ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU X.501

Corrigendum 2 (04/2012)

SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY Directory

Information technology – Open Systems Interconnection – The Directory: Models

Technical Corrigendum 2

Recommendation ITU-T X.501 (2008) – Technical Corrigendum 2

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS	
Services and facilities	X.1-X.19
Interfaces	X.20-X.49
Transmission, signalling and switching	X.50-X.89
Network aspects	X.90-X.149
Maintenance	X.150-X.179
Administrative arrangements	X.180-X.199
OPEN SYSTEMS INTERCONNECTION	
Model and notation	X.200-X.209
Service definitions	X.210-X.219
Connection-mode protocol specifications	X.220-X.229
Connectionless-mode protocol specifications	X.230-X.239
PICS proformas	X.240-X.259
Protocol Identification	X.260-X.269
Security Protocols	X.270-X.279
Layer Managed Objects	X.280-X.289
Conformance testing	X.290-X.299
INTERWORKING BETWEEN NETWORKS	
General	X.300-X.349
Satellite data transmission systems	X.350-X.369
IP-based networks	X.370-X.379
MESSAGE HANDLING SYSTEMS	X.400-X.499
DIRECTORY	X.500-X.599
OSI NETWORKING AND SYSTEM ASPECTS	
Networking	X.600-X.629
Efficiency	X.630-X.639
Quality of service	X.640-X.649
Naming, Addressing and Registration	X.650-X.679
Abstract Syntax Notation One (ASN.1)	X.680-X.699
OSI MANAGEMENT	
Systems management framework and architecture	X.700-X.709
Management communication service and protocol	X.710–X.719
Structure of management information	X.720–X.729
Management functions and ODMA functions	X.730–X.799
SECURITY	X.800-X.849
OSI APPLICATIONS	
Commitment, concurrency and recovery	X.850–X.859
Transaction processing	X.860–X.879
Remote operations	X.880–X.889
Generic applications of ASN.1	X.890–X.899
OPEN DISTRIBUTED PROCESSING	X.900–X.999
INFORMATION AND NETWORK SECURITY	X.1000-X.1099
SECURE APPLICATIONS AND SERVICES	X.1100–X.1199
CYBERSPACE SECURITY	X.1200-X.1299
SECURE APPLICATIONS AND SERVICES	X.1300-X.1399
CYBERSECURITY INFORMATION EXCHANGE	X.1500-X.1599

 $For {\it further details, please refer to the list of ITU-T Recommendations.}$

INTERNATIONAL STANDARD ISO/IEC 9594-2 RECOMMENDATION ITU-T X.501

Information technology – Open Systems Interconnection – The Directory: Models

Technical Corrigendum 2

History

1.0 ITU-T X.501 1988-11-25 2.0 ITU-T X.501 1993-11-16 7 3.0 ITU-T X.501 1997-08-09 7 3.1 ITU-T X.501 (1997) Technical Cor. 1 2000-03-31 7 3.2 ITU-T X.501 (1997) Amd. 1 2000-03-31 7 3.3 ITU-T X.501 (1997) Technical Cor. 2 2001-02-02 7 3.4 ITU-T X.501 (1997) Technical Cor. 3 2005-05-14 17 4.0 ITU-T X.501 2001-02-02 7 4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17 4.3 ITU-T X.501 (2001) Cor. 3 2008-05-29 17	
3.0 ITU-T X.501 1997-08-09 7 3.1 ITU-T X.501 (1997) Technical Cor. 1 2000-03-31 7 3.2 ITU-T X.501 (1997) Amd. 1 2000-03-31 7 3.3 ITU-T X.501 (1997) Technical Cor. 2 2001-02-02 7 3.4 ITU-T X.501 (1997) Technical Cor. 3 2005-05-14 17 4.0 ITU-T X.501 2001-02-02 7 4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
3.1 ITU-T X.501 (1997) Technical Cor. 1 2000-03-31 7 3.2 ITU-T X.501 (1997) Amd. 1 2000-03-31 7 3.3 ITU-T X.501 (1997) Technical Cor. 2 2001-02-02 7 3.4 ITU-T X.501 (1997) Technical Cor. 3 2005-05-14 17 4.0 ITU-T X.501 2001-02-02 7 4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
3.2 ITU-T X.501 (1997) Amd. 1 2000-03-31 7 3.3 ITU-T X.501 (1997) Technical Cor. 2 2001-02-02 7 3.4 ITU-T X.501 (1997) Technical Cor. 3 2005-05-14 17 4.0 ITU-T X.501 2001-02-02 7 4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
3.3 ITU-T X.501 (1997) Technical Cor. 2 2001-02-02 7 3.4 ITU-T X.501 (1997) Technical Cor. 3 2005-05-14 17 4.0 ITU-T X.501 2001-02-02 7 4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
3.4 ITU-T X.501 (1997) Technical Cor. 3 2005-05-14 17 4.0 ITU-T X.501 2001-02-02 7 4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
4.0 ITU-T X.501 2001-02-02 7 4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
4.1 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17 4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17	
4.3 ITU-T X.501 (2001) Cor. 3 2008-05-29 17	
5.0 ITU-T X.501 2005-08-29 17	
5.1 ITU-T X.501 (2005) Cor. 1 2008-05-29 17	
5.2 ITU-T X.501 (2005) Cor. 2 2008-11-13 17	
5.3 ITU-T X.501 (2005) Cor. 3 2011-02-13 17	
5.4 ITU-T X.501 (2005) Cor. 4 2012-04-13 17	
6.0 ITU-T X.501 2008-11-13 17	
6.1 ITU-T X.501 (2008) Cor. 1 2011-02-13 17	
6.2 ITU-T X.501 (2008) Cor. 2 2012-04-13 17	

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

INTERNATIONAL STANDARD

RECOMMENDATION ITU-T

Information technology – Open Systems Interconnection – The Directory: Models

Technical Corrigendum 2

(covering resolution to defect reports 357, 359, 360, 361, 363, 370 and 371)

1) Correction of the defects reported in defect report 357

In clause 13.7.6 and Annex B replace the STRUCTURE-RULE information object with:

2) Correction of the defects reported in defect report 359

Update the ASN.1 in clause 28.3 and Annex G as shown:

3) Correction of the defects reported in defect report 360

Update the ASN.1 in clause 13.9.2 and Annex B as shown:

```
CONTEXT ::= CLASS {
   &Type,
   &DdefaultValue   &Type   OPTIONAL,
   &Assertion   OPTIONAL,
   &absentMatch   BOOLEAN DEFAULT TRUE,
   &id   OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX   &Type
   [DEFAULT-VALUE   &DdefaultValue]
   [ASSERTED AS   &Assertion]
   [ABSENT-MATCH   &absentMatch]
   ID   &id }
```

4) Correction of the defects reported in defect report 361

Update clause 18.4.2.4, item b), fourth bullet as shown:

userGroup is the set of users who are members of the groupOfNames or groupOfUniqueNames entry, identified by the specified distinguished name (with an optional unique identifier). Members of a group of unique names are treated as individual object names, and not as the names of other groups of unique names. How group membership is determined is described in 18.4.2.5.

5) Correction of the defects reported in defect report 363

Update item a) of clause 13.10.2 as shown:

a) the attributeType component identifies the attribute type to which the DIT Context Use applies; if it applies to any attribute type the object identifier or any attribute type (id-oa-allAttributeTypes) may be used (defined in Annex B);

In Annex B add to the end of the allocation of object identifiers for operational attributes:

```
id-oa-allAttributeTypes OBJECT IDENTIFIER ::= {id-oa 48}
```

6) Correction of the defects reported in defect report 370

In clause 22.5 just before the note, add a new paragraph:

The subordinate references making up the root naming context are conceptually placed in DSA specific entries (DSEs) immediately subordinate to the root DSE (see 24.2). The DSE type shall be **subr**.

7) Correction of the defects reported in defect report 371

In clause 27.3.3, change the OP-BIND-ROLE information object class as shown:

```
OP-BIND-ROLE ::= CLASS {
                            BOOLEAN DEFAULT FALSE,
  &establish
  &EstablishParam-
                            OPTIONAL.
                            BOOLEAN DEFAULT FALSE,
  &modify
  &ModifyParam
                            OPTIONAL,
  &terminate
                            BOOLEAN DEFAULT FALSE,
  &TerminateParam
                            OPTIONAL }
WITH SYNTAX {
  [ESTABLISHMENT-INITIATOR &establish]
  +ESTABLISHMENT-PARAMETER &EstablishParam+
  [MODIFICATION-INITIATOR &modify]
  [MODIFICATION-PARAMETER &ModifyParam]
  [TERMINATION-INITIATOR
                            &terminatel
  [TERMINATION-PARAMETER
                            &TerminateParam] }
```

Also, change item b) as shown:

b) The **ESTABLISHMENT-PARAMETER** field defines the ASN.1 type <u>for the parameters</u> exchanged by a DSA assuming the defined role when an instance of the operational binding type is established. <u>If no parameters</u> are to be exchanged, then the NULL ASN.1 type shall be specified.

Replace clauses 28.2, 28.3 and 28.4 with:

28.2 Establish Operational Binding operation

28.2.1 Establish Operational Binding syntax

The Establish Operational Binding operation allows establishment of an operational binding instance of a predefined type between two DSAs. This is achieved through the transfer of the establishment parameters and the terms of agreement which were defined in the definition of the operational binding type. The arguments of the operation may be signed (see 17.3) by the requestor. If the target component of the SecurityParameters (see 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) in the request is set to signed and a result is to be returned, the result may be signed. Otherwise, the result shall not be signed.

In the case of a symmetrical operational binding, either of the two DSAs may take the initiative to establish an operational binding instance of the predefined type.

In the case of an asymmetrical operational binding, just one of the roles are designated to initiate the establishment of an operational binding or either of the two DSAs may take the initiative depending on the definition of the operational binding type.

```
establishOperationalBinding OPERATION ::= {
             EstablishOperationalBindingArgument
  RESULT
             EstablishOperationalBindingResult
             {operationalBindingError | securityError}
  ERRORS
  CODE
             id-op-establishOperationalBinding }
EstablishOperationalBindingArgument ::=
  OPTIONALLY-PROTECTED-SEQ { EstablishOperationalBindingArgumentData }
EstablishOperationalBindingArgumentData ::= SEQUENCE {
                     [0] OPERATIONAL-BINDING.&id({OpBindingSet}),
 bindingID
                         OperationalBindingID OPTIONAL,
                     [1]
  accessPoint
                     [2]
                          AccessPoint,
               -- symmetric, Role A initiates, or Role B initiates
  initiator
                          CHOICE {
    symmetric
                       [3]
                            OPERATIONAL-BINDING.&both.&EstablishParam
                            ({OpBindingSet}{@bindingType}),
    roleA-initiates
                       [4]
                            OPERATIONAL-BINDING.&roleA.&EstablishParam
                            ({OpBindingSet}{@bindingType}),
    roleB-initiates
                       [5]
                            OPERATIONAL-BINDING.&roleB.&EstablishParam
                               ({OpBindingSet}{@bindingType})},
                          OPERATIONAL-BINDING.&Agreement
  agreement
                     [6]
                            ({OpBindingSet}{@bindingType}),
  valid
                     [7]
                          Validity DEFAULT {},
  securityParameters [8]
                          SecurityParameters OPTIONAL
OpBindingSet OPERATIONAL-BINDING ::=
  {shadowOperationalBinding | hierarchicalOperationalBinding |
   nonSpecificHierarchicalOperationalBinding}
OperationalBindingID ::= SEQUENCE {
  identifier INTEGER,
              INTEGER
  version
Validity ::= SEQUENCE {
                        [0]
                            CHOICE {
  validFrom
   now
                         [0] NULL.
    time
                          [1]
                              Time
  } DEFAULT now:NULL,
  validUntil
                       [1] CHOICE {
    explicitTermination [0] NULL,
                         [1] Time
  } DEFAULT explicitTermination:NULL
Time ::= CHOICE {
                   UTCTime,
  utcTime
  generalizedTime
                  GeneralizedTime
EstablishOperationalBindingResult ::=
  OPTIONALLY-PROTECTED-SEQ { EstablishOperationalBindingResultData }
EstablishOperationalBindingResultData ::= SEQUENCE {
                    OPERATIONAL-BINDING.&id({OpBindingSet}),
  bindingType
                [0]
 bindingID
                [1]
                    OperationalBindingID OPTIONAL,
                [2] AccessPoint,
  accessPoint
  -- symmetric, Role A replies, or Role B replies
  initiator
                     CHOICE {
    symmetric
                  [3]
                      OPERATIONAL-BINDING.&both.&EstablishParam
                          ({OpBindingSet}{@bindingType}),
    roleA-replies [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
```

28.2.2 Establish Operational Binding arguments

The bindingType component shall specify which type of operational binding is to be established. An operational binding type is defined by an instance of the OPERATIONAL-BINDING information object class which assigns an object identifier value to the operational binding type. If the receiver does not recognize or support the operational binding type, it shall return an operationalBindingError with problem unsupportedBindingType.

The bindingID component, when present, shall hold an identification of the new operational binding instance. If the bindingID is absent within the operation argument, the responding DSA shall assign an ID to the operational binding instance and return it in the bindingID component of the EstablishOperationalBindingResult data type. In either case, when establishing an operational binding, both the identifier and version components of the OperationalBindingID value shall be assigned and issued by the DSA making the assignment. The identifier component of the OperationalBindingID data type shall be unique for all operational bindings between any two DSAs. However, the DSA not making the assignment shall accept an identifier component that is only unique within a specific operational binding type. If the identifier component specifies an identifier already in use for the particular binding type, the responding DSA shall return an operationalBindingError with problem duplicateID.

NOTE – A pre-edition 5 system may not follow the above rule for assigning identities.

The accessPoint component shall specify the access point of the initiator for subsequent interactions.

The initiator component shall specify the role the DSA issuing the Establish Operational Binding operation assumes. The semantics of the roles are defined as part of the definition of the operational binding type. It is a choice of three alternatives:

- The symmetric alternative shall be taken, if the type of operational binding requires identical roles for the two DSAs. The establishment parameter for the initiating DSA is determined by the OP-BIND-ROLE associated with the SYMMETRIC field of the instance of OPERATIONAL-BINDING information object class. If this alternative is chosen in the request, but the operational binding type specifies asymmetric roles, then the responding DSA shall return an operationalBindingError with problem notAllowedForRole.
- The roleA-initiates alternative may be taken if both roles may be the initiator of an asymmetric operational binding and it shall be taken when only the initiating DSA may take ROLE-A. The establishment parameter for the initiating DSA is determined by the OP-BIND-ROLE associated with ROLE-A field of the instance of OPERATIONAL-BINDING information object class. If the DSA in ROLE-A is not allowed to initiate the operational binding, the responding DSA shall return an operationalBindingError with problem notAllowedForRole. If the responding system does not accept the role allocation, it shall return an operationalBindingError with problem roleAssignment.
- The roleB-initiates alternative may be taken if both roles may be the initiator of an asymmetric operational binding and it shall be taken when only the initiating DSA may take ROLE-B. The establishment parameter for the initiating DSA is determined by the OP-BIND-ROLE associated with ROLE-B field of the instance of OPERATIONAL-BINDING information object class. If the DSA in ROLE-B is not allowed to initiate the operational binding, the responding DSA shall return an operationalBindingError with problem notAllowedForRole. If the responding DSA does not accept the role allocation, it shall return an operationalBindingError with problem roleAssignment.

If for any of the three alternatives the data type for establishment parameters is the NULL ASN.1 type, where according to the operational binding type should be another data type, then the responding DSA shall return an operationalBindingError with problem parametersMissing.

The agreement component, when present, shall specify the terms of agreement governing the operational binding instance. Its actual content depends on the type of operational binding to be established. The ASN.1 type for this parameter is defined by the AGREEMENT field of the OPERATIONAL-BINDING information object for the operational binding type.

The valid component shall specify the duration of the operational binding.

- The validFrom subcomponent shall specify the starting time of the operational binding instance. If the now alternative is taken, the operational binding becomes active when the operation has successfully completed. If the time alternative is taken, the operational binding becomes active at the specified time. If the receiving DSA cannot accept the starting time, e.g., the starting time makes no sense or for other reasons, it shall return an operationalBindingError with problem invalidStartTime.
- The validUntil shall specify the time that the operational binding instance is terminated. If the explicitTermination alternative is taken, the operational binding is active until explicitly terminated. If the time alternative is taken, the operational binding is terminated at the time specified. If the receiving DSA cannot accept the ending time, e.g., the ending time makes no sense or for other reasons, it shall return an operationalBindingError with problem invalidEndTime.

