ITU-T

1-0-1

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.709/Y.1331

Amendment 4 (01/2015)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipment – General

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects – Transport

Interfaces for the optical transport network (OTN) Amendment 4

Recommendation ITU-T G.709/Y.1331 (2012) – Amendment 4

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
General	G.700-G.709
Coding of voice and audio signals	G.710-G.729
Principal characteristics of primary multiplex equipment	G.730–G.739
Principal characteristics of second order multiplex equipment	G.740–G.749
Principal characteristics of higher order multiplex equipment	G.750–G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760–G.769
Operations, administration and maintenance features of transmission equipment	G.770–G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780–G.789
Other terminal equipment	G.790–G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000–G.8999
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.709/Y.1331

Interfaces for the optical transport network (OTN)

Amendment 4

Summary

Amendment 4 to Recommendation ITU-T G.709/Y.1331 (2012) contains extensions related to the:

- addition of the OTSn OTN synchronization messaging channel (OSMC) overhead;
- addition of the OTUk OTN synchronization messaging channel (OSMC) overhead;
- modification of the OCh overhead transport over OTM-1 multi-vendor IaDI specification to align with the specifications in Recommendation ITU-T G.7712;
- addition of optional FEC processing in the FC-1600 client signal.

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T G.709/Y.1331	2001-02-09	15	11.1002/1000/5350
1.1	ITU-T G.709/Y.1331 (2001) Amd. 1	2001-11-29	15	11.1002/1000/5629
2.0	ITU-T G.709/Y.1331	2003-03-16	15	11.1002/1000/6265
2.1	ITU-T G.709/Y.1331 (2003) Amd. 1	2003-12-14	15	11.1002/1000/7060
2.2	ITU-T G.709/Y.1331 (2003) Cor. 1	2006-12-14	15	11.1002/1000/8982
2.3	ITU-T G.709/Y.1331 (2003) Amd. 2	2007-11-22	15	11.1002/1000/9155
2.4	ITU-T G.709/Y.1331 (2003) Cor.2	2009-01-13	15	11.1002/1000/9646
2.5	ITU-T G.709/Y.1331 (2003) Amd. 3	2009-04-22	15	<u>11.1002/1000/9671</u>
3.0	ITU-T G.709/Y.1331	2009-12-22	15	11.1002/1000/10398
3.1	ITU-T G.709/Y.1331 (2009) Cor. 1	2010-07-29	15	11.1002/1000/10875
3.2	ITU-T G.709/Y.1331 (2009) Amd. 1	2010-07-29	15	11.1002/1000/10874
3.3	ITU-T G.709/Y.1331 (2009) Amd. 2	2011-04-13	15	11.1002/1000/11115
4.0	ITU-T G.709/Y.1331	2012-02-13	15	11.1002/1000/11485
4.1	ITU-T G.709/Y.1331 (2012) Cor. 1	2012-10-29	15	11.1002/1000/11776
4.2	ITU-T G.709/Y.1331 (2012) Amd. 1	2012-10-29	15	11.1002/1000/11774
4.3	ITU-T G.709/Y.1331 (2012) Amd. 2	2013-10-22	15	11.1002/1000/11982
4.4	ITU-T G.709/Y.1331 (2012) Amd. 3	2014-12-05	15	11.1002/1000/12363
4.5	ITU-T G.709/Y.1331 (2012) Cor. 2	2015-01-13	15	11.1002/1000/12365
4.6	ITU-T G.709/Y.1331 (2012) Amd. 4	2015-01-13	15	11.1002/1000/12364

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2015

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

			Page
1)	Introd	uction	1
2)	Additi	ons	1
	2.1)	Clause 7	1
	2.2)	Clause 15, Figure 15-1	1
	2.3)	Clause 15, Figure 15-2	1
	2.4)	Clause 15.3	2
	2.5)	Clause 15.5.4	2
	2.6)	Clause 15.7.1	3
	2.7)	Clause 15.7.2.3	3
	2.8)	Clause 15.7.2.4	3
	2.9)	Clause 17.9.2	4

Recommendation ITU-T G.709/Y.1331

Interfaces for the optical transport network (OTN)

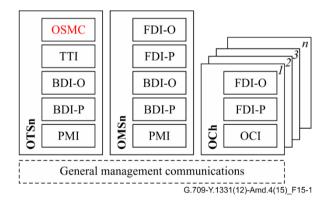
Amendment 4

1) Introduction

This amendment contains extensions to the fourth version (02/2012) of Recommendation ITU-T G.709/Y.1331; these relate to the:

- addition of the OTSn OTN synchronization messaging channel (OSMC) overhead (clauses 7, 15, 15.3, 15.3.5);
- addition of the OTUk OTN synchronization messaging channel (OSMC) overhead (clauses 15, 15.7.1, 15.7.2.3, 15.7.2.4);
- modification of the OCh overhead transport over OTM-1 multi-vendor IaDI specification to align with the specifications in [ITU-T G.7712] (clause 15.5.4);
- addition of optional FEC processing in the FC-1600 client signal (clause 17.9.2).

2) Additions

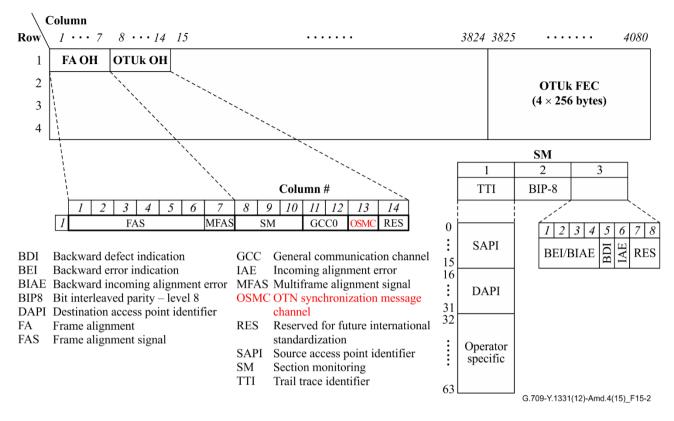

2.1) Clause 7

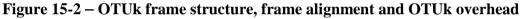
Modify the text in this clause as follows:

The OTS <u>(with optional OSMC)</u>, OMS, OCh and COMMS overhead is inserted into the OOS using mapping and multiplexing techniques which are outside the scope of this Recommendation.

2.2) Clause 15, Figure 15-1

Replace Figure 15-1 with the following figure that includes the OTSn OSMC overhead:




Figure 15-1 – OTSn, OMSn and OCh overhead as logical elements within the OOS

2.3) Clause 15, Figure 15-2

Replace Figure 15-2 with the following figure that includes the OTUk OSMC overhead in row 1, column 13 and modify the figure legend as shown:

1

2.4) Clause 15.3

Extend the list of OTSn overhead in clause 15.3 with the OTSn OSMC overhead and add a new clause 15.3.5 'OTSn OSMC to clause 15.3 as presented hereafter':

15.3 OTS OH description

The following OTM-n OTSn overhead is defined:

- OTSn-TTI
- OTSn-BDI-P
- OTSn-BDI-O
- OTSn-PMI
- OTSn-OSMC.

• • •

15.3.5 OTSn OTN synchronization message channel (OSMC)

For synchronization purposes, the OTSn OSMC signal is defined as an OTN synchronization message channel to transport SSM and PTP messages.

NOTE 1 - Support of OTSn OSMC in an OTM-n interface is optional.

NOTE 2 – Old equipment may not be able to support OTSn OSMC via their OTM-n interfaces.

2.5) Clause 15.5.4

Modify the text in clause 15.5.4 as follows:

Figure 15-5bis illustrates the information and representation to be used when the OCh overhead is to be transferred across a multi-vendor IaDI. This information consists of OCh overhead primitives and of additional information including an OH type field, a trail trace identifier field to check for misconnections over the OCN and a field indicating the nominal central frequency of the associated OCh payload. In the case of single-vendor IaDI, the coding and method of OCh overhead information transfer is vendor specific. For multi-vendor IaDI, the OCh overhead is transferred over the overhead communication network (OCN) as described in [ITU-T G.7712].

NOTE – A multi-vendor IaDI which transfers OCh overhead over an OCN cannot provide fate-sharing of the OCh overhead with the OCh payload across this interface.

Each OCh overhead primitive is represented by a bit that is set to one if the respective condition is present, and will be set to zero when it is not.

<u>The OCh FDI-P, FDI-O and OCI overhead primitives are communicated over the OCN.</u> The specification of the encapsulation, identification and transmission of this information is outside the scope of this Recommendation and specified in [ITU-T G.7712]. This information must be communicated with the peers such that the OCh overhead primitives come into sync within one second in the absence of changes to OCh FDI-P, FDI-O or OCI. In the event of changes to any OCh overhead primitive, the update must be sent within 10 ms of the change and with a mechanism to guarantee receipt in the event of packet loss.

Size	Contents
2 octets	OH type, 0x0001=OCh overhead
64 octets	Trail trace identifier (TTI):
	16 octets SAPI
	16 octets DAPI
	32 octets operator specific
4-octets	Nominal central frequency (NCF)
	Encoded as a "DWDM Wavelength Label" per Section 3.2 of
	[b-IETF RFC 6205]
1 octet	OAM bits

The OAM bits are represented as follows:

4	2	3	4	5	6	7	8
FDI-P	FDI-O	OCI	Reserved				

Figure 15-5bis – OCh overhead information elements to be used for multi-vendor

15.5.4.1 Trail trace identifier (TTI)

The TTI is defined to transport a 64-byte TTI as specified in clause 15.2 over a multi-vendor IaDI to ensure there are no misconnections across the OCN.

15.5.4.2 Nominal central frequency (NCF)

The NCF encodes the nominal central frequency of the intended OCh payload. This is sent explicitly across a multi-vendor IaDI to ensure there are no misconnections across the OCN. The coding for this information for a multi-vendor IaDI is specified in clause 15.5.4.

3

2.6) Clause 15.7.1

Replace Figure 15-9 with the following figure that includes OTUk OSMC overhead in row 1, column 13:

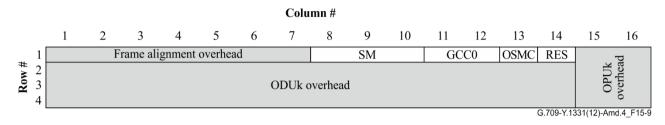


Figure 15-9 – OTUk overhead

2.7) Clause 15.7.2.3

Modify the text in clause 15.7.2.3 as follows:

Two-One bytes of an-the OTUk overhead are-is reserved for future international standardization. Theise bytes are is located in row 1, columns 13 and 14. Theise bytes are is set to all-0s.

2.8) Clause 15.7.2.4

Add the following new clause, clause 15.7.2.4 OTUk OTN synchronization message channel (OSMC), after clause 15.7.2.3:

15.7.2.4 OTUk OTN synchronization message channel (OSMC)

For synchronization purposes, one byte is defined in the OTUk overhead as an OTN synchronization message channel to transport SSM and PTP messages within OTM-0 and OTM-nr inter-domain interfaces. The OSMC bandwidth is listed in Table 15-1bis.

NOTE 1 - OTUk OSMC is not defined for OTM-n and OTM-1 intra-domain interfaces.

NOTE 2 – Support of OTUk OSMC in an OTM-0 and OTM-nr inter-domain interface is optional.

NOTE 3 – Old equipment may not be able to support OTUk OSMC via their OTM-0 and OTM-nr interfaces.

NOTE 4 – OTM-0 and OTM-nr single-vendor intra-domain interfaces may support an OSMC function. The encapsulation of the messages and overhead location are then vendor specific.

OTUk	OSMC bandwidth (kbit/s)
OTU1	163.361
OTU2	656.203
OTU3	2635.932
OTU4	6851.101

Table 15-1bis -	- OSMC	bandwidth
-----------------	--------	-----------

The SSM and PTP messages within an OTM-0 and OTM-nr inter-domain interface are encapsulated into GFP-F frames as specified in [ITU-T G.7041]. GFP frames arrive as a continuous bit stream with a capacity that is identical to the OSMC overhead bandwidth, due to the insertion of idle frames at the GFP encapsulation stage. The GFP frame stream is not scrambled during encapsulation.

NOTE 5 – There is no rate adaptation or scrambling required at the mapping stage; this is performed by the GFP encapsulation process.

The mapping of generic framing procedure (GFP) frames is performed by aligning the byte structure of every GFP frame with the byte of the OSMC overhead field. Since the GFP frames are of variable length and longer than one byte, a frame crosses the OTUk (k=1,2,3,4) frame boundary.

2.9) Clause 17.9.2

Modify the text in this clause as follows:

17.9.2 FC-1600

The characteristic information of the mapped FC-1600 client signal consists of a sequence of 64B/66B encoded blocks with a nominal bit-rate of 14 025 000 kbit/s, ± 100 ppm.

In case the FC-1600 interface at the mapper has FEC enabled, the mapper must recover the FEC code word synchronization, extract the FEC parity bits, perform error correction and transdecode the 64B/65B blocks to 64B/66B blocks as specified in [b-INCITS 470].

In case the FC-1600 interface at the demapper has FEC enabled, the demapper must recover 66B block lock from the demapped CBR signal, transcode the 64B/66B blocks to 64/65B blocks, generate and insert the FEC parity bits as specified in [b-INCITS 470].

<u>NOTE – FC-1600 interface ports designed prior to this amendment may not be able to support termination of the FEC or transdecoding of 64B/65B blocks.</u>

During a signal fail condition of the incoming FC-1600 signal (e.g., in the case of a loss of input signal), this failed incoming FC-1600 signal is replaced by a NOS primitive sequence as specified in [b-INCITS 470].

During signal fail condition of the incoming ODUflex signal (e.g., in the case of an ODUflex-AIS, ODUflex-LCK, ODUflex-OCI condition), NOS primitive sequence ordered sets as specified in [b-INCITS 470] are generated as a replacement signal for the lost FC-1600 signal.

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Enhancements to NGN	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3999

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Terminals and subjective and objective assessment methods
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems