International Telecommunication Union

ITU-T Z.164

TELECOMMUNICATION (05/2012)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Testing and Test
Control Notation (TTCN)

Testing and Test Control Notation version 3:
TTCN-3 operational semantics

Recommendation ITU-T Z.164

Fy

IR

Iinternationsl
Telecommunication
Unien

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGESAND GENERAL SOFTWARE ASPECTSFOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)
Specification and Description Language (SDL)
Application of formal description techniques
Message Sequence Chart (MSC)

User Requirements Notation (URN)

Testing and Test Control Notation (TTCN)

PROGRAMMING LANGUAGES

CHILL: TheITU-T high level language

MAN-MACHINE LANGUAGE

General principles

Basic syntax and dialogue procedures

Extended MML for visual display terminals

Specification of the man-machine interface

Data-oriented human-machine interfaces

Human-machine interfaces for the management of telecommunications networks
QUALITY

Quality of telecommunication software

Quality aspects of protocol-related Recommendations

METHODS

Methods for validation and testing

MIDDLEWARE

Processing environment architectures

Z.100-Z.109
Z.110-72.119
Z.120-72.129
Z.150-7.159
Z.160-Z.179

Z.200-Z.209

Z.300-Z.309
Z.310-2.319
Z2.320-2.329
Z.330-2.349
Z.350-Z.359
Z2.360-2.379

Z.400-Z.409
Z.450-Z.459

Z.500-Z.519

Z.600-Z.609

For further details, please refer to thelist of ITU-T Recommendations.

Recommendation ITU-T Z.164

Testing and Test Control Notation version 3:
TTCN-3 operational semantics

Summary

Recommendation ITU-T Z.164 defines the operational semantics of TTCN-3 (Testing and Test
Control Notation 3). The operational semantics are necessary to unambiguously interpret the
specifications made with TTCN-3. This Recommendation is based on the TTCN-3 core language
defined in Recommendation ITU-T Z.161.

This second revision of the Recommendation contains amendments, clarifications, corrigenda and

editorial corrections.
This Recommendation is technically aligned with ETSI ES 201 873-4 V4.4.1 (2012).

History

Edition
1.0
2.0
3.0
4.0

Recommendation
ITU-T Z.143
ITU-T Z.164
ITU-T Z.164
ITU-T Z.164

Approva Study Group

2006-03-16
2007-11-13
2011-03-16
2012-05-29

17
17
17
17

Rec. ITU-T Z.164 (05/2012)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectua property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

©I1TU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T Z.164 (05/2012)

http://www.itu.int/ITU-T/ipr/

~N o g b~

Table of Contents

oo 0 SRR R U R PSPPSR
REFEIENCES......coeeeeee ettt b e ae e sa e e
21 NOIrMELIVE FEFEIENCES......cceiieeeieee e e
2.2 INFOrMative FEFEIENCES.ccee e
Definitions and abbreviations............cviiiiiiieiee e
31 D= 1T o] TSRS
3.2 ADDIEVIBLIONS ...t
g1 0o 18 Tox 1 oo
Structure of the present dOCUMENTcooeierireri e
LSS 1] ST
Replacement of SNOr fOrMS.........ccce e
7.1 Order of replacement SLEPS.........ooeeririr e e
7.2 Replacement of global constants and module parameters............cccceeeevereenne.
7.3 Embedding single receiving operations into alt statements.............cccccveeuenee.
7.4 Embedding stand-alone atstep callsinto alt statements............ccceevecvereenee
75 Replacement of interleave Statements.........ccoeecveceveeveece e
7.6 Replacement of trigger OPErations...........ccevereereeniereinee e
7.7 Replacement of select-case Statements.........coceevveerieerenieneesee e
7.8 Replacement of smple break statements...........cooovevieieienen e
7.9 Replacement of continue StalemMeNtS..........ccoovereeieveese e
7.10 Adding default parameters to disconnect and unmap operations without

Q72 = 0 1= (= £
7.11 Adding default values of parameters...........cocooereeieeienenenese e
Flow graph semantiCS Of TTCN-3......ocoiiieiiece e
8.1 FIOW QraphS ... oottt nne s
8.2 Flow graph representation of TTCN-3 behaviourc.ccooeeviineieninneennens
8.3 State definitions for TTCN-3 MOAUIES.........cccoceeiviieiierieeee e
8.4 Messages, procedure calls, replies and exceptions...........cccvceeeeevereneneneene.
8.5 Call records for functions, altsteps and test Cases.........ccvvvveverveereereereeseenee,
8.6 The evaluation procedure for a TTCN-3 module..........ccovvvevveivieieeciees
Flow graph segments for TTCN-3 CONSIIUCEScooueriireerieriie e
9.1 ACHON SLALEMENL......eeeieeee ettt re e s e sre e e e
9.2 ACHVELE STEIEMENL ...ttt bbb
9.2a Alive component OPEratioNccccueieereeieeeeeseese e sre et nre s
9.3 AL SEAEEIMENT.....ccee et ee e e
94 FA L = o I o= | SR
9.5 ASSIGNMENE SEEEEMENT.ceeeeieieeeeiesie ettt se e e sne e

Rec. ITU-T Z.164 (05/2012)

&
Q
[¢)

o o~ b WOWDNMNDNDMNDNNPFPPFPRPPFPPPPREPPR

N N P
= O © 0

21
22

22
22
27
33
45
48
48

50
51
51
52
55
62
62

9.5a Break stalementSin altStePS......cccoviieiiiie e 62
9.6 (0r= | o]0 = (o] o IS 63
9.7 (@r (0 10 0= = 1 o o O 70
9.8 ChECK OPEIALION.......eiiieieeie sttt st eas 71
9.8a Checkstate pOrt OPEIatioN.........coerererieieeie et 74
9.9 Clear POIt OPEIAION.cieeeeeeeerie ettt 77
1S 50 (O B @0 9= ox l 0] o = £ o o 77
911 Constant AEfiNITIONcveieririiieseeereee e e 78
0.12 Creat@ OPEIaLION.ecueeieeeteeee et eee st e ste e ee et te e sre et e e e e sreenresaeesreeneeneenneas 79
9.13 DeaCtivate SEAIEMENT.c.coiieeee e e 80
9.14 DiSCONNECT OPEIALIONeiieieieieeieeieesieeeesiee e see e seesee e e b eesreessesneesseeneeas 82
9.15 DO-WhIl€ SLALEMENL......c.eeieeieieiecie e nne s 87
9.16 Done component OPEIatiON..........cveuereereeieeseeseeseeseeseeeseesee e eseeeee e eseeenes 88
9.17 EXECULE SEAEEMENT ... 89
LS 00 B o o] == Lo o ISR 93
9.19 Flow graph segment <finalize-component-init>cccocevenenienienienennn. 96
9.20 Flow graph segment <init-COMpPONENnt-SCOPEccereereerierienseesienieseeneeas 96
9.20a Flow graph segment <init-scope-with-runs-on>.............ccccoeeienineneneneenen, 97
9.20b Flow graph segment <init-scope-WithOUt-runs-0n>...........cccceceeveeveecieseennnns 97
9.21 Flow graph segment <parameter-handling>..........c.ccccoceveviveicnsceveeieceenne 98
9.22 Fow graph segment <statement-block™cccooevininininiei e, 98
9.23 FOr SLAEEMENL ... 99
9.24 FUNCHON Call ...t e 100
0.25 GEtCall OPEIaiONcc.eeueeiieeeie et 105
0.26 GELreply OPEraLiONcieeseeeeesteesieeeesee e e ee e e e seesreete e e sreesesreesseensesneennens 105
0.27 GEtVErdiCl OPEIaliONccceeeerieeieeeesteeste s e seeee e steeee e e se e sreensesseesseeneas 106
9.28 GOLO SEALEIMENL........eieeeeeiee et e e e nneenes 106
0.28a Halt POIt OPEralioN........ccceieeieeee ettt 107
9.29 [T-E1SE SEALEMENT..... .o 107
9.29a Kill cOMPONENt OPEIaiON.......c.ceeeieierie sttt 108
9.290 Kill eXeCUtioN StALEMENL........eieeiieie et ee s 112
9.29c Killed component OpErationccceeereeiieseeseeiesee e esee e see e e eneas 114
0.30 LAl StAEMENL.......ccieieieeiesierie e e 115
9.31 (00 S = 1 0= 0 | SRR 116
9.32 V= o R0 o< = (T o] o TR RSP 116
0.33 MIC OPEIBHION. ...c.eeeitiieeieeee ettt sb et n e 117
0.34 POrt deClaration..........ccoveeiieieiiese e e nne s 117
0.35 RAISEOPEIBHIONccviceiesteeteeeesteerteeeeste et e e e e e esre et e e teetesreesreeaeeneenneas 118
0.36 Read timer OPEralioNcccccueieeiiieie ettt nre s 121
0.37 RECEVE OPEraLIONeeveeeeceeeteee sttt ettt et b e e ae e e sreeae s e enneas 122

iv Rec. ITU-T Z.164 (05/2012)

10

9.38 REPEAL SALEMENT........eiiiiii e
0.39 REPIY OPEIAliONcuveeeeceiesee ettt st nne s
9.40 RELUIN SLAEEMENT ...
941 Running component OPEIationccooeeeereeriereeseeie e see e see e see e
942 RUNNING tIMEN OPEFEHION.ovitiriiitirieeieee ettt
.43 SElf OPEIEHION.......iiiitieiieieee e
044 SENU OPEIALIONecteeeeeieesie e st e et et e e e e s e sre et e e esreetesraesneeaeeneenrens
945 SetVerdiCt OPEraliON........cciieeeceeie ettt s ae e nne s
9.46 Start cCompoNENt OPEIALION..........coveiuieeeceerieee et
.47 Start POIt OPEIaiONcceeiieeirieesieeee ettt sbe et reesreeee e e e
048 Start timer OPEraLIONcociieeieeite ettt a e aeesreeneas
949 StOP COMPONENT OPEIELTION......cuitieirierieeieeie e see e sr e b sne e
950 StOp EXECULION SLALEMENL........eceeereeieeeesie et e e et e e nne s
Y S (o] o o0 g W] 0= =1 o] ISP
YIS (0] o R (1 1 01= g0 01 = 1 o o S
0.53 SYSIEM OPEIAliON ..ottt sttt e e e
0.53a Test Case SLOP OPEFELION........ccireeiereerieesie e siee et sbe et sreesreeae e neeas
054 TimMEr deClaralioN.......cccveiiiiieieeie e e e ne s
955 TimeOUL tiIMEr OPEIaliON........cccueeieereerieeieseesteeeesee e eeesreesee e sreesseesaesseeneas
956 UNMEP OPEIALiONccveeieeeecieeieeiesiee e eeeseeste e saeessesseesseenseeneesreenseenaesseensens
957 Variable deClaralion..........cccoviiiiiininieie e
0.58 WhIle StaOMENTooieiieeeeee et ee s
Lists of operational SemantiC COMPONENTS..........ccueierierireriereeeeie e
10.1 FUNCLIONS @NA SEALES........ecuiriirierieeieie et st
10.2 SpeCial KEYWOIAS........ccueieeiieeie ettt st e
10.3 Flow graphs of TTCN-3 behaviour descriptions...........c.ccccvvevveveieeseeieesnns
10.4 FlOW graph SEgMENLS........cooiiiiiieieeee et

Rec. ITU-T Z.164 (05/2012)

Page
126
127
130
134
136
138
138
141
142
143
144
146
150
151
152
153
154
154
156
156
160
162
163
163
166
166
166

\"

Recommendation ITU-T Z.164

Testing and Test Control Notation version 3:
TTCN-3 operational semantics

1 Scope

This Recommendation defines the operational semantics of TTCN-3. The present document is
based on the TTCN-3 core language defined in [1].

2 References

References are either specific (identified by date of publication and/or edition number or version
number) or non-specific. For specific references, only the cited version applies. For non-specific
references, the latest version of the reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might
be found at hitp://docbox.etsi.org/Reference.

NOTE — While any hyperlinks included in this clause were valid at the time of publication ETSI cannot
guarantee their long-term validity.

21 Nor mative refer ences

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] Recommendation ITU-T Z.161 (2012), Testing and Test Control Notation version 3:
TTCN-3 core language.

ETSI ES 201 873-1 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1. TTCN-3 Core Language.

<http://webapp.etsi.org/workprogram/Report Workltem.asp?WKI_ID=35092>

2.2 Informative references
None.
3 Definitions and abbreviations

31 Definitions
For the purposes of this Recommendation, the terms and definitions given in [1] apply.

3.2 Abbreviations

For the purposes of this Recommendation, the following abbreviations apply:
BNF Backus-Nauer Form

MTC Master Test Component

SUT System Under Test

TTCN Testing and Test Control Notation

Rec. ITU-T Z.164 (05/2012) 1

http://docbox.etsi.org/Reference
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35092

4 Introduction

This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner.
The operational semantics is not meant to be formal and therefore the ability to perform
mathematical proofs based on this semanticsis very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module.
Different kinds of states are introduced and the meaning of the different TTCN-3 constructs is
described by:

1) using state information to define the preconditions for the execution of a construct; and
2) defining how the execution of a construct will change a state.

The operational semantics is restricted to the meaning of behaviour in TTCN-3, i.e.,, functions,
atsteps, test cases, module control and language constructs for defining test behaviour, e.g., send
and receive Operations, if-else-, Of while- Statements. The meaning of some TTCN-3 constructs
is explained by replacing them with other language constructs. For example, interleave
statements are short forms for series of nested a1t statements and the meaning of each interleave
statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of alanguage is based on an abstract syntax tree of the
code that shall be described. This semantics does not work on an abstract syntax tree but requires a
graphical representation of TTCN-3 behaviour descriptions in form of flow graphs. A flow graph
describes the flow of control in afunction, alt step, test case or the module control. The mapping of
TTCN-3 behaviour descriptions onto flow graphsis straightforward.

NOTE — The mapping of TTCN-3 statements onto flow graphs is an informal step and is not defined by
using the BNF rulesin [1]. The reason for thisis that the BNF rules are not optimal for an intuitive mapping
because several static semantic rules are coded into BNF rules in order to allow static semantic checks during
the syntax check.

5 Structure of the present document

The present document is structured into four parts:

1) The first part (see clause 6) describes restrictions of the operational semantics, i.e., issues
related to the semantics, which are not covered by the present document.

2) The second part (see clause 8) defines the meaning of TTCN-3 short cut and macro

notations by their replacement with other TTCN-3 language constructs. These replacements
in a TTCN-3 module can be seen as pre-processing step before the module can be
interpreted according to the following operational semantics description.

3) The third part (see clause 9) describes the operational semantics of TTCN-3 by means of
flow graph interpretation and state modification.

4) The fourth part (see clause 10) specifies the mapping of the different TTCN-3 statements
onto flow graph segments, which provide the building blocks for flow graphs representing
functions, alt steps, test cases and module control.

6 Restrictions

The operational semantics only covers behavioural aspects of TTCN-3, i.e, it describes the
meaning of statements and operations. It does not provide:

a) A semantics for the data aspects of TTCN-3. This includes aspects like encoding, decoding
and the usage of dataimported from non-TTCN-3 specifications.

b) A semantics for the grouping mechanism. Grouping is related to the definitions part of a
TTCN-3 module and has no behavioural aspects.

2 Rec. ITU-T Z.164 (05/2012)

C) A semantics for the import Statement. The import of definitions has to be done in the
definitions part of a TTCN-3 module. The operationa semantics handles imported
definitions as if they are defined in the importing module.

7 Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on a textua level
before this operational semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

. lists of module parameter, constant and variable declarations of the same type and lists of
timer declarations,

. stand-alone receiving operations,

. stand-alone altsteps calls;

. trigger Operations,

. missing return and stop Statements at the end of function and test case definitions,

. Missing stop execution statements;

. interleave Statements,

o select-case Statements,

. break and continue Statements;

. disconnect and unmap Operations without parameters; and

. default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a special handling for
module parameters, global constants, i.e., constants that are defined in the module definitions part,
and pre-processing macros. All references to module parameters, global constants and pre-
processing macros shall be replaced by concrete values. This means, it is assumed that the value of
module parameters, global constants and pre-processing macros can be determined before the
operational semantics becomes relevant.

NOTE 1 — The handling of module parameters and global constants in the operational semantics will be
different from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of
TTCN-3 behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2 — The operational semantics handles parameters of and local constants in test components, test
cases, functions and module control like variables. The wrong usage of local constants or in, out and
inout parameters hasto be checked statically.

7.1 Order of replacement steps

The textual replacements of short forms, global constants and module parameters have to be donein
the following order:

1) replacement of lists of module parameter, constant, variable and timer declarations with
individual declarations;

2) replacement of global constants and module parameters by concrete values;

3) replacement of al select-case Statements by equivalent nested i £-else Statements,

4) embedding stand-alone receiving operations into a1t Statements;

5) embedding stand-alone altstep callsinto a1t statements;

6) expansion of interleave Statements,

7) replacement of al trigger operations by equivalent receive operations and repeat
statements;

Rec. ITU-T Z.164 (05/2012) 3

8) adding return at the end of functions without return Statement, adding self.stop
operations at the end of testcase definitions without a stop Statement;

9) adding stop at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parametersto disconnect and unmap Operations without parameters; and
13) adding default values of parameters.

NOTE — Without keeping this order of replacement steps, the result of the replacements would not represent
the defined behaviour.

7.2 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test
components that are created during the execution of a TTCN-3 module. Module parameters are
meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values
before the operational semantics starts the interpretation of the module. If the value of a constant or
module parameter is given in form of an expression, the expression has to be evaluated. Then, the
result of the evaluation shall replace all references of the constant or module parameter.

7.3 Embedding single receiving operationsinto alt statements
TTCN-3 receivi ng operations dl€. receive, trigger, getcall, getreply, catch, check, timeout,
and done.

NOTE — The operations receive, trigger, getcall, getreply, catch and check operate on ports and
they alow branching due to the reception of messages, procedure cals, replies and exceptions. The
operations timeout and done are not real receiving operations, but they can be used in the same manner as
receiving operations, i.e., as aternatives in alt statements. Therefore, the operational semantics handles
timeout and done like receiving operations.

A receiving operation can be used as stand-alone statement in a function, an altstep or a test case.
The timeout oOperation can also be used as stand-alone statement in module control. In such a case
the receiving operation as considered to be shorthand for an a1t statement with only one aternative
defined by the receiving operation. For the operational semantics an a1t statement in which the
receiving statement is embedded shall replace all stand-alone occurrences of receiving operations.

EXAMPLE:
// The stand-alone occurrence of

MyCL. trigger (MyType:?) ;

// shall be replaced by

alt {
[] MyCL.trigger (MyType:?) { }
}

// or
MyPTC.done;
// shall be replaced by

alt {
[] MyPTC.done { }
1

4 Rec. ITU-T Z.164 (05/2012)

7.4 Embedding stand-alone altstep callsinto alt statements

TTCN-3 alows calling altsteps like functions in functions, altsteps, test cases and module control.
The meaning of a stand-alone call of an altstep is given by an a1t statement with one branch only
that calls the altstep. The a1t statement is responsible for the snapshot that is evaluated within the
atstep and for the invocation of the default mechanism if none of the alternatives in the altstep can
be chosen.

NOTE — An altsteps used in module control can only include alternatives with timeout operations and an
else branch.

EXAMPLE:

// The stand-alone occurrence of

myAltstep (MyParlVal) ;

// shall be replaced by

alt {
[] myAltstep (MyParival) { }
}

75 Replacement of interleave statements

The meaning of an interleave Statement is defined by its replacement by a series of nested a1t
statements that has the same meaning. The algorithm for the construction of the replacement for an
interleave Statement is described in this clause. The replacement shall be made on a syntactical
level.

Within an interleave Statement it is not allowed:

1) to use the control transfer statements for, while, do-while, goto, activate, deactivate,
stop, repeat and return,

2) to call altsteps;

3) to call user-defined functions which include communication operations,
4) to guard branches of the interleave Statement with Boolean expressions; and
5) to specify e1se branches.

Due to these regtrictions, al not mentioned stand-alone statements (e.g., assignment, log, send Or
reply), blocking call operations and the compound statements interleave, if-else and alt can
be used within an interleave Statement.

NOTE 1 — Blocking call operations and if-else statements can be treated like stand-alone statements if
they have no embedded alt statements. In case of embedded a1t statements, the aternatives contribute to
the interleave Statement and need a special handling. For simplicity, the agorithm below does not
distinguish between these two cases.

NOTE 2 — Non-blocking cal1l operations are also allowed in interleave statements, they are considered to be
stand-al one statements.

The algorithm described in this clause only works for interleave Statements without embedded
interleave Statements. In case of an interleave Statement that has embedded interleave
statements, the embedded interleave Statements have to be replaced before the algorithm can be
applied.

NOTE 3 — Dueto restrictions 1 to 5, it is aways possible to find finite replacements for nested embeddings
of interleave Statements.

Rec. ITU-T Z.164 (05/2012) 5

The replacement agorithm works on a graph representation of an interleave statement and
transforms it into a semantically equivalent tree structure describing a series of nested ait
statements. For this, a graph representation of stand-alone statements, the compound statements i £ -
else, blocki Nng call, alt and interleave iS needed.

A stand-alone statement is described by a node with the statement as inscription. A sequence of
stand-alone statements is described by a set of nodes connected by a flow lines. Thisis shown in
Figure 1.

P1l.send (MyVar) ; P1l.send (MyVar) ;

(a) TTCN-3 stand-alone statement (b) graph representation of (a)

Pl.send (MyVar) ;

P1l.send (MyVar) ;
X := 7 + 5;

(c) Sequence of TTCN-3 stand-alone (d) graph representation of (c)
statements

Figure 1 — Graph representation of TTCN-3 stand-alone statements

The graph representation of an if-else Statement is shown in Figure 2. An if-else Statement is
represented by an IF node with two flow lines connected to the first statement in the two
alternatives. An if-else Statement without ELSE branch is represented in the same manner, if
there are statements following the i £-e1se Statement. In this case the flow line representing the else
branch is connected to the first statement following the i£-el1se Statement. An if-else Statement
without EL SE branch and without following statements is represented by an IF node with one flow
line only.

NOTE 4 — The inscriptions on the flow lines in Figure 1 are introduced for readability purposes only. The
algorithm only uses the relation expressed by the flow line and not the inscription.

6 Rec. ITU-T Z.164 (05/2012)

if (x < 7) {
P1l.send (MyVar) ;
}

else { P1l.send (MyVar) ;
X =7 + 5
}
X 1= X * 2
(a) TTCN-3if-else statement (b) Graph representation of (a)

if (x < 7) {
P1l.send (MyVar) ;
1

X 1= X * 2

(c) TTCN-3if-else statement without else branch (d) Graph representation of (c)

Figure 2 — Graph representation of TTCN-3 if-else statements

The graph representation of a blocking ca11 statement is shown in Figure3. A blocking call

statement is represented by a BLOCKING-CALL node with flow lines connected to the getreply
and catch statements of the different alternatives.

Rec. ITU-T Z.164 (05/2012) 7

Pl.call (MyProc:{-, true}, 20E-3) {
[1 Pl.getreply (MyProc:{?,-} {
setverdict (pass) ;

[] Pl.catch(MyProc, MyException) {}
[] Pl.catch(timeout) {
setverdict (fail) ;
}

—

(a) TTCN-3 blocking call statement

BLOCKING CALL

Pl.call (MyProc:{-,true}, 20E-3)

Pl.getreply (MyProc:{?,-}) Pl.catch(timeout)

Pl.catch (MyProc, MyException)

setverdict (pass) ; setverdict (fail) ;

(b) Graph representation of (a)

Figure 3— Graph representation of a TTCN-3 blocking call statement

The graph representation of an a1t statement is shown in Figure 4. An alt statement is represented
by an alt-node with several flow lines connected to the different alternatives.

8 Rec. ITU-T Z.164 (05/2012)

alt {
[x<5] Pl.receive (MyMessageOne} {
setverdict (pass) ;
}

[l Pl.receive (MyMessageTwo) {}
[l T1.timeout ({
setverdict (fail) ;
}

—

(a) TTCN-3 alt statement

Pl.receive (MyMessageOne)

Pl.receive (MyMessageTwo)

setverdict (pass) ; setverdict (fail) ;

(b) Graph representation of (a)

Figure 4 — Graph representation of a TTCN-3 alt statement

In general, the graph representations of if-else, blocking cal1l and a1t statements are directed
graphs without loops where the flow lines of the different alternatives join when leaving the
statement. By means of duplication, it is possible to transform such directed graphs into a
semantically equivalent tree representation. This is shown in Figure5 for the alt statement in
Figure 4. The algorithm described below will construct such tree representations.

Rec. ITU-T Z.164 (05/2012) 9

alt {
[x<5] Pl.receive (MyMessageOne} {
setverdict (pass) ;
X := 7 + 5;
}
[] Pl.receive (MyMessageTwo) ({
X =7 4+ 5;

[] T1.timeout {
setverdict (fail) ;
X =7 + 5;

}

(a) TTCN-3 alt statement that is semantically equivalent to Figure 4(a)

T1.timeout

Pl.receive (MyMessageOne)
Pl.receive (MyMessageTwo)

setverdict (pass) ; setverdict (fail) ;

(b) Graph representation of (a) (semantically equivalent to Figure 4(b))

Figure5— Graph representation of a TTCN-3 alt statement

An interleave Statement can be described by a graph that consists of a set of directed sub-graphs,
each of which is constructed by means of stand-alone statements and the compound statements
if-else, blocking ca1l and a1t. The directed sub-graphs describe the interleaved flows of control.
An example is shown in Figure 6. The node inscriptions in Figure 6 (b) refer to the labels of the

TTCN-3 statements in Figure 6(a).

10 Rec. ITU-T Z.164 (05/2012)

interleave

[] Pl.receive (M1} { //
alt {
// ALT
[1 Pl.receive (M3) { //
setverdict (pass) ;
// L3
[1 Tl.timeout { } //
1
[1 P2.receive (M2) /7
if (x < 5) {
// IF
alt {
// ALT
[] P2.receive(M4) { //
setverdict (pass) ;
// L7
[] Compl.done { }
// L8
1
X := 7 4+ 5;
// L9
1
else {
P3.call (MyProcTempl, 20E-3) ({ // BC (= BLOCKING
[1 P3.getreply(ReplyTempl) ({ // L10
alt {
// ALT
[l P2.receive(M5) { } // L11
[l P2.receive(Ms) { } // L12
!
1
[l P3.catch(timeout) { // L13
setverdict (fail) ;
// Ll4

L2

L5

L6

CALL)

(a) TTCN-3 interleave statement

- A

(b) Graph representation of (a)

Figure 6 — Graph representation of a TTCN-3 interleave statement

Rec. ITU-T Z.164 (05/2012)

11

Formally, an interleave Statement can be described by a graph Gl = (S, F) where:
St isthe set of allowed TTCN-3 statements; and

F c (St X St) describesthe flow relation.

The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.

For the construction algorithm the following functions need to be defined:

. The REACHABLE function returns all statements that are reachable from a statement sin a
graph Gl = (St, F):
REACHABLE (s,Gl)={s}u
{ stmt|stmte St A3J(S=Xy, Xy, ... , X, = StMt) where x; € S,
e {1...n} A (X, X41)€ F}
. The SUCCESSORS function returns all successors of a statement sin agraph Gl = (St, F):
SUCCESSORS (s,Gl)={ stmt |stmt € St A (S, stmt) € F}
. The ENABLED function returns all statements of a graph GI = (St, F) which have no
predecessors:
ENABLED G ={gmt|stmte StA (F (S X {s}) =)}
. The KIND function returns the kind or type of a TTCN-3 statement in a graph representing
an interleave Statement.
. The DISCARD function deletes a statement s or a set of statements S from a graph Gl =

(St, F) and returns the resulting graph GI'= (St', F'):

For single nodes:

DISCARD (s, Gl) =GI" where: GI' = (St', F'), with St' = St\{ s} and
F'=F N (St{s} X St\{s}).

For sets of nodes:

DISCARD (S, GI) =GI" where: GI' = (St', F'), with St' = St\Sand
F'=F N (S1\S X $\S).
. The RECEIVING function takes a set of statements of a graph Gl and returns all receiving
statements:
RECEIVING (S ={ stmt | stmt € S A KIND(stmt) € {receive, trigger, getcall,
getreply, catch, check, done, timeout} }
. The RANDOM function selects randomly an element sfrom agiven set S and returnss.
RANDOM (S)=swherese S

The construction algorithm (see Figure7) of the tree is a recursive procedure where in each
recursive call the successor nodes for a given node is constructed. The procedure is provided in a
C-like pseudo-code notation that uses the functions defined above and some additional
mathematical notation.

12 Rec. ITU-T Z.164 (05/2012)

CONSTRUCT-SUCCESSORS (statementType *predecessor, graphType GI) ({
// - statementType refers to the type of a node of the tree that is constructed
// - *predecessor refers to the last node that has been created
// - graphType denotes type of the graph of TTCN-3 statements
// - GI is called by value and refers to the subgraph consisting of all remaining TTCN-3
// statements that have to be taken into consideration

var graphType myGraph;

var statementType 1, myStmt;

var statementType *newStmt, *firstInBranch; // pointers for new statement nodes in the
// tree that is constructed recursively

// Retrieving sets of TTCN-3 statements that have no predecessors in 'GI'

var statementSet enabStmts := ENABLED(GI) ; // all statements without predecessor
var statementSet enabRecStmts := RECEIVING(enabStmts); // receiving statements in 'enabStmts'
var statementSet enabNonRecStmts := enabStmts\enabRecStmts;

// non receiving statements in 'enabStmts'

if (GI.St == &) { // We assume that GI.St refers to the set of statements in GI
return; // No statements are left, termination criterion of Recursion

elseif (enabNonRecStmts != &) { // Handling of non receiving statements in 'enabStmts'
myStmt := RANDOM (enabNonRecStmts) ;

// There can only be one statement in 'enabNonRec', because the Algorithm
// continues the construction until there is a branch that contributes to
// the interleave statement.

newStmt := create (myStmt, predecessor) ;
// Creation of a new tree node representing 'myStmt' in the tree
// and update of pointers in 'newStmt' and 'predecessor'.

if (KIND(myStmt) == IF || KIND(myStmt) == BLOCKING_CALL) {
for each i in SUCCESSORS (myStmt, GI) {

firstInBranch := create(i, newStmt) ;
// Creation of a second node for the first statement of in a branch due to
// an if-else statement.
// Note, this create statement will be used to create tree nodes
// representing the receiving statements in blocking call operations.

myGraph := DISCARD({i, myStmt} U REACHABLE (myStmt, GI)\REACHABLE(i, GI))
// Removal of i, myStmt and all statements that are reachable from
// myStmt but not reachable from i. The latter considers the branching of
// a flow of control in a subgraph of GI.

CONSTRUCT-SUCCESSORS (firstInBranch, myGraph) ; // NEXT RECURSION STEP
\ 1
elseif (KIND(myStmt) == ALT) ({
for each (i in SUCCESSORS (myStmt, GI) {

CONSTRUCT-SUCCESSORS (mystmt, DISCARD(REACHABLE (myStmt, GI) \REACHABLE (i, GI)));
// NEXT RECURSION STEP, the DISCARD (REACHABLE (myStmt, GI) \REACHABLE (i, GI))
// argument considers the branching of a flow of control due to different
// receiving events.

}

else { // mystmt is a stand-alone statement
CONSTRUCT-SUCCESSORS (newSonNode, DISCARD (myStmt, GI)) ;
// NEXT RECURSION STEP
1

else { // Handling of receiving events that interleave

if (KIND(predecessor) != ALT) { // an alt node is missing and has to be created, if the
// interleaving is not influenced by an embedded alt statement
predecessor := create (ALT, predecessor) ;

}

for each i in enabRecStmts)
newStmt := create(i, predecessor); // New tree node
CONSTRUCT-SUCCESSORS (newStmt, DISCARD(i, GI)); // NEXT RECURSION STEP (S)

Figure 7 — Replacement algorithm for TTCN-3 interleave statements

Rec. ITU-T Z.164 (05/2012) 13

Initially, the CONSTRUCT-SUCCESSORS function (see Figure 7) will be called with a root node
of an empty tree and the graph of TTCN-3 statements describing the interleave Statement that
shall be replaced. After termination, the root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to the interleave Statement shown
in Figure 6 leads to the tree shown in Figure 8. The labels refer to the statements in Figure 6(a).
Multiple labels are the result of the duplication of code. The TTCN-3 code that corresponds to the
treein Figure 8 is shown in Figure 9.

NOTE 5 — The example for the application of the algorithm in Figure 7 (see Figures 6, 8 and 9) is very

comprehensive. This example is provided in order to show most of the special situations, i.e., branching and
joining of flow lines, an embedded a1t statement, ablocking call statement and an i f-else Statement.

14 Rec. ITU-T Z.164 (05/2012)

Figure 8 — Result of applying the algorithm in Figure 7 to the interleave statement in Figure 6

15

Rec. ITU-T Z.164 (05/2012)

alt {

// ALT
Pl.receive (M1} { // L1
alt { // ALT
[l Pl.receive (M3) ({ // L2
setverdict (pass) ; // L3
alt { // ALT
[1 P2.receive(M2) ({ // L5
if (x < 5) | // IF
alt { // ALT
[l P2.receive (M4) ({ // L6
setverdict (pass) ; // L7
X := 7 + 5; // L9
1
[l Compl.domne // L8
X =7 + 5; // L9
1 1
else
P3.call (MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
[1 P3.getreply(ReplyTempl) // L10
alt | // BALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // L12
1
[l P3.catch(timeout) { // L13
setverdict (fail) ; // Ll4
Yool Yooy 1
[Ti1.timeout { // L4
alt { // BALT
[1 P2.receive(M2) ({ // L5
if (x < 5) { // IF
alt { // ALT
[1 P2.receive(M4) ({ // L6
setverdict (pass) ; // L7
X =7 + 5; // L9
1
[] Compl.done { // L8
X := 7 + 5; // L9
1 1
else {
P3.call (MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
[1 P3.getreply(ReplyTempl) { // L10
alt | // BALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // Ll2
1
[l P3.catch(timeout) { // L13
setverdict (fail) ; // Ll4
| Yooy o 1
[l P2.receive (M2) { // L5
if (x < 5) { // IF
alt { // ALT
[1 P2.receive(M4) ({ // L6
setverdict (pass) ; // L7
X := 7 + 5; // L9
alt { // BALT
[l Pl.receive (M3) ({ // L2
setverdict (pass) ; // L3
1
[l Til.timeout { } // L4
Yool
[] Compl.done { // L8
X := 7 + 5; // L9
alt { // ALT
[l Pl.receive (M3) ({ // L2
setverdict (pass) ; // L3
1
[l Til.timeout { } // L4
1
[1 Pl.receive (M3) ({ // L2
setverdict (pass) ; // L3
alt { // BALT
[l P2.receive (M4) ({ // L6
setverdict (pass) ; // L7
X := 7 + 5; // L9
[l Compl.done // L8
X :=7 + 5; // L9
Yool !
[l T1.timeout { // L4
alt { // BALT

16

Rec. ITU-T Z.164 (05/2012)

[l P2.receive (M4) { // L6
setverdict (pass) ; // L7
X := 7 + 5; // L9

[l Compl.done // L8
X := 7 + 5; // L9
} Yool 1

else {
P3.ca11(MyProcTemp1, 20E-3) { // BC (= BLOCKING CALL)
[l P3.getreply(ReplyTempl) ({ // L10
alt { // ALT
[l Pl.receive(M3) { // L2
setverdict (pass) ; // L3
alt { // ALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // Ll2
Yoo
[l T1.timeout // L4
alt { // ALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // L12
|
[1 P2.receive(M5) ({ // L1l
alt { // ALT
[l Pl.receive (M3) ({ // L2
setverdict (pass) ; // L3

[] T1.timeout { } // La
Yool
[] P2.receive(M6) ({ // Ll2
alt { // ALT
[1 Pl.receive(M3) ({ // L2
setverdict (pass) ; // L3

[l Til.timeout { } // L4
Yool
[l P3.catch(timeout) { // L13
setverdict (fail) ; // Ll4
alt { // ALT
[1 Pl.receive(M3) ({ // L2
setverdict (pass) ; // L3

[l Til.timeout { } // L4
| 1

[l P2.receive (M2) { // L5
if (x < 5) { // IF
{ // BALT

[1 P2.receive(M4) ({ // L6

setverdict (pass) ; // L7

X :=7 + 5; // L9
alt { // BALT

[1 Pl.receive(M1} ({ // L1
alt { // BALT

[l Pl.receive(M3) ({ // L2

setverdict (pass) ; // L3

[Til.timeout { } // L4
| yood
[l Compl.done { // L8
X := 7 + 5; // L9
alt { // ALT
[l Pl.receive (M1} { // L1
alt { // ALT
[l Pl.receive (M3) ({ // L2
setverdict (pass) ; // L3

[l Til.timeout { } // L4
1
[1 Pl.receive(M3) ({ // L2
setverdict (pass) ; // L3
alt { // BLT
[l P2.receive (M4) ({ // L6
setverdict (pass) ; // L7
X := 7 + 5; // L9

[l Compl.domne { // L8
X := 7 + 5; // L9
Yool 1

[] Ti1.timeout { // L4
alt { // ALT

Rec. ITU-T Z.164 (05/2012) 17

[l P2.receive(M4) // L6
setverdict (pass) ; // L7
X := 7 + 5; // L9

[l Compl.done // L8
X := 7 + 5; // L9
} b }

else
P3.ca11(MyProcTemp1, 20E-3) { // BC (= BLOCKING CALL)

[1 P3.getreply(ReplyTempl) ({ // L10
alt | // BLT
[l P2.receive (M5) { // L1l
alt { // BLT

[l Pl.receive (M1} ({ // L1
alt { // BLT

[l Pl.receive (M3) ({ // L2

setverdict (pass) ; // L3

!

[Til.timeout { } // L4
Yool Pl

[l P2.receive (M6) { // L12
alt { // ALT

[1 Pl.receive (M1} ({ // L1
alt { // BALT

[l Pl.receive (M3) ({ // L2

setverdict (pass) ; // L3

1

[l Til.timeout { } // L4
P Yoo
[] Pl.receive(M1l} ({ // Ll
alt { // ALT
[1 Pl.receive(M3) ({ // L2
setverdict (pass) ; // L3
alt { // ALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // Ll2
Yool
[l T1.timeout // L4
alt { // ALT
[l P2.receive(M5) { } // L1l
[l P2.receive(M6) { } // Ll2
Yoo
[l P2.receive (M5) { // L1l
alt { // ALT
[l Pl.receive(M3) { // L2
setverdict (pass) ; // L3

.receive (M6)

alt {

.timeout { }

{

.receive (M3) {
setverdict (pass) ;

.timeout { }

L4

L12
ALT
L2
L3

L4

oo) bl

[1 P3.catch(timeout) { // L13
setverdict (fail) ; // Ll4
alt { // BLT

[l Pl.receive (M1} { // L1l
alt { // BLT

[l Pl.receive(M3) { // L2

setverdict (pass) ; // L3

[Til.timeout { } // L4

S S S S S S BN

Figure 9 — Semantically equivalent TTCN-3 code for the interleave statement in Figure 6

7.6 Replacement of trigger operations

The trigger Operation filters messages with a certain matching criterion from a stream of messages
on a given port. The semantics of the trigger Operation can be described by its replacement with
two receive oOperations and a goto Statement. The operational semantics assumes that this
replacement is done on the syntactical level.

18 Rec. ITU-T Z.164 (05/2012)

EXAMPLE 1.
// The following trigger operation ..

alt {
[l MyCL.trigger (MyType:?) { }
}

// shall be replaced by ..

alt {
[l MyCL.receive (MyType:?) { }
[l MyCL.receive {
repeat
}

If the trigger Statement is used in a more complex a1t statement, the replacement is done in the
same manner.

EXAMPLE 2:

// The following alt statement includes a trigger statement ..

alt {
[l PCO2.receive {
stop;
}

[l MyCL.trigger (MyType:?) { }
[l PCO3.catch {

setverdict (fail) ;

stop;

// which will be replaced by

alt {
[l PCO2.receive {
stop;
}

[l MyCL.receive (MyType:?) { }
[l MyCL.receive {
repeat;

[l PCO3.catch
setverdict (fail) ;
stop;

1.7 Replacement of select-case statements

The select-case Statement is an aternative to using a set of nested if-else Statements when
comparing avalue (defined by a select-expression following the select keyword) to one or several
other values (defined by template instances in the case branches). Therefore, the semantics of a
select-case Statement can be described by its replacement with a set of nested if-else
statements. To avoid a multiple evaluation of the select-expression, the set of nested if-else
statements has to be placed into a statement block and value of the expression has to be stored in a
variable at the beginning of the statement block. The operational semantics assumes that this
replacement is done on the syntactical level.

Schematically the select-case Statement |ooks as follows:

select (<expression>) {
case (<templateInstla>, — <templateInst1n>)

<statementblockl>
case (<templateInst2a>, .y <templateInst2n>)
<statementblock2>

Rec. ITU-T Z.164 (05/2012) 19

case (<templatelnstx P <templateInstxn>)

a
<statementblock, >
case else

<statementblock . >
x+1

}

The syntactical replacement of the schematic select-case Statement by nested if-else Statements

looks as follows:
{

var <expression>Type myTempVar := <expressions; // temporary variable for storing the
// value of the expression
if (match(myTempVar, <templateInst >) or .. or match(myTempVar, <templateInst, >))

<statementblockl>

else {
if (match(myTempVar, <templateInst, >) or .. or match(myTempVar, <templatelInst, >))
<statementblock,>
else

if (match(myTempVar, <templateInst >) or .. or match(myTempVar, <templatelInst_ >))
<statementblock, >
else

<statementblock . >
x+1

EXAMPLE:

// The following select-case statement:

select (MyModulePar) { // where MyModulePar is of charstring type
case ("firstvalue") {
log ("The first branch is selected");

case (MyCharstingVar, MyCharstringConst) {
log ("The second branch is selected");

case else
log ("The else branch is selected");
}

}

// is semantically equivalent to:

{

var charstring myTempVar := MyModulePar;
if (match(myTempVar, "firstvalue")) ({

log ("The first branch is selected");
}

else {
if (match(myTempVar, MyCharstingVar) or match (myTempVar, MyCharstingConst)) {
log ("The second branch is selected");

else {

}

log ("The else branch is selected");

7.8 Replacement of simple break statements

"Simple" break statements are break statements used for leaving loops, interleave statements and alt
statements. Such simple break statements are considered to be a short-hand form for using a pair of
goto-label Statements. For each break Statement a 1abel Statement is added after the loop, a1t
statement or expanded interleave Statement. The 1abel statement shall have an unused label. The
break Statement is replaced by a goto Statement to this specific label.

20 Rec. ITU-T Z.164 (05/2012)

Note, that interleave Statements are explained aready. Therefore the limitation that goto
statements cannot be used within interleave Statements does not hold.

NOTE — The semantics for the break statement used to leave an altstep is defined in clause 9.5a.
EXAMPLE:

// The following loop with a break statement:
while (condl) { // condl is a Boolean condition guarding the loop
if (cond2) {

break;
}i

}
// is semantically equivalent to:

while (condl) { // condl is a Boolean condition guarding the loop

if (cond2) {
goto break 12345; // break 12345 is a unique label
}i

label break 12345;

7.9 Replacement of continue statements

The continue Statement is a short-hand form for using a pair of goto-1abel Statements. For each
continue Statement a 1abel Statement is added at the end of the loop body. The 1abel statement
shall have an unused label. The continue Statement is replaced by a goto Statement to this specific
label.

EXAMPLE:

// The following loop with a continue statement:
while (condl) { // condl is a Boolean condition guarding the loop

if (cond2) {
continue;
}i

// is semantically equivalent to:
while (condl) { // condl is a Boolean condition guarding the loop
if (cond2) {

goto continue 12345; // continue 12345 is a unique label
}i

label continue 12345;

}

7.10 Adding default parametersto disconnect and unmap oper ations without parameters

The usage of a disconnect Or unmap Operation without any parameters is a shorthand form for
using the operation with the parameter self£:all port. It disconnects or unmaps all ports of the
component that calls the operation. For the operational semantics the parameter sel1£:all port
shall be added to all occurrences of disconnect and unmap Operations without parameters.

Rec. ITU-T Z.164 (05/2012) 21

EXAMPLE:

// each occurrence of
disconnect;

// shall be expanded in the following manner:
disconnect (self:all port) ;

// and

// each occurrence of
unmap;

// shall be expanded in the following manner:
unmap (self:all port) ;

711 Adding default values of parameters

Formal parameters may have default values. If no actual parameter is provided in a specific
invocation, then the default value is added to the actual parameter list. If list notation has been used
for the actual parameter list, then the default value is inserted according to the order in the formal
parameter list. If assignment notation has been used for the actual parameter list, then the default
values are appended to the actual parameters, the order among the default values corresponds to
their order in the formal parameter list.

function f comp (in integer p intl, in integer p int2 := 3) return integer {
var integer v := p intl + p_ int2;
return v;

}

// Each occurrence of
f comp (1)

// shall be expanded to
f comp (1, 3);

// Each occurrence of
f comp(p_intl := 1)

// shall be expanded to
f comp(p_intl := 1, p_int2 := 3);

8 Flow graph semanticsof TTCN-3

The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause
flow graphs are introduced (see clause 8.1), the construction of flow graphs representing TTCN-3
module control, test cases, atsteps, functions and component type definitions is explained (see
clause 8.2), module and component states for the description of the execution states of a TTCN-3
module are defined (see clause 8.3), the handling of messages, remote procedure calls, replies to
remote procedure calls and exceptions is described (see clause 8.4) and the evaluation procedure of
module control and test casesis explained (see clause 8.6).

8.1 Flow graphs

A flow graph is a directed graph that consists of labelled nodes and labelled edges. Traversing a
flow graph describes the possible flow of control during the execution of a represented behaviour
description.

22 Rec. ITU-T Z.164 (05/2012)

8.1.1 Flow graph frame

A flow graph shall be put into a frame defining the border of the flow graph. The name of flow
graph follows the keywords flow graph (these are not TTCN-3 core language keywords) and shall
be put into the upper left corner of the flow graph. As convention it is assumed that the flow graph
name refersto the TTCN behaviour description represented by the flow graph. A simple flow graph
is shown in Figure 10.

flow graph
MySimpleFlowGraph

Figure 10 — A smpleflow graph
8.1.2 Flow graph nodes
Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8.1.21 Start nodes

Start nodes describe the starting point of aflow graph. A flow graph shall only have one start node.
A start node is shown in Figure 11(a).

h 4 o

(a) Flow graph start node (b) Flow graph end node

Figure 11 — Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of aflow graph. A flow graph may have several end nodes or in case
of loops no end node. Basic nodes (see clause 8.1.2.3) and reference nodes (see clause 8.1.2.4) that
have no successor nodes shall be connected to an end node to indicate that they describe the last
action of a path through aflow graph. An end node is shown in Figure 11(b).

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e., it is executed in one step. A basic node has a type
and, depending on the type, may have an associated list of attributes. Two basic nodes are shown in
Figure 12.

In the inscription of abasic node the attributes of a node follow the node type and are put into round
parentheses. Type and attributes are used to determine the action to be performed during execution
of the represented language construct. The attributes describe information to be retrieved from the
corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the
attribute name. If required, it is allowed to assign explicit values in basic nodes by using assignment
":=". An example is shown in Figure 12(b).

Rec. ITU-T Z.164 (05/2012) 23

node-type
(attr1 = 7, .,
attr, := 8.0)

node-type
(attr,, attr,,
attry)

(@ (b)

Figure 12 — Basic nodes with attributes

8.1.24 Reference nodes

Reference nodes refer to flow graph segments (see clause 8.1.4) that are sub-flow graphs. The
meaning of areference node is defined by its replacement by the referenced flow graph segment in
the flow graph. The node inscription of the reference node provides the reference to a flow graph
segment. A reference node is shown in Figure 13(a).

segment -reference;
OR

segment -reference segment -reference;
OR

segment -reference;

(a) Singlereference node (b) OR combination of threereference nodes

Figure 13 — Reference node

8.1.2.4.1 OR combination of reference nodes

In some cases several flow graph segments may replace a reference node. For these cases an or
operator may be used to refer to severa flow graph segments (see Figure 13(b)). In the actual flow
graph representing the module control, atest case or a function, one alternative is determined by the
represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more times in a flow graph.
In regular expressions the possible repetition of parts of a regular expression is described by using
the operator symbols "+" (one or more repetitions) and "*" (zero or more repetitions). As shown in
Figure 14, these operators have been adopted to flow graphs by introducing double-framed
reference nodes with associated operator symbols. A single flow (see clause 8.1.3) line shall replace
a reference node, in case of zero occurrences (using a double-framed reference node with
"*"-operator).

B +]

segment-reference segment-reference

Figure 14 — Repetition of reference nodes

24 Rec. ITU-T Z.164 (05/2012)

An upper bound of possible repetitions of a reference node can be given in form of an integer
number in round parenthesis following the "*" or "+" symbol in the double framed reference node.
The segment reference shown in Figure 15 may occur from zero up to 5 times.

ﬂ

segment-reference

Figure 15 — Restricted repetition of areference node

8.1.3 Flowlines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which
indicates a condition under which the flow line is chosen during the flow graph interpretation. As a
short hand notation it is allowed to omit the true inscription. Examples of flow lines are shown
below:

false

true

> which isidentical to >

To support the joining of severa flow lines into one flow line on a graphical level, a special join
node isintroduced. The join node and an example for its usage are shown below:

join node:

®
usage of join node: >‘ >

Drawing long flow lines in big diagrams as it is, for example, necessary to model the TTCN-3
constructs goto and label, IS awkward. For this purpose, labels for outgoing and incoming flow
lines can be used. Examples are shown below:

Incoming flow line with label: in-labd ———»

Outgoing flow line with label: — out-label

An outgoing flow line with alabel is connected with an incoming flow line with alabdl, if the labels
are identical. The flow line labels for the incoming flow lines shall be unique. If there are several
outgoing flow lines with the same label, thisis considered to be ajoin of lines to the incoming flow
line with an identical label.

Rec. ITU-T Z.164 (05/2012) 25

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the
meaning of that reference node. Flow graph segments may include further reference nodes.

As shown in Figure 16, flow graph segments have precise interfaces that consist of incoming and
outgoing flow lines. Thereis only one unlabeled incoming and one or none unlabeled outgoing flow
lines. In addition there might exist several |abelled incoming and outgoing flow lines. For example,
the labelled incoming and outgoing flow lines are needed to describe the meaning of TTCN-3
statements goto and alt.

Flow graph segments are put into a frame and the name of the flow graph segment shall follow the
keyword segment followed by the segment name in the upper left corner of the frame. The flow
lines describing the flow graph segment interface shall cross the flow graph segment frame.

segment SegmentNamel

LI, >

segment-ref
v v l

LO; LO; ... LOy

Figure 16 — Structure of a flow graph segment description

8.15 Comments

To improve readability and coherence a special comment symbol can be used to associate
comments to flow graph nodes and flow lines. The comment symbol and its usage are shown in
Figure 17.

26 Rec. ITU-T Z.164 (05/2012)

E Comment related to
flow line
v
Thisisacommentin inscription Comment related to
........................ acomment symbol b m basic node
(&) Comment symbol (b) Usage of comment symbols

Figure 17 — Flow graph representation of comments

8.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of
basic nodes, i.e., al reference nodes have to be expanded by the corresponding flow graph segment
definitions. The NEXT function is required to support this traversal. NEXT is defined in the
following manner:

actualNodeRef. NEXT(bool) := successorNoderef Where:

. actualNodeRef is the reference of a basic flow graph node;

. successorNodeRef is the reference of a successor node of the node referenced by
actualNodeRef;

. bool Is a Boolean specifying whether the true or the false successor is

returned (see clause 8.1.3).

8.2 Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a
set of flow graphs, i.e., for each TTCN-3 behaviour description a separate flow graph has to be
constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour
descriptions:

a) module control;

b) test case definitions;

C) function definitions;

d) altstep definitions;

€) component type definitions.

The module control specifies the test campaign, i.e., the execution order (possibly repetitious) of the
actual test cases. Test case definitions define the behaviour of the MTC. Functions structure
behaviour. They are executed by the module control or by the test components. Altsteps are used for
the definition of default behaviour or in a function-like manner to structure behaviour. Component
type definitions are assumed to be behaviour descriptions because they specify the creation,
declaration and initialization of ports, constants, variables and timers during the creation of an
instance of a component type.

Rec. ITU-T Z.164 (05/2012) 27

8.2.1 Flow graph construction procedure

The flow graphs presented in the Figures 18 to 22 and the flow graph segments presented in
clause 8 are only templates. They include placeholders for information that has to be provided in
order to produce a concrete flow graph or flow graph segment. The placeholders are marked with
"<" and ">" parenthesis.

The construction of aflow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and
component type definitions a concrete flow graph segment is constructed.

2) For the module control and for each test case, atstep, function and component type
definition a concrete flow graph (with reference nodes) is constructed.

3) In a stepwise procedure all reference nodes in the concrete flow graphs are replaced by

corresponding flow graph segment definitions until al flow graphs only include one start
node, end nodes and basic flow graph nodes.
NOTE 1 — Basic flow graph nodes describe basic indivisible execution units. The operational semantics for

TTCN-3 behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution
methods for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead
to unconnected parts in a flow graph, i.e., parts which cannot be reached from the start node by
traversing through the flow graph along the flow lines. The operational semantics will ignore
unconnected parts of aflow graph.

NOTE 2 — An unconnected part of aflow graph is aresult of the mechanica replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements also
has to be taken into consideration. However, the goa of the present document is to provide a correct and
complete semantics, not an optimal flow graph representation.

8.2.2 Flow graph representation of module control
Schematically, the syntactical structure of a TTCN-3 moduleis:

module <identifier> <module-definitions-part> control <statement-blocks>

For the flow graph behaviour representation the following information is relevant only:

module <identifier> <statement-blockx>

This is comparable to a function definition and therefore the flow graph representation of module
control is similar to the flow graph representation of a function (see clause 8.2.4). The semantics
will access the flow graph representing the module control by using the module name.

NOTE — The meaning of the module definitions part is outside the scope of this operational semantics.

Module parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause 8.3).

The scheme of the flow graph representation of the module control is shown in Figure 18. The flow
graph name control identifies the flow graph representing the module control. The nodes of the
flow graph have associated comments describing the meaning of the different nodes. The reference
node <stop-entity-op> covers the case where no explicit stop operation is specified, i.e., the
operational semantics assumes that a stop operation isimplicitly added.

28 Rec. ITU-T Z.164 (05/2012)

flow graph control

// The module control behaves like a
<init-component-scope> // component and therefore, its scope
// has to be initialised.

y

// The body of the module control
<statement-blocks> // specifies the statements to be
// executed.

* (1) // For the case that an explicit stop
// operation is missing at the end of
// module control

<stop-entity-op>

3

Figure 18 — Flow graph representation of module control

8.2.3 Flow graph representation of test cases
Schematically, the syntactical structure of a TTCN-3 test case definitionis.

testcase <identifier> (<parameter>) <testcase-interface> <statement-block>

The <testcase-interface> above refers to the (mandatory) runs on and the (optional) system
clauses in the test case definition. The flow graph description of a test case describes the behaviour
of the MTC. Variables, timers and constants defined and declared in the component type definition
are made visible to the MTC behaviour by the runs on clause in the <testcase-interface>. The
system Clause is not relevant for the MTC and is therefore not represented in the flow graph
representation of atest case.

The scheme of the flow graph representation of a test case is shown in Figure 19. The flow graph
name <identifiers refers to the name of the represented test case. The nodes of the flow graph
have associated comments describing the meaning of the different nodes. The reference node
<stop-entity-op> covers the case where no explicit stop operation for the MTC is specified, i.e.,
the operational semantics assumes that a stop operation isimplicitly added.

Rec. ITU-T Z.164 (05/2012) 29

8.24 Flow graph representation of functions

flow graph <identifiers>

1

<init-scope-with-runs-on>

A 4

<parameter-handlings>

/!
/!
!/

Considers scope information provided
by the runs-on clause in the
interface of the test case.

\4

/!
!/
//
!/
//
!/

- Actual parameter values are
assumed to be in the value stack

- Formal parameters are handled
like local variables and local
timers

<statement-blocks>

!/
//
!/

The body of the test case specifies
the statements to be executed
by the MTC.

<stop-mtc>

A

!/
!/

For the case that an explicit stop
operation is missing at the end of
the test case

Figure 19 — Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 function is:

The optional <function-interface> above refers to the (optional) runs on and the (optional)

return clauses in the function definition.

The scheme of the flow graph representation of a function is shown in Figure 20. The flow graph
name <identifiers> refersto the name of the represented function. Variables, timers, constants and
ports defined and declared in the component type definition are made visible to within the function
by the runs on clause in the <function-interface>. A MISSINg runs on Clause means that
definitions within the component type definition are not known within the scope of the function.
The operational semantics distinguishes these two cases by the reference nodes <init-scope-
with-runs-on> and <init-scope-without-runs-on>. The reference node <return-without-
value> covers the case where no explicit return Statement is specified, i.e., the operationa

function <identifier> (<parameter>) [<function-interface>] <statement-blocks>

semantics assumes that a return Statement isimplicitly added.

30

Rec. ITU-T Z.164 (05/2012)

flow graph <identifiers

. th // Considers the cases where either
<init-scope-with-runs-on> // a runs-on clause is present or

o QR // absent.
<init-scope-without-runs-on>

// - Actual parameter values are

\ 4 // assumed to be in the value stack
!/
<parameter-handling> // - Formal parameters are handled
// like local variables and local
// timers

A\ 4

// The body of the function specifies
<statement-blocks> // the statements to be executed
// by the component.

% (1)
// For the case that an explicit
//

return statement is missing at the
<return-without-value> // end of the function.

)

Figure 20 — Flow graph representation of functions

8.25 Flow graph representation of altsteps
Schematically, the syntactical structure of a TTCN-3 altstep is:

altstep <identifier> (<parameters>) [<altstep-interfaces]
<constant-variable-timer-declarations>
{ <receiving-branch> | <else-branch> }*

NOTE — Only the alternatives up to the first else branch and the first else branch are taken into consideration.
Branches following the first else branch are unreachable.

Theoptional <altstep-interfaces above refersto the runs on clausein the altstep definition.

The scheme of the flow graph representation of an atstep is shown in Figure 21. The flow graph
name <identifiers> refers to the name of the represented altstep. Variables, timers, constants and
ports defined and declared in the component type definition are made visible to within the function
by the runs on clause in the <function-interface->. A MisSiNg runs on Clause means that
definitions made within the component type definition are not known within the scope of the
function. The operational semantics distinguishes these two cases by the reference nodes <init-
scope-with-runs-on> and <init-scope-without-runs-on>. The reference node <return-

without-value> COvers the case where no else-branch is specified and none of the alternatives can
be selected.

Rec. ITU-T Z.164 (05/2012) 31

flow graph <identifiers

)

<init-scope-with-runs-on>
OR

// Considers the cases where either
// a runs-on clause is present or

.) // absent.
<init-scope-without-runs-
Y // - Actual parameter values are
// assumed to be in the value stack
<parameter-handling> //

// - Formal parameters are handled

// like local variables and local
// timers

* ||<constant—definition>

, OR) // Constants, variables and timers
<variable-declaration> // may be declared and initialised
OR

<timer-declarationx>

+

// Alternative
—receiving-branch> OR |7 /7 branches
<altstep-call-branch>
OR <else-branch>

* (1) // For the case where no else branch

................................. // is Specified and none Of the
// alternatives can be selected.

<return-without-value>

i

Figure 21 — Flow graph representation of altsteps

8.2.6 Flow graph representation of component type definitions
Schematically, the syntactical structure of a TTCN-3 component type definition is:

type component <identifier> <port-constant-variable-timer-declarationss>
The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in Figure 22.
The flow graph name <identifiers refersto the name of the represented component type.

32 Rec. ITU-T Z.164 (05/2012)

flow graph <identifiers>

// The component scope is initialised

<init-component-scope>

*
“ <port-declaration>

OR

<constant-definition> // Ports are created
OR

<variable-declarations // Constants, variables and timers
OR // are declared and initialised

<timer-declaration>

// The 'father' component waits for the
// completion of the component creation,
v // i.e., is in a 'blocking' state.

<finalise-component-inits // The created component gives the
// control back to the 'father' component.

| // The new component goes into a

// 'blocking' state and waits to be
// started.

Figure 22 — Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs
For the retrieval of the start node reference of a flow graph the following function is required:

The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (flow-graph-identifier)

The function returns a reference to the start node of a flow graph with the name flow-graph-
identifier. The flow-graph-identifier refers to the module name for the control, to test case names, to
function names, to altstep names and to component type names.

8.3 State definitionsfor TTCN-3 modules

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are
manipulated. A module state is a structured state that consists of several sub-states describing the
states of module control and the different test configurations. A test configuration state describes
the states of test components and ports. Module states, configuration states, component states and
port states are introduced in this clause. In addition, functions to retrieve information from and to
manipul ate states are defined.

8.3.1 Modulestate

As shown in Figure 23 a module state is structured into a module CONTROL state and a TEST-
CONFIGURATION state. The module CONTROL state describes the state of the module control.
Module control is handled like a test component, i.e., CONTROL is an entity state as defined in
clause 8.3.2. The TEST-CONFIGURATION state represents the test configurations that is
instantiated when atest case is executed by module control.

Rec. ITU-T Z.164 (05/2012) 33

CONTROL TEST-CONFIGURATION

Figure 23 — Structure of a module state

8.3.1.1 Accessingthemodule state

The CONTROL state and the TEST-CONFIGURATION state of the module state can be addressed
by using their names, i.e.,, CONTROL and TEST-CONFIGURATION.

8.3.1a Configuration state

As shown in Figure 23a the configuration state is structured into ALL-ENTITY-STATES, ALL-
PORT-STATES, TC-VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of
al instantiated test components during the execution of a test case. The first element of ALL-
ENTITY-STATES is the reference to the MTC of the configuration. ALL-PORT-STATES describes
the states of the different ports. TC-VERDICT stores the actual global test verdict of a test case,
DONE isalist of all currently stopped test components during test case execution and KILLED isa
list of all terminated test components during test case execution.

NOTE 1 — The number of updates of TC-VERDICT is identical to the number of test components that have
terminated.

NOTE 2 — An dlive-type test component is put into the DONE list each time when it is stopped and removed
from the DONE list each time when it is started. It is put into the KILL and the DONE list when it iskilled.

NOTE 3 — Port states may be considered to be part of the entity states. By connect and map ports are made
visible for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES | TC-VERDICT | DONE | KILLED
|MTC‘E81|...‘ESn‘ ‘Pl|...‘Pn‘

Figure 23a— Structure of a configur ation state

8.3.1a.1 Accessingtheconfiguration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES DONE and KILLED
can be accessed like variables by their name.

For the handling of lists, e.qg., ALL-ENTITY-STATES ALL-PORT-STATES DONE and KILLED in
module states, the list operations add, append, delete, member, first, last, length, next, random and
change can be used. They have the following meaning:

. myL.ist.add(item) adds item as first element into the list myList and myList.add(sublist) adds
thelist sublist to list myList, i.e., add can be used to add single elements or liststo lists;
. myList.append(item) appends item as last element into the list myList and

myL.ist.append(sublist) appends the list sublist to list myList, i.e., append can be used to
append single elements or liststo lists;

. myList.delete(item) deletesitem from the list myList;

. myList.member (item) returns true if itemis an element of the list myList, otherwise false;
. myList.first() returns the first element of myList;

. myList.last() returns the last element of myList;

. myL.ist.length() returns the length of myList;

. myList.next(item) returns the element that follows item in myList, or nuLL if itemis the last

element in myLigt;

34 Rec. ITU-T Z.164 (05/2012)

. myList.random(<condition>) returns randomly an element of myList, which fulfils the
Boolean condition <condition> or nuLL, if no element of myList fulfils <condition>;

. myL ist.change(<operation>) allowsto apply <operation> on all elements of myL.ist.

NOTE — The operations random and change are not common list operations. They are introduced to explain
the meaning of the keywords a1l and any in TTCN-3 operations.

Additionally, a general copy operation is available. The copy operation copies and returns an item
instead of returning areference to an item:

. copy(item) returns a copy of item.
8.3.2 Entity states

Entity states are used to describe the actual states of module control and test components. In the
module state, CONTROL is an entity state and in the configuration state, the test component states
are handled in the list ALL-ENTITY-STATES. The structure of an entity state is shown in Figure 24.

STATUS

CONTROL-
STACK

DEFAULT-LIST

DEFAULT-
POINTER

VALUE-STACK
E-VERDICT
TIMER-GUARD
DATA-STATE
TIMER-STATE
PORT-REF
SNAP-ALIVE
SNAP-DONE
SNAP-KILLED
KEEP-ALIVE

Figure 24 — Structure of an entity state

The STATUS describes whether the module control or a test component iS ACTIVE, BREAK,
SNAPSHOT, REPEAT OF BLOCKED. Module control is blocked during the execution of atest case. Test
components are blocked during the creation of other test components, i.e., when they call acreate
operation, and when they wait for being started. The status snarszoT indicates that the component
is active, but in the evaluation phase of a snapshot. The status REPEAT denotes that the component is
active and in an a1t statement that should be re-evaluated due to a repeat Statement. The BREAK
status is set when abreak Statement is executed for leaving atstep. In this case, the a1t statement
in which the altstep was directly or indirectly (i.e., by means of the default mechanism) called is
immediately |eft.

The CONTROL-STACK is a stack of flow graph node references. The top element in CONTROL -
STACK is the flow graph node that has to be interpreted next. The stack is required to model
function callsin an adequate manner.

The DEFAULT-LIST isalist of activated defaults, i.e., it isalist of pointers that refer to the start
nodes of activated defaults. The list is in the reverse order of activation, i.e., the default that has
been activated first isthe last element in the list.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default
that has to be evaluated if the actual default terminates unsuccessfully.

Rec. ITU-T Z.164 (05/2012) 35

The VALUE-STACK is a stack of values of all possible types that allows an intermediate storage of
final or intermediate results of operations, functions and statements. For example, the result of the
evaluation of an expression or the result of the mtc operation will be pushed onto the VALUE-
STACK. In addition to the values of all data types known in a module we define the special value
MARK t0 be part of the stack alphabet. When leaving a scope unit, the Marxk is used to clean VALUE-
STACK.

The E-VERDICT stores the actual local verdict of atest component. The E-VERDICT isignored if
an entity state represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of
test cases and the duration of call operations. The TIMER-GUARD is modelled as a timer binding
(see clause 8.3.2.4 and Figure 28).

The DATA-STATE is considered to be a list of lists of variable bindings. The list of lists structure
reflects nested scope units due to nested function and altstep calls. Each list in the list of lists of
variable bindings describes the variables declared in a certain scope unit and their values. Entering
or leaving a scope unit corresponds to adding or deleting alist of variable bindings from the DATA-
STATE. A description of the DATA-STATE part of an entity state can be found in clause 8.3.2.2.

The TIMER-STATE is considered to be a list of lists of timer bindings. The list of lists structure
reflects nested scope units due to nested function and altstep calls. Each list in the list of lists of
timer bindings describes the known timers and their status in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting a list of timer bindings from the TIMER-
STATE. A description of the TIMER-STATE part of an entity state can be found in clause 8.3.2.4.

The PORT-REF is considered to be alist of lists of port bindings. The list of lists structure reflects
nested scope units due to nested function and altstep calls. Nested scope units for ports are the result
of port parameters in functions and altsteps. Each list in the list of lists of port bindings identifies
the known ports in a certain scope unit. Entering or leaving a scope unit corresponds to adding or
deleting a list of port bindings from the PORT-REF. A description of the PORT-REF part of an
entity state can be found in clause 8.3.2.6.

NOTE — The TTCN-3 semantics administrates ports globally in the module state. Due to port

parameterization, a test component may access a port by using different names in different scopes. The
PORT-REF part of an entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a
copy of the ALL-ENTITY-STATES list of the module state will be assigned to SNAP-ALIVE, i.e.,
SNAP-ALIVE includes all entities (test components and test control) which are alive in the test
system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a
copy of the DONE list of the module state will be assigned to SNAP-DONE, i.e., SNAP-DONE is a
list of component identifiers of stopped components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken,
acopy of the KILLED list of the module state will be assigned to SNAP-KILL, i.e., SNAP-DONE is
alist of component identifiers of terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is
set to true if the entity can be restarted. Otherwise it is set to false.

8.3.2.1 Accessing entity states

The STATUS DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are
handled like variables that are globally visible, i.e., the values of STATUS DEFAULT-POINTER
and E-VERDICT can be retrieved or changed by using the "dot" notation, e.g., myEntity. STATUS
myEntity. DEFAULT-POINTER and myEntity.E-VERDICT, where myEntity refers to an entity state.

36 Rec. ITU-T Z.164 (05/2012)

NOTE - In the following, we assume that we can use the "dot" notation by using references and unique
identifiers. For example, in myEntity. STATUS myEntityState may be pointer to an entity state or be the value
of the <identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be
addressed by using the "dot" notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and
myEntity.VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack
operations push, pop, top, clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or nurw if myStack is empty;

. myStack.clear() clears myStack, i.e., pops all items from myStack;

. myStack.clear-until(item) pops items from myStack until item is found or myStack is
empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete,
member, first, length, next, random and change. The meaning of these list operations is defined in
clause 8.3.1a.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:

. NEW-ENTITY (flow-graph-node-reference, keep-alive);

creates a new entity state and returns its reference. The components of the new entity state have the
following values:

. STATUSIs set to ACTIVE;

. flow-graph-node-reference is the only (top) element in CONTROL-STACK;

. DEFAULT-LIST isan empty list;

. DEFAULT-POINTER has the value nuLz;

. VALUE-STACK isan empty stack;

o E-VERDICT is set tO none;

. TIMER-GUARD is a new timer binding (see clause 8.3.2.4) with name GUARD, status
IDLE and no default duration;

. DATA-STATE isan empty list;

. TIMER-STATE is an empty list;

. PORT-REF is an empty list;

. SNAP-ALIVE isan empty list;

. SNAP-DONE is an empty list;

. NAP-KILLED isan empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter.

During the traversal of a flow graph the CONTROL-STACK changes its value often in the same
manner: the top element is popped from and the successor node of the popped node is pushed onto
CONTROL-STACK. This series of stack operations is encapsulated in the NEXT-CONTROL
function:

myEntity.NEXT-CONTROL (myBool) {
successorNode := myEntity.CONTROL-STACK.NEXT (myBool) .top() ;
myEntity.CONTROL-STACK.pop () ;
myEntity.CONTROL-STACK.push (successorNode) ;

}

Rec. ITU-T Z.164 (05/2012) 37

8.3.2.2 Datastate and variable binding

As shown in Figure 25, the data state DATA-STATE of an entity state is a list of lists of variable
bindings. Each list of variable bindings defines the variable bindings in a certain scope unit. Adding
anew list of variable bindings corresponds to entering a new scope unit, e.g., a function is called.
Deleting a list of variable bindings corresponds to leaving a scope unit, e.g., a function executes a
return Statement.

o @ »e .? R

VariableBinding, VariableBinding,

' '
i i

VariableBinding, VariableBinding,

Figure 25 — Structure of the DATA-STATE part of an entity state

The structure of a variable binding is shown in Figure 26. A variable has a name, a <location> and
a VALUE. VAR NAME identifies a variable in a scope unit. The <location> is a unique identifier of
the storage location of the value of the variable. The VALUE part of a variable binding describes the
actual value of avariable.

NOTE — Unique location identifiers should be provided automatically when avariable is declared.

VAR-NAME <location> VALUE

Figure 26 — Structure of a variable binding

The distinction between variable name and location has been made to model function calls and the
execution of test cases with value and reference parameterization in an appropriate manner:

a) A parameter passed in by value is handled like the declaration of a new variable, i.e., anew
variable binding is appended to the list of variable bindings of the scope of the called
function or executed test case. The new variable binding uses the formal parameter name as
VAR-NAME, receives a new location and gets the value that is passed into the function or
test case.

b) A parameter passed in by reference also leads to a new variable binding in the scope of the
called function or executed test case. The new variable binding also uses the formal
parameter name as VAR-NAME, but receives no new location and no new value. The new
variable binding gets a copy of <location> and VALUE of the variable that is passed in by
reference.

When updating a variable value, e.g., in case of an assignment to a variable, the variable name is
used to identify alocation and all variable bindings with the same location are updated at the same
time. Thus, when leaving the scope unit, the list of variables belonging to this scope unit can be
deleted without further update. Due to the update procedure, variables passed in by reference
automatically have the correct value.

38 Rec. ITU-T Z.164 (05/2012)

8.3.2.3 Accessing data states

The value of avariable can be retrieved by using the "dot" notation myEntity.myVar VALUE, where
myEntity refers to an entity state and myVar isthe name of avariable.

For the handling of variables and variable scope the following functions are considered to be

defined:

a) The VAR-SET function: myEntity. VAR-SET (myVar, myValue)
sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal.
In addition, the VALUE part of al variables with the same location as variable myVar will
also be set to myVal.

b) The INIT-VAR function: myEntity. INIT-VAR (myVar, myVal)
creates a new variable binding for a variable myVar with the initial value myVal in the
actual scope unit of an entity myEntity. Using the keyword noNE as myVal means that a

variable with undefined initial value is created. A new and unique <location> value is
automatically created.

C) The GET-VAR-LOC function: myEntity. GET-VAR-LOC (myVar)
retrieves the location of variable myVar owned by myEntity.
d) The INIT-VAR-LOC function: myEntity. INIT-VAR-LOC (myVar,myLoc)

creates a new variable binding for a variable myVar with the location myLoc in the actual
scope unit of myEntity. The variable will be initialized with the value of another variable
with the location myLoc.

NOTE — Variables with the same location are a result of parameterization by reference. Due to the handling

of reference parameters as described in clause 8.3.2.2 all variables with the same location will have identical
values during their lifetime.

€) The INIT-VAR-SCOPE function: myEntity.INIT-VAR-SCOPE ()
initializes a new variable scope in the data state of entity myEntity, i.e., an empty list is
added asfirst list in the list of lists of variable bindings.

f) The DEL-VAR-SCOPE function: myEntity. DEL-VAR-SCOPE ()

deletes a variable scope of the data state of myEntity, i.e., the first list in the list of lists of
variable bindingsis deleted.

8.3.24 Timer stateand timer binding

Asshown in Figures 27 and 25 the timer state TIMER-STATE and the data state DATA-STATE of an
entity state are comparable. Both are a list of lists of bindings and each list of bindings defines the
valid bindings in a certain scope. Adding a new list corresponds to entering a new scope unit and
deleting alist of bindings corresponds to leaving a scope unit.

Rec. ITU-T Z.164 (05/2012) 39

.—>? .? R

TimerBinding, TimerBinding,
TimerBinding, TimerBinding,

Figure 27 — Structure of the TIMER-STATE part of an entity state

The structure of a timer binding is shown in Figure 28. The meaning of TIMER-NAME and
<location> is similar to the meaning of VAR-NAME and <location> for a variable binding
(Figure 26).

TIMER-NAME <location> STATUS DEF-DURATION ACT-DURATION TIME-LEFT SNAP-VALUE SNAP-STATUS

Figure 28 — Structure of atimer binding

STATUS denotes whether a timer is active, inactive or has timed out. The corresponding STATUS
values are IpLE, RUNNING and TiMeouT. DEF-DURATION describes the default duration of atimer.
ACT-DURATION stores the actual duration with which a running timer has been started. TIME-
LEFT describes the actual duration that a running timer has to run before it times out.

NOTE — DEF-DURATION is undefined if atimer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if atimer is stopped or times out. If atimer is started without duration, the value of
DEF-DURATION is copied into ACT-DURATION. A dynamic error occurs if a timer is started without a
defined duration.

SNAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When
taking a snapshot, SNAP-VALUE gets the actual value of ACT-DURATION — TIME-LEFT. And
SNAP-STATUS gets the same value as STATUS. The evaluation of a snapshot will only be based on
the values in SNAP-VALUE and SNAP-STATUS

Timer can be only passed by reference into functions, i.e., the mechanism is similar to the
mechanism for variables described in clause 8.3.2.2. This means a new timer binding (with the
formal parameter name) is created which gets copies of <location>, STATUS, DEF-DURATION,
ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS from the timer that is passed in
by reference. When updating atimer all timer bindings with the same <location> value are updated
at the same time.

8.3.25 Accessingtimer states

The values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and
SNAP-STATUS of atimer myTimer can be retrieved by using the dot notation:

. myEntity.myTimer.STATUS;

. myEntity.myTimer. DEF-DURATION;
. myEntity.myTimer ACT-DURATION;
. myEntity.myTimer. TIME-LEFT,;

40 Rec. ITU-T Z.164 (05/2012)

. myEntity.myTimer.SNAP-VALUE;
. myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refers to an entity state representing the state of a test component
or module control that owns the timer myTimer.

For changing the values of STATUS DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-
VALUE and SNAP-STATUS of a timer timer-name, the generic TIMER-SET operation has to be
used, for example:

. myEntity. TIMER-SET(myTimer, STATUS myVal)

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal.
In addition, the STATUS of all timers with the same location as timer myTimer will also be
set to myVal. The TIMER-SET function can aso be used to change the values of DEF-
DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS

For the handling of timers, timer scope and snapshot the following functions have to be defined:

a) The INIT-TIMER function: myEntity. INIT-TIMER (myTimer,
myDuration)
creates a new timer binding for a timer myTimer with the default duration myDuration in
the actual scope of an entity myEntity. Using the keyword noNe as myDuration means that
atimer without default duration is created.

b) The GET-TIMER-L OC function: myEntity. GET-TIMER-LOC (myTimer)
retrieves the location of timer myTimer owned by myEntity.
C) The INIT-TIMER-LOC function: myEntity.INIT-TIMER-LOC (myTimer,
myL ocation)

creates a new timer binding for atimer myTimer with the location myL ocation in the actual
scope unit of myEntity. The timer will be initialized with the values of STATUS,
DEF-DURATION, ACT-DURATION and TIME-LEFT of another timer with the location
<location>.

NOTE — Timers with the same location are a result of parameterization by reference. Due to the handling of

timer reference parameters as described in clause 8.3.2.3 al timers with the same location will have identical
values for STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

d) The INIT-TIMER-SCOPE function: myEntity.INI T-TIMER-SCOPE ()

initializes a new timer scope in the timer state of entity myEntity, i.e., an empty list is added
asfirst list inthelist of lists of timer bindings.

e The DEL-TIMER-SCOPE function: myEntity.DEL-TIMER-SCOPE ()

deletes atimer scope of the timer state of entity myEntity, i.e., thefirst list in the list of lists
of timer bindings is del eted.

f) The SNAP-TIMER function: myEntity.SNAP-TIMER ()
makes an update of SNAP-VALUE and SNAP-STATUS in al timers owned by myEntity,
i.e.:

myEntity.SNAP-TIMERS () {
for all myTimer in TIMER-STATE {

myEntity.myTimer.SNAP-VALUE := myEntity.myTimer.ACT-DURATION -
myEntity.myTimer.TIME-LEFT;
myEntity.myTimer.SNAP-STATUS := myEntity.myTimer.STATUS;

}

Rec. ITU-T Z.164 (05/2012) 41

8.3.2.6 Port referencesand port binding

As shown in Figures 28a, 27 and 25 the port references PORT-REF, the timer state TIMER-STATE
and the data state DATA-STATE of an entity state are comparable. All three are a list of lists of
bindings and each list of bindings defines the valid bindings in a certain scope. Adding a new list
corresponds to entering a new scope unit and deleting a list of bindings corresponds to leaving a

scope unit.
root ‘ =? :? P ceccececee

PortBinding1 PortBinding:

{ {
} !

PortBindingn PortBindingy

X XN}
LA XN

Figure 28a — Structure of the PORT-REF part of an entity state

The structure of a port binding is shown in Figure 28b. A port has two names. PORT-NAME
identifies a port in a scope unit. COMP-PORT-NAME is the port name given in the component type
to a port.

| PORT-NAME | COMP-PORT-NAME |

Figure 28b — Structure of a port binding
NOTE — PORT-NAME and COMP-PORT-NAME are equal directly after the creation of a component.

Ports can be only passed by reference into functions and altsteps, i.e., the mechanism is similar to
the mechanism for variables described in clause 8.3.2.2. This means a new port binding (with the
formal parameter name) is created which gets a copy of COMP-PORT-NAME from the port that is
passed in by reference. When accessing a port which is passed in by reference, the corresponding
port binding is used to retrieve the port name declared in the component type definition.

8.3.2.7 Accessing port references
The value of COMP-PORT-NAME can be retrieved by using the dot notation:
. myEntity.myport. COMP-PORT-NAME

The myEntity in the dot notation refers to an entity state representing the state of a test component
that owns the port myPort.

For the handling of port parameters and port scopes the following functions have to be defined:
a) The INIT-PORT function: myEntity.INIT-PORT (myPort, myCompPortName)

creates a new port binding for a port myPort with myCompPortName as value for COMP-
PORT-NAME in the actual scope of an entity myEntity.

b) The INIT-PORT-SCOPE function: myEntity.INIT-PORT-SCOPE ()

initializes a new port scope in the port references of entity myEntity, i.e.,, an empty list is
added asfirst list in the list of lists of port bindings.

42 Rec. ITU-T Z.164 (05/2012)

C) The DEL -PORT-SCOPE function: myEntity.DEL-PORT-SCOPE ()

deletes a port scope of the port references of entity myEntity, i.e., the first list in the list of
lists of port bindingsis deleted.

8.3.3 Port states

Port states are used to describe the actual states of ports. Within a module state, the port states are
handled in the ALL-PORT-STATES list (see figure 23). The structure of a port state is shown in
Figure 29. The COMP-pPORT-NAME refers to the port name that is used to declare the port in the
component type definition of the test component OWNER that owns the port. STATUS provides the
actual status of the port. A port may either be STARTED, HALTED Of STOPPED.

NOTE — A port in atest system is uniquely identified by the owning test component and by the port name
used in the component type definition to declare the port.

The CONNECTIONSLIST of a port state keeps track of the connections between the different ports
in the test system. The mechanismis explained in clause 8.3.3.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are
received at this port but have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first
element in VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value nuLL if
VALUE-QUEUE isempty or STATUSIS STOPPED.

| COMP-PORT-NAME | OWNER | STATUS | CONNECTIONSLIST | VALUE-QUEUE | SNAP-VALUE

Figure 29 — Structure of a port state

8.3.3.1 Handling of connectionsamong ports

A connection between two test components is made by connecting two of their ports by means of a
connect operation. Thus, a component can afterwards use its local port name to address the remote
gueue. As shown in Figure 30, connection is represented in the states of both connected queues by a
pair of REMOTE-ENTITY and REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique
identifier of the test component that owns the remote port. The REMOTE-PORT-NAME refers to
the port name that is used to declare the port in the component type definition of the test component
REMOTE-ENTITY. TTCN-3 supports one-to-many connections of ports and therefore all
connections of a port are organized in alist.

NOTE 1 — Connections made by map operations are also handled in the list of connections. The map
operation: map(PTC1:MyPort, system.PCO1) leads to a new connection (system, PCO1) in the port state
of MyPort owned by PTC1. The remote side to which PCO1 is connected to, resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2 — The operational semantics handles the keyword system as a symbolic address. A connection
(system, myPort) in the list of connections of a port it indicates that the port is mapped onto the port myPort
in the test system interface.

REMOTE-ENTITY REMOTE-PORT-NAME

Figure 30 — Structure of a connection

Rec. ITU-T Z.164 (05/2012) 43

8.3.3.2 Handling of port states

The queue of values in a port state can be accessed and manipulated by using the known queue
operations enqueue, dequeue, first and_clear. Using a GET-PORT or a GET-REMOTE-PORT
function references the queue that shall be accessed.

NOTE 1 — The queue operations enqueue, dequeue, first and clear have the following meaning:

. myQueue.enqueue(item) puts item as last item into myQueue;

. myQueue.dequeue() deletes the first item from myQueue;

. myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;
. myQueue.clear() removes all elements from myQueue.

The handling of port states is supported by the following functions:
a) The NEW-PORT function: NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to
myEntity and COMP-PORT-NAME has the value myPort. The status of the new port is
sTARTED. The CONNECTIONS-LIST and the VALUE-QUEUE are empty. The SNAP-
VALUE hasthe value nuLL (i.e., the input queue of the new port is empty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)
returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME
myPort.
C) The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort,
myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and
connected to a port identified by OWNER myEntity and COMP-PORT-NAME myPort.
The symbolic address sysTem is returned, if the remote port is mapped onto a port in the
test system interface.

NOTE 2 — GET-REMOTE-PORT returns NuLL if there is no remote port or if the remote port cannot be
identified uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the
remote entity is not known or not required, i.e., there exists only a one-to-one connection for this port.

d) The STATUS of aport is handled like a variable. It can be addressed by qualifying STATUS
with a GET-PORT call:

GET-PORT(myEntity, myPort).STATUS

€) The ADD-CON function: ADD-CON (myEntity, myPort,
myRemoteEntity, myRemotePort)

adds a connection (myRemoteEntity, myRemotePort) to the list of connections of the port
identified by OWNER myEntity and COMP-PORT-NAME myPort.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity,
myRemotePort)

removes a connection (myRemoteEntity, myRemotePort) from the list of connections of the
port identified by OWNER myEntity and COMP-PORT-NAME myPort.

0) The SNAP-PORTS function: SNAP-PORTS (myEntity)
updates SNAP-VALUE for al ports owned by myEntity, i.e.,

SNAP-PORTS (myEntity) {

for all ports p /* in the module state */ {
if (p.OWNER == myEntity) {
if (p.STATUS == STOPPED)

p.SNAP-VALUE := NULL;

}

else {
if (p.STATUS == HALTED && p.first() == HALT-MARKER) {

44 Rec. ITU-T Z.164 (05/2012)

// Port is halted and halt marker is reached
p.SNAP-VALUE := NULL;

p.dequeue () ; // Removal of halt marker
p.STATUS := STOPPED;

}

else {
p.SNAP-VALUE := p.first()
}

}
}
}
}

NOTE 3 — The SNAP-PORTS function handles the HALT -MARKER that may be put by ahalt port operation
into the port queue. If such a marker is found, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

8.3.4 General functionsfor the handling of module states
The operational semantics assumes the existence of the following functions for the handling of
modul e states.

NOTE 1 — During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed
that the components of the module state are stored in global variables and not in a complex data object. Thus,
the following functions are assumed to work on global variables and do not address a specific module state
object.

a) The DEL-ENTITY function: DEL-ENTITY (myEntity) deletes an entity with the unique
identifier myEntity. The deletion comprises:
— thedeletion of the entity state of myEntity;
— deletion of al ports owned by myEntity;
— deletion of all connections in which myEntity isinvolved.
b) The UPDATE-REMOTE-REFERENCES function:
UPDATE-REMOTE-REFERENCES (source, target)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same
location in both entities. The values that will be used for the update are the values of
variables and timers owned by source.

NOTE 2 — The UPDATE-REMOTE-REFERENCES is used during the termination of test cases. It allows
updating of variables of module control, which are passed as reference parameters to test cases.

84 M essages, procedure calls, replies and exceptions

The exchange of information among test components and between test components and the SUT is
related to messages, procedure calls, replies to procedure calls and exceptions. For communication
purposes these items have to be constructed, encoded and decoded. The concrete encoding, i.e.,
mapping of TTCN-3 data types to bits and bytes, and decoding, i.e., mapping of bits and bytes to
TTCN-3 data types, is outside the scope of the operational semantics. In the present document
messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

84.1 Messages

Messages are related to message-based communication. Values of all (pre- and user-defined) data
types can be exchanged among the entities that communicate. As shown in Figure 31, the
operational semantics handles a message as structured object that consist of a sender a type and a
value part. The sender part identifies the sender entity of a message, the type part specifies the type
of amessage and the value part defines the message val ue.

Rec. ITU-T Z.164 (05/2012) 45

sender type value

Figure 31 — Structure of a message

NOTE — The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g., in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

8.4.2 Procedure callsand replies

Procedure calls and replies to procedures are related to procedure-based communication. They are
defined like values of a record with components representing the parameters. The operational
semantics also handles procedure calls and replies to procedure calls like values in structured types.
The structure of a procedure call and the structure of areply are presented in Figures 32 and 33.

The sender and the procedure-reference parts have the same meaning in both figures. The sender
part refers to the sender entity of a call or the reply to a procedure call. The procedure-reference
refers to the procedure to which call and reply belong. The parameter-part of the procedure call in
Figure 32 refers to the in parameters and inout parameters and the parameter- part of the reply in
Figure 33 refers to the inout parameters and out parameters of the procedure to which call and
reply belong. In addition, the reply has a value part for the return valuesin the reply to a procedure.
NOTE 1 — As stated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in Figures 32 and 33 is or has to be sent and/or
received depends on the implementation of the test system.

NOTE 2 — For a procedure call, out parameters are of no relevance and are omitted in Figure 32. For areply
to aprocedure call, in parameters are of no relevance and are omitted in Figure 33.

NOTE 3 — The types of parameters and the type of the return value can always be derived unanimously from
the related signature definition.

sender procedur e-reference parameter -part
‘ in-or-inout-par ameter ; | ‘ in-or-inout-par ameter |

Figure 32 — Structure of a procedure call

sender procedur e-reference parameter-part value
‘ inout-or -out-parameter “ inout-or -out-par ameter |

Figure 33 — Structureof areply to a procedure call

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is
shown in Figure 34. It consists of four parts. The sender part identifies the sender of the exception;
the procedure-reference part refers to the procedure to which the exception belongs, the type part
identifies the type of the exception and the value part provides the value of the exception. The
procedure signature referred to in the procedure reference part defines the list of allowed types of
exceptions. A received exception shall comply with one of the listed types. In general it can be of
any pre- or user-defined TTCN-3 datatype.

| sender | procedur e-reference | type | value |

Figure 34 — Structure of an exception

46 Rec. ITU-T Z.164 (05/2012)

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, a reply to a procedure call or an exception
are send, call, reply and raise. All these sending operations are built up in the same manner:

<port-name>.<sending-operations (<send-specification>) [to <receivers>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In
case of one-to-many connections a <receiver> entity needs to be specified. The item to be sent is
constructed by using the <send-specification>. The send specification may use concrete values,
template references, variable values, constants, expressions, functions, etc., to construct and encode
the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:
CONSTRUCT-ITEM (myEntity, <sending-operation>, <send-specification>)

returns a message, a procedure call, a reply to a procedure call or an exception depending
on the <sending-operations and the <send-specifications> (both,
<sending-operation> and the <send-specification> refer to the corresponding partsin
the TTCN-3 sending operation). The entity reference myEntity is the sender of the item to
be sent. This sender information is also assumed to be part of the item to be sent
(Figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, areply to a procedure call or an exception
are receive, getcall, getreply and catch. All these receiving operations are built up in the same
manner:

<port-names>.<receiving-operations (<matching-part>) [from <sender>] [<assignment-parts>]

The <port-name> and <receiving-operation> define port and operation used for the reception of
an item. In case of one-to-many connections a £rom-clause can be used to select a specific sender
entity <sender>. The item to be received has to fulfil the conditions specified in the <matching-
part>, .., it has to match. The <matching-part> may use concrete values, template references,
variable values, constants, expressions, functions, etc., to specify the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:

MATCH-ITEM (myltem, <matching-parts>, <sender>)

returns true if myltem fulfils the conditions of <matching-parts and if myltem has been
sent by <sender>, otherwise it returns false.

8.4.6 Retrieval of information from recaived items

Information from received messages, procedure calls, replies to procedure calls and exceptions can
be retrieved in the <assignment-part> (See clause8.4.5) of the receiving functions receive,
getcall, getreply and catch. The <assignment-parts describes how the parameters of
procedure calls and replies, return values encoded in replies, messages, exceptions and the identifier
of the <sender> entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:
RETRIEVE-INFO (myI tem, <assignment-part >)

all values to be retrieved according to the <assignment -part> are retrieved and assigned
to the variables listed in the assignment part. Assignments are done by means of the VAR-
SET operation, i.e., variables with the same location are updated at the same time.

Rec. ITU-T Z.164 (05/2012) 47

8.5 Call recordsfor functions, altsteps and test cases

Functions, altsteps and test cases are called (or executed) by their name and a list of actual
parameters. The actual parameters provide references for reference parameter and concrete values
for the value parameter as defined by the formal parameters in the corresponding function, altstep or
test case definition. The operational semantics handles calls of functions, atsteps and test cases by
using call records as shown in Figure 35. The value of BEHAVIOUR-ID is the name of a function
or test case, value parameters provide concrete values <parld,> ... <parld,> for the formal

parameters <parld,> ... <parld>. Variable and timer reference parameters provide references to

locations of existing variables and timers. Port reference parameters provide the port names
declared in the component type definition of the test component that calls the function or altstep.
Before afunction or test case can be executed an appropriate call record has to be constructed.

NOTE — Port reference parameters can only appear in functions and altsteps which are executed on a test
component.

behaviour-id value-parameters variable and timer port
reference-parameters reference-parameters
parld; | ..J parld, parld, | ..| parld, parldg | ...| parld,
value; | ..] value, loc, | ..| loc name; | ...| name,

Figure 35— Structure of a call record

8.5.1 Handling of call records

The function, altstep or test case name and the actual parameter values can be retrieved by using the
dot notation, e.g., myCallRecord.parld, or myCallRecord.behaviour-id where myCallRecord is a

pointer to acall record.

For the construction of acall the function NEW-CALL-RECORD is assumed to be available:
NEW-CALL-RECORD (myBehaviour)

creates anew call record for function, altstep or test case myBehaviour and returns a pointer
to the new record. The parameter fields of the new call record have undefined values.

myEntity.INI T-CALL-RECORD(myCallRecor d)

creates variables, timers and port references for the handling of value and reference
parameters in the actual scope of the test component or module control myEntity. The
variables for the handling of value parameters are initialized with the corresponding values
provided in the call record. The variables and timers for the handling of reference
parameters get the provided location. In addition, they get a value of an existing variable or
timer in another scope unit of the component in which the call record was created. Port
references get the provided name as value for the COMP-poORT-NAME field.

8.6 The evaluation procedurefor a TTCN-3 module

8.6.1 Evaluation phases

The evaluation procedure for a TTCN-3 module is structured into:
D initialization phase;

2 update phase;

3 selection phase; and

4 execution phase.

48 Rec. ITU-T Z.164 (05/2012)

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure
is described by means of a mixture of informal text, pseudo-code and the functions introduced in
the previous clauses.

8.6.1.1 Phasel: Initialization

The initialization phase includes the following actions:
a) Declaration and initialization of variables:
— INIT-FLOW-GRAPHSY)); // Initialization of flow graph handling. INIT-FLOW-GRAPHS
is// explained in clause 8.6.2.
— Entity := NULL; // Entity will be used to refer to an entity state. An entity state either //
represents module control or atest component.
— MTC := NULL; /l MTC will be used to refer to the entity state of the main test
component of // atest case during test case execution.

NOTE 1 — The global variable CONTROL form the control state of a module state during the
interpretation of a TTCN-3 module (see clause 8.3.1).

— CONTROL :=NULL:; /Il CONTROL will be used to refer to the control state
of amodule state.

NOTE 2 — The following global variables ALL-ENTITY-STATES, ALL-PORT-STATES TC-
VERDICT, DONE and KILLED form the test configuration state of a module state during the
interpretation of a TTCN-3 module (see clause 8.3.1).

— ALL-ENTITY-STATES:= NULL;
— ALL-PORT-STATES:= NULL;
— TC-VERDICT := none;
— DONE :=NULL;
— KILLED :=NULL;
b) Creation and initialization of module control:

— CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleld>), false); // A new
entity state is created and initialized with the start node of // the flow graph representing
the behaviour of the control of the // module with the name <moduleld>. The Boolean
parameter // indicates that_ module control cannot be restarted after it is// stopped.

— CONTROL.INIT-VAR-SCOPE(); // New variable scope
— CONTROL.INIT-TIMER-SCOPE(); // New timer scope
— CONTROL.VALUE-STACK.push(MARK); // A mark is pushed onto the value stack

8.6.1.2 Phasell: Update

The update phase is related to all actions that are outside the scope of the operational semantics but
influence the interpretation of a TTCN-3 module. The update phase comprises the following
actions:

a) Time progress. All running timers are updated, i.e., the TIME-LEFT values of running
timers are (possibly) decreased, and if due to the update a timer expires, the corresponding
timer bindings are updated, i.e., TIME-LEFT is set to 0.0 and STATUS s set to TIMEOUT.

NOTE 1 — The update of timers includes the update of all running TIMER-GUARD timers in module states.

TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure
calls and exceptions (possibly) received from the SUT are put into the port queues at which
the corresponding receptions shall take place.

Rec. ITU-T Z.164 (05/2012) 49

NOTE 2 — This operational semantics makes no assumptions about time progress and the behaviour of the
SUT.

8.6.1.3 Phaselll: Selection

The selection phase consists of the following two actions:

a) Selection: Select a non-blocked entity, i.e, an entity that has not the STATUS vaue
BLOCKED. The entity may be CONTROL, i.e., module control, or an element in , i.e., ALL-
ENTITY-STATES atest component.

b) Storage: Store the identifier of the selected entity in the global variable Entity.

8.6.1.4 PhaselV: Execution

The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL -
STACK of Entity.

b) Check termination criterion: Stop execution if module control has terminated, i.e.,
CONTROL isNULL. Otherwise continue with Phase 1.

NOTE — The execution step of the selected entity can be seen as a procedure call. The check of the
termination criterion is done when the execution step terminates, i.e., returns the control.

8.6.2 Global functions

The evaluation procedure uses the global function INIT-FLOW-GRAPHS.

a) INIT-FLOW-GRAPHS is assumed to be the function that initializes the flow graph
handling. The handling may include the creation of the flow graphs and the handling of the
pointers to the flow graphs and flow graph nodes.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the
functions CONTINUE-COMPONENT, RETURN, ***DYNAMIC-ERROR* * *:

b) CONTINUE-COMPONENT the actual test component continues its execution with the
node lying on top of the control stack, i.e., the control is not given back to the module
evaluation procedure described in this clause.

C) RETURN returns the control back to the module evaluation procedure described in this
clause. The RETURN is the last action of the "execution step of the selected entity” of the
execution phase.

d) ***DYNAMIC-ERROR*** refers to the occurrence of a dynamic error. The error handling
procedure itself is outside the scope of the operational semantics. If a dynamic error occurs
al following behaviour of the test case is meant to be undefined. In this case resources
allocated to the test case shall be cleared and the error verdict is assigned to the test case.
Control is given to the statement in the control part following the execute statement in
which the error occurred. This is modelled by the flow graph segment <dynamic-error>
(clause 9.18.5).

NOTE — The occurrence of a dynamic error is related to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g., wrong usage or race condition.

e) APPLY-OPERATOR USed as generic function for describing the evaluation of operators (e.g.,
+, *,/or-) in expressions (see clause 9.18.4).

9 Flow graph segmentsfor TTCN-3 constructs

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction
algorithm for the flow graphs representing behaviour is described in clause 8.2. It is based on
templates for flow graphs and flow graph segments that have to be used for the construction of

50 Rec. ITU-T Z.164 (05/2012)

concrete flow graphs for module control, test cases, altsteps, functions and component type
definitions defined in a TTCN-3 module. The definitions of the templates for the flow graph
segments can be found in this clause. They are presented in an aphabetical order and not in a
logical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are
presented on the left side of the figures and comments associated to nodes and flow lines are shown
on the right side. Descriptive comments are presented for reference nodes and comments in form of
pseudo-code are associated to basic nodes. The pseudo-code describes how a basic node is
interpreted, i.e., changes the module state. It makes use of the functions defined in clause 8 and the
global variables declared and initialized in the evaluation procedure for TTCN-3 modules (see
clause 8.6). An overall view of all functions and keywords used by the pseudo-code can be found in
clause 8.

9.1 Action statement
The syntactical structure of an action Statement is:

action (<informal descriptions)

The flow graph segment <action-stmt> in Figure 36 defines the execution of the action Statement.

segment <action-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
nop AAAAAAAAAAAAAAAAAAAAAAAAA w;

NOTE — The <informal description> parameter of the action statement has ho meaning for the operational semanticsand is
therefore not represented in the flow graph segment.

Figure 36 — Flow graph segment <action-stmt>

9.2 Activate statement
The syntactical structure of the activate Statement is:

activate (<altstep-name>([<act-par-desc >, .. , <act-par-desc_>]))

The <atstep-name> denotes to the name of an atstep that is activated as default behaviour, and
<act-par-descr;>, ... , <act-par-descr,> describe the actual parameter values of the altstep at

the time of its activation.

It is assumed that for each <act-par-desc,> the corresponding formal parameter identifier <£-
par-Id,>iSknown,i.e., we can extend the syntactical structure above to:

activate(<altstep-name>((<f-par-Id,>,<act-par-desc,>), .. , (<f-par-Id >,<act-par-desc >)))

The flow graph segment <activate-stmt> in Figure 37 defines the execution of the activate
statement. The execution is structured into three steps. In the first step, a call record for the altstep
<function-name> IS created. In the second step the values of the actual parameter are calculated
and assigned to the corresponding field in the call record. In the third step, the call record is put as
first element in the DEFAULT-LIST of the entity that activates the defaullt.

NOTE — For altsteps that are activated as default behaviour, only value parameters are allowed. In Figure 37,
the handling of the value parameters is described by the flow graph segment <value-par-calculation>, which
isdefined in clause 9.24.1.

Rec. ITU-T Z.164 (05/2012) 51

segment
<activate-stmt>

Entity.VALUE-STACK.push (NEW-CALL-RECORD (function-name)) ;
Entity.NEXT-CONTROL (true) ;
RETURN;

* // For each pair (<f-par-Id;>, <act-parameter-desc;>) the
// value of <act-parameter-desc; is calculated and
»»»»» // assigned to the corresponding field <f-par-Id;>

<value-par-calculation> // in the call record. The call record is assumed to be
// the top element in the value stack.

construct-call-record
(altstep-name)

Entity.DEFAULT-LIST.add(Entity.VALUE-STACK. top()) ;

// We assume that only a reference to the call record has
// been pushed onto the value stack. This reference has

// not been removed from the value stack. It is the result
// of the activate statement.

Entity.NEXT-CONTROL (true) ;

RETURN;

activate-default

Figure 37 — Flow graph segment <activate-stmt>

9.2a Alive component operation
The syntactical structure of the a1ive component operation is:

<component -expression>.alive

The a1ive component operation checks whether a component has been created and is ready to
execute or is already executing a behaviour function. The component to be checked is identified by
a component reference, which may be provided in form of a variable or value returning function,
i.e., is an expression. For simplicity, the keywords "all component” and "any component” are
considered to be special expressions.

The alive component operation distinguishes between its usage in a Boolean guard of an ait
statement or blocking ca11 operation and all other cases. If used in a Boolean guard, the result of
alive component operation is based on the actual snapshot. In all other cases the a1ive component
operation evaluates directly the module state information.

The result of the a1ive component operation is pushed onto the value stack of the entity, which
called the operation.

The flow graph segment <alive-component-op> in Figure 37a defines the execution of the running
component operation.

52 Rec. ITU-T Z.164 (05/2012)

segment v

<alive-component-op>

<expression>

// The expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

decision

if (Entity.STATUS == ACTIVE) ({
Entity.NEXT-CONTROL (true) ;

else { // Entity is in a snapshot
Entity.NEXT-CONTROL (false) ;
1

RETURN;

<alive-comp-act>

<alive-comp-snap>

!

Figure 37a— Flow graph segment <alive-component-op>

9.2a.1 Flow graph segment <alive-comp-act>

The flow graph segment <alive-comp-act> in Figure 37b describes the execution of the alive
component operation outside a snapshot, i.e., the entity isin the status AcTIVvE.

Rec. ITU-T Z.164 (05/2012)

53

segment - -
<alive-comp-acts if (Entity.VALUE-STACK.top() == 'all camponent')
if (Entity != MTC) 1

DYNAMIC-ERROR // 'all component' is not allowed
1

else

if (KILLED.length() == 0) { // no entity has terminated
Entity.VALUE-STACK.push (true) ;

) else { // at least one component has terminated
alive-comp-act Entity.VALUE-STACK.push (false) ;
}
1
1

else {
if (Entity.VALUE-STACK.top() == 'any component')
if (Entity '= MIC) {
DYNAMIC-ERROR // 'any component' is not allowed
}
else {
if (ALL-ENTITY-STATES.length() > 1) {
// at least one PTC is alive
Entity.VALUE-STACK.push (true) ;
else {
Entity.VALUE-STACK.push (false) ;
1
}
1
else {
if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top())) {

// Specified component is alive
Entity.VALUE-STACK.push (true) ;

}

else {
Entity.VALUE-STACK.push(false) ;
}

}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 37b — Flow graph segment <alive-comp-act>
9.2a.2 Flow graph segment <alive-comp-snap>

The flow graph segment <alive-comp-snap> in Figure 37c describes the execution of the alive
component operation during the evaluation of a snapshot, i.e., the entity isin the status sNapsHOT.

54 Rec. ITU-T Z.164 (05/2012)

segment
<alive-comp-snap>

alive-comp-snap

if (Entity.VALUE-STACK.top() == 'all component') {
if (Entity != MTC) 1
DYNAMIC-ERROR // 'all component' is not allowed
}

else
if (Entity.SNAP-KILLED.length() == 0) {
Entity.VALUE-STACK.push(true) ;
else {
Entity.VALUE-STACK.push(false) ;
1
}
1
else {
if (Entity.VALUE-STACK.top() == 'any component') {

if (Entity != MTC) 1
*%**DYNAMIC-ERROR*** // 'any component' is not allowed
1

else {
if (Entity.SNAP-ALIVE.length() > 1) {
// at least one PTC was alive when the
// snapshot has been taken
Entity.VALUE-STACK.push (true) ;

else
Entity.VALUE-STACK.push (false) ;
}
}
}
else
if (Entity.SNAP-ALIVE.member (Entity.VALUE-STACK.top())) {
// Component was alive when the snapshot was taken
Entity.VALUE-STACK.push(true) ;
}
else {

// Component was not alive when the snapshot was taken
Entity.VALUE-STACK.push(true) ;

}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 37c — Flow graph segment <alive-comp-snap>

9.3 Alt statement

The a1t statement is the most complicated and important statement of TTCN-3. It implements the
snapshot semantics and specifies the branching due to the reception of messages, replies, cals and
exceptions, due to the occurrence of timeouts and due to the termination of components. In addition,
the evocation of the TTCN-3 default mechanism is also related to the a1t statement.

The flow graph representation of the a1t statement in Figure 38. The different aternatives due to
the reception of messages, replies, calls and exceptions, due to the occurrence of timeouts and due
to the termination of components are hidden in the flow graph segment <receiving-branchs.

Rec. ITU-T Z.164 (05/2012)

55

segment <alt-stmts>

<take-snapshot> // A snapshot is taken

// The different alternatives
""""" // are evaluated

<receiving-branch> OR
<altstep-call-branch>
OR <else-branchs>

<default-evocations>

// The default mechanism may
// be evoked.

<<<<<<<<<<<

if (Entity.STATUS == ACTIVE) ({
Entity.NEXT-CONTROL(true) ;
1
else {
if (Entity.STATUS == BREAK) {
A // altstep is left via a break statement.
/_ Entity.STATUS (ACTIVE) ;
alt-eXit e Entity.NEXT-CONTROL(true) ;
false \\\\‘\N }
else {
true // A new snapshot needs to be taken, the
// status of the entity is SNAPSHOT (none
// of the alternatives could be selected
// and executed) or REPEAT (due to a
// repeat statement)
Entity.NEXT-CONTROL(false) ;
1
1
RETURN;
v

Figure 38 — Flow graph segment <alt-stmt>
9.3.1 Flow graph segment <take-snapshot>

The flow graph segment <take-snapshots in Figure 39 describes the procedure of taking a
snapshot. The snapshot records values of ports, timers and stopped components.

56 Rec. ITU-T Z.164 (05/2012)

segment <take-snapshot>

A 4

take-snapshot

// Take Snapshot

SNAP-PORTS (Entity) ; // Ports
Entity.SNAP-TIMER() ; // Timer
Entity.SNAP-ALIVE := copy(ALL-ENTITY-STATES); // ALIVE
Entity.SNAP-DONE := copy (DONE) ; // DONE
Entity.SNAP-KILLED := copy(KILLED); // KILLED
Entity.STATUS := SNAPSHOT; // new component status
Entity.DEFAULT-POINTER := Entity.DEFAULT-LIST.first();

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 39 — Flow graph segment <take-snapshot>

9.3.2 Flow graph segment <receiving-branch>

The execution of the flow graph segment <receiving-branchs iSshown in Figure 40.

Rec. ITU-T Z.164 (05/2012)

57

segment <receiving-branchs>

// The receiving branch is only evaluated,

// if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) ({
Entity.NEXT-CONTROL (true) ;

else {
Entity.NEXT-CONTROL (false) ;

RETURN;
// Boolean expression that
<expressions> // guards a branch
Entity.NEXT-CONTROL (Entity.VALUE-STACK.top()) ;
,,,,,,,,,,, Entity.VALUE-STACK.pop() ;
RETURN;
false
true
// The operations may change the status of
<receive-op> OR // Entity, if the operation is successful.
<getcall-op> OR
<getreply-op> OR
<catch-op> OR
<timeout-op> OR
<check-op> OR — P <statement-block>
<done-component -op> true
false
4>
\/

Figure 40 — Flow graph segment <receiving-branch>

9.3.3 Flow graph segment <altstep-call-branch>

The invocation of an altstep within an a1t statement is described by the flow graph segment
<altstep-call-branchs in Figure41.

58 Rec. ITU-T Z.164 (05/2012)

segment
<altstep-call-branch>

decision

// The branch is only evaluated,

// 1f the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) {
Entity.NEXT-CONTROL (true) ;

else {
Entity.NEXT-CONTROL (false) ;
}

RETURN;

// Boolean expression that

<expressions>

// guards a branch

decision

false

Entity.NEXT-CONTROL (Entity.VALUE-STACK. top()) ;
Entity.VALUE-STACK.pop() ;
RETURN;

<altstep-call>

// The altstep is called, the status of the
// entity may be changed inside the altstep

true
alse
* (1 |

<statement-blocks>

=

// by the different alternatives in the
// altstep.

// STATUS of Entity is ACTIVE if

................................. // one of the alternatives in the

// altstep has been executed
if (Entity.STATUS == ACTIVE) ({

Entity.NEXT-CONTROL (true) ;
}

else {
Entity.NEXT-CONTROL (false) ;

RETURN;

// Execution of optional statement
// block

Figure 41 — Flow graph segment <altstep-call-branch>

Rec. ITU-T Z.164 (05/2012)

59

9.34 Flow graph segment <else-branch>

The execution of an e1se branch within an a1t statement is described by the flow graph segment
<else-branchs> in Figure 42.

segment <else-branchs>

// The branch is only evaluated,

// 1if the entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) ({
Entity.NEXT-CONTROL (true) ;

,,,,,,,,,,, else {
Entity.NEXT-CONTROL (false) ;

RETURN;

// An else-branch is always selected, i.e.,
else-part Yo // status of Entity will be set of ACTIVE
Entity.STATUS := ACTIVE;

// The statement block in an else branch
// is always executed.

<statement-block>

v

Figure 42 — Flow graph segment <else-branch>

60 Rec. ITU-T Z.164 (05/2012)

9.3.5 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of a1t statements is described by the flow graph
segment <default-evocations in Figure 43.

segment <default-evocations>

default-in

// A default is only evoked, if the
// entity is in status SNAPSHOT

if (Entity.STATUS == SNAPSHOT) (

A 4 Entity.NEXT-CONTROL (true) ;

decision = Y else {

Entity.NEXT-CONTROL (false) ;
false }
true RETURN;

call-record-handling

false
true

// A call record in DEFAULT-LIST, identified by

// DEFAULT-POINTER is pushed onto the VALUE-STACK of

// Entity. Afterwards DEFAULT-POINTER is updated, i.e.,
// will point to the next record in DEFAULT-LIST. If

// DEFAULT-POINTER is NULL, the Entity status will not
// change and, thus, a new SNAPSHOT will be initiated in
// <alt-stmt>

if (Entity.DEFAULT-POINTER == NULL) {
Entity.NEXT-CONTROL (false) ;

else
Entity.VALUE-STACK.push(Entity.DEFAULT-POINTER) ;
Entity.DEFAULT-POINTER :=
Entity.DEFAULT-LIST.next (Entity.DEFAULT-POINTER) ;
Entity.NEXT-CONTROL (true) ;

}

RETURN;

// The actual default altstep is invoked
<user-def-func-calls> // or called like a user defined function.

// Jump back to the beginning of the segment
// to check if the next default behaviour has
// to be invoked.

v
default-in

;

Figure 43 — Flow graph segment <default-evocation>

Rec. ITU-T Z.164 (05/2012) 61

9.4 Altstep call
Asshown in Figure 44, the call of an adtstep is handled like a function call.

segment <altstep-calls> l

// Reference to the flow graph segment
// describing the function call

<function-calls>

v
Figure 44 — Flow graph segment <altstep-call>

9.5 Assignment statement
The syntactical structure of an assignment Statement is.
<varId> := <expression>

The value of the expression <expressions iS assigned to variable <var1ds. The execution of an
assignment statement is defined by the flow graph segment <assignment-stmt> in Figure 45.

segment <assignment-stmtx> l

// The expression is evaluated and the
// result is pushed onto the value stack

<expressions>

Entity.VAR-SET(varId, Entity.VALUE-STACK.top()) ;
Entity.VALUE-STACK.pop () ;

assignment-stmt
(varid)) Entity.NEXT-CONTROL (true) ;

RETURN;

v
Figure 45 — Flow graph segment <assignment-stmt>

9.5a Break statementsin altsteps
The syntactical structure of the break Statement in an altstep is:

break

NOTE — The semantics of abreak statement used for leaving aloop, an interleave Or an alt statement
isdefined in clause 7.8 as a shorthand form for using a pair of goto-label statements.

Basically, the break statement used for leaving an altstep is a return Statement without return
value, which also changes the entity status to Break. The status BREak prevents the re-evaluation of
the a1t statement in which the atstep has been called statement has been called and aso prevents
the execution of the optional statement block following the altstep call in the a1t statement. The
break statement also works for altsteps called indirectly by the default mechanism. In this case, the

62 Rec. ITU-T Z.164 (05/2012)

at statement that invokes the default mechanism is left. The flow graph segment <break-altstep-
stmt> shown in Figure 45a defines the execution of the break Statement for leaving an altstep.

segment <break-altstep-stmts> X

Entity.STATUS(BREAK) ;
break-altstep-stmt Yo RETURN;

A

<return-without-value>

v
Figure 45a — Flow graph segment <break-altstep-stmt>

9.6 Call operation
The syntactical structure of the call operationiis:
<portId>.call (<callSpec> [<blocking-info>]) [to <receiver-spec>] [<call-reception-parts]

The optional <blocking-info> consists of either the keyword nowait or a duration for a timeout
exception. The optiona <receiver-specs inthe to clause refersto the receivers of the call. In case
of a one-to one communication, the <receiver-spec> addresses a single entity (including the SUT
or an entity within the SUT). In case of multicast or broadcast communication, the <receiver-
spec> Specifies a set or all test components connected via the specified port with the calling
component. The optional <call-reception-part> denotes the aternative receptions in case of a
blocking ca11 operation.

The operational semantics distinguishes between blocking and non-blocking ca11 operations. A
call isnon-blocking if the keyword nowait isused in the ca11 operation, or if the called procedure
is non-blocking, i.e, defined by using the keyword nobilock. A blocking cali1 has a

<call-reception-parts.

The flow graph segment <call-op> in Figure 46 defines the execution of a cal1 operation. It
reflects the distinction between blocking and non-blocking calls.

segment <call-op> l

<blocking-call-op>

OR // A call operation may be blocking
<non-blocking-call-op> [77] // or non-blocking

\4

Figure 46 — Flow graph segment <call-op>

Rec. ITU-T Z.164 (05/2012) 63

For blocking and non-blocking call operations a receiver entity may be specified in form of an
expression. The possibilities are shown in Figures 47 and 48.

segment <blocking-call-op> l
"""" // A blocking call may or may not
<b-call-without-duration> // be supervised by TIMER-GUARD
OR
<b-call-with-durations>

\ 4

Figure 47 — Flow graph segment <blocking-call-op>

segment <non-blocking-call-op>
A 4
<nb-call-with-one-receiver> OR // A non-blocking call may address one,
<nb-call-with-multiple-receivers> OR // multiple (multicast and broadcast) or
<nb-call-without-receivers // no receiver entities.
v

Figure 48 — Flow graph segment <non-blocking-call-op>

64 Rec. ITU-T Z.164 (05/2012)

9.6.1 Flow graph segment <nb-call-with-one-receiver>

The flow graph segment <nb-call-with-one-receivers in Figure 49 defines the execution of a
non-blocking ca11 operation where one receiver is specified in form of an expression.

segment <nb-call-with-one-receivers>

// The expression shall evaluate
// to a component reference or
// address value

<expression>

nb-call-with-one-receiver
(portId, callSpec)

let {
var receiver := Entity.VALUE-STACK.top();
var remotePort :=
GET-REMOTE-PORT (Entity, Entity.portId.COMP-PORT-NAME, receiver) ;

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

if (remotePort == SYSTEM) {
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics
}
else { // sending of call
remotePort.enqueue (CONSTRUCT-ITEM(Entity, call, callSpec)) ;

} // end of scope of receiver and remotePort
Entity.VALUE-STACK.pop() ; // clean value stack

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 49 — Flow graph segment <nb-call-with-one-receiver>

9.6.1a Flow graph segment <nb-call-with-multiple-receiver s>

The flow graph segment <nb-call-with-multiple-receiverss in Figure49a defines the
execution of a non-blocking ca11 operation where multiple receivers are addressed. In case of
broadcast communication the keyword a11 component iS used as receiver specification. In case of
multicast communication a list of expressions is provided which shall evaluate to component
references or address values.

The component references or address values of the addressed entities (or the keyword a1l
component) are pushed onto the value stack of the calling entity. The number of references or
address values stored in the value stack is considered to be known, i.e., it is the parameter number of
the basic flow graph node nb-call-with-multiple-receivers in Figure 49a. The number
parameter is 1 in case of broadcast communication, i.e., the keyword a11 component iStop element
in the value stack.

Rec. ITU-T Z.164 (05/2012) 65

segment <nb-call-with-multiple-receiverss>

// Each expression shall evaluate
// to a component reference or
// address value

nb-call-with-multiple-receivers
callSpec, number)

(portId,

let { //
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; // variable for receiver component references or
// receiver address values
var localPort, remotePort; // variables for port references
localPort := Entity.portId.COMP-PORT-NAME; // local port

if (Entity.VALUE-STACK.top() == all component) {
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL) {
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of call
remotePort.enqueue (CONSTRUCT-ITEM(Entity, call, callSpec));
1

connection := localPort.CONNECTIONS-LIST.next (connection) ;

1

else {

for (i == 1; i <= number; i := i+1) {
receiver := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop() ; // clean value stack
remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
if (remotePort == NULL) {

*%**DYNAMIC-ERROR***; // Remote port cannot be found
1
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system

// reception of the reply by the SUT is outside

// the scope of the operational semantics

else { // sending of call
remotePort.engueue (CONSTRUCT-ITEM(Entity, call, callSpec)) ;
}

!
} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

66

Figure 49a — Flow graph segment <nb-call-with-multiple-receiver s>

Rec. ITU-T Z.164 (05/2012)

9.6.2 Flow graph segment <nb-call-without-receiver >

The flow graph segment <nb-call-without-receivers in Figure 50 defines the execution of a
non-blocking ca11 operation without a to-clause.

segment <nb-call-without-receiver-op>

nb-call-without-receiver-op
(portId, callSpec)

let {
var remotePort :=
GET-REMOTE-PORT (Entity, Entity.portId.COMP-PORT-NAME, NONE) ;

if (remotePort == NULL) ({
*%**DYNAMIC-ERROR***; // Remote port cannot be found
}

if (remotePort == SYSTEM)
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of call
remotePort .engueue (CONSTRUCT-ITEM(Entity, call, callSpec));

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 50 — Flow graph segment <nb-call-without-r eceiver>

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles
the replies and exceptions. The flow graph segment <b-call-without-duration> shown in
Figure 51 describes the execution of a blocking call without a given duration as time guard.

segment <b-call-without-durations>

v

<nb-call-with-one-receiver> OR
<nb-call-with-multiple-receivers> OR |.. // Call of remote procedure
<nb-call-without-receivers>

A 4

. // Handling of replies and
<call-reception-part> // exceptions of the called
// procedure.

Figure 51 — Flow graph segment <b-call-without-dur ation>

Rec. ITU-T Z.164 (05/2012) 67

9.6.4 Flow graph segment <b-call-with-duration>

The flow graph segment <b-call-with-duration> (See Figure 52) describes the execution of a
blocking call with a duration as time guard.

segment <b-call-with-duration>

// The expression shall evaluate

A 4 // to a float value which defines
R EERE // the duration of the guarding
<expressions /7 timer
Entity.TIMER-GUARD.STATUS := IDLE;
v Entity.TIMER-GUARD.ACT-DURATION :=

Entity.VALUE-STACK. top () ;
Entity.VALUE-STACK.pop() ;

set-timer-guard

Entity.NEXT-CONTROL (true) ;

RETURN;
v
<nb-call-with-one-receiver> OR
<nb-call-with-multiple-receivers> OR |[.. // Call of remote procedure
<nb-call-without-receivers>
Entity.TIMER-GUARD.STATUS := RUNNING;
\ 4

Entity.VALUE-STACK.pop () ;

start-timer-guard N\ | Entity.NEXT-CONTROL (true) ;

RETURN;

A 4

// Handling of replies and
// exceptions of the called
// procedure.

<call-reception-parts>

Figure 52 — Flow graph segment <b-call-with-duration>

68 Rec. ITU-T Z.164 (05/2012)

9.6.5 Flow graph segment <call-reception-part>

The flow graph segment <call-reception-part> (See Figure53) describes the handling of
replies, exceptions and the timeout exception of a blocking ca11 operation.

segment <call-reception-parts
|-
»)l
<take-snapshot> // A snapshot is taken
+ // Branches with getcall and catch
// operations related to the call and
.| // a timeout exception (if the call is
<receiving-branch> OR // guarded by a duration) are handled
<catch-timeout-exception> // by this node
if (
Entity.STATUS == ACTIVE) {
Entity.NEXT-CONTROL (true) ;
// To assure a defined state of Entity
Entity.TIMER-GUARD.STATUS := IDLE;
A 4 else { // A new snapshot needs to be taken, the
/_ // status of the entity is SNAPSHOT (none
b-call-exit | // of the alternatives could be selected
false \\\\\5__ // and executed)
Entity.NEXT-CONTROL (false) ;
true
RETURN;

Figure 53 — Flow graph segment <call-r eception-part>

Rec. ITU-T Z.164 (05/2012) 69

9.6.6 Flow graph segment <catch-timeout-exception>

The flow graph segment <catch-timeout-exceptions (See Figure54) is for the handling of a
timeout exception of a blocking call operation that is guarded by a duration.

segment <catch-timeout-exceptions>

v if (Entity.TIMER-GUARD.STATUS == TIMEOUT) {
Entity.NEXT-CONTROL (true) ;
check-guard e // To assure a defined state of Entity

Entity.STATUS := ACTIVE;
false
true else { // continue evaluation

Entity.NEXT-CONTROL (false) ;
}

RETURN;

A 4

// To be executed, if the
<statement-block> // timeout exception occured

!

Figure 54 — Flow graph segment <catch-timeout-exception>

9.7 Catch operation
The syntactical structure of the catch operationis:

<portId>.catch (<matchingSpec>) [from <component expression>] -> [<assignmentParts>]

Apart from the catch keyword this syntactical structure is identical to the syntactical structure of
the receive oOperation. Therefore, the operational semantics handles the catch operation in the
same manner as the receive operation. Thisis also shown in the flow graph segment <catch-op>
(Figure 55), which defines the execution of a catch operation. The figure refers to flow graph
segments related to the receive operation (see clause 9.37).

segment <catch-op> l
<receive-with-senders>
OR // Distinction due to the optional
<receive-without-sender> [// from-clause

Figure 55 — Flow graph segment <catch-op>

70 Rec. ITU-T Z.164 (05/2012)

9.8 Check operation
The syntactical structure of the check operation is:

<portIds>.check(receive|getcall|catch|getreply (<matchingSpec>)

[from <component-expressions])

[-> <assignmentParts>]

The optional <component -expressions in the £rom clause refers to the sender entity. It may be
provided in form of a variable value or the return value of a function, i.e,, it is assumed to be an
expression. The optional <assignmentpart> denotes the assignment of received information if the
received information matches to the matching specification <matchingspecs and to the (optional)

from Clause.

The operational semantics handles the operations receive, getcall, catch and getreply in the
same manner, i.e., they are described by referencing the same flow graph segments <receive-
with-sender> and <receive-without-sender>. The check operation also handles the different
operations in the same manner. Thus the flow graph segment <check-op> in Figure 56, which
defines the execution of the check operation, also references only two flow graph segments. The
only difference to the flow graph segments <receive-with-sender> and <receive-without-
sender> iSthat the received items are not deleted after the match.

segment <check-op>

'

<check-with-sender>
OR
<check-without-senders>

// Distinction due to the optional
// from clause

\ 4

Figure 56 — Flow graph segment <check-op>

Rec. ITU-T Z.164 (05/2012)

71

9.8.1 Flow graph segment <check-with-sender>

The flow graph segment <check-with-sender> in Figure57 defines the execution of a check
operation where the sender entity is specified in form of an expression.

segment v
<check-with-sender>

// The Expression shall evaluate
. // to a component reference or
<expressions // address value. The result is
// pushed onto the VALUE-STACK.

let { // local scope for portRef and sender

var portRef := NULL;
var sender := Entity.VALUE-STACK.top(); // Sender
Entity.VALUE-STACK.pop () ; // Clean value stack
if (portID == “any port”)
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE,matchingSpec, sender)
&& OWNER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;
RETURN;
}
1
else {

portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME) // Specified port

}

// MATCHING

if (PortRef.first() == NULL) { // Port queue is empty, no match
Entity.NEXT-CONTROL (false) ;
RETURN;

1

else {

if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, sender)) {
// The message in the queue matches
Entity.VALUE-STACK.push (portRef) ; // Saving port reference
Entity.STATUS := ACTIVE; // successful match, Entity status is changed
// from SNAPSHOT to ACTIVE

Entity.NEXT-CONTROL (true) ;

else // The top item in the queue does not match
Entity.NEXT-CONTROL (false) ;
1

RETURN;

}

} // End of scope of portRef and sender

check-with-sender

(portId, matchingSpec)
4———"’//<<i\; true
// optional value

* (1) // assignemt

<recelve-assignments>

v Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
clean-value-stack D\ RETURN;
false true
v v

Figure 57 — Flow graph segment <check-with-sender>

72 Rec. ITU-T Z.164 (05/2012)

9.8.2 Flow graph segment <check-without-sender >

The flow graph segment <check-without-senders> in Figure 58 defines the execution of a check

operation without a £rom clause.

segment <check-without-senders>

let { // local scope
var portRef := NULL;

RETURN;
}
}
else {

}

// MATCHING

if (PortRef.first() == NULL) { // Port queue is empty, no match
Entity.NEXT-CONTROL (false) ;
RETURN;

1

else {

if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, NONE)) {
// The message in the queue matches
Entity.VALUE-STACK.push (portRef) ; // Saving port reference

// from SNAPSHOT to ACTIVE
Entity.NEXT-CONTROL (true) ;

else // The first item in the queue does not match
Entity.NEXT-CONTROL (false) ;
1

RETURN;

}

} // End of scope

if (portID == “any port”) ({
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE, matchingSpec,
&& OWNER == Entity) ;
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;

NONE)

portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME) // Specified port

Entity.STATUS := ACTIVE; // successful match, Entity status is changed

check-without-sender

(portId, matchingSpec)
true

I // optional value
* (1) // assignemt

<recelve-assignment>

v Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
clean-value-stack = Y. RETURN;
false true
v v

Figure 58 — Flow graph segment <check-without-sender >

Rec. ITU-T Z.164 (05/2012)

73

9.8a Checkstate port operation

The syntactical structure of the checkstate port operation is:

<portIds>.checkstate (<charstring-expressions)

The checkstate port operation allows to examine the state of a port. If a port is in the state
specified by the charstring parameter, the checkstate Operation returns the Boolean value true.
If the port is not in the specified state, the checkstate Operation returns the Boolean value false.
Calling the checkstate Operation with an invalid argument leads to an error. For simplicity, the

keywords"a11l port" and "any port" are considered to be special values of <portld>.

The result of the checkstate port operation is pushed onto the value stack of the entity, which

called the operation.

The flow graph segment <checkstate-port-op> in Figure 58a defines the execution of the running

component operation.

segment
<checkstate-port-op>

<expression>

kind-of-state
(portId)

// The expression shall evaluate

-| // to a charstring value. The

// result is pushed onto VALUE-STACK

let { //local scope
var portState := Entity.VALUE-STACK.top() ;

Entity.Value-STACK.push (portId) ;

if (portState == “Started”
or portState == “Halted”
or portState == “Stopped”) {

Entity.NEXT-CONTROL (true) ;

}

elseif (portState == “Connected”
or portState == “Mapped”
or portState == “Linked”) {

Entity.NEXT-CONTROL (false);

}

else
DYNAMIC-ERROR // invalid state

} // end local scope
RETURN;

<check-port-status>

<check-port-connection>

'

Figure 58a — Flow graph segment <checkstate-port-op>

74 Rec. ITU-T Z.164 (05/2012)

9.8a.1 Flow graph segment <check-port-status>

The flow graph segment <check-port-statuss> in Figure58b describes the execution of the
checkstate cOmponent operation by checking for the starus field in port states (cf. clause 8.3.3).

segment

<check-port-status> let { // local scope
var portId; // for storing the portId
var checkstate-par; // checkstate parameter to be checked for
var checkState; // port state to be checked for
var result; // Boolean for intermediate results

\ var port;
/—F portId := Entity.VALUE-STACK.top() ;
check-port-status Entity.VALUE-STACK.pop () ;

\\ checkstate-par := Entity.VALUE-STACK.top() ;

Entity.VALUE-STACK.pop () ;
if (checkstate-par == “Started”) checkState := STARTED;
if (checkstate-par == “Halted”) checkState := HALTED;
if (checkstate-par == “Stopped”) checkState := STOPPED;
if (Entity.PORT-REF == NULL) { // Entity has no ports
result := false;
1
else if (portId == 'all port') {
port := ALL-PORT-STATES.first();
result := true;
while (port != NULL and result == true) {
if (port.OWNER == Entity) {
if (port.STATUS != checkState) result := false;
1
port := ALL-PORT-STATES.next () ;
1
}
else if (portId == 'any port') {
port := ALL-PORT-STATES.first();
result := false;
while (port != NULL and result == false) {
if (port.OWNER == Entity) {
if (port.STATUS == checkState) result := true;
}
port := ALL-PORT-STATES.next () ;
1
else
port := Entity.portId.COMP-PORT-NAME;
if (port == NULL) ({
* % * DYNAMIC - ERROR* ** // port cannot be retrieved
1
else(
if (port.STATUS == checkState) result := true;
if (port.STATUS != checkState) result := false
1
}
Entity.VALUE-STACK.push (result);
1
Entity .NEXT-CONTROL (true);
RETURN;
v

Figure 58b — Flow graph segment <check-port-status>

9.8a.2 Flow graph segment <check-port-connection>

The flow graph segment <check-port-connections in Figure 58c describes the execution of the
checkstate component operation by investigating the CONNECTIONSLIST in port states (cf.
clause 8.3.3).

Rec. ITU-T Z.164 (05/2012) 75

segment

<check-port-connection>

check-port-connection

let { // local scope

var portId; // for storing the portId

var checkstate-par; // checkstate parameter to be checked for
var result; // Boolean for intermediate results

var isNotLinked := false; // Boolean for intermediate results
var isMapped := false; // Boolean for intermediate results
var isConnected := false; // Boolean for intermediate results
var singleport := false; // Boolean for intermediate results
var port;

portId := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop() ;

checkstate-par := Entity.VALUE-STACK. top() ;
Entity.VALUE-STACK.pop() ;

if (portId == 'any port' or portId == 'all port') ({
singleport := false;
port := ALL-PORT-STATES.first() ;
else {
singleport := true;
port := Entity.portId.COMP-PORT-NAME;

while (port != NULL) ({
if (port.OWNER == Entity) {
if (port.CONNECTIONS-LIST == NULL) {
isNotLinked := true; // unlinked port
1

if (port.CONNECTIONS-LIST.length() == 1) {
if (GET-REMOTE-PORT(Entity, port,NONE) == SYSTEM) {
isMapped := true; // mapped port

else {
isConnected := true; // comnected port
}
1

else { // more than one connection
isConnected := true; // comnected port

if (singleport == false) port := ALL-PORT-STATES.next();

if (singleport == true) port := NULL;
}
if (portId == 'any port') {
if (checkstate-par == "Connected") result := isconnected;
if (checkstate-par == "Mapped") result := ismapped;
if (checkstate-par == "Linked") result := (ismapped or iscomnected) ;

}
else { // portId is a single port or 'all port'

if (checkstate-par == "Connected") {

result := (isconnected and not (ismapped or isNotLinked));
}
else if (checkstate-par == "Mapped") ({

result := (ismapped and not (iscomnected or isNotLinked));
}
else { // checkstate-par == "Linked"

result := (ismapped or iscomnected) and not (isNotLinked);

}

Entity.VALUE-STACK. push(result) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

76

Figure 58c — Flow graph segment <check-port-connection>

Rec. ITU-T Z.164 (05/2012)

9.9 Clear port operation
The syntactical structure of the c1ear port operation is:
<portId>.clear

The flow graph segment <clear-port-op> in Figure 59 defines the execution of the clear port
operation.

segment <clear-port-op>

let { // Begin of local scope
var portRef := NULL
var portState := NULL;

\ 4

clear-port-op Ve
(portId) if (portId == “all port”) {
portState := ALL-PORT-STATES.first();
while (portState != NULL) {
if (portState.OWNER == Entity) {
portState.VALUE-QUEUE. clear() ;
}

portState :=
ALL-PORT-STATES.next (portState) ;

}

else
portRef := Entity.portId.COMP-PORT-NAME;
GET-PORT (Entity, portRef).clear();
} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 59 — Flow graph segment <clear -port-op>

9.10 Connect operation
The syntactical structure of the connect operationiis:

connect (<component -expression,>:<portIdl>, <component-expression,>:<portId2>)

The identifiers <port1di1> and <port1d2> are considered to be port identifiers of the corresponding
test components. The components to which the ports belong are referenced by means of the
component references <component -expression, > and <component -expression,>. The
references may be stored in variables or is returned by a function, i.e., they are expressions, which
evaluate to component references. The value stack is used for storing the component references.

The execution of the connect operation is defined by the flow graph segment <connect-op>
shown in Figure 60. In the flow graph description the first expression to be evaluated refers to
<component -expression;> and the second expression t0 <component-expression,>, i.€., the

<component -expression,> 1S0N top of the value stack when the connect -op node is executed.

Rec. ITU-T Z.164 (05/2012) 77

segment <connect-op>

A 4

<expressions>

A 4

<expressions>

A 4

connect-op
(portIdl, portId2)

let {

}

var portOne, portTwo;

// begin of a local scope
// voriables for ports

var comp2 := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;
var compl := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop() ;

if (compl == Entity) {

portOne := compl.portIdl.COMP-PORT-NAME;

else {
portOne := portIdl;
}

if (comp2 == Entity) {

portTwo := comp2.portId2.COMP-PORT-NAME;

else
portTwo := portId2;
}

ADD-CON (compl, portOne,
ADD-CON (comp2, portTwo,
// end of local scope

Entity.NEXT-CONTROL (true) ;

RETURN;

comp2,
compl,

portTwo) ;
portOne) ;

9.11

Constant definition

The syntactical structure of a constant definitioniis:

The value of a constant is considered to be an expression that evaluates to a value of the type of the

const <constType> <constId> :

constant.

NOTE — Global constants are replaced by their values in a pre-processing step before this semantics is
applied (see clause 9.2). Local constants are treated like variable declarations with initialization. The correct
usage of constants, i.e., constants should never occur on the left side of an assignment, should be checked

<constType-expressions>

during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in Figure 61 defines the execution of a constant

Figure 60 — Flow graph segment <connect-op>

declaration where the value of the constant is provided in form of an expression.

78

Rec. ITU-T Z.164 (05/2012)

segment <constant-definitions
// The expression shall evaluate
. // to a value of the type of the
<expression> // constant that is defined.

// NOTE: A constant definition is treated like a
// variable with inititialisation value

Entity.INIT-VAR(constId, Entity.VALUE-STACK.top());
var-declaration-init Entity.VALUE-STACK.pop () ;
(constId)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 61 — Flow graph segment <constant-definition>

9.12 Createoperation
The syntactical structure of the create Operationis:
<componentTypeId>.create [alive]

A present alive clause indicates that the created component can be restarted after it has been
stopped. Presence and absence of the alive clause is handled as a Boolean flag in the operational
semantics (see alive parameter of the basic flow graph node create-op in Figure 62).

The flow graph segment <create-op> in Figure 62 defines the execution of the create operation.

Rec. ITU-T Z.164 (05/2012) 79

segment <create-op>

create-op
(componentTypeld, alive))-------- :

let { // Local scope
var newEntity := NEW-ENTITY (componentTypeID, alive) ;
// Creation of the entity state for the
// new entity.

// The reference to the new entity is pushed onto the value stack of the
// ‘father' entity.

Entity. VALUE-STACK. push (newEntity) ;
// The identifier of the 'father' entity is pushed onto the value stack of the
// new entity. The identifier is needed to restore the status of the 'father'
// entity after completion of the entity creation. The 'father' entity is
// blocked until all ports, variables, timers specified in the component type
// definition are instantiated. This instantiation is done by executing the
// flow graph that represents 'componentTypeID' by the new entity.
newEntity.VALUE-STACK.push (Entity) ;
// The new entity is put into the module state
ALL-ENTITY-STATES . append (newEntity) ;

} // End local scope

// The actual status of the 'father' entity is saved and the 'father' entity goes
// into a blocking state. Note the restoration of the status of the father entity
// 1s described in flow graph segment <finalize-component-inits.

Entity.VALUE-STACK.push (Entity.STATUS); // Saving the actual status
Entity.STATUS := BLOCKED;

Entity.NEXT-CONTROL (true) ; // Return of control
RETURN;

9.13

Figure 62 — Flow graph segment <create-op>

Deactivate statement

The syntactical structure of a deactivate Statement is.

The execution of a deactivate Statement is defined by the flow graph segment <deactivate-

deactivate [(<default-expressions>)]

The deactivate Statement specifies the deactivation of one or al active defaults of the entity that
executes the deactivate statement. If one default shall be deactivated, the optional <default-
expression> Shall evaluate to a default reference which identifies the default to be deactivated.
The cal of adeactivate Statement without <default-expression> deactivates al active defaults.

stmt> in Figure 63a.

80

Rec. ITU-T Z.164 (05/2012)

segment <deactivate-stmt>

y

OR

<deactivate-one-defaults>

<deactivate-all-defaults> // one or all active defaults

// A deactivate statement deactivates

v

Figure 63a— Flow graph segment <deactivate-stmt>

9.13.1 Flow graph segment <deactivate-one-default>

The flow graph segment <deactivate-one-defaults> in Figure 63b specifies the deactivation of
one active default. The value of the expression <default-expression> shall evaluate to a default
reference. The expression may be provided in form of a variable value or value returning function.
The deactivate Statement removes the specified default from the DEFAULT-LIST of the entity
that executes the deactivate Statement.

segment
<deactivate-one-defaults>

<expressions

// The expression shall evaluate to a
// default reference, which is pushed
// pushed onto the value stack.

deactivate-one-default

Entity.DEFAULT-LIST.delete(Entity.VALUE-STACK.top()) ;
Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 63b — Flow graph segment <deactivate-one-default>

9.13.2 Flow graph segment <deactivate-all-defaults>

The flow graph segment <deactivate-all-defaults> in Figure 63c specifies the deactivation of all
active defaults. The deactivate statement clears the DEFAULT-LIST of the entity that executes the

deactivate Statement.

segment
<deactivate-all-defaults>

deactivate-all-defaults) Entity.DEFAULT-LIST := NULL;

RETURN;

v

Figure 63c — Flow graph segment <deactivate-all-defaults>

Rec. ITU-T Z.164 (05/2012) 81

9.14 Disconnect operation
The syntactical structure of the disconnect oOperation is:

disconnect (<component -expression, >:<portIdl> [, <component-expression,>:<portId2>])

<component -expression,>:<portId2>)

The identifiers <port1di1> and <port1d2> are considered to be port identifiers of the corresponding
test components. The components to which the ports belong are referenced by means of the
component references <component -expression, > and <component -expression,>. The
references may be stored in variables or are returned by functions, i.e., they are expressions, which
evaluate to component references. The value stack is used for storing the component references.

The disconnect Operation can be used with one parameter pair and with two parameters pairs. The
usage of the disconnect oOperation with one parameter pair may disconnect connections for one
component or, if executed by the MTC for all components. The usage of the disconnect Operation
with two parameter pairs allows to disconnect specific connections.

Both usages are distinguished in the flow graph segment <disconnect-op> shown in Figure 64,
which defines the execution of the disconnect operation.

segment <disconnect-ops>

A\ 4

<disconnect-one-par-pairs> // Distinction due to the usage of
OR // disconnect with one parameter pair
<disconnect-two-par pairs> [// and its usage with two parameter
// pairs.

v

Figure 64 — Flow graph segment <disconnect-op>
9.14.1 Flow graph segment <disconnect-one-par-pair>

The flow graph segment <disconnect-one-par-pair> shown in Figure 64a defines the execution of
the disconnect oOperation with one parameter pair. In the flow graph segment three cases are
distinguished:

1) themtc disconnects all connections of all components;
2) all connections of one component are disconnected; and
3) all connections of one port of one component are disconnected. In the flow graph segment

the expression to be evaluated refers t0 <component-expression;> (See Syntactica
structure of the disconnect operation in clause 9.14).

82 Rec. ITU-T Z.164 (05/2012)

segment
<disconnect-one-par-pairs>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

if (Entity.VALUE-STACK.top() == “all component”) {
if ((Entity != MTC) OR
(Entity == MTC && portId != “all port”)) {
DYNAMIC-ERROR
A }
disconnect-one else {
(portId) e Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
true }
false
else {
Entity.VALUE-STACK.push (portId) ;
<disconnect-alls> Entity.NEXT-CONTROL (false) ;
}
RETURN;
A
if (Entity.VALUE-STACK.top() == “all port”) ({
decision = Juwwn Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
true
false else {
Entity.NEXT-CONTROL (false) ;
<disconnect-comp> RETURN;
A

<disconnect-ports>

v

v

Figure 64a — Flow graph segment <disconnect-one-par-pair>

Rec. ITU-T Z.164 (05/2012)

83

9.14.2 Flow graph segment <disconnect-all>
The flow segment <disconnect-alls defines the disconnection of all components at all connected

ports.

segment <disconnect-alls>

disconnect-all

let { // local scope

= ALL-PORT-STATES.first();

var port :
var connection;

while (port != NULL) ({
= port.CONNECTIONS. first() ;

connection :=

while (connection != NULL) ({
if (connection.REMOTE-ENTITY == system) {
connection := NULL; // mapped port
else

port.CONNECTIONS.delete (connection) ;

connection := port.CONNECTIONS.first();

}

port := ALL-PORT-STATES.next (port) ;

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 64b — Flow graph segment <disconnect-all>

84 Rec. ITU-T Z.164 (05/2012)

9.14.3 Flow graph segment <disconnect-comp>

The flow segment <disconnect-comp> defines the disconnection of al ports of a specified

component.

segment <disconnect-comp>

disconnect-comp

let { // local scope

var comp :=
var connection;

Entity.VALUE-STACK.top() ;

ALL-PORT-STATES. first() ;

var port :=

while (port != NULL) ({

port.CONNECTIONS. first() ;

connection :=
while
if

connection :=

else if
or

(connection != NULL)
(connection.REMOTE-ENTITY == system)
port.CONNECTIONS.next (connection) ;

(connection.REMOTE-ENTITY == comp

(port.OWNER == comp)
port.CONNECTIONS.delete (connection) ;

connection :=

else
connection :=
}

port.CONNECTIONS. first() ;

{

port.CONNECTIONS.next (connection) ;

ALL-PORT-STATES.next (port) ;

port :=

}

Entity.VALUE-STACK.pop () ;
} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

// clear value stack

Figure 64c — Flow graph segment <disconnect-comp>

Rec. ITU-T Z.164 (05/2012)

85

9.14.4 Flow graph segment <disconnect-port>

The flow segment <disconnect -port> defines the disconnection of a specified port.

segment <disconnect-ports>

disconnect-port

let { // local scope

var portId, rPortId;
var comp, rComp;
var port;

portId := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop () ;

comp := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

port := GET-PORT(comp, portlId) ;
var connection := port.CONNECTIONS.first();
while (connection != NULL) {
if (connection.REMOTE-ENTITY == SYSTEM) (
DYNAMIC-ERROR // port is not a connected port
else
rComp := connection.REMOTE-ENTITY;
rPortId := connection.REMOTE-PORT-NAME;

DEL-CON(comp, portId, rComp, rPortId);
DEL-CON(rComp, rPortId, comp, portId);
connection := port.CONNECTIONS.first();

}
} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 64d — Flow graph segment <disconnect-port>

9.14.5 Flow graph segment <disconnect-two-par-pair s>

The flow graph segment <disconnect-two-par-pairs> shown in Figure 64e defines the execution of
the disconnect Operation with two parameter pairs which disconnects specific connections. In the
flow graph segment the first expression to be evaluated refers to <component -expression,> (See
syntactical structure of the disconnect operation in clause 9.14)and the second expression to
<component -expression,>, I.€., the <component -expression,> isontop of the value stack when

the disconnect-two nodeis executed.

86 Rec. ITU-T Z.164 (05/2012)

segment

<disconnect-two-par-pairss>

\

<expression>

<expressions

disconnect-two
(portIdl,portId2)

let // begin of a local scope
var portOne, portTwo; // voriables for ports

var comp2 := Entity.VALUE-STACK.top() ;
Entity. VALUE-STACK.pop () ;
var compl := Entity.VALUE-STACK.top();
Entity. VALUE-STACK.pop () ;
if (compl == SYSTEM) {

***DYNAMIC-ERROR* * * // mapped port
else

portOne := compl.portIdl.COMP-PORT-NAME;
if (comp2 == SYSTEM) {

* **DYNAMIC-ERROR* * * // mapped port
else
portTwo := comp2.portId2.COMP-PORT-NAME;

DEL-CON(compl, portOne, comp2, portTwo) ;
DEL-CON(comp2, portTwo, compl, portOne) ;
} // end of local scope

Entity.NEXT-CONTROL(true) ;
RETURN;

9.15 Do-while statement
The syntactical structure of the do-while Statement is:

do <statement-block>
while (<boolean-expressions)

Figure 64e — Flow graph segment <disconnect-two-par-pair s>

The execution of a do-while statement is defined by the flow graph segment <do-while-stmt>
shown in Figure 65.

segment <do-while-stmt>

true

<statement-block>

-

y

// The expression shall evaluate to

<expressions>

.............. // a Boolean value.

deci

)
!

if (Entity.VALUE-STACK.top()) {

)
Entity.NEXT-CONTROL (true) ;

else
Entity.NEXT-CONTROL (false) ;
}

Entity.VALUE-STACK.pop() ;

false RETURN;

<
<

Figure 65 — Flow graph segment <do-while-stmt>

Rec. ITU-T Z.164 (05/2012)

87

9.16 Donecomponent operation
The syntactical structure of the done component operation is:

<component -expressions.done

The done component operation checks whether a component is running or has stopped. Depending
on whether a checked component is running or has stopped the done Operation decides how the
flow of control continues. Using a component reference identifies the component to be checked.
The reference may be stored in a variable or be returned by a function, i.e., it is an expression. For
simplicity, the keywords "all component” and "any component” are considered to be special
expressions.

The flow graph segment <done-op> in Figure 66 defines the execution of the done component
operation.

88 Rec. ITU-T Z.164 (05/2012)

segment <done-op>

<expressions>

// The Expression shall evaluate
// to a component reference. The

// result is pushed onto VALUE-STACK

done-component -op

let { // local scope

var aliveNr := Entity.SNAP-ALIVE.length() ;

var doneNr := Entity.SNAP-DONE.length() ;

var killedNr := Entity.SNAP-KILLED.length() ;

var nonWaitingNr := aliveNr - doneNr - killedNr;
// nonWaitingNr is the number of entities which are
// alive and are executing a behaviour or neither have
// stopped and nor have terminated.

if (Entity.VALUE-STACK.top() == 'all component') ({

if (Entity != MTC) 1
DYNAMIC-ERROR // 'all component' is not allowed
1

else
if (nonWaitingNr == 1) { // MI'C is the Entity in the
// test configuration
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // DONE is successful
else {
Entity.NEXT-CONTROL (false) ;
}
}
}
else
if (Entity.VALUE-STACK.top() == 'any component') {

if (Entity I= MTO)
DYNAMIC-ERROR // 'any component' not allowed

}
else {
if (doneNr > 0)
Entity.NEXT-CONTROL(true) ;
Entity.STATUS := ACTIVE; // DONE is successful
else {
Entity.NEXT-CONTROL(false) ;
}
} }
else

if (Entity.SNAP-DONE.member(Entity.VALUE-STACK.top()))
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // DONE is successful

else {
Entity.NEXT-CONTROL (false) ;
1

1
} // end of local scope

Entity.VALUE-STACK.pop(); // clean value stack
RETURN ;

{

Figure 66 — Flow graph segment <done-op>

9.17 Execute statement
The syntactical structure of the execute Statement is:

execute(<testCaseId>([<act—par1>, - <act—parn>)]) [, <float-expression>])

Rec. ITU-T Z.164 (05/2012)

89

The execute Statement describes the execution of a test case <testcase1ds with the (optional)
actual parameters <act-par;>, .. , <act-par,>. Optionaly the execute statement may be
guarded by a duration provided in form of an expression that evaluates to a £1oat. If within the
specified duration the test case does not return a verdict, a timeout exception occurs, the test case is
stopped and an error verdict is returned.

NOTE — The operational semantics models the stopping of the test case by a stop of the MTC. In redlity,
other mechanisms may be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control
part of the TTCN-3 module) is blocked until the test case terminates, and for the further test case
execution the flow of control is given to the MTC. The flow of control is given back to the control
instance when the MTC terminates.

The flow graph segment <execute-stmt> in Figure 67 defines the execution of an execute
Statement.

segment <execute-stmt> l

<execute-without-timeout>

OoR] // An execute statement may or may
<execute-timeout> // not be guarded by a timeout

\4

Figure 67 — Flow graph segment <execute-stmt>

9.17.1 Flow graph segment <execute-without-timeout>

The execution of a test case starts with the creation of the mte. Then the mtc is started with the
behaviour defined in the test case definition. Afterwards, the module control waits until the test case
terminates. The creation and the start of the MTC can be described by using create and start
statements.

var mtcType MyMTC := mtcType.create;
MyMTC.start (TestCaseName (P1..Pn)) ;

90 Rec. ITU-T Z.164 (05/2012)

The flow graph segment <execute-without-timeout> in Figure 68 defines the execution of an
execute Statement without the occurrence of atimeout exception by using the flow graph segments
of the operations create and the start.

segment <execute-without-timeouts> l

// Creation of the MTC

<Ccreate-op>

MTC := Entity.VALUE-STACK.top() ;
TC-VERDICT := none;
DONE := NULL;

init-test-case-state Entity.NEXT-CONTROL (true) ;
RETURN;

<start-component-op> // Start of MTC
Entity.STATUS := BLOCKED;

// MTC will set status to ACTIVE
// before it terminates
wait-for-termination Entity.NEXT-CONTROL (true) ;
RETURN;

\4

Figure 68 — Flow graph segment <execute-without-timeout>

Rec. ITU-T Z.164 (05/2012) 91

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execute-timeouts> in Figure 69 defines the execution of an execute
statement that is guarded by a timeout value. The flow graph segment also models the creation and
start of the MTC by a create and a start operation. In addition, TIMER-GUARD guards the
termination.

segment <execute -timeouts>
v // The Expression shall evaluate to a
// a float value. This value defines
// the duration of TIMER-GUARD

<expressions>

Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER-GUARD.ACT-DURATION :=
----------- Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

set-timer-guard

Entity.NEXT-CONTROL (true) ;

A RETURN;

<create-op>

// Creation of the MTC

MTC := Entity.VALUE-STACK.top() ;
init-test-case-state un TC-VERDICT := none;
DONE := NULL;

Entity.NEXT-CONTROL (true) ;
A RETURN;

<start-component-op>

// Start of MTC

Entity.STATUS := SNAPSHOT;
........... // MIC will set status to ACTIVE
// before it terminates

prepare-wait

Entity.TIMER-GUARD.STATUS := RUNNING;
Entity.NEXT-CONTROL (true) ;

RETURN;

if (Entity.STATUS == SNAPSHOT and
Entity.TIMER-GUARD.STATUS != TIMEOUT) {

// Control waits
----------- Entity.NEXT-CONTROL (true) ;
else { // Test case terminated or
// timer guard timed out
Entity.NEXT-CONTROL (true) ;

active-waiting

}

RETURN;

stop-or-timeout
if (Entity.STATUS != SNAPSHOT) {

true false // normal termination
Entity.TIMER-GUARD.STATUS := IDLE;
\ Entity.NEXT-CONTROL (true) ;
<dynamic-errors> else { // guarding timer timed out
/* Stop test case */ Entity.NEXT-CONTROL (false) ;

1
RETURN;

;

Figure 69 — Flow graph segment <execute-timeout>

92 Rec. ITU-T Z.164 (05/2012)

9.17.3 Flow graph segment <dynamic-error>

In case of adynamic error the flow graph segment <dynamic-errors isinvoked by the test system.
In addition, the flow graph segment <dynamic-error> is aso used for describing the behaviour of
the test case stop operation (clause 9.53a). All resources allocated to the test case are cleared and
the error verdict is assigned to the test case. Control is given to the statement in the control part
following the execute statement in which the error occurred.

The flow graph segment <dynamic-errors isinvoked by the module control in case that atest case
does not terminate within the specified time limit (clause 9.17.2).

segment <dynamic-errors

dynamic-error Y}

// Reset of configuration state

ALL-ENTITY-STATES := NULL;
ALL-PORT-STATES := NULL;
MTC := NULL;

TC-VERDICT := error;

DONE := NULL;

KIILED := NULL;

// Update of the entity state of module control

Control .TIMER-GUARD.STATUS := IDLE;
Control .STATUS := ACTIVE;

// Push error verdict (result of test case execution) onto
// the stack of module control

Control .VALUE-STACK.push (error) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 69a — Flow graph segment <dynamic-error>

9.18 Expression
For the handling of expressions, the following four cases have to be distinguished:

a) the expression isaliteral value (or a constant);

b) the expression isavariable;

C) the expression is an operator applied to one or more operands;
d) the expression is afunction or operation call.

The syntactical structure of an expression is:

<lit-vals> | <var-val> | <func-op-call> | <operand-appls
where:
<lit-vals denotes aliteral value;
<var-vals denotes avariable value;

<func-op-calls denotes a function or operation call;
<operator-appl> denotesthe application of arithmetic operatorslike +, -, not, €tc.

Rec. ITU-T Z.164 (05/2012) 93

The execution of an expression is defined by the flow graph segment <expressions shown in
Figure 70.

segment <expressions> ¢
<lit-value>
OR // The four alternatives
<var-value> // describe the four
OR // possibilities for
<func-op-calls> // expressions as
OR // described in this
<operator-appl> // section.
v

Figure 70 — Flow graph segment <expression>
9.18.1 Flow graph segment <lit-value>

The flow graph segment <1it-value> in Figure 71 pushes aliteral value onto the value stack of an
entity.

segment <lit-value> Entity.VALUE-STACK.push (value) ;

lit-value

,,,,,,,,,,,,,,,,,,,,,,,,,,, Entity.NEXT-CONTROL (t ;
(value) ity.NEXT-CONTROL (true) ;

RETURN;

v

Figure 71 — Flow graph segment <lit-value>
9.18.2 Flow graph segment <var-value>

The flow graph segment <var-values> in Figure 72 pushes the value of a variable onto the value
stack of an entity.

segment <var-value> Entity.VALUE-STACK.push(Entity.var-name.VALUE) ;

var-value

,,,,,,,,,,,,,,,,,, Entity.NEXT-CONTROL (true) ;
(var-name) —_—

RETURN;

v

Figure 72 — Flow graph segment <var-value>

94 Rec. ITU-T Z.164 (05/2012)

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <func-op-calls in Figure 73 refers to calls of functions and operations,
which return a value that is pushed onto the value stack of an entity. All these calls are considered
to be expressions.

segment <func-op-calls ¢

<activate-stmt> OR <create-op> OR
<function-call> OR <mtc-op> OR
<read-timer-op> OR <running-timer-op> OR
<running-component-op> OR
<self-op> OR <system-op> OR
<verdict.get-op> OR <execute-stmt>

v

Figure 73 — Flow graph segment <func-op-call>

9.18.4 Flow graph segment <oper ator-appl>

The flow graph representation in Figure 74 directly refers to the assumption that reverse polish
notation is used to evaluate operator expressions. The operands of the operator are calculated and
pushed onto the evaluation stack. For the application of the operator, the operands are popped from
the evaluation stack and the operator is applied. The result of the operator application is finally
pushed onto the evaluation stack. Both, the popping of operands and the pushing the result are
considered to be part of the operator application (Entity.APPLY-OPERATOR (operator) Statement
in Figure 74), i.e., are not modelled by the operational semantics.

segment <operator-appl> l
// For an n-nary operator,
// n operands in form of
L | N | P // evaluated expressions have
// to be pushed onto the
<expressions> // value stack

Entity.APPLY-OPERATOR (operator) ;

operator-appl Entity.NEXT-CONTROL (true) ;
(operator) RETURN:

v

Figure 74 — Flow graph segment <oper ator-appl>

Rec. ITU-T Z.164 (05/2012) 95

9.19 Flow graph segment <finalize-component-init>

The flow graph segment <finalize-component-init> iS part of the flow graph representing the
behaviour of a component type definition. Its execution is defined in Figure 75.

segment
<finalise-component-inits>

finalise-component-init

// The status of the father entity is restored. The identifier of the 'father'
// entity is deleted from the VALUE-STACK.

Entity.VALUE-STACK. top() .STATUS := Entity.VALUE-STACK.top() .VALUE-STACK.top() ;
Entity.VALUE-STACK. top() . VALUE-STACK. pop () ;
Entity.VALUE-STACK.pop() ;

// A mark is pushed on the value stack, the entity goes into a blocking state,
// i.e.,waits for being started) and control is given back to the module
// evaluation procedure

Entity.VALUE-STACK.push (MARK) ;

Entity.STATUS := BLOCKED;
Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 75 — Flow graph segment <finalize-component-init>

9.20 Flow graph segment <init-component-scope>

The flow graph segment <init-component-scopes> IS part of the flow graph representing the
behaviour of a component type definition. Its execution is defined in Figure 76.

segment <init-component-scopes>

// New scopes for variables, timers
// and ports are created
Entity.INIT—VAR—SCOPE();

""""""""" Entity.INIT—TIMER—SCOPE();
Entity.INIT—PORT—SCOPE();

init-component-scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 76 — Flow graph segment <init-component-scope>

96 Rec. ITU-T Z.164 (05/2012)

9.20a Flow graph segment <init-scope-with-runs-on>

The flow graph segment <init-scope-with-runs-on> iS part of the flow graph representing the
behaviour of function and altstep definitions. It creates new scopes for variables, timers and ports,
which include the names and values declared in the component type definition referred to in the
runs on-Clause. The execution of the flow graph segment is defined in Figure 76a.

segment <init-scope-with-runs-ons>

let { // local scope

var actVarScope := copy(Entity.DATA-STATE.first());
var actTimerScope := copy(Entity.TIMER-STATE.first());
var actPORTScope := copy(Entity.PORT-REF.first());

"""""" Entity.INIT-VAR-SCOPE() ;
Entity.DATA-STATE.first() .add(actVarScope) ;
Entity.INIT-TIMER-SCOPE() ;
Entity.DATA-TIMER.first () .add(actTimerScope) ;
Entity.INIT-PORT-SCOPE() ;
Entity.PORT-REF.first() .add(actPortScope)
Entity.VALUE-STACK. push (MARK) ;

}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 76a — Flow graph segment <init-scope-with-runs-on>

9.20b Flow graph segment <init-scope-without-runs-on>

The flow graph segment <init-scope-without-runs-ons> IS part of the flow graph representing
the behaviour of function and altstep definitions. It creates new empty scopes for variables, timers
and ports. Functions and altsteps without runs on-clause do not know the names and values
declared in the component type definition of the invoking component. The execution of the flow
graph segment is defined in Figure 76b.

segment <init-scope-without-runs-on>

Entity.INIT-VAR-SCOPE() ;
Entity.INIT-TIMER-SCOPE() ;
Entity.INIT-PORT-SCOPE() ;

........... Entity.VALUE-STACK.push (MARK) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 76b — Flow graph segment <init-scope-without-runs-on>

Rec. ITU-T Z.164 (05/2012) 97

9.21 Flow graph segment <parameter-handling>

The flow graph-segment <parameter-handlings IS used in the beginning of flow graphs
representing test cases, altsteps and functions. It initializes a new scope and creates variables and
timers for the handling of parameters. The flow graph-segment <parameter-handling> assumes
that the call record of the called test case, altstep or function is the top of the value stack.

The execution of flow graph-segment <parameter-handlings iSshown in Figure 77.

segment
<parameter-handling> Entity.INIT-CALL-RECORD(VALUE-STACK.top()) ;
// parameters are initialized
Entity.VALUE-STACK.pop(); // removal of call record

A 4

Entity.VALUE-STACK.push (MARK); // for scope

Entity.NEXT-CONTROL (true) ;

parameter-handling).
RETURN;

v

Figure 77 — Flow graph segment <parameter -handling>

9.22 Flow graph segment <statement-block>
The syntactical structure of a statement block is:

{ <statement,>; .. ; <statement > }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and
the value stack have to be initialized. When leaving a scope unit, al variables, timers and stack
values of this scope have to be destroyed.

NOTE 1 — A Statement block can be embedded in another statement blocks or can occur as body of
functions, altsteps, test cases and module control, and within compound statements, e.g., alt, if-else Or
do-while.

NOTE 2 — Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in
alt statementsor call operations.

NOTE 3 — The operational semantics also handles operations and declarations like statements, i.e., they are
allowed in statement blocks.

NOTE 4 — Some TTCN-3 functions, like, e.g., system Or sel£, are considered to be expressions, which are
not useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
Figure 78.

The flow graph segment <statement-blocks in Figure 78 defines the execution of a statement
block.

98 Rec. ITU-T Z.164 (05/2012)

segment <statement-blocks>
let {

// local scope
var actVarScope :=
var actTimerScope :=
Entity.INIT-VAR-SCOPE() ;
Entity.DATA-STATE. first

copy (Entity.DATA-STATE. first()) ;

add(actVarScope) ;

Entity.INIT-TIMER-SCOPE

).
)

i

(
(
Entity.DATA-TIMER. first(
Entity.VALUE-STACK.push (

) .add (actTimerScope) ;
MARK) ;

enter-scope-unit }

RETURN;

Entity.NEXT-CONTROL (true) ;

copy (Entity. TIMER-STATE. first()) ;

<constant-definition> OR
<timer-declaration> OR
<variable-declaration>

-

// List of flow graph segments

-

<action-stmt> OR <activate-stmt> OR <alt-stmts>
OR <assignment-stmt> OR <call-op> OR
<clear-port-op> OR <connect-op> OR <create-op>
OR <deactivate-stmt> OR <disconnect-op> OR
<do-while-stmt> OR <execute-stmt> OR <for-stmts>
OR <function-call> OR <getverdict-op> OR
<goto-stmt> OR <if-else-stmt> OR
<kill-component-op> OR <kill-exec-stmt> OR
<label-stmt> OR <log-stmt> OR <map-op> OR
<raise-op> OR <repeat-stmt> OR <reply-op> OR
<return-stmt> OR <send-op> OR <setverdict-op>
OR <start-component-op> OR <start-port-op> OR
<start-timer-op> OR <stop-component-op> OR
<stop-exec-stmt> OR <stop-port-op> OR
<stop-timer-op> OR <unmap-op> OR <while-stmt>
OR <statement-blocks>

// representing defintions
// and declarations.

// List of flow graph segments

exit-scope-unit

// representing all possible
// statements and operations

Entity.DEL-VAR-SCOPE() ;
Entity.DEL-TIMER-SCOPE() ;
Entity.VALUE-STACK.clear-until (MARK) ;

Entity.NEXT-CONTROL (true) ;

RETURN;

Figure 78 — Flow graph segment <statement-block>

9.23
The syntactical structure of the for-statement iS:

For statement

for (<assignments|<variable-declaration>, <boolean expressions>, <assignments) <statement-blocks>

The initialization of the index variable and the corresponding manipulation of the index variable are
considered to be assignments to the index variable. It is also allowed to declare and initialize the
index variable directly in the £or statement. The <boolean-expression> describes the termination
criterion of the loop specified by the for-statement and the <statement-block> describes the

loop body.

Rec. ITU-T Z.164 (05/2012)

99

The execution of the for statement is defined by the flow graph segment <for-stmt> shown in
Figure 79. The initial <assignment> Or alternative variable declaration with assignment <var-
declaration-init> (Seeclause9.57.1) describes the initialization of the index variable. The
<assignment> iN the true branch of the decision node describes the manipulation of the index
variable. The for statement is a scope unit for a newly declared index variable, thisis modelled by
means of the nodes enter-var-scope and exit-var-scope.

segment <for-stmt>

A 4 Entity.INIT-VAR-SCOPE() ;
Entity.VALUE-STACK.push (MARK) ;

enter-var-scope uwmwwen
Entity.NEXT-CONTROL (true) ;
RETURN;

A

// The index variable is only

<assignment> // initialised (<assignment>)
OR // or declared and initialised
<var-declaration-inits> // (<var-declaration-inits>)

¢

‘ !
L
<expression>
if (Entity.VALUE-STACK.top()== true) {
Entity.NEXT-CONTROL (true) ;
X else {
Entity.NEXT-CONTROL (false) ;
decision = N }
true Entity.VALUE-STACK.pop() ;
RETURN;
v false
<statement-block>
v Entity.DEL-VAR-SCOPE() ;
X Entity.VALUE-STACK.clear-until (MARK) ;
<assignment>
v Entity.NEXT-CONTROL (true) ;
RETURN;
exit-var-scope =)en

v
Figure 79 — Flow graph segment <for-stmt>

9.24 Function call
The syntactical structure of afunction cal is:

<function—name>([<act—par—desc1>, - <act—par—descn>])

The <function-name> denotes to the name of a function and <act-par-descr,>, ... , <act-par-
descr, > describe the description of the actual parameter values of the function call.

NOTE 1 — A function call and an atstep call are handled in the same manner. Therefore, the altstep call (see
clause 9.4) refersto this clause.

100 Rec. ITU-T Z.164 (05/2012)

It is assumed that for each <act-par-desc,> the corresponding formal parameter identifier <£-
par-Id,>iSknown,i.e., we can extend the syntactical structure above to:

<function—name>((<f—par—Id1>,<act—par—descl>), - (<f—par—Idn>,<act—par—descn>))

The flow graph segment <function-call> in Figure 80 defines the execution of a function call. The
execution is structured into three steps. In the first step a call record for the function <function-
name> IS created. In the second step the values of the actual parameter are calculated and assigned
to the corresponding field in the call record. In the third step, two sSituations have to be
distinguished: the called function is a user-defined function (<user-def-func-calls), i.e., there
exists aflow graph representation for the function, or the called function is a pre-defined or external
function (<predef-ext-func-calls). In case of auser-defined function call, the control is given to
the called function. In case of a pre-defined or external function, it is assumed that the call record
can be used to execute the function in one step. The correct handling of reference parameters and
return value (has to be pushed onto the value stack) is in the responsibility of the called function,
I.e., is outside the scope of this operational semantics.

NOTE 2 — If the function call models an altstep call, only the <user-def-func-call> branch will be
chosen, because there exists aflow graph representation of the called altstep.

NOTE 3 — The <function calls> segment is aso used to describe the start of the MTC in an execute
statement. In this case, a call record for the test case is constructed and only the <user-def-func-calls
branch will be chosen.

segment
<function calls

Entity.VALUE-STACK.push (NEW-CALL-RECORD (function-name)) ;
Entity.NEXT-CONTROL (true) ;
RETURN;

* // For each pair (<f-par-Id;>, <act-parameter-desc;>) the
// value of <act-parameter-desc; is calculated and
..| // assigned to the corresponding field <f-par-Id;>

<value-par-calculation> // in the call record. The call record is assumed to be
// the top element in the value stack.

* |
// Retrieves the locations for variables and timers
-+ // used as reference parameters and declared names of
<ref-var-par-calc> OR // port parameters

<ref-timer-par-calc> OR
<ref-port-par-calc>

construct-call-record
(function-name)

A 4

<predef-ext-func-call>
OR e // The called function may either be an external or
<user-def-func-call> // predefined function, or a user-defined function.

Figure 80 — Flow graph segment <function-call>

Rec. ITU-T Z.164 (05/2012) 101

9.24.1 Flow graph segment <value-par-calculation>

The flow graph-segment <value-par-calculations> iS used to calculate actual parameter values
and to assign them to the corresponding fieldsin call records for functions, altsteps and test cases.

It isassumed that a call record isthe top element of the value stack and that a pair of:

(<f-par-Id;>, <act-parameter-desc;>)

has to be handled. <act-parameter-desc;> that has to be evaluated and <f-par-1d;> is the
identifier of aformal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <value-par-calculations isshownin Figure 81.

segment
<value-par-calculation>

// The expression represents <act-parameter-desci>
// The result of the evaluation of the expression
// is pushed onto the value stack.

<expression>

let { // scope unit for parVal
var parVal = Entity.VALUE-STACK.top() ;
// parVal is a local variable that
// stores the value of the expression

parameter-assignment
(f-par-Id) Entity.VALUE-STACK.pop() ;

// Removal of expression value.

// Afterwards the call record is

// again top of the value stack

Entity.VALUE-STACK.top() .f-par-Id := parVal;
// Value assignment to call record
} // end of scope for parVal

Entity.NEXT-CONTROL (true) ;
RETURN;

\4

Figure 81 — Flow graph segment <value-par-calculation>
9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph-segment <ref-par-var-calcs iSused to retrieve the locations of variables used as
actual reference parameters and to assign them to the corresponding fields in call records for
functions, altsteps and test cases.

It isassumed that acall record is the top element of the value stack and that a pair of:

(<f-par-Id,>, <act-par,>)

has to be handled. <act-par;> is the actual parameter for which the location has to be
retrieved and <f-par-1d,> isthe identifier of aformal parameter that has a corresponding field in
the call record in the value stack.

102 Rec. ITU-T Z.164 (05/2012)

The execution of flow graph-segment <ref-par-var-calcs isshown in Figure 82.

segment
<ref-par-var-calc>

\ 4 // Value assignment to call record
Entity.VALUE-STACK.top() .f-par-Id :=
Entity.GET-VAR-LOCATION (act-par) ;

parameter-assignment
(f-par-Id, act-par)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 82 — Flow graph segment <ref-par-var -calc>

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <ref-par-timer-calcs> iS used to retrieve the locations of timers used as
actual reference parameters and to assign them to the corresponding fields in call records for
functions, altsteps and test cases.

It isassumed that acall record is the top element of the value stack and that a pair of:
(<f-par-Id;>, <act-par;>)

has to be handled. <act-par;> is the actual parameter for which the location has to be
retrieved and <£-par-1d,> isthe identifier of aformal parameter that has a corresponding field in
the call record in the value stack.

The execution of flow graph-segment <ref-par-timer-calcs iSshown in Figure 83.

segment
<ref-par-timer-calc>

// Value assignment to call record
v Entity.VALUE-STACK.top() .f-par-Id :=
Entity.GET-TIMER-LOCATION (act-par) ;

parameter-assignment
(f-par-Id, act-par)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 83 — Flow graph segment <ref-par-timer-calc>

9.24.3a Flow graph segment <ref-par-port-calc>

The flow graph-segment <ref-par-port-calcs IS used to retrieve the names of ports used as in
the component type definitions for the declaration of the port and to assign them to the
corresponding fields in call records for functions and altsteps.

It isassumed that acall record is the top element of the value stack and that a pair of:

(<f-par-Id,>, <act-par,>)

Rec. ITU-T Z.164 (05/2012) 103

has to be handled. <act-par;> is the actual parameter for which the location has to be retrieved
and <f-par-1d,> is the identifier of a formal parameter that has a corresponding field in the call
record in the value stack.

The execution of flow graph-segment <ref-par-timer-calcs iSshown in Figure 83a.

segment
<ref-par-port-calc>

// Value assignment to call record
Entity.VALUE-STACK.top() .f-par-Id :=
Entity.act-par.COMP-PORT-NAME;

parameter-assignment
(f-par-Id, act-par)

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 83a— Flow graph segment <ref-par-port-calc>

9.24.4 Flow graph segment <user -def-func-call>

The flow graph-segment <user-def-func-calls (Figure 84) describes the transfer of control to a
called user-defined function.

segment <user-def-func-calls>

// Storage of return address

Entity.NEXT-CONTROL (true) ;

// Control is transferred to called function
Entity.CONTROL-STACK.push (GET-FLOW-GRAPH (function-name)) ;

user-def-func-call
(function-name) RETURN;

v

Figure 84 — Flow graph segment <user-def-func-call>

104 Rec. ITU-T Z.164 (05/2012)

9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph-segment <predef-ext-func-calls (Figure 85) describes the call of a pre-defined
or external function.

segment <predef-ext-func-calls>

let { // scope for argument variable
var argument := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop(); // removal of call record
// Bpplication of function-name

~~~~~ function-name (argument) ;

} // end of scope for argument

Entity.NEXT-CONTROL (true) ;

RETURN;

<predef-ext-func-calls>
(function-name)

v
Figure 85— Flow graph segment <predef-ext-func-call>

9.25 Getcall operation
The syntactical structure of the getcall operationis:
<portId>.getcall (<matchingSpec>) [from <component expressions>] -> [<assignmentParts]

Apart from the getca11l keyword this syntactical structure isidentical to the syntactical structure of
the receive operation. Therefore, the operational semantics handles the getca1l1 operation in the
same manner as the receive operation. This is also shown in the flow graph segment <getcall-
op> (see Figure 86), which defines the execution of a getcal1l operation. The figure refers to flow
graph segments related to the receive oOperation (see clause 9.37).

segment <getcall-op> l

<receive-with-sender>
OR // Distinction due to the optional
<receive-without-sender> [ // from-clause

v
Figure 86 — Flow graph segment <getcall-op>

9.26  Getreply operation
The syntactical structure of the getreply Operationis:
<portId>.getreply (<matchingSpec>) [from <component-expression>] [-> <assignmentParts>]

Apart from the getreply keyword this syntactical structure isidentical to the syntactical structure
of the receive operation. Therefore, the operational semantics handles the getreply Operation in
the same manner as the receive operation. This is aso shown in the flow graph segment
<getreply-op> (See Figure87), which defines the execution of a getreply operation. The
figure refersto flow graph segments related to the receive operation (see clause 9.37).

Rec. ITU-T Z.164 (05/2012) 105



segment <getreply-op> l

<receive-with-sender>
OR // Distinction due to the optional
<receive-without-sender> [ // from clause

Figure 87 — Flow graph segment <getr eply-op>

9.27  Getverdict operation
The syntactical structure of the getverdict operation is:

getverdict

The flow graph segment <getverdict-op> in Figure 88 defines the execution of the getverdict
operation.

segment <getverdict-op>
// E-VERDICT is pushed onto VALUE-STACK

Entity.VALUE-STACK.push (Entity.E-VERDICT) ;
.................. Entity.NEXT-CONTROL (true) ;
RETURN;

getverdict-op

v
Figure 88 — Flow graph segment <getver dict-op>

9.28 Goto statement
The syntactical structure of the goto Statement is:

goto <labelIds>

The flow graph segment <goto-stmt> in Figure 89 defines the execution of the goto Statement.

segment <goto-stmt>

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
O s RETURN;

<labelIds>
Figure 89 — Flow graph segment <goto-stmt>

NOTE — The <labelld> parameter of the goto statement indicates the transfer of control to the place at
which alabel <1abel1d> isdefined (see aso clause 9.30).

106 Rec. ITU-T Z.164 (05/2012)



9.28a Halt port operation
The syntactical structure of the halt port operationis:

<portId>.halt

The flow graph segment <halt-port-op> in Figure 89a defines the execution of the nait port
operation.

segment <halt-port-op>

let { // Begin of local scope

var portRef := NULL
. var portState := NULL;
if (portId == “all port”) ({
halt-port-op  Jumcm portState := ALL-PORT-STATES.first();
(portId) while (portState != NULL) |
if (portState.OWNER == Entity) {
portState.STATUS := HALTED;

portState. enqueue (HALT-MARKER) ;
}
portState :=
ALL-PORT-STATES .next (portState) ;

}

else {
portRef := Entity.portId.COMP-PORT-NAME;
GET-PORT (Entity, portRef) .STATUS := HALTED;
GET-PORT (Entity, portRef) .enqueue (HALT-MARKER) ;

} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 89a — Flow graph segment <halt-port-op>
NOTE — The HALT-MARKER that is put by a halt operation into the port queue is removed by the SNAP-
PORTS function (see clause 8.3.3.2) when the marker is reached, i.e., all messages preceding the marker
have been processed. The SNAP-PORTSfunction is called when taking a snapshot.
9.29 If-elsestatement
The syntactical structure of the i £-else Statement is:

if (<boolean-expression>) <statement-block, >

[else <statement-block,>]

The else part of the i £-e1se Statement is optional.

The flow graph segment <if-else-stmt> in Figure 90 defines the execution of the if-else
statement.

Rec. ITU-T Z.164 (05/2012) 107



segment <if-with-else-branchs>

A

<expressions>
if (Entity.VALUE-STACK.top()) f{
Entity.NEXT-CONTROL (true) ;
}
else {
A\ 4 Entity.NEXT-CONTROL (false) ;
— @D ............ }}i'ntity. VALUE-STACK.pop () ;
RETURN;
true false
\ 4

<statement-block>

% (1) ||
// Optional else part

<statement-block> H.n

;

Figure 90 — Flow graph segment <if-else-stmt>

9.29a Kill component operation
The syntactical structure of the xi11 component statement is:
<component -expression>.kill

The xi11 component operation stops the specified component and removes it from the test system.
All test components will be stopped and removed from the test system, i.e., the test case terminates,
if the MTC iskilled (e.g., mtc.ki11) or killsitself (e.9., se1£.ki11). The MTC may kill al parallel
test components by using the a11 keyword, i.e., a1l component.kill.

A component to be killed is identified by a component reference provided as expression, e.g., a
value or value returning function. For smplicity, the keyword "a11 component” is considered to be
specia values of <component-expressions. The operationsmte and se1£ are evaluated according
to clauses 9.33 and 9.43.

The flow graph segment <ki11-component-op> in Figure 90a defines the execution of the ki1l
component operation.

108 Rec. ITU-T Z.164 (05/2012)



segment <kill-component-op>

A 4

// The Expression shall evaluate
// to a component reference. The

<expressions>

// result is pushed onto VALUE-STACK

if (Entity.VALUE-STACK.top() == 'all component') {

decision

true

<kill-all-comp>

decision

<kill-mte>

false

Entity.VALUE-STACK.pop(); // clean value stack
if (Entity != MTC)
***DYNAMIC-ERROR*** //

'all' not allowed

else {
Entity.NEXT-CONTROL (true) ;
{

else {
Entity.NEXT-CONTROL (false) ;

RETURN;

if (Entity.VALUE-STACK.top()
Entity.VALUE-STACK. pop ()
e

Entity.NEXT-CONTROL (tru

== M1O) {
; // clean value stack
............ );
else {

Entity.NEXT-CONTROL (false) ;

RETURN;

prepare-kill

false

true
\ 4

<kill-component>

if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top())) {
Entity.NEXT-CONTROL (true) ;

else {
if (KILLED.member (Entity.VALUE-STACK.top())) {
// NULL operation, component already terminated
Entity.VALUE-STACK.pop(); // clean value stack
Entity.NEXT-CONTROL (false) ;
else {
// component id has not been allocated
*%**DYNAMIC-ERROR***
{
RETURN;

Figure 90a — Flow graph segment <kill-component-op>

Rec. ITU-T Z.164 (05/2012)

109



9.29a.1 Flow graph segment <kill-mtc>

The <kill-mtc> flow graph segment in Figure 90b describes the killing of the MTC. The effect is
that the test case terminates, i.e., the final verdict is calculated and pushed onto the value stack of
module control, all resources are released, the KILLED and DONE lists of the module state are
emptied and all test components including the MTC are removed from the test system.

segment <kill-mtc>

kill-mte Y}

let { // local scope for variables

var myEntity := ALL-ENTITY-STATES.first();

// Update test case verdict and deletion of components
while (myEntity != NULL) {
if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT := fail;
}

else {
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) ({
TC-VERDICT := inconc;
else {

if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
TC-VERDICT := pass;
}
}
myEntity := ALL-ENTITY-STATES.next (myEntity);

}

// TC-VERDICT is the result of the execute operation
CONTROL .VALUE-STACK. push (TC-VERDICT) ;

// Update of test case reference parameters
UPDATE-REMOTE-LOCATIONS(MTC, CONTROL);

// Deletion of test components, release of resources, clearing lists
ALL-ENTITY-STATES := NULL; // Deletion of Entity states
ALL-PORT-STATES := NULL;

DONE := NULL;

KILLED := NULL;

TC-VERDICT := none;

MTC := NULL; // Deletion of the last reference to the MTC

CONTROL.STATUS := ACTIVE; // Control continues
} // End of local scope
RETURN;

Figure 90b — Flow graph segment <kill-mtc-op>

110 Rec. ITU-T Z.164 (05/2012)



9.29a.2 Flow graph segment <kill-component>

The <ki11-component > flow graph segment in Figure 90c describes the stopping of a parallel test
component (i.e., not the MTC or module control) and its removal from the test system. The effect is
that the test case verdict TC-VERDICT and the lists of stopped and killed test components (DONE,
and KILLED) are updated and that the component is deleted from the module state. The <ki11-
component > flow graph assumes that the identifier of the component to be stopped is on top of the
value stack of the component that executes the segment.

segment <kill-components>

kill-component

let { // local scope for variable myEntity
var myEntity := Entity.VALUE-STACK.top() ;

// for test continuation, if kill is executed by another component
if (Entity != myEntity()) {
Entity.VALUE-STACK.pop() ; // clean value stack

Entity.NEXT-CONTROL (true) ;

}

// Update test case verdict

if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT := fail;
else
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc)
TC-VERDICT := inconc;
else

if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
TC-VERDICT := pass;

}

// Deletion of test component

DONE . append (myEntity) ;
KILLED. append (myEntity) ;
DEL-ENTITY (myEntity) ;

} // End of local scope
RETURN;

// Update of DONE
// Update of KILLED
// Deletion of entity

Figure 90c — Flow graph segment <kill-component>

Rec. ITU-T Z.164 (05/2012)

111



9.29a.3 Flow graph segment <kill-all-comp>

The <kil1-all-comp> flow graph segment in Figure 90d describes the termination of all parallel
test components of atest case.

segment <kill-all-comp>

A 4

kill-all-comp  Je

let { // local scope for variable myEntity
var myEntity := ALL-ENTITY-STATES.next (MTC) ;

// Update test case verdict
while (myEntity != NULL)
if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) ({
TC-VERDICT := fail;
}

else {
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) ({
TC-VERDICT := inconc;
}
else {
if (myEntity.E-VERDICT == pass or TC-VERDICT == pass)
TC-VERDICT := pass;

}
}

myEntity := ALL-ENTITY-STATES.next (myEntity);

}

// Deletion of test components
myEntity := ALL-ENTITY-STATES.next (MTC) ;
while (myEntity != NULL)

DONE. append (myEntity) ; // Update of DONE
KILLED. append (myEntity) ; // Update of KILLED
DEL-ENTITY (myEntity) ; // Deletion of entity

myEntity := ALL-ENTITY-STATES.next (MTC); // Next component to delete

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 90d — Flow graph segment <stop-all-comp>

9.29b Kill execution statement
The syntactical structure of the ki11 execution statement is:
kill

The effect of the ki11 execution statement depends on the entity that executes the xi11 execution
statement:

a) If xi11 is performed by the module control, the test campaign ends, i.e., all test components
and the module control disappear from the modul e state.
b) If the xi11 is executed by the MTC, al parallel test components and the MTC stop

execution. The global test case verdict is updated and pushed onto the value stack of the
module control. Finally, control is given back to the module control and the MTC
terminates.

112 Rec. ITU-T Z.164 (05/2012)



C) If the xi11 is executed by atest component, the global test case verdict TC-VERDICT and
the global DONE and KILLED lists are updated. Then the component disappears from the
module.

The flow graph segment <kill-exec-stmt> in Figure 90e describes the execution of the kill
statement.

segment <kill-exec-stmts> |

if (Entity == CONTROL {
Entity.NEXT-CONTROL (true) ;
decision =} -
else
true Entity .NEXT-CONTROL (false);
false }
RETURN;

<kill-controls>

if (Entity == MTC) {
Entity.NEXT-CONTROL (true) ;
}

else
Entity.VALUE-STACK.push(Entity);
Entity .NEXT-CONTROL (false) ;

}

decision  }.. ... RETURN;

true false

<kill-mtc> <kill-component>

Figure 90e — Flow graph segment <kill-exec-stmt>
9.29b.1 Flow graph segment <kill-control>

The <kill-controls flow graph segment in Figure 90f describes the stopping of module control.
The effect is that CONTROL is set to nuLL, i.e., the termination condition of the module evaluation
procedure (see clause 8.6) isfulfilled.

segment <kill-controls> !

CONTROL := NULL;
kill-control  }----- RETURN;

v

Figure 90f — Flow graph segment <kill-control>

Rec. ITU-T Z.164 (05/2012) 113



9.29c Killed component operation
The syntactical structure of the ki11ea component operation is:
<component-expression>.killed

The xilled component operation checks whether a component is alive or has been removed from
the test system. Depending on whether a checked component is alive or has been removed from the
test system, the kil1ed operation decides how the flow of control continues. Using a component
reference identifies the component to be checked. The reference may be stored in a variable or be
returned by afunction, i.e., it is an expression. For simplicity, the keywords "a1l component” and
"any component” are considered to be special expressions.

The flow graph segment <killed-op> in Figure90g defines the execution of the xilled
component operation.

114 Rec. ITU-T Z.164 (05/2012)



segment <killed-op>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

<expression>

if (Entity.VALUE-STACK.top() == 'all component') {
if (Entity != MTC)
***DYNAMIC-ERROR*** // 'all component' is not allowed
}

else
killed-component-op ) ii (Entity.SNAP-ALIVE.lenght() == 1) { // MTC is alive
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // KILLED is successful
else {
Entity.NEXT-CONTROL (false) ;
}
}
}
else {
if (Entity.VALUE-STACK.top() == 'any component') ({

if (Entity !'= MTC) {
***DYNAMIC-ERROR*** // 'any component' is not allowed

else {
if (Entity.SNAP-KILLED.length() > 0) {
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // KILLED is successful

else {
Entity.NEXT-CONTROL (false) ;
}

}
}

else {
if (Entity.SNAP-DONE.member (Entity.VALUE-STACK.top())) ({
Entity.NEXT-CONTROL (true) ;
Entity.STATUS := ACTIVE; // KILLED is successful
else {
Entity.NEXT-CONTROL (false) ;
}
}
}
Entity.VALUE-STACK.pop(); // clean value stack
RETURN;

l true x false

Figure 90g — Flow graph segment <killed-op>

9.30 Label statement
The syntactical structure of the 1abel Statement is:
label <labelIds>

The flow graph segment <1abel-stmt> in Figure 91 defines the execution of the 1abe1 statement.

NOTE — The <1abelId> parameter of the label statement indicates the possibility that a label can be the
target for ajump by means of agoto statement (see also clause 9.28).

Rec. ITU-T Z.164 (05/2012) 115



segment <label-stmt>

<labelIds> >‘

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
nop Yoo RETURN;

Figure 91 — Flow graph segment <label-stmt>

9.31 Log statement
The syntactical structure of the 10g Statement is:
log (<informal-descriptions)

The flow graph segment <10g-stmt > in Figure 92 defines the execution of the 1o0g statement.

NOTE — The <informal description> parameter of the log statement has no meaning for the
operational semantics and is therefore not represented in the flow graph segment.

segment <log-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL (true) ;
faTo) o JAN WO RETURN;

Figure 92 — Flow graph segment <log-stmt>

9.32 Map operation
The syntactical structure of the map operation is:

map (<component -expressions>:<portIdl>, system:<portId2s>)

The identifiers <port1d1> and <port1d2> are considered to be port identifiers of the corresponding
test component and test system interface. The component to which the <portld1> belongs is
referenced by means of the component reference <component -expressions. The reference may be
stored in variables or is returned by a function, i.e, it is an expression, which evauates to a
component reference. The value stack is used for storing the component reference.

NOTE — The map operation does not care whether the system:<portld> statement appears as first or as
second parameter. For simplicity, it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <map-op> shown in
Figure 93.

116 Rec. ITU-T Z.164 (05/2012)



segment <map-op>

let { // begin of a local scope
var portRef;
var compl := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop() ;
if (compl == Entity) ({
portRef := Entity.portIdl.COMP-PORT-NAME;

A

<expression>

A 4

}
else
map-op portRef := portIdl;
(portIdl, pOrtId2) e }
ADD-CON(compl, portRef, system, portId2);
}

// end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 93 — Flow graph segment <map-op>

9.33 Mtc operation
The syntactical structure of themtc operation is:

mtc

The flow graph segment <mtc-op> in Figure 94 defines the execution of the mtc operation.

segment <mtc-op>

Entity.VALUE-STACK.push (MTC) ;

MEC-Op o Entity.NEXT-CONTROL (true) ;
RETURN;

v
Figure 94 — Flow graph segment <mtc-op>

9.34  Port declaration
The syntactical structure of a port declaration is:
<portType> <portName>

Port declarations can be found in component type definitions. The effect of a port declaration is the
creation of a new port when a new component of the corresponding type is created. Furthermore, a
port reference is created in the actual scope of the test component. In the newly created port
reference, the values PORT-NAME and COMP-PORT-NAME are equal. The flow graph segment
<port-declaration> in Figure 95 defines the execution of a port declaration.

Rec. ITU-T Z.164 (05/2012) 117



segment <port-declarations>

// A new port state and a port reference
// are created

port-declaration

(portName) )™ ALL-PORT-STATES. append (NEW-PORT (Entity, portName) ;

Entity.INIT-PORT (portName, portName) ;

Entity.NEXT-CONTROL (true) ;
RETURN;

v
Figure 95 — Flow graph segment <port-declaration>

9.35 Raiseoperation
The syntactical structure of the raise operation is:
<portId>.raise (<exceptSpec>) [to < receiver-spec>]

The optional <receiver-spec> inthe to clause refers to the receivers of the exception. In case of
aone-to one communication, the <receiver-spec> addresses a single entity (including the SUT or
an entity within the SUT). In case of multicast or broadcast communication, the <receiver-spec>
specifiesa set or al test components connected via the specified port with the calling component.

The flow graph segment <raise-op> in Figure 96 defines the execution of araise operation.

segment <raise-op>

A 4

<raise-with-one-receiver-op> OR // A raise operation may adress one,
<raise-with-multiple-receivers-op> OR // multiple (multicast and broadcast)
<raise-without-receiver-op> // or no receiver entities.

Figure 96 — Flow graph segment <raise-op>

118 Rec. ITU-T Z.164 (05/2012)



9.35.1 Flow graph segment <raise-with-one-receiver-op>

The flow graph segment <raise-with-one-receiver-op> in Figure 97 defines the execution of a
raise operation where the receiver is specified in form of an expression.

segment <raise-with-one-receiver-ops>

// The expression shall evaluate
// to a component reference or
// address value.

<expression>

raise-with-one-receiver-op
(portId, exceptSpec)

let {
var receiver := Entity.VALUE-STACK.top() ;
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portref, receiver);
if (remotePort == NULL)
***DYNAMIC-ERROR***; // Remote port cannot be found
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of exception
remotePort.enqueue (CONSTRUCT-ITEM(Entity, raise, exceptSpec));

} // end of scope of receiver and remotePort
Entity.VALUE-STACK.pop() ; // clean value stack

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 97 — Flow graph segment <raise-with-one-r eceiver-op>
9.35.1a Flow graph segment <raise-with-multiple-receiver s-op>

The flow graph segment <raise-with-multiple-receivers-op> IN Figure 97a defines the
execution of a raise operation where multiple receivers are addressed. In case of broadcast
communication the keyword a1l component IS used as receiver specification. In case of multicast
communication a list of expressions is provided which shall evaluate to component references or
address values.

The component references or address values of the addressed entities (or the keyword aii
component) are pushed onto the value stack of the calling entity. The number of references stored
in the value stack is considered to be known, i.e., it is the parameter number Of the basic flow graph
node raise-with-multiple-receivers-op iN Figure 97a. The number parameter is 1 in case of
broadcast communication, i.e., the keyword a11 component iStop element in the value stack.

Rec. ITU-T Z.164 (05/2012) 119



segment <raise-with-multiple-receivers-op>

4 (number) // Each expression shall evaluate
// to a component reference or
"™ // an address value.

<expressions>

raise-with-multiple-receivers-op
(portId, exceptSpec, number)

let { //
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; // variable for receiver component references
var localPort, remotePort; [/ variables for port references
localPort := Entity.portId.COMP-PORT-NAME; // local port
if (Entity.VALUE-STACK.top() == all component) {
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL) ({
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM)
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics
else { // sending of call
remotePort . engueue (CONSTRUCT-ITEM (Entity, raise, exceptSpec));
}
connection := localPort.CONNECTIONS-LIST.next (connection) ;
1
else {
for (i == 1; i <= number; i := i+1) {
receiver := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ; // clean value stack
remotePort := GET-REMOTE-PORT(Entity, localPort, receiver) ;
if (remotePort == NULL) {

***DYNAMIC-ERROR***; // Remote port cannot be found
}
if (remotePort == SYSTEM)

// Port is mapped onto a port of the test system

// reception of the reply by the SUT is outside

// the scope of the operational semantics

else { // sending of call
remotePort.engueue (CONSTRUCT-ITEM(Entity, raise, exceptSpec));
}

1
} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 97a— Flow graph segment <raise-with-multiple-r eceiver s-op>

120 Rec. ITU-T Z.164 (05/2012)



9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <raise-without-receiver-op> in Figure 98 defines the execution of a
raise operation without to-clause.

segment <raise-without-receiver-op>

raise-without-receiver-op
(portId, exceptSpec)

let {
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE) ;
if (remotePort == NULL) ({
***DYNAMIC-ERROR***; // Remote port cannot be found
}
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of exception
remotePort.enqueue (CONSTRUCT-ITEM(Entity, raise, exceptSpec));
}

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 98 — Flow graph segment <raise-without-r eceiver-op>

9.36 Read timer operation
The syntactical structure of the read timer operation is:

<timerIds.read

The flow graph segment <read-timer-op> in Figure 99 defines the execution of the read timer
operation.

Rec. ITU-T Z.164 (05/2012) 121



The read timer operation distinguishes between its usage in a Boolean guard of an a1t statement or
blocking ca11 operation and all other cases. If used in a Boolean guard, the result of the read timer
operation is based on the actual snapshot, i.e., the SNAP-STATUS and SNAP-VALUE entries of the
timer binding, in all other cases, the STATUS ACT-DURATION and TIME-LEFT entries of the
timer binding determine the result of the operation.

read-timer-op
(timerId)

segment <read-timer-op>

let { // local scope for variable myValue
var float myValue;

if (Entity.STATUS == SNAPSHOT) {

if (Entity.timerId.SNAP-STATUS == RUNNING) {
myValue := Entity.timerId.SNAP-VALUE;
else {
myValue := 0.0;
else {
if (Entity.timerId.STATUS == RUNNING) {
myValue := Entity.timerId.ACT-DURATION - Entity.timerId.TIME-LEFT;
else {
myValue := 0.0;

}
}

Entity.VALUE-STACK.push(myValue) ;

} // end local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 99 — Flow graph segment <read-timer-op>

9.37 Receive operation
The syntactical structure of the receive Operation is:
<portId>.receive (<matchingSpec>) [from <component-expression>] [-> <assignmentParts>]

The optional <component-expression> iN the from clause refers to the sender entity. It may be
provided in form of a variable value or the return value of a function, i.e,, it is assumed to be an
expression. The optional <assignmentpPart> denotes the assignment of received information if the
received message matches to the matching specification <matchingspec> and to the (optional)
from Clause.

The flow graph segment <receive-op> Iin Figure100 defines the execution of a receive
operation.

122 Rec. ITU-T Z.164 (05/2012)



segment <receive-op> l

<receive-with-sender>
OoR [ // Distinction due to the optional
<receive-without-senders> // from clause

Figure 100 — Flow graph segment <receive-op>
9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <receive-with-senders in Figure 101 defines the execution of a
receive Operation where the sender is specified in form of an expression.

Rec. ITU-T Z.164 (05/2012) 123



segment v
<receive-with-senders>

// The Expression shall evaluate
. // to a component reference or an
<expression> // address value. The result is

// pushed onto the VALUE-STACK.

let { // local scope for portRef and sender
var portRef := NULL;

var sender := Entity.VALUE-STACK.top() ; // Sender
Entity.VALUE-STACK.pop() ; // Clean value stack
if (portID == “any port”) ({
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE,matchingSpec, sender)
&& OWNER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;
RETURN;
}
else
portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME); // Specified port
}
// MATCHING
if (PortRef.first() == NULL) { // Port queue is empty, no match
Entity.NEXT-CONTROL (false) ;
RETURN;
else {

if ( MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, sender)) {
// The message in the queue matches
Entity.VALUE-STACK.push (portRef) ; // Saving port reference
Entity.STATUS := ACTIVE; // successful match, Entity status is changed
// from SNAPSHOT to ACTIVE

Entity.NEXT-CONTROL (true) ;

else // The top item in the queue does not match
Entity.NEXT-CONTROL (false) ;
}

RETURN;

} // End of scope of portRef and sender

receive-with-sender

(portId, matchingSpec)
true

I // optional value
*(1) // assignemt

<recelve-assignment>

124

// Removal of received item from port
v Entity.VALUE-STACK. top() .dequeue() ;
remove-from-port Entity.VALUE-STACK.pop () ;
........... Entity.NEXT-CONTROL (true) ;
RETURN;
false true
v v

Figure 101 — Flow graph segment <receive-with-sender>

Rec. ITU-T Z.164 (05/2012)




9.37.2 Flow graph segment <receive-without-sender >

The flow graph segment <receive-without-senders> in Figure 102 defines the execution of a

receive Operation without a £rom clause.

segment <receive-without-senders>

let { // local scope

var portRef := NULL;
if (portID == “any port”) ({
portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE, matchingSpec, NONE)
&& OWNER == Entity);
if (portRef == NULL) { // no 'matching' port found
Entity.NEXT-CONTROL (false) ;
RETURN;
}
}
else {
portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME); // Specified port

}

// MATCHING

if (PortRef.first() == NULL) ({
Entity.NEXT-CONTROL (false) ;
RETURN;

// Port queue is empty, no match

}

else
if ( MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec,
// The message in the queue matches
Entity.VALUE-STACK.push (portRef) ; // Saving port reference
Entity.STATUS := ACTIVE; // successful match, Entity status is changed
// from SNAPSHOT to ACTIVE

NONE) ) {

Entity.NEXT-CONTROL (true) ;

else // The first item in the queue does not match
Entity.NEXT-CONTROL (false) ;
1

RETURN;

}

} // End of scope

receive-without-sender

(portID, matchingSpec)
true

I // optional value
// assignemt

* (1)

<recelve-assignment>

// Removal of received item from port
v Entity.VALUE-STACK. top () .dequeue () ;
remove-from-port Entity.VALUE-STACK.pop () ;

Entity.NEXT-CONTROL (true) ;
RETURN;

false true

Figure 102 — Flow graph segment <receive-without-sender >

Rec. ITU-T Z.164 (05/2012)

125



9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <receive-assignment> in Figure 103 definesthe retrieval of information
from received messages and their assignment to variables.

segment <receive-assignments>

RETRIEVE-INFO(Entity.VALUE-STACK.top() .first(), assignmentPart, Entity);

Entity.NEXT-CONTROL (true) ;
RETURN;

receive-assignment
(assignmentPart)

Figure 103 — Flow graph segment <receive-assignment>

9.38 Repeat statement
The syntactical structure of the repeat Statement is:

repeat

Basically, the repeat Statement is a return Statement without return value, which also changes the
entity status to RepeaT. The status REpeAT Will force the re-evaluation of the a1t statement in which
the repeat statement has been executed. The flow graph segment <repeat-stmts> Shown in
Figure 104 defines the execution of the repeat Statement.

segment <repeat-stmts>

Entity.STATUS (REPEAT) ;
repeat-stmt = e RETURN;

<return-without-values>

v

Figure 104 — Flow graph segment <repeat-stmt>

126 Rec. ITU-T Z.164 (05/2012)



9.39 Reply operation

The syntactical structure of the rep1y operation is:

<portId>.reply (<replySpec>) [to <receiver-spec>]

The optional <receiver-spec> in the to clauserefers to the receivers of the reply. In case of a
one-to one communication, the <receiver-spec> addresses a single entity (including the SUT or
an entity within the SUT). In case of multicast or broadcast communication, the <receiver-spec>
specifiesa set or all test components or entities in the SUT connected via the specified port with the

calling component.

The flow graph segment <reply-op> in Figure 105 defines the execution of areply operation.

segment <reply-op>

y

<reply-with-one-receiver-op> OR
<reply-with-multiple-receivers-op> OR
<reply-without-receiver-op>

// A reply operation may adress one,
// multiple (multicast and broadcast)
// or no receiver entities.

v

Figure 105 — Flow graph segment <reply-op>

9.39.1 Flow graph segment <reply-with-one-r eceiver-op>

The flow graph segment <reply-with-one-receiver-op> in Figure 106 defines the execution of a
reply operation where the receiver is specified in form of an expression.

Rec. ITU-T Z.164 (05/2012)

127



segment <reply-with-one-receiver-op>

// The expression shall evaluate
. // to a component reference or an
<expression> |- // address value.

reply-with-one-receiver-op
(portId, replySpec)

let {
var receiver := Entity.VALUE-STACK.top();
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, receiver);
if (remotePort == NULL) {
***DYNAMIC-ERROR***; // Remote port cannot be found
if (remotePort == SYSTEM) (

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of reply
remotePort.enqueue (CONSTRUCT-ITEM(Entity, reply, replySpec));

} // end of scope of receiver and remotePort
Entity.VALUE-STACK.pop() ; // clean value stack

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 106 — Flow graph segment <reply-with-one-r eceiver-op>
9.39.1a Flow graph segment <reply-with-multiple-r eceiver s-op>

The flow graph segment <reply-with-multiple-receivers-op> in Figure 106a defines the
execution of a reply operation where multiple receivers are addressed. In case of broadcast
communication the keyword a1l component iS used as receiver specification. In case of multicast
communication a list of expressions is provided which shall evaluate to component references or
address values.

The component references or address values of the addressed entities (or the keyword ai1
component) are pushed onto the value stack of the calling entity. The number of component
references or address values stored in the value stack is considered to be known, i.e, it is the
parameter number of the basic flow graph node reply-with-multiple-receivers-op iN
Figure 106a. The number parameter is 1 in case of broadcast communication, i.e., the keyword a11
component iStop element in the value stack.

128 Rec. ITU-T Z.164 (05/2012)



segment <reply-with-multiple-receivers-op>

// Each expression shall evaluate
// to a component reference or an
// address value.

reply-with-multiple-receivers-op
(portId,

replySpec, number)

let { //
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; // variable for receiver component references or

// address values
var localPort, remotePort; [/ variables for port references
localPort := Entity.portId.COMP-PORT-NAME; // local port

if (Entity.VALUE-STACK.top() == all component) {
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL) ({
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of call

}

connection := localPort.CONNECTIONS-LIST.next (connection) ;

}

else {

for (i == 1; i <= number; i := i+1) {
receiver := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ; // clean value stack
remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
if (remotePort == NULL) ({

*%**DYNAMIC-ERROR**%*; // Remote port cannot be found
1
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system

// reception of the reply by the SUT is outside

// the scope of the operational semantics

else { // sending of call

}

}

} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

remotePort.enqueue (CONSTRUCT-ITEM(Entity, reply, replySpec));

remotePort.enqueue (CONSTRUCT-ITEM(Entity, reply, replySpec));

Figure 106a — Flow graph segment <reply-with-multiple-receiver s-op>

Rec. ITU-T Z.164 (05/2012)

129



9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <reply-without-receiver-op> in Figure 107 defines the execution of a
reply operation without to-clause.

segment <reply-
-receiver-op>

reply-without-receiver-op
(portId, replySpec)

let {
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE) ;

if (remotePort == NULL) ({
***DYNAMIC-ERROR***; // Remote port cannot be found
}

if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of reply
remotePort.enqueue (CONSTRUCT-ITEM(Entity, reply, replySpec));

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

v
Figure 107 — Flow graph segment <reply-without-r eceiver-op>

9.40 Return statement
The syntactical structure of the return statement is.
return [<expressions]

The optional <expression> describes a possible return value of a function. The execution of a
return statement means that the control leaves the actual scope unit, i.e., variables and timers only
known in this scope have to be deleted and the value stack has to be updated. A return Statement
has the effect of a stop component operation, if it isthe last statement in a behaviour description.

NOTE — Test cases and module control will always end with a stop component operation. This is due to
their flow graph representation (see clause 8.2). Only other test components may terminate with a return
statement.

130 Rec. ITU-T Z.164 (05/2012)



The flow graph segment <return-stmt> in Figure 108 defines the execution of a return

statement.

segment <retun-stmts>

'

<return-with-values
OR
<return-without-values>

// A return statement may or may
// not return a value

\4

Figure 108 — Flow graph segment <return-stmt>

Rec. ITU-T Z.164 (05/2012)

131



9.40.1 Flow graph segment <return-with-value>

The flow graph segment <return-with-values in Figure 109 defines the execution of a return
that returns a value specified in form of an expression.

segment <return-with-value>

// The expression shall evaluates

<expression> // to the return value
let {
v var return-value := Entity.VALUE-STACK.top() ;

return-with-value
............................. Entity.DEL-VAR-SCOPE() ;

Entity.DEL-TIMER-SCOPE() ;

Entity.DEL-PORT-SCOPE() ;

Entity.VALUE-STACK.clear-until (MARK) ;

Entity.VALUE-STACK.push (return-value) ;
} // end of scope of return-value

Entity.CONTROL-STACK.pop () ; // return address
// is lying on the control stack

if (Entity.CONTROL-STACK.top() == NULL) {
// return is stop or kill
Entity.VALUE-STACK.push(Entity) ;
Entity.NEXT-CONTROL (false) ;

true

}

RETURN;

if (Entity.VALUE-STACK.top() .KEEP-ALIVE == true)) {
Entity.NEXT-CONTROL (true) ;
}

else {

decision M. | Entity.NEXT-CONTROL (false) ;

RETURN;
true \ false
y
<stop-alive-components> <kill-component>

) 4 i
<
<

Figure 109 — Flow graph segment <return-with-value>

A

132 Rec. ITU-T Z.164 (05/2012)



9.40.2 Flow graph segment <return-without-value>

The flow graph segment <return-without-values in Figure 110 defines the execution of a
return Statement that returns no value.

segment <return-without-values>

// The expression shall evaluates

<expression> // to the return value
i let {
A var return-value := Entity.VALUE-STACK.top() ;

return-without-value )
............................. Entity.DEL-VAR-SCOPE() ;

Entity.DEL-TIMER-SCOPE() ;

EHtity.DEL—PORT—SCOPE();

Entity.VALUE—STACK.clear—until(MARK);
} // end of scope of return-value

Entity.CONTROL-STACK.pop() ; // return address
// is lying on the control stack

if (Entity.CONTROL-STACK.top() == NULL) {
// return is stop or kill
Entity.VALUE-STACK.push(Entity) ;
Entity.NEXT-CONTROL (false) ;

true

}

RETURN;

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true)) {
Entity.NEXT-CONTROL (true) ;

else {
Entity.NEXT-CONTROL (false) ;
........... ) B

RETURN;

decision

true false

y

<stop-alive-component> <kill-components>

Figure 110 — Flow graph segment <return-without-value>

Rec. ITU-T Z.164 (05/2012) 133



941 Running component operation
The syntactical structure of the running component operation is:
<component -expressions>.running

The running component operation checks whether a component is running or has either stopped or
terminated and been removed from the test system. The component to be checked is identified by a
component reference, which may be provided in form of a variable or value returning function, i.e.,
Is an expression. For simplicity, the keywords "all component” and "any component” are
considered to be special expressions.

The running component operation distinguishes between its usage in a Boolean guard of an a1t
statement or blocking ca11 operation and all other cases. If used in a Boolean guard, the result of
running COmMponent operation is based on the actual snapshot. In all other cases evaluates directly
the state information.

The result of the running component operation is pushed onto the value stack of the entity, which
called the operation.

The flow graph segment <running-component-op> in Figure 111 defines the execution of the
running COmMponent operation.

segment #
<running-component -op>

// The expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

<expression>

if (Entity.STATUS == ACTIVE) {
Entity.NEXT-CONTROL (true) ;

else { // Entity is in a snapshot
Enti ty.NEXT-CONTROL (false) ;

RETURN;

<running-comp-act> <running-comp-snap>

v

Figure 111 — Flow graph segment <running-component-op>

134 Rec. ITU-T Z.164 (05/2012)



9.41.1 Flow graph segment <running-comp-act>

The flow graph segment <running-comp-act> in Figure112 describes the execution of the

running COMponent operation outside a snapshot, i.e., the component isin the status acTIve.

<running-comp-acts>
var comp;
var decision;

if (Entity != MTC) {
***DYNAMIC-ERROR

A 4

if (Entity.VALUE-STACK.top() ==

segment
let { // local scope
// for storing a component reference

// Boolean

'all component') {

*%% // 1'3ll component' is not allowed

Entity.VALUE-STACK.push(true) ;

1
///:;;;:;;icompfact else
\\\\\\\5—_— ----- if (DONE.length() == 0) { // all components are running

}
else { // at least one component has been stopped
Entity.VALUE-STACK.push(false) ;

}
}
}

else

if (Entity.VALUE-STACK.top!()

if (Entity != MTC) {
*%**DYNAMIC-ERROR*** // 'any component' not allowed

'any component') {

}

comp :

}

else
comp := ALL-ENTITY-STATES.next (MTC) ;
while (comp != NULL and decision == false) {
if (comp.STATUS == ACTIVE) {
decision := true;

ALL-ENTITY-STATES.next (comp) ;

Entity.VALUE-STACK.push(decision) ;

}

else
if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top()))

// Specified component is alive
Entity.VALUE-STACK.push (true) ;

else

STACK.push (false) ;

Entity.VALUE-

Entity.NEXT-CONTROL (true)
RETURN;

7

{

Figure 112 — Flow graph seg

ment <running-comp-act>

Rec. ITU-T Z.164 (05/2012)

135



9.41.2 Flow graph segment <running-comp-snap>

The flow graph segment <running-comp-snap> in Figure 113 describes the execution of the
running component operation during the evaluation of a snapshot, i.e., the component is in the

Stalus SNAPSHOT.

segment
<running-comp-snap> let { // local scope
var comp; // for storing a component reference
var decision; // Boolean
if (Entity.VALUE-STACK.top() == 'all component') {
if (Entity != MTC) {
A 4 *%**DYNAMIC-ERROR*** // 'all component' is not allowed

}
///;:;;:;;j;ompfsnap else
""" if (Entity.SNAP-DONE.length() == 0) {
Entity.VALUE-STACK.push(true) ;
}
else { // at least one component has been stopped
Entity.VALUE-STACK.push(false) ;
}

}
}

else

if (Entity.VALUE-STACK.top() == 'any component') {
if (Entity != MTC) {
*%**DYNAMIC-ERROR*** // 'any component' not allowed
else
comp := Entity.SNAP-ALIVE.next (MTC) ;
while (comp != NULL and decision == false) {
if (comp.STATUS == ACTIVE) {
decision := true;
}
comp := ALL-ENTITY-STATES.next (comp) ;
}
Entity.VALUE-STACK.push(decision) ;
}
else
if (Entity.SNAP-ALIVE.member (Entity.VALUE-STACK.top())) {
// Specified component is alive
Entity.VALUE-STACK.push (true) ;
else

Entity.VALUE-STACK.push (false) ;

}
}
}
Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 113 — Flow graph segment <running-comp-snap>

9.42  Runningtimer operation
The syntactical structure of the running timer operationiis:

<timerIds>.running
The flow graph segment <running-timer-op> in Figure 114 defines the execution of the running
timer operation.

136 Rec. ITU-T Z.164 (05/2012)



The running timer operation distinguishes between its usage in a Boolean guard of an ait
statement or blocking ca11 operation and all other cases. If used in a Boolean guard, the result of
running timer operation is based on the actual snapshot, i.e., the SNAP-STATUS entry of the timer
binding, in al other cases, the STATUS entry of the timer binding determines the result of the
operation.

The any keyword is handled as a specia value of timer1d.

segment <running-timer-ops>

running-timer-op
(timerId)

let { // local scope for variables myStatus and myTimerList

var myStatus; // for storing status values of timers
var myTimerList; // for storing a list of timer Bindings
if (timerId == “any timer”) {
myTimerList := Entity.TIMER-STATE.first();
timerId := NULL;
if (Entity.STATUS) == SNAPSHOT) ({
while (myTimerList != NULL && timerId == NULL) {
timerId := myTimerList.random(SNAP-STATUS == RUNNING) ;
myTimerList := Entity.TIMER-STATE.next (myTimerList) ;
}{
else {
while (myTimerList != NULL && timerId == NULL) {
timerId := myTimerList.random(STATUS == RUNNING) ;
myTimerList := Entity.TIMER-STATE.next (myTimerList) ;
}{
}
if (timerId != NULL) ({
myStatus := Entity.timerId.STATUS;
if (Entity.STATUS == SNAPSHOT) ({
myStatus := Entity.timerId.SNAP-STATUS;

}

if (myStatus == RUNNING)
Entity.VALUE-STACK.push(true) ;

else {
Entity.VALUE-STACK.push(£false) ;
}

else
Entity.VALUE-STACK.push(false) ;

} // end local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 114 — Flow graph segment <running-timer-op>

Rec. ITU-T Z.164 (05/2012) 137



943  Sdf operation
The syntactical structure of the se1£ operationis:

self

The flow graph segment <se1f-op> in Figure 115 defines the execution of the se1£ operation.

segment <self-op>

Entity.VALUE-STACK.push(Entity) ;
self-op e Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 115 — Flow graph segment <self-op>

9.44  Send operation
The syntactical structure of the send operation is:

<portId>.send (<send-spec>) [to <receiver-specs]

The optional <receiver-spec> inthe to clause refersto the receivers of the message. In case of a
one-to one communication, the <receiver-spec> addresses a single entity (including the SUT or
an entity within the SUT). In case of multicast or broadcast communication, the <receiver-spec>
specifies a set or all test components or entities in the SUT connected via the specified port with the

calling component.
The flow graph segment <send-op> in Figure 116 defines the execution of a send operation.

segment <send-op>

A 4

<send-with-one-receiver-op> OR
<send-with-multiple-receivers-op> OR // A send operation may address one,
<send-without-receiver-op> // multiple (multicast and broadcast)
// or no receiver entities.

v

Figure 116 — Flow graph segment <send-op>

138 Rec. ITU-T Z.164 (05/2012)



9.44.1 Flow graph segment <send-with-one-receiver-op>

The flow graph segment <send-with-one-receiver-op> in Figure 117 defines the execution of a
send operation where the receiver is specified in form of an expression.

segment <send-with-one-receiver-op>

// The expression shall evaluate
// to a component reference or
// an address value.

<expressions

send-with-one-receiver-op
(portId, sendSpec)

let {
var receiver := Entity.VALUE-STACK.top();
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, receiver);
if (remotePort == NULL)
***DYNAMIC-ERROR***; // Remote port cannot be found
if (remotePort == SYSTEM) ({

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of message
remotePort.enqueue (CONSTRUCT-ITEM(Entity, send, sendSpec));

} // end of scope of receiver and remotePort
Entity.VALUE-STACK.pop() ; // clean value stack

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 117 — Flow graph segment <send-with-one-r eceiver-op>
9.44.1a Flow graph segment <send-with-multiple-receiver s-op>

The flow graph segment <send-with-multiple-receivers-op> in Figure117a defines the
execution of a send operation where multiple receivers are addressed. In case of broadcast
communication the keyword a1l component IS used as receiver specification. In case of multicast
communication a list of expressions is provided which shall evaluate to component references or
address values.

The component references or address values of the addressed entities (or the keyword aii
component) are pushed onto the value stack of the calling entity. The number of references stored
in the value stack is considered to be known, i.e., it is the parameter number Of the basic flow graph
node send-with-multiple-receivers-op iN Figure 117a. The number parameter is 1 in case of
broadcast communication, i.e., the keyword a11 component iStop element in the value stack.

Rec. ITU-T Z.164 (05/2012) 139



segment <send-with-multiple-receivers-op>

+mmmu)
// Each expression shall evaluate
"™ // to a component reference or an

<expression> // address value.

send-with-multiple-receivers-op
(portId,

sendSpec, number)

let { //
var i; // loop counter variable
var connection; // variable for connections in port states
var receiver; // variable for receiver component references
// or receiver address values
var localPort, remotePort; // variables for port references
localPort := Entity.portId.COMP-PORT-NAME; // local port

if (Entity.VALUE-STACK.top() == all component) {
connection := localPort.CONNECTIONS-LIST.next (connection) ;
while (connection != NULL)
remotePort := connection.REMOTE-PORT-NAME;
if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

}

else { // sending of call

}

connection := localPort.CONNECTIONS-LIST.next (connection) ;
}
}
else {
for (i == 1; i <= number; i := i+1l) {
receiver := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ; // clean value stack
remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
if (remotePort == NULL) {

***DYNAMIC-ERROR***; // Remote port cannot be found

}

if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of call

}

1
// end of local scope
} p

Entity.NEXT-CONTROL (true) ;
RETURN;

remotePort.enqueue (CONSTRUCT-ITEM (Entity, send, sendSpec));

remotePort.enqueue (CONSTRUCT-ITEM (Entity, send, sendSpec));

140

Figure 117a— Flow graph segment <send-with-multiple-receiver s-op>

Rec. ITU-T Z.164 (05/2012)




9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send-without-receiver-op> in Figure 118 defines the execution of a
send Operation without to-clause.

segment <send-without-receiver-ops>

send-without-receiver-op
(portId, sendSpec)

let {
var portRef := Entity.portId.COMP-PORT-NAME;
var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE) ;

if (remotePort == NULL) ({
***DYNAMIC-ERROR***; // Remote port cannot be found
}

if (remotePort == SYSTEM) ({
// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

else { // sending of message
remotePort.enqueue (CONSTRUCT-ITEM(Entity, send, sendSpec)) ;
}

} // end of scope of remotePort

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 118 — Flow graph segment <send-without-r eceiver-op>

945  Setverdict operation
The syntactical structure of the setverdict operation is:
setverdict (<verdicttype-expression> [ , <verdict-reasons>])

The <verdicttype-expression> parameter of the setverdict operation is an expression that
shall evaluate to a value of type verdicttype, I.€., none, pass, inconc O £ail. The expression is
evaluated before the setverdict operation is applied.

The second optiona parameter allows specifying areason for setting a verdict. This reason does not
contribute to the test behaviour and is therefore not considered in the operational semantics.

The flow graph segment <setverdict-op> in Figure 119 defines the execution of the setverdict
operation.

Rec. ITU-T Z.164 (05/2012) 141



segment <setverdict-op>

A // The expression shall evaluate to a value
// of type verdicttype.
<expression> // The result of the evaluation is pushed
// onto the VALUE-STACK of Entity

if ( Entity.E-VERDICT == fail or
A 4 Entity.VALUE-STACK.top() == fail) ({
, Entity.E-VERDICT := fail;
setverdict-op \ } -
else {
if ( Entity.VALUE-STACK.top() == inconc or
Entity.E-VERDICT == inconc) {
Entity.E-VERDICT := inconc;
}
else {
if ( Entity.VALUE-STACK.top() == pass or

Entity.E-VERDICT == pass)
Entity.E-VERDICT := pass;
}
}
}
Entity.VALUE-STACK.pop() // clear VALUE-STACK
Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 119 — Flow graph segment <setverdict-op>

946  Start component operation
The syntactical structure of the start component operation is:

<component -expressions>.start (<function-name>(<act-par-desc,>,.., <act-par-desc >))

The start component operation starts a component. Using a component reference identifies the
component to be started. The reference may be stored in a variable or be returned by afunction, i.e.,
it is an expression that evaluates to a component reference.

The <function-name> denotes to the name of the function that defines the behaviour of the new
component and <act-par-descr;>, ..., <act-par-descr,> provide the description of the actual

parameter values of <function-name>. The descriptions of the actual parameters are provided in
form of expressions that have to be evaluated before the call can be executed. The handling of
formal and actual value parametersis similar to their handling in function calls (see clause 9.24).

The flow graph segment <start-component-op> in Figure 120 defines the execution of the start
component operation. The start component operation is executed in four steps. In the first step a call
record is created. In the second step the actual parameter values are calculated. In the third step the
reference of the component to be started is retrieved, and, in the fourth step, control and call record
are given to the new component.

NOTE - The flow graph segment in Figure120 includes the handling of reference parameters
(<ref-var-par-calc>). Reference parameters are needed to explain reference parameters of test cases.
The operational semantics assumes that these parameters are handled by the MTC.

142 Rec. ITU-T Z.164 (05/2012)



segment <start-component-op>

Entity.VALUE-STACK.push (NEW-CALL-RECORD (function-name)) ;
Entity.NEXT-CONTROL (true) ;
RETURN;

construct-call-record
(function-name)

// For each pair (<f-par-Idi>, <act-parameter-descis>) the
// value of <act-parameter-desci is calculated and

// assigned to the corresponding field <f-par-Idis>
<value-par-calculation> // in the call record. The call record is assumed to be
// the top element in the value stack.

*

* // This flow graph segment is also used to explain
// the execute statemnt. Test cases are allowed to have
// reference parameters. The operational semantics
<ref-var-par-calc> // assumes that these parameters are owned (and updated)

// by the MTC.
A 4
; // The expression shall evaluate to a component reference.
<expression> | | // It refers to the component to be started
v

control-trans-to-component
(function-name)

let {
var toBeStarted := Entity.VALUE-STACK.top() ;
// toBeStarted is a local variable that stores the
// identifier of the component to be started

Entity.VALUE-STACK.pop () ;
// Removal of component reference. Afterwards the
// call record is on top of the value stack

toBeStarted. VALUE-STACK.push(Entity.VALUE-STACK.top() ;
// Call record is transferred to toBeStarted.

Entity.VALUE-STACK.pop () ;
// Removal of the call record from the value stack
// of the starting component (= Entity) .

toBeStarted.CONTROL-STACK. push (GET-FLOW-GRAPH (function-name)) ;
// Control stack of toBeStarted is set to
// the start node of its behaviour.

toBeStarted.STATUS := ACTIVE;
// Control is given to toBeStarted

if (DONE.member (toBeStarted)) { // Update DONE list
DONE.delete(toBeStarted) ;
}
} // end of scope for variable toBeStarted

Entity.NEXT-CONTROL (true) ;

Figure 120 — Flow graph segment <start-component-op>

9.47  Start port operation
The syntactical structure of the start port operation is:

<portIds>.start

Rec. ITU-T Z.164 (05/2012) 143



The flow graph segment <start-port-op> in Figure 121 defines the execution of the start port
operation.

segment <start-port-op>

let { // Begin of local scope

v var portRef := NULL

var portState := NULL;
start-port-op Ve
(portId) if (portId == “all port”) ({
portState := ALL-PORT-STATES.first();
while (portState != NULL) {
if (portState.OWNER == Entity) {
portState.VALUE-QUEUE. clear() ;
portState.STATUS := STARTED
portState :=

ALL-PORT-STATES.next (portState) ;

}

else
portRef := Entity.portId.COMP-PORT-NAME;
GET-PORT (Entity, portRef).clear();
GET-PORT (Entity, portRef) .STATUS := STARTED;

} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 121 — Flow graph segment <start-port-op>

948  Start timer operation
The syntactical structure of the start timer operation is:
<timerId>.start [(<float-expression>)]

The optional <float-expression> parameter of the timer start operation denotes the actual duration
of the timer. If it is not provided, the default duration will be used by the start operation. The
expression that shall evaluate to a value of type f£1cat. If provided, the expression shall be
evaluated before the start operation is applied. The result of the evaluation is pushed onto the
VALUE-STACK of Entity.

The flow graph segment <start-timer-op> in Figure 122 defines the execution of the start timer
operation.

segment <start-timer-op>

A

<start-timer-op-default>

OR // A timer can be started with
<start-timer-op-durations> // a default duration, or with
// a given duration.

v

Figure 122 — Flow graph segment <start-timer-op>

144 Rec. ITU-T Z.164 (05/2012)



9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <start-timer-op-defaults in Figure 123 defines the execution of the
start timer operation with the default value.

segment <start-timer-op-defaults>

start-timer-op-default
(timerId)

// The timer reference <timerId> is copied into the node
// attribute‘timerId’

if (Entity.timerId.DEF—DURATION == NONE) {
***DYNAMIC-ERROR* * * // Timer has no default duration

else {
Entity.TIMER-SET (timerId, ACT-DURATION, Entity.timerId.DEF-DURATION) ;
Entity.TIMER-SET (timerId, TIME-LEFT, Entity.timerId.DEF-DURATION) ;
Entity.TIMER-SET (timerId, STATUS, RUNNING) ;

}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 123 — Flow graph segment <start-timer-op-default>

Rec. ITU-T Z.164 (05/2012) 145



9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <start-timer-op-durations> in Figure 124 defines the execution of the
start timer operation with a provided duration.

segment <start-timer-op-durations

// The expression shall evaluate
// to a float. The result is pushed
// onto VALUE-STACK.

<expression>

A

start-timer-op-duration
(timerId)

// The timer reference <timerId> is copied into the node
// attribute ‘timerId’

Entity.TIMER-SET(timerId, ACT-DURATION, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, TIME-LEFT, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, STATUS, RUNNING) ;

Entity.VALUE-STACK.pop() ; // clean VALUE-STACK

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 124 — Flow graph segment <start-timer-op-dur ation>

9.49  Stop component operation
The syntactical structure of the stop component statement is.
<component -expressions.stop

The stop component operation stops the specified component. All test components will be stopped,
i.e., the test case terminates, if the MTC is stopped (e.g., mtc.stop) Or stops itself (eg.,
self.stop). The MTC may stop all parallel test components by using the a11 keyword, i.e, a11

component.stop.

Stopped components created with an alive clause in the create oOperation are not removed from
the test system. They can be restarted by using a start statement. Variables, ports, constants and
timers owned by such a component, i.e., declared and defined in the corresponding component type
definition, keep their status. A stop operation for a component created without an alive clauseis
semantically equivalent to axi11 operation. The component is removed from the test system.

146 Rec. ITU-T Z.164 (05/2012)



A component to be stopped is identified by a component reference provided as expression, e.g., a
value or value returning function. For smplicity, the keyword "a11 component” iSconsidered to be
specia values of <component-expressions. The operationsmtec and sel£ are evaluated according

to clauses 9.33 and 9.43.

The flow graph segment <stop-component-op> in Figure 125 defines the execution of the stop
component operation.

Rec. ITU-T Z.164 (05/2012) 147



segment <stop-component-op>

A 4

// The Expression shall evaluate
// to a component reference. The

<expressions>

..... // result is pushed onto VALUE-STACK

if (Entity.VALUE-STACK.top() == 'all component') {

decision

true

<stop-all-comp>

decision

true

<kill-mte>

false

Entity.VALUE-STACK.pop(); // clean value stack
if (Entity != MTC) {

***DYNAMIC-ERROR*** // '311' not allowed
}

........... else {
Entity.NEXT-CONTROL (true) ;
{
else

Entity.NEXT-CONTROL (false) ;

RETURN;

if (Entity.VALUE-STACK.top() == MTC) {
Entity.VALUE-STACK.pop(); // clean value stack
~~~~~~~~~~~ Entity.NEXT—CONTROL(true);

else {

false Entity.NEXT-CONTROL (false) ;

RETURN;

prepare-stop
false

true

if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top())) {
Entity.NEXT-CONTROL (true) ;
}

else {
if (DONE.member (Entity.VALUE-STACK.top())) {
// NULL operation, component already stopped
// or killed.
Entity.VALUE-STACK.pop(); // clean value stack
Entity.NEXT-CONTROL (false) ;

else {
// component id has not been allocated
DYNAMIC-ERROR

RETURN;

decision

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true)) {
Entity.NEXT-CONTROL (true); // Component is not
// removed from the

// test system

else {
Entity.NEXT-CONTROL (false); // Component is killed

RETURN;

true

A 4

<stop-alive-component>

<kill-component>

A

148

v

Figure 125 — Flow graph segment <stop-component-op>

Rec. ITU-T Z.164 (05/2012)

9.49.1 Void

9.49.2 Flow graph segment <stop-alive-component>

The <stop-alive-component> flow graph segment in Figure 126 describes the stopping of a
parallel test component, i.e., not the MTC or module control, which has been created with an alive
clause. The effect is that the test case verdict TC-VERDICT and the list of terminated test
components (DONE) are updated and that the component changes its status to BLOCKED. The
<stop-alive-component> flow graph assumes that the identifier of the component to be stopped is
on top of the value stack of the component that executes the segment.

segment
<stop-alive-component>

stop-alive-component

let { // local scope

var myEntity := Entity.VALUE-STACK.top();

var compVarScope := copy(myEntity.DATA-STATE.first());
var compTimerScope := copy(myEntity.TIMER-STATE.first());
var compPortScope := copy(myEntity.PORT-REF.first());

// for test continuation, if stop is executed by another component
if (Entity != myEntity()) {
Entity.VALUE-STACK.pop() ; // clean value stack
Entity.NEXT-CONTROL (true) ;

}

// Update test case verdict

if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT := fail;

}

else
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
TC-VERDICT := inconc;
}
else {
if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {

TC-VERDICT := pass;

}

// Update of DONE
DONE . append (myEntity) ; // Update of DONE

// Update of component state
myEntity.STATUS := BLOCKED;
myEntity.CONTROL-STACK := NULL;
myEntity.DEFAULT-LIST := NULL;
myEntity.VALUE-STACK := NULL;
myEntity.VALUE-STACK. push (MARK) ; // for component scope
myEntity.TIMER-GUARD.STATUS := IDLE;
myEntity.DATA-STATE := NULL
myEntity.DATA-STATE. add (compVarScope) ;
myEntity.TIMER-STATE := NULL;
myEntity.TIMER-STATE. add (compTimerScope) ;
myEntity.PORT-REF := NULL
myEntity.PORT-REF.add (compPortScope) ;
myEntity.SNAP-ALIVE := NULL;
myEntity.SNAP-DONE := NULL;
myEntity.SNAP-KILLED := NULL;

} // End of local scope
RETURN;

Figure 126 — Flow graph segment <stop-alive-component>

Rec. ITU-T Z.164 (05/2012) 149

9.49.3 Flow graph segment <stop-all-comp>

The <stop-all-comp> flow graph segment in Figure 127 describes the stopping of all parallel test
components of atest case.

segment
<stop-all-comp> let { // local scope
A 4 var myEntity := ALL-ENTITY-STATES.next (MTC) ;
prepare-stop e Entity.VALUE-STACK.push (MARK)
while (myEntity != NULL)
Entity.VALUE-STACK.push(myEntity) ;
myEntity := ALL-ENTITY-STATES.next (myEntity) ;
} // End of local scope
Entity.NEXT-CONTROL (true) ;
RETURN;
) 4 -
.
Ll
if (Entity.VALUE-STACK.top() .KEEP-ALIVE == true) {
Entity.NEXT-CONTROL (true) ;
}
else {
Entity.NEXT-CONTROL (false) ;
A 4 }
Stop-0r-Kill e RETURN;
true
A\ 4
<stop-alive-component> <kill-component>
i /
if (Entity.VALUE-STACK.top() == MARK) {
Stop—or—kill ... Entity.VALUE-STACK.pop() ; // clean stack
false Entity.NEXT-CONTROL (true); // end of loop
true else {
Entity.NEXT-CONTROL (false) ;
1
RETURN;

Figure 127 — Flow graph segment <stop-all-comp>

9.50 Stop execution statement
The syntactical structure of the stop execution statement is:

stop

The effect of the stop execution statement depends on the entity that executes the stop execution

Statement:

a) If stop is performed by the module control, the test campaign ends, i.e., all test components
and the module control disappear from the module state. Thisis semantically similar to the
execution of akil1 statement by the module control.

150 Rec. ITU-T Z.164 (05/2012)

b)

If the stop is executed by the MTC, the test case ends. All parallel test components and the
MTC stop and are removed from the test system. The global test case verdict is updated and
pushed onto the value stack of the module control. Control is given back to the module

control. Thisis semantically similar to the execution of aki11 statement by the MTC.

If the stop is executed by atest component, the global test case verdict TC-VERDICT and
the global DONE list are updated. If the test component is created with an alive clause. The
status of the component is set to BLOCKED and it may be started again. Otherwise the

component is removed from the test system.

The flow graph segment <stop-exec-stmt> in Figure 128 describes the execution of the stop
statement.

segment <stop-exec-stmt>

A

decision

true

false

<kill-controls>

decision

true

<kill-mtc>

if (Entity == CONTROL) {
Entity.NEXT-CONTROL (true) ;

else {
Entity .NEXT-CONTROL (false);

}

RETURN;

if (Entity == MTC)
Entity.NEXT-CONTROL (true) ;

else {
Entity .NEXT-CONTROL (false);

}

RETURN;

Entity.VALUE-STACK.push (Entity) ;
if (Entity.KEEP-ALIVE == true)
Entity.NEXT-CONTROL (true) ;

‘‘‘‘‘‘‘‘‘‘‘ else {
Entity .NEXT-CONTROL (false);

RETURN;

<kill-component>

<stop-alive-components>

@

.

9.51

!

Figure 128 — Flow graph segment <stop-exec-stmt>

Stop port operation

The syntactical structure of the stop port operation is:

<portId>.stop

The flow graph segment <stop-port-op> in Figure 129 defines the execution of the stop port
operation.

Rec. ITU-T Z.164 (05/2012)

151

segment <stop-port-op>
let { // Begin of local scope

A 4 var portRef := NULL
var portState := NULL;

stop-port-op VY
(portId) if (portId == “all port”) {
portState := ALL-PORT-STATES.first();
while (portState != NULL) {
if (portState.OWNER == Entity) {
portState.STATUS := STOPPED
!

portState :=
ALL-PORT-STATES.next (portState) ;

}

else
portRef := Entity.portId.COMP-PORT-NAME;

GET-PORT (Entity, portRef).STATUS := STOPPED;
} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 129 — Flow graph segment <stop-port-op>

9.52 Stop timer operation
The syntactical structure of the stop timer operation is:

<timerIds>.stop
The flow graph segment <stop-timer-op> in Figure 130 defines the execution of the stop timer
operation.
The a11 keyword is handled as a specia value of timer1d.

152 Rec. ITU-T Z.164 (05/2012)

segment <stop-timer-op>

A 4

stop-timer-op =).
(timerId)

// The timer reference <timerId> is copied
// into the node attribute ‘timerId’

if (timerId == ‘all timer’) {
Entity.TIMER-STATE.change.change (TIMER-SET(, STATUS, IDLE));
Entity.TIMER-STATE.change.change (TIMER-SET(, ACT-DURATION, 0.0);
Entity.TIMER-STATE.change.change (TIMER-SET(, TIME-LEFT, 0.0);
// Note, the first parameter of the TIMER-SET function is
// ommitted, because it is applied to all timers in the
// actual scope unit.

}

else
Entity.TIMER-SET(timerId, STATUS, IDLE) ;
Entity.TIMER-SET (timerId, ACT-DURATION, 0.0);
Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);

}

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 130 — Flow graph segment <stop-timer -op>

9.53 System operation
The syntactical structure of the system Operationis:

system

The flow graph segment <system-op> in Figure 131 defines the execution of the system operation.

segment <system-op>

Entity.VALUE-STACK.push(system) ;
System-op) Entity.NEXT-CONTROL (true) ;
RETURN;

\4

Figure 131 — Flow graph segment <system-op>

Rec. ITU-T Z.164 (05/2012)

153

9.53a Test casestop operation
The syntactical structure of the test case stop operation is:

testcase.stop (<informal-descriptions)

The behaviour of the test case stop operation is identical to the execution of a log statement
(clause 9.31) followed by a dynamic error (clause 9.17.3). Flow graph segment <test-case-stop-
op> in Figure 131a defines the execution of the test case stop operation.

segment <test-case-stop-op>

A

<log-stmt>

A

<dynamic-error>

Figure 131a— Flow graph segment <test-case-stop-op>

9.54 Timer declaration
The syntactical structure of atimer declarationis:
timer <timerIds> [:= <float-expressions>]

The effect of atimer declaration is the creation of a new timer binding. The declaration of a default
duration is optional. The default value is considered to be an expression that evaluates to a value of
thetype float.

The flow graph segment <timer-declaration> in Figure 132 defines the execution of a timer
declaration.

segment <timer-declarations> $
<timer-decl-defaults>
OR // A timer may be declared with
<timer-decl-no-defs> // or without a default duration

i

Figure 132 — Flow graph segment <timer-declar ation>

154 Rec. ITU-T Z.164 (05/2012)

9.54.1 Flow graph segment <timer-decl-default>

The flow graph segment <timer-decl-default> in Figure 133 defines the execution of a timer
declaration where adefault duration in form of an expression is provided.

segment <timer-decl-defaults>

v

// The expression shall evaluate
// to a value of type float

<expression>

Entity.INIT-TIMER(timerId, Entity.VALUE-STACK.top());

Entity.VALUE-STACK.pop() ; // clean VALUE-STACK
timer-decl-default s
(timerId) Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 133 — Flow graph segment <timer -decl-default>
9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <timer-decl-no-defs> in Figure 134 defines the execution of a timer
declaration where no default duration is provided, i.e., the default duration of the timer is undefined.

segment <timer-decl-no-def>

Entity.INIT-TIMER (timerId, NONE) ;

timer-decl-no-def Entity.NEXT-CONTROL (true) ;
(timerId) RETURN;

v

Figure 134 — Flow graph segment <timer-decl-no-def>

Rec. ITU-T Z.164 (05/2012) 155

9.55 Timeout timer operation
The syntactical structure of the timeout timer operation is:

<timerIds>.timeout

The flow graph segment <timeout-timer-op> in Figure 135 defines the execution of the timeout
timer operation.

segment <timeout-timer-ops>

A 4
Limeout-timer-0p Yummmmmm, :
(timerId) H
// The timer reference <timerId> is copied
// into the node attribute ‘timerId’
let { // local scope for variable myTimerList
var myTimerList; // to store a list of timer Bindings
if (timerId == ‘any timer’) {
myTimerList := Entity.TIMER-STATE.first();
timerId := NULL;
while (myTimerList != NULL && timerId == NULL)
timerId := myTimerList.random(SNAP-STATUS == TIMEOUT) ;
myTimerList := Entity.TIMER-STATE.next (myTimerList) ;
{
}
if (timerId != NULL && Entity.timerId.SNAP-STATUS == TIMEOUT) {
Entity.TIMER-SET (timerId, STATUS, IDLE) ;
Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
Entity.STATUS := ACTIVE;
Entity.NEXT-CONTROL (true) ;
true false }
else
Entity.NEXT-CONTROL (false) ;
} // end of local scope
RETURN;
Jv v

NOTE 1-A timeout operation isembedded in an alt statement. Its evaluation is based on the actual snapshot, i.e., the decision
is based on the SNAP-STATUS entry in the timer binding. If the timeout operation is successful, i.e., SNAP-STATUS == TIMEOUT,
thetimer is set into an IDLE state and the component state changes from SNAPSHOT to ACTIVE.

NOTE 2 —When the timeout evaluatesto true or false, either execution continues with the statement that follows the
timeout operation (true branch), or the next aternative in the alt statement hasto be checked (£alse branch).

NOTE 3 - The any keyword istreated like as special value of timerld.

Figure 135 — Flow graph segment <timeout-timer-op>

9.56 Unmap operation
The syntactical structure of the unmap operation is:
unmap (<component expressions:<portIdls> [,system:<portId2>])

The identifiers <port1di1> and <port1d2> are considered to be port identifiers of the corresponding
test component and test system interface. The components to which the <portld1> belongs is
referenced by means of the component reference <component -expressions. The reference may be
stored in variables or is returned by a function, i.e, it is an expression, which evauates to a
component reference. The value stack is used for storing the component reference.

156 Rec. ITU-T Z.164 (05/2012)

The unmap Operation can be used with one parameter pair and with two parameters pairs. The usage
of the unmap Operation with one parameter pair may unmap port mappings for one component or, if
executed by the MTC for al components. The usage of the unmap Operation with two parameter
pairs alows to unmap one specific mapped port.

The operational semantics does not model the ports in the abstract test system interface. Therefore,
only the parameter pair that identifies the component (or components, if the all component keyword
Is used) and the corresponding port (or ports, if the all port keyword is used) has to be considered
here.

In the flow graph segment three cases are distinguished:

1) themtc unmaps all mapped ports of al components,

2) all mapped ports of one component are unmapped; and
3) one port of one component is unmapped.

The execution of the unmap operation is defined by the flow graph segment <unmap-op> shown in
Figure 136.

segment
<unmap -op> // The Expression shall evaluate
A // to a component reference. The
D // result is pushed onto VALUE-STACK
<expressions>
if (Entity.VALUE-STACK.top() == “all component”) {
if ((Entity != MTC) OR
(Entity == MTC && portId != “all port”)) {
** *DYNAMIC-ERROR***
A }
unmap-decision else {)
(portId) e Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
true }
false
else
Entity.VALUE-STACK.push (portId) ;
<unmap-alls> Entity.NEXT-CONTROL (false) ;
}
RETURN;
A
if (Entity.VALUE-STACK.top() != “all port”) {
decision = e Entity.VALUE-STACK.pop () ;
Entity.NEXT-CONTROL (true) ;
true
false else
Entity.NEXT-CONTROL (false) ;
}
<unmap - comp > RETURN;
A
<unmap-ports>
N
>

v

Figure 136 — Flow graph segment <unmap-op>

Rec. ITU-T Z.164 (05/2012) 157

9.56.1 Flow graph segment <unmap-all>
The flow segment <unmap-a11> defines the unmapping of al components at all mapped ports.

segment <unmap-all>

A 4

unmap-all -

let { // local scope

var port := ALL-PORT-STATES.first();

var connection;

while (port != NULL) ({
= port.CONNECTIONS.first();

connection :=
while (connection != NULL) {
if (connection.REMOTE-ENTITY == system)

port.CONNECTIONS.delete (connection) ;

connection := port.CONNECTIONS.first();

else
connection := NULL; // connected port
}
1

port := ALL-PORT-STATES.next (port)

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 136a — Flow graph segment <unmap-all>

158 Rec. ITU-T Z.164 (05/2012)

9.56.2 Flow graph segment <unmap-comp>

The flow segment <unmap-comp> defines the unmapping of all mapped ports of a specified

component.

segment <unmap-comp>

unmap - comp

let { // local scope
Entity.VALUE-STACK. top() ;

1
// clear value stack

Entity.VALUE-STACK.pop() ;
} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

var comp :=
var connection;
var port := ALL-PORT-STATES.first();
while (port != NULL) ({
if (port.OWNER == comp) ({ // port of comp
connection := port.CONNECTIONS.first();
if (connection.REMOTE-ENTITY == system) { // mapped port of comp
port.CONNECTIONS.delete (connection) ;
}
}
port := ALL-PORT-STATES.next (port) ;

Figure 136b — Flow graph segment <unmap-comp>

Rec. ITU-T Z.164 (05/2012)

159

9.56.3 Flow graph segment <unmap-port>
The flow segment <unmap-port > defines the unmap oOperation for a specific mapped port.

segment <unmap-ports>

\ 4

unmap-port

let { // local scope
var portId;
var comp;
var port;
var connection;

portId := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

comp := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop () ;

port := GET-PORT(comp, portId);

connection := port.CONNECTIONS.first() ;
if (connection.REMOTE-ENTITY != SYSTEM) {

** *DYNAMIC-ERROR*** // port is not a mapped port
}

else if (connection != NULL) {
port.CONNECTIONS.delete (connection) ;

else {) // do nothing, port is neither connected nor mapped
} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 136¢ — Flow graph segment <unmap-port>

9.57 Variabledeclaration
The syntactical structure of a variable declaration is:

var <varType> <varId> [:= <varType-expressions>]

The initialization of a variable by providing an initial value (in form of an expression) is optional.
The initia value is considered to be an expression that evaluates to a value of the type of the
variable.

160 Rec. ITU-T Z.164 (05/2012)

The flow graph segment <variable-declarations in Figure 137 defines the execution of the
declaration of avariable.

segment <variable-declarations> v

<var-declaration-inits>

OR // A variable may be declared with
<var-declaration-undef> // or without initial value

Figure 137 — Flow graph segment <variable-declar ation>
9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var-declaration-inits in Figure 138 defines the execution of a
variable declaration where an initial value in form of an expression is provided.

segment <var-declaration-inits>

v

// The expression shall evaluate
// to a value of the type of the
// variable that is declared.

<expressions>

Entity.INIT-VAR(varld, Entity.VALUE-STACK.top());

Entity.VALUE-STACK.pop () ; // clean VALUE-STACK;
var-declaration-init e
(varId) Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 138 — Flow graph segment <var-declar ation-init>

Rec. ITU-T Z.164 (05/2012) 161

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in Figure 139 defines the execution of a variable
declaration where no initial value is provided, i.e., the value of the variable is undefined.

segment <var-declaration-undef>

Entity.INIT-VAR(varId, NONE) ;

var-declaration-undef Entity.NEXT-CONTROL (true) ;
(varid) RETURN;

v
Figure 139 — Flow graph segment < var-declar ation-undef >

9.58 While statement
The syntactical structure of thewhile Statement is:

while (<boolean-expressions) <statement-block>

The execution of awhile statement is defined by the flow graph segment <while-stmt> Shown in
Figure 140.

segment <while-stmt>

// The expression shall evaluate to
<expression> // a Boolean value.

if (Entity.VALUE-STACK.top() == true)

............. {

decision
Entity.NEXT-CONTROL (true) ;
true else {

Entity.NEXT-CONTROL (true) ;
}

Entity.VALUE-STACK.pop () ;
RETURN;

<statement-block>

\4

Figure 140 — Flow graph segment <while-stmt>

162 Rec. ITU-T Z.164 (05/2012)

10 Lists of operational semantic components

10.1 Functionsand states

Name Description Clause
ACT-DURATION Duration with which an active timer has been started 8324
add List operation: adds an item asfirst element to alist 8.3.1al
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY- Component states in modul e state 831
STATES
ALL-PORT- Port states in module state 831
STATES
append List operation: appends an item aslast element to alist 8.3.1al
APPLY - Application of operatorslike +, —or / 8.6.2
OPERATOR
change List operation: changes all elements of alist 8.3.1al
clear Stack operation "clear": clears a stack 8321
clear Queue operation "clear": removes all elements from a queue 8.3.3.2
clear-until Stack operation "clear-until”: pops items until a specificitemis 8321

top element in the stack

CONNECTIONS List of connections of a port 8.3.3
LIST
CONSTRUCT- Constructs an item to be sent 8.4.4
ITEM
CONTINUE- The actual component continues its execution 8.6.2
COMPONENT
CONTROL- Stack of flow graph nodes denoting the actual control state of an 8.3.2
STACK entity
DATA-STATE Data state in an entity state 8.3.2
DEF-DURATION Default Duration of atimer 8.3.24
DEFAULT-LIST List of active defaultsin an entity state 8.3.2
DEFAULT- Points to the actual default during the default evaluation. 8.3.2
POINTER
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 834
DEL-TIMER- Deletes atimer scope 8.3.25
SCOPE
DEL-VAR-SCOPE | Deletes avariable scope 8.3.2.3
delete List operation: deletes an item from alist 8.3.1al
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of modul e state) 831
E-VERDICT Local test verdict of atest component 8.3.2
engueue Queue operation: puts an item as last element into a queue 8.332
first Queue operation "first": returnsthe first element of a queue 8.3.3.2

Rec. ITU-T Z.164 (05/2012)

163

Name Description Clause
first List operation: returns the first element of alist 831lal
GET-FLOW- Retrieves the start node of aflow graph 8.2.7
GRAPH
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE- Retrieves the reference of aremote port 8.3.3.2
PORT
GET-TIMER-LOC | Retrieveslocation of atimer 8325
GET-UNIQUE-ID Returns a new unique identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of avariable 8.3.23
INIT-CALL- Initializes variables for parameters for procedure-based 85.1
RECORD communication in the actual scope unit of the test component
INIT-FLOW- Initializes the flow graph handling 8.6.2
GRAPHS
INIT-TIMER Creates a new timer binding 8.3.25
INIT-TIMER-LOC | Creates a new timer binding with an existing location 8.3.25
INIT-TIMER- Initializes a new timer scope 8.3.25
SCOPE
INIT-VAR Creates a new variable binding 8.3.23
INIT-VAR-LOC Creates a new variable binding with an existing location 8.3.2.3
INIT-VAR-SCOPE | Initializes a new variable scope 8.3.23
length List operation: returns the length of alist 8.3.1al
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if areceived message, call, reply or exception matches 845

with areceiving operation
member List operation: checksif an itemiselement of alist 8.3.1al
MTC Reference to MTC in module state 8.3.1
NEW-CALL- Creates a call record for afunction call 85.1
RECORD
NEW-ENTITY Creates a new entity state 8321
NEW-PORT Creates a new port 8.3.3.2
NEXT Retrieves the successor node of a given node in aflow graph 8.1.6
next List operation: returns next element in alist 8.3.1al
NEXT-CONTROL | Popsthetop flow graph node from the control stack and pushes 8321

the next flow graph node onto the control stack.
OWNER Owner of aport 8.3.3
pop Stack operation "pop": pops an item from a stack 8321
PORT-NAME Name of a port 8.3.3
push Stack operation "push": pushes an item onto a stack 8321
random List operation: returns randomly an element of alist 8.3.1al
REMOTE-ENTITY | Remote entity in aconnection in aport state 8331
REMOTE-PORT- Name of a port in a connection in a port state 8331
NAME

164 Rec. ITU-T Z.164 (05/2012)

Name Description Clause

RETRIEVE-INFO Retrieves information from a received message, call, reply or 8.4.6
exception

RETURN Returns the control to the module evauation procedure 8.6.2

SNAP-DONE List of terminated test components at the time when a snapshot 8.3.2
istaken

SNAP-PORTS Provides the snapshot functionality, i.e., updates the SNAP- 8.3.3.2
VALUE

SNAP-STATUS Snapshot status of atimer 8324

SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE 8.3.25
and SNAP-STATUS

SNAP-VALUE Snapshot value of atimer 8.3.24

SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3

STATUS Status (ACTIVE, BREAK, SNAPSHOT, REPEAT or 8.3.2
BLOCKED) of module control or atest component

STATUS Status (IDLE, RUNNING or TIMEOUT) of atimer 8324

STATUS Status (STARTED, HAL TED or STOPPED) of a port 8.3.3

TC-VERDICT Test case verdict in module state 831

TIME-LEFT Time arunning timer has |eft to run before it times out 8.3.24

TIMER-GUARD Timer that guards execute statements and call operations 8.3.2

TIMER-NAME Name of atimer 8.3.24

TIMER-SET Setting values of atimer 8.3.25

TIMER-STATE Timer state in an entity state 832

top Stack operation "top": returns the top item from a stack 8321

UPDATE- Updates timers and variables with the same location in different 8.34

REMOTE- entities to the same value

REFERENCES

VALUE Vaue of avariable. 8.3.2.2

VALUE-QUEUE Port queue 8.3.3

VALUE-STACK Stack of values for the storage of results of expressions, 8.3.2
operands, operations and functions

VAR-NAME Name of avariable 8.3.2.2

VAR-SET Setting the value of avariable 8.3.2.3

***DYNAMIC- Describes the occurrence of adynamic error 8.6.2

ERROR***

<identifier> Unique identifier of atest component 8.3.2

<location> Supports scope units, reference and timer parameters. Represents | 8.3.2.2,8.3.2.4
astorage location for timers and variables

Rec. ITU-T Z.164 (05/2012) 165

10.2 Special keywords

Keyword Description Clause
ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
BREAK STATUS of an entity state 8.3.2
HALTED STATUS of aport 8.3.3
HALT- Used as marker in a port queue 8.3.3,9.28a
MARKER
IDLE STATUS of atimer state 8.3.24
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3,83.25,83.3.2
NULL Symbolic value for pointer and pointer-liketypestoindicate | 8.3.1a.1,8.3.2.1,8.3.3,

that nothing is addressed 8.3.3.2,86.1.1
REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of atimer state 8.3.24
SNAPSHOT, STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3
STOPPED STATUS of aport 8.3.3
TIMEOUT STATUS of atimer state 8324

10.3 Flow graphsof TTCN-3 behaviour descriptions

Reference
Figure Clause

Module control 18 8.2.2

Test cases 19 8.2.3

Functions 20 8.24

Altsteps 21 8.25

Component type definitions 22 8.2.6

104 Flow graph segments
Reference
Identifier Related TTCN-3 construct
Figure Clause

<action-stmt> action Statement 36 9.1
<activate-stmt> activate Statement 37 9.2
<alive-component-op> alive component operation 37a 9.2a
<alive-comp-act> alive component operation 37b 9.2al
<alive-comp-snap> alive component operation 37c 9.2a.2
<alt-stmt> alt statement 38 9.3
<altstep-call> invocation of an altstep 44 94

166 Rec. ITU-T Z.164 (05/2012)

Reference
Identifier Related TTCN-3 construct

Figure Clause
<altstep-call-branch> alt statement 41 9.3.3
<assignment-stmt> assignment 45 95
<b-call-with-duration> call operation 52 9.6.4
<b-call-without-duration> | call operation 51 9.6.3
<blocking-call-op> call operation 47 9.6
<break-altstep-stmt> break statement (leaving an altstep) 45a 9.5a
<call-op> call operation 46 9.6
<call-reception-part> call operation 53 9.6.5
<catch-op> catch operation 55 9.7
<catch-timeout- call operation 54 9.6.6
exception>
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 981
<check-without-sender> | check operation 58 9.8.2
<checkstate-port-op> checkstate operation 58a 9.8a
<check-port-status> checkstate operation 58b 9.8al
<check-port-connection> | checkstate operation 58c 9.8a.2
<clear-port-op> clear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 911
<create-op> create operation 62 9.12
<deactivate-all-defaults> | deactivate Statement 63c 9.13.2
<deactivate-one-default> | deactivate Statement 63b 9.131
<deactivate-stmt> deactivate Statement 63a 9.13
<default-evocation> alt statement 43 9.35
<disconnect-op> disconnect operation 64 9.14
<disconnect-one-par- disconnect operation 64a 9.14.1
pair>
<disconnect-all> disconnect operation 64b 9.14.2
<disconnect-comp> disconnect operation 64c 9.14.3
<disconnect-port> disconnect operation 64d 9.14.4
<disconnect-two-par- disconnect operation 64e 9.14.5
pairs>
<do-while-stmt> do-while Statement 65 9.15
<done-op> done cOmponent operation 66 9.16
<dynamic-error> execute Statement 69a 9.17.3
<else-branch> alt statement 42 9.34
<execute-stmt> execute Statement 67 9.17
<execute-timeout> execute Statement 69 9.17.2

Rec. ITU-T Z.164 (05/2012)

167

Reference

Identifier Related TTCN-3 construct

Figure Clause
<execute-without- execute Statement 68 9.17.1
timeout>
<expression> expression 70 9.18
<finalize-component- used in component type definitions 75 9.19
init>
<for-stmt> for statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of afunction 80 9.24
<getcall-op> getcall operation 86 9.25
<getreply-op> getreply Operation 87 9.26
<getverdict-op> getverdict operation 88 9.27
<goto-stmt> goto Statement 89 9.28
<halt-port-op> halt portoperation 89%a 9.28a
<if-else-stmt> if-else Statement 90 9.29
<init-component-scope> | used in component type definitions 76 9.20
<init-scope-with-runs- used in function and altstep definitions 76a 9.20a
on>
<init-scope-without-runs- | used in function and altstep definitions 76b 9.20b
on>
<kill-all-comp> kill component operation 90d 9.29a.3
<kill-component> kill component operation 90c 9.29a.2
<kill-component-op> kill component operation 90a 9.29a
<kill-control> kill execution statement 90f 9.29b.1
<kill-exec-stmt> kill execution statement 90e 9.29b
<kill-mtc> kill component operation 90b 9.2%.1
<killed-op> killed component operation 90g 9.29c
<label-stmt> label statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> log Statement 92 9.31
<map-op> map Operation 93 9.32
<mtc-op> mtc operation 94 9.33
<nb-call-without- call operation 50 9.6.2
receiver>
<nb-call-with-one- call operation 49 9.6.1
receiver>
<nb-call-with-multiple- call operation 49a 9.6.1a
receivers>
<non-blocking-call-op> call operation 43 9.6
<operator-appl> expression 74 9.184
<parameter-handling> handling of parameters of functions, altsteps and test 77 921

cases

168 Rec. ITU-T Z.164 (05/2012)

Reference
Identifier Related TTCN-3 construct

Figure Clause
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of afunction (call of apre-defined or external 85 9.245

function)

<raise-op> raise operation 96 9.35
<raise-with-one-receiver- | raise operation 97 9.35.1
op>
<raise-with-multiple- raise operation 97a 9.35.1a
receivers-op>
<raise-without-receiver- raise operation 98 9.35.2
op>
<read-timer-op> read timer operation 99 9.36
<receive-assignment> receive operation 103 9.37.3
<receive-op> receive operation 100 9.37
<receive-with-sender> receive operation 101 9.37.1
<receive-without-sender> | receive operation 102 9.37.2
<receiving-branch> alt statement 40 9.3.2
<ref-par-port-calc> call of afunction (handling of port parameters) 83a 9.243.a
<ref-par-timer-calc> call of afunction (handling of timer parameters) 83 9.24.3
<ref-par-var-calc> call of afunction (handling of reference parameters) 82 9.24.2
<repeat-stmt> repeat Statement 104 9.38
<reply-op> reply operation 105 9.39
<reply-with-one-receiver- | reply operation 106 9.39.1
op>
<reply-with-multiple- reply operation 106a 9.39.1a
receivers-op>
<reply-without-receiver- | reply operation 107 9.39.2
op>
<return-stmt> return Statement 108 9.40
<return-with-value> return Statement 109 9.40.1
<return-without-value> return Statement 110 9.40.2
<running-component-op> | component running operation 111 941
<running-comp-act> component running oOperation 112 9411
<running-comp-snap> component running operation 113 9.41.2
<running-timer-op> timer running operation 114 9.42
<self-op> self operation 115 9.43
<send-op> send operation 116 9.44
<send-with-one-receiver- | send operation 117 9.44.1
op>
<send-with-multiple- send operation 117a 9.44.1a
receivers-op>

Rec. ITU-T Z.164 (05/2012) 169

Reference

Identifier Related TTCN-3 construct

Figure Clause
<send-without-receiver- send operation 118 9.44.2
op>
<setverdict-op> setverdict operation 119 9.45
<start-component-op> start component operation 120 9.46
<start-port-op> start port operation 121 9.47
<start-timer-op> start timer operation 122 9.48
<start-timer-op-default> | start timer operation 123 9.48.1
<start-timer-op-duration> | start timer operation 124 9.48.2
<statement-block> block of statementsin compound statements 78 9.22
<stop-component-op> stop component operation 125 9.49
<stop-alive-component> | stop component operation 126 9.49.2
<stop-all-comp> stop component operation (all component.stop) 127 9.49.3
<stop-exec-stmt> stop execution statement 128 9.50
<stop-port-op> stop port operation 129 9.51
<stop-timer-op> stop timer operation 130 9.52
<gystem-op> system operation 131 9.53
<take-snapshot> alt statement 39 931
<test-case-stop-op> test case stop operation 131a 9.53a
<timer-declaration> timer declaration 132 9.4
<timer-decl-default> timer declaration 133 9.54.1
<timer-decl-no-def> timer declaration 134 9.54.2
<timeout-timer-op> timeout operation 135 9.55
<unmap-op> unmap operation 136 9.56
<unmap-all> unmap operation 136a 9.56.1
<unmap-comp> unmap oOperation 136b 9.56.2
<unmap-port> unmap Operation 136¢ 9.56.3
<user-def-func-call> call of afunction (call of a user-defined function) 84 9.24.4
<value-par-calculation> call of afunction (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 138 9.57.1
<var-declaration-undef> | variable declaration 139 9.57.2
<var-value> expression 72 9.18.2
<variable-declaration> variable declaration 137 9.57
<while-stmt> while Statement 140 9.58

170 Rec. ITU-T Z.164 (05/2012)

SeriesA
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommuni cation services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommunication management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Glaobal information infrastructure, Internet protocol aspects and next-generation networks

L anguages and general softwar e aspectsfor telecommunication systems

Printed in Switzerland
Geneva, 2012

	ITU-T Rec. Z.164 (05/2012) –
Testing and Test Control Notation version 3: TTCN-3 operational semantics
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of the present document
	6 Restrictions
	7 Replacement of short forms
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations
	7.7 Replacement of select-case statements
	7.8 Replacement of simple break statements
	7.9 Replacement of continue statements
	7.10 Adding default parameters to disconnect and unmap operations without parameters
	7.11 Adding default values of parameters

	8 Flow graph semantics of TTCN-3
	8.1 Flow graphs
	8.2 Flow graph representation of TTCN-3 behaviour
	8.3 State definitions for TTCN-3 modules
	8.4 Messages, procedure calls, replies and exceptions
	8.5 Call records for functions, altsteps and test cases
	8.6 The evaluation procedure for a TTCN-3 module

	9 Flow graph segments for TTCN-3 constructs
	9.1 Action statement
	9.2 Activate statement
	9.3 Alt statement
	9.4 Altstep call
	9.5 Assignment statement
	9.6 Call operation
	9.7 Catch operation
	9.8 Check operation
	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.14 Disconnect operation
	9.15 Do-while statement
	9.16 Done component operation
	9.17 Execute statement
	9.18 Expression
	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.29 If-else statement
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.36 Read timer operation
	9.37 Receive operation
	9.38 Repeat statement
	9.39 Reply operation
	9.40 Return statement
	9.41 Running component operation
	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.49 Stop component operation
	9.50 Stop execution statement
	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.54 Timer declaration
	9.55 Timeout timer operation
	9.56 Unmap operation
	9.57 Variable declaration
	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

