module

This module defines elements for inserting frames into text. The module consists of the iframe
element. The element from this module is not used in a LIME-HTML document.

7.1.3.12 Intrinsic events module

This module defines attributes that correspond to events generated by user operation. The attributes
include the "onclick" attribute. The elements from this module are not used in a LIME-HTML
document.

7.1.3.13 Meta-information module

This module defines elements for presenting meta-information of a document. The module consists
of the "meta" element.

7.1.3.14 Scripting module

This module defines elements for scripts that describe behaviours and elements for controlling
scripts. The module consists of the "script" element.

7.1.3.15 Style sheet module

This module defines elements for describing style sheets. The module consists of the "style"
element.

7.1.3.16 Style attribute module

This module defines the style attribute.

7.1.3.17 Link module

This module defines an element for providing document-related information for a browser. The
module consists of the "link" element.

7.1.3.18 Basic module

This module defines an element for defining a base uniform resource indicator (URI). The element
from this module is not used in a LIME-HTML document.

7.1.3.19 Extension modules (LIME/basic LIME modules)

LIME-HTML has the following extension modules to define the following elements and attributes.
The basic LIME module is limited to the basic features.

7.1.3.19.1 Basic LIME module

The elements from this module are not used in a LIME-HTML document.

7.1.3.19.2 LIME module

The LIME module supports the necessary features. This module includes elements: "bml",
"bevent", "beitem", "body&", "div&", "p&", "span&", "object&".

8 Rec. ITU-T H.762 (05/2011)

7.1.4 Attributes

The following HTML attributes are used in a LIME-HTML document.

Table 7-1 – HTML attributes used in a LIME-HTML document

Elements Attributes Operation Restrictions for operation

Common attributes
Core attributes

 id R1 Character string with a maximum of 128 bytes

 class R1

 title –

I18N attributes

 xml:lang R2 (Note 4)

Events attributes

 onclick R1

 ondbclick –

 onmousedown –

 onmouseup –

 onmouseover –

 onmousemove –

 onmouseout –

 onkeypress –

 onkeydown R1

 onkeyup R1

Style attributes

 style R1

Core modules
Structure module

body %Common.attrib

 %Core.attrib R1

 %I18n.attrib R2

 %Events.attrib –

head %I18n.attrib R2

 profile –

title %I18n.attrib R2

Text module

br %Core.attrib R1

div %Common.attrib R1

p %Common.attrib R1

span %Common.attrib R1

Hypertext module

a %Common.attrib R1

 accesskey R1

 Rec. ITU-T H.762 (05/2011) 9

Table 7-1 – HTML attributes used in a LIME-HTML document

Elements Attributes Operation Restrictions for operation

 charset R2 (Note 5)

 href R1

 hreflang –

 rel –

 rev –

 tabindex –

 type –

Forms module

input %Common.attrib –

 %Core.attrib R1

 %I18n.attrib R2

 %Events.attrib R1 Cannot be specified when "inputmode attribute" is
"direct" or "indirect"

 accesskey R1

 checked –

 disabled R1

 readonly R1

 maxlength R1 From 1 to 40 (Note 1)

 alt

 name –

 size –

 src –

 tabindex –

 accept –

 type R1 Either "text" or "password"

 value R1

 inputmode R1

 charctertype R1

Client-side image map

a& cords –

shape –

input& usemap –

object& usemap –

Server-side image map

input& ismap –

Object module

object %Common.attrib R1

archive –

10 Rec. ITU-T H.762 (05/2011)

Table 7-1 – HTML attributes used in a LIME-HTML document

Elements Attributes Operation Restrictions for operation

classid –

codebase –

codetype –

data R1

declare –

height –

name –

standby –

tabindex –

type R1

width –

Target module

a& target –

Intrinsic events module

a& onblur R1

onfocus R1

body& onload R1

onunload R1 (Note 3)

input& onfocus R1

onblur R1

onselect –

onchange R1 (Note 2)

Metainformation module

meta %I18n.attrib R2

 http-equiv –

name R1

content R1

scheme –

Scripting module

script charset R2 (Note 5)

type R2 (Note 6)

src R1

defer –

xml.space –

Style sheet module

style %I18n.attrib R2

type R2 Fixed to "text/css"

media R2 Fixed to "tv"

 Rec. ITU-T H.762 (05/2011) 11

Table 7-1 – HTML attributes used in a LIME-HTML document

Elements Attributes Operation Restrictions for operation

title –

 xml:space –

Link module

link %Common.attrib –

charset R2 (Note 5)

href R1

hreflang –

media R2 Fixed to "tv"

rel R2 Fixed to "stylesheet"

rev –

type R2 Fixed to "text/css"

LIME module

bml %I18n.attrib R2

version –

xmlns –

bevent id R1

beitem id R1

type R1 One of the following is taken:
"TimerFired", "CCStatusChanged",
"MediaStopped", "DataButtonPressed"

onoccur R1

es_ref R1

message_group_id R1 It is "0" or "1". When omitted, specification of "0"
is assumed.

message_id R1

message_version R1

module_ref R1

language_tag R1

register_id –

 service_id –

event_id –

peripheral_ref –

time_mode R1 The following is taken:
"absolute"

time_value

object_id R1 Only the object element ID that indicates data
transmitted by carousel and type attribute is either
"audio/X-arib-mpeg2-aac"

subscribe R1

12 Rec. ITU-T H.762 (05/2011)

Table 7-1 – HTML attributes used in a LIME-HTML document

Elements Attributes Operation Restrictions for operation

iframe& align –

body& invisible R1

div& accesskey R1

onfocus R1

onblur R1

p& accesskey R1

onfocus R1

onblur R1

span& accesskey R1

onfocus R1

onblur R1

a& effect –

bdo& orientation –

object& streamposition R1 The frame number is specified
(type="image/X-arib-mng") when the monomedia
that refers to the relevant object element is MNG.
In case of other media, it is "0".

streamlooping R2 Fixed to "1"

streampositionnumerator –

streampositiondenominator –

streamstatus R1 An initial value must be specified depending on
the monomedia referenced by the relevant object
element (Note 7)

streamlevel –

remain R1 Applicability depends on the monomedia
referenced by the object element (Note 8)

accesskey R1

onfocus R1

onblur R1

 Rec. ITU-T H.762 (05/2011) 13

Table 7-1 – HTML attributes used in LIME-HTML document

NOTE 1 – When the input exceeds the maximum length, then it is rounded down. If it goes beyond the
frame, the exceeded part will not be displayed.
NOTE 2 – Generated timing of the change event is when the focus is shifted to a different element.
NOTE 3 – The only extended functions for broadcasting that can be used in the "onunload" event handler
are "writePersistentArray()" and "unlockModuleOnMemory()". Processing contents should be limited to
processes that end in a short time, such as set-up to Ureg, where quick document transition is possible and
processes for simple status checking, etc.
NOTE 4 – This is currently fixed to "ja" in Japan.
NOTE 5 – This is currently fixed to "EUC-JP" in Japan. Other codings are for further study.
NOTE 6 – This is currently fixed to "text/X-arib-ecmascript"; charset="euc-jp"". Other
codings are for further study.
NOTE 7 – The values of streamstatus for an object referencing media of type attribute are summarized as
follows (other type attributes are for further study):

type attribute streamstatus

video/X-arib-mpeg2 play (initial value: play)

video/X-arib-mpeg1 play (initial value: play)

audio/X-arib-mpeg2-aac play, stop (initial value: stop)

image/jpeg play (initial value: play)

image/X-arib-png play (initial value: play)

image/X-arib-mng play, stop, pause (initial value: stop)

text/X-arib-jis8text play (initial value: play)

NOTE 8 – Applicability of the remaining attribute depends on the type attribute according to the following
list (other type attributes are for further study):

type attribute applicability

video/X-arib-mpeg2 yes

video/X-arib-mpeg1 yes

audio/X-arib-mpeg2-aac only when the scheme is "arib: (PES)"

image/jpeg yes (lockModuleOnMemory is also used)

image/X-arib-png no

image/X-arib-mng no

text/X-arib-jis8text no

7.1.5 used-key-list

This Recommendation specifies the use of used-key-list features as indicated in Tables 7-2
through 7-4.

Table 7-2 – used-key-list

Items Features

Value of <key-group> (Note 1) "special-1" is used for video on demand (VoD) playback control
key group (Note 3)

Key code (Note 2) To be eventually added in the vendor-dependent keys (key code
150-)

Access key characters (Note 2) Not specified (Note 2)

14 Rec. ITU-T H.762 (05/2011)

Table 7-2 – used-key-list

Items Features

Behaviour When an LIME document contains a description of playback
control procedure, it is desirable to mask "special-1", the VOD
playback control <key-group>, to avoid confusion of the user.
When masked, events from the VoD playback control keys are
received by the LIME browser. Since key codes depend on
implementation, it is not recommended that such key information
is included in LIME content.

NOTE 1 – Refer to Table 7-3.
NOTE 2 – Refer to Table 7-4.
NOTE 3 – This refers to keys for, e.g., playback, stop, rewind, fast forward, chapter-jump. These are
software keys implemented in the on-screen display (OSD), and whether this is implemented as physical
keys or not depends on each implementation.

Table 7-3 – Values Applicable to <key-group>

Value of <key-group> Semantics

Basic Up, down, right and left arrow keys, enter key and back key

data-button Keys for data broadcasting operations (e.g., red, green,
blue and yellow colour keys)

(Note 1)

numeric-tuning Channel keypad (0 to 9, or 0 to 12) (Note 2)

Other-tuning Other channel keys (e.g., up/down and direct
selection)

(Note 2)

special-1 Special key 1 (Note 3)

special-2 Special key 2 (Note 3)

special-3 Special key 3 (Note 3)

special-4 Special key 4 (Note 3)

Misc Keys except the above keys and power key (e.g.,
volume control keys)

(Note 4)

NOTE 1 – Additional keys for data broadcasting services, as needed, are specified in an operational
standard regulation.
NOTE 2 – Actual usage of channel keys is specified in an operational standard regulation or optionally
implemented by the vendor.
NOTE 3 – The broadcaster specifies this key for each medium.
NOTE 4 – Any receiver must provide a power key. Masking of the power key by the LIME content is not
allowed.

Table 7-4 – Relationship among remote control keys, key codes and access keys

Remote control key Key code Access key character

Up arrow 1 N/A

Down arrow 2 N/A

Left arrow 3 N/A

Right arrow 4 N/A

 Rec. ITU-T H.762 (05/2011) 15

Table 7-4 – Relationship among remote control keys, key codes and access keys

Remote control key Key code Access key character

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 5-17 N/A

"Enter" 18 N/A

"Back" 19 "X"

"Data" (Note 1) 20 N/A

Colour key (blue) 21 "B"

Colour key (red) 22 "R"

Colour key (green) 23 "G"

Colour key (yellow) 24 "Y"

Data button 1 25 "E"

Data button 2 26 "F"

Data button 3 27 N/A

Data button 4 28 N/A

Reserved for ARIB data broadcast
standard

29-99 Reserved

"Bookmark" key (Note 2) 100 N/A

Reserved for future extended features 101-149 Reserved

Vendor-dependent 150- Not defined

NOTE 1 – An event DataButtonPressed occurs and no keydown nor keyup event occurs.
NOTE 2 – Implementing a "bookmark" key is optional.

7.1.6 Media types used in LIME

Media types are required to comply with Table 7-5 and the following points.

CSS data (media type "text/css") may appear in LIME documents in some cases and may be
transmitted as independent resources in other cases. CSS data transmitted as monomedia is required
to be a complete description of the style sheet, as defined by CSS, on its own.

LIME-Script data may appear in LIME HTML documents in some cases and may be transmitted as
independent resources in other cases. LIME-Script data transmitted as monomedia is required to be
a complete description of the scripting, as defined by LIME-Script, on its own.

Table 7-5 – List of media types and monomedia schemes

Scheme Media type Used

Operation
(referenced
by object/
element)

Remarks

http:, https: multipart/mixed Yes －

 text/css Yes －

 text/X-arib-bml; charset=" " Yes － (Note 1)

 text/X-arib-ecmascript; charset=" " Yes － (Note 1)

 image/jpeg Yes Yes

 image/X-arib-png Yes Yes

16 Rec. ITU-T H.762 (05/2011)

Table 7-5 – List of media types and monomedia schemes

Scheme Media type Used

Operation
(referenced
by object/
element)

Remarks

 image/X-arib-mng Yes Yes

 audio/X-arib-mpeg2-aac Yes Yes

 application/X-arib-bmlclut Yes －

 application/X-arib-btable Yes －

 application/X-arib-resourceList Yes －

 application/X-arib-contentPlayControl Yes Yes (Note 2)

Arib: application/X-arib-mpeg2-tts Yes Yes

romsound: audio/X-arib-romsound Yes －

NOTE 1 – The "charset" specification cannot be omitted.
NOTE 2 – "application/X-arib-contentPlayControl" is the media type assigned to the metafile used for
VoD streaming playback control. The server specifies this media type in the Content-Type of the HTTP
message header so that the IPTV terminal device can identify the metafile.

7.2 Display control of LIME

7.2.1 Display control of linear IPTV streaming

Table 7-6 shows the guideline for the use of "type", "streamposition", "streamstatus" and
"streamlooping" attributes when presenting the audio and video of linear IPTV streaming content as
part of an "object" element.

Table 7-6 – Use of attribute for displaying stream

type attribute streamposition streamstatus streamlooping

application/X-arib-mpeg2-tts
(Note 1)

Not used play/stop
(Notes 2, 3)

1 (fixed)

NOTE 1 – The linear IPTV service is expected to be specified in the "data" attribute using the namespace.
NOTE 2 – The dynamic change of "type" attribute and of schema following the change of "data" attribute
is not expected.
NOTE 3 – In this Recommendation, the initial value of streamstatus for this type attribute is "play".

7.2.2 Display control of VoD streaming

Table 7-7 shows the guideline for the use of "type", "streamposition", "streamstatus", and
"streamlooping" attributes when presenting the audio and video of VoD streaming content as part of
an "object" element.

 Rec. ITU-T H.762 (05/2011) 17

Table 7-7 – Use of attribute for displaying stream

type attribute streamposition streamstatus streamlooping

application/X-arib-contentPlayControl
(Note 1)

Read only (Note 4) play/stop/pause
(Notes 2, 3, 5, 6)

1 (fixed)

NOTE 1 – Metadata file for stream playback control is required to be specified in the "data" attribute.
NOTE 2 – The dynamic change of the "type" attribute and change of schema due to a change of the "data"
attribute are not allowed.
NOTE 3 – When the playback ends, the streamstatus changes to "stop" automatically.
NOTE 4 – As an exception, the initial value of "streamposition" attribute of the "object" element in a
LIME document can optionally be specified.
NOTE 5 – When the state of the media player changes, the value of streamstatus must automatically
change. The timing for this automatic change is implementation dependent.
NOTE 6 – The initial value of streamstatus is "play".

8 Use of LIME-CSS in LIME

Table 8-1 shows the LIME-CSS profile which includes CSS 1 and CSS 2 properties.

Table 8-1 – Profile of CSS properties in LIME

Property Operation Property Operation

Selector Visual formatting model

* R1 position R1

E R1 left R1

EF – top R1

E:focus R1 width R1

E:active R1 height R1

E:myclass R1 z-index R1

#myid R1 line-height R1

Value assignment/inheritance vertical-align –

@import – display R1

!important – bottom –

Media type right –

@media R1 float –

Box model clear –

margin-top – direction –

margin-right – unicode-bidi –

margin-bottom – min-width –

margin-left – max-width –

Margin R1 min-height –

padding-top R1 max-height –

padding-right R1 Other visual effects

padding-bottom R1 visibility R1

Padding-left R1 overflow R1

18 Rec. ITU-T H.762 (05/2011)

Table 8-1 – Profile of CSS properties in LIME

Property Operation Property Operation

Padding – clip –

border-top-width – Generated content/auto numbering list

border-right-width – content –

border-bottom-width – quotes –

border-left-width – counter-reset –

border-width R1 counter-increment –

border-top-color – marker-offset –

border-right-color – list-style-type –

border-bottom-color – list-style-image –

border-left-color – list-style-position –

border-color – list-style

border-top-style – Page media

border-right-style – "@page" –

border-bottom-style – size –

border-left-style – marks –

border-style R1 page-break-before –

border-top – page-break-after –

border-right – page-break-inside –

border-bottom – page –

border-left – orphans –

Border - widows –

Background User interface

background – outline-color –

background-color – outline-width –

background-image R1 outline-style –

background-repeat R1 outline –

background-position – cursor –

background-attachment – Voice style sheet

Font volume –

color – speak –

font-family R1 pause-before –

font-style – pause-after –

font-size R1 Pause –

font-variant – cue-before –

font-weight R1 cue-after –

font – cue –

font-stretch – play-during –

font-size-adjust – azimuth –

 Rec. ITU-T H.762 (05/2011) 19

Table 8-1 – Profile of CSS properties in LIME

Property Operation Property Operation

Text elevation –

text-indent – speech-range –

text-align R1 voice-family –

text-decoration – pitch –

text-shadow – pitch-range –

letter-spacing R1 stress –

word-spacing – richness –

text-transform – speak-punctuation –

white-space R1 peak-numeral –

Pseudo class/pseudo element Extended property

:link – clut R1

:visited – color-index R1

:active R1 background-color-index R1

:hover – border-color-index –

:focus R1 border-top-color-index R1

:lang – border-right-color-index R1

:first-child – border-bottom-color-index R1

:first-line – border-left-color-index R1

:first-letter – outline-color-index –

:before – resolution R1

:after – display-aspect-ratio R1

Table grayscale-color-index R1

caption-side – nav-index R1

border-collapse – nav-up R1

border-spacing – nav-down R1

table-layout – nav-left R1

empty-cells – nav-right R1

speak-header – used-key-list R1

A value defined as a fixed value should be specified as the most important rule (!important) in the
default style sheet. This most important rule always takes priority over the normal rules. This most
import rule is not operated in the LIME-CSS and the normal rules are operated. Therefore, the value
specified as a fixed value is always obtained.

20 Rec. ITU-T H.762 (05/2011)

9 Use of LIME-Script

This clause describes the use of LIME-Script in LIME.

9.1 Profile of built-in objects

Table 9-1 is the profile of built-in objects for LIME-Script.

Table 9-1 – Profile of the LIME-Script built-in objects

Built-in object Method/property Operation Remarks

(global)

 NaN R1

 Infinity – (Note 1)

 eval(x) –

 parseInt(string, radix) R1 (Note 7)

 parseFloat(string) – (Note 1)

 escape(string) – (Note 2)

 unescape(string) – (Note 2)

 isNaN(number) R1

 isFinite(number) – (Note 1)

Object

 prototype R1

 Object([value]) R1

 new Object([value]) R1

Object.prototype

 constructor R1

 toString() R1

 valueOf() R1

Function

 prototype R1

 Length R1

 Function(p1,p2,…pn,body) –

 new Function(p1,p2,…pn,body) –

Function.prototype

 constructor R1

 toString() R1 (Note 3)

Array

 prototype R1

 Length R1

 Array(item0, item1, …) R1

 new Array(item0, item1,…) R1

 new Array([len]) R1

Array.prototype

 constructor R1

 Rec. ITU-T H.762 (05/2011) 21

Table 9-1 – Profile of the LIME-Script built-in objects

Built-in object Method/property Operation Remarks

 toString() R1

 join([separator]) R1

 reverse() R1

 sort([comparefn]) R1

String

 prototype R1

 Length R1

 String([value]) R1

 new String([value]) R1

 String.fromCharCode(char0[,char1, …]) R1

String.prototype

 constructor R1

 toString() R1

 valueOf() R1

 charAt(pos) R1

 charCodeAt(pos) R1

 indexOf(searchString, position) R1

 lastIndexOf(searchString, position) R1

 split(separator) R1

 substring(start[,end]) R1

 toLowerCase() R1

 toUpperCase() R1

Boolean

 prototype R1

 Boolean([value]) R1

 new Boolean([value]) R1

Boolean.prototype

 constructor R1

 toString() R1

 valueOf() R1

Number

 prototype R1

 MAX_VALUE R1

 MIN_VALUE R1

 NaN R1

 NEGATIVE_INFINITY – (Note 1)

 POSITIVE_INFINITY – (Note 1)

 Number([value]) R1

 new Number([value]) R1

22 Rec. ITU-T H.762 (05/2011)

Table 9-1 – Profile of the LIME-Script built-in objects

Built-in object Method/property Operation Remarks

Number.prototype

 constructor R1

 toString([radix]) R1

 valueOf() R1

Math

 E –

 LN10 –

 LN2 –

 LOG 2E –

 LOG 10E –

 PI –

 SQRT1 2 –

 SQRT2 –

 abs(x) –

 acos(x) –

 asin(x) –

 atan(x) –

 atan2(y, x) –

 cos(x) –

 exp(x) –

 floor(x) –

 log(x) –

 max(x, y) –

 min(x, y) –

 pow(x, y) –

 random() –

 round(x) –

 sin(x) –

 sqrt(x) –

 tan(x) –

Date

 prototype R1

 Date([year, month [, date [, hours [, minutes
[, seconds [, ms]]]]]])

R1

 new Date([year, month [, date [, hours [, minutes
[, seconds [, ms]]]]]])

R1

 Date(value) – (Note 4)

 new Date(value) – (Note 4)

 Date.parse(string) – (Note 4)

 Rec. ITU-T H.762 (05/2011) 23

Table 9-1 – Profile of the LIME-Script built-in objects

Built-in object Method/property Operation Remarks

 Date.UTC([year, month [, date [, hours [, minutes
[, seconds [, ms]]]]]])

– (Note 4)

Date.prototype

 constructor R1

 toString() R1 (Note 3)

 valueOf() – (Note 4)

 getTime() – (Note 4)

 getYear() – (Note 5)

 getFullYear() R1

 getUTCFullYear() R1

 getMonth() R1

 getUTCMonth() R1

 getDate() R1

 getUTCDate() R1

 getDay() R1

 getUTCDay() R1

 getHours() R1

 getUTCHours() R1

 getMinutes() R1

 getUTCMinutes() R1

 getSeconds() R1

 getUTCSeconds() R1

 getMilliseconds() R1

 getUTCMilliseconds() R1

 getTimezoneOffset() R1

 setTime(time) – (Note 4)

 setMilliseconds(ms) R1 (Note 6)

 setUTCMilliseconds(ms) R1 (Note 6)

 setSeconds(sec, [, ms]) R1 (Note 6)

 setUTCSeconds(sec, [, ms]) R1 (Note 6)

 setMinutes(min [, sec, [, ms]]) R1 (Note 6)

 setUTCMinutes(min [, sec, [, ms]]) R1 (Note 6)

 setHours(hour [, min [, sec, [, ms]]]) R1 (Note 6)

 setUTCHours(hour [, min [, sec, [, ms]]]) R1 (Note 6)

 setDate(date) R1 (Note 6)

 setMonth(mon [, date]) R1 (Note 6)

 setUTCMonth(mon [, date]) R1 (Note 6)

 setFullYear(year [, mon [, date]]) R1 (Note 6)

 setUTCFullYear(year [, mon [, date]]) R1 (Note 6)

24 Rec. ITU-T H.762 (05/2011)

Table 9-1 – Profile of the LIME-Script built-in objects

Built-in object Method/property Operation Remarks

 setYear(year) – (Note 5)

 toLocaleString() R1 (Note 3)

 toUTCString() R1 (Note 3)

 toGMTString() – (Note 5)

NOTE 1 – Not operated because it is related to Float.
NOTE 2 – Not operated because it is related to Unicode.
NOTE 3 – Result of Function.prototype.toString() ([b-ISO/IEC 16262], page 69) "function
FUNCTIONNAME() {}"(FUNCTIONNAME is the name of a specified function). Results of
Date.prototype.toLocaleString() and Date.prototype.toUTCString() must be of the same output format as
Date.prototype.toString()
NOTE 4 – Not operated because it is related to Number.
NOTE 5 – Not operated because it is specified to maintain compatibility with old source codes.
NOTE 6 – Operated with restricted specification because it is related to Number.
NOTE 7 – The radix of parseInt() is 8, 10 and 16 (0 is interpreted as 10).

9.2 Extensions to ECMAScript

Table 9-2 describes the browser pseudo-object profile of LIME-Script. This object provides the
interfaces for the following functions:

1) EPG: The function to tune from EPG.

2) Non-volatile memory: The function to read and to write in the persistent array.

3) Bidirectional function over TCP/IP: The function to transmit text-data over IP and to set
cache resources over IP.

Table 9-2 – Browser pseudo-object of LIME-Script

 Function Operation Remarks

EPG functions

 epgGetEventStartTime() R1

 epgGetEventDuration() R1

 epgTune() R1

 epgTuneToDocument() R1

 epgIsReserved() R1

 epgReserve() R1

 epgCancelReservation() R1

 epgRecIsReserved() R1

 epgRecReserve() R1

 epgRecCancelReservation() R1

Interaction channel communication – TCP/IP

 setISPParams() R1

 getISPParams() R1

 connectPPP() R1

 Rec. ITU-T H.762 (05/2011) 25

Table 9-2 – Browser pseudo-object of LIME-Script

 Function Operation Remarks

 connectPPPWithISPParams() R1

 disconnectPPP() R1

 getConnectionType() R1

 isIPConnected() R1

 sendTextMail() Optional

 sendMIMEMail() Optional

 transmitTextDataOverIP() R1

 setCacheResourceOverIP() Optional

Operational control functions

 reloadActiveDocument R1

 getNPT() R1

 getProgramRelativeTime() R1

 isBeingBroadcast() R1

 lockModuleOnMemory() R1

 unlockModuleOnMemory() R1

 setCachePriority() R1

 getIRDID() R1

 getBrowserVersion() R1

 getProgramID() R1

 getActiveDocument() R1

 lockScreen() R1

 unlockScreen() R1

 getBrowserSupport() R1

 launchDocument() R1

 launchDocumentRestricted() R1

 quitDocument() R1

 launchExApp() Optional (Note)

 getFreeContentsMemory() R1

 isSupportedMedia() R1

 detectComponent() R1

 lockModuleOnMemoryEx() R1

 unlockModuleOnMemoryEx() R1

 unlockAllModulesOnMemory() R1

 getLockedModuleInfo() R1

 getBrowerStatus() R1

 getResidentAppVersion() R1

 isRootCertificateExisting() R1

 getRootCertifiacteInfo() R1

 startResidentApp() Optional

26 Rec. ITU-T H.762 (05/2011)

Table 9-2 – Browser pseudo-object of LIME-Script

 Function Operation Remarks

Receiver audio control

 playRomSound() R1

Timer functions

 sleep() R1

 setInterval() R1

 clearTimer() R1

 pauseTimer() R1

 resumeTimer() R1

 setCurrentDateMode() R1

External character functions

 loadDRCS() R1

Other functions

 random() R1

 subDate() R1

 addDate() R1

 formatNumber() R1

Closed caption display control functions

 setCCDisplayStatus() R1

 getCCDisplayStatus() R1

 getCCLanguageStatus() R1

NOTE – Even when using independent services.

9.2.1 Explanations of the methods

epgGetEventStartTime()

Obtains the start time of a program described in EIT.

Syntax

Date epgGetEventStartTime(input String event_ref)

Argument

event_ref: Specifies an event

Return values

Start time of a program: Success

null: Could not obtain the event information specified by event_ref.

Description

The description of event_ref conforms to the conventions defined in clause 9.2.1.1.

epgGetEventDuration()

Obtains the duration time of a program described in EIT.

 Rec. ITU-T H.762 (05/2011) 27

Syntax

Number epgGetEventDuration(input String event_ref)

Argument

event_ref: Specifies an event.

Return values

Duration time of a program (in seconds): Success

NaN: Obtained no event information, as specified by event_ref.

Description

The description of event_ref conforms to the conventions defined in clause 9.2.1.1.

epgTune()

Quits displaying the presented LIME document and selects a specified service.

Syntax

Number epgTune(input String service_ref)

Arguments

service_ref: Specifies a service.

Return values

1: Success

NaN: Failure

Description

The description of event_ref conforms to the conventions defined in clause 9.2.1.1.

– The scripts after the epgTune() are not executed.

– If epgTune() is executed in a global code, neither the "load" event nor the "unload" event
occurs.

– If epgTrue() fails, it is not ensured that the following scripts are executed.

epgTuneToDocument()

Quits displaying the presented LIME document and presents the specified LIME document.

Syntax

Number epgTuneToDocument(input String documentName)

Argument

DocumentName: String specifying the LIME document to be presented.

Return values

1: Success

NaN: Failure

28 Rec. ITU-T H.762 (05/2011)

Description

The description of documentName conforms to the conventions defined in clause 9.2.1.2. This
object selects the service transmitting the LIME document specified in documentName and presents
the specified LIME document.

– The scripts following epgTuneToDocument() are not executed.

– If epgTuneToDocument() is executed in the global code, neither the "load" event nor the
"unload" event occurs.

– If epgTuneToDocument() fails, it is not ensured that the following scripts are executed.

epgIsReserved()

Verifies whether or not the specified event is reserved for watching.

Syntax

Number epgIsReserved(input String event_ref

[,input Date startTime]

)

Arguments

event_ref: Specifies an event.

startTime: Start time of an event.

Return values

1: Reserved for watching.

0: Not reserved.

NaN: Failure.

Description

This object verifies whether the event designated by the event_ref which is scheduled to start at the
time designated by startTime is reserved for watching or not. The investigation result is returned by
the value.

The description of event_ref conforms to the conventions defined in clause 9.2.1.1. If startTime is
omitted, this function acts on the event specified by event_ref.

epgReserve()

Reserves a specified event for watching.

Syntax

Number epgReserve(input String event_ref [,input Date startTime])

Argument

event_ref: Specifies an event.

startTime: Start time of an event.

Return values

1: Success.

NaN: Failure.

 Rec. ITU-T H.762 (05/2011) 29

Description

This object reserves the event designated by the event_ref for watching which is scheduled to start
at the time designated by startTime. Success or failure is returned by the value. The description of
event_ref conforms to the conventions defined in clause 9.2.1.1. If startTime is omitted, this
function acts on the event specified byevent_ref.

epgCancelReservation()

Cancels the reservation for watching of a specified event.

Syntax

Number epgCancelReservation(input String event_ref)

Argument

event_ref: Specifies an event.

Return values

1: Success.

NaN: Failure.

Description

This object cancels the watching reservation of the event designated at event_ref. Success or failure
is returned by the value. The description of event_ref conforms to the conventions defined in
clause 9.2.1.1. If startTime is omitted, this function acts on the event specified by event_ref.

epgRecIsReserved()

Verifies whether or not a specified event has been reserved for recording.

Syntax

Number epgRecIsReserved(input String event_ref [,input Date startTime])

Arguments

event_ref: Specifies an event.

startTime: Start time of an event.

Return values

1: Reserved for recording.

0: Not reserved.

NaN: Failure.

Description

This object whether or not the event designated by the event_ref which is scheduled to start at the
time designated by startTime is reserved for recording. The result is returned by the return value.
The description of event_ref conforms to the conventions defined in clause 9.2.1.1. If startTime is
omitted, this function acts on the event specified by event_ref.

epgRecReserve()

Reserves a specified event for recording.

30 Rec. ITU-T H.762 (05/2011)

Syntax

Number epgRecReserve(input String event_ref [,input Date startTime])

Arguments

event_ref: Specifies an event.

startTime: Start time of an event.

Return values

1: Success.

NaN: Failure.

Description

This object reserves the event designated by the event_ref for recording which is scheduled to start
at the time designated by startTime. Success or failure is returned by the value. The description of
event_ref conforms to the conventions defined in clause 9.2.1.1. If startTime is omitted, this
function acts on the event specified by event_ref.

epgRecCancelReservation()

Cancels the reservation for recording of a specified event.

Syntax

Number epgRecCancelReservation(input String event_ref)

Argument

event_ref: Specifies an event.

Return values

1: Success.

NaN: Failure.

Description

This object cancels the reservation for recording of an event specified by event_ref and returns the
result of cancellation. The description of event_ref conforms to the conventions defined in
clause 9.2.1.1.

random()

Generates random numbers.

Syntax

Number random(input Number num)

Arguments

num: Upper limit of random numbers.

Return values

Random number.

 Rec. ITU-T H.762 (05/2011) 31

Description

This function returns integer random numbers in a range from 1 to num. Pseudo random numbers
are acceptable, but they must generate uniform random numbers. The argument of random() is a
natural number.

subDate()

Calculates the time difference between two dates in a specified unit.

Syntax

Number subDate(

input Date target,

input Date base,

input Number unit

)

Arguments

target: Subtracted Date object

base: Subtracting Date object

unit: Unit of calculation 0: milliseconds, 1: seconds, 2: minutes, 3: hours, 4: days, 5: weeks

Return values

Time difference in the specified unit: success

NaN: failure

Description

This function subtracts base from target and returns the result in a unit of time specified in unit. The
fraction is truncated. The result is guaranteed to be handled as a signed 32-bit integer. If the result is
in the range from –2147483648 to 2147483647 (maximum range of a signed 32 bit integer), it is
returned as it is. If the result is out of this range, NaN is returned. (Note: If unit is '0' (milliseconds),
the effective range is from –24 to 24 days.) If unit is an invalid value, it is treated as '0' (zero).

addDate()

Add time in a specified unit to a specified Date object.

Syntax

Date addDate(

input Date base,

input Number time,

input Number unit

)

Arguments

base: Base Date object.

time: Time to be added.

unit: Unit of time (0: milliseconds, 1: seconds, 2: minutes, 3: hours, 4: days, 5: weeks)

32 Rec. ITU-T H.762 (05/2011)

Return values

A Date object that indicates the result of addition: success.

NaN: failure.

Description

This function adds time in the unit specified by unit to a base and returns the result. The base does
not change.

If time is NaN, base itself is returned.

If unit is an invalid value, it is treated as '0' (zero).

formatNumber()

Formats a numeric value by inserting "," every three digits and returns the result as a character
string.

Syntax

String formatNumber(input Number value)

Argument

value: Numeric value to be formatted and converted into a character string.

Return values

Formatted character string: Success.

null: Failure

Description

This function formats a numeric value by inserting "," every three digits and returns the result as a
character string. For example, it is used to format monetary values. If value is an invalid value, it is
treated as '0' (zero).

reloadActiveDocument()

Reloads a LIME document that is currently displayed.

Syntax

Number reloadActiveDocument()

Arguments

None.

Return values

NaN

Description

This function reloads a document that is currently displayed. The reloadActiveDocument()
acts as the same as launchDocument() to itself. If reloadActiveDocument() fails, it is not
ensured that the following scripts are executed.

getNPT()

 Rec. ITU-T H.762 (05/2011) 33

Obtains an NPT.

Syntax

Number getNPT()

Argument

None.

Return values

Time specified by NPT: Success

NaN: Failure

Description

This function obtains an NPT value for a stream calculated from the NPT reference descriptor. The
return value is an integer in milliseconds.

getProgramRelativeTime()

Obtains a relative time from the beginning of the event.

Syntax

Number getProgramRelativeTime()

Argument

None.

Return values

Non-negative integer: Relative time from the beginning of the event.

NaN: Failure

Description

This function returns the relative time (in seconds) from the beginning of the event that is being
watched.

isBeingBroadcast()

Verifies whether or not a specified event (broadcast program) is currently broadcast.

Syntax

Boolean isBeingBroadcast(input String event_ref)

Arguments

event_ref: Specifies an event.

Return values

false: Currently not broadcast.

true: Currently broadcast.

Description

The description of event_ref conforms to the namespace conventions defined in clause 9.2.1.1 It is
not ensured that the function verifies whether or not a stored program is currently played.

34 Rec. ITU-T H.762 (05/2011)

lockModuleOnMemory()

Receives a module into cache memory and locks the module.

Syntax

Number lockModuleOnMemory(input String module)

Argument

module: Module name.

Return values

NaN: Failure because of other causes.

1: Success.

–1: Specified module does not exist.

–2: Cannot receive because of insufficient cash.

NOTE – When a return value is 1, –1, or –2, the state can be confirmed using DII.

Description

This function receives any module which was transmitted in a same component of the module
specified with module (data other than contents data is allowed) from the carousel and lock it in the
content memory. The contents module is locked in cache memory until unlockModuleOnMemory()
or unlockAllModuleOnMemory() is called, or the Multimedia Service ends. The description of
module conforms to the conventions on namespace defined in clause 9.2.1.2. This function exits
without waiting for the module to be actually obtained. When the module is actually obtained,
ModuleLocked specified with event occurs. If unlockModuleOnMemory() or
unlockAllModulesOnMemory() is invoked while this function tries to lock a module that has not
been locked in the content memory, the request to lock the module is cancelled. If
unlockModuleOnMemory() or unlockAllModulesOnMemory() is invoked to unlock a module
which has not been locked in the content memory and on which lockModuleOnMemory() is not
working, an error is returned. The function returns the result of processing as a returned value

unlockModuleOnMemory()

Unlocks a locked module.

Syntax

Number unlockModuleOnMemory(input String module)

Argument

module: Module name.

Return values

1: Success.

NaN: Failure.

Description

This function unlocks a module specified with module (data other than contents data is allowed) to
release it from the content memory. If the module has not been locked in the content memory by
lockModuleOnMemory(), the execution of this function fails. The description of module conforms
to the conventions on namespace defined in clause 9.2.1.2.

 Rec. ITU-T H.762 (05/2011) 35

setCachePriority()

Sets a cache priority of a module.

Syntax

Number setCachePriority(

input String module,

input Number priority

)

Arguments

module: Module name.

priority: Cache priority.

Return values

1: Success.

NaN: Failure.

Description

This function assigns a cache priority specified with priority to a module specified with module
(data other than contents data is allowed). The larger the value of priority, the higher the cache
priority. The description of module conforms to the conventions on namespace defined in
clause 9.2.1.2.

getIRDID()

Obtains a receiver ID(identifier).

Syntax

String getIRDID (input Number type)

Arguments

type: Type of ID to obtain.

Return values

Identifier specific to receiver: Success

null: Failure.

Description

This function returns ID that is specific to the receiver specified in type. If the function failed to
obtain the ID, it returns null. The following is applicable to type:

1) CardID of CA

CardID is used to support a multiple transport receiver. A separate type argument is specified for
each CA system. The CA_system_id identification is used as the value of the type argument. In this
case, a returned value is a hexadecimal string consisting of six hexadecimal numbers and twelve
characters for zero-padding. Each hexadecimal number is obtained by converting each byte of the
6-byte CardID into a hexadecimal representation.

36 Rec. ITU-T H.762 (05/2011)

2) Receiver ID

Receiver ID is used to recognize a receiver as hardware. Receiver ID must not be the same as
CA_system_id. Detailed usage of Receiver ID is defined in an operational standard regulation.

3) MakerID and ModelID

MakerID and ModelID are used for downloading. MakerID and ModelID must not be the same as
CA_system_id. Detailed usage of these IDs is defined in an operational standard regulation.

getBrowserVersion()

Obtains information to identify a LIME browser.

Syntax

Array getBrowserVersion()

Argument

None.

Return values

Array[0]: String representing MakerID.

Array[1]: String representing the name of LIME browser.

Array[2]: String representing the major version number.

Array[3]: String representing the minor version number.

Description

This function obtains the information to identify the LIME browser that controls presentation of the
currently displayed LIME document. Array[0] contains the string representing MakerID used for
downloading software for the receiver. Any string contained in Array[0] is a two-digit hexadecimal
representation. Note that this string does not have to be explicitly marked as a hexadecimal
representation. That is, this string does not have to be preceded with "0x" nor be followed by "h".
Instead, this string requires "0" for padding to form a two-digit representation.

Array[1] contains a string that is not more than 20-character long. This string a combination of the
"0"-" 9" and " A"-" Z" alphanumeric to identify a manufacturer. Array[2] and Array[3] contain a
string that is a three-digit decimal representation consisting of a version number, as specified by a
manufacturer and "0"s as required for padding. Note: Updating major/minor version numbers is
responsible for vendors of receivers. However, it is recommended that any modification or change
in a LIME browser causes a minor version number to be updated. It is also recommended that when
different types of receivers use a same version of LIME browser, the same major/minor version
number is returned.

getProgramID()

Obtains the ID of a broadcast program being received.

Syntax

String getProgramID(input Number type)

Argument

type Type of ID to be obtained

 Rec. ITU-T H.762 (05/2011) 37

Return values

null: Failure

Character string indicating the ID of a broadcast program being received (dependent of type
specification): Success

Description

Depending on type, this function returns a value that is recognized based on the broadcasting
standard. The available values to type and obtained strings are for further study.

getActiveDocument()

Returns the URI of a currently presented LIME document.

Syntax

String getActiveDocument()

Argument

None.

Return values

null: failure

Character string that conforms to the conventions on the namespace: success

Description

This function returns the URI of a currently presented LIME document.

lockScreen()

Locks the screen display.

Syntax

Number lockScreen()

Argument

None.

Return values

1: Success

NaN: Failure

Description

This function disables updating the screen.

unlockScreen()

Unlocks screen display.

Syntax

Number unlockScreen()

38 Rec. ITU-T H.762 (05/2011)

Argument

None.

Return values

1: Success.

NaN: Failure.

Description

This function enables updating the screen.

getBrowserSupport()

Returns specified function is implemented or not by the browser.

Syntax

Number getBrowserSupport(

input String sProvider,

input String functionname

[,input String additionalinfo]+

)

Arguments

sProvider: Character string indicating the operators who defined this function.

functionname: Character string representing name of the function.

additionalinfo: Character string representing additional information of the function.

Return values

1: Specified function is implemented.

0: Specified function is not implemented.

Description

This function returns whether or not an extended function specified by a set of sProvider,
functionname, and additionalinfo is implemented. Character strings assigned to sProvider,
functionname, and additionalinfo are operationally defined. If a character string specified with one
of these arguments is unknown to the implementation, the function returns 0 (specified function is
not implemented). The character strings used for sProvider and functionname are case sensitive.
The four-character string "ARIB" is reserved as an identifier of the functions specified in this
standard, that is available to sProvide. More detailed usage of sProvider and functionname is
operationally defined.

launchDocument()

Presents a LIME document.

Syntax

Number launchDocument(

input String documentName,

input String trasitionStyle

 Rec. ITU-T H.762 (05/2011) 39

)

Arguments

documentName: Character string to specify a LIME document.

transitionStyle: Transition style.

Return values

1: Success.

NaN: Failure.

Description

This function opens a LIME document specified with documentName and presents it on the screen
with a specified transition style.

– The scripts following the launchDocument() are not executed.

– If launchDocument() is executed in a global code, neither the "load" event nor the "unload"
event occurs.

– If launchDocument() fails, it is not ensured that the following scripts are executed.

launchDocumentRestricted()

Presents a LIME document under a restricted condition.

Syntax

Number launchDocumentRestricted(

input String documentName,

input String trasitionStyle

)

Arguments

documentName: Character string to specify a LIME document.

transitionStyle: Transition style.

Return values

1: Success.

NaN: Failure.

Description

This function opens a LIME document specified with documentName and presents it on the screen
with a specified transition style. Note that this function is applicable to a transition from a content
received in real time or retained in a storage device to a LIME document over an interaction
channel. Any LIME document to which the documentName LIME document transits based on this
function or any further LIME document to which the destination document for
launchDocumentRestricted () transits based on the a element, the launchDocument() function , or
others is not allowed to reference a resource broadcast in real time or a resource stored via a
broadcasting service and to share information using Greg and NVRAM.

– The scripts following the launchDocumentRestricted () are not executed.

– If launchDocumentRestricted () is executed in a global code, neither the "load" event nor
the "unload" event occurs.

40 Rec. ITU-T H.762 (05/2011)

– If launchDocumentRestricted () fails, it is not ensured that the following scripts are
executed.

quitDocument()

Quits presenting a LIME document.

Syntax

Number quitDocument()

Argument

None.

Return values

NaN

Description

This function quits presenting the specified LIME document.

getFreeContentsMemory()

Obtains a maximum size of a module that can be contained in a content memory.

Syntax

Number getFreeContentsMemory([input Number number_of_resource])

Arguments

number_of_resource: Number of resources.

Return values

Size of module that can be contained (in 1024-byte units)

NaN: Failure.

Description

This function returns a value (in 1024-byte units) representing a maximum size of a module that can
be contained in a content memory, calculated based on the available area of a content memory at the
time when the function is invoked.

If lockModuleOnMemory() was invoked to request a module to be locked and the lock has not been
completed before the getFreeContentsMemory() function is invoked, the getFreeContentsMemory()
returns the same value as that in the case where lockModuleOnMemory() was not invoked.

The maximum available value to number_of_resource is 999. Note that any return value is used
only for reference purpose and does not ensure the returned size of module is successfully locked.

It is recommended that when in order to verify whether or not two or more modules are allowed to
be locked per content, the concerned content is responsible for invoking getFreeContentsMemory()
before a separate module is specified to be locked.

isSupportedMedia()

Verifies whether or not a service media type is supported.

 Rec. ITU-T H.762 (05/2011) 41

Syntax

Number isSupportedMedia (input String mediaName)

Argument

mediaName: String representing a broadcasting media type to be verified.

Return values

1: Supported media type.

0: Not supported media type.

Description

This function verifies whether or not the broadcasting media type that is represented with a string is
supported by a receiver. Any string specified with mediaName is case sensitive.

When an unknown string as mediaName , 0 is returned. The available values to mediaName of this
function and linkMedia/Array[6] of linkMedia/Array[6] are for further study. For future uses, all the
strings not listed below are reserved.

detectComponent()

Detects a component.

Syntax

Number detectComponent(input String component_ref)

Argument

component_ref: Component to be detected.

Return values

1: Specified component is described in PMT.

–1: Specified component is not described in PMT.

NaN: Failure.

Description

This function verifies whether or not the component specified with component_ref is described in
PMT. The description of component_ref complies to the namespace.

lockModuleOnMemoryEx()

Receives a module into cache memory and locks the module.

Syntax

Number lockModuleOnMemoryEx(

input String module_ref

[,input Number remaining_space]

)

Argument

module_ref: URI identifying a module.

42 Rec. ITU-T H.762 (05/2011)

remaining_space: Free space in the content memory into which the specified module has been
locked (in bytes). This argument accepts only an integral multiple of 4096. When a value that is not
an integral multiple of 4096, the value is rounded up to the least integral multiple of 4096 of
integral multiples of 4096 that are greater than the originally specified value to be interpreted as
what remaining_space contains.

Return values

1: Success.

–3: No component transmitting the module exists (as far as detected based on PMT).

–4: Extra component is tried to be received.

NaN: Failure by other causes.

Description

This function receives a module specified with module_ref (including information related to a
content) from the carousel and lock it in the content memory. The contents module is locked in
cache memory until unlockModuleOnMemoryEx() or unlockModuleOnMemory() is called, the end
of the tuning of its service, or any update to the currently presented data event is detected. The
description of module_ref conforms to the conventions on namespace. This function exits without
waiting for the module to be actually obtained. When a component that transmits the specified
module does not exist, –3 is returned. When the maximum number of components have already
received before this function specifies a component used to transmit the specified module, –4 is
returned. The available maximum size is defined in an operational standard regulation. When the
module is actually obtained, it is detected that the module does not exists, or it is detected that the
available cache is smaller for caching the module, ModuleLocked specified with bevent occurs.

If lockModuleOnMemoryEx() tries to lock a module that has been locked, a ModuleLocked event is
generated. This function is applicable to a module that is transmitted in a component that is part of
the same service as that to which the currently presented document belongs. When the
remaining_space argument is specified, the specified module is locked into the specified content
memory as long as the content memory will have a free space at least as large as remaining_space.
When a free space will be smaller than remaining_space, the specified module is not locked into the
specified content memory. When the remaining_space argument is not specified, "0" is assumed as
a value of the remaining_space argument.

unlockModuleOnMemoryEx()

Unlocks a locked module.

Syntax

Number unlockModuleOnMemoryEx(input String module_ref)

Argument

module_ref: URI identifying a module.

Return values

1: Success.

NaN: Failure.

Description

This function unlocks a module specified with module_ref to release it from the content memory. If
the module has not been locked in the content memory by lockModuleOnMemoryEx(), Failure is

 Rec. ITU-T H.762 (05/2011) 43

returned. The description of module_ref conforms to the conventions on namespace defined in
clause 9.2.1.2. If a request to lock a module that has not been locked in the content memory is
launched while this function tries to unlock the module, the request to lock the module is cancelled.

If unlockModuleOnMemoryEx() is invoked to unlock a module that has not been locked in a
content memory and no request to lock is working on the module, Failure is returned. When one
attemps to unlock by unlockModuleOnMemory() a module that has been locked by
lockModuleOnMemoryEx(), an error is returned. This kind of unlocking is not supported.

unlockAllModulesOnMemory()

Unlocks all locked module.

Syntax

Number unlockAllModulesOnMemory()

Argument

None.

Return values

1: Success.

NaN: Failure.

Description

This function unlocks all modules locked in a content memory. This function is applicable to any
module locked in a content memory despite of the function used to lock, lockModuleOnMemory()
or lockModuleOnMemoryEx(). This function is also applicable to any module which has not been
locked and on which a request to lock has been made. Any such request for a module is successfully
cancelled.

getLockedModuleInfo()

Obtains a list of modules locked in a content memory.

Syntax

Array getLockedModuleInfo()

Arguments

None.

Return values

null: Failure.

Array containing information about modules: Success.

Array values/contents:

– Array[0]: Module status.

– Array[0][0]: Module name.

– Array[0][1]: Function that has requested module to be locked.

1: lockModuleOnMemory()

2: lockModuleOnMemoryEx()

44 Rec. ITU-T H.762 (05/2011)

– Array[0][2]: Locked status of module.

 1: Has been locked in contents memory.

 2: Locking request is working on.

– Array[1]: Module status.

– Array[1][0]: Module name.

– Array[1][1]: Function that has requested module to be locked.

– Array[1][2]: Locked status of module.

– A similar format is applied to Array[2].

Description

This function obtains a list of modules locked on content memory as an array. This list includes any
module that has been locked in a content memory and any module that has not been locked but on
which a locking request is working. When there are no applicable modules, an array of length 0 is
returned. When an array of length 1 or greater is returned, each array element itself is an array
object consisting of three elements. The first element contains a module name. The second element
contains the specific function that is responsible for the locking, that is, lockModuleOnMemory() or
lockModuleOnMemoryEx(). The third element verifies whether the module has been locked in a
content memory or the module is in a locking request operation.

getBrowserStatus()

Obtains the status of a browser.

Syntax

Number getBrowserStatus (

input String sProvider,

input Sring statusname,

input String additionalinfo

)

Arguments

sProvider: String identifying a broadcaster or an entity that has configured the browser.

statusname: String describing a status name.

additionalinfo: String adding information about the status.

Return values

1: Indicates that the browser is in the specified status.

0: Indicates that the browser is not in the specified status.

NaN: Indicates that the status of the browser cannot be obtained.

Description

This function returns a value indicating whether or not the browser is in the status specified with a
combination of the three Arguments, sProvider, statusname, and addtionalinfo. Strings applicable to
the three arguments are defined in an operational standard regulation. Note that the four-character
"ARIB" string is reserved as a string applicable to sProvide to identify a function defined in this
specification. When one of the arguments contains a string unknown to an implementation, NaN

 Rec. ITU-T H.762 (05/2011) 45

(return value indicating that the status of the browser cannot be obtained) is returned. The sProvider
and statusname are case-sensitive arguments.

getResidentAppVersion()

Obtains information on resident application software, including versions.

Syntax

Array getResidentAppVersion(input String appName)

Arguments

appName: Name of a resident application software.

Return values

Array representing the application software information: Success.

Array[0]: String representing a manufacture ID.

Array[1]: A string arbitrarily defined by the manufacturer (maximum of 20 characters).

Array[2]: String representing a major version number.

Array[3]: String representing a minor version number.

Array[4]: More information for an individual resident application software.

null: Failure.

Description

This function obtains information used for identifying a resident application specified in the
argument appName. Values applicable to the argument appName are defined in an operational
standard regulation. In Array[0], the function returns a value representing a manufacture ID. The
Array[0] contains a string representing a number in the hexadecimal notation. Note that the string
requires a leading "0", if necessary, to be a two-digit number, instead of having characters or strings
indicating that the string is the hexadecimal notation. This implies that a leading "0x" and an
appended "h" must not be used. In Array[1], the function returns a string of 20 or less characters,
that is defined arbitrarily by an individual manufacturer. Each character belongs to the CodeSet 0 of
EUC-JP.

In Array[2] and Array[3], the function returns a string representing a version number, as defined
arbitrarily by an individual manufacturer. The maximum length of each number is four digits in the
hexadecimal notation. When the number has three or less digits, leading 0s are required to make it a
four-digit number. In Array[4], the function returns more information on the resident application
software , as specified for an individual type of the resident application software. How it is specified
is defined in an operational standard regulation.

setISPParams()

Sets ISP parameters specific to automatic connection.

Syntax

Number setISPParams (

input String ispname,

input String tel,

input Boolean bProvider,

46 Rec. ITU-T H.762 (05/2011)

input String uid,

input String passwd,

input String nameServer1,

input String nameServer2,

input Boolean softCompression,

input Boolean headerCompression,

input Number idleTime,

input Number status

[,input Number lineType]

)

Arguments

ispname: String representing an ISP name.

tel: Telephone number character string. Note that an empty string is used when a line that
requires no dialling is used.

bProvider: Network identification flag.

uid: User ID.

passwd: Password.

nameServer1: IP address of a primary name server.

nameServer2: IP address of a secondary name server.

softCompression: Flag indicating whether or not software compression is required.

encryptedPassword: Flag indicating whether or not encrypted password is used.

headerCompression: Flag indicating whether or not header compression is used.

idleTime: The maximum period of time in which the connection is kept without any data
transmission and reception (in milliseconds).

status: Status of configured parameters

lineType: Preferred line type to be used for an ISP connection.

Return values

null: Failure.

Array[7]: Flag indicating whether or not header compression is used.

Array[8]: The maximum period of time in which the connection is kept without any data
transmission or reception. (in milliseconds)

Array[9]: Status of configured parameters

Array[10]: String representing service operator identification, which conforms to the identifying
information stored by a receiver feature when the etISPParams() function is executed. Detailed
usage of strings are defined in an operational standard regulation.

 Rec. ITU-T H.762 (05/2011) 47

Description

This function is applicable to a terminal that has an IP connection feature. It obtains connection
parameters in a non-volatile memory as an Array object. The connection parameters include the
Internet service operator and related parameters that are specific to the data broadcasting program
currently received. To use this function more securely, guidelines for describing content to which
this function is applicable, protecting the retained information, displaying confirming messages on a
receiver, and others should be developed. Especially, great care should be put to prevent any
unintended, accidental configuration even if the concerned content is a Class A content.

getISPParams()

Obtains ISP parameters specific to automatic connection.

Syntax

Array getISPParams ()

Argument

None.

Return values

null: Failure.

Array[0]: String representing an ISP name.

Array[1]: Telephone number character string. Note that an empty string is used when a line that
requires no dialling is used.

Array[2]: Network identification flag.

Array[3]: User ID.

Array[4]: IP address of a primary name server.

Array[5]: IP address of a secondary name server.

Array[6]: Flag indicating whether or not software compression is required.

Array[7]: Flag indicating whether or not header compression is used.

Array[8]: The maximum period of time in which the connection is kept without any data
transmission or reception (in milliseconds).

Array[9]: Status of configured parameters.

Array[10]: String representing service operator identification, which conforms to the identifying
information stored by a receiver feature when the setISPParams() function is executed. Detailed
usage of strings are defined in an operational standard regulation.

Description

This function is applicable to a terminal that has an IP connection feature. It obtains connection
parameters in a non-volatile memory as an Array object. The connection parameters include the
Internet service operator and related parameters that are specific to the data broadcasting program
currently received. To use this function more securely, guidelines for describing content to which
this function is applicable, protecting the retained information, displaying confirming messages on a
receiver, and others should be developed.

48 Rec. ITU-T H.762 (05/2011)

connectPPP()

Establishes a dial-up PPP connection.

Syntax

Number connectPPP (

input String tel,

input Boolean bProvider,

input String uid,

input String passwd,

input String nameServer1,

input String nameServer2,

input Boolean softCompression,

input Boolean headerCompression,

input Number idleTime

)

Arguments

tel: Telephone number character string. Note that an empty string is used when
a line that requires no dialling is used.

bProvider: Network identification flag.

uid: User ID.

passwd: Password.

nameServer1: IP address of a primary name server.

nameServer2: IP address of a secondary name server.

softCompression: Flag indicating whether or not software compression is required.

headerCompression: Flag indicating whether or not header compression is used.

idleTime: The maximum period of time in which the connection is kept without any
data transmission or reception (in milliseconds).

Return values

1: Success.

–1: Parameter error.

–3: Time-out occurred.

–4: No dial tone detected.

–5: No carrier detected.

–6: Disconnection enforced.

–8: Line is busy.

–100: PPP connection has been established.

–200: Receiver has been configured not to use PPP for connections.

–301: Outside of the network service range (when use of mobile phone is preferred and line types
are detectable).

 Rec. ITU-T H.762 (05/2011) 49

–302: External communication device was not available (when use of mobile phone is preferred
and line types are detectable).

NaN: Failure by other causes.

Description

This function establishes a PPP connection according to the specified arguments. This function is
independent of configured parameters for a receiver to automatically connect to ISP (Internet
Service Provider). When the bProvider network identification flag is true, a carrier identification
code defined in a receiver's configuration may be placed at the beginning of the called telephone
number. Any information specified with an argument of this function is only applicable to a PPP
connection that is established using this function. When a line type that does not perform an explicit
dialling is used as the preferred line type, the tel argument may contain an empty string. An
established PPP connection is disconnected in cases; when the disconnectPPP() function is
explicitly executed, when the period of time specified in idleTime has passed before a packet is
sent/received, or when a disconnecting feature in a receiver is explicitly invoked by an end user.
The –100 return value (Failure) is returned and the function exits when the PPP connection has
already been established using an automatic connection feature in the receiver or an automatic
connection function. The –200 return value (Failure) is returned and the function exits when a
receiver supports only Fixed IP/DHCP as connection protocols. The –301 return value (Failure) is
returned and the function exits when the preferred line type is mobile phone and the function is used
outside of the concerned network service range. The –302 return value (Failure) is returned and the
function exits when the concerned external communication device is not available.

connectPPPWithISPParams()

Establishes a PPP connection.

Syntax

Number connectPPPWithISPParams(

[input Number idleTime]

)

Argument

idleTime: The maximum period of time in which the connection is kept without any data
transmission and reception (in milliseconds).

Return values

1: Success.

–1: Parameter error.

–3: Time-out occurred.

–4: No dial tone detected.

–5: No carrier detected.

–6: Disconnection enforced.

–7: Modem in use.

–8: Line is busy.

–100: PPP connection has been established.

–200: Receiver has been configured not to use PPP.

50 Rec. ITU-T H.762 (05/2011)

–301: Outside of the network service range (when use of mobile phone/PHS is preferred and
line types are detectable).

–302: External communication device was not available (when use of mobile phone/PHS is
preferred and line types are detectable).

NaN: Failure by other causes.

Description

This function establishes a PPP connection according to the receiver configuration, especially the
ISP connection related parameters applicable to automatic connection. An established PPP
connection is disconnected in cases: when the disconnectPPP() function is explicitly executed,
when the period of time defined in the receiver or specified with idleTime has passed before a
packet is sent/received, or a disconnecting feature in a receiver is explicitly invoked by an end user.
When no value is set for idleTime, a value configured in a receiver is recognized as a default value.
The –100 return value (Failure) is returned and the function exits when the PPP connection has been
established using an automatic connection feature in the receiver or an automatic connection
function. The –200 return value (Failure) is returned and the function exits when the preferred line
type has not been configured to use PPP. The –301 return value (Failure) is returned and the
function exits when the preferred line type is mobile phone and the function is used outside of the
concerned network service range. The –302 return value (Failure) is returned and the function exits
when the concerned external communication device is not available.

disconnectPPP()

Disconnects an established PPP connection.

Syntax

Number disconnectPPP ()

Argument

None.

Return values

1: Success.

–1: No PPP connection has been established.

–200: Receiver has been configured not to use PPP.

NaN: Failure.

Description

This function disconnects a PPP connection that has been established using the connectPPP()
function, the connectPPPWithISPParams() function, or an automatic connection feature in a
receiver. An established line connection is also disconnected. The –200 return value (Failure) is
returned and the function exits when the receiver supports no PPP connections. The NaN return
value (Failure) is returned and the function exits when this function has been executed to fail to
disconnect an established PPP connection due to a busy line which is occupied by another
application in a receiver or other causes.

getConnectionType()

Obtains a preferred line type used to connect to ISP.

 Rec. ITU-T H.762 (05/2011) 51

Syntax

Number getConnectionType ()

Arguments

None.

Return values

1: PSTN.

100: ISDN.

200: PHS (No specific PHS type was identified).

201: PHS (PIAFS2.0).

202: PHS (PIAFS2.1).

300: Mobile phone (No specific mobile phone type was identified).

301: Mobile phone (PDC).

302: Mobile phone (PDC-P).

303: Mobile phone (DS-CDMA).

304: Mobile phone (MC-CDMA).

305: Mobile phone (CDMA cellular system).

401: Ethernet (PPPoE).

402: Ethernet (Fixed IP).

403: Ethernet (DHCP).

NaN: Failure.

Description

This function is applicable to a terminal that has an IP connection feature. This function returns the
preferred line type used by a receiver to automatically connect to ISP either via the receiver's
automatic ISP connection feature or an automatic connection function, connectPPP() or
connectPPPWithISPParams(). The return value 200 is retuned, when the preferred line type is
PHS and the specific type (PIAFS2.0 or PIAFS2.1) is not identified. The return value 300 is retuned
when the preferred line type is Mobile phone and the connection procedure specific to the carrier is
not identified.

isIPConnected()

Verifies whether or not an IP (Internet Protocol) connection has been established.

Syntax

Number isIPConnected ()

Arguments

None.

Return values

0: No IP connection has been established.

1: IP connection has been established using automatic connection feature.

52 Rec. ITU-T H.762 (05/2011)

2: IP connection has been established using the connectPPP()/connectPPPWithISPParams()
function.

NaN: Failure.

Description

This function is applicable to a terminal that has an IP connection feature. This function returns a
value indicating whether or not an IP connection has been established by the receiver.

transmitTextDataOverIP()

Sends and receives a text mail using TCP/IP.

Syntax

Array transmitTextDataOverIP(

input String uri,

input String text,

input String charset

)

Arguments

uri: URI representing a service that send the specified text data.

text: Text data to be sent.

charset: Character encoding used to send and receive the text data.

The available values are:

"EUC-JP" EUC-JP

"Shift_JIS" Shift-JIS

"UTF-8" UCS/UTF-8

"UTF-16" UCS/UTF-16

Return values

Array[0]: Numeric value representing the result code

1: Success.

–1: Parameter error.

–2: Line was disconnected during transfer.

–3: Time-out occurred.

–300: Failed to establish an automatic connection.

–400: Failed to map names using DNS.

–500: Failed to process TLS-based operation.

NaN: Failure by other causes.

Array[1]: Status-Code string in HTTP1.1.

Array[2]: Received text data.

 Rec. ITU-T H.762 (05/2011) 53

Description

This function sends text data to the resource on the Internet specified in the uri argument. The
protocol used to send the data depends on uri. When "https://" is described in uri, the function
requires the receiver to operate TLS-based operation before the function sends or receives the data.
The acceptable size of text data and the character encoding (charset) used to send/receive the data
are defined in an operational standard regulation.

playRomSound()

Plays sound of an event built in the receiver.

Syntax

Number playRomSound(input String soundID)

Argument

soundID: Identifies sound of an event built in the receiver based on the namespace convention
(romsound://<sound_id>).

Return values

1: Success.

NaN: Failure.

Description

This function plays sound of an event built in the receiver that is specified with soundID based on
the conventions on the namespace.

sleep()

Pauses processing for a period specified in milliseconds.

Syntax

Number sleep(input Number interval)

Argument

interval Pausing interval (in milliseconds).

Return values

1: Success.

NaN: Failure.

Description

This function pauses processing for a period specified with interval (in milliseconds).

setInterval()

Performs a processing command in each specified interval (in milliseconds).

Syntax

Number setInterval(

input String func,

54 Rec. ITU-T H.762 (05/2011)

input Number msec,

input Number iteration

)

Arguments

func: Command or function name executed by this function.

msec: Interrupt interval (in milliseconds).

iteration: Number of repeats.

Return values

Positive value: Registered timer ID.

NaN: Failure.

Description

This function invokes a function or command specified with func in each interval specified with
msec for the number of times specified with iteration. If iteration is 0 (zero), the invocation is
repeated until clearInterval is called.

clearTimer()

Terminates processing of a registered timer ID which is specified.

Syntax

Number clearTimer (input Number timerID)

Arguments

timerID: Registered timer ID.

Return values

1: Success.

NaN: Failure.

Description

This function cancels processing of a registered timer ID specified with timerID.

pauseTimer()

Pauses the timer with a registered timer ID which is specified.

Syntax

Number pauseTimer (input Number timerID)

Argument

timerID: Registered timer ID.

Return values

1: Success.

NaN: Failure.

 Rec. ITU-T H.762 (05/2011) 55

Description

This function gives a pause to the timer that has been registered with timerID. Unlike the sleep
function, other functions are not affected. This function is applicable to a timer generated by
setInterval().

resumeTimer()

Resumes a paused timer with a registered timer ID which is specified.

Syntax

Number resumeTimer(input Number timerID)

Argument

timerID: Registered timer ID.

Return values

1: Success.

NaN: Failure.

Description

This function resumes the paused timer that has been registered with timerID. This function
applicable to a timer generated by setInterval(). Once this function has been executed, any interval
consumes the specified milliseconds in Timer functions, instead of the remaining milliseconds
when the timer was paused by pauseTimer(). That is, once resumeTimer() has been executed, any
following function is executed when the specified interval expires. Once this function has been
executed to a timer generated by setInterval(), the timer is invoked for the number of times, that is
the result of subtracting the number of times for which the timer had been invoked until the timer
was paused by pauseTimer() from the number specified with iteration. However, when iteration is
0, the timer is invoked iteratively until clearTimer () is invoked.

setCurrentDateMode()

Specifies the type of time to be referenced when performing Date() and other built-in functions.

Syntax

Number setCurrentDateMode(input Number time_mode)

Arguments

time_mode: Time mode (0: Absolute playback time; 1: Reception time)

Return values

1: Success.

NaN: Failure.

Description

This function specifies the type of time to be obtained by a time acquisition functionality provided
by Date() and other ECMAScript built-in functions. If time_mode is 0 (zero), the absolute time at
which the playback starts is specified. When playing a stream-recorded content, the absolute time
during playback is also referenced. In this case, for example, it is assumed that when playing the
received contents, the time in TOT/TDT or the time of a clock that is based on TOT/TDT is
referenced, and when playing a stream-stored contents, a clock that retains the absolute time during

56 Rec. ITU-T H.762 (05/2011)

playback is referenced. If time_mode is 1 (one), the absolute time during playback is specified.
When playing a received content at a time, the operation is the same as for time_mode 0 (zero).
When playing a stream-recorded content, the operation is controlled based on the time standard at
the time of receive. In this case, for example, it is assumed that when playing the received contents,
the time in TOT/TDT or the time of a clock that is based on TOT/TDT is referenced. It is assumed
that when playing a stored-stream content, a clock that is based on PartialTS Time Descriptor of
SIT is referenced.

loadDRCS()

Configures external character data.

Syntax

Number loadDRCS(input String DRCS_ref)

Argument

DRCS_ref: URI representing a location containing external character data

Return values

1: Success

NaN: Failure

Description

This function loads external character data from DRCS data in a URI location specified in
DRCS_ref. The description of DRCS_ref conforms to the namespace. The loaded external character
data is effective until unloadDRCS() is called or the display of a LIME document ends. The content
referenced by DRCS_ref conforms to the format conventions described in [ARIB STD-B24]
Volume 1, Appendix D.

setCCDisplayStatus()

Switches the display state of the specified language.

Syntax

Number setCCDisplayStatus(

input Number language,

input Boolean status

)

Arguments

language: Language selection

 1: First language.

 2: Second language.

 3: Third language.

 4: Fourth language.

 5: Fifth language.

 6: Sixth language.

 7: Seventh language.

 Rec. ITU-T H.762 (05/2011) 57

 8: Eighth language.

status Display control (True: present; False: do not present)

Return values

1: Success.

NaN: Failure.

Description

This function switches the display state of the language specified by the first argument to the state
specified by the second argument. If the subtitle does not include the specified language, the return
value is NaN for the status set to True (display) and '1' for the status set to False (not display). If the
display state of the subtitle is changed after performing this function, the event CCStatusChanged
occurs. Further, if the status is set to True for the language which has been displayed, or if the status
is set to False for the language which has not been displayed, the display status of subtitle is not
changed and the value '1' is returned.

getCCDisplayStatus()

Obtains the display state of the subtitle for each language.

Syntax

Number getCCDisplayStatus(input Number language)

Argument

language: Language selection

 1: First language.

 2: Second language.

 3: Third language.

 4: Fourth language.

 5: Fifth language.

 6: Sixth language.

 7: Seventh language.

 8: Eighth language.

Return values

0: The specified language in the subtitle is in hidden state.

1: The specified language in the subtitle is in display state.

NaN: Failure.

Description

This function obtains the display state of the language specified by the argument. If the subtitle does
not include the language specified by the argument, the return value is 0.

getCCLanguageStatus()

Verifies whether or not a specified language exists in the subtitle.

58 Rec. ITU-T H.762 (05/2011)

Syntax

String getCCLanguageStatus(input Number language)

Argument

language: Language selection

 1: First language.

 2: Second language.

 3: Third language.

 4: Fourth language.

 5: Fifth language.

 6: Sixth language.

 7: Seventh language.

 8: Eighth language.

Return values

0: The specified language does not exist in the subtitle.

1: The specified language exists in the subtitle.

NaN: Failure.

Description

This function verifies whether or not the language specified by the argument exists in the subtitle.

9.2.1.1 Identification of events

The following character string is used to reference an event.

scheme://<original_network_id>.<transport_stream_id>.<service_id>.<event_id>

NOTE – scheme is currently fixed to "arib" in Japan.

9.2.1.2 Identification of resources

Module

Any module is uniquely identified in the network with the following name.

scheme://<original_network_id>.<transport_stream_id>.<service_id>
[;<content_id>] [.<event_id>]/<component_tag>/<moduleName>

<moduleName> is a character string in Name descriptor of DII (download info indication). If no
Name descriptor is used, moduleId must be assigned to <moduleName> and:

– If only one content exists in an event, ";<content_id>" may be omitted.

– If the current service is specified without using an event identifier, ".<event_id>" may be
omitted.

– "content_id" must be used to reference a stored content. "event_id" is not used.

– IDs other than <moduleName> are described in hexadecimal notation.

– A moduleId used for <moduleName> is a hexadecimal character string.

NOTE – "scheme" is currently fixed to "arib-dc" in Japan.

Resource directly mapped to a module

 Rec. ITU-T H.762 (05/2011) 59

When a resource is directly mapped to a module, the resource is identified with a name based on the
conventions described for "Module" above.

Resource stored in a module in entity format

Any resource packaged in a module in an entity format is uniquely identified with the module name
followed by the resource name, as shown below.

scheme://<original_network_id>.<transport_stream_id>.<service_id>[;<content_id>]
[.<event_id>]/<component_tag>/<moduleName>/<resourceName>

<resourceName> is equivalent to the character string specified in Content-Location: of the resource
entity header. <resourceName> is case insensitive.

NOTE – "scheme" is currently fixed to "arib-dc" in Japan.

10 Use of DOM in LIME

Table 10-1 gives the DOM interfaces that are used in LIME-DOM and Table 10-2 shows the profile
for the DOM core basic interface attributes.

Table 10-1 – DOM core fundamental interfaces

Interface Operation

Basic interface group

DOMException –

DOMImplementation R1

DocumentFragment –

Document R1

Node R1

NodeList –

NamedNodeMap –

CharacterData R1

Attr –

Element R1

Text R1

Comment –

Extended interface group

CDATASection R1

DocumentType –

Notation –

Entity –

EntityReference –

ProcessingInstruction –

60 Rec. ITU-T H.762 (05/2011)

Table 10-2 – DOM core basic interface attributes of LIME-DOM

Interface Attribute/method Operation Restriction

DOMImplementation

 hasFeature() R1

Document

 doctype –

 implementation R1 R

 documentElement R1 R

 createElement() –

 createDocumentFragment() –

 createTextNode() –

 createComment() –

 createCDATASection() –

 createProcessingInstruction() –

 createAttribute() –

 createEntityReference() –

 getElementByTadName() –

Node –

 nodeName –

 nodeValue –

 nodeType –

 parentNode R1 R

 childNodes –

 firstChild R1 R

 lastChild R1 R

 previousSibling R1 R

 nextSibling R1 R

 attributes –

 ownerDocument –

 insertBefore –

 replaceChild –

 removeChild –

 appendChild –

 hasChildNodes() –

 cloneNode() –

CharacterData

 data R1 RW (Note)

 length R1 R

 substringData() –

 appendData() –

 insertData() –

 Rec. ITU-T H.762 (05/2011) 61

Table 10-2 – DOM core basic interface attributes of LIME-DOM

Interface Attribute/method Operation Restriction

 deleteData() –

 replaceData() –

Element

 tagName() R1 R

 getAttribute() –

 setAttribute() –

 removeAttribute() –

 getAttributeNode() –

 setAttributeNode() –

 removeAttributeNode() –

 getElementsByTagName() –

 normalize() –

Text

 splitText() –

CDATASection

NOTE – The child nodes of script and style are not accessed in the operation. Only the child nodes of p,
span and a can be written in the operation.

10.1 DOM HTML interface group

Table 10-3 shows the profile of DOM HTML interface used in LIME-DOM and Table 10-4 shows
the profile of attributes and methods of the DOM HTML interface group for LIME.

Table 10-3 – Profile of DOM HTML interface group

Interface Operation Interface Operation

HTMLCollection – HTMLDListElement –

HTMLDocument R1 HTMLOListElement –

HTMLElement R1 HTMLUListElement –

HTMLBlockquoteElement – HTMLLIElement –

HTMLPreElement – HTMLButtonElement –

HTMLHeadingElement – HTMLFieldSetElement –

HTMLHRElement – HTMLFormElement –

HTMLDivElement R1 HTMLInputElement R1

HTMLParagraphElement R1 HTMLLabelElement –

HTMLQuoteElement – HTMLLegendElement –

HTMLBRElement R1 HTMLOptGroupElement –

HTMLModElement – HTMLOptionElement –

HTMLAnchorElement R1 HTMLSelectElement –

HTMLBaseElement – HTMLTextAreaElement –

HTMLLinkElement – HTMLTableCaptionElement –

62 Rec. ITU-T H.762 (05/2011)

Table 10-3 – Profile of DOM HTML interface group

Interface Operation Interface Operation

HTMLTableColElement – HTMLFrameSetElement –

HTMLTableElement – HTMLFrameElement –

HTMLTableSectionElement – HTMLIFrameElement –

HTMLTableCellElement – HTMLMetaElement R1

HTMLTableRowElement – HTMLTitleElement R1

HTMLImageElement – HTMLScriptElement R1

HTMLAreaElement – HTMLStyleElement R1

HTMLMapElement – HTMLBodyElement R1

HTMLObjectElement R1 HTMLHeadElement R1

HTMLParamElement – HTMLHtmlElement R1

Table 10-4 – Profile of attributes and methods of DOM HTML interface group

Interface Attribute/method Operation Restriction

HTMLDocument

 title –

 referrer –

 domain –

 uRL –

 body –

 images –

 applets –

 links –

 forms –

 anchors –

 cookie –

 open() –

 close() –

 write() –

 writeln() –

 getElementById() R1

 getElementsByName() –

HTMLElement

 id R1 R

 title

 lang

 dir

 className R1 R

 Rec. ITU-T H.762 (05/2011) 63

Table 10-4 – Profile of attributes and methods of DOM HTML interface group

Interface Attribute/method Operation Restriction

HTMLDivElement

HTMLParagraphElement

HTMLBRElement

HTMLAnchorElement

 accesskey R1 R

 charset –

 cords –

 href R1 RW

 hreflang –

 name –

 rel –

 rev –

 shape –

 tabIndex –

 target –

 type –

 blur() R1

 focus() R1

HTMLInputElement

 defaultValue R1 R

 defaultChecked –

 form –

 accept –

 accesskey R1 R

 alt –

 checked –

 disabled R1 RW

 maxLength R1 R

 name –

 readOnly R1 RW

 size –

 src –

 tabIndex –

 type R1 R

 useMap –

 value R1 RW

 blur() R1

 focus() R1

 select() –

64 Rec. ITU-T H.762 (05/2011)

Table 10-4 – Profile of attributes and methods of DOM HTML interface group

Interface Attribute/method Operation Restriction

 click() –

HTMLObjectElement

 form –

 code –

 archive –

 codebase –

 codeType –

 data R1 RW (Note)

 declare –

 height –

 name –

 standby –

 tabIndex –

 type R1 R

 useMap –

 width –

HTMLMetaElement

 content R1 R

 httpEquiv –

 name R1 R

 scheme –

HTMLTitleElement

 text R1 R

HTMLScriptElement

 text –

 htmlFor –

 event –

 charset –

 defer –

 src –

 type –

HTMLStyleElement

 disabled –

 media –

 type –

HTMLBodyElement

HTMLHeadElement

 profile –

HTMLHtmlElement

 Rec. ITU-T H.762 (05/2011) 65

Table 10-4 – Profile of attributes and methods of DOM HTML interface group

Interface Attribute/method Operation Restriction

 version –

NOTE – If the DOM application programming interface (API) changes the data attribute of an object
concerning the monomedia that is transmitted using data carousel, the data attribute value will be read
again even when remaining unchanged. If the module containing a resource specified by the data attribute
is locked, the locked data will be applied as it is; otherwise, the presentation must be updated after getting
the data from a transmission stream again. Note that dynamically changing type attributes and dynamically
changing schemas by changing data attributes for sound are not applicable to the object element.

10.2 DOM interface specific to LIME-DOM

This interface operates LIME element attributes and CSS properties. LIME documents are based on
XHTML 1.0. Therefore, the DOM Level1 HTML DOM interfaces can be applied to operate
element attributes. However, the HTML DOM interfaces do not define operations of element CSS
properties. So that extended HTML DOM interfaces for operating the CSS properties of
LIME-HTML elements as well as interfaces for handling elements with attributes added for LIME
are required. This clause defines these interfaces.

Table 10-5 summarizes the profile of the DOM interface specific to LIME-DOM and Table 10-6
shows the profile of attributes and methods of the DOM interface for LIME-DOM. Any defined
attribute and method that is not listed is assumed that its operation is "–".

Table 10-5 – Profile of interface (DOM interface group)

Interface Operation

LIMEDocument R1

LIMEElement R1

LIMEBlockquoteElement –

LIMEPreElement –

LIMEHeadingElement –

LIMEHRElement –

LIMEDivElement R1

LIMESpanElement R1

LIMEParagraphElement R1

LIMEQuoteElement –

LIMEBRElement R1

LIMEModElement –

LIMEAnchorElement R1

LIMELinkElement –

LIMEDListElement –

LIMEOListElement –

LIMEUListElement –

LIMELIElement –

LIMEButtonElement –

LIMEFieldSetElement –

66 Rec. ITU-T H.762 (05/2011)

Table 10-5 – Profile of interface (DOM interface group)

Interface Operation

LIMEFormElement –

LIMEInputElement R1

LIMELabelElement –

LIMELegendElement –

LIMEOptGroupElement –

LIMEOptionElement –

LIMESelectElement –

LIMETextAreaElement –

LIMETableCaptionElement –

LIMETableColElement –

LIMETableElement –

LIMETableSectionElement –

LIMETableCellElement –

LIMETableRowElement –

LIMEImageElement –

LIMEAreaElement –

LIMEMapElement –

LIMEObjectElement R1

LIMEFrameSetElement –

LIMEFrameElement –

LIMEIFrameElement –

LIMEBodyElement R1

LIMEBmlElement R1

LIMEBeventElement R1

LIMEBeitemElement R1

LIMEListTableElement –

LIMEItemElement –

Table 10-6 summarizes the attributes and methods of the DOM interface for LIME-DOM. Any
defined attribute and method that is not listed is assumed that its operation is "–".

Table 10-6 – Profile of attributes and methods (DOM interface group)

Interface Attribute/method Operation Remarks

LIMEDocument

 currentFocus R1 R

 currentEvent R1 R (Note 2)

LIMEDivElement

 style –

 normalStyle R1 RW (Note 1)

 Rec. ITU-T H.762 (05/2011) 67

Table 10-6 – Profile of attributes and methods (DOM interface group)

Interface Attribute/method Operation Remarks

 focusStyle R1 RW (Note 1)

 activeStyle R1 RW (Note 1)

 accessKey R1 R

 focus() R1

 blur() R1

LIMESpanElement

 style –

 normalStyle R1 RW (Note 1)

 focusStyle R1 RW (Note 1)

 activeStyle R1 RW (Note 1)

 accessKey R1 R

 focus() R1

 blur() R1

LIMEParagraphElement

 style –

 normalStyle R1 RW (Note 1)

 focusStyle R1 RW (Note 1)

 activeStyle R1 RW (Note 1)

 accessKey R1 R

 focus() R1

 blur() R1

LIMEBRElement

 style –

 normalStyle R1 RW (Note 1)

 focusStyle –

 activeStyle –

LIMEAnchorElement

 style –

 normalStyle R1 RW (Note 1)

 focusStyle R1 RW (Note 1)

 activeStyle R1 RW (Note 1)

 effect –

LIMEInputElement

 style –

 normalStyle R1 RW (Note 1)

 focusStyle R1 RW (Note 1)

 activeStyle R1 RW (Note 1)

LIMEObjectElement

 style –

68 Rec. ITU-T H.762 (05/2011)

Table 10-6 – Profile of attributes and methods (DOM interface group)

Interface Attribute/method Operation Remarks

 normalStyle R1 RW (Note 1)

 focusStyle R1 RW (Note 1)

 activeStyle R1 RW (Note 1)

 classId –

 accessKey R1 R

 remain R1 RW

 streamPosition R1 RW (Note 3)

 streamStatus R1 RW

 streamLooping –

 streamSpeedNumerator –

 streamSpeedDenominator –

 streamLevel –

 setSpeed() –

 movePosition() –

 hasAssociatedIndex() –

 assignToLocalEvent() –

 assignToNodePlayMode()

 getMainAudioStream() R1

 setMainAudioStream() R1

 focus() R1

 blur() R1

LIMEBodyElement

 invisible R1 RW

 style –

 normalStyle R1 RW (Note 1)

 focusStyle –

 activeStyle –

LIMEBmlElement

 style –

 normalStyle –

 focusStyle –

 activeStyle –

LIMEBeventElement

LIMEBeitemElement

 type R1 R

 esRef R1 RW

 messageGroupId R1 R

 messageId R1 RW

 messageVersion R1 RW

 Rec. ITU-T H.762 (05/2011) 69

Table 10-6 – Profile of attributes and methods (DOM interface group)

Interface Attribute/method Operation Remarks

 moduleRef R1 RW

 languageTag R1 RW

 registered –

 serviceId –

 eventide –

 timeMode R1 R

 timeValue R1 RW

 objectId R1 RW

 subscribe R1 RW

NOTE 1 – These attributes are accessed through the LIMECSS2PropertyInterface. If the attributes are
read directly, an object is returned. Writing the attributes directly is inhibited.
NOTE 2 – The values derived from document.currentEvent must not be referenced by other handlers by
being substituted to global variables. The result of the substitution is not guaranteed.
NOTE 3 – It can be read and written only if the type attribute is "image/X-arib-mng".
The "setMainAudioStream()" and "getMainAudioStream()" methods of the BMLObjectElement interface
are not used by LIME. The "invisible" attribute of the BMLBodyElement interface is not used by LIME.

LIMEDocument DOM interface

This interface operates the whole LIME document. It is the HTMLDocument interface defined in
Table 10-4 with methods for obtaining context information of the event currently processed and
methods for obtaining the LIME object element that has the focus.

Interface definition:

interface LIMEDocument : HTMLDocument {

readonly attribute BMLEvent currentEvent;

readonly attribute LIMEElement currentFocus;

};

Attributes:

currentEvent Context information that indicates the event currently processed.

currentFocus LIME object element that has the focus.

Method:

None.

LIME element DOM interface

The following interfaces are HTML DOM interfaces defined to operate the CSS property of a
LIME document. Each interface inherits an HTML DOM interface that corresponds to the element
with an extension of normalStyle, focusStyle, and activeStyle attributes that are
LIMECSS2Properties objects for retaining the CSS properties.

LIMEBlockquoteElement interface

Interface definition:

interface LIMEBlockquoteElement : HTMLBlockquoteElement {

70 Rec. ITU-T H.762 (05/2011)

attribute LIMECSS2Properties normalStyle;

attribute LIMECSS2Properties focusStyle;

attribute LIMECSS2Properties activeStyle;

};

Attributes:

normalStyle Retains the inherited value of CSS property that is applied for presentation
in normal state. The retained value must be a computed value. Therefore,
"inherit" must not be specified.

focusStyle Retains the inherited value of CSS property that is applied for presentation
in focus state. However, before the value of a CSS property in focusStyle is
changed at first, it must not affect the decision on the value applied to the
CSS property. And the retained value must l be a computed value.
Therefore "inherit" must not be specified for this attribute.

activeStyle Retains the inherited value of CSS property that is applied for presentation
in an active state (e.g., when the Enter key on a remote control was
pressed.). However, before the value of a CSS property in activeStyle is
changed at first, it must l not affect the decision on the value applied to the
CSS property. And the retained value must be a computed value Therefore
"inherit" must not be specified for this attribute.

LIMEDivElement interface

This interface is used for the div element. It corresponds to the additional definition of the attributes
the for div element.

Interface definition:
interface LIMEDivElement : HTMLDivElement {
attribute DOMString accessKey;
attribute LIMECSS2Properties normalStyle;
attribute LIMECSS2Properties focusStyle;
attribute LIMECSS2Properties activeStyle;
void focus();
void blur();
};

Attributes:

accessKey Value of the accesskey attribute

normalStyle Inherited value of CSS property that is applied for presentation in normal
state.

focusStyle Inherited value of CSS property that is applied for presentation in focus
state.

activeStyle Inherited value of CSS property that is applied to presentation in active
state.

Methods:

focus() Moves the focus to the item.

Parameter: None

Return value: None

blur() Moves the focus away from the item.

 Rec. ITU-T H.762 (05/2011) 71

Parameter: None

Return value: None

LIMESpanElement interface

This interface is used for the span element. It corresponds to the additional definition of the
attributes for the span element.

Interface definition:
interface LIMESpanElement : HTMLSpanElement {
attribute DOMString accessKey;
attribute LIMECSS2Properties normalStyle;
attribute LIMECSS2Properties focusStyle;
attribute LIMECSS2Properties activeStyle;
void focus();
void blur();
};

Attributes:

accessKey Value of the accesskey attribute.

normalStyle Inherited value of CSS property that is applied for presentation in normal
state.

focusStyle Inherited value of CSS property that is applied for presentation in focus
state.

activeStyle Inherited value of CSS property that is applied to presentation in active
state.

Method:

focus() Moves the focus to the item.

Parameter: None

Return value: None

blur() Moves the focus away from the item.

Parameter: None

Return value: None

LIMEParagraphElement interface

This interface is used for the p element. It corresponds to the additional definition of attributes for
the p element.

Interface definition:
interface LIMEParagraphElement : HTMLParagraphElement {
attribute DOMString accessKey;
attribute LIMECSS2Properties normalStyle;
attribute LIMECSS2Properties focusStyle;
attribute LIMECSS2Properties activeStyle;
void focus();
void blur();
};

Attributes:

accessKey Value of the accesskey attribute.

72 Rec. ITU-T H.762 (05/2011)

normalStyle Inherited value of CSS property that is applied for presentation in normal
state.

focusStyle Inherited value of CSS property that is applied for presentation in focus
state.

activeStyle Inherited value of CSS property that is applied to presentation in active
state.

Methods:

focus() Moves the focus to the item.

Parameter: None

Return value: None

blur() Moves the focus away from the item.

Parameter: None

Return value: None

LIMEAnchorElement interface

This interface is used for the a element. It corresponds to the additional definition of attributes for
the a element above.

Interface definition:
interface LIMEAnchorElement : HTMLAnchorElement {
attribute LIMECSS2Properties normalStyle;
attribute LIMECSS2Properties focusStyle;
attribute LIMECSS2Properties activeStyle;
};

Attributes:

normalStyle Inherited value of CSS property that is applied for presentation in normal
state.

focusStyle Inherited value of CSS property that is applied for presentation in focus
state.

activeStyle Inherited value of CSS property that is applied to presentation in active
state.

Method:

None.

LIMEObjectElement interface

This interface is used for the object element. It corresponds to the classId attribute defined in
XHTML 1.0 (undefined in HTML DOM) and additional attribute definitions of the object element.

Interface definition:
interface LIMEObjectElement : HTMLObjectElement
attribute LIMECSS2Properties normalStyle;
attribute LIMECSS2Properties focusStyle;
attribute LIMECSS2Properties activeStyle;
attribute boolean remain;
attribute long streamPosition;
attribute DOMString streamStatus;

attribute DOMString mainAudioStreaml;

 Rec. ITU-T H.762 (05/2011) 73

boolean selectMainAudioStream(input DOMString audio_ref);
attribute DOMString accessKey;
void focus();
void blur();
};

Attributes:
normalStyle Inherited value of CSS property that is applied for presentation in normal

state.
focusStyle Inherited value of CSS property that is applied for presentation in focus

state.
activeStyle Inherited value of CSS property that is applied to presentation in active

state.
remain If true, continues monomedia play while document transition. Value of the

remain attribute of the object element
streamPosition Relative position of play to the head of the stream. Value of the

streamposition attribute of the object element
streamStatus State of stream. The value shall be "play", "stop" or "pause". Changing this

value controls playback of monomedia. Value of the streamstatus attribute
of the object element

accessKey Value of the accesskey attribute

Methods:

setMainAudio
Stream()

Applicable to the object element with the main audio stream specified by
setting component_tag=-1 in the data element. This method controls
switching of the main audio stream.

Parameter: audio_ref URI character string indicating audio ES/channel in
the following format:

 /<component_tag>[;<channel_id>/]

Return value: true for success and false for fail.

getMainAudio
Stream()

Applicable to an audio stream with setting component_tag=-1 in data
element. This method obtains URI character string indicating selected
audio ES and channel. Otherwise, obtains null.

Parameter: None

Return value: URI character string indicating audio ES and channel, or
null.

focus() Moves the focus to the item.

Parameter: None

Return value: None

blur() Moves the focus away from the item.

Parameter: None

Return value: None

LIMEBodyElement interface

This interface is used for the body element. It corresponds to the additional attribute definition of
the body element.

74 Rec. ITU-T H.762 (05/2011)

Interface definition:
interface LIMEBodyElement : HTMLBodyElement {
attribute LIMECSS2Properties normalStyle;
attribute boolean invisible;
}

Attributes:

normalStyle Contains the inherited value of a CSS property that is applied for
presentation in normal state.

invisible When it is true, no element and no background of the LIME document is
displayed.

Methods:

None.

LIMEBeitemElement interface

This interface is used for the beitem element, which is an extended LIME element for specifying
events defined.

Interface definition:
interface LIMEBeitemElement : HTMLElement {
attribute readonly DOMString type:
attribute DOMString esRef;
attribute unsigned short messageId;
attribute unsigned short messageVersion;
attribute unsigned short messageGroupId;
attribute DOMString moduleRef;
attribute unsigned short languageTag;
attribute DOMString timeMode;
attribute DOMString timeValue;
attribute DOMString objectId;
attribute DOMString segmentId;
attribute boolean subscribe:
};

Attributes:

type Type of events. Value of type attribute LIME of beitem element

esRef Value of es_ref attribute LIME of beitem element

MessageId Value of message_id attribute LIME of beitem element

MessageVersion Value of message_version attribute LIME of beitem element

MessageGroupId Value of message_group_id attribute LIME of beitem element

moduleRef Value of module_ref attribute LIME of beitem element

languageTag Value of language_tag attribute LIME of beitem element

timeMode Value of time_mode attribute LIME of beitem element

timeValue Value of time_value attribute LIME of beitem element

objectId Value of object_id attribute LIME of beitem element

subscribe Value of subscribe attribute LIME of beitem element. Specifies whether
events are valid or not.

 Rec. ITU-T H.762 (05/2011) 75

Methods:

None.

10.3 Interface for LIME interrupt event

The event DOM Interface is an extended DOM interface for obtaining the context information
(e.g., "Type of Event Occurred" and "Target of Event") of a LIME event. Table 10-7 summarizes
the interface corresponding to the LIME events.

Table 10-7 – Profile of interfaces for LIME interrupt event

Interface Attribute/method Operation Remarks

LIMEEvent

 type R1 R

 target R1 R

LIMEIntrinsicEvent

 keyCode R1 R

LIMEBeventEvent

 status R1 R

 privateData R1 R

 esRef R1 R

 messageId R1 R

 messageVersion R1 R

 messageGroupId R1 R

 moduleRef R1 R

 languageTag R1 R

 registerId –

 serviceId –

 eventId –

 object R1 R

NOTE – If the URI string is returned for esRef, moduleRef, etc. The returned value must be in the short
format (e.g., "/XX", "/XX/YYYY").

LIMEEvent interface

LIMEEvent interface retains the context information of a LIME event.

Interface definition:
interface LIMEEvent {
readonly attribute DOMString type;
readonly attribute HTMLElement target;
};

Attributes:

type Name of event.

target Target of event. For example, an event for broadcasting service uses
LIMEBeitemElement Interface, which is a LIME element DOM interface for
beitem element.

76 Rec. ITU-T H.762 (05/2011)

Method:

None.

LIMEIntrinsicEvent interface

LIMEIntrinsicEvent Interface retains the Intrinsic Event context information of a LIME event. It is
a LIMEEvent with attributes specific to Intrinsic Event.

Interface definition:

interface LIMEIntrinsicEvent : LIMEEvent {
readonly attribute unsigned long keyCode;
};

Attributes:

keyCode Value of the key for remote control key entry events (onkeydown,
onkeypress, and onkeyup). 0 for other events.

Method:

None.

LIMEBeventEvent interface

This interface is a LIMEEvent with attributes specific to broadcasting service events.

Interface Definition:
interface LIMEBeventEvent : LIMEEvent {
readonly attribute signed short status;
readonly attribute DOMString privateData;
readonly attribute DOMString esRef;
readonly attribute DOMString messageId;
readonly attribute DOMString messageVersion;
readonly attribute DOMString messageGroupId;
readonly attribute DOMString moduleRef;
readonly attribute unsigned short languageTag;
readonly attribute LIMEObjectElement object;
readonly attribute DOMString segmentId;
};

Attributes:

status State after occurrence of event.

Negative value: Normal event has not occurred because of an error.

Non negative value: Normal event has occurred.

privateData If the event is an event message (EventMessageFired), the character string
date written in the privateDataByte field of the received event message is
retained. Empty string for other events.

 Rec. ITU-T H.762 (05/2011) 77

esRef If the event is an event message (EventMessageFired), it must be a URI
character string of a component in which the received event message is
transmitted. If the event is NPTReferred, it must be a URI character string
that identifies the component carrying the NPT reference descriptor. If the
event is CCStatusChanged, it must be a URI character string that identifies
the referenced subtitle component. If the event is
mainAudioStreamChanged, it must be a URI character string that identifies
the referenced audio stream and the channel in it. For other events, empty
string.

messageId If the event is an event message (EventMessageFired), a value of the upper
eight bits of event_msg_id of the received event message. For other events,
0 (zero).

messageVersion If the event is an event message (EventMessageFired), a value of the lower
eight bits of event_msg_id of the received event message. For other events,
0 (zero).

messageGroupId If the event is an event message (EventMessageFired), a value of
event_msg_group_id of the received event message. For other events, 0
(zero).

moduleRef If the event is a module acquisition event (ModuleUpdated or
ModuleLocked), the URI character string of the module. For other events,
an empty string.

languageTag If the event is CCStatusChanged, a language identifier value of the subtitle
whose presentation status has been changed.

object If the event is a monomedia decoding event (MediaStopped, MediaStarted,
or MediaRepeated), object element to that an event is issued. For other
events, null.

segmentID When the event is SegmentPlayEnded, segmentID represents the segment
that has ended. Otherwise, segmentID is set to null.

Method:

None.

78 Rec. ITU-T H.762 (05/2011)

Table 10-8 lists the correspondence between interrupt event and type attribute of LIMEEvent.

Table 10-8 – Correspondence between interrupt event and type attribute of LIMEEvent

Interrupt event type value

Remote control key was pressed "keydown"

Remote control key was released "keyup"

Element was determined by pressing enter key or access key "click"

Focus was set "focus"

Focus is out of position "blur"

Document was loaded "load"

Document unloading was noticed in advance "unload"

When the focus on an input element is out, the change of the value
attribute of the concerning input element is detected

"change"

Event message was received "EventMessageFired"

Module update was detected "ModuleUpdated"

Module was locked "ModuleLocked"

Timer set by beitem triggered "TimerFired"

Process such as getNPT() was enabled "NPTReferred"

Monomedia presentation was stopped "MediaStopped"

data_event_id update was detected "DataEventChanged"

Display status of caption is changed "CCStatusChanged"

Main audio stream is changed "MainAudioStreamChanged"

Data button was pressed "DataButtonPressed"

Execution of global codes was started, or the functions specified by
executing setTimeout() and setInterval() was started

Undefined (Note)

NOTE – The target attribute is null in this case.

10.4 LIMECSS2 properties interface for LIME-DOM

The LIMECSS2 properties interfaces are designed with the goal of exposing CSS constructs to
object model consumers. Cascading style sheets is a declarative syntax for defining presentation
rules, properties and ancillary constructs used to format and render web documents.
[b-ITU-T H.740] specifies a mechanism to programmatically access and modify the rich style and
presentation control provided by CSS. This augments CSS by providing a mechanism to
dynamically control the inclusion and exclusion of individual style sheets, as well as manipulate
CSS rules and properties. Table 10-9 shows the profile of the LIMECSS2Properties interface used
in LIME-DOM.

The LIME-DOM attribute values below that are to be operated conform to the conventions on
operation of the CSS2 properties.

 Rec. ITU-T H.762 (05/2011) 79

Table 10-9 – Profile of LIMECSS2Properties interface

Property Operation Remarks

Box model

paddingTop R1 R

paddingRight R1 R

paddingBottom R1 R

PaddingLeft R1 R

borderWidth R1 R

borderStyle R1 R

Visual format model

Left R1 RW

Top R1 RW

Width R1 RW

Height R1 RW

lineHeight R1 R

Other visual effects

visibility R1 RW

Font

fontFamily R1 RW

fontSize R1 RW

fontWeight R1 RW

Text

textAlign R1 R

letterSpacing R1 R

LIME extension

borderTopColorIndex R1 RW

borderRightColorIndex R1 RW

borderLeftColorIndex R1 RW

borderBottomColorIndex R1 RW

backgroundColorIndex R1 RW

colorIndex R1 RW

grayscaleColorIndex R1 RW

clut R1 R

Resolution R1 R

displayAspectRatio R1 R

navIndex R1 R

navUp R1 R

80 Rec. ITU-T H.762 (05/2011)

Table 10-9 – Profile of LIMECSS2Properties interface

Property Operation Remarks

navDown R1 R

navLeft R1 R

navRight R1 R

usedKeyList R1 RW

11 Specific functions for IPTV services

11.1 Licensing

The following are functions related to licensing:

– The function to get an IPTV licence: Obtain the licence for the specified content.

– The function to get IPTV licence information: Obtain information concerning the specified
licence.

– The function to get DRM ID: Obtain the identifier of the conditional access system
(CAS)/digital rights management (DRM) client supporting the specified CAS/DRM.

11.2 Content initialization

The following is the function related to content initialization:

– The function to launch IPTV content: To initialize IPTV content by launching it.

11.3 Service registration

The following are functions related to service registration:

– The function to set IPTV service registration information: To set the basic registration
information of linear IPTV and VoD services.

– The function to check IPTV service registration information: To confirm the basic
registration information of linear IPTV and VoD services.

11.4 Communication of licence information

The function to set content package information: Set the information for the purchased content
package.

The function to update package licence information: Update the information of the licences for all
package content.

11.5 Page-transition control

The function to launch an unmanaged document: Changes to a document in the unmanaged state;
IPTV unmanaged.

The function to get the document management status: Obtains the information on the management
status of the document.

11.6 Control of display

The function to display marquee text: Displays the strings in the "p" element as marquee.

 Rec. ITU-T H.762 (05/2011) 81

11.7 Parental control function

The function to check the parental control password: Confirms the password for ensuring parental
control.

11.8 Use of URI

URI usage has the following operational restrictions:

– Maximum URI size is 1024 bytes.

– URI cannot contain multi-byte characters.

– If the URI refers to a directory, it must contain "/" at the end.

– In case of IPv6 network layer, the URI cannot contain the IP address. In case of IPv4, the IP
address can be directly included in the URI.

12 Transport of LIME document and related issues

The LIME document for a portal service is transported using HTTP or HTTPS. The version of
HTTP is fixed as HTTP/1.1, and the server is required not to use HTTP/1.0. The action of the
receiver when it receives an HTTP/1.0 message is dependent on implementation. The protocol for
HTTP/1.1 is required to be compliant with [IETF RFC 2616]. For HTTPS, the receiver and the
server are to establish a connection using TLS1.0 and SSL3.0, and then to conduct encrypted
communication using HTTP. The versions of transport layer security (TLS) and secure socket layer
(SSL) are TLS1.0 and SSL3.0, respectively, and the details of their use are described in
[b-IETF RFC 2818].

12.1 Use of HTTP/1.1

– Communication port

 When the URI is specified as "http:", the receiver and the server are to communicate using
HTTP/1.1 at the port specified in the URI. When the URI is specified as "https:", the
receiver and the server are to establish a connection using TLS1.0 and SSL3.0, and then to
conduct encrypted communication using HTTP/1.1 at the port specified in the URI. If the
port number is not specified in the URI, port number 80 is used for "http:" and 443 is used
for "https:" as default. However, there are cases where, depending on such factors as
firewalls, the port number might be different depending on the connection. The default port
can optionally be configured on the receiver, taking into account the connection
environment.

– Format of date and time

 Date and time formats are to use the fixed-length subset defined in [b-IETF RFC 1123]. All
date and time stamps are to be in GMT, except where otherwise specified.

• The server is recommended to return to the receiver data/time only in the format as
defined in [b-IETF RFC 1123], namely the fixed-length subset.

• The receiver is required to interpret the date and time formatted in the fixed-length
subset defined in [b-IETF RFC 1123]. When receiving date and time formatted
according to [b-IETF RFC 1036] or [ISO/IEC 9899] asctime() format, the receiver can
optionally interpret these formats, or it can also ignore them.

82 Rec. ITU-T H.762 (05/2011)

 Examples:

Sun, 06 Nov 1994 08:49:37 GMT ([b-IETF RFC 1123]).

Sunday, 06-Nov-94 08:49:37 GMT ([b-IETF RFC 1036]).

Sun Nov 6 08:49:37 1994 ([ISO/IEC 9899]).

– Content coding

 For content-coding, "identity" is used. "deflate" and "gzip" can optionally be used. If a
receiver that does not support "deflate" and "gzip" receives "deflate" and "gzip", or any
other value, the expected action is implementation dependent and out of the scope of this
Recommendation.

– Transfer coding

 When receiving a response from the server, the receiver is required to be able to receive
"chunked" transfer-coding, specified in [IETF RFC 2616]. When specifying the
transfer-coding, "chunked" should be used. The action of the receiver when it receives other
values is implementation dependent.

– Use of request methods

• "GET": Both the client side and server side use this method.

• "POST": Both the client side and server side use this method.

• "HEAD": The client side can optionally use this method. When receiving the request
with "HEAD", the server is required to respond with the format compliant with
[IETF RFC 2616].

• "OPTIONS": Both the client side and server side can optionally use this method.

– Other methods

 The use of "CONNECT", "PUT", "DELETE" and "TRACE" depend on the
implementation, and are outside the scope of this Recommendation.

12.2 Supported HTTP request headers

This clause describes HTTP headers for web servers supporting HTTP/1.1 during a request.
Table 12-1 lists headers and their respective support level ("S" denotes "supported" and "–" denotes
"neither supported nor optional").

Table 12-1 – HTTP headers: Request

 Header name
Header operation

Notes
Terminal Server

General headers

Cache-Control S S Only no-cache is supported

Connection S S Only close is supported

Date – –

Pragma S S
Only no-cache is supported,
optional for the terminal

Trailer – –

Transfer-Encoding – –

Upgrade – –

Via – –

Warning – –

 Rec. ITU-T H.762 (05/2011) 83

Table 12-1 – HTTP headers: Request

 Header name
Header operation

Notes
Terminal Server

Request header

Accept S S

Accept-Charset S S

Accept-Encoding S S
Identity, deflate, only gzip
supported

Accept-Language S S Currently fixed to ja

Authorization – –

Expect – –

From – –

Host S S

If-Modified-Since – S

If-Match – S

If-None-Match – S

If-Range – –

If-Unmodified-Since – S

Max-Forwards – –

Proxy-Authorization – –

Range – –

Referer – –

TE – –

User-Agent S S

Entity header

Allow – –

Content-Encoding – –

Content-Language – –

Content-Length – –

Content-Location – –

Content-MD5 – –

Content-Range – –

Content-Type – –

Expires – –

Last-Modified – –

12.3 Persistent connections

In case of HTTP/1.1 connections, sessions can be closed by including the "Connection: close"
header in the request. If the connection header does not include "close", or in absence of the
connection header, the HTTP connection is kept alive. HTTP persistent connections eliminate the
need to establish TCP connections for every request, reducing the overall processing time and
improving the response.

84 Rec. ITU-T H.762 (05/2011)

12.4 User-Agent

User-Agent is a required header. It enables the server to identify the type of IPTV terminal device
originating the request. An example of User-Agent information delivered by the IPTV terminal
device when establishing a connection with the server(s) is shown in Appendix IV.

12.5 Supported HTTP response headers

This clause describes HTTP headers for web servers supporting HTTP/1.1 during a response.
Table 12-2 lists headers and their respective support level ("S" denotes "supported" and "–" denotes
"neither supported nor optional").

Table 12-2 – HTTP headers: Response

 Header name
Header operation

Notes
Terminal Server

General headers

Cache-Control S S
No-cache, no-store is supported;
max-age is optional

Connection S S Only close is supported

Date S S

Pragma S S No-cache is optional

Trailer – –

Transfer-Encoding S S Chunked is supported

Upgrade – –

Via – –

Warning – –

Response headers

Accept-Ranges – –

Age – –

ETag – S

Location S S

Proxy-Authenticate – –

Retry-After – –

Server – S

Vary – –

WWW-Authenticate – –

 Rec. ITU-T H.762 (05/2011) 85

Table 12-2 – HTTP headers: Response

 Header name
Header operation

Notes
Terminal Server

Entity headers

Allow S S

Content-Encoding S S Identity is supported

Content-Language S S Currently fixed to ja

Content-Length S S

Content-Location S S
Used within play control meta
file

Content-MD5 – –

Content-Range – –

Content-Type S S

Expires – S
Use of Cache-Control:max-age
as expiration limit is
recommended

Last-Modified – S

Other Extended headers – S

12.6 Cookies

The use of cookies is based on [IETF RFC 2965]. In order to be interoperable with the existing web
servers, the following should be considered.

12.6.1 Use of response header

The receiver is required to be able to interpret the Set-Cookie response header. The interpretation of
Set-Cookie2 response header may depend on each implementation.

Table 12-3 shows the parameters that the receiver is required to interpret.

– It is required to interpret ";" as a separator for attributes. The interpretation of "," may
depend on implementation.

– The interpretation of attributes other than those listed above depend on implementation.

– One response header contains only one cookie. If more than one cookie needs to be used,
more than one response header should be provided. If a response header contains more than
one NAME=VALUE attribute, the action of the receiver is up to each implementation and
outside the scope of this Recommendation.

– The attribute "expires" is interpreted in the following way:

1) The date of the reception of Set-Cookie is the current time and/or beyond the
valid-through date: The cookie needs to be discarded

2) The date of the reception of Set-Cookie is within the valid-through date and:

a) is invalid when the request is received: the cookie in question is discarded, and no
cookies are to be sent to the server;

b) is valid when the request is received: the cookie needs to be kept until the specified
date, and a cookie is to be sent to the server. The receiver does not have to
guarantee that the cookie is kept until the specified date.

86 Rec. ITU-T H.762 (05/2011)

3) No specified value for "expires": how the cookie is discarded is implementation
dependent.

Table 12-3 – Parameters receiver is required to interpret

Attributes
Server side

requirements
Content

NAME=VALUE Mandatory – The main cookie information
– The interpretation of double-quote ("), space, tab, LF, CR

contained in the VALUE is up to each implementation

domain=DOMAIN Optional A valid domain name declared by the cookie

path=PATH Optional A valid path declared by the cookie

secure Optional When the cookie has "secure" attribute, it is transmitted only if
there is a secure connection to the host (e.g., connection to the
server using HTTPS).

expires=DATE Optional The date until when the cookie is good.
The format of DATE follows either of the following:
– Wdy,dd Mth yyyy hh:mm:ss GMT
– Wdy,dd-Mth-yyyy hh:mm:ss GMT

 Rec. ITU-T H.762 (05/2011) 87

Annex A

LIME-HTML versions

(This annex forms an integral part of this Recommendation.)

Since new elements and attributes may be added to the specification by extending this specification
in the future, a LIME-HTML document must contain a version number that is used to decide
whether a LIME-HTML document written with an extended encoding scheme can be viewed by
LIME browsers that support only older schemes.

For LIME, the version number consists of a major number and a minor number. The available value
range of a major number is 1 to 65535. The available value range of a minor number is 0 to 255.
These numbers are represented as a decimal character string with leading zeros suppressed. The
version number must be updated as follows.

When a LIME-HTML document in an extended coding scheme can be successfully viewed with
older LIME browsers, the minor version number must be updated and the major version number
must not be updated. When a LIME-HTML document in an extended coding scheme cannot be
successfully viewed without a newer LIME browser, the major version number must be updated.
Actual numbering of the version number will be determined in the operation for each media type.
The numbering method must be well thought out for the interchange between different types of
media.

 <?bml bml-version="[major number].[minor number]" ?>

For LIME-HTML documents following the versioning form "[major number].[minor number]"
assigned by ARIB, the value is always 100.0. The action of the receiver if other LIME versions are
received is up to each implementation and outside the scope of this Recommendation.

88 Rec. ITU-T H.762 (05/2011)

Annex B

Multimedia resources

(This annex forms an integral part of this Recommendation.)

B.1 Use of monomedia

B.1.1 Video

It is envisaged that a LIME document would refer to content from IP linear TV and VoD services.
Video coding as a monomedia is utilized only as a video elementary stream (ES) within the
transport stream (TS) that constitutes the content.

B.1.2 Graphics and bitmap coding

Graphics and bitmap coding are required to comply with guidelines in this clause. The following
gives a summary of the requirements.

– JPEG: JPEG is required to be in compliance with the baseline method of [ITU-T T.81].

– PNG: [ISO/IEC 15948] is required to be used for the portable network graphics (PNG) file
format.

NOTE – [ISO/IEC 15948] is the same specification as [b-W3C PNG].

– MNG: The specification based on MNG format version 0.96-19990718 (see [b-MNG]) is
recommended to be used for file format of animation graphics by multiple-image network
graphics (MNG)).

B.1.3 Audio

– It is envisaged that a LIME-HTML document would refer to content from IP linear TV and
VoD services. Audio coding of an audio stream as a monomedia is utilized only as an audio
ES within the TS that constitutes the content.

– MPEG-1 layer 2 stream.

– MPEG2 AAC-LC audio file.

– "Built-in sound": The encoding method for built-in sound receivers depends on the receiver
implementation.

 Rec. ITU-T H.762 (05/2011) 89

Annex C

Character encoding and font specification

(This annex forms an integral part of this Recommendation.)

C.1 Character specifications

This clause specifies character encoding recommendations specific to a language or group of
languages sharing the same character encoding sets.

C.1.1 Character encoding (Japan)

This clause describes the character encoding specific to the Japanese language for LIME
documents, closed captions and external files referenced with an object.

C.1.1.1 Character encoding for LIME documents

A LIME document is recommended to use the following character encoding schemes:

– EUC-JP, UTF-8, Shift-JIS.

C.1.1.1.1 EUC-JP

Extended UNIX code (-JP) EUC-JP [b-JIS X 0208] is a Japanese character encoding used
predominantly in a UNIX environment. The following character sets can be represented using
EUC-JP: JIS X 0201 [b-JIS X 0201] (ASCII, half-width kana), JIS X 0208 [b-JIS X 0208]
(two byte) and JIS X 0212 [b-JIS X 0212] (three byte). It is encoded based on ISO/IEC 2022.

C.1.1.2 Character encoding for closed caption subtitles

The character encoding for closed caption subtitles consists of JIS 8-bit encoding characters. Closed
caption subtitles are transported within the TS of IP broadcasting or VoD streams in the "subtitle
PES" id=0x06. The following character sets are supported:

– Alphanumeric set (1 byte).

– Hiragana (1 byte).

– Katakana (1 byte).

– Chinese character (2 byte code sections 1-94).

– Macro-code (1 byte).

C.1.1.2.1 JIS 8-bit character code

The types of character code set available are Kanji set, alphanumerical set, Hiragana set, Katakana
set, mosaic set, supplemental character (Gaiji) set, macro-code set, JIS compatible Kanji plane 1 set,
JIS compatible Kanji plane 2 set and additional symbols set.

C.1.2 Character encoding (US, west European)

For further study.

C.1.2.1 Character encoding for LIME documents

For further study.

C.1.2.2 Character encoding for closed caption subtitles

For further study.

C.1.3 Character encoding (east European)

For further study.

90 Rec. ITU-T H.762 (05/2011)

C.1.3.1 Character encoding for LIME documents

For further study.

C.1.3.2 Character encoding for closed caption subtitles

For further study.

C.1.4 Character encoding (east Asia, Korea, China)

For further study.

C.1.4.1 Character encoding for LIME documents

For further study.

C.1.4.2 Character encoding for closed caption subtitles

For further study.

C.1.5 Character encoding (Middle East, Arabic, Hebrew, Farsi)

For further study.

C.1.5.1 Character encoding for LIME documents

For further study.

C.1.5.2 Character encoding for closed caption subtitles

For further study.

C.2 Font specifications

C.2.1 LIME font specifications (Japan)

For further study.

C.2.2 LIME font specifications (US, west European)

For further study.

C.2.3 LIME font specifications (east European)

For further study.

C.2.4 LIME font specifications (east Asia, Korea, China)

For further study.

C.2.5 LIME font specifications (Middle East, Arabic, Hebrew, Farsi)

For further study.

 Rec. ITU-T H.762 (05/2011) 91

Annex D

Data type definition (DTD) for LIME-HTML

(This annex forms an integral part of this Recommendation.)

The name of a data type definition (DTD) file conforms to the following convention that uses major
number and minor number in the version information.

 bml_[major number]_[minor number].dtd

For example, the DTD file name for version 1.0 DTD is "bml_1_0.dtd". Note that both major
number and minor number are part of a version number that represents DTD; the two numbers are
not part of the coding scheme version described below.

<!-- ======== Lightweight interactive multimedia environment for IPTV (LIME) x.0
DTD [OPERATABLE] ======== -->
<!ENTITY % ContentType "CDATA">
<!ENTITY % Charset "CDATA">
<!ENTITY % Character "CDATA">
<!ENTITY % LanguageCode "NMTOKEN">
<!ENTITY % Number "CDATA">
<!ENTITY % URI "CDATA">
<!ENTITY % Script "CDATA">
<!ENTITY % StyleSheet "CDATA">
<!ENTITY % Text "CDATA">
<!ENTITY % Events.attrib
"onclick %Script; #IMPLIED
onkeydown %Script; #IMPLIED
onkeyup %Script; #IMPLIED">
<!ATTLIST a
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
>
<!ATTLIST input
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 onchange %Script; #IMPLIED
>
<!ATTLIST body
 onload %Script; #IMPLIED
 onunload %Script; #IMPLIED
>
<!ATTLIST div
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 accesskey %Character; #IMPLIED
>
<!ATTLIST p
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 accesskey %Character; #IMPLIED
>
<!ATTLIST object
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 accesskey %Character; #IMPLIED
>
<!ATTLIST span
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 accesskey %Character; #IMPLIED

92 Rec. ITU-T H.762 (05/2011)

>
<!ENTITY % Core.attrib
"id ID #IMPLIED
class CDATA #IMPLIED
style %StyleSheet; #IMPLIED"
>
<!ENTITY % Common.attrib
"%Core.attrib;
%Events.attrib;"
>
<!ENTITY % Inlstruct.class "br | span">
<!ENTITY % Inline.class "%Inlstruct.class;
| a">
<!ENTITY % Inline-noa.class "%Inlstruct.class;">
<!ENTITY % Blkstruct.class "p | div">
<!ENTITY % Block.class "%Blkstruct.class;">
<!ENTITY % Boxed.mix "%Block.class;
| object
| input">
<!ENTITY % Br.content "EMPTY">
<!ELEMENT br %Br.content;>
<!ATTLIST br
 %Core.attrib;
>
<!ENTITY % Span.content "(#PCDATA | %Inline.class;)*">
<!ELEMENT span %Span.content;>
<!ATTLIST span
 %Common.attrib;
>
<!ENTITY % Div.content "(%Boxed.mix;)*">
<!ELEMENT div %Div.content;>
<!ATTLIST div
 %Common.attrib;
>
<!ENTITY % P.content "(#PCDATA | %Inline.class;)*">
<!ELEMENT p %P.content;>
<!ATTLIST p
 %Common.attrib;
>
<!ENTITY % Script.content "(#PCDATA)">
<!ELEMENT script %Script.content;>
<!ATTLIST script
 src %URI; #IMPLIED
>
<!ENTITY % Style.content "(#PCDATA)">
<!ELEMENT style %Style.content;>
<!ENTITY % A.content "(#PCDATA | %Inline-noa.class;)*">
<!ELEMENT a %A.content;>
<!ATTLIST a
 %Common.attrib;
 href %URI; #IMPLIED
 accesskey %Character; #IMPLIED
>
<!ENTITY % Object.content "EMPTY">
<!ELEMENT object %Object.content;>
<!ATTLIST object
 %Common.attrib;
 data %URI; #IMPLIED
 type %ContentType; #IMPLIED
 remain (remain) #IMPLIED
 streamposition %Number; "0"
 streamstatus (stop | play | pause) #IMPLIED
>
<!ENTITY % InputType.class "(text | password)">

 Rec. ITU-T H.762 (05/2011) 93

<!ENTITY % Input.content "EMPTY">
<!ELEMENT input %Input.content;>
<!ATTLIST input
 %Common.attrib;
 type %InputType.class; "text"
 value CDATA #IMPLIED
 disabled (disabled) #IMPLIED
 readonly (readonly) #IMPLIED
 maxlength %Number; "40"
 accesskey %Character; #IMPLIED
 inputmode (direct | indirect | none) "none"
 charactertype (all|number|alphabet|hankaku|zenkaku|katakana|hiragana) "all"
>
<!ENTITY % Title.content "(#PCDATA)">
<!ELEMENT title %Title.content;>
<!ENTITY % Meta.content "EMPTY">
<!ELEMENT meta %Meta.content;>
<!ATTLIST meta
 name NMTOKEN #IMPLIED
 content CDATA #REQUIRED
>
<!ENTITY % Head.content "(title, meta?, style?, link?, script*, bevent?)">
<!ELEMENT head %Head.content;>
<!ENTITY % Body.content "(div | p)+">
<!ELEMENT body %Body.content;>
<!ATTLIST BODY
 %Core.attrib;
 invisible (invisible) #IMPLIED
>
<!ENTITY % Bml.content "(head, body)">
<!ELEMENT bml %Bml.content;>
<!ENTITY % bevent.content "(beitem)+">
<!ELEMENT bevent %bevent.content;>
<!ATTLIST bevent
 id ID #IMPLIED
>
<!ENTITY % BMLEventType
"(TimerFired|CCStatusChanged|MediaStopped|DataButtonPressed)">
<!ENTITY % BMLTimeMode "(absolute)">
<!ENTITY % beitem.content "EMPTY">
<!ELEMENT beitem %beitem.content;>
<!ATTLIST beitem
 id ID #REQUIRED
 type %BMLEventType; #REQUIRED
 onoccur %Script; #REQUIRED
 es_ref %URI; #IMPLIED
 language_tag %Number; #IMPLIED
 time_mode %BMLTimeMode; #IMPLIED
 time_value CDATA #IMPLIED
 object_id CDATA #IMPLIED
 subscribe (subscribe) #IMPLIED
>
<!ENTITY % link.content "EMPTY">
<!ELEMENT link %link.content;>
<!ATTLIST link
 href %URI; #IMPLIED
>
<!-- End of Lightweight interactive multimedia environment for IPTV (LIME) x.0
DTD -->

A DTD declaration is as follows:

<?xml version="1.0" encoding="EUC-JP" ?>
<!DOCTYPE bml PUBLIC

94 Rec. ITU-T H.762 (05/2011)

 "-//IPTVF CDN:2008//DTD BML Document for IPTV//JA"
 "http://www.itu.int/ITU-T/formal-language/itu-
t/h/h762/2011/bml_100_0_iptv.dtd">
<?bml bml-version="100.0" ?>

 Rec. ITU-T H.762 (05/2011) 95

Appendix I

Browser functions for LIME

(This appendix does not form an integral part of this Recommendation.)

I.1 Video and graphics display

An example of the presentation functionality of the receiver can be found in [ARIB STD-B24]
Volume 1, Section 1.

To reproduce the multimedia service sent from the service provider on screen just as the producer
intended through the receiver, display and playback functions on the receiver should be specified.
Therefore, a specification related to the presentation function is necessary as a basic requirement of
the receiver. The presentation function is designed based on the logic structure of the display screen
composed of video plane, still picture plane, text and graphic plane, subtitle plane, and control plane
switching and controlling video and still picture (see [ARIB STD-B-24] Volume 1, Chapter 6.2).

Table I.1 describes the conditions on the monomedia coding for each presentation plane. It is
presupposed that monomedia data other than those specified here will not be sent or used by the
source content provider.

Table I.1 – Overview of the conditions on the monomedia coding
for each presentation plane

Coding Conditions

V
id

eo
 c

od
in

g

ITU-T
H.264

Transport
method

Video packetized elementary stream (PES) in TS for linear IPTV or VoD
streaming
Stream format Id = 0x1B

Size 1920x1080 (16:9), 1440x1080 (16:9),
1280x720 (16:9),
720x480 (16:9), 720x480 (4:3)

Scaling 256/128, 192/128, 160/128, 128/128, 112/128, 96/128, 80/128, 64/128,
48/128, 32/128 (Note)

MPEG-2 Transport
method

Video PES in TS for linear IPTV or VoD streaming
Stream format Id = 0x02

Size 720x480 (16:9), 720x480 (4:3)

Scaling 256/128, 192/128, 160/128, 128/128, 112/128, 96/128, 80/128, 64/128
(Note)

G
ra

ph
ic

s
co

di
ng

JPEG Transport
method

JPEG file via HTTP

Size Any from horizontal/vertical 16 pixels to full size

Scaling 128/128

Other Resolution of 4:2:0 scheme is assumed

96 Rec. ITU-T H.762 (05/2011)

Table I.1 – Overview of the conditions on the monomedia coding
for each presentation plane

Coding Conditions

C
ha

ra
ct

er
/g

eo
m

et
ri

cs

co
di

ng

PNG Transport
method

PNG file via HTTP

Size Any from horizontal/vertical 2 pixels to full size

Scaling 128/128

MNG Transport
method

MNG file via HTTP

Size Any from horizontal/vertical 2 pixels to full size

Scaling 128/128

8-unit
character
coding,
including
EUC-JP

Transport
method

For use in captioning: Captioning PES in TS for linear IPTV or VoD
streaming (stream format Id = 0x06)
For use in portal: LIME document file via HTTP

NOTE – The scaling factor should be compliant with the definitions in [b-ARIB TR-B14], Volume 3,
Section 2, A4.

I.2 Audio playback

Table I.2 describes the specification for audio playback. It is presupposed that monomedia data
other than those specified here will not be sent or used by the source content provider.

Table I.2 – Audio playback specification

Coding
method

Content

MPEG-2
AAC-LC

Transmission methods Audio PES; stream format identifier = 0x0F
Audio file; HTTP

Sampling rate 48 kHz

Maximum file size of continuous
playback

512 kilobytes

MPEG-1
audio layer 2

Transmission methods Audio PES stream format identifier = 0x03

Sampling rate 48 kHz，32 kHz

Built-in
sound
encoding

Transmission methods Audio file; HTTP

Sampling rate 1/4 of the 12-kHz main sound track

Maximum file size of continuous
playback

96 kilobytes

Caption alert Transmission methods Built-in sound

Sampling rate 12 kHz

Maximum file size of continuous
playback

48 kilobytes

 Rec. ITU-T H.762 (05/2011) 97

I.3 Remote controller

LIME assumes that, compliant with [b-ARIB TR-B14] Volume 3, Section 2, chapter 1.3, the remote
controller is provided so that the keys in Table I.3 are accessible to the LIME browser. In order to
avoid user confusion, multiple meanings should not be assigned to one button. When assigning
multiple meanings to one button, operation content should be explicitly explained to the user within
the contents.

Table I.3 – Remote control keys used

Key type Guidelines

Up, down, left, right
arrow keys

To move up, down, left, right

0-9
(number keys)

To input numbers

Enter Separator of operation (enter)

Return Cancel operation

Back space of user input character (or bulk erase)

Disconnection of a call to a communication server.
During connection (Note), receiver units will take the instruction; after connection,
instruction is carried out in the contents (a display to the effect that the connection
will be terminated is desirable when the back key is pressed).
NOTE – It is acceptable to use LIME documents for the purpose of going back.
However, whether or not there is something available after returning should be
considered.

D Data button: switches display/non-display of multimedia data broadcasting

Blue, red, green,
yellow
(colour keys)

Selection of operation (execution).
NOTE – Location of buttons on the remote control should be in order of blue, red,
green, yellow from the left and each button should have the corresponding words
"blue", "red", "green" and "yellow" displayed.

Bookmark
(optional)

Recording of bookmark

I.4 Key masks

If multimedia content is in compliance with [ARIB STD-B24], then key masks can be performed.
However, keys related to selecting stations (one-touch select button, channel up/dedicated button,
screen image key) should not be masked by contents except during on-line communication. Masks
on number keys (one-touch select button) should not be performed unless number input is
necessary. Masks should be released once the input is over.

I.5 Character entry function

The character entry function, assuming there is a software keyboard, etc., for the purpose of
supporting character entry to LIME contents by viewer operation, is defined as a resident
application. The details are to be compliant with [b-ARIB TR-B14] Volume 3, Section 2, 1.6.

98 Rec. ITU-T H.762 (05/2011)

Appendix II

An example of a LIME document

(This appendix does not form an integral part of this Recommendation.)

<?xml version="1.0" encoding="EUC-JP" ?>
<!DOCTYPE bml PUBLIC
 "-//IPTVF CDN:2008//DTD BML Document for IPTV//JA"
 "http://www.itu.int/ITU-T/formal-language/itu-
t/h/h762/2011/bml_100_0_iptv.dtd">
<?bml bml-version="100.0" ?>
<bml>
 <head>
 <title>An example of an LIME document</title>
 <style>
 <![CDATA[
 p {
 left:0px; width:640px; height:25px;
 background-color-index:5;
 }
 p:focus {background-color-index:0;}
]]>
 </style>
 <script>
 // example of a script
 <![CDATA[
 var img = document.getElementById("id_1");
 img.data = "photo2.jpg";
]]>
 </script>
 </head>
<!-- Comment: Beginning of the body -->
 <body style="background-color-index:7;">
 <div id="d" style="width:320px;height:480px">
 <object id="id_1" type="image/jpeg" data="photo1.jpg"
style="width:260px;height:180px;"/>
 <p style="width:760px;height:20px;">Hello IPTV World!!!</p>
 </div>
 </body>
</bml>

 Rec. ITU-T H.762 (05/2011) 99

Appendix III

Implementation example of LIME-Script

(This appendix does not form an integral part of this Recommendation.)

III.1 Implementation example of LIME-Script

In a LIME document that contains more than one script element, when all the scripts (i.e., the script
described in the resource designated by the src attribute of the script element and the internal
script written within a script element without an src attribute) are loaded, the following
restrictions apply.

As in [ARIB STD-B24] volume 2, A3-5.4.1, "Operation of script working environment", the
following restriction may be put on script work memory.

Table III.1 shows an operation example of script work memory.

Table III.1 – Restriction example on the script work memory

Item Maximum value Remarks

Length of a symbol name
character string

255 bytes –

Function arguments 255 –

Local variables 255 –

Total length of all character
strings

131 072 bytes The total length of strings (including evaluated
values of string equations, string constants, string
variables) and symbol names.

Instances of objects 516 Total number of instances of Object, Number, String,
Boolean, Array, Date, Binary Table and Function.

Properties of one instance of
one object

256 Maximum number of properties for each instance of
Object, Number, String, Boolean, Array, Date,
Binary Table or Function. For Array, multiple
properties that have corresponding subscripts are not
counted.

Elements of one array 1024 –

Nest levels with function for
invoking

32 Including functions invoked through event handlers.

Total number of properties
of all objects

8192 The total number of properties to which the
"properties of one instance of one object" restriction
is applied. Including number of properties of
activation objects and argument objects. Excluding
built-in properties of global objects (built-in
functions, built-in objects, extended functions for
broadcasting, extended objects for broadcasting) and
properties of host objects.

Global variables 256 –

Function definitions 256 Any function is defined globally. Excluding event
handlers.

Work memory for LIME
script

1648 steps Based on the computing method defined in
[ARIB STD-B24] Vol.2 Annex C "Counting rule for
the restriction on the memory size of ECMAScript."

100 Rec. ITU-T H.762 (05/2011)

It is assumed that any data type has the following restrictions:

– Number must be of single precision (32 bits). Note that any Number object must also be of
single precision (32 bits).

– Float must not be supported.

– Math built-in objects must not be supported.

– Dynamic type conversion must be restricted.

– The run-time interruption of a script character string must not be supported.

– EUC-JP must be used as the character coding scheme of character string data.

– Use of Unicode value must be restricted.

– Functions for compatibility with old codes must be restricted.

III.1.1 Effects on basic objects caused by data type restrictions

As in [ARIB STD-B24] volume 2, A2-5.4.3, "Effects on basic objects caused by data type
restrictions", the following effects are expected.

III.1.2 Effects caused by number object of signed 32-bit integer

The details are referred to [ARIB STD-B24] Volume 2, A2-5.4.3.1.

III.1.3 Behaviour in the case of not using Float

The details are referred to [ARIB STD-B24] Volume 2, A2-5.4.3.2.

III.1.4 Effects by restrictions on run-time interpretation of script character string

The details are referred to [ARIB STD-B24] Volume 2, A2-5.4.3.3.

III.1.5 Behaviour in case of using EUC-JP character code

The details are referred to [ARIB STD-B24] Volume 2, A2-5.4.3.4.

III.1.6 Effects by operation of a specific character set

The details are referred to [ARIB STD-B24] Volume 2, A2-5.4.3.5.

III.1.7 Restrictions of functions left for compatibility with older codes

The details are referred to [ARIB STD-B24] Volume 2, A2-5.4.3.6.

III.2 Operational general rule of implementation-dependent behaviour

Compliant with [ARIB STD-B24] Volume 2, A2-5.4.4, "Operational general rule of
implementation-dependent behaviour", the following conditions are set on the implementation of
LIME.

III.3 Main syntax

– Sequence of the properties taken out by "for (variable in Expression) statement" (Page 58
of [b-ISO/IEC 16262]).

 It must remain implementation dependent. The "for (variable in Array object)" sequence is
also implementation dependent.

III.4 Host object

– Host object range.

– DOM object.

– Browser pseudo object.

 Rec. ITU-T H.762 (05/2011) 101

– Result of typeof for host object (Page 43 of [b-ISO/IEC 16262]).

 Returns: "hostobject".

– Result of new Object(hostobject) for host object (Page 66 of [b-ISO/IEC 16262])
returns reference to hostobject in the same manner as when using a normal object as an
argument.

– Results of Array.prototype.join(), Array.prototype.reverse() and
Array.prototype.sort() for host object (Pages 71, 72 and 73 of [b-ISO/IEC 16262],
clause 15.4.4.3) inhibits addition of any property to the host object.

 NOTE – There is no need to consider this behaviour because it becomes impossible to insert
Array.prototype.join, etc., as a new property of the host object.

– [[Class]] of host object.

 "hostobject".

III.5 Built-in object

– [[prototype]] (page 62 of [b-ISO/IEC 16262]) of Global object null.

– Result of Function.prototype.toString() (Page 69 of [b-ISO/IEC 16262]).

 "function FUNCTIONNAME() {}", where FUNCTIONNAME is the name of a specified
function.

– Result of Array.prototype.sort() (Page 72 of [b-ISO/IEC 16262]).

 An array element that is not influenced on sorting may not be automatically generated as
undefined. The internal comparison sequence of sort() may depend on implementation.

– Result of Number.prototype.toString(radix) without radix = 10 (Page 81 of
[b-ISO/IEC 16262]).

 Only radix = 8, 10 or 16 is applicable. Otherwise, operation depends on implementation.

 radix = 8: ["0"-"7"]*.

 radix = 16: ["0"-"9","a"-"f"]*.

– Result of Date.prototype.toString() (Page 95 of [b-ISO/IEC 16262]).

 This must be in the format of "DateThoursminutesseconds".

 Date must be YYYY-MM-DD (e.g., 1999-01-01).

 Hours, minutes and seconds must be hh:mm:ss. (e.g., 23:01:34).

 'T' (character code 0x54) must be used as a delimiter between the date and the hours,
minutes and seconds. (e.g., 1999-01-01T23:01:34).

 If the result is a negative value, the low-order four digits are used and the sign (d.c. or a.c.)
is ignored.

– Results of Date.prototype.toLocaleString() and Date.prototype.toUTCString()
(pages 100 and 101 of [b-ISO/IEC 16262]) must be of the same output format as
Date.prototype.toString().

– TimeClip() clip range (see clause 15.9.1.14 of [b-ISO/IEC 16262]) must be within the
range of signed 64-bit integers.

III.6 Implementation of event handler

The code type of the event handler must be an implementation-supplied code. Also, neither
ImplicitThis nor ImplicitParent must be set. Even if an event handler return value is false,
the next processing is performed continuously regardless of its value.

102 Rec. ITU-T H.762 (05/2011)

Appendix IV

Example of user-agent information

(This appendix does not form an integral part of this Recommendation.)

The following is an example of User-Agent information delivered by the IPTV terminal device
when establishing a connection with the server(s).

User-Agent Operationial Guideline
User-Agent: *[Other Description] IptvServiceProduct IptvServiceComment *[Other
Description]
IptvServiceProduct ::= IptvServiceAppName "/" IptvServiceSpecVersion
IptvServiceAppName ::= "IptvSvcClient"
IptvServiceSpecVersion ::= <Version of the Specification>
IptvServiceComment ::= "(" MakerId ";" ModelId ";" MajorVer ";" MinorVer
*[";" Optional Other Description] ")"
MakerId ::= <string identifying Manufacturer>
ModelId ::= <string identifying Model>
MajorVer ::= <Major version number >
MinorVer ::= <Minor version number >
Other Description ::= <any description, can not start with "IptvSvcClient/" >
Optional Other Description for future use
Refer to [IETF RFC2616] for allowed strings.
For example:
IptvSvcClient/1.0 (008045;D40;001;000)
Mozilla/4.0 (compatible;ABCD;EFG;HIJ) IptvSvcBrowser/1.0 (008045;D40;001;000)

 Rec. ITU-T H.762 (05/2011) 103

Bibliography

[b-ITU-T H.740] Recommendation ITU-T H.740 (2010), Application event handling for IPTV
services.

[b-ITU-T Y.101] Recommendation ITU-T Y.101 (2000), Global Information Infrastructure
terminology: Terms and definitions.

[b-ITU-T Y.1901] Recommendation ITU-T Y.1901 (2009), Requirements for the support of
IPTV services.

[b-ISO/IEC 16262] ISO/IEC 16262:2002, Information technology – ECMAScript language
specification.

[b-IETF RFC 1036] IETF RFC 1036 (1987), Standard for interchange of USENET messages.

[b-IETF RFC 1123] IETF RFC 1123 (1989), Requirements for Internet Hosts – Application and
Support.

[b-IETF RFC 2818] IETF RFC 2818 (2000), HTTP Over TLS.

[b-ARIB TR-B14] ARIB TR-B14 V.2.8 (2006), Operational Guidelines for Digital Terrestrial
Television Broadcasting.

[b-IPTVFJ-0006] IPTV Forum Japan IPTVFJ STD-0006 V.1.1 (2008), IPTV Specification –
CDN Scope Service Approach Specification (Japanese).

[b-JIS X 0208] JIS X 0208 (1997), 7-bit and 8-bit double byte coded KANJI sets for
information interchange.

[b-JIS X 0201] JIS X 0201 (1997), 7-bit and 8-bit coded character sets for information
interchange.

[b-JIS X 0212] JIS X 0212 (1990), Code of the supplementary Japanese graphic character
set for information interchange.

[b-MNG] MNG V.0.96 (1999), Multiple-image Network Graphics (MNG) format.
<http://www.libpng.org/pub/mng>.

[b-W3C CSS1] W3C Recommendation CSS1 (2008), Cascading Style Sheets, level 1.

[b-W3C CSS2] W3C Recommendation CSS2 (2007), Cascading Style Sheets, level 2.

[b-W3C DOM1] W3C Recommendation DOM1 (1998), Document Object Model (DOM)
Level 1 Specification.

[b-W3C PNG] W3C Recommendation PNG (2003), Portable Network Graphics (PNG)
Specification.

[b-W3C XHTML] W3C Recommendation XHTML (2002), XHTML 1.0, The Extensible
HyperText Markup Language (Second Edition).

[b-W3C XML 1.0] W3C Recommendation XML 1.0 (2008), Extensible Markup Language
(XML) 1.0 (Fifth Edition).

http://www.libpng.org/pub/mng

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T H.762 (05/2011) – Lightweight interactive multimedia environment (LIME) for IPTV services
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview
	7 LIME-HTML
	7.1 LIME-HTML document
	7.2 Display control of LIME

	8 Use of LIME-CSS in LIME
	9 Use of LIME-Script
	9.1 Profile of built-in objects
	9.2 Extensions to ECMAScript
	9.2.1 Explanations of the methods

	10 Use of DOM in LIME
	10.1 DOM HTML interface group
	10.2 DOM interface specific to LIME-DOM
	10.3 Interface for LIME interrupt event
	10.4 LIMECSS2 properties interface for LIME-DOM

	11 Specific functions for IPTV services
	11.1 Licensing
	11.2 Content initialization
	11.3 Service registration
	11.4 Communication of licence information
	11.5 Page-transition control
	11.6 Control of display
	11.7 Parental control function
	11.8 Use of URI

	12 Transport of LIME document and related issues
	12.1 Use of HTTP/1.1
	12.2 Supported HTTP request headers
	12.3 Persistent connections
	12.4 User-Agent
	12.5 Supported HTTP response headers
	12.6 Cookies

	Annex A – LIME-HTML versions
	Annex B – Multimedia resources
	B.1 Use of monomedia
	Annex C – Character encoding and font specification
	C.1 Character specifications
	C.2 Font specifications
	Annex D – Data type definition (DTD) for LIME-HTML
	Appendix I – Browser functions for LIME
	I.1 Video and graphics display
	I.2 Audio playback
	I.3 Remote controller
	I.4 Key masks
	I.5 Character entry function
	Appendix II – An example of a LIME document
	Appendix III – Implementation example of LIME-Script
	III.1 Implementation example of LIME-Script
	III.2 Operational general rule of implementation-dependent behaviour
	III.3 Main syntax
	III.4 Host object
	III.5 Built-in object
	III.6 Implementation of event handler
	Appendix IV – Example of user-agent information
	Bibliography