When a value of **Time** in the **UTCTime** syntax, the value of the two-digit year field shall be normalised into a four-digit year value as follows:

- If the 2-digit value is 00 through 49 inclusive, the value shall have 2000 added to it.
- If the 2-digit value is 50 through 99 inclusive, the value shall have 1900 added to it.

The use of GeneralizedTime may prevent interworking with implementations unaware of the possibility of choosing either UTCTime or GeneralizedTime. It is the responsibility of those specifying the domains in which this Directory Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case shall UTCTime be used for representing dates beyond 2049.

If the **validity** data type is an empty sequence or if the **valid** component is not present, then the operational binding is valid from the current time and until it is explicitly terminated.

The **securityParameters** component shall be present if the request is signed or if the result or error is requested to be signed.

28.2.3 Establish Operational Binding results

If the Establish Operational Binding operation succeeds, the result shall be returned.

The bindingType component shall have the same value as that provided by the establishment initiator.

The bindingID component shall hold a valid identification of the established operational binding instance if the corresponding component of the request was absent (see 28.2.2). Otherwise, it may be present, but shall then echo the value in the request.

The accessPoint component shall specify the access point of the responding DSA for subsequent interactions.

The initiator component shall specify the role that the responding DSA assumes. The semantics of the roles are defined as part of the definition of the operational binding type. It is a choice of three alternatives:

- The **symmetric** alternative shall be taken if the corresponding alternative was taken in the received request. The establishment parameter for the responding DSA is the same as given in the request.
- The roleA-replies alternative shall be taken, if the initiating DSA took the ROLE-B. The establishment parameter for the responding DSA is determined by the OP-BIND-ROLE associated with ROLE-A field of the instance of OPERATIONAL-BINDING information object class.
- The roleB-replies alternative shall be taken if the initiating DSA took ROLE-A. The establishment parameter for the responding DSA is determined by the OP-BIND-ROLE associated with ROLE-B field of the instance of OPERATIONAL-BINDING information object class.

If the result is to be signed by the responding DSA, the securityParameters component of CommonResultsSeq shall be present.

28.3 Modify Operational Binding operation

28.3.1 Modify Operational Binding syntax

The Modify Operational Binding operation is used to modify an established operational binding. The right to modify is indicated by the MODIFICATION INITIATOR field(s) within the definition of the operational binding type using the OP-BIND-ROLE and OPERATIONAL-BINDING information object.

The components of an operational binding that can be modified are the content of the agreement for the operational binding and its period of validity. Further, a modification parameter can be specified by the initiator of the Modify Operational Binding operation. The arguments of the operation may be signed (see 17.3) by the requestor. If the

target component of the SecurityParameters (see 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) in the request is set to signed and a result is to be returned, the result may be signed. Otherwise, the result shall not be signed.

If the initiator of the Modify Operational Binding operation according to the operational binding type is not allowed to be the initiator, the responding DSA shall return an operationalBindingError with problem notAllowedForRole.

```
modifyOperationalBinding OPERATION ::= {
  ARGUMENT ModifyOperationalBindingArgument
  RESULT
           {\tt ModifyOperationalBindingResult}
  ERRORS
            {operationalBindingError | securityError}
  CODE
            id-op-modifyOperationalBinding }
ModifyOperationalBindingArgument ::=
  OPTIONALLY-PROTECTED-SEQ { ModifyOperationalBindingArgumentData }
ModifyOperationalBindingArgumentData ::= SEQUENCE {
 bindingType
                    [0] OPERATIONAL-BINDING.&id({OpBindingSet}),
 bindingID
                    [1] OperationalBindingID.
  accessPoint
                   [2] AccessPoint OPTIONAL,
  -- symmetric, Role A initiates, or Role B initiates
  initiator
                         CHOICE {
    symmetric
                      [3] OPERATIONAL-BINDING.&both.&ModifyParam
                          ({OpBindingSet}{@bindingType}),
                      [4] OPERATIONAL-BINDING.&roleA.&ModifyParam
    roleA-initiates
                          ({OpBindingSet}{@bindingType}),
    roleB-initiates
                      [5] OPERATIONAL-BINDING.&roleB.&ModifyParam
                          ({OpBindingSet}{@bindingType})} OPTIONAL,
  newBindingID
                    [6] OperationalBindingID,
 newAgreement
                    [7] OPERATIONAL-BINDING.&Agreement
                       ({OpBindingSet}{@bindingType}) OPTIONAL,
                      [8] ModifiedValidity OPTIONAL,
  valid
  securityParameters
                      [9] SecurityParameters OPTIONAL
ModifiedValidity ::= SEQUENCE {
  validFrom
                       [0] CHOICE {
                         [0] NULL,
   now
                              Time,
                         [1]
    ... } DEFAULT now:NULL,
  validUntil
               [1] CHOICE {
                              NULL,
    explicitTermination [0]
    time
                         [1]
                              Time.
    unchanged
                         [2]
                              NULL
    } DEFAULT unchanged:NULL
}
ModifyOperationalBindingResult ::= CHOICE {
            NULL,
 null
 protected [1] OPTIONALLY-PROTECTED-SEQ{ ModifyOperationalBindingResultData }
ModifyOperationalBindingResultData ::= SEQUENCE {
   newBindingID
                   OperationalBindingID,
                    OPERATIONAL-BINDING.&id({OpBindingSet}),
    bindingType
                    OPERATIONAL-BINDING.&Agreement ({OpBindingSet}{@.bindingType}),
    newAgreement
    valid
                    Validity OPTIONAL,
    COMPONENTS OF
                    CommonResultsSeq
    }
```

28.3.2 Modify Operational Binding argument

The bindingType component shall specify which type of operational binding is to be modified. If no operational binding of the specified type has been established between the two DSAs, the responding DSA shall return an operationalBindingError with problem invalidBindingType.

The bindingID component shall specify the operational binding instance to be modified. If the bindingID is unknown to the responding DSA, it shall return an operationalBindingError with problem invalidID.

The accessPoint component, if present, shall specify the initiator's access point for subsequent interactions. This component shall be present, if the access point is changed.

The initiator component, when present, shall specify the role that the DSA issuing the Modify Operational Binding operation assumed during the Establish Operational Binding operation. This component shall be present if the MODIFICATION-PARAMETER of the initiator's OP-BIND-ROLE information object for the taken alternative is present. Otherwise, it shall be absent. If the chosen role is not the correct one, the responding DSA shall return an operationalBindingError with problem roleAssignment.

The newBindingID component shall hold the revised identifier of the operational binding instance. The version component of newBindingID shall be greater than that of bindingID. The identifier subcomponent shall remain unchanged. If the identifier subcomponent in this component is different from the identifier subcomponent of bindingID component, the responding DSA shall return an operationalBindingError with problem invalidNewID.

The newAgreement component, if present, shall contain the modified terms of agreement governing the operational binding instance. The ASN.1 type for this parameter is defined by the AGREEMENT field of the OPERATIONAL-BINDING information object class template of the operational binding type. If newAgreement is not present, the agreement is not changed by the operation.

The valid component, if present, may be used to indicate a revised period of validity for the altered agreement. If the valid component is absent, the validFrom component is presumed to have the value now and the validUntil component is assumed unchanged. If the validFrom component is present and refers to an instant of time in the future, the current agreement remains in effect until that time, unless operational binding is explicitly terminated before that time.

The **securityParameters** component shall be present if the request is signed or if the result or error is requested to be signed.

28.3.3 Modify Operational Binding results

If the Modify Operational Binding operation succeeds, the result shall be returned.

The newBindingID component shall echo the newBindingID component in the request.

The bindingType component shall echo the bindingType component in the request.

The newAgreement component shall echo the newAgreement component in the request.

The valid component shall echo the valid component in the request.

If the result is to be signed by the responding DSA, the securityParameters component of CommonResultsSeq shall be present.

It is not possible for the responding DSA to return the modification parameter defined for its role to the modification initiator.

28.4 Terminate Operational Binding operation

28.4.1 Terminate Operational Binding syntax

The Terminate Operational Binding operation is used to request the termination of an established operational binding instance. The right to request termination is indicated by the **TERMINATION INITIATOR** field(s) within the definition of the operational binding type using the **OP-BIND-ROLE** and **OPERATIONAL-BINDING** information object class templates. The arguments of the operation may be signed (see 17.3) by the requestor. If the **target** component of the **SecurityParameters** (see 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) in the request is set to **signed** and a result is to be returned, the result may be signed. Otherwise, the result shall not be signed.

If the initiator of the Terminate Operational Binding operation according to the operational binding type is not allowed to be the initiator, the responding DSA shall return an operationalBindingError with problem notAllowedForRole.

```
TerminateOperationalBindingArgument ::=
 OPTIONALLY-PROTECTED-SEQ { TerminateOperationalBindingArgumentData }
TerminateOperationalBindingArgumentData ::= SEQUENCE {
                      [0] OPERATIONAL-BINDING.&id({OpBindingSet}),
 bindingType
 bindingID
                     [1] OperationalBindingID,
  -- symmetric, Role A initiates, or Role B initiates
                          CHOICE {
  initiator
                        [2] OPERATIONAL-BINDING.&both.&TerminateParam
   symmetric
                            ({OpBindingSet}{@bindingType}),
                        [3] OPERATIONAL-BINDING.&roleA.&TerminateParam
   roleA-initiates
                            ({OpBindingSet}{@bindingType}),
                        [4] OPERATIONAL-BINDING.&roleB.&TerminateParam
   roleB-initiates
                            ({OpBindingSet}{@bindingType})} OPTIONAL,
  terminateAt
                      [5] Time OPTIONAL,
  securityParameters [6] SecurityParameters OPTIONAL
TerminateOperationalBindingResult ::= CHOICE {
           [0] NULL,
 protected [1] OPTIONALLY-PROTECTED-SEQ{ TerminateOperationalBindingResultData }
TerminateOperationalBindingResultData ::= SEQUENCE {
 bindingID
                 OperationalBindingID,
 bindingType
                 OPERATIONAL-BINDING.&id({OpBindingSet}),
  terminateAt
                 GeneralizedTime OPTIONAL,
  COMPONENTS OF
                 CommonResultsSeq }
```

28.4.2 Terminate Operational Binding argument

The bindingType component shall specify which type of operational binding is to be terminated. If no operational binding of the specified type has been established between the two DSAs, the responding DSA shall return an operationalBindingError with problem invalidBindingType.

The bindingID component shall specify the operational binding instance to be terminated. The version component present in the bindingID shall be ignored. If there are supplicate IDs for different binding types, then the combination of bindingType and bindingID components shall be used for identifying the operational binding to be terminated. If it is not possible to locate an existing operational binding between the two DSAs where the binding type and the binding id fit the combination of the bindingType and bindingID components in the request, the responding DSA shall return an operationalBindingError with problem invalidBindingType.

The initiator component, when present, shall specify the role that the DSA issuing the Terminate Operational Binding operation assumed during the Establish Operational Binding operation. This component shall be present if the TERMINATION-PARAMETER of the initiator's OP-BIND-ROLE information object for the taken alternative is present. Otherwise, it shall be absent.

The terminateAt component, when present, shall specify a time at which the operational binding shall terminate. If this component is not present, the operational binding terminates at the completion of the operation.

The **securityParameters** component shall be present if the request is signed or if the result or error is requested to be signed.

28.4.3 Terminate Operational Binding result

If the Terminate Operational Binding operation succeeds, the result shall be returned.

The ${\tt newBindingID}$ component shall echo the ${\tt newBindingID}$ component in the request.

The bindingType component shall echo the bindingType component in the request.

The terminateAt component shall echo the terminateAt component in the request.

If the result is to be signed by the responding DSA, the securityParameters component of CommonResultsSeq shall be present.

It is not possible for the responding DSA to return the termination parameter defined for its role to the termination initiator.

In 28.5 add new problem codes:

modificationNotAllowed	$(10) \rightarrow$
invalidBindingType	(11),
invalidNewID	(12) }

and add the following text:

- l) invalidBindingType: A modifyOperationalBinding or a terminateOperationalBinding request specifies an operational binding type not established between the two DSAs in question.
- m) invalidNewID: The new binding ID given in the request is invalid.

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Terminals and subjective and objective assessment methods
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems