

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.151
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2018)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – User Requirements
Notation (URN)

 User Requirements Notation (URN) – Language
definition

Recommendation ITU-T Z.151

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.151 (10/2018) i

Recommendation ITU-T Z.151

User Requirements Notation (URN) – Language definition

Summary

Recommendation ITU-T Z.151 defines the User Requirements Notation (URN) intended for the

elicitation, analysis, specification and validation of requirements. URN combines modelling concepts

and notations for goals (mainly for non-functional requirements and quality attributes) and scenarios

(mainly for operational requirements, functional requirements and performance and architectural

reasoning). The goal sub-notation is called Goal-oriented Requirements Language (GRL) and the

scenario sub-notation is called Use Case Map (UCM).

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.151 2008-11-13 17 11.1002/1000/9623

1.1 ITU-T Z.151 (2008) Cor. 1 2012-04-29 17 11.1002/1000/11584

2.0 ITU-T Z.151 2012-10-14 17 11.1002/1000/11760

3.0 ITU-T Z.151 2018-10-14 17 11.1002/1000/13711

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/9623
http://handle.itu.int/11.1002/1000/11584
http://handle.itu.int/11.1002/1000/11760
http://handle.itu.int/11.1002/1000/13711
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Z.151 (10/2018)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.151 (10/2018) iii

Table of Contents

 Page

1 Scope .. 1

1.1 Goal modelling with URN .. 1

1.2 Scenario modelling with URN .. 2

1.3 Documentation structure ... 3

2 References .. 3

3 Definitions .. 4

3.1 Terms defined elsewhere .. 4

3.2 Terms defined in this Recommendation ... 4

4 Abbreviations and acronyms .. 5

5 Conventions .. 6

5.1 Grammars ... 6

5.2 Basic definitions ... 6

5.3 Presentation style .. 6

6 URN basic structural features .. 7

6.1 URN abstract grammar metaclasses ... 8

6.2 URN concrete grammar metaclasses .. 12

7 GRL features .. 14

7.1 GRL basic structural features.. 15

7.2 GRL actors .. 19

7.3 GRL intentional elements ... 21

7.4 GRL links .. 24

7.5 GRL strategies .. 32

7.6 GRL indicators .. 37

7.7 GRL contribution contexts .. 43

7.8 GRL concrete grammar metaclasses ... 46

8 UCM features ... 62

8.1 UCM basic structural features .. 63

8.2 UCM maps and path nodes ... 65

8.3 UCM stubs and plug-ins ... 92

8.4 UCM components ... 102

8.5 UCM scenario definitions ... 110

8.6 UCM performance annotations ... 120

8.7 UCM concrete grammar metaclasses .. 130

9 Data language ... 131

9.1 URN data model ... 131

9.2 URN data types ... 132

9.3 Grammar for expressions .. 134

9.4 Grammar for actions ... 135

9.5 Grammar for failures .. 136

iv Rec. ITU-T Z.151 (10/2018)

 Page

10 URN interchange format .. 137

11 URN analysis ... 137

11.1 GRL model evaluation .. 138

11.2 UCM scenario path traversal .. 140

12 Compliance statement .. 144

13 Tool compliance ... 149

13.1 Definitions of valid tools .. 149

13.2 Conformance ... 150

Annex A – URN interchange format: XML schema .. 159

Annex B – Textual URN specification ... 178

B.1 Introduction to the Textual URN specification ... 170

B.2 User Requirements Notation: core concepts ... 171

B.3 Goal-oriented Requirement Language .. 175

B.4 Use Case Map ... 182

Appendix I – Summary of the URN ... 212

I.1 Summary of abstract metamodel .. 204

I.2 Summary of concrete metamodel ... 209

I.3 Summary of URN symbols ... 212

Appendix II – Examples of GRL model evaluation algorithms ... 221

II.1 Introduction ... 214

II.2 Example of quantitative evaluation algorithm .. 216

II.3 Example of qualitative evaluation algorithm .. 220

II.4 Example of hybrid evaluation algorithm .. 227

II.5 Calculating with exceeding expectations .. 228

Appendix III – Examples of UCM path traversal mechanisms .. 236

III.1 Introduction ... 229

III.2 Example of depth-first UCM path traversal mechanism .. 229

III.3 Example of breadth-first UCM path traversal mechanism 234

Bibliography ... 241

 Rec. ITU-T Z.151 (10/2018) v

Introduction

Coverage

User Requirement Notation (URN) has concepts for the specification of goals, non-functional

requirements, rationales, indicators, behaviour, scenarios and structuring. This Recommendation

focuses on the definition of an abstract syntax, a concrete graphical syntax and an interchange format

for URN. An assessment of conformity of the current URN representation to the language

requirements for URN (Recommendation ITU-T Z.150) is also included.

Application

URN is applicable within standards bodies and industry. URN helps to describe and communicate

requirements, and to develop reasoning about them. The main application areas include

telecommunication systems, services and business processes, but URN is generally suitable for

describing most types of reactive systems and information systems. The range of applications is from

descriptions of business goals and requirements to high-level system design and architecture.

Status/Stability

This Recommendation contains the stable definition of URN. URN components for goal modelling

and scenario modelling have been used for more than a decade. The main text is accompanied by the

following:

– Annex A: URN Interchange Format: XML Schema

– Annex B: Textual URN Specification

– Appendix I: Summary of the URN

– Appendix II: Examples of GRL Model Evaluation Algorithms

– Appendix III: Examples of UCM Path Traversal Mechanisms

– URN Change Request Form

 Rec. ITU-T Z.151 (10/2018) 1

Recommendation ITU-T Z.151

User Requirements Notation (URN) – Language definition

1 Scope

This Recommendation defines the User Requirements Notation (URN) intended for the elicitation,

analysis, specification and validation of requirements. URN allows software and requirements

engineers to discover and specify requirements for a proposed system or an evolving system, and

analyse such requirements for correctness and completeness.

URN combines modelling concepts and notations for goals and intentions (mainly for non-functional

requirements and quality attributes) and scenarios (mainly for operational requirements, functional

requirements and performance and architectural reasoning). In particular, URN has concepts for the

specification of goals, non-functional requirements, rationales, indicators, behaviour, scenarios and

structuring.

This Recommendation focuses on the definition of an abstract syntax, a concrete graphical syntax,

and an interchange format for URN. An assessment of conformity of the current URN representation

to the language requirements for URN [ITU-T Z.150] is also included.

URN is applicable within standards bodies and industry. URN helps to describe and communicate

requirements, and to develop reasoning about them. The main application areas include

telecommunications systems, services and business processes, but URN is generally suitable for

describing most types of reactive systems and information systems. The range of applications is from

business descriptions of goals and requirements to high-level design.

URN is a notation that complies with [ITU-T Z.150]. It includes concepts and notations satisfying

the language requirements of Z.150's URN-NFR (for non-functional requirements) and URN-FR (for

functional requirements). URN integrates these concepts and notation into a single language.

1.1 Goal modelling with URN

The subset of the URN language that addresses ITU-T Z.150 URN-NFR language requirements is

named Goal-oriented Requirement Language (GRL), which is a language for supporting goal-

oriented modelling and reasoning about requirements, especially non-functional requirements and

quality attributes. It provides constructs for expressing various types of concepts that appear during

the requirement process. GRL has its roots in two widespread goal-oriented modelling languages: i*

and the NFR Framework. Major benefits of GRL over other popular notations include the integration

of GRL with a scenario notation and a clear separation of GRL model elements from their graphical

representation, enabling a scalable and consistent representation of multiple views/diagrams of the

same goal model.

There are four main categories of concepts in GRL: actors, intentional elements, indicators and links.

The intentional elements in GRL are goals, softgoals, tasks, resources and beliefs. They are

intentional because they are used for models that allow answering questions such as why particular

behaviours, and informational and structural aspects were chosen to be included in the system

requirements, what alternatives were considered, what criteria were used to deliberate among

alternative options, and what the reasons were for choosing one alternative over the other. Actors are

holders of intentions; they are the active entities in the system or its environment (e.g., stakeholders

or other systems) who want goals to be achieved, tasks to be performed, resources to be available and

softgoals to be satisfied. Indicators make real-world measurements available for reasoning in the goal

model, allowing for a more accurate assessment of the satisfaction of actors. Links are used to connect

isolated elements in the requirement model. Different types of links depict different structural and

intentional relationships (including decompositions, contributions and dependencies).

2 Rec. ITU-T Z.151 (10/2018)

This kind of modelling is different from the detailed specification of "what" is to be done. Here the

modeller is primarily concerned with exposing "why" certain choices for behaviour and/or structure

were made or constraints introduced. The modeller is not yet interested in the operational details of

processes or system requirements, or component interactions. Omitting these kinds of details during

early development and standardization phases allows taking a higher level (sometimes called a

strategic stance) towards modelling the current or the future standard or software system and its

embedding environment. Modelling and answering "why" questions leads one to consider the

opportunities stakeholders seek out and/or vulnerabilities they try to avoid within their environment

by utilizing capabilities of the software system and/or other stakeholders, by trying to rely upon and/or

assign capabilities and by introducing constraints on how those capabilities ought to be performed.

GRL supports the analysis of strategies, which help reach the most appropriate trade-offs among

(often conflicting) goals of stakeholders. A strategy consists of a set of intentional elements and

indicators that are given initial satisfaction values. These satisfaction values capture contextual or

future situations as well as choices among alternative means of reaching various goals. For indicators,

these satisfaction values are based on real-world measurements. These satisfaction values are then

propagated to the other intentional elements through their links, enabling a global assessment of the

strategy being studied as well as the global satisfaction of the actors involved. A good strategy

provides rationale and documentation for decisions leading to requirements, providing better context

for standards/system developers and implementers while avoiding unnecessary re-evaluations of

worse alternative strategies.

GRL also provides support for reasoning about scenarios by establishing correspondences between

intentional GRL elements and non-intentional elements referring to scenario models of URN-FR.

Modelling both goals and scenarios is complementary and aids the identification of further goals and

additional scenarios (and scenario steps) important to stakeholders, thus contributing to the

completeness and accuracy of requirements.

1.2 Scenario modelling with URN

The subset of the URN language that addresses ITU-T Z.150 URN-FR language requirements is

named Use Case Map (UCM). UCM specifications employ scenario paths to illustrate causal

relationships among responsibilities. Furthermore, UCMs provide an integrated view of behaviour

and structure by allowing the superimposition of scenario paths on a structure of abstract components.

The combination of behaviour and structure enables architectural reasoning after which it is possible

to refine UCM specifications into more detailed scenario models such as MSCs or UML sequence

diagrams, or into state machines in SDL-2010 or UML statechart diagrams and finally into concrete

implementations. Validation, verification, performance analysis, interaction detection and test

generation can be performed at all stages. Thus, the UCM notation enables a seamless transition from

the informal to the formal by bridging the modelling gap between goal models and natural language

requirements (e.g., use cases) and design in an explicit and visual way. The UCM notation allows the

modeller to delay the specification of component states and messages and even, if desired, of concrete

components to later, more appropriate, stages of the development process. The goal of the UCM

notation is to provide the right degree of formality at the right time in the development process.

UCM specifications identify input sources and output sinks, as well as describe the required inputs

and outputs of a scenario. UCM specifications also integrate many scenarios or related use cases in a

map-like diagram. Scenarios can be structured and integrated incrementally. This enables reasoning

about and detection of potential undesirable interactions of scenarios and components. Furthermore,

the dynamic (runtime) refinement capabilities of the UCM notation allow for the specification of

(runtime) policies and for the specification of loosely coupled systems where functionality is decided

at runtime through negotiation between components or compliance to high-level goals. UCM

scenarios can be integrated together, yet individual scenarios are tractable through scenario

definitions based on a simple data model. UCMs treat scenario paths as first class model entities and

 Rec. ITU-T Z.151 (10/2018) 3

therefore build the foundation to more formally facilitate reusability of scenarios and behavioural

patterns across a wide range of architectures.

The UCM notation is a specification language intended for modellers as well as non-specialists

because of its visual, simple and intuitive nature but at the same time it aims to provide sufficient

rigorousness for developers or tools and contracts.

Most of the characteristics of excellent requirements such as verifiable, complete, consistent,

unambiguous, understandable, modifiable and traceable can be supported by UCMs. Others such as

prioritized and annotated are easily incorporated.

1.3 Documentation structure

This Recommendation defines the User Requirements Notation in the following way:

– Clauses 2, 3 and 4 describe, respectively, references to related ITU-T Recommendations and

other standards, definitions and acronyms used in this Recommendation.

– Clause 5 describes conventions used in this Recommendation, with a particular emphasis on

metamodelling.

– Clause 6 specifies the abstract syntax of basic structural features of the URN language.

– Clause 7 specifies the abstract syntax, concrete graphical syntax and semantics of GRL

features. A concrete textual syntax of GRL is provided in Annex B.

– Clause 8 specifies the abstract syntax, concrete graphical syntax and semantics of UCM

features. A concrete textual syntax of UCM is provided in Annex B.

– Clause 9 specifies the data language used to formalize conditions and expressions.

– Clause 10 specifies an XML-based interchange format for URN models based on the concrete

syntax metamodel. The XML schema definition is provided in Annex A.

– Clause 11 describes basic URN analysis techniques, namely GRL model evaluation and

UCM scenario path traversal.

– Clause 12 presents how this Recommendation complies with [ITU-T Z.150].

– Clause 13 defines levels of compliances for tools.

– Annex A presents the XML schema definition of the URN interchange format.

– Annex B presents the definition of the Textual User Requirements Notation (TURN).

– Appendix I provides a summary of the URN metamodel and graphical notation.

– Appendix II gives three examples of GRL model evaluation algorithms.

– Appendix III gives two examples of UCM path traversal mechanisms.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T T.55] Recommendation ITU-T T.55 (2008), Use of the universal multiple-octet

coded character set (UCS).

[ITU-T Z.104] Recommendation ITU-T Z.104 (2011), Specification and Description

Language – Data and action language in SDL-2010.

4 Rec. ITU-T Z.151 (10/2018)

[ITU-T Z.111] Recommendation ITU-T Z.111 (2008), Notations and guidelines for the

definition of ITU-T languages.

[ITU-T Z.150] Recommendation ITU-T Z.150 (2011), User Requirements Notation (URN) –

Language requirements and framework.

[W3C XSD1] W3C (2004), XML Schema Part 1: Structures Second Edition.
<http://www.w3.org/TR/xmlschema-1>

[W3C XSD2] W3C (2004), XML Schema Part 2: Datatypes Second Edition.
<http://www.w3.org/TR/xmlschema-2>

3 Definitions

3.1 Terms defined elsewhere

The definitions given in [ITU-T Z.150] apply.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 abort scope: (UCM) the set of maps comprising the map where the abort start point is defined

as well as all lower level maps as established by the hierarchy of stubs and plug-in maps.

3.2.2 actor: (GRL) element that represents an active entity (stakeholder or other) that has

intentions and carries out actions to achieve its goals by exercising its know-how.

3.2.3 Goal-oriented Requirement Language (GRL): The subset of the User Requirements

Notation used to model and analyse non-functional requirements and quality attributes with goal

graphs.

3.2.4 GRL link: (GRL) intentional relationship existing between intentional elements or actors.

3.2.5 indicator: (GRL) relates a measured, real-world, quantitative or qualitative value with a

quantitative or qualitative satisfaction value and is used to measure the performance, any other

relevant real-world property or satisfaction of an intentional element, actor or system.

3.2.6 in-path: (UCM) incoming path of a stub, in particular the last node connection before

reaching the stub.

3.2.7 intentional element: (GRL) element that describes an intention. Used for models that allow

answering questions such as why particular behaviours, informational and structural aspects were

chosen to be included in the system requirement, what alternatives were considered, what criteria

were used to deliberate among alternative options and what the reasons were for choosing one

alternative over the other.

3.2.8 out-path: (UCM) outgoing path of a stub, in particular the first node connection after leaving

the stub.

3.2.9 release path: (UCM) path with an end point or empty point that is connected to a timer.

3.2.10 scenario definition: (UCM) collection of initial values, initial conditions and desired

conditions used to identify and test individual scenarios during the traversal of a UCM model.

3.2.11 strategy: (GRL) collection of satisfaction values associated with intentional elements used

to provide an initial context for GRL model analysis.

3.2.12 traversal root map: (UCM) map that is at the highest level in the map hierarchy established

by the traversal mechanism for a scenario definition.

3.2.13 trigger path: (UCM) path with an end point or empty point that is connected to a waiting

place.

http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

 Rec. ITU-T Z.151 (10/2018) 5

3.2.14 unconnected start point: (UCM) start point that is not a failure start point or abort start point

and that is not directly connected to another end point or to another path.

3.2.15 Use Case Map notation: The subset of the User Requirements Notation used to model and

analyse operational requirements and functional requirements with use cases and scenarios.

3.2.16 visit: (UCM) visit of a synchronizing stub is characterized by how often an in-path of the

stub has been traversed. If an in-path is traversed the first time, then it is the first visit of the stub. If

the same in-path is traversed the nth time, then it is the nth visit of the stub. If another in-path of the

stub is traversed for the first time, then it is the first visit of the stub. Plug-in maps that have been

instantiated because of a visit are said to belong to the visit.

3.2.17 waiting path: (UCM) incoming path of a waiting place or timer that is not a release path or

trigger path.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations:

COTS Commercial-Off-The-Shelf

DSP Digital Signal Processor

FAS Failure start point or Abort Start point

FP Failure Point

FR Functional Requirement

GRL Goal-oriented Requirement Language

MSC Message Sequence Chart

NFR Non-Functional Requirement

NTRP Number of arrivals along the Trigger/Release Path

NWP Number of arrivals along the Waiting Path

OCS Originating Call Screening

PCC Path Continuation Criteria

PT Path Traversal

RP Regular Path

SDL-2010 Specification and Description Language 2010

TRP Trigger/Release Path

TTCN-3 Testing and Test Control Notation (TTCN-3)

TURN Textual User Requirements Notation

UCM Use Case Map

UCS Universal Multiple-Octet Coded Character Set

UML Unified Modelling Language

URN User Requirements Notation

URN-FR User Requirements Notation – Functional Requirements

URN-NFR User Requirements Notation – Non-Functional Requirements

UTF-8 8-bit UCS/Unicode Transformation Format

6 Rec. ITU-T Z.151 (10/2018)

WP Waiting Path

XML eXtensible Markup Language

XSD XML Schema Definition

5 Conventions

The conventions of [ITU-T Z.111] apply to this Recommendation.

This Recommendation uses the universal multiple-octet coded character set (UCS) encoding of

characters recommended in [ITU-T T.55].

5.1 Grammars

The conventions of [ITU-T Z.111] apply to this Recommendation.

5.2 Basic definitions

5.2.1 Validity

A specification is a valid User Requirements Notation specification only if it satisfies the syntactic

rules and the static conditions defined in this Recommendation.

5.3 Presentation style

The conventions of [ITU-T Z.111] apply to this Recommendation.

5.3.1 Division of text

The conventions of [ITU-T Z.111] apply to this Recommendation.

5.3.2 Titled enumeration items

a) Abstract grammar

The abstract grammar is specified in the form defined in [ITU-T Z.111]. The metamodel presentation

of abstract syntax in [ITU-T Z.111], clause 5.4.1.2 is used. Attributes, relationships to other

metaclasses and constraints (static conditions expressed in natural language) are specified for each

metaclass in the metamodel. As an extension to [ITU-T Z.111] conventions there are additional

subheadings of the form i) Attributes, ii) Relationships and iii) Constraints.

b) Concrete grammar

The URN concrete grammar is presented as an extension to the abstract grammar metamodel

combined with a description of the graphical symbols used. The concrete grammar includes all the

metaclasses (with attributes, relationships and constraints) of the abstract grammar. The additional

concepts (shown as grey metaclasses) that extend the abstract grammar metamodel are useful to

support a graphical language but they have no semantic implication. Common additional concepts

include layout information, line styles and informal descriptions. For example, in Figure 1, a colour

attribute is added to an element of the abstract grammar. Composition with multiplicity 0..1 is used

here to ensure that specifications without this layout information are still valid and that the additional

concept will not interfere during analysis.

Figure 1 – Example of metaclasses from an abstract grammar (white)

and a concrete grammar (grey)

AbstractGrammarElement

attribute1 : String

attribute2 : Nat

LayoutInformation

color : String0..11 0..1

layout

1

elem

 Rec. ITU-T Z.151 (10/2018) 7

As a convention and in order to simplify diagrams, metaclasses that are defined in a different section

but that are referenced in a diagram will have their attributes hidden. For example, Figure 2 makes

reference to an abstract grammar element metaclass defined elsewhere (e.g., in Figure 1), but its

attributes are hidden. Note that this is different from a metaclass without attributes, in which case the

attribute compartment at the bottom of the metaclass (bounded by an horizontal line in the middle of

the rectangle) is empty. Similarly, only relevant associations are presented in diagrams. Appendix I

provides a global overview of all metaclasses, their associations and their attributes.

Figure 2 – Example of metaclasses where the left one

(with attributes hidden) is detailed elsewhere

Not all URN metaclasses, attributes or relationships have a concrete graphical notation. It is then up

to tools to provide ways of creating, accessing and modifying instances of these metaclasses (for

instance, through a "property" window).

Many elements with a graphical representation also have model-specific coordinates and sizes. The

following convention is used for layout coordinates information.

– Horizontal coordinate (x-axis): An integer value representing the number of point units from

the origin (0). Positive values are at the right of the origin and negative values at the left of

the origin.

– Vertical coordinate (y-axis): An integer value representing the number of point units from

the origin (0). Positive values are below the origin and negative values above the origin.

c) Semantics

The semantics of the abstract grammar metaclass is expressed in natural language. The semantics of

a concrete grammar metaclass is that of its abstract grammar metamodel elements (the additional grey

metaclasses have no semantics).

d) Model

This clause, when present, describes shorthand or alternative concrete syntaxes.

e) Example

Where necessary, examples of use are included. These examples are only informative, not normative.

6 URN basic structural features

The URN basic structural features describe containers for URN, GRL and UCM specifications, as

well as definitions of URN model elements, their links and metadata, concerns and conditions. The

abstract syntax metaclasses are first presented in clause 6.1. Their concrete grammar references

concrete syntax metaclasses regrouped in clause 6.2.

– Clause 6.1: URN abstract grammar metaclasses

– Clause 6.2: URN concrete grammar metaclasses

NOTE – Clause 9 defines the data model and data language for URN. In particular, it defines the Integer type

used in some of the attributes of the abstract and concrete syntax metaclasses for URN. The attribute types

Boolean, Nat and String used in these metaclasses are those defined in [ITU-T Z.111].

AbstractGrammarElement LayoutInformation

color : String
0..111 0..1

elem layout

8 Rec. ITU-T Z.151 (10/2018)

6.1 URN abstract grammar metaclasses

The topmost metaclass, URNspec (see Figure 3), contains directly or indirectly all the other elements

of a URN model, including concerns (see Figure 4). In this Recommendation, the terms "URN model"

and "URN specification" are used interchangeably.

Figure 3 – Abstract grammar: URN specification, links, metadata

and model elements

6.1.1 URNspec

URNspec is the root element of a URN model/specification. It names the specification and serves as

a container for all the other specification elements (see Figure 3).

a) Abstract grammar

i) Attributes

– name (String): The name of the URN specification.

ii) Relationships

– Composition of GRLspec (0..1): The URNspec may contain one GRL specification (see

clause 7.1.1).

– Composition of UCMspec (0..1): The URNspec may contain one UCM specification (see

clause 8.1.1).

– Composition of URNlink (0..*): The URNspec may contain URN links.

– Composition of Metadata (0..*): The URNspec may contain metadata information.

– Composition of Concern (0..*): The URNspec may contain concerns.

toLinks

GRLmodelElement UCMmodelElement

URNmodelElement

id : String

name : String

Metadata

name : String

value : String

0..10..*

elem

0..1

metadata

0..*

Concern

URNlink

type : String

1

0..*

fromElem 1

fromLinks
0..* 0..*

1

0..*

toElem1

UCMspec

URNspec

name : String

0..*

0..1

metadata

0..*

urnspec

0..1

1

0..*

urnspec

1

concerns

0..*

1

0..*

urnspec
1

urnLinks

0..*

1

0..1

urnspec

1

ucmspec0..1

GRLspec

1

0..1

urnspec
1

grlspec

0..1

 Rec. ITU-T Z.151 (10/2018) 9

iii) Constraints

– There exists exactly one instance of URNspec in a URN specification.

b) Concrete grammar

 URNspec does not have a graphical visual representation. However, it may contain additional

information in an instance of ConcreteURNspec. Optionally, the name of URNspec is shown

in the top left corner of a GRLGraph or UCMmap before the additional information (see

ConcreteURNspec).

i) Relationships

– Composition of ConcreteURNspec (0..1): The URNspec may contain one concrete URN

specification (see Figure 5).

c) Semantics

 None (URNspec is a structural concept only).

6.1.2 URNmodelElement

URN model elements have names and unique identifiers. They can also be linked to each other

(see Figure 3).

a) Abstract grammar

i) Attributes

– id (String): The identifier of the URN model element.

– name (String): The name of the URN model element.

ii) Relationships

– Composition of Metadata (0..*): A URNmodelElement may contain metadata

information.

– Association with URNlink (fromLinks, 0..*): A URNmodelElement may be the source of

URN links.

– Association with URNlink (toLinks, 0..*): A URNmodelElement may be the target of

URN links.

– Association with Concern (0..1): A URNmodelElement may belong to one concern.

– URNmodelElement is a superclass of URNlink, Concern, GRLmodelElement (see

clause 7.1.2) and UCMmodelElement (see clause 8.1.2).

iii) Constraints

– id shall be unique within the URN specification.

– All instances of URNmodelElement shall appear in one of its subclasses (that is,

metaclass URNmodelElement is abstract).

b) Concrete grammar

 The id of a URNmodelElement does not have a concrete syntax and is automatically assigned

to ensure its uniqueness. The concrete syntax for URNmodelElement is further defined in its

subclasses. In addition, a URNmodelElement may contain an informal description in a

Description.

i) Relationships

– Composition of Description (0..1): A URNmodelElement may contain one description

(see Figure 6).

10 Rec. ITU-T Z.151 (10/2018)

c) Semantics

 A URNmodelElement is an uniquely identifiable model element that can contain metadata

and be linked to other model elements. Its subclasses possibly have additional attributes and

relationships.

6.1.3 URNlink

A URN link is a URN model element that connects a source URN model element to a target URN

model element. URN links have a user-defined type (see Figure 3).

a) Abstract grammar

i) Attributes

– Inherits attributes from URNmodelElement.

– type (String): The user-defined type of the URN link.

ii) Relationships

– Inherits relationships from URNmodelElement.

– Contained by URNspec (1): A URNlink is contained in the URN specification.

– Association with URNmodelElement (fromElem, 1): A URNlink has one source URN

model element.

– Association with URNmodelElement (toElem, 1): A URNlink has one target URN model

element.

iii) Constraints

– Inherits constraints from URNmodelElement.

b) Concrete grammar

 The presence of a link on a source or target model element is indicated with a triangle symbol

(►) next to the name of the element, if that element's name is displayed in the concrete

syntax. For a source model element, the triangle points to the right, whereas for a target model

element the triangle points to the left. Optionally, a URNlink is visualized using the textual

syntax for a URNlink as specified in Annex B.

i) Relationships

– Inherits relationships from URNmodelElement.

c) Semantics

 URNlinks provide modellers with a way to create new relationships of various types between

any pair of model elements in a URN specification. These links can be used for traceability,

refinement, composition and other purposes, hence providing an extensible semantics to

URN.

6.1.4 Metadata

Metadata is a name-value pair that can be used to attach information to a URN specification or its

model elements. Metadata is contained by the URNspec or a URNmodelElement (see Figure 3).

a) Abstract grammar

i) Attributes

– name (String): The name of the URN metadata information instance.

– value (String): The value of the URN metadata information instance.

ii) Relationships

– None.

 Rec. ITU-T Z.151 (10/2018) 11

iii) Constraints

– Each Metadata instance is contained in exactly one instance of type URNspec or

URNmodelElement.

b) Concrete grammar

 Metadata does not have a graphical visual representation. Optionally, a Metadata is

visualized using the textual syntax for a Metadata as specified in Annex B.

c) Semantics

 Metadata instances provide modellers with a way to attach user-defined named values to

most elements found in a URN specification, hence providing an extensible semantics to

URN.

6.1.5 Concern

A Concern is a guarded grouping of URN model elements. Concerns are typically used to group

related GRL and UCM diagrams into one unit of understanding (see Figures 3 and 4).

Figure 4 – Abstract grammar: URN concerns

a) Abstract grammar

i) Attributes

– Inherits attributes from URNmodelElement.

ii) Relationships

– Inherits relationships from URNmodelElement.

– Contained by URNspec (1): A Concern is contained in the URN specification.

– Composition of Condition (0..1): A Concern may contain one condition.

– Association with URNmodelElement (0..*): A Concern possibly groups URN model

elements.

iii) Constraints

– Inherits constraints from URNmodelElement.

b) Concrete grammar

 A Concern does not have a graphical visual representation. Optionally, a Concern is

visualized using the textual syntax for a Concern as specified in Annex B.

i) Relationships

– Inherits relationships from URNmodelElement.

c) Semantics

 A Concern groups URN model elements together. This grouping can be guarded with a

Condition for composition purposes.

URNmodelElement

id : String

name : String

Concern

0..1
0..*concern

0..1
elements0..*

Condition

expression : String

0..10..1

concern

0..1

condition

0..1

12 Rec. ITU-T Z.151 (10/2018)

6.1.6 Condition

Condition is a Boolean expression that serves as a guard, precondition, postcondition or failure

condition. A Condition is contained by one of the following model elements: Concern, StartPoint,

EndPoint, PluginBinding, NodeConnection or ScenarioDef (see Figures 4, 77 and 92).

a) Abstract grammar

i) Attributes

– expression (String): The Boolean expression of the condition.

ii) Relationships

– None.

iii) Constraints

– The expression of a Condition shall be a Boolean expression, as defined in clause 9.3.

– Each Condition instance is contained in exactly one instance of type Concern, StartPoint,

EndPoint, PluginBinding, NodeConnection or ScenarioDef.

b) Concrete grammar

 Condition has no concrete syntax, but the label of the ConcreteCondition contained by the

condition is visualized for NodeConnections, StartPoints and EndPoints (see clauses 8.2.3,

8.2.6 and 8.2.8, respectively). Conditions for Concerns, PluginBindings or ScenarioDefs are

optionally visualized using the textual syntax for a Concern, PluginBinding, or ScenarioDef,

respectively, as specified in Annex B.

i) Relationships

– Composition of ConcreteCondition (0..1): A Condition may have one concrete condition

(see Figure 7).

– Composition of Label (0..1): A Condition may have one label (see Figure 52).

c) Semantics

 The expression of a Condition contained by a Concern indicates whether the grouping of

model elements identified by the concern is to be enabled in the URN specification (true) or

disabled (false).

 The expression of a Condition not contained by a Concern is evaluated at runtime when the

model element to which the condition belongs is reached during the path traversal of the

UCM specification. The evaluation results in either true or false.

 The expression may make use of globally defined Variables and shall be well-formed

according to the textual grammar detailed in clause 9.3. If the expression uses a variable name

with a "_pre" suffix (e.g., in the postcondition of a scenario definition), then the initialized

value of this variable, prior to traversal of the UCM specification, is used. This is mainly

useful in postconditions that compare the runtime value of a variable with the initial value of

that variable. For example, the expression VariableX == VariableX_pre + 1 will be true if

VariableX has been incremented by 1 since the beginning of the traversal.

 If a Condition is not specified for a Concern, StartPoint, EndPoint, PluginBinding,

NodeConnection or ScenarioDef, but the existence of the condition is required by, for

example, model analysis, then the evaluation of the required condition is assumed to result

in true.

6.2 URN concrete grammar metaclasses

The following concrete grammar metaclasses may be contained by some of the abstract grammar

metaclasses. They have no semantics.

 Rec. ITU-T Z.151 (10/2018) 13

6.2.1 ConcreteURNspec

The ConcreteURNspec metaclass contains standard meta-information about the URN model

(URNspec) itself (see Figure 5).

Figure 5 – Concrete grammar: ConcreteURNspec metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 There is no graphical visual representation of this metaclass. Optionally, the meta-

information is visualized using the textual syntax for ConcreteURNspec as specified in

Annex B and shown after the name of the URNspec in the top left corner of a GRLGraph or

UCMmap.

i) Attributes

– description (String): An informal description of the URN specification.

– author (String): The author of the URN specification.

– created (String): The date and time of creation of the URN specification. The suggested

format is (in English) "Month day, year hours:minutes:seconds AmOrPm timezone". For

example: "November 15, 2007 9:21:06 AM EST".

– modified (String): The date and time of the last modification to the URN specification.

The suggested format is (in English) "Month day, year hours:minutes:seconds AmOrPm

timezone". For example: "November 15, 2007 9:21:06 AM EST".

– specVersion (String): The version number of the URN specification. It is suggested to

use an integer that starts at 1 when the specification is first created and that is incremented

by one each time the specification is modified.

– urnVersion (String): The version number of the URN standard used. For example: "Z.151

(11/08)".

ii) Constraints

– The date modified is later than the date created.

6.2.2 Description

An informal Description can be attached to any URNmodelElement (see Figure 6).

Figure 6 – Concrete grammar: Description metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

URNspec

ConcreteURNspec

description : String

author : String

created : String

modified : String

specVersion : String

urnVersion : String

1 0..1

urnspec

1

info

0..1

Description

description : String
URNmodelElement

0..11

desc

0..1

elem

1

14 Rec. ITU-T Z.151 (10/2018)

b) Concrete grammar

 There is no graphical visual representation of this metaclass. Optionally, the description of a

URNmodelElement preceded by "description:" is visualized next to the URNmodelElement.

i) Attributes

– description (String): An informal description of the URN model element.

6.2.3 ConcreteCondition

ConcreteCondition defines a label and a description for a Condition (see Figure 7).

Figure 7 – Concrete grammar: ConcreteCondition metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 The label of ConcreteCondition is visualized for containing Conditions of NodeConnections,

StartPoints and EndPoints (see clauses 8.2.3, 8.2.6 and 8.2.8, respectively). Optionally, the

label of ConcreteCondition is visualized using the textual syntax for containing Conditions

of a Concern, PluginBinding, or ScenarioDef as specified in Annex B.

i) Attributes

– label (String): The label for the condition is used for visualization purposes.

– description (String): An informal description of the condition.

c) Semantics

 None.

7 GRL features

The Goal-oriented Requirement Language provides a set of URN features that enable the description

and analysis of goals/intentions of systems and stakeholders. The GRL features are grouped under

six categories:

– GRL basic structural features: clause 7.1.

– GRL actors: clause 7.2.

– GRL intentional elements: clause 7.3.

– GRL links: clause 7.4.

– GRL strategies: clause 7.5.

– GRL indicators: clause 7.6.

– GRL contribution contexts: clause 7.7.

– GRL concrete grammar metaclasses: clause 7.8.

NOTE – Many of the concrete grammar metaclasses defined here are also used by UCM features.

Condition
ConcreteCondition

label : String

description : String

1 0..1

condition

1

desc

0..1

 Rec. ITU-T Z.151 (10/2018) 15

7.1 GRL basic structural features

The GRL basic structural features describe containers for GRL specifications, as well as definitions

of GRL model elements, including linkable elements. The abstract grammar metaclasses are

presented in this clause, whereas their concrete grammar metaclasses are detailed in clause 7.8.

7.1.1 GRLspec

GRLspec serves as a container for the GRL specification elements (see Figure 8).

NOTE – The name intElements is used for backward compatibility with previous versions of this

Recommendation. A more appropriate name would be contElements.

Figure 8 – Abstract grammar: GRL specification

a) Abstract grammar

i) Attributes

– None.

ii) Relationships

– Contained by URNspec (1): The GRLspec is contained in the URN specification (see

Figure 3).

– Composition of Actor (0..*): The GRLspec may contain actor definitions.

– Composition of GRLContainableElement (0..*): The GRLspec may contain containable

elements.

– Composition of IndicatorConversion (0..*): The GRLspec may contain conversions for

indicators.

– Composition of ElementLink (0..*): The GRLspec may contain element links.

– Composition of StrategiesGroup (0..*): The GRLspec may contain strategy groups.

GRLContainableElement

Actor
ElementLink

StrategiesGroup EvaluationStrategy

IndicatorConversion

ContributionContext

GRLspec

0..*

1

intElements0..*

grlspec

1
0..*

1

actors

0..*

grlspec

1

0..*

1

links

0..*
grlspec
1

10..*

grlspec

1

groups

0..* 0..*

1 strategies

0..*grlspec

1

0..*

1

0..*

1

ContributionContextGroup

0..*

1 grlspec111

grlspec

grlspec

0..*

0..*

0..*

indConversions

contribContexts

contribContextGroups

16 Rec. ITU-T Z.151 (10/2018)

– Composition of EvaluationStrategy (0..*): The GRLspec may contain evaluation

strategies.

– Composition of ContributionContextGroup (0..*): The GRLspec may contain

contribution context groups.

– Composition of ContributionContext (0..*): The GRLspec may contain contribution

contexts.

iii) Constraints

– None.

b) Concrete grammar

 GRLspec has no concrete syntax. However, it may contain concrete GRL specification

information and GRL graphs.

i) Relationships

– Composition of ConcreteGRLspec (0..1): The GRLspec may contain one concrete GRL

specification (see Figure 30).

– Composition of GRLGraph (0..*): The GRLspec may contain GRL graphs (see

Figure 30).

c) Semantics

 None (GRLspec is a structural concept only).

7.1.2 GRLmodelElement

a) Abstract grammar

 A GRLmodelElement is a URN model element specialized for GRL concepts (see Figure 9).

Figure 9 – Abstract grammar: GRL model, linkable and containable elements

i) Attributes

– Inherits attributes from URNmodelElement (see Figure 3).

GRLmodelElement

ElementLink

GRLLinkableElement

importance : ImportanceType = None

importanceQuantitative : Integer = 0

0..*

1

linksDest

0..*

dest

1

0..*

1

linksSrc

0..*

src
1

IndicatorIntentionalElement
ImportanceType

High

Medium

Low

None

<<enumeration>>

Actor

GRLContainableElement

0..1

0..*

actor 0..1

elems
0..*

IndicatorConversion

StrategiesGroup

EvaluationStrategy

ContributionContextGroup

ContributionContext

 Rec. ITU-T Z.151 (10/2018) 17

ii) Relationships

– Inherits relationships from URNmodelElement.

– GRLmodelElement is a superclass of GRLLinkableElement, ElementLink,

StrategiesGroup, EvaluationStrategy, IndicatorConversion, ContributionContextGroup

and ContributionContext.

iii) Constraints

– Inherits constraints from URNmodelElement.

– All instances of GRLmodelElement shall appear in one of its subclasses (that is,

metaclass GRLmodelElement is abstract).

b) Concrete grammar

 The concrete syntax for GRLmodelElement is further defined in its subclasses.

i) Relationships

– Inherits relationships from URNmodelElement (see Figure 6).

– GRLmodelElement is a superclass of GRLGraph, ActorRef, GRLNode and LinkRef (see

Figure 30).

c) Semantics

 A GRLmodelElement is a uniquely identifiable GRL model element that can contain metadata

and be linked to other URN model elements through URNlinks. Its subclasses may have

additional attributes and relationships.

7.1.3 GRLLinkableElement

A GRLLinkableElement is a GRL model element that has an importance and can be linked to other

GRL linkable elements through an ElementLink. GRLLinkableElement abstracts the commonalities

of actor definitions, intentional elements and indicators (see Figure 9).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLmodelElement.

– importance (ImportanceType): Qualitative importance of the containable element to its

containing actor definition in the case of intentional elements and indicators and to the

overall GRL model in the case of actors, if any. Default value is None.

– importanceQuantitative (Integer): Quantitative importance of the containable element to

its containing actor definition in the case of intentional elements and indicators and to

the overall GRL model in the case of actors, if any. Default value is 0 (see clause 9.2.2).

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Association with ElementLink (linksSrc, 0..*): A GRLLinkableElement may be the

source of GRL element links.

– Association with ElementLink (linksDest, 0..*): A GRLLinkableElement may be the

destination of GRL element links.

– GRLLinkableElement is a superclass of GRLContainableElement and Actor.

– Uses ImportanceType enumeration.

iii) Constraints

– Inherits constraints from GRLmodelElement.

18 Rec. ITU-T Z.151 (10/2018)

– All instances of GRLLinkableElement shall appear in one of its subclasses (that is,

metaclass GRLLinkableElement is abstract).

– importanceQuantitative 0 and importanceQuantitative 100.

– The name of a GRLLinkableElement cannot be the empty String "".

b) Concrete grammar

 The concrete syntax for GRLLinkableElement is further defined in its subclasses. The line

and fill colours of a linkable element are specified in its concrete style (ConcreteStyle) and

are hence shared by all the linkable element's references.

i) Relationships

– Inherits relationships from GRLmodelElement.

– Composition of ConcreteStyle (0..1): A GRLLinkableElement may contain one concrete

style (see Figure 30).

c) Semantics

 A GRLLinkableElement is a GRL model element that can be linked to other actor definitions,

intentional elements and indicators. The semantics of importance and importanceQualitative

are described by the subclasses of GRLLinkableElement (see clauses 7.1.5 and 7.2.1).

7.1.4 ImportanceType

The qualitative importance of an actor to the overall GRL model and of an intentional element or

indicator to its actor definition can be High, Medium, Low or None (see Figure 9).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by GRLLinkableElement.

iii) Constraints

– None.

b) Concrete grammar

 None (enumeration metaclass). However, it influences the presentation of intentional

elements and indicators contained by actor definitions (see clause 7.8.5) as well as the

presentation of actors (see clauses 7.8.3 and 7.8.6).

c) Semantics

 High is used for specifying the highest importance, Low for some non-null importance,

Medium for a level in between high and low, and finally None for no importance. The

satisfaction level of an intentional element or indicator with a None importance will have no

impact on the qualitative evaluation of the global satisfaction of the associated actor

definition. The satisfaction level of an actor with a None importance will have no impact on

the qualitative evaluation of the global satisfaction of the overall GRL model.

7.1.5 GRLContainableElement

A GRLContainableElement is a GRL model element that can be contained in an actor.

GRLContainableElement abstracts the commonalities of intentional elements and indicators

(see Figure 9). A GRLContainableElement may be given Evaluation values (see Figure 24).

 Rec. ITU-T Z.151 (10/2018) 19

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLLinkableElement.

ii) Relationships

– Inherits relationships from GRLLinkableElement.

– Association with Actor (0..1): A GRLContainableElement may be contained in one actor

definition.

– GRLContainableElement is a superclass of IntentionalElement and Indicator.

iii) Constraints

– Inherits constraints from GRLLinkableElement.

– All instances of GRLContainableElement shall appear in one of its subclasses (that is,

metaclass GRLContainableElement is abstract).

– If importance of a GRLContainableElement is greater than 0, then the

GRLContainableElement shall be contained in an actor definition.

– If importanceQuantitative is not equal to None, then the GRLContainableElement shall

be contained in an actor definition.

b) Concrete grammar

 The concrete syntax for GRLContainableElement is further defined in its subclasses.

i) Relationships

– Inherits relationships from GRLLinkableElement.

– Association with IntentionalElementRef (0..*): An GRLContainableElement may be

referenced by intentional (and indicator) element references (see Figure 30).

c) Semantics

 A GRLContainableElement is a GRL model element that can be contained in an actor

definition.

 A value of 0 for importanceQuantitative means that the intentional element or indicator is not

important to the actor definition, whereas a value of 100 means that it is highly important. A

value of None for importance means that the intentional element or indicator is not important

to the actor definition, whereas a value of High means that it is highly important. Often, only

top-level intentional elements or indicators in a GRL actor will have a non-null importance

factor, which summarizes the importance of decomposing or contributing elements.

 The two importance attributes are only taken into consideration during actor satisfaction

analysis, when the intentional element or indicator is included by an actor definition (they

have no meaning otherwise). Only the relevant importance attribute is considered depending

on the type of analysis (qualitative or quantitative).

 It is not required for importance and importanceQuantitative to be consistent, as modellers

may want to use only one type of analysis (qualitative or quantitative). However, it is

recommended to keep them consistent if the modellers intend to switch between different

types of analysis.

7.2 GRL actors

Figure 10 shows the metaclasses for GRL actors, intentional elements and their links. It is referenced

by this clause as well as by clauses 7.3 and 7.4.

20 Rec. ITU-T Z.151 (10/2018)

Figure 10 – Abstract grammar: GRL actors, intentional elements and links

7.2.1 Actor

An Actor (also referred to as actor definition) is a GRL linkable element that represents an entity that

has intentions and carries out actions to achieve its goals by exercising its know-how. Actor

definitions are often used to represent stakeholders as well as systems. Actor definitions may contain

containable elements (see Figure 10).

One could start modelling the domain using only actors and dependencies between actors, without

containable elements inside the actors. One can then add intentional elements and indicators inside

the actors to specify why actors depend on each other and how dependencies between actors are

fulfilled.

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLLinkableElement.

ii) Relationships

– Inherits relationships from GRLLinkableElement.

– Contained by GRLspec (1): An Actor definition is contained in the GRL specification

(see Figure 8).

– Association with GRLContainableElement (0..*): An Actor definition may contain

intentional elements and indicators.

iii) Constraints

– Inherits constraints from GRLLinkableElement.

– Any two Actor definitions cannot share the same name inside a URN specification.

b) Concrete grammar

 An actor definition does not have a visual representation, but actor references (ActorRef) and

collapsed actor references (CollapsedActorRef) in GRL diagrams do have a graphical

representation. The colour of an actor definition's circle line and the fill colour are defined in

the concrete style (ConcreteStyle) (from superclass GRLLinkableElement) and are hence

shared by all the actor's references.

Contribution

contribution : ContributionType = Unknown

quantitativeContribution : Integer = 0

correlation : Boolean = false

ContributionType

Make

Help

SomePositive

Unknown

SomeNegative

Hurt

Break

<<enumeration>>

Decomposition DecompositionType

AND

XOR

IOR

<<enumeration>>

Dependency IntentionalElementType

Softgoal

Goal

Task

Resource

Belief

<<enumeration>>

GRLmodelElement

GRLLinkableElementElementLink 0..* 1
linksDest
0..*

dest
1

0..*

1linksSrc

0..* src
1

GRLspec

0..*

1

links
0..*

grlspec
1

GRLContainableElementActor
0..*

1

actors
0..*

grlspec
1

0..*0..1

elems

0..*

actor

0..1

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

 Rec. ITU-T Z.151 (10/2018) 21

i) Relationships

– Inherits relationships from GRLLinkableElement.

– Association with ActorRef (0..*): An Actor definition may be referenced by actor

references (see Figure 30).

– Association with CollapsedActorRef (0..*): An Actor definition may be referenced by

collapsed actor references (see Figure 30).

c) Semantics

 An Actor definition is a GRL linkable element that may contain intentional elements and

indicators describing its intentions, capabilities and related measures. An actor definition may

also depend on another actor definition to satisfy some intentional element or indicator. How

well an actor definition is satisfied depends on the satisfaction level and importance of the

intentional elements and indicators it contains.

 A value of 0 for importanceQuantitative means that the actor is not important to the overall

GRL model, whereas a value of 100 means that the actor is highly important. A value of

None for importance means that the actor is not important to the overall GRL model, whereas

a value of High means that the actor is highly important.

 The two importance attributes are taken into consideration during overall GRL model

satisfaction analysis. Only the relevant importance attribute is considered depending on the

type of analysis (qualitative or quantitative).

 It is not required for importance and importanceQuantitative to be consistent, as modellers

may want to use only one type of analysis (qualitative or quantitative). However, it is

recommended to keep them consistent if the modellers intend to switch between different

types of analysis.

d) Model

 None.

e) Examples

 Figure 11 is a GRL diagram that shows a "Telecom Provider" as a collapsed actor (left) and

as an actor with boundary (right). The collapsed actor has an importance value of 50 whereas

the actor with boundary has an importance value of 0 (hence its importance is not shown).

See clauses 7.8.3 and 7.8.6 for the details of the concrete syntax.

Figure 11 – Example: GRL collapsed actor (left) and actor with boundary (right)

7.3 GRL intentional elements

7.3.1 IntentionalElement

An IntentionalElement is a GRL containable element used for models that allow answering questions

such as why particular behaviours, informational and structural aspects were chosen to be included

in the system requirement, what alternatives were considered, what criteria were used to deliberate

among alternative options and what the reasons were for choosing one alternative over another.

Telecom
Provider

(50)

Telecom

Provider
Telecom
Provider

(50)

Telecom

Provider

22 Rec. ITU-T Z.151 (10/2018)

Intentional elements may be included in actor definitions and they can be linked to each other in

different ways. There are different types of intentional elements specified. Intentional elements can

be decomposed and they can be given a quantitative or qualitative importance level when included in

an actor definition (see Figure 10).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLContainableElement.

– type (IntentionalElementType): The type of intentional element.

– decompositionType (DecompositionType): The type of decomposition when this

intentional element is the source of decomposition link, if any. Default value is AND.

ii) Relationships

– Inherits relationships from GRLContainableElement.

– Uses IntentionalElementType enumeration.

– Uses DecompositionType enumeration.

iii) Constraints

– Inherits constraints from GRLContainableElement.

– If an IntentionalElement is associated with an Actor definition, then there is only one

IntentionalElement with this name associated with the Actor definition.

– If an IntentionalElement is not associated with any Actor definition, then there is only

one IntentionalElement with this name that is not associated with any Actor definition.

b) Concrete grammar

 An intentional element does not have a visual representation, but intentional element

references (IntentionalElementRef) in GRL diagrams do have a graphical representation.

i) Relationships

– Inherits relationships from GRLContainableElement.

c) Semantics

 An IntentionalElement describes an intention or a capability. An intentional element

contained in an Actor definition is held by this actor definition and therefore describes part

of its intentions or capabilities.

d) Model

 None.

e) Examples

 Figure 12 is a GRL diagram that shows five intentional elements, one for each type.

Z.151(12)_F12

Voice
connection

be setup

High
reliability

Wireless is
less reliable than

Internet

Make voice
connection

over wireless

Internet
connection

Figure 12 – Example: GRL intentional elements

– "Voice Connection Be Setup" is defined as a (hard) goal because this is something that

can be achieved entirely.

– "High Reliability" is defined as a softgoal because this is something that can never be

entirely achieved (but that can be sufficiently achieved).

 Rec. ITU-T Z.151 (10/2018) 23

– "Make Voice Connection Over Wireless" is defined as a task because this is a particular

way of setting up a connection.

– "Internet Connection" is defined as a resource because this is a physical entity that can

be available or not.

– "Wireless is less reliable than Internet" is defined as a belief because this provides a

rationale for some of the design decisions.

 See clauses 7.1.4, 7.3.2, and 7.8.5 for the details of the concrete syntax.

 The GRL diagram in Figure 13 shows a goal and a task contained by a "Telecom Provider"

actor. The goal has an importance value of 50 whereas the task has an importance value of 0

(hence its importance is not shown).

Z.151(12)_F13

Make voice
connection

over wireless

Telecom
provider

Voice
connection

be setup (50)

Figure 13 – Example: GRL actor that contains a goal and a task

7.3.2 IntentionalElementType

An intentional element can be a Goal, Softgoal, Task, Resource or Belief (see Figure 10).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by IntentionalElement.

iii) Constraints

– None.

b) Concrete grammar

 The symbols in Figure 14 are used to denote the various types of GRL intentional elements.

See usage in IntentionalElementRef, clause 7.8.5.

Z.151(12)_F14

Goal Softgoal BeliefResourceTask

Figure 14 – Symbol: GRL intentional element types

c) Semantics

– A (hard) Goal is a condition or state of affairs in the world that the stakeholders would

like to achieve. How the goal is to be achieved is not specified, allowing alternatives to

be considered. A goal can be either a business goal or a system goal. A business goal

expresses goals regarding the business or state of the business affairs the individual or

organization wishes to achieve. A system goal expresses goals the target system should

achieve and generally describes the functional requirements of the target information

system.

24 Rec. ITU-T Z.151 (10/2018)

– A Softgoal is a condition or state of affairs in the world that the actor would like to

achieve, but unlike in the concept of (hard) goal, there are no clear-cut criteria for whether

the condition is achieved, and it is up to subjective judgement and interpretation of the

modeller to judge whether a particular state of affairs in fact achieves sufficiently the

stated softgoal. Softgoals are often used to describe qualities and non-functional aspects

such as security, robustness, performance, usability, etc.

– A Task specifies a particular way of doing something. When a task is part of the

decomposition of a (higher-level) task, this restricts the higher-level task to that particular

course of action. Tasks can also be seen as the solutions in the target system, which will

address (or operationalize) goals and softgoals. These solutions provide operations,

processes, data representations, structuring, constraints and agents in the target system to

meet the needs stated in the goals and softgoals.

– A Resource is a physical or informational entity, for which the main concern is whether

it is available.

– A Belief is used to represent design rationale. Beliefs make it possible for domain

characteristics to be considered and properly reflected in the decision-making process,

hence facilitating later review, justification and change of the system, as well as

enhancing traceability.

7.4 GRL links

7.4.1 ElementLink

An ElementLink connects two GRL linkable elements and represents the intentional relationship

existing between them. ElementLink abstracts the commonalities of decomposition, contribution and

dependency links (see Figure 10).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLmodelElement (see Figure 9).

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLspec (1): An ElementLink is contained in the GRL specification (see

Figure 8).

– Association with GRLLinkableElement (src, 1): An ElementLink has one source GRL

linkable element.

– Association with GRLLinkableElement (dest, 1): An ElementLink has one destination

GRL linkable element.

– ElementLink is a superclass of Contribution, Dependency and Decomposition.

iii) Constraints

– Inherits constraints from GRLmodelElement.

– All instances of ElementLink shall appear in one of its subclasses (that is, metaclass

ElementLink is abstract).

– The source and destination GRL linkable elements shall be different.

b) Concrete grammar

 The concrete syntax for ElementLink is further defined in its subclasses.

i) Relationships

– Inherits relationships from GRLmodelElement (see Figure 30).

 Rec. ITU-T Z.151 (10/2018) 25

– Association with LinkRef (0..*): An ElementLink may have link references (see

Figure 30).

c) Semantics

 An ElementLink is a directed link that connects a source actor definition, intentional element

or indicator to a different destination actor definition, intentional element or indicator. The

semantics of the link is provided by the subclass used.

7.4.2 Contribution

A Contribution link describes how a source intentional element or source indicator contributes to the

satisfaction of a destination intentional element. A contribution is an effect that is a primary desire

during modelling, whereas a correlation expresses knowledge about interactions between intentional

elements in different categories. A correlation link is the same as a contribution link except that the

correlation is not an explicit desire, but is a side-effect and that correlations are only used with

intentional elements and not with indicators (see Figure 10).

a) Abstract grammar

i) Attributes

– Inherits attributes from ElementLink.

– contribution (ContributionType): The qualitative level of contribution. Default value is

Unknown.

– quantitativeContribution (Integer): The quantitative level of contribution. Default value

is 0 (see clause 9.2.2).

– correlation (Boolean): Indicates whether the link is a regular contribution (false) or a

correlation (true). Default value is false.

ii) Relationships

– Inherits relationships from ElementLink.

– Uses ContributionType enumeration.

iii) Constraints

– Inherits constraints from ElementLink.

– Actor definitions can neither be the source nor the destination of a contribution.

– The destination linkable element (dest) shall not be an intentional element of type

Resource or Belief.

– The destination linkable element (dest) shall not be an indicator.

– If the source linkable element (src) is an indicator, then correlation is false.

– quantitativeContribution –100 and quantitativeContribution 100.

b) Concrete grammar

 A Contribution does not have a visual representation, but link references (LinkRef) in GRL

diagrams do provide a graphical representation.

i) Relationships

– Inherits relationships from ElementLink.

c) Semantics

 A Contribution defines the level of impact that the satisfaction of a source intentional element

or indicator has on the satisfaction of a destination intentional element. If the impact is

qualitative (positive or negative, sufficient or insufficient; see the contributions in

clause 7.4.3), then contribution will be used in goal model evaluations. The impact can be

26 Rec. ITU-T Z.151 (10/2018)

also quantitative (value in [–100, 100]) in which case quantitativeContribution will be used

in goal model evaluations. A correlation link (correlation is true) has the same impact on an

evaluation as regular contribution links, but it emphasizes side-effects between intentional

elements in different categories or actor definitions. Correlations are not used with indicators.

 Only the relevant contribution attribute is considered depending on the type of analysis

(qualitative or quantitative). It is not required for contribution and quantitativeContribution to

be consistent, as modellers may want to use only one type of analysis (qualitative or

quantitative). However, it is recommended to keep them consistent if the modellers intend to

switch between different types of analysis.

NOTE – Semantic variation: Modellers are allowed to impose additional stylistic constraints on the

well-formedness of contributions. For example, as it is possible for contribution links to be qualitative

and partial, while goals, tasks and resources represent clear-cut concepts, a constraint is able to specify

that intentional elements only contribute to softgoals, i.e. the destination intentional element has to

be a softgoal.

d) Model

 None.

e) Example

 Figure 15 is a GRL diagram that shows three contributions and two correlations linking five

intentional elements.

Z.151(12)_F15

High
reliability

Make voice
connection

over wireless

Make voice
connection

over Internet

Minimize
spectrum usage

Wireless is
less reliable than

Internet

Figure 15 – Example: GRL contributions and correlations

– "Make Voice Connection Over Wireless" has a positive and sufficient contribution on

"High Reliability".

– "Make Voice Connection Over Internet" has some positive contribution on "High

Reliability".

– "Wireless is less reliable than Internet" has some negative contribution on "High

Reliability".

– "Make Voice Connection Over Wireless" has some negative correlation (side-effect) on

"Minimize Spectrum Usage".

– "Make Voice Connection Over Internet" has some positive correlation (side-effect) on

"Minimize Spectrum Usage".

 See clauses 7.4.3 and 7.8.7 for the details of the concrete syntax.

7.4.3 ContributionType

A qualitative contribution level in a Contribution link can take one of the following values: Make,

Help, SomePositive, Unknown, SomeNegative, Hurt, Break (see Figure 10).

 Rec. ITU-T Z.151 (10/2018) 27

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by Contribution and by ContributionChange (see Figure 29).

iii) Constraints

 – None.

b) Concrete grammar

 Figure 16 lists the icons used to annotate GRL contribution links (including correlation links)

according to the value of their (qualitative) contribution. See usage in LinkRef, clause 7.8.7.

Z.151(12)_F16

Make Help SomePositive Unknown SomeNegative Break Hurt

Figure 16 – Symbol: GRL contribution types

c) Semantics

 The qualitative contribution of a source intentional element or indicator to a destination

intentional element can be one of the following values based on the degree (positive or

negative) and sufficiency of the contribution to the satisfaction of the destination intentional

element:

– Make: The contribution is positive and sufficient.

– Help: The contribution is positive but not sufficient.

– SomePositive: The contribution is positive, but the extent of the contribution is unknown.

– Unknown: There is some contribution, but the extent and the degree (positive or negative)

of the contribution is unknown.

– SomeNegative: The contribution is negative, but the extent of the contribution is

unknown.

– Break: The contribution of the contributing element is negative and sufficient.

– Hurt: The contribution is negative but not sufficient.

d) Model

 An alternative presentation of the Unknown contribution is to simply omit the Unknown icon

on the contribution link. This makes GRL diagrams less cluttered, without loss of

information.

7.4.4 Dependency

A Dependency describes how a source actor definition (the depender) depends on a destination actor

definition (the dependee) for an intentional element or indicator (the dependum). Often, the modeller

will use two consecutive dependency links (from depender to dependum, and from dependum to

dependee) to express detailed dependencies, but dependencies can be used in more generic situations

as well (see Figure 10).

The dependum specifies what the dependency is about, i.e., the intentional element or indicator

around which a dependency relationship centres. With an intentional element or indicator as a source

of the dependency, the depender may specify why it depends on the dependee for the dependum. With

28 Rec. ITU-T Z.151 (10/2018)

an intentional element or indicator as a target of the dependency, the dependee may specify how it is

required to provide or satisfy the dependum.

a) Abstract grammar

i) Attributes

– Inherits attributes from ElementLink.

ii) Relationships

– Inherits relationships from ElementLink.

iii) Constraints

– Inherits constraints from ElementLink.

– Intentional elements of type Belief can neither be the source nor the destination of a

dependency.

– At least one of the GRL linkable elements linked by a dependency link shall be an actor

definition or an intentional element contained in an actor definition or an indicator

contained in an actor definition.

– If the source and destination linked by a dependency link are intentional elements or

indicators, then these intentional elements and indicators shall not be contained in the

same actor definition.

b) Concrete grammar

 A Dependency does not have a visual representation, but link references (LinkRef) in GRL

diagrams do provide a graphical representation for dependencies.

i) Relationships

– Inherits relationships from ElementLink.

c) Semantics

 Dependencies enable reasoning about how actor definitions depend on each other to achieve

their goals. The satisfaction level of the depender may be limited by the ability of the

dependee to provide the dependum to the depender.

 Dependency links can be used in a number of configurations including but not limited to the

ones described below. According to the required level of detail, intentional elements or

indicators inside actor definitions can be used as source and/or destination of a dependency

link. Assume Depender and Dependee are different instances of Actor definition, D1 and D2

are different instances of Dependency, and Why, How and What are different instances of

GRLContainableElement. Why is inside Depender, How is inside Dependee and What is not

inside any actor definition. A named arrow (D) indicates the presence of a dependency

link D between the source and target GRL linkable elements involved.

i) Depender D1 What D2 Dependee

– Depender depends on Dependee for What. What represents the dependum.

ii) Depender D1 How

– Depender depends on Dependee for How. The dependum is unknown.

iii) Why D1 What D2 Dependee

– Why in Depender depends on Dependee for What. What represents the dependum.

iv) Why D1 How

– Why in Depender depends on Dependee for How. The dependum is unknown.

v) Depender D1 Dependee

 Rec. ITU-T Z.151 (10/2018) 29

– Depender depends on Dependee. The dependum is unknown.

vi) Why D1 What D2 How

– Why in Depender depends on How in Dependee for What. What represents the

dependum.

d) Model

 None.

e) Examples

 The following examples are GRL diagrams illustrating the six configurations discussed in

the semantics clause. The same numbering scheme is used. Explanations follow each

diagram. The types of intentional elements used here are simply examples and do not

preclude other usages in dependencies.

Z.151(12)_F17

Store
Telecom
provider

Internet
connection

Figure 17 – Example: GRL dependencies (configuration 1)

i) The Store depends on the Telecom Provider to provide an Internet Connection

(Figure 17). This is a configuration that focuses solely on strategic dependencies between

actors. Why and how the dependum is provided are unknown.

Z.151(12)_F18

Telecom
provider

Store
Create
account

Figure 18 – Example: GRL dependencies (configuration 2)

ii) The Store depends on the Telecom Provider to create an account (Figure 18). The

dependum and why it is required are unknown.

Z.151(12)_F19

Telecom
provider

Internet
connection

Increase
visibility

Store

Figure 19 – Example: GRL dependencies (configuration 3)

iii) To increase its visibility, the Store depends on the Telecom Provider to provide an

Internet Connection (Figure 19). How the dependum is provided is unknown.

30 Rec. ITU-T Z.151 (10/2018)

Z.151(12)_F20

Telecom
provider

Create
account

Increase
visibility

Store

Figure 20 – Example: GRL dependencies (configuration 4)

iv) To increase its visibility, the Store depends on the Telecom Provider to create an account

(Figure 20). The dependum is unknown.

Z.151(12)_F21

Telecom
providerStore

Figure 21 – Example: GRL dependencies (configuration 5)

v) The Store depends on the Telecom Provider (Figure 21). This is a configuration that is

typical of preliminary goal models that require further refinement. A dependency is

identified, but what, why and how are still unknown.

Z.151(12)_F22

Internet
connection

Telecom
provider

Create
account

Increase
visibility

Store

Figure 22 – Example: GRL dependencies (configuration 6)

vi) To increase its visibility, the Store depends on the Telecom Provider to provide an

Internet Connection by creating an account (Figure 22). This is a configuration that

details the dependum (the Internet connection) together with why it is required and how

it is provided.

7.4.5 Decomposition

Decomposition links provide the ability to define what source intentional elements need to be satisfied

or available in order for a target intentional element to be satisfied. The type of decomposition (AND,

XOR, IOR) is specified by the decompositionType attribute of the target intentional element.

Therefore, an intentional element can be decomposed using one decomposition type only (see

Figure 10).

a) Abstract grammar

i) Attributes

– Inherits attributes from ElementLink.

ii) Relationships

– Inherits relationships from ElementLink.

iii) Constraints

– Inherits constraints from ElementLink.

– Actor definitions can neither be the source nor the destination of a decomposition.

 Rec. ITU-T Z.151 (10/2018) 31

– Intentional elements of type Belief can neither be the source nor the destination of a

decomposition.

– Indicators cannot be the destination of a decomposition.

b) Concrete grammar

 A Decomposition does not have a visual representation, but link references (LinkRef) in GRL

diagrams do provide a graphical representation.

i) Relationships

– Inherits relationships from ElementLink.

c) Semantics

 Decomposition links connect the essential parts of an intentional element, which include

subtasks that shall be performed, subgoals that shall be achieved, resources that shall be

accessible and softgoals that shall be satisfied. There is no ordering between the decomposing

elements.

 A Decomposition link enables the hierarchical decomposition (AND) of a target intentional

element by a source element. A target intentional element can be decomposed into many

source intentional elements using as many decomposition links. All of the source intentional

elements are necessary for the target intentional element to be satisfied.

 A Decomposition link also enables the description of alternative means of satisfying a target

intentional element (XOR for mutually exclusive alternatives, or IOR for alternatives that are

not mutually exclusive). One of the source intentional elements is sufficient for the target

intentional element to be satisfied.

NOTE – Semantic variation: Modellers are allowed to impose additional stylistic constraints on the well-

formedness of decomposition links. For example, tasks could be limited to AND decomposition, so that if the

target of a decomposition link is an intentional element of type Task, then its decomposition type has to be

AND.

d) Model

 None.

e) Examples

 Figure 23 shows two representations of XOR decompositions. On the left, the goal is

decomposed into two mutually exclusive alternatives presented as tasks. On the right, the

same decomposition is presented using means-end relationships (with the same meaning).

See clauses 7.4.6 and 7.8.7 for the details of the concrete syntax.

Z.151(12)_F23

Voice
connection

be setup

Make voice
connection

over wireless

Make voice
connection

over Internet

Voice
connection

be setup

Make voice
connection

over wireless

Make voice
connection

over Internet

XOR

Figure 23 – Example: GRL XOR decomposition: normal (left)

and means-end (right) presentations

32 Rec. ITU-T Z.151 (10/2018)

7.4.6 DecompositionType

a) Abstract grammar

 An intentional element can be decomposed in one of three ways according to its

decompositionType attribute: AND, XOR or IOR (see Figure 10).

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by IntentionalElement.

iii) Constraints

 None.

b) Concrete grammar

 There is no specific icon for decomposition types. The name of the decomposition type itself

(AND, XOR or IOR) is used. See usage in LinkRef, clause 7.8.7.

c) Semantics

– AND decomposition: The satisfaction of each of the sub-intentional elements is necessary

to achieve the target.

– XOR decomposition: The satisfaction of one and only one of the sub-intentional elements

is necessary to achieve the target.

– IOR decomposition: The satisfaction of one of the sub-intentional elements is sufficient

to achieve the target, but many sub-intentional elements can be satisfied.

7.5 GRL strategies

GRL strategies are sets of initial evaluation values given to some containable elements

(i.e., intentional elements and indicators) in a GRL model. For indicators, the initial evaluation values

are based on real-world measures. These evaluation values, which can be quantitative or qualitative,

are satisfaction levels that can then be propagated to the other intentional elements and indicators in

the GRL model through the various decomposition, contribution and dependency links connecting

them. Evaluations are used to assess how well goals in a model are achieved in a given context, which

enables the selection of alternatives that represent appropriate trade-offs among the often-conflicting

goals of the stakeholders/actors involved. A good strategy provides rationale and documentation for

decisions leading to requirements, providing better context for standards/system developers and

implementers while avoiding unnecessary re-evaluations of worse alternative strategies.

NOTE 1 – The name intElement is used for backward compatibility with previous versions of this

Recommendation. A more appropriate name would be contElement.

NOTE 2 – The name group is used for backward compatibility with previous versions of this

Recommendation. A more appropriate name would be groups.

 Rec. ITU-T Z.151 (10/2018) 33

Figure 24 – Abstract grammar: GRL evaluation strategies

7.5.1 StrategiesGroup

A StrategiesGroup is a collection of evaluation strategies. It is used to organize evaluation strategies

and to manipulate them as a group (see Figure 24).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLmodelElement.

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLspec (1): A StrategiesGroup is contained in the GRL specification

(see Figure 8).

– Association with EvaluationStrategy (0..*): A StrategiesGroup may refer to evaluation

strategies.

iii) Constraints

– Inherits constraints from GRLmodelElement.

b) Concrete grammar

 A StrategiesGroup does not have a graphical visual representation. Optionally, a

StrategiesGroup is visualized using the textual syntax for StrategiesGroup as specified in

Annex B.

i) Relationships

– Inherits relationships from GRLmodelElement.

c) Semantics

 None (StrategiesGroup is a structural concept only).

7.5.2 EvaluationStrategy

An EvaluationStrategy is a collection of evaluations. It is used to define satisfaction levels for a subset

of the intentional elements of a GRL specification. An evaluation strategy provides the initial context

for GRL model analysis based on a satisfaction propagation algorithm. The same evaluation strategy

may be part of multiple groups of strategies (see Figure 24).

GRLmodelElement QualitativeLabel

Denied

WeaklyDenied

WeaklySatisfied

Satisfied

Conflict

Unknown

None

<<enumeration>>

GRLContainableElement

Evaluation

evaluation : Integer = 0

qualitativeEvaluation : QualitativeLabel = None

exceeds : Boolean = false

1

0..*intElement

1 evals

0..*

StrategiesGroup EvaluationStrategy

0..*

1

evaluations0..*

strategies1

0..*1..*

strategies

0..*

group

1..* 0..*

0..*

includedStrategies

0..*

{ordered}

parentStrategies

0..*

34 Rec. ITU-T Z.151 (10/2018)

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLmodelElement.

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLspec (1): An EvaluationStrategy is contained in the GRL specification

(see Figure 8).

– Composition of Evaluation (0..*): An EvaluationStrategy may contain evaluations.

– Association with StrategiesGroup (1..*): An EvaluationStrategy is referenced by at least

one group of strategies.

– Association with EvaluationStrategy (parentStrategies, 0..*): An EvaluationStrategy

may be included by evaluation strategies.

– Association with EvaluationStrategy (includedStrategies, 0..*) {ordered}: An

EvaluationStrategy may have an ordered collection of included evaluation strategies.

iii) Constraints

– Inherits constraints from GRLmodelElement.

– The strategy containment hierarchy established by the includedStrategies relationship

does not contain any cycles (i.e., an EvaluationStrategy shall not appear more than once

on a path from a top node to a leaf node in the containment hierarchy).

– Let LE be the list of Evaluations of an EvaluationStrategy. Let LCE be the list of

GRLContainableElements associated with at least one Evaluation in LE. LCE shall not

contain the same GRLContainableElement more than once.

– Let LE be the list of Evaluations of an EvaluationStrategy and the list of Evaluations of

all includedStrategies of the same EvaluationStrategy. Let LEI be the subset of LE that

contains only those Evaluations that are associated with a GRLContainableElement of

type Indicator. Let LI be the list of Indicators associated with at least one Evaluation in

LEI. For each Indicator in LI, there exists at least one Evaluation in LEI that is associated

with the indicator and that is also associated with an IndicatorConversion. For each

Indicator in LI, there exists at least one Evaluation in LEI that is associated with the

indicator and that also contains an IndicatorEvaluation.

b) Concrete grammar

 An EvaluationStrategy does not have a graphical visual representation. Optionally, an

EvaluationStrategy is visualized using the textual syntax for EvaluationStrategy as specified

in Annex B.

i) Relationships

– Inherits relationships from GRLmodelElement.

c) Semantics

 The Evaluations contained in an EvaluationStrategy represent an initial context for the

evaluation of a GRL model. Using a model evaluation algorithm (see clause 11.1), the initial

values specified in the evaluations are propagated to the intentional elements and indicators

that do not have any initial evaluation value, through the element links that connect them.

 If an evaluation strategy contains another evaluation strategy, the evaluation algorithm

considers the union of the Evaluations. For conflicting Evaluations (i.e., evaluations of the

same containable element) however, the Evaluation of the containing evaluation strategy

overrides the Evaluation of the contained evaluation strategy. If more than one evaluation

strategy is included, then the last evaluation strategy in the ordered list of included evaluation

 Rec. ITU-T Z.151 (10/2018) 35

strategies takes precedence over the previous ones (i.e., the evaluations are applied beginning

with the first included evaluation strategy in the ordered list; then each other evaluation

strategy is applied up to the last included evaluation strategy, and finally the evaluations of

the including evaluation strategy are applied).

7.5.3 Evaluation

An Evaluation provides initial quantitative and qualitative evaluation values to a containable element

(see Figure 24).

a) Abstract grammar

i) Attributes

– evaluation (Integer): Initial quantitative satisfaction value (also called evaluation value)

of the associated intentional element. Default value is 0 (see clause 9.2.2).

– qualitativeEvaluation (QualitativeLabel): Initial qualitative satisfaction value (also called

evaluation value) of the associated intentional element. Default value is None.

– exceeds (Boolean): Indicates whether the quantitative and qualitative evaluations exceed

expectations (true) or not (false). Default value is false.

ii) Relationships

– Contained by EvaluationStrategy (1): An Evaluation is contained in one evaluation

strategy.

– Composition of IndicatorEvaluation (0..1): An Evaluation may contain one set of real-

world values (see Figure 26).

– Association with GRLContainableElement (1): An Evaluation provides initial evaluation

values to one containable element.

– Association with IndicatorConversion (0..1): An Evaluation may have one conversion

method to convert real-world values into GRL evaluation values (see Figure 26).

– Uses QualitativeLabel enumeration.

iii) Constraints

– evaluation –100 and evaluation 100.

– If exceeds is true, then evaluation is 100 and qualitativeEvaluation is Satisfied.

– If the intElement of an Evaluation is of type Indicator, then the conversion shall be

specified for the Evaluation.

– If the intElement of an Evaluation is of type Indicator, then the unit of the Indicator of the

Evaluation is the same as the unit of the IndicatorConversion of the Evaluation.

b) Concrete grammar

 An Evaluation does not have a visual representation. However, it may impact the presentation

of intentional (and indicator) element references (see clause 7.8.5).

c) Semantics

 An Evaluation defines the initial level of satisfaction of an intentional element and indicator.

In the case of indicators, the initial level of satisfaction is based on a real-world measure

(IndicatorEvaluation) and a conversion method (IndicatorConversion). If the level of

satisfaction is qualitative (see the qualitative label types in clause 7.5.4), then

qualitativeEvaluation will be used in goal model evaluations. If the level of satisfaction is

quantitative (integer value between –100 for sufficiently denied and +100 for sufficiently

satisfied, inclusively), then evaluation will be used in goal model evaluations. An evaluation

value of 0 means that the intentional element is neither satisfied nor denied.

36 Rec. ITU-T Z.151 (10/2018)

 The exceeds attribute captures the fact that the initial level of satisfaction goes beyond

expectations. This attribute is mostly used with indicators to indicate that the measured real-

world value actually exceeds the agreed upon value which, when converted into a GRL

evaluation value, results in full satisfaction.

 Only the relevant evaluation attribute is considered depending on the type of analysis

(qualitative or quantitative). It is not required for evaluation and qualitativeEvaluation to be

consistent as modellers may want to use only one type of analysis (qualitative or

quantitative). However, it is recommended to keep them consistent if the modellers intend to

switch between different types of analysis.

7.5.4 QualitativeLabel

A QualitativeLabel represents the qualitative satisfaction level of an intentional element, indicator or

actor. It is also used by conversions from qualitative real-world values to GRL evaluation values. It

can be one of the following values: Denied, WeaklyDenied, WeaklySatisfied, Satisfied, Conflict,

Unknown and None (see Figure 24).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by Evaluation and QualToQMapping (see Figure 26).

iii) Constraints

None.

b) Concrete grammar

 Figure 25 lists the icons that are used to annotate GRL intentional elements, indicators and

actors according to their (qualitative) satisfaction level for a given strategy evaluation. See

usage in ActorRef, clause 7.8.3, IntentionalElementRef, clause 7.8.5, CollapsedActorRef,

clause 7.8.6.

Denied Weakly
denied

SatisfiedWeakly
satisfied

Conflict NoneUnknown

Z.151(12)_F25

Figure 25 – Symbol: GRL qualitative labels

c) Semantics

 The qualitative satisfaction level of an intentional element or indicator can be one of the

following values based on the degree (positive or negative) and magnitude of the satisfaction:

– Denied: The intentional element or indicator is sufficiently dissatisfied.

– WeaklyDenied: The intentional element or indicator is partially dissatisfied.

– WeaklySatisfied: The intentional element or indicator is partially satisfied.

– Satisfied: The intentional element or indicator is sufficiently satisfied.

– Conflict: There are arguments strongly in favour and strongly against the satisfaction of

the intentional element or indicator.

– Unknown: The satisfaction level of the intentional element or indicator is unknown.

– None: The intentional element or indicator is neither satisfied nor dissatisfied.

 Rec. ITU-T Z.151 (10/2018) 37

d) Model

 An alternative presentation of the None satisfaction level is to simply omit the None icon on

the intentional element or indicator. This makes GRL diagrams less crowded, without loss of

information.

7.6 GRL indicators

GRL indicators represent real-world measurements in the GRL model. Two types of conversions

translate a quantitative or qualitative real-world measurement into a quantitative or qualitative GRL

evaluation value which can then be taken into consideration during GRL model analysis.

Figure 26 – Abstract grammar: GRL indicators

7.6.1 Indicator

An Indicator is a GRL containable element used for models that base GRL model analysis on real-

world measurements. An indicator substantiates qualitative or quantitative evaluation values in the

GRL model with the help of real-world data, allowing GRL model analysis to be more accurate and

realistic than with satisfaction values only. Indicators may be included in actor definitions, they can

be linked to each other in different ways and they can be given a quantitative or qualitative importance

level when included in an actor definition (see Figure 26).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLContainableElement.

– unit (String): Indicates the measurement unit of the real-world values. Default value is

the empty String "".

ii) Relationships

– Inherits relationships from GRLContainableElement.

iii) Constraints

– Inherits constraints from GRLContainableElement.

– If an Indicator is associated with an Actor definition, then there is only one Indicator with

this name associated with the Actor definition.

Indicator

unit : String = ""

LinearConversion

targetValue : Integer = 0

thresholdValue : Integer = 0

worstValue : Integer = 0

QualToQMapping

realWorldLabel : String

evaluation : int

qualitativeEvaluation : QualitativeLabel

exceeds : Boolean

QualToQMappings0..*

1mappings

0..*
mappingSet

1

GRLContainableElement

IndicatorConversion

unit : String = ""
IndicatorEvaluation

realWorldValue : Integer = 0

realWorldLabel : String = ""

Evaluation1 0..*

intElement

1

evals

0..*

0..1

0..*

conversion 0..1

evals
0..*

0..1

1

indicatorEval 0..1

eval 1

GRLmodelElement

QualitativeLabel

Denied

WeaklyDenied

WeaklySatisfied

Satisfied

Conflict

Unknown

None

<<enumeration>>

38 Rec. ITU-T Z.151 (10/2018)

– If an Indicator is not associated with any Actor definition, then there is only one Indicator

with this name that is not associated with any Actor definition.

b) Concrete grammar

 An indicator does not have a visual representation, but intentional element (or indicator)

references (IntentionalElementRef) in GRL diagrams do have a graphical representation.

i) Relationships

– Inherits relationships from GRLContainableElement.

c) Semantics

 An Indicator describes a qualitative or quantitative real-world measurement

(IndicatorEvaluation contained by Evaluation associated with superclass

GRLContainableElement of the indicator). This measurement is converted into a qualitative

or quantitative GRL evaluation value (Evaluation) as defined by a conversion method

(IndicatorConversion associated with the same Evaluation). An Indicator may have several

IndicatorEvaluations, i.e., one for each EvaluationStrategy.

 An indicator contained in an Actor definition belongs to this actor definition and therefore

describes an actor-specific measurement.

 The unit attribute of Indicator defines the unit of the real-world measurements of the indicator

as defined in the previous paragraph (i.e., realWorldValue or realWorldLabel of

IndicatorEvaluation). If decimal points are desired for the realWorldValue, then the unit is

adjusted as the realWorldValue is always an integer value. For example, to set the

realWorldValue to $1.15, the realWorldValue is set to 115 and the unit of the Indicator is set

to "cents". Similarly, to set the realWorldValue to 3.5%, the realWorldValue is set to 35 and

the unit is set to "1/10 of a percent".

 The unit of Indicator and unit of all its IndicatorConversions applied to the real-world

measurements of the indicator (i.e., the realWorldValues or realWorldLabels of all

IndicatorEvaluations) shall be the same.

d) Model

 None.

e) Examples

 Figure 27 is a GRL diagram with one indicator which captures the failure rate of voice

connections over the Internet.

Z.151(12)_F27

Failure rate for
voice connection

over Internet

Figure 27 – Example: GRL indicator

 See clauses 7.1.4 and 7.8.5 for the details of the concrete syntax.

 The GRL diagram in Figure 28 shows a task and an indicator contained by a "Telecom

Provider" actor. The indicator has an importance value of 40 while the task has an importance

value of 100. The Contribution link between the indicator and the task has a

quantitativeContribution of 100. The indicator also has a Dependency link with a task in a

"Technician" actor.

 Rec. ITU-T Z.151 (10/2018) 39

Z.151(12)_F28

Telecom
provider Make voice

connection over
Internet (100)

Correctly
setup logging

equipment

Technician

Failure rate for
voice connection
over Internet (40)

100

Figure 28 – Example: GRL model with an indicator

7.6.2 IndicatorEvaluation

An IndicatorEvaluation provides initial quantitative and qualitative real-world values to a containable

element of type Indicator (see Figure 26).

a) Abstract grammar

i) Attributes

– realWorldValue (Integer): Initial quantitative real-world value of the associated indicator.

Default value is 0 (see clause 9.2.2).

– realWorldLabel (String): Initial qualitative real-world value of the associated indicator.

Default value is the empty String "".

ii) Relationships

– Contained by Evaluation (1): An IndicatorEvaluation is contained in one evaluation.

iii) Constraints

– The GRLContainableElement of the Evaluation containing an IndicatorEvaluation shall

be of type Indicator.

b) Concrete grammar

 An IndicatorEvaluation does not have a graphical visual representation. However, it may

impact the presentation of indicator element references (see clause 7.8.5).

c) Semantics

 An IndicatorEvaluation defines the initial real-world values of an indicator. If the real-world

value is qualitative, then realWorldLabel will be used when converting the real-world value

into GRL evaluations. If the level of satisfaction is quantitative, then realWorldValue will be

used by the conversion. The conversion method is defined by the IndicatorConversion of the

Evaluation containing the IndicatorEvaluation.

 Only the relevant real-world value is considered depending on the type of conversion. It is

not required for realWorldValue and realWorldLabel to be consistent as modellers may want

to use only one type of conversion. However, it is recommended to keep them consistent if

the modellers intend to switch between different types of conversions.

7.6.3 IndicatorConversion

An IndicatorConversion defines which quantitative and qualitative real-world values to convert into

GRL evaluation values (see Figure 26).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLmodelElement (see Figure 9).

40 Rec. ITU-T Z.151 (10/2018)

– unit (String): Indicates the measurement unit of the real-world values. Default value is

the empty String "".

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLspec (1): An IndicatorConversion is contained in the GRL

specification (see Figure 8).

– Association with Evaluation (0..*): An IndicatorConversion may convert the initial real-

world values associated with many Evaluations.

– IndicatorConversion is a superclass of LinearConversion and QualToQMappings.

iii) Constraints

– Inherits constraints from GRLmodelElement.

– All instances of IndicatorConversion shall appear in one of its subclasses (that is,

metaclass IndicatorConversion is abstract).

b) Concrete grammar

 An IndicatorConversion does not have a graphical visual representation. Optionally, concrete

syntax for the subclasses of IndicatorConversion is defined using the textual syntax for the

subclasses as specified in Annex B.

i) Relationships

– Inherits attributes from GRLmodelElement (see Figure 30).

c) Semantics

 The subclasses of IndicatorConversion specify how the initial real-world values of an

indicator (IndicatorEvaluation of the associated Evaluation) are converted into GRL

evaluation values (Evaluation). These subclasses may have additional attributes and

relationships as required for the conversion.

 An IndicatorConversion may only be chosen for an Indicator, if the unit of both is the same.

For more details on units and decimal points for real-world values, see Indicator, clause 7.6.1.

7.6.4 LinearConversion

A LinearConversion converts quantitative real-world values into quantitative and qualitative GRL

evaluation values based on linear intrapolation (see Figure 26).

a) Abstract grammar

i) Attributes

– Inherits attributes from IndicatorConversion.

– targetValue (Integer): Indicates the best result that can be measured for this quantitative

real-world value. Default value is 0 (see clause 9.2.2).

– thresholdValue (Integer): Indicates the measurement result where the quantitative real-

world value is neither negative nor positive but neutral. Default value is 0 (see

clause 9.2.2).

– worstValue (Integer): Indicates the worst result that can be measured for this quantitative

real-world value. Default value is 0 (see clause 9.2.2).

ii) Relationships

– Inherits relationships from IndicatorConversion.

iii) Constraints

– Inherits constraints from IndicatorConversion.

 Rec. ITU-T Z.151 (10/2018) 41

– The three value attributes of a LinearConversion are either sorted in ascending or

descending order (i.e., either (i) the targetValue is greater than or equal to the

thresholdValue and the thresholdValue is greater than or equal to the worstValue or (ii)

the targetValue is less than or equal to the thresholdValue and the thresholdValue is less

than or equal to the worstValue).

b) Concrete grammar

 A LinearConversion does not have a graphical visual representation. Optionally, a

LinearConversion is visualized using the textual syntax for LinearConversion as specified in

Annex B.

i) Relationships

– Inherits relationships from IndicatorConversion.

c) Semantics

 A LinearConversion specifies three real-world values, i.e., the targetValue, the

thresholdValue and the worstValue, and then maps the targetValue to the GRL evaluation

value 100, the thresholdValue to the GRL evaluation value 0 and the worstValue to the GRL

evaluation value –100. An IndicatorEvaluation defines a quantitative real-world value R

(realWorldValue) that is to be converted by the LinearConversion associated with the

IndicatorEvaluation through an Evaluation. A real-world value R that falls between the

targetValue and the thresholdValue is intrapolated to the [0, 100] GRL evaluation value range

according to the formula: (R – thresholdValue)/(targetValue – thresholdValue) × 100. A real-

world value R that falls between the thresholdValue and the worstValue is intrapolated to the

[–100, 0] GRL evaluation value range according to the formula: (R –

thresholdValue)/(worstValue – thresholdValue) × (–100).

 If the targetValue is the same as the thresholdValue or the worstValue is the same as the

thresholdValue, then the result of the conversion is the GRL evaluation value of 0. If R is

outside the [targetValue, worstValue] real-world value range, then the result of the

conversion is the GRL evaluation value of 100, if R is beyond the targetValue. In this case,

the exceeds value is set to true. In all other cases, the exceeds value is set to false. If R is

beyond the worstValue, then the result of the conversion is the GRL evaluation value of –100.

NOTE – Semantic variation: The GRL qualitativeEvaluation value is calculated based on the

resulting GRL evaluation value and a mapping from quantitative GRL evaluation values to

qualitative GRL evaluation values. One possible mapping is shown in Table 1, but modellers are

allowed to define any other mapping deemed appropriate.

Table 1 – GRL mapping from quantitative to qualitative evaluation values

Quantitative value Qualitative value

–100 Denied

(–100, 0) WeaklyDenied

0 None

(0, 100) WeaklySatisfied

100 Satisfied

d) Model

 None.

42 Rec. ITU-T Z.151 (10/2018)

e) Examples

 Table 2 gives an example for a linear conversion based on the GRL model in Figure 28,

assuming that the unit of measurement for the indicator in Figure 28 is percentage. The linear

conversion specifies the targetValue as 0%, the thresholdValue as 5% and the worstValue as

100%, and then maps these values to the GRL evaluation values 100, 0 and –100,

respectively. Three sample real-world values and their corresponding GRL evaluation values

are also given. The first two use the first formula, while the last one uses the second formula

specified in this clause.

Table 2 – GRL linear conversion

 Target Threshold Worst Example 1 Example 2 Example 3

Real-world

value

0% 5% 100% 1% 3.5% 45%

GRL evaluation

value

100 0 –100 (1–5)/(0–5) ×

100 = 80

(3.5–5)/(0–5) ×

100 = 30

(45–5)/(100–5) ×

(–100) = –42

7.6.5 QualToQMappings

A QualToQMappings converts qualitative real-world values into quantitative and qualitative GRL

evaluation values based on explicit mappings (see Figure 26).

a) Abstract grammar

i) Attributes

– Inherits attributes from IndicatorConversion.

ii) Relationships

– Inherits relationships from IndicatorConversion.

– Composition of QualToQMapping (0..*): A QualToQMappings conversion may contain

many mappings.

iii) Constraints

– Inherits constraints from IndicatorConversion.

b) Concrete grammar

 A QualToQMappings conversion does not have a graphical visual representation. Optionally,

a QualToQMappings conversion is visualized using the textual syntax for QualToQMappings

as specified in Annex B.

i) Relationships

– Inherits relationships from IndicatorConversion.

c) Semantics

 None (QualToQMappings is a structural concept only).

7.6.6 QualToQMapping

A QualToQMapping converts a single qualitative real-world value into quantitative and qualitative

GRL evaluation values based on explicit mappings (see Figure 26).

a) Abstract grammar

i) Attributes

– realWorldLabel (String): Indicates a qualitative, measurable, real-world value.

 Rec. ITU-T Z.151 (10/2018) 43

– evaluation (Integer): Indicates the mapped initial quantitative satisfaction value (also

called evaluation value) (see clause 9.2.2).

– qualitativeEvaluation (QualitativeLabel): Indicates the mapped initial qualitative

satisfaction value (also called evaluation value).

– exceeds (Boolean): Indicates whether the mapped values exceed expectations (true) or

not (false).

ii) Relationships

– Contained by QualToQMappings (1): A QualToQMapping is contained in one

QualToQMappings conversion.

– Uses QualitativeLabel enumeration.

iii) Constraints

– evaluation –100 and evaluation 100.

– If exceeds is true, then evaluation is 100 and qualitativeEvaluation is Satisfied.

b) Concrete grammar

 A QualToQMapping does not have a graphical visual representation. Optionally, a

QualToQMapping is visualized using the textual syntax for QualToQMapping as specified in

Annex B.

c) Semantics

 A QualToQMapping specifies one qualitative real-world value (realWorldLabel), one

qualitative GRL evaluation value (qualitativeEvaluation), one quantitative GRL evaluation

value (evaluation) and the exceeds flag (exceeds). An IndicatorEvaluation defines a

qualitative real-world value R (realWorldLabel) that is to be converted by the

QualToQMapping associated with the IndicatorEvaluation through an Evaluation E. If R

matches the realWorldLabel of QualToQMapping, then the two GRL evaluation values and

the exceeds flag are copied from the QualToQMapping to E.

d) Model

 None.

e) Examples

 Table 3 gives an example for three QualToQMappings based on the GRL model in Figure 28,

assuming that the indicator in Figure 28 is measured by classifying the equipment used to

establish connections.

Table 3 – GRL mappings of qualitative real-world value

realWorldLabel qualitativeEvaluation evaluation exceeds

Class 1 Satisfied 100 false

Class 2 WeaklySatisfied 25 false

Class 3 WeaklyDenied –25 false

7.7 GRL contribution contexts

GRL contribution contexts are sets of changes to quantitative and qualitative contributions in a GRL

model. When a contribution context is selected, the changes override the existing contributions and

the overridden contributions are subsequently considered by GRL goal model analysis.

44 Rec. ITU-T Z.151 (10/2018)

Figure 29 – Abstract grammar: GRL contribution contexts

7.7.1 ContributionContextGroup

A ContributionContextGroup is a collection of contribution contexts. It is used to organize sets of

contribution changes (also known as overrides) and to manipulate them as a group (see Figure 29).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLmodelElement (see Figure 9).

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLspec (1): A ContributionContextGroup is contained in the GRL

specification (see Figure 8).

– Association with ContributionContext (0..*): A ContributionContextGroup may refer to

contribution contexts.

iii) Constraints

– Inherits constraints from GRLmodelElement.

b) Concrete grammar

 A ContributionContextGroup does not have a graphical visual representation. Optionally, a

ContributionContextGroup is visualized using the textual syntax for

ContributionContextGroup as specified in Annex B.

i) Relationships

– Inherits relationships from GRLmodelElement (see Figure 30).

c) Semantics

 None (ContributionContextGroup is a structural concept only).

7.7.2 ContributionContext

A ContributionContext is a collection of contribution changes. The same contribution context may be

part of multiple groups of contribution contexts (see Figure 29).

a) Abstract grammar

i) Attributes

– Inherits attributes from GRLmodelElement (see Figure 9).

ii) Relationships

– Inherits relationships from GRLmodelElement.

Contribution

ContributionContextGroup

ContributionChange

newContribution : ContributionType = Unknown

newQuantitativeContribution : Integer = 01

0..*contribution

1 changes

0..*

ContributionContext0..*1..*

contribs

0..*

groups

1..*

0..*

1

changes0..*

context1

0..*

0..*

includedContexts

0..*

{ordered}

parentContexts
0..*

GRLmodelElement

 Rec. ITU-T Z.151 (10/2018) 45

– Contained by GRLspec (1): A ContributionContext is contained in the GRL specification

(see Figure 8).

– Composition of ContributionChange (0..*): A ContributionContext may contain

contribution changes.

– Association with ContributionContextGroup (1..*): A ContributionContext is referenced

by at least one group of contribution contexts.

– Association with ContributionContext (parentContexts, 0..*): A ContributionContext

may be included by contribution contexts.

– Association with ContributionContext (includedContexts, 0..*) {ordered}: A

ContributionContext may have an ordered collection of included contribution contexts.

iii) Constraints

– Inherits constraints from GRLmodelElement.

– The contribution context containment hierarchy established by the includedContexts

relationship does not contain any cycles (i.e., a ContributionContext shall not appear

more than once on a path from a top node to a leaf node in the containment hierarchy).

– Let LC be the list of ContributionChanges of a ContributionContext. Let LCC be the list

of Contributions associated with at least one ContributionChange in LC. LCC shall not

contain the same Contribution more than once.

b) Concrete grammar

 A ContributionContext does not have a graphical visual representation. Optionally, a

ContributionContext is visualized using the textual syntax for ContributionContext as

specified in Annex B.

i) Relationships

– Inherits relationships from GRLmodelElement (see Figure 30).

c) Semantics

 The ContributionChanges contained in a ContributionContext represent overrides to existing

quantitative and qualitative contributions. When a contribution context is selected, the

overrides are applied and a model evaluation algorithm (see clause 11.1) that propagates

evaluations to intentional elements and indicators through their element links uses the

overridden contributions.

 When a contribution context is selected that contains another contribution context, the union

of ContributionChanges are applied. For conflicting ContributionChanges (i.e., overrides to

the same contribution) however, the ContributionChange of the containing contribution

context overrides the ContributionChange of the contained contribution context. If more than

one contribution context is included, then the last contribution context in the ordered list of

included contribution contexts takes precedence over the previous ones (i.e., the overrides

are applied beginning with the first included contribution context in the ordered list; then

each other contribution context is applied up to the last included contribution context, and

finally the overrides of the including contribution context are applied).

7.7.3 ContributionChange

A ContributionChange provides quantitative and qualitative contribution attributes that override an

existing contribution (see Figure 29).

46 Rec. ITU-T Z.151 (10/2018)

a) Abstract grammar

i) Attributes

– newContribution (ContributionType): The overriding qualitative contribution level.

Default value is Unknown.

– newQuantitativeContribution (Integer): The overriding quantitative contribution level.

Default value is 0 (see clause 9.2.2).

ii) Relationships

– Contained by ContributionContext (1): A ContributionChange is contained in one

contribution context.

– Association with Contribution (1): A ContributionChange provides overrides for one

contribution.

– Uses ContributionType enumeration.

iii) Constraints

– newQuantitativeContribution –100 and newQuantitativeContribution 100.

b) Concrete grammar

 A ContributionChange does not have a graphical visual representation. However, it may

impact the presentation of link references (LinkRef) in GRL diagrams (see clause 7.8.7).

Optionally, a ContributionChange is visualized using the textual syntax for

ContributionChange as specified in Annex B.

c) Semantics

 A ContributionChange defines overrides for the quantitative and qualitative contribution

attributes of an existing Contribution. The overrides are applied when the ContributionContext

of the Contribution is selected.

 Only the relevant overridden contribution attribute is considered depending on the type of

analysis (qualitative or quantitative). It is not required for newContribution and

newQuantitativeContribution to be consistent as modellers may want to use only one type of

analysis (qualitative or quantitative). However, it is recommended to keep them consistent if

the modellers intend to switch between different types of analysis.

7.8 GRL concrete grammar metaclasses

The following concrete grammar metaclasses may be contained by some of the GRL abstract

grammar metaclasses. They have no semantics. Figure 30 shows all concrete grammar metaclasses

that are GRL specific except for Label (see clause 7.8.8). Further details are shown for those concrete

grammar metaclasses that are shared between GRL and UCM in clauses 7.8.8, 7.8.10, 7.8.11, 7.8.12

and 7.8.13.

NOTE – The name IntentionalElementRef is used for backward compatibility with previous versions of this

Recommendation. A more appropriate name would be ContainableElementRef.

 Rec. ITU-T Z.151 (10/2018) 47

Figure 30 – Concrete grammar: GRL concrete syntax metaclasses

7.8.1 ConcreteGRLspec

ConcreteGRLspec defines how GRL XOR and IOR Decomposition links should be displayed either

as a means-end presentation or as an XOR/IOR decomposition presentation. GRL supports both

presentations. As ConcreteGRLspec is contained by GRLspec, the representation choice is global for

all GRL diagrams (see Figure 30).

In the absence of a ConcreteGRLspec, the default presentation is the XOR/IOR decomposition.

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 ConcreteGRLspec does not have a visual representation, but it impacts the presentation of

XOR decomposition links in GRL diagrams (see clause 7.8.7).

i) Attributes

– showAsMeansEnd (Boolean): Indicates whether GRL XOR and IOR Decomposition

links should be displayed with a means-end graphical syntax (true) or simply with an

XOR/IOR decomposition graphical syntax (false). Default value is false.

7.8.2 GRLGraph

A GRLGraph is a container for all actor references, GRL nodes (collapsed actor references and

intentional (or indicator) element references) and link references of a GRL diagram. In essence, a

GRL graph (or diagram) is a view of the underlying GRL specification (see Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 GRLGraph represents the GRL diagram and as such has no concrete syntax except for

Comments.

GRLmodelElement

IntentionalElementRef

GRLContainableElement

0..*

1

refs 0..*

def 1

CollapsedActorRef

ConcreteGRLspec

showAsMeansEnd : Boolean = false

Actor

0..*

1

collapsedRefs 0..*

actor
1

LinkRefBendpoint

x : Integer

y : Integer

Position

x : Integer

y : Integer

ActorRef

1

0..1

pos 1

actorRef

0..1

10..*
actorDef

1

actorRefs
0..*

GRLGraph

1

0..*

diagram

1

contRefs
0..*

Size

width : Integer

height : Integer

1

0..1

size1

actorRef
0..1

LinkRef

curve : Boolean = false

0..*

1

bendpoints0..*

linkref
1

{ordered}

1

0..*

diagram

1

connections

0..*
GRLNode

1

0..1

pos
1

grlNode

0..1

0..1

0..*

contRef

0..1

nodes

0..*

1

0..*

diagram1

nodes 0..*

1

0..1

size1

grlNode

0..1

0..*

1

pred
0..*

target

1

0..*

1

succ
0..*

source
1

GRLspec0..1

1info

0..1 grlspec

1
1

0..*

grlspec
1

grlGraphs

0..*

EvaluationStrategy

0..*

1

strategies 0..*

grlspec1

ConcreteStrategy

author : String

0..1

1

0..1

1info

strategy

ElementLink

1

0..*

link

1

refs

0..*

GRLLinkableElement

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..10..1

linkElement

0..1 style

48 Rec. ITU-T Z.151 (10/2018)

i) Attributes

– Inherits attributes from GRLmodelElement.

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLspec (1): A GRLGraph is contained in the GRL specification.

– Composition of ActorRef (0..*): A GRLGraph may contain actor references.

– Composition of GRLNode (0..*): A GRLGraph may contain GRL nodes.

– Composition of LinkRef (0..*): A GRLGraph may contain link references.

– Composition of Comment (0..*): A GRLGraph may contain comments (see Figure 56).

7.8.3 ActorRef

An actor reference (ActorRef) shows an actor and its boundary on a GRL diagram (GRLGraph). It

refers to an Actor definition. An actor reference shows the actor's boundary, where intentional

elements may be included. In a URN specification, the same actor definition may be referenced many

times in the same GRL diagram and in many GRL diagrams (see Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 The symbol for an actor reference is a circle, with the name of the actor reference (from

superclass URNmodelElement) displayed inside the circle, together with its boundary, shown

with a dashed-line ellipse (see Figure 31, where the name of the actor reference is ActorRef).

The line and fill colours of the actor reference are those of the actor definition's concrete style

(ConcreteStyle) (from actor definition's superclass GRLLinkableElement). If the

importanceQualitative information is displayed (from actor definition's superclass

GRLLinkableElement), then (H) is used for High, (M) for Medium and (L) for Low. None is

not displayed. If the quantitative importance information is displayed (from actor definition's

superclass GRLLinkableElement), then the value is shown in parentheses, but only if greater

than zero (see Figure 31).

Z.151(12)_F31

ActorRef
(80)

ActorRef
(H)

Figure 31 – Symbol: GRL actor reference with importance values

 When analysing an EvaluationStrategy in the GRL specification, the name in the actor

reference symbol can be supplemented with a symbol denoting the current satisfaction value

of the actor definition. The values to be reported in this way (qualitativeVal, quantitativeVal

and exceedsVal) are discussed in clause 11.1. Depending on the nature of the analysis, a

qualitative label icon (i) or a quantitative integer value (ii) can be used to annotate the actor

reference symbol (see Figure 32). The icons for the qualitative labels are defined in

clause 7.5.4 (QualitativeLabel). An additional + indicates if the exceedsVal is true as shown

in (iii) and (iv).

 Rec. ITU-T Z.151 (10/2018) 49

Z.151(12)_F32

+

ActorRef
100

ActorRef ActorRef
100+

ActorRef

i) With qualitative
satisfaction value

ii) With quantitative
satisfaction value

iii) With qualitative
satisfaction valueexceeds

iv) With quantitative
satisfaction valueexceeds

Figure 32 – Example: GRL actors with satisfaction values

 The coordinate conventions of clause 5.3.2 apply. The top-left corner of the ActorRef is

indicated by its Position (x, y) and the bottom-right corner of the actor boundary by its

Position and Size (x+width, y+height), as illustrated in Figure 33. The Label is not used in

this presentation (see clause 7.8.3, numeral d) for label usage). The same layout principles

apply also to IntentionalElementRefs and CollapsedActorRefs.

Z.151(12)_F33

ActorRef

Width

Height

x
y

(0.0) x-axis

y-
a

xi
s

Figure 33 – Layout: Position and size of ActorRef, IntentionalElementRef

and CollapsedActorRef

i) Attributes

– Inherits attributes from GRLmodelElement.

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLGraph (1): An ActorRef is contained in one GRL graph.

– Composition of Position (1): An ActorRef has one position.

– Composition of Size (1): An ActorRef has one size (for the actor boundary).

– Composition of Label (1): An ActorRef has one label (see Figure 52).

– Association with Actor (1): An ActorRef refers to one actor definition.

– Association with GRLNode (0..*): An ActorRef may include GRL nodes.

iii) Constraints

– Inherits constraints from GRLmodelElement.

– The name of an ActorRef is the same as the name of its referenced Actor definition.

– The name of an ActorRef including its annotations is inside the actor symbol.

– Rectangles containing the actor symbol and the actor boundary symbol share the same

top-left corner.

– The boundary of an ActorRef shall not overlap with the boundary of another ActorRef.

– The nodes of an ActorRef do not include nodes of type CollapsedActorRef.

c) Semantics

 None.

50 Rec. ITU-T Z.151 (10/2018)

d) Model

 An alternate way of displaying an ActorRef, illustrated in Figure 34, is to omit the actor

symbol, to add a stickman icon on the top-left side of the dashed ellipse and to add a Label

containing the name of the actor reference (from superclass URNmodelElement) (i). This

label can also contain the qualitative (ii) or quantitative (iii) satisfaction value of the

corresponding actor definition (from its superclass GRLLinkableElement) resulting from the

analysis of an EvaluationStrategy. The importance values are again shown in parentheses.

Z.151(12)_F34

ActorRef ActorRef (M) ActorRef (50) 100

i) Alternative presentation
for an actor reference

ii) With qualitative
satisfaction value and
qualitative importance

iii) With quantitative
satisfaction value and

quantitative importance

Figure 34 – Symbol: Alternative presentation for actor references

 The coordinate conventions of clause 5.3.2 apply. The top-left corner of the ActorRef is

indicated by its Position (x, y) and the bottom-right corner by its Position and Size (x+width,

y+height). The bottom-left corner of the Label is relative to the Position (x-deltaX, y-deltaY)

(see Figure 88) for an illustration of these layout principles.

7.8.4 GRLNode

GRLNode is an abstraction of intentional element references, indicator references and collapsed actor

references in a GRL diagram. GRL nodes except collapsed actor references can be included in actor

references and they have a position and a size (see Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 The concrete syntax for GRLNode is further defined in its subclasses.

i) Attributes

– Inherits attributes from GRLmodelElement.

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLGraph (1): A GRLNode is contained by one GRL graph.

– Composition of Position (1): A GRLNode has one position.

– Composition of Size (1): A GRLNode has one size.

– Association with ActorRef (0..1): A GRLNode may be included in one actor reference.

– Association with LinkRef (succ, 0..*): A GRLNode may be the source of link references

in a diagram.

– Association with LinkRef (pred, 0..*): A GRLNode may be the target of link references

in a diagram.

– GRLNode is a superclass of IntentionalElementRef and CollapsedActorRef.

iii) Constraints

– Inherits constraints from GRLmodelElement.

 Rec. ITU-T Z.151 (10/2018) 51

– All instances of GRLNode shall appear in one of its subclasses (that is, metaclass

GRLNode is abstract).

– The GRLGraph that contains the GRLNode shall be the GRLGraph that contains LinkRefs

associated as pred.

– The GRLGraph that contains the GRLNode shall be the GRLGraph that contains LinkRefs

associated as succ.

– If the GRLNode is included in one ActorRef, then the GRLGraph that contains this GRL

node shall be the GRLGraph that contains this actor reference.

– If the GRLNode is included in one ActorRef, then the position and size of this GRL node

shall be such that the node is entirely contained inside the boundary of the actor reference.

7.8.5 IntentionalElementRef

An intentional element reference (IntentionalElementRef) shows an intentional element or indicator

on a GRL diagram. Its presentation depends on the type of the intentional element it refers to and

whether it refers to an indicator. In a URN specification, the same intentional element or indicator

definition may be referenced many times in the same GRL diagram and in many GRL diagrams (see

Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 Figure 35 lists the symbols used for indicator references (hexagon with two additional

horizontal lines) and intentional element references, which depend on the type of the

intentional element definition they refer to (rounded-corner rectangle for Goal, cloud for

Softgoal, hexagon for Task, rectangle for Resource and ellipse for Belief).

Z.151(12)_F35

Goal Softgoal BeliefResourceTask Indicator

Figure 35 – Symbol: GRL intentional element and indicator references

 The intentional element or indicator reference name (from superclass URNmodelElement) is

displayed inside the symbol (in Figure 35, the name of Indicator class or the type of each

intentional element is used as its name, for illustration purposes). If the intentional element

or indicator is contained in an actor, then the importance information may also be displayed

following the name. If the importanceQualitative information is displayed (from the

superclass GRLLinkableElement), then (H) is used for High, (M) for Medium and (L) for Low.

None is not displayed. If the quantitative importance information is displayed (from the

superclass GRLLinkableElement), then the value is shown in parentheses, but only if greater

than zero (see Figure 36).

Figure 36 – Example: GRL intentional elements and indicators

with importance values

 The line and fill colours of the intentional element or indicator reference are those of the

intentional element definition's or indicator's concrete style (ConcreteStyle) (from the

superclass GRLLinkableElement).

52 Rec. ITU-T Z.151 (10/2018)

 When analysing an EvaluationStrategy in the GRL specification, the intentional element or

indicator reference symbol can be supplemented with a symbol denoting the current

evaluation value of the referenced intentional element or indicator definition (see Figure 37).

The values to be reported in this way (qualitativeVal, quantitativeVal and exceedsVal) are

discussed in clause 11.1. Depending on the nature of the analysis, a qualitative label icon (i),

a quantitative integer value (ii) or both (iii) can be used to annotate the intentional element

or indicator reference symbol. The icons for the qualitative labels are defined in clause 7.5.4

(QualitativeLabel). An additional + indicates if the exceedsVal is true as shown in (iv), (v),

and (vi). Furthermore for an indicator, the real-world value (from IndicatorEvaluation)

including its unit (from Indicator) or the real-world label (from IndicatorEvaluation) is shown

above the other symbols depending on the nature of the analysis. The unit for the real-world

label is omitted as it typically states something like "5-point Likert scale". Figure 37 depicts

a qualitative real-world value (i), a quantitative real-world value with its unit (ii), and both

(iii). Note that a quantitative real-world value may be shown with a qualitative evaluation

value, for example, if the analysis uses quantitative real-world values and qualitative

evaluation values.

Z.151(12)_F37

Softgoal Indicator Softgoal Indicator Softgoal Indicator

4 99$
100100

99$
100100

Softgoal Indicator Softgoal Indicator Softgoal Indicator

5 101$
100+100+

101$
100+100+ ++

5

++

4

i) With qualitative label ii) With quantitative value iii) With both

i) With qualitative
exceeds label

ii) With quantitative
exceeds value

iii) With both exceeds

Figure 37 – Example: GRL intentional elements and indicators

with satisfaction values

 If the current EvaluationStrategy has an Evaluation for the referenced intentional element or

indicator, then the current annotation is supplemented with a star (*), which indicates that

this is an initial value for this strategy (see Figure 38).

Z.151(12)_F38

Softgoal Indicator Softgoal Indicator Softgoal Indicator

100 * 100 * 100 * 100 ***

Figure 38 – Example: GRL intentional elements and indicators

with initial satisfaction values

 The coordinate conventions of clause 5.3.2 apply. The top-left corner of the

IntentionalElementRef is indicated by its Position (x, y) and the bottom-right corner by its

Position and Size (x+width, y+height), as explained in Figure 33. The additional annotations

are added at a fixed position above the symbol, starting from the left.

i) Attributes

– Inherits attributes from GRLNode.

ii) Relationships

– Inherits relationships from GRLNode.

 Rec. ITU-T Z.151 (10/2018) 53

– Association with GRLContainableElement (1): An IntentionalElementRef references one

intentional element or indicator definition.

iii) Constraints

– Inherits constraints from GRLNode.

– The name of an IntentionalElementRef is the same as the name of its

GRLContainableElement.

– If the IntentionalElementRef is included by an ActorRef, then the referenced

IntentionalElement definition shall be included by the referenced Actor definition.

– The name of an IntentionalElementRef including its importance value is inside the

intentional element symbol.

– Intentional element and indicator symbols on the same GRL diagram shall not overlap.

c) Semantics

 None.

d) Model

NOTE – When evaluating a strategy in the GRL specification, the fill colour of the intentional element

or indicator symbol is allowed to be overridden temporarily to provide additional visual feedback

about the satisfaction level of the referenced intentional element or indicator definition. For example,

the following colour scheme could be used: red for Denied, orange for WeaklyDenied, yellow for

None, green-yellow for WeaklySatisfied, green for Satisfied, blue for Conflict and white for

Unknown.

7.8.6 CollapsedActorRef

A collapsed actor reference (CollapsedActorRef) shows an actor on a GRL diagram. It is presented

as a circle, with the actor name displayed inside the circle. A collapsed actor reference in a GRL

diagram (GRLGraph) refers to an Actor definition. Unlike ActorRef, a collapsed actor reference does

not show the actor's boundary. In a URN specification, the same actor definition may be referenced

many times in the same GRL diagram and in many GRL diagrams (see Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 The symbol for a collapsed actor reference is a circle, with the collapsed actor reference name

(from superclass URNmodelElement) displayed inside the circle (see Figure 39, where the

name of this reference is CollapsedActorRef). The line and fill colours of the collapsed actor

reference are those of the actor definition's concrete style (ConcreteStyle) (from actor

definition's superclass GRLLinkableElement). If the importanceQualitative information is

displayed (from actor definition's superclass GRLLinkableElement), then (H) is used for

High, (M) for Medium and (L) for Low. None is not displayed. If the quantitative importance

information is displayed (from actor definition's superclass GRLLinkableElement), then the

value is shown in parentheses, but only if greater than zero.

Z.151(12)_F39

Collapsed
ActorRef

(M)

Collapsed
ActorRef

(50)

Figure 39 – Symbol: GRL collapsed actor reference with importance values

54 Rec. ITU-T Z.151 (10/2018)

 When analysing an EvaluationStrategy in the GRL specification, the name in the actor

reference symbol can be supplemented with a symbol denoting the current satisfaction value

of the actor definition. The values to be reported in this way (qualitativeVal, quantitativeVal

and exceedsVal) are discussed in clause 11.1. Depending on the nature of the analysis, a

qualitative label icon (i) or a quantitative integer value (ii) can be used to annotate the actor

reference symbol (see Figure 40). The icons for the qualitative labels are defined in

clause 7.5.4 (QualitativeLabel). An additional + indicates if the exceedsVal is true as shown

in (iii) and (iv).

Z.151(12)_F40

+

Collapsed
ActorRef

Collapsed
ActorRef

(100)

Collapsed
ActorRef

100+

Collapsed
ActorRef

i) With qualitative
satisfaction value

ii) With quantitative
satisfaction value

iii) With qualitative
satisfaction valueexceeds

iv) With quantitative
satisfaction valueexceeds

Figure 40 – Example: GRL collapsed actor references with satisfaction values

 The coordinate conventions of clause 5.3.2 apply. The top-left corner of the

CollapsedActorRef is indicated by its Position (x, y) and the bottom-right corner of the actor

by its Position and Size (x+width, y+height), as explained in Figure 33.

i) Attributes

– Inherits attributes from GRLNode.

ii) Relationships

– Inherits relationships from GRLNode.

– Association with Actor (1): A CollapsedActorRef refers to one actor definition.

iii) Constraints

– Inherits constraints from GRLNode.

– The name of a CollapsedActorRef is the same as the name of its referenced Actor

definition.

– The name of a CollapsedActorRef including its annotations is inside the collapsed actor

symbol.

7.8.7 LinkRef

A link reference (LinkRef) displays with a line an element link (Contribution, Dependency or

Decomposition) between two GRL linkable elements on a GRL diagram (GRLGraph). A link

reference is a directed link that connects a source GRL node to a different target GRL node. Link

references can be shown as straight lines or as curved lines, and they can contain intermediate bend

points. Depending on the nature of the referenced element link, various icons, line ends and labels

are displayed (see Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 The symbol used to display the LinkRef depends on the type of ElementLink it represents. In

the following definitions, each of the link symbols connects the source symbol (left) to the

target symbol (right).

 Rec. ITU-T Z.151 (10/2018) 55

 For a Contribution, the symbols for contribution and correlation links are different. In both

cases, however, the Label represents the value of the contribution and/or

qualitativeContribution attributes of the Contribution (see ContributionType, clause 7.4.3).

– If the value of the correlation attribute of the Contribution is false, then the symbol is an

arrow with the head pointed at the target (see Figure 41).

Figure 41 – Symbol: GRL contribution

– If the value of the correlation attribute of the Contribution is true (i.e., the link is a

correlation), then the symbol is a dashed arrow with the head pointed at the target

(see Figure 42).

Figure 42 – Symbol: GRL correlation

– Depending on the purpose of the GRL model (for quantitative and/or qualitative analysis)

the Label can include the icon of the qualitativeContribution only (i), a textual

representation of the qualitativeContribution only (ii), both the icons and the textual

representation of the qualitativeContribution (iii), the numerical contribution value (iv),

or both the icon of the qualitativeContribution and the numerical contribution value (v).

The choice of presentation should be left to the modeller. This applies to correlations as

well. The position of the label is relative to the head of the arrow. The icons for the

qualitative labels are defined in clause 7.5.4 (QualitativeLabel). A fully satisfied

contribution is used here as an example (see Figure 43).

Figure 43 – Examples: GRL contribution links

with contribution values

– If a ContributionContext is selected, the quantitative and qualitative contribution

attributes of the Contributions affected by the ContributionContext are overridden.

Overriden contributions are indicated by a * in parentheses as shown in Figure 44.

Figure 44 – Examples: GRL contribution links

with overridden contribution values

 For a Dependency, the symbol is a line with a D on it (see Figure 45). The flat side of the D

is pointed at the source. There is no Label associated with a dependency link.

Figure 45 – Symbol: GRL dependency

i) Icon only ii) Text only iii) Icon and text

Make Make

iv) Number only v) Icon and number

100 100

i) Icon only ii) Text only iii) Icon and text

Make (*) Make (*)

iv) Number only v) Icon and number

100 (*) (*) 100 (*)(*)

i) Icon only ii) Text only iii) Icon and text

Make (*) Make (*)

iv) Number only v) Icon and number

100 (*) (*) 100 (*)(*)(*)

56 Rec. ITU-T Z.151 (10/2018)

 For a Decomposition, the symbol is a line with a bar crossing it. The decompositionType of

the target element (i.e., what is being decomposed) is also shown at the end of the line, on

the target side. It is shown only once even if there are many decomposition links targeting

that element. There is no Label associated with a decomposition link.

– If there is no ConcreteGRLspec or if the value of the showAsMeansEnd attribute of the

ConcreteGRLspec is false, then the different types of decomposition links are presented

as in Figure 46.

Figure 46 – Symbol: GRL decompositions

– If the value of the showAsMeansEnd attribute of the ConcreteGRLspec is true, then

XOR and IOR decompositions are shown with an open-headed arrow (i.e., as a means-

end relationship, see Figure 47). The presentation of the AND decomposition remains

unchanged.

Figure 47 – Symbol: GRL means-end

 The line presentation of a LinkRef starts at the source symbol, goes through the ordered list

of bend points (LinkRefBendpoint) (if any), and stops at the target symbol. The line segments

are straight if the value of the curve attribute of the link reference is false. If the value of the

curve attribute of the link reference is true, then the bend points are part of a curved line that

connects the start symbol to the target symbol.

i) Attributes

– Inherits attributes from GRLmodelElement.

– curve (Boolean): Indicates whether the link should be displayed as a straight line (false)

or as a curved line (true). Default value is false.

ii) Relationships

– Inherits relationships from GRLmodelElement.

– Contained by GRLGraph (1): A LinkRef is contained by one GRL graph.

– Composition of Label (0..1): A LinkRef may have one label (see Figure 52).

– Composition of LinkRefBendpoint (0..*) {ordered}: A LinkRef may have an ordered

collection of link reference bend points.

– Association with ElementLink (1): A LinkRef represents one element link.

– Association with GRLNode (source, 1): A LinkRef has one source link GRL node.

– Association with GRLNode (target, 1): A LinkRef has one target link GRL node.

iii) Constraints

– Inherits constraints from GRLmodelElement.

– The source and target GRL nodes shall be different.

– The LinkRef has a Label if and only if the ElementLink to which the LinkRef refers is a

Contribution.

– If the source GRL node is an IntentionalElementRef, then the IntentionalElement or

Indicator definition referenced by that source shall be the source of the ElementLink to

which the LinkRef refers.

AND IOR XOR

 Rec. ITU-T Z.151 (10/2018) 57

– If the target GRL node is an IntentionalElementRef, then the IntentionalElement or

Indicator definition referenced by that target shall be the destination of the ElementLink

to which the LinkRef refers.

– If the source GRL node is a CollapsedActorRef, then the Actor definition referenced by

that source shall be the source of the ElementLink to which the LinkRef refers.

– If the target GRL node is a CollapsedActorRef, then the Actor definition referenced by

that target shall be the destination of the ElementLink to which the LinkRef refers.

– The line connects the border of the source symbol to the border of the target symbol.

c) Semantics

 None.

d) Model

 For dependency links, the D on the line can also be filled (see Figure 48). There is no semantic

distinction between a non-filled and a filled D.

Figure 48 – Symbol: Alternative presentation for GRL dependencies

 For an IOR decomposition link, the presentation can use OR at the target end instead of IOR,

for simplicity (see Figure 49).

Figure 49 – Symbol: Alternative presentation for IOR decomposition

e) Examples

 Several examples were already presented in clauses 7.4.2, 7.4.4, and 7.4.5. The following

GRL diagrams illustrate the effects of bend points on straight and curved lines. This link

reference to a dependency that goes from a softgoal to a task has two bend points. If the value

of the curve attribute is false, then straight-line segments are used (Figure 50).

Z.151(12)_F50

Telecom
provider

Create
account

Increase
visibility

Store

Figure 50 – Example: GRL link with two bend points shown with straight lines

 If on the other hand the value of the curve attribute is true, then a curved line that passes

through all the bend points is used (Figure 51).

OR

58 Rec. ITU-T Z.151 (10/2018)

Z.151(12)_F51

Telecom
provider

Create
account

Increase
visibility

Store

Figure 51 – Example: GRL link with two bend points shown as a curved line

7.8.8 Label

A Label can be attached to many types of URN model elements. A Label is contained by an ActorRef,

Condition, ComponentRef, LinkRef, NodeConnection or PathNode. An additional label is contained

by a StartPoint for its list of failures and by a FailurePoint for its failure specification. A label indicates

the position of the name (or another attribute) of the element relative (in X and Y) to the position of

that element, if the element has a position. For elements without position information (i.e., conditions,

link references and node connections), the label position is relative to other information (for more

details see clauses 6.1.6, 7.8.7 and 8.2.3, respectively) (see Figure 52).

Figure 52 – Concrete grammar: Label metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 The content displayed by the Label depends on the kind of URN model element that contains

it and is explained in the respective clauses.

i) Attributes

– deltaX (Integer): The relative position, measured in point units, along the horizontal (X)

axis of the relevant labelled attribute of the containing URN model element. Can be

positive (to the left of the symbol) or negative (to the right of the symbol) (see

clause 9.2.2).

– deltaY (Integer): The relative position, measured in point units, along the vertical (Y)

axis of the relevant labelled attribute of the containing URN model element. Can be

positive (above the symbol) or negative (below the symbol) (see clause 9.2.2).

ComponentRef

ActorRef

LinkRef

NodeConnectionCondition

PathNode

StartPoint
Label

deltaX : Integer

deltaY : Integer

0..1

0..1

compRef0..1

label
0..1

0..1

1

actorRef

0..1

label
1

0..1 0..1

label

0..1

linkRef

0..1

0..1

0..1

label
0..1

nodeCon
0..1

0..1

0..1

label

0..1

condition
0..1

0..1

0..1

pathNode
0..1

label
0..1

0..1

0..1 failureLabel

0..1startPoint

0..1

FailurePoint

0..1

0..1

failureLabel
0..1

failurePoint0..1

 Rec. ITU-T Z.151 (10/2018) 59

ii) Constraints

– A Label instance shall be contained in exactly one instance of type ActorRef, Condition,

ComponentRef, LinkRef, NodeConnection or PathNode.

7.8.9 LinkRefBendpoint

A bend point is a fixed point on a GRL diagram through which a link reference has to pass, therefore

breaking the line connecting a source to a target element into several connected segments (straight or

curved). A bend point is contained by a LinkRef (see Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 None. However, bend points influence the rendering of link references on a GRL diagram

(see clause 7.8.7).

i) Attributes

– x (Integer): Horizontal coordinate (on the x-axis) of the bend point, in point units (see

clause 9.2.2).

– y (Integer): Vertical coordinate (on the y-axis) of the bend point, in point units (see

clause 9.2.2).

ii) Constraints

– The line representation of the LinkRef that contains the LinkRefBendpoint shall pass

through the specified bend point.

7.8.10 Position

The Position metaclass is used to specify the position of various graphical elements in GRL and UCM

diagrams. A Position is contained by a PathNode, ComponentRef, ActorRef or GRLNode (see

Figure 53).

Figure 53 – Concrete grammar: Position metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 A Position specifies the horizontal and vertical coordinates of the graphical model element

where it is contained. These coordinates can be positive or negative. The coordinate

conventions of clause 5.3.2 apply.

GRLNode

ActorRefComponentRef

PathNode

Position

x : Integer

y : Integer

0..1

1

grlNode

0..1pos
1

0..1

1
actorRef

0..1

pos
1

0..1

0..1compRef

0..1

pos
0..1

0..1
0..1

pathNode

0..1 pos

0..1

60 Rec. ITU-T Z.151 (10/2018)

i) Attributes

– x (Integer): Horizontal coordinate (on the x-axis), in point units, of the graphical element

containing the Position (see clause 9.2.2).

– y (Integer): Vertical coordinate (on the y-axis), in point units, of the graphical element

containing the Position (see clause 9.2.2).

ii) Constraints

– Each Position instance is contained in exactly one instance of type PathNode,

ComponentRef, ActorRef or GRLNode.

7.8.11 Size

The Size metaclass is used to specify the size of various graphical elements in GRL and UCM

diagrams. A Size is contained by a ComponentRef, ActorRef or GRLNode (see Figure 54).

Figure 54 – Concrete grammar: Size metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 A Size specifies the width and height of the graphical model element where it is contained.

The coordinate conventions of clause 5.3.2 apply.

i) Attributes

– width (Integer): The width of the graphical element containing the Size, in point units

(see clause 9.2.2).

– height (Integer): The height of the graphical element containing the Size, in point units

(see clause 9.2.2).

ii) Constraints

– width > 0

– height > 0

– Each Size instance is contained in exactly one instance of type ComponentRef, ActorRef

or GRLNode.

7.8.12 ConcreteStyle

The ConcreteStyle metaclass is used to specify the colour of various graphical elements in GRL and

UCM diagrams. A ConcreteStyle is contained by a GRLLinkableElement or Component. This

information is attached to the definitions of intentional elements, indicators, actor definitions and

component definitions so their references can be coloured consistently across diagrams (see

Figure 55).

ActorRef

ComponentRef GRLNode
Size

width : Integer

height : Integer

0..1

1

actorRef 0..1

size 1

0..1 0..1

compRef

0..1

size

0..1 0..11

grlNode

0..1

size

1

 Rec. ITU-T Z.151 (10/2018) 61

Figure 55 – Concrete grammar: ConcreteStyle metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 A ConcreteStyle specifies the fill and line colours of the model element where it is contained,

and whether this element should use the fill colour or not. References to a model element can

then use these colours across diagrams in a consistent way.

 Colours are represented as a string using a red, green and blue colour model. The intensity of

each colour component is encoded as a value between 0 (lowest intensity) and 255 (highest

intensity), inclusively. The values for red, green and blue in that order are separated by

commas. For example, "255,255,0" represents the colour yellow (red=255, green=255,

blue=0).

i) Attributes

– lineColor (String): Colour of the outside line of the references to the element containing

the ConcreteStyle.

– fillColor (String): Fill colour of the references to the element containing the

ConcreteStyle.

– filled (Boolean): Indicates whether the fill colour should be used. Default value is false.

ii) Constraints

– Each ConcreteStyle instance is contained in exactly one instance of type

GRLLinkableElement or Component.

7.8.13 Comment

The Comment metaclass is used to add graphical comments to GRL and UCM diagrams. A Comment

is contained by a UCMmap or GRLGraph (see Figure 56).

Figure 56 – Concrete grammar: Comment metaclass

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 A Comment is illustrated using the following symbol, with the description string displayed

in the middle of the symbol (see Figure 57). The description text is wrapped on multiple lines

according to the width.

ComponentGRLLinkableElement

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..1 component

0..1

style

0..10..1 0..1

linkElement

0..1

style

0..1

UCMmap

Comment

description : String

x : Integer

y : Integer

width : Integer

height : Integer

fillColor : String

0..*

0..1
comments

0..*ucmmap

0..1

GRLGraph0..*

0..1
comments

0..* grlGraph

0..1

62 Rec. ITU-T Z.151 (10/2018)

Figure 57 – Symbol: URN comment

 The coordinate conventions of clause 5.3.2 apply. The top-left corner of the Comment is at

(x, y) and the bottom-right corner at (x+width, y+height).

i) Attributes

– description (String): The text to be displayed in the Comment.

– x (Integer): Horizontal coordinate (on the x-axis) of the Comment, in point units (see

clause 9.2.2).

– y (Integer): Vertical coordinate (on the y-axis) of the Comment, in point units (see

clause 9.2.2).

– width (Integer): Width of the Comment, in point units (see clause 9.2.2).

– height (Integer): Height of the Comment, in point units (see clause 9.2.2).

– fillColor (String): Fill colour of the Comment. The colour conventions of ConcreteStyle

apply.

ii) Constraints

– width > 0

– height > 0

– Each Comment instance is contained in exactly one instance of type UCMmap or

GRLGraph.

7.8.14 ConcreteStrategy

The ConcreteStrategy metaclass is used to specify the author of an evaluation strategy (see

Figure 30).

a) Abstract grammar

 None. This is a concrete syntax metaclass only.

b) Concrete grammar

 There is no graphical visual representation of this metaclass. Optionally, a ConcreteStrategy

is visualized using the textual syntax for ConcreteStrategy as specified in Annex B.

i) Attributes

– author (String): The name of the author of the evaluation strategy containing the

ConcreteStrategy.

8 UCM features

The Use Case Map notation provides a set of URN features that enable the description and analysis

of use cases and scenarios. The UCM features are grouped under seven categories:

– UCM basic structural features: Clause 8.1;

– UCM maps and path nodes: Clause 8.2;

– UCM stubs and plug-ins: Clause 8.3;

– UCM components: Clause 8.4;

– UCM scenario definitions: Clause 8.5;

Description text

of the comment

 Rec. ITU-T Z.151 (10/2018) 63

– UCM performance annotations: Clause 8.6;

– UCM concrete grammar metaclasses: Clause 8.7.

NOTE 1 – Many of the concrete grammar metaclasses used by UCM features were already defined for GRL

in clause 7.8. Only the ones specific to UCM are defined in clause 8.7.

NOTE 2 – In the examples used here to illustrate the UCM concrete syntax, the scenarios flow (are read) from

left to right. However, this does not have to be the case with UCM diagrams in general.

8.1 UCM basic structural features

The UCM basic structural features describe containers for UCM specifications, as well as definitions

of UCM model elements. The abstract syntax metaclasses are presented in this clause. There are no

specific concrete grammar metaclasses for these features.

8.1.1 UCMspec

UCMspec serves as a container for the UCM specification elements (see Figure 58).

Figure 58 – Abstract grammar: UCM specification

a) Abstract grammar

i) Attributes

– None.

ii) Relationships

– Contained by URNspec (1): The UCMspec is contained in the URN specification (see

Figure 3).

– Composition of UCMmap (0..*): The UCMspec may contain UCM maps.

– Composition of Responsibility (0..*): The UCMspec may contain responsibility

definitions.

– Composition of ComponentType (0..*): The UCMspec may contain component types.

EnumerationType

Variable

GeneralResource

UCMmap

Component

ComponentType Responsibility

ScenarioGroup
ScenarioDef

UCMspec
1

0..*

ucmspec
1enumerationTypes

0..*

1

0..*

ucmspec

1

variables 0..*

1

0..*

ucmspec

1

scenarioGroups0..*

1 0..*

ucmspec

1

resources

0..*

0..*

1

ucmMaps

0..*

ucmspec1

0..*

1

components

0..*

ucmspec
1

0..*

1

componentTypes 0..*

ucmspec

1

0..*

1

responsibilities0..*

ucmspec

1

1

0..*

ucmspec

scenarioDefs
0..*

1

64 Rec. ITU-T Z.151 (10/2018)

– Composition of Component (0..*): The UCMspec may contain component definitions.

– Composition of EnumerationType (0..*): The UCMspec may contain enumeration types.

– Composition of Variable (0..*): The UCMspec may contain variables.

– Composition of ScenarioGroup (0..*): The UCMspec may contain scenario groups.

– Composition of ScenarioDef (0..*): The UCMspec may contain scenario definitions.

– Composition of GeneralResource (0..*): The UCMspec may contain general resources.

iii) Constraints

– None.

b) Concrete grammar

 None.

c) Semantics

 None (UCMspec is a structural concept only).

8.1.2 UCMmodelElement

A UCMmodelElement is a URN model element specialized for UCM concepts (see Figure 59).

Figure 59 – Abstract grammar: UCM model elements

a) Abstract grammar

i) Attributes

– Inherits attributes from URNmodelElement (see Figure 3).

ii) Relationships

– Inherits relationships from URNmodelElement.

– UCMmodelElement is a superclass of UCMmap, ComponentRef, ComponentType,

Component, Workload, GeneralResource, PathNode, Variable, EnumerationType,

Responsibility, ScenarioGroup and ScenarioDef.

UCMmodelElementResponsibility

ScenarioDef

Workload

ComponentType

Component

ComponentRef

PathNode

EnumerationType

Variable

ScenarioGroup

GeneralResource

UCMmap

 Rec. ITU-T Z.151 (10/2018) 65

iii) Constraints

– Inherits constraints from URNmodelElement.

– All instances of UCMmodelElement shall appear in one of its subclasses (that is,

metaclass UCMmodelElement is abstract).

b) Concrete grammar

 The concrete syntax for UCMmodelElement is further defined in its subclasses.

i) Relationships

– Inherits relationships from URNmodelElement (see Figure 6).

c) Semantics

 A UCMmodelElement is a uniquely identifiable UCM model element that can contain

metadata and be linked to other model elements. Its subclasses may have additional attributes

and relationships.

8.2 UCM maps and path nodes

UCMmaps and PathNodes enable modelling of scenario behaviour by specifying causal relationships

between path nodes on one or more UCM maps. A map contains any number of paths and structural

elements (see clause 8.4). Paths express the causal flow of behaviour of a system and may contain

several types of path nodes, expressing actions, sequence, alternatives and concurrency as well as the

beginning and end of scenarios (see Figure 60).

Hierarchical structuring of maps with the help of stubs and plug-in maps is covered in clause 8.3.

Figure 60 – Abstract grammar: UCM paths and path nodes

Connect

OrJoin AndJoin

StartPoint

- failureKind : FailureKind = None

- failureList : String = ""

WaitingPlace

waitType : WaitKind

EndPoint

Stub

dynamic : Boolean = false

synchronizing : Boolean = false

blocking : Boolean = false

OrFork AndFork

EmptyPoint

WaitKind

Transient

Persistent

<<enumeration>>

RespRef

repetitionCount : String

hostDemand : String

Responsibility

expression : String

0..*

1

respRefs 0..*

respDef 1

Timer

UCMmap

singleton : Boolean = true

NodeConnection

probability : Integer = 100

threshold : String

0..1

0..1

timer

0..1

timeoutPath

0..1

1

0..*

diagram

1

connections
0..*

PathNode

1

0..*

diagram

1

nodes

0..*
0..*

1

succ
0..*

source
1

0..*
1

pred
0..*target

1

FailurePoint

failure : String

FailureKind

Failure

Abort

None

<<enumeration>>

66 Rec. ITU-T Z.151 (10/2018)

8.2.1 UCMmap

UCMmap serves as a container for all path nodes and component references of a map. A map may be

a singleton, i.e., only one runtime instance of it shall exist. A map may be reused as a plug-in map for

stubs (see Figures 60, 77 and 85).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

– singleton (Boolean): Indicates whether one (true) or more (false) runtime instances of a

UCMmap shall exist. Default value is true (i.e., only one runtime instance shall exist).

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A UCMmap is contained in the UCM specification (see

Figure 58).

– Composition of PathNode (0..*): A UCMmap may contain path nodes.

– Composition of NodeConnection (0..*): A UCMmap may contain node connections.

– Composition of ComponentRef (0..*): A UCMmap may contain component references.

– Association with PluginBinding (0..*): A UCMmap may be used as a plug-in map in plug-

in bindings.

iii) Constraints

– Inherits constraints from UCMmodelElement.

b) Concrete grammar

 UCMmap represents the map diagram and as such has no concrete syntax except for

Comments and its name. The name of a UCMmap is shown with underline in the top left

corner of a map.

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Composition of Comment (0..*): A UCMmap may have comments (see Figure 56).

c) Semantics

 A UCMmap may contain zero or many UCM paths consisting of NodeConnections and

PathNodes which may optionally as well as partially be bound to structural elements called

components via ComponentRefs. A singleton map exists only once at runtime, i.e., if the

same singleton map is used as a plug-in map (see PluginBinding, clause 8.3.2) for two

different stubs (see Stub, clause 8.3.1), the same (and only) runtime instance of the map in

the UCM specification is used for both stubs. If, however, the map is not a singleton, a

different map runtime instance is used for each different runtime instance of a stub that uses

the map as its plug-in map. For a more detailed discussion on runtime instances of maps in

the UCM specification, see clause 8.3.1.

d) Model

 None.

 Rec. ITU-T Z.151 (10/2018) 67

e) Examples

 The UCM diagrams in Figure 61 present a UCM model of a simple phone system, describing

how a phone connection is made between an originating user and a terminating user who

have their own phone agents. Each agent handles the features of its associated user. Three

features are described on separate plug-in maps:

– Originating Call Screening (OCS) is an originating user feature that filters outgoing calls

to phone numbers on a screening list (see Figure 61.iv).

– Teen Line (TL) is an originating user feature that filters outgoing calls during a certain

time interval (when TL is active) from users who do not have an appropriate personal

identification number (PIN) or do not provide the PIN within an appropriate time-frame

(see Figure 61.vi).

– Terminating Call Screening (TCS) is a terminating user feature that filters incoming calls

from phone numbers on a screening list (see Figure 61.v).

 The basic behaviour of the simple phone system is defined on the root map (Simple

Connection) of the UCM model (see Figure 61.i) and the root map's two plug-in maps

Originating Features and Terminating Features (see Figures 61.ii and 61.iii, respectively).

Upon a request from the originating user, the originating agent first executes any Originating

Features (OrigFeatures) defined for the user. If no feature exists, the default plug-in is

selected (see Figure 61.vii). If a feature fails, the originating user is notified. If none of these

features fails or no feature is defined for the user, the originating agent sends a request to the

terminating agent.

 Upon receipt of the request from the originating agent, the terminating agent executes any

Terminating Features (TermFeatures) defined for the user. If no feature exists, the default

plug-in is selected (see Figure 61.vii). If a feature fails, the originating user is notified. If

none of these features fails or no feature is defined for the user, the terminating agent checks

whether the terminating user is busy. If the terminating user is busy, the originating user hears

the busy signal. If the terminating user is not busy, the phone of the terminating user rings

and the originating user hears the ringing signal.

68 Rec. ITU-T Z.151 (10/2018)

Z.151(12)_F61

i) Simple connection

OriginatingUser

request ring

OriginatingAgent TerminatingAgent TerminatingUser

Originating Terminating

notify

busy

ringing

OUT2

OUT1 OUT1

OUT2

OUT3

OUT4

forwardSignal

forwardSignal

ii) Originating features iii) Terminating features

sendRequeststart success
OrigFeatures

fail OUT2

OUT1

start
successTermFeatures

fail OUT2

OUT1

ringingTreatment

busy

reportSuccess

busyTreatment

[NotBusy]

[Busy]

ringTreatment

Parent: Agent

Parent: Agent

vi) Teen line vii) Default

deny

start success

fail

Parent: Agent

[NotOnOCSList]

[OnOCSList]

checkOCS

OCScreeningList

iv) Originating call screening v) Terminating call screening

start success

fail

[NotOnTCSList]checkTCS

TCScreeningList

OriginatingUser

enterPIN

deny

start success

fail

[TLnotActive]

[TLactive]

checkTime

getPIN
[PINvalid]

[PINinvalid]

start

Parent: Agent

Parent: Agent

Parent: Agent

continue

[OnTCSList]

Figure 61 – Example: UCM model

 The plug-in bindings of the UCM model in Figure 61 that connect the in-paths and out-paths

of a stub with the start and end points on the plug-in map are defined in Table 4. The

component plug-in bindings in this example always connect the stub's component with the

"parent:" component on the plug-in map. Furthermore, the following Boolean global

variables are specified that more formally define the conditions for the branches of OR-forks

and the preconditions of plug-in bindings.

– subOCS: true if the originating user is subscribed to OCS;

– subTL: true if the originating user is subscribed to TL;

– subTCS: true if the terminating user is subscribed to TCS;

– busy: true if the terminating user is busy;

 Rec. ITU-T Z.151 (10/2018) 69

– onOCSlist: true if the dialled phone number is on the OCS list;

– onTCSlist: true if the originating user's phone number is on the TCS list;

– TLactive: true if TL is active;

– PINvalid: true if the PIN is valid.

 The OR-fork on the Terminating Features plug-in map uses the variable busy. The OR-fork

on the Originating Call Screening plug-in map uses the variable onOCSlist. The OR-fork on

the Terminating Call Screening plug-in map uses the variable onTCSlist. Finally, the OR-

forks on the Teen Line plug-in map use the variables TLactive and PINvalid.

Table 4 – Example: Plug-in bindings for the UCM model

Stub Plug-in map In-path/Start point Out-path/EndPoint Precondition

Originating Originating

Features

in-path/start OUT1/success;

OUT2/fail
true

Terminating Terminating

Features

in-path/start OUT1/success;

OUT2/reportSuccess;

OUT3/busy;

OUT4/fail

true

OrigFeatures Originating

Call Screening

in-path/start OUT1/success;

OUT2/fail

subOCS

OrigFeatures Teen Line in-path/start OUT1/success;

OUT2/fail

subTL

OrigFeatures Default in-path/start OUT1/continue not (subOCS or

subTL)

TermFeatures Terminating

Call Screening

in-path/start OUT1/success;

OUT2/fail

subTCS

TermFeatures Default in-path/start OUT1/continue not subTCS

NOTE – The UCM model introduced in this clause is a reasonable, initial model but still needs to be

thoroughly tested. This is done with the help of scenario definitions in the example of clause 8.5.2,

where the UCM model itself and the global data model of the URN specification (see clause 9.1) are

further refined.

8.2.2 PathNode

PathNode is a UCM model element that represents all possible path nodes on a UCM path. Path

nodes may express actions, alternatives (choice points and merge points) and concurrency (parallel

branching points and synchronization points) as well as the beginning and end of scenarios. Path

nodes may optionally be bound (i.e., allocated) to component references (see Figures 60 and 85).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMmap (1): A PathNode is contained in one UCM map.

– Association with NodeConnection (succ, 0..*): A PathNode may be the source of node

connections.

– Association with NodeConnection (pred, 0..*): A PathNode may be the target of node

connections.

70 Rec. ITU-T Z.151 (10/2018)

– Association with ComponentRef (0..1): A PathNode may be bound to one component

reference.

– PathNode is a superclass of RespRef, WaitingPlace, FailurePoint, OrFork, AndFork,

OrJoin, AndJoin, Stub, EndPoint, StartPoint, EmptyPoint and Connect.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– All instances of PathNode shall appear in one of its subclasses (that is, metaclass

PathNode is abstract).

– The UCMmap that contains the PathNode shall be the UCMmap that contains

NodeConnections associated as pred.

– The UCMmap that contains the PathNode shall be the UCMmap that contains

NodeConnections associated as succ.

– If the PathNode is included in one ComponentRef, then the UCMmap that contains this

PathNode shall be the UCMmap that contains the ComponentRef.

b) Concrete grammar

 The concrete syntax for PathNode is further defined in its subclasses. If a path node has a

Position, the path node is placed on its UCMmap according to Position coordinates.

 The coordinate conventions of clause 5.3.2 apply. The centre of the PathNode is indicated

by its Position (x, y). The bottom-centre of the Label (if any) is relative to the Position

(x-deltaX, y-deltaY). Similarly, if the PathNode also has a Condition (EndPoint and StartPoint

sub-classes do), then the bottom-centre of the Label of the path node's Condition is relative

to the path node's Position (x-deltaX, y-deltaY). A condition is visualized in italic font and

enclosed in square brackets (see Figure 62) for an illustration of these layout principles.

Figure 62 – Layout: Position, label and condition for PathNode

i) Relationships

– Inherits relationships from UCMmodelElement.

– Composition of Label (0..1): A PathNode may have one label (see Figure 52).

– Composition of Position (0..1): A PathNode may have one position (see Figure 53).

– PathNode is a superclass of DirectionArrow.

ii) Constraints

– If the PathNode is bound to one ComponentRef, then the Position of this PathNode shall

be such that the node is entirely contained inside the boundary of the ComponentRef.

– A PathNode that is not a Connect has exactly one Position.

 Rec. ITU-T Z.151 (10/2018) 71

c) Semantics

 A PathNode exists on one UCM map and may optionally be bound to one component

reference. Path nodes are arranged in a directed graph with the help of node connections that

link source path nodes with target path nodes. Subclasses of path nodes differ among other

things in terms of how many path branches (in short branches) may arrive at a path node and

how many branches may leave a path node. Further semantics for a path node is therefore

defined in the clauses for the subclasses of path nodes.

8.2.3 NodeConnection

 NodeConnection establishes a directed graph of path nodes by linking a source path node

with a different target path node. Causality flows along that graph. Node connections have a

probability value stating for certain pairs of source and target path nodes the likelihood with

which the link between the pair of path nodes is taken in the UCM specification. Node

connections also allow the definition of a synchronization threshold for certain pairs of source

and target path nodes (see Figures 60 and 77).

a) Abstract grammar

i) Attributes

– probability (Nat): The probability with which this node connection is taken in the UCM

specification. Default value is 100.

– threshold (String): The threshold is an Integer expression that indicates the

synchronization threshold for an out-path of a synchronizing stub.

ii) Relationships

– Contained by UCMmap (1): A NodeConnection is contained in one UCM map.

– Composition of Condition (0..1): A NodeConnection may contain one condition.

– Association with PathNode (source, 1): A NodeConnection has one source path node.

– Association with PathNode (target, 1): A NodeConnection has one target path node.

– Association with InBinding (0..*): A NodeConnection may have in-bindings.

– Association with OutBinding (0..*): A NodeConnection may have out-bindings.

– Association with Timer (0..1): A NodeConnection may represent the timeout path of one

timer.

iii) Constraints

– probability 0 and probability 100.

– The value of probability may be less than 100 only for a NodeConnection with a source

path node of type OrFork or Timer.

– The threshold shall be empty or an Integer expression, as defined in clause 9.3.

– The threshold shall evaluate to a non-negative Integer value, or it may be empty, in which

case it is deemed to evaluate to 0.

– The evaluation value of threshold may be other than 0 only for a NodeConnection with

a source path node of type Stub with its synchronizing attribute equalling to true.

– The source PathNode of a NodeConnection shall be different from the target PathNode

of the same NodeConnection.

– A NodeConnection may have one Condition only if the source path node of the

NodeConnection is of type OrFork, AndFork, AndJoin, FailurePoint or WaitingPlace.

– A NodeConnection may have an InBinding only if the target path node of the

NodeConnection is of type Stub.

72 Rec. ITU-T Z.151 (10/2018)

– A NodeConnection may have an OutBinding only if the source path node of the

NodeConnection is of type Stub.

– If a NodeConnection represents a timeout path of a Timer, the source path node of the

NodeConnection is the same Timer.

b) Concrete grammar

 A NodeConnection is rendered as a curved line between the two linked PathNodes.

 The coordinate conventions of clause 5.3.2 apply. If a Condition is defined for the node

connection, then the Label of the ConcreteCondition contained by the condition is displayed

in square brackets and italic font. The bottom-centre of the label of that condition is relative

to the middle of the curved line linking the source and target path nodes. If no label attribute

is defined for the concrete condition, then the square brackets also do not need to be shown.

 If a Label is defined for the node connection, then the bottom-centre of the label is relative

to the middle of the curved line linking the source and target path nodes. The label text is

rendered in italic font (see clause 8.3.1).

i) Relationships

– Composition of Label (0..1): A NodeConnection may have one label (see Figure 52).

ii) Constraints

– A NodeConnection may have one Label only if the source path node or the target path

node of the NodeConnection is of type Stub.

c) Semantics

 The directed graph of PathNodes linked by NodeConnections is at the core of the traversal

of UCMs, as paths in the UCM specification are traversed according to these links and the

semantics of the path nodes. In the simplest case, a path node may appear in a node

connection once as a source path node and once as a target path node, thus representing the

causal ordering of a sequence. Other path nodes may be the source path node or target path

node in several node connections, thus representing choice point, merging points, concurrent

branching points and synchronization points. Further semantics for a node connection of path

nodes is defined in the clauses for the subclasses of PathNode.

 It is not required that the directed graph is well-nested in terms of its branching and merging

constructs, i.e., the path nodes OrFork, OrJoin, AndFork and AndJoin. For example, an OrFork

may never be followed by an OrJoin, or an OrFork may be followed by an AndJoin.

 For performance analysis purposes, a node connection may have a probability which

expresses the likelihood that the link from the source path node to the target path node is

taken. The value of a probability is expressed relative to the probabilities of other node

connections with the same source path node. A probability value in per cent is derived by

dividing the value of the probability attribute by the sum of the probabilities of all node

connections with the same source path node (i.e., 100 means that the link is taken, 0 means

that the link is not taken and 75 means that there is a 3:1 chance that the link is taken). Only

certain node connections can have probabilities as defined in the Constraints subclause of

this clause, i.e., probabilities make sense only for OR-forks and timers. Probabilities have no

effect on the regular traversal of UCM models.

 The threshold of a node connection is required to specify a part of the synchronizing stub

(see clause 8.3.1 for more details).

 Node connections may also have a condition which shall be fulfilled (i.e., shall evaluate to

true) before the link from the source path node to the target path node can be taken. Only

certain node connections can have conditions as defined in the Constraints subclause of this

clause, i.e., conditions make sense only for OR-forks, AND-forks, AND-joins, failure points

 Rec. ITU-T Z.151 (10/2018) 73

and waiting places. The conditions for AND-forks and AND-joins are only required to flatten

hierarchical UCM specifications (see clause 8.3 for an explanation), and are therefore not

considered in the concrete syntax.

 Node connections also play a role in the hierarchical structuring of UCM specifications

through InBindings and OutBindings, as explained in clause 8.3.

8.2.4 Responsibility

A Responsibility (also referred to as responsibility definition) is a reusable definition of a scenario

activity representing something to be performed (operation, action, task, function, etc.) or in other

words a step in the scenario. Responsibility definitions are referenced from UCM maps by

responsibility references. An expression allows for the formal definition of more detailed behaviour

of a responsibility definition with respect to the global data model of the URN specification (see

clause 9.1) (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

– expression (String): The expression of the responsibility definition is described using the

URN action language (see clause 9.4). It describes the impact of the responsibility

definition on the global data model of the URN specification.

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A Responsibility definition is contained in the UCM

specification (see Figure 58).

– Composition of Demand (0..*): A Responsibility definition may contain demands (see

Figure 94).

– Association with RespRef (0..*): A Responsibility definition may be referenced by

responsibility references.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– Any two Responsibility definitions cannot share the same name inside a URN

specification.

– The name of a Responsibility definition cannot be the empty String "".

– The expression shall be an action, as defined in clause 9.4.

b) Concrete grammar

 Responsibility definition has no concrete syntax, but responsibility references (see RespRef,

clause 8.2.5) for the responsibility definition are visualized.

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

 Responsibility definition defines required actions or steps to fulfil a scenario, either

informally through its name or more formally with the help of its expression. The actions of

the expression may make use of globally defined Variables. When the traversal of a scenario

path reaches a responsibility reference (RespRef), the expression defined in the associated

responsibility definition is interpreted. This may change the values of variables in the global

74 Rec. ITU-T Z.151 (10/2018)

data model of the URN specification. If the expression results in a division by zero, the

traversal of the scenario path stops at the responsibility reference and an error is generated.

 Responsibility definitions also play a role in the performance analysis of UCM specifications,

as their references can make Demands on processing resources (see clause 8.6.15).

8.2.5 RespRef

RespRef is a path node that references a responsibility definition (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

– repetitionCount (String): The repetition count is an Integer expression that indicates how

often the responsibility reference is repeated at runtime.

– hostDemand (String): The demand is an Integer expression that indicates an average

demand on the processing resource of the component reference to which the

responsibility reference is bound. The demand is the value of the hostDemand attribute

divided by 1000.

ii) Relationships

– Inherits relationships from PathNode.

– Association with Responsibility (1): A RespRef has one responsibility definition.

iii) Constraints

– Inherits constraints from PathNode.

– The name of a RespRef shall be the same as the name of its associated Responsibility

definition.

– The repetitionCount shall be empty or an Integer expression, as defined in clause 9.3.

– The repetitionCount shall evaluate to a positive Integer value or it may be empty, in

which case it is deemed to evaluate to 1.

– The hostDemand shall be an Integer expression, as defined in clause 9.3.

– The hostDemand shall evaluate to a non-negative Integer value.

– A RespRef is the source PathNode of exactly one NodeConnection.

– A RespRef is the target PathNode of exactly one NodeConnection.

b) Concrete grammar

 The symbol for RespRef on a UCM path is defined as an X with the name of the

responsibility reference (from superclass URNmodelElement) displayed next to the symbol

according to Label coordinates (see Figure 63). Optionally, the expression of the

Responsibility of the RespRef is shown next to the name of the responsibility reference.

Figure 63 – Symbol: UCM responsibility reference

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

… …
RespRef

… …
RespRef

 Rec. ITU-T Z.151 (10/2018) 75

– A RespRef shall have one Label.

c) Semantics

 RespRef allows for the reuse of the same Responsibility definition in multiple locations on

one or more UCMmaps.

 The repetitionCount is an Integer expression that indicates how often the same responsibility

reference is repeated. It is equivalent to N consecutive responsibility references to the same

responsibility definition placed in a sequence on a UCM path, with N being the resulting

value of the repetition count expression.

 The hostDemand is used for performance analysis and describes the average demand

(i.e., the average number of operation requests per traversal of a scenario, divided by 1000)

the responsibility reference exerts on a ProcessingResource. The demand applies to the

processing resource that hosts the component definition that is referenced by the component

reference to which the responsibility reference is bound. If the responsibility reference is not

bound to a component reference, or if it is bound to a component reference that is not hosted

by a processing resource, then the host demand is ignored.

8.2.6 StartPoint

StartPoint is a path node that denotes the guarded beginning of local scenario behaviour. A start point

has a failureKind further indicating its semantics and specifies a list of failures. A StartPoint may also

trigger scenario definitions (see Figures 60, 77 and 92).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

– failureKind (FailureKind): The type of start point. Default value is None.

– failureList (String): The list of failure variables to which a start point responds. Default

value is the empty String "".

ii) Relationships

– Inherits relationships from PathNode.

– Composition of Condition (0..1): A StartPoint may contain one precondition.

– Composition of Workload (0..1): A StartPoint may contain one work load (see

Figure 94).

– Association with InBinding (0..*): A StartPoint may have in-bindings.

iii) Constraints

– Inherits constraints from PathNode.

– A StartPoint is the source PathNode of exactly one NodeConnection.

– A StartPoint is the target PathNode of zero or one NodeConnection.

– If a StartPoint is the target PathNode of one NodeConnection, the source PathNode of

the NodeConnection is of type Connect.

– If the failureKind of a StartPoint is Failure or Abort, the StartPoint cannot be the target

PathNode of a NodeConnection.

– If the failureKind of a StartPoint is Failure or Abort, the StartPoint cannot have a

precondition.

– If the failureKind of a StartPoint is None, the failureList of the StartPoint is the empty

String "".

76 Rec. ITU-T Z.151 (10/2018)

– If the failureKind of a StartPoint is Failure or Abort, the failureList of the StartPoint is a

failure list, as defined in clause 9.5. Each failure in the failure list shall be defined as the

failure of at least one FailurePoint.

– If the failureKind of a StartPoint is Failure or Abort, the StartPoint does not have any in-

bindings.

b) Concrete grammar

 The symbol for StartPoint at the beginning of a UCM path is defined as a filled circle ()

with the name of the start point (from superclass URNmodelElement) optionally displayed

next to the symbol according to Label coordinates of the start point. For a failure start point,

the filled circle is overlayed with the letter F, while an abort start point is indicated by the

overlayed letter F and an additional lightning bolt. If the start point is not a failure start point

or abort start point, the label of the ConcreteCondition contained by the Condition of the start

point (e.g., C1) is also displayed in square brackets and italic font next to the symbol

according to Label coordinates of the condition (see Figures 64 and 62). If no label attribute

is defined for the concrete condition, then the square brackets also do not need to be shown.

If the start point is a failure start point or abort start point, the failureList is shown instead of

the condition according to the failureLabel coordinates of the start point and enclosed by

double square brackets instead of single square brackets. The symbol of a start point is the

same as the symbol of a WaitingPlace.

Figure 64 – Symbol: UCM start point, failure start point and abort start point

i) Relationships

– Inherits relationships from PathNode.

– Composition of Label (failureLabel, 0..1): A StartPoint may have one label for its failure

list (see Figure 52).

ii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 StartPoint denotes the beginning of scenario behaviour. The precondition of a start point

expresses the conditions for which a scenario is defined. If the precondition is satisfied (true),

then the scenario may proceed along the UCM path beginning at the start point. If the

precondition is not satisfied (false), then the scenario cannot start.

 Start points also denote the beginning of scenarios for failure and exception handling.

See FailureKind and FailurePoint for additional semantics in clauses 8.2.7 and 8.2.17,

respectively.

 Start points also play a role in: a) the hierarchical structuring of UCM specifications through

InBindings, as explained in clause 8.3; b) UCM scenario definitions, as explained in clause

8.5; and c) the performance analysis of UCM specifications through Workloads, as explained

in clause 8.6.

8.2.7 FailureKind

A start point can be characterized as Failure, Abort or None (see Figure 60).

StartPoint

…
[C1]

FailureStartPoint

…
[[F1, F2]]

F F
AbortStartPoint

…
[[F1, F2]]

F
StartPoint

…
[C1]

StartPoint

…
[C1]

FailureStartPoint

…
[[F1, F2]]

F F
AbortStartPoint

…
[[F1, F2]]

F

 Rec. ITU-T Z.151 (10/2018) 77

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by StartPoint.

iii) Constraints

 – None.

b) Concrete grammar

 None (enumeration metaclass). However, it influences the presentation of start points (see

clause 8.2.6).

c) Semantics

 FailureKind defines the behaviour of a start point when it is used with a FailurePoint for the

handling of failures and exceptions. None indicates that this is a regular start point as

described in clause 8.2.6. Failure indicates a failure start point, denoting the beginning of

scenario behaviour in response to a failure or exception at a FailurePoint. Abort indicates an

abort start point, i.e., a failure start point that in addition cancels all scenario behaviours in

its abort scope. The abort scope is defined as the map of the abort start point as well as all

lower level maps as established by the hierarchy of stubs and plug-in maps.

d) Model

 None.

e) Examples

 The abort scope depends on the location of the abort start point. The traversal of any path

element in the abort scope is stopped when the abort start point is triggered. Assume that all

maps in Figure 65 are singleton maps. If the abort start point is specified on Map A, then the

abort scope contains Map A and all maps that can be reached from Map A, i.e., Map B, Map

C and Map D. In this case, all active traversals in the abort scope are stopped as long as Map

A is in the map hierarchy of the traversal. For example, the traversal of the parallel branch

with responsibility R1 is stopped as is the traversal of Map D, but only if Map D was reached

from Map C, which in turn was reached from Map A. If Map D was reached from Map E,

then the traversal is not stopped, because Map A is not in the map hierarchy for that traversal.

 If the abort start point is defined on Map B, then only Map B is in the abort scope. If the abort

start point is defined on Map C, then Map C and Map D are in the abort scope. If the abort

start point is defined on Map D, then only Map D is in the abort scope. If the abort start point

is defined on Map E, then Map E and Map D are in the abort scope.

Z.151(12)_F65

Map A

Map D

Map C Map EMap B

R5

F

R1

R2

R3

RF

R4 R6

[[failure]]

Figure 65 – Example: UCM abort scope

78 Rec. ITU-T Z.151 (10/2018)

 The concept of a visit (see clause 8.3.1) also applies to failure and abort start points on

non-singleton maps. When such a failure or abort start point is traversed for the nth time, it

is the nth visit of the map and hence the map instantiated for the nth visit is traversed.

Consequently, the abort scope then pertains only to those map hierarchies that include the

nth runtime instance of the map. Any traversal that has a different runtime instance of the

map in its current map hierarchy is not affected by the abort start point.

8.2.8 EndPoint

EndPoint is a path node that denotes the end of local scenario behaviour for which a postcondition

may be defined. An EndPoint may also be a desired end of a scenario definition (see Figures 60, 77

and 92).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

ii) Relationships

– Inherits relationships from PathNode.

– Composition of Condition (0..1): An EndPoint may contain one postcondition.

– Association with OutBinding (0..*): An EndPoint may have out-bindings.

iii) Constraints

– Inherits constraints from PathNode.

– An EndPoint is the source PathNode of zero or one NodeConnection.

– An EndPoint is the target PathNode of exactly one NodeConnection.

– If an EndPoint is the source PathNode of one NodeConnection, the target PathNode of

the NodeConnection is of type Connect.

b) Concrete grammar

 The symbol for EndPoint at the end of a UCM path is defined as a filled bar (I) with the name

of the end point (from superclass URNmodelElement) optionally displayed next to the

symbol according to Label coordinates of the end point. The label of the ConcreteCondition

contained by the Condition of the end point (e.g., C1) is also displayed in square brackets and

italic font next to the symbol according to Label coordinates of the condition (see Figures 66

and 62). If no label attribute is defined for the concrete condition, then the square brackets

also do not need to be shown.

Figure 66 – Symbol: UCM end point

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

…
EndPoint

[C1]

…
EndPoint

[C1]

 Rec. ITU-T Z.151 (10/2018) 79

c) Semantics

 EndPoint denotes the end of scenario behaviour. The postcondition of an end point expresses

the condition following successful traversal of a given scenario. If the postcondition is

satisfied (true), then the scenario was traversed successfully. If the postcondition is not

satisfied (false), then the scenario was not traversed successfully.

 End points also play a role in: a) the hierarchical structuring of UCM specifications through

OutBindings, as explained in clause 8.3; and b) UCM scenario definitions, as explained in

clause 8.5.

8.2.9 OrFork

OrFork is a path node that represents a guarded choice point for alternative branches in scenario

behaviour (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

– An OrFork is the source PathNode of one or more NodeConnections.

– An OrFork is the target PathNode of exactly one NodeConnection.

b) Concrete grammar

 The symbol for OrFork on a UCM path is defined as a fork with one incoming branch and at

least two outgoing branches. The name of the OR-fork (from superclass URNmodelElement)

is optionally displayed next to the symbol according to Label coordinates of the OR-fork.

The branch conditions of the OR-fork (e.g., C1, C2, C3) are shown as defined in the concrete

syntax of NodeConnection (see Figure 67).

Z.151(12)_F67

…

…

…

…

OrFork

[C1]

[C3]

[C2]

Figure 67 – Symbol: UCM OR-fork

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 OrFork represents a choice point in the UCM specification with at least two alternative,

outgoing branches. Each alternative, outgoing branch (i.e., NodeConnection) has a Condition.

When arriving at the OR-fork during traversal of the UCM path, the conditions are evaluated.

If exactly one condition evaluates to true, the alternative branch with that condition is chosen

and the traversal continues along that branch. If no condition or more than one condition

evaluates to true (non-determinism), then the traversal stops and a warning is generated. If a

80 Rec. ITU-T Z.151 (10/2018)

condition is not specified for at least one alternative branch (incompleteness), the traversal

also stops and an error is generated.

8.2.10 OrJoin

OrJoin is a path node that represents a merge point for alternative or concurrent branches in scenario

behaviour (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

– An OrJoin is the source PathNode of exactly one NodeConnection.

– An OrJoin is the target PathNode of one or more NodeConnections.

b) Concrete grammar

 The symbol for OrJoin on a UCM path is defined as a merge of at least two branches into

one branch. The name of the OR-join (from superclass URNmodelElement) is optionally

displayed next to the symbol according to Label coordinates (see Figure 68).

Z.151(12)_F68

…

…

…

…

OrJoin

Figure 68 – Symbol: UCM OR-join

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 OrJoin represents a simple merge point of at least two branches without synchronization. The

branches can be either alternative or concurrent branches. When an OR-join is reached during

traversal of the UCM path, the traversal simply continues past the OR-join to the next node.

If two concurrent branches arrive at an OR-join during the traversal, both will continue and

the node past the OR-join will be traversed twice.

8.2.11 AndFork

AndFork is a path node that represents the beginning of concurrent branches in scenario behaviour

(see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

 Rec. ITU-T Z.151 (10/2018) 81

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

– An AndFork is the source PathNode of one or more NodeConnections.

– An AndFork is the target PathNode of exactly one NodeConnection.

b) Concrete grammar

 The symbol for AndFork on a UCM path is defined as a filled bar (I) with one incoming

branch and at least two outgoing branches. The name of the AND-fork (from superclass

URNmodelElement) is optionally displayed next to the symbol according to Label

coordinates (see Figure 69).

Figure 69 – Symbol: UCM AND-fork

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 AndFork represents a concurrent branching point with at least two concurrent, outgoing

branches. When an AND-fork is reached during traversal of the UCM path, the traversal

simply continues in parallel past the AND-fork to the next node for each outgoing branch.

8.2.12 AndJoin

AndJoin is a path node that represents a synchronization point of alternative or concurrent paths in

scenario behaviour (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

– An AndJoin is the source PathNode of exactly one NodeConnection.

– An AndJoin is the target PathNode of one or more NodeConnections.

b) Concrete grammar

 The symbol for AndJoin on a UCM path is defined as a filled bar (I) with at least two incoming

branches and one outgoing branch. The name of the AND-join (from superclass

…
…

…
…

AndFork

…
…

…
…

AndFork

82 Rec. ITU-T Z.151 (10/2018)

URNmodelElement) is optionally displayed next to the symbol according to Label

coordinates (see Figure 70).

Figure 70 – Symbol: UCM AND-join

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 AndJoin represents a merge point of at least two incoming branches with synchronization.

The incoming branches can be either alternative or concurrent branches. For each incoming

branch, the AND-join maintains a counter. The counter for a branch is increased by one when

the AND-join is reached along that branch during traversal of the UCM path. Traversal of

the UCM path may continue past the AND-join only if the counter for each incoming branch

of the AND-join is greater than zero. Before continuing on to the next path node, each counter

is decreased by one. The behaviour of an AND-join is best described with the help of

counters, but the usage of counters is not mandatory and the same effect may be achieved

through other means.

8.2.13 EmptyPoint

EmptyPoint is a path node that is used to asynchronously connect two paths (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

– An EmptyPoint is the source PathNode of one or two NodeConnections.

– An EmptyPoint is the target PathNode of exactly one NodeConnection.

– If an EmptyPoint is the source PathNode of two NodeConnections, the target PathNode

of exactly one of the two NodeConnections is of type Connect.

b) Concrete grammar

 The symbol for EmptyPoint on a UCM path is defined as a small, empty circle (). The

name of the empty point (from superclass URNmodelElement) is optionally displayed next

to the symbol according to Label coordinates (see Figure 71).

…
…

…

…

AndJoin

…
…

…

…

AndJoin

 Rec. ITU-T Z.151 (10/2018) 83

Figure 71 – Symbol: UCM empty point

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 EmptyPoint does not have any scenario semantics of its own but rather facilitates the

asynchronous connection of two paths (see Connect). Consequently, the traversal of a UCM

path simply passes through an empty point and immediately continues in parallel on to the

path nodes following the empty point (i.e., in this case, two NodeConnections exist with the

empty point as the source node). Furthermore, an empty point bound to a ComponentRef

does not carry any meaning. If, for example, a path crosses into a component because only

an empty point is bound to a ComponentRef that references the Component definition, it

cannot be concluded that the component takes part in the scenario behaviour. The presence

of empty points, however, facilitates the layout of complex UCM paths and diagrams.

d) Model

 An alternative presentation of the EmptyPoint is to simply omit the empty point symbol on

the path. This makes UCM diagrams less cluttered, without loss of information.

8.2.14 WaitingPlace

WaitingPlace is a path node that represents a point in scenario behaviour where the continuation of

the scenario depends on the fulfilment of a condition or the arrival of a trigger event (i.e., the arrival

of a connected UCM path). A waiting place has a waitType further indicating its semantics

(see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

– waitType (WaitKind): The type of waiting place.

ii) Relationships

– Inherits relationships from PathNode.

– Uses WaitKind enumeration.

– WaitingPlace is a superclass of Timer.

iii) Constraints

– Inherits constraints from PathNode.

– A WaitingPlace that is not a Timer is the source PathNode of exactly one

NodeConnection.

– A WaitingPlace is the target PathNode of one or two NodeConnections.

– If a WaitingPlace is the target PathNode of two NodeConnections, the source PathNode

of exactly one of the two NodeConnections is of type Connect.

… …
EmptyPoint

… …
EmptyPoint

84 Rec. ITU-T Z.151 (10/2018)

b) Concrete grammar

 The symbol for WaitingPlace on a UCM path is defined as a filled circle () with the name

of the waiting place (from superclass URNmodelElement) optionally displayed next to the

symbol according to Label coordinates (see Figure 72). The condition of the waiting place

(e.g., C1) is shown as defined in the concrete syntax of NodeConnection. The symbol of a

waiting place is the same as the symbol of a StartPoint. Waiting places are visualized the

same way regardless of the value of waitType. Optionally, the waitType is shown in

parentheses next to the name of the WaitingPlace. For the concrete syntax of the Timer

subclass of WaitingPlace, see clause 8.2.15. See also Connect, clause 8.2.18, for further

visualizations of waiting places.

Figure 72 – Symbol: UCM waiting place

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 WaitingPlace represents a location on a UCM path where the traversal of the path stops until

a condition is satisfied or a trigger event arrives. The arrival of a trigger event is modelled

with a second UCM path that is connected to the waiting place (see Connect, clause 8.2.18).

A trigger counter keeps track of the arrivals (see WaitKind for details, clause 8.2.16). The

condition of the waiting place is the Condition of the NodeConnection with the waiting place

as its source.

 Upon arrival at a waiting place via the waiting path (for a definition see Connect,

clause 8.2.18), the waiting counter of the waiting place is increased by one. The initial value

of the waiting counter is zero.

 The traversal of the waiting path is allowed to continue past the waiting place, if a) the

condition evaluates to true or b) both the waiting counter and the trigger counter are greater

than zero. When continuing past the waiting place, the waiting counter and the trigger counter

are decreased by one. If any counter is already zero, it is not decreased any further. If the

condition evaluates to false and the trigger event never arrives, the traversal of the UCM path

stops and a warning is generated.

 Table 5 gives an overview of the decision process for continuing past the waiting place

(PWP) or generating a warning (WAR) based on the condition of the waiting place (CWP)

and the trigger counter (TC). The overview assumes that the traversal of the UCM path has

already reached the waiting place via the waiting path (i.e., waiting counter > 0). Table 5 is

read row by row. For example, the last row says that if the CWP evaluates to false (first

column), then a warning is generated if TC equals zero (second column) and traversal

continues past the waiting place if TC is greater than zero (third column).

… …
WaitingPlace

[C1]

… …
WaitingPlace

[C1]

 Rec. ITU-T Z.151 (10/2018) 85

Table 5 – Overview of waiting place semantics

CWP TC = 0 TC > 0

True PWP PWP

False WAR PWP

 The behaviour of a waiting place is best described with the help of counters, but the usage of

counters is not mandatory and the same effect may be achieved through other means.

8.2.15 Timer

Timer is a specialization of the WaitingPlace path node where the continuation of the scenario depends

on the fulfilment of conditions, the arrival of a trigger event (i.e., the arrival of a connected UCM

path), or the occurrence of a timeout (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from WaitingPlace.

ii) Relationships

– Inherits relationships from WaitingPlace.

– Association with NodeConnection (0..1): A Timer may have one node connection

representing its timeout path.

iii) Constraints

– Inherits constraints from WaitingPlace.

– A Timer is the source PathNode of one or two NodeConnections.

b) Concrete grammar

 The symbol for Timer on a UCM path is defined as a clock symbol () with the name of the

timer (from superclass URNmodelElement) optionally displayed next to the symbol

according to Label coordinates of the timer. Optionally, the waitType is shown in parentheses

next to the name of the Timer. The branch conditions of the timer (e.g., C1, C2) are shown

as defined in the concrete syntax of NodeConnection. The optional timeout path of a timer is

rendered as a zigzag path. See also Connect, clause 8.2.18, for further visualizations of

timers.

Figure 73 – Symbol: UCM timer with timeout path

i) Relationships

– Inherits relationships from WaitingPlace.

ii) Constraints

– Inherits constraints from WaitingPlace.

c) Semantics

 The semantics of a Timer overrides the semantics defined for WaitingPlace. A timer

represents a location on a UCM path where the traversal of the path stops until conditions are

satisfied or a trigger event arrives. The arrival of a trigger event is modelled with a second

[C1]

… …
Timer

…

[C2]

[C1]

… …
Timer

…

[C2]

86 Rec. ITU-T Z.151 (10/2018)

UCM path that is connected to the waiting place (see Connect, clause 8.2.18). A trigger

counter keeps track of the arrivals (see WaitKind for details, clause 8.2.16). The conditions

of the waiting place are the Conditions of the NodeConnection with the timer as its source.

There is one condition for the timeout path and one condition for the regular path.

 Upon arrival at a timer via the waiting path (for a definition see Connect, clause 8.2.18), the

waiting counter of the timer is increased by one. The initial value of the waiting counter is

zero.

 The traversal of the waiting path is allowed to continue past the timer along the regular path

if, a) the condition of the regular path evaluates to true or b) the condition of the regular path

evaluates to false, the condition of the timeout path evaluates to false and both the waiting

counter and the trigger counter are greater than zero.

 The traversal of the waiting path is allowed to continue past the timer along the timeout path

if, a) the condition of the regular path evaluates to false and the condition of the timeout path

evaluates to true or b) the condition of the regular path evaluates to false, the condition of the

timeout path evaluates to false, the waiting counter is greater than zero and the trigger counter

is zero.

 Table 6 gives an overview of the decision process for selecting either the regular path (RP)

or the timeout path (TOP) for continuation of the traversal of the UCM path based on the

condition for the regular path (CRP), the condition for the timeout path (CTOP), and the

trigger counter (TC). The overview assumes that the traversal of the UCM path has already

reached the timer via the waiting path (i.e., waiting counter > 0). Table 6 is read row by row.

For example, the last row says that if the CRP evaluates to false (first column) and the CTOP

evaluates to false (second column), then the timeout path is taken if TC equals zero (third

column) and the regular path is taken if TC is greater than zero (fourth column).

Table 6 – Overview of timer semantics

CRP CTOP TC = 0 TC > 0

True True RP RP

True False RP RP

False True TOP TOP

False False TOP RP

 When continuing past the timer, the waiting counter and the trigger counter are decreased by

one. If any counter is already zero, it is not decreased any further.

 The behaviour of a timer is best described with the help of counters, but the usage of counters

is not mandatory and the same effect may be achieved through other means.

8.2.16 WaitKind

A waiting place can be Transient or Persistent (see Figure 60).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by WaitingPlace.

iii) Constraints

– None.

 Rec. ITU-T Z.151 (10/2018) 87

b) Concrete grammar

 None (enumeration metaclass). However, it influences the presentation of waiting places (see

clause 8.2.14) and timers (see clause 8.2.15).

c) Semantics

 WaitKind defines how a trigger path in the case of a WaitingPlace that is not a Timer and how

a release path in the case of a Timer are handled (for a definition of trigger path, release path

and waiting path see Connect, clause 8.2.18).

 If the wait kind is Transient or Persistent, a trigger counter keeps track of how often a

scenario has arrived at the waiting place via the trigger or release path. The initial value of

the trigger counter is zero.

 For transient waiting places, the trigger counter is set to one upon arrival at the waiting place

via the trigger or release path, if the waiting counter for the waiting path of a waiting place

is greater than zero (see WaitingPlace and Timer, clauses 8.2.14 and 8.2.15, respectively). In

this case, the trigger counter is never greater than one, thus modelling the arrival of a trigger

is only taken into account when the scenario is expecting the trigger (i.e., the scenario is

already waiting at the waiting place). Otherwise, the trigger is thrown away. For persistent

waiting places, the trigger counter is increased by one upon arrival at the waiting place via

the trigger or release path. In this case, all triggers are taken into account.

 When continuing past the waiting place, the trigger counter behaves the same way for

transient and persistent waiting places (for more details see WaitingPlace and Timer,

clauses 8.2.14 and 8.2.15, respectively).

 The behaviour of trigger and release paths is best described with the help of counters, but the

usage of counters is not mandatory and the same effect may be achieved through other means.

8.2.17 FailurePoint

FailurePoint is a path node that represents a point in scenario behaviour where the continuation of the

scenario depends on the occurrence of a failure or exception (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

– failure (String): The name of the failure indicating which failure or exception occurred.

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

– The failure shall be a failure, as defined in clause 9.5.

b) Concrete grammar

 The symbol for FailurePoint on a UCM path is defined as a series of parallel lines with

different lengths (similar to the electrical earth symbol) shown just below the path with the

name of the failure point (from superclass URNmodelElement) optionally displayed next to

the symbol according to Label coordinates (see Figure 74). The condition of the failure point

(e.g., x > 3) is shown as defined in the concrete syntax of NodeConnection. The failure of a

failure point (e.g., xOutOfBounds) is shown similarly to the condition but enclosed by double

square brackets and according to the failureLabel coordinates of the failure point.

88 Rec. ITU-T Z.151 (10/2018)

Figure 74 – Symbol: UCM failure point

i) Relationships

– Inherits relationships from PathNode.

– Composition of Label (failureLabel, 0..1): A FailurePoint may have one label for its

failure or exception (see Figure 52).

ii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 FailurePoint represents a location on a UCM path where the traversal of the path determines

whether a failure or exception has occurred by examining the condition of the FailurePoint,

i.e., the failure condition. The failure condition of the failure point is the negation of the

Condition of the NodeConnection with the failure point as its source. The negation of the

failure condition is stored to allow the continuation of the scenario past the failure point if

the condition is true (i.e., the failure or exception did not occur) and hence a uniform handling

of conditions of node connections by the traversal mechanism.

 For example, if the failure condition is x > 3, i.e., the failure or exception occurred if x is

greater than 3 (see Figure 74), then !(x > 3) is stored in the condition of the node connection.

If this condition now evaluates to true, the scenario is allowed to continue past the failure

point because the failure or exception did not occur. This is consistent with all other

conditions where continuation of the scenario is also dependent on the condition evaluating

to true. If the condition of the node connection evaluates to false, traversal of the scenario

stops at the failure point because the failure or exception occurred. The type of failure or

exception that occurred is defined by the failure attribute. Hence, if this failure attribute is

used in one or more failure or abort start points, the scenario immediately continues in parallel

at these failure or abort start points. Consequently, the path that starts at a failure or abort

start point describes failure or exception handling. In the case of an abort start point, other

scenarios are aborted as described in clause 8.2.7.

 Before the scenario is allowed to continue beyond a failure or abort start point during the

traversal of a scenario, the map hierarchy of the traversal needs to be taken into account.

– Situation A: If the map of the failure point is the same as the map of the failure or abort

start point, then the map hierarchy does not need to be adjusted, i.e., it remains the same

as the map hierarchy at the time the traversal reached the failure point. The scenario

continues with the same runtime instance of the map.

– Situation B: If the failure or abort start point is on a different map than the failure point,

then the map hierarchy needs to be adjusted. In this case, the parent map of the current

map is compared against the map of the failure or abort start point. If there is a match,

then the scenario is deemed to have exited the current map and returned to the parent

map where the scenario continues at the failure or abort start point. The map hierarchy is

reduced accordingly. If there is no match, then the next parent map is tried and so on.

The traversal continues with the runtime instance of the matched map in the map

hierarchy.

– Situation C: If there is no match at all and the map hierarchy has been exhausted, then

the failure and abort start point is deemed to be at the root level, the existing map

hierarchy is discarded, and the traversal continues on the map of the failure or abort start

 Rec. ITU-T Z.151 (10/2018) 89

point. The map hierarchy hence contains only that map. If this map is a singleton, the

traversal continues in a straightforward manner with the only runtime instance available

for a singleton map. If this map is a non-singleton, the choice of runtime instance depends

on the visit (see clause 8.3.1). When the failure or abort start point is traversed for the nth

time, then the map instantiated for the nth visit is traversed. The traversal mechanism

issues a warning in this case.

d) Model

 None.

e) Examples

 A failure point FP1 is defined on Map D in the example in Figure 75. When the scenario

reaches the failure point, the failure condition (i.e., x > 3) is examined. If x is not greater than

3, no failure or exception occurred and the scenario continues past the failure point. If x is

greater than 3, a failure or exception occurred and the traversal stops at the failure point.

What happens next depends on the failure attribute of the failure point. If the failure is

xOutOfBounds, then the scenario continues at the failure start point shown in Figure 75

because the failureList attribute of the failure start point also specifies the same failure. If the

failure point specifies a different failure, then the scenario terminates at the failure point with

a warning, because the failure or exception is not handled anywhere on the maps shown in

Figure 75.

 When the scenario continues at the failure start point, the map hierarchy of the traversal needs

to be adjusted. Table 7 summarizes various required adjustments of the map hierarchy

depending on which map the failure point is specified in the example in Figure 75. For

example, if the failure point is specified on Map C, then the map hierarchy is adjusted to

"Map A – Map C" if the failure point was reached when traversing "Map A – Map C – Map

D". The scenario hence continues on the runtime instance of Map C as specified in the map

hierarchy when the failure point was reached. However, if the failure point was reached when

traversing "Map E – Map F – Map D", then the map hierarchy is replaced with "Map C",

because Map C is outside the existing map hierarchy. In this case, the concept of a visit (see

clause 8.3.1) applies. If the failure or abort start point is traversed for the nth time, then the

runtime instance of Map C instantiated for the nth visit is traversed.

 As a second example, consider that the failure point is specified on Map B. In this case, the

map hierarchy is replaced with "Map B" and the concept of visit applies, because Map B is

outside the map hierarchy for both situations covered by the second and third column in

Table 7.

Table 7 – Adjustment of hierarchy of plug-in maps

Failure point

specified on Map

Map hierarchy when failure point is reached

Map A – Map C – Map D Map E – Map F – Map D

A Map A Map A (nth visit)

B Map B (nth visit) Map B (nth visit)

C Map A – Map C Map C (nth visit)

D Map D Map D

E Map E (nth visit) Map E

F Map F (nth visit) Map E – Map F

90 Rec. ITU-T Z.151 (10/2018)

Figure 75 – Example: UCM failure point

8.2.18 Connect

Connect is a path node that allows exactly two UCM paths to be connected with each other either

synchronously (i.e., in sequence by connecting an EndPoint to another path) or asynchronously

(i.e., in passing by connecting an EmptyPoint to another path) (see Figure 60).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

– A Connect is the source PathNode of exactly one NodeConnection.

– A Connect is the target PathNode of exactly one NodeConnection.

– If a Connect is the source PathNode of a NodeConnection, the target PathNode of the

NodeConnections is of type WaitingPlace or StartPoint.

– If a Connect is the target PathNode of a NodeConnection, the source PathNode of the

NodeConnections is of type EndPoint or EmptyPoint.

– Let P1 be the source PathNode of the NodeConnection for which a Connect is the target

PathNode. Let P2 be the target PathNode of the NodeConnection for which the same

Connect is the source PathNode. If at least one of P1, P2 and the Connect is bound to a

ComponentRef, then all three have to be bound to the same ComponentRef.

b) Concrete grammar

 A Connect has no concrete syntax as it is not visualized directly. A connect, however,

influences the visualization of other path nodes that are linked together by this connect.

Figure 76 illustrates all six possible combinations. If an EmptyPoint is used to connect two

paths together (see examples on left side), the symbol for the empty point is not rendered.

 Rec. ITU-T Z.151 (10/2018) 91

...

......
......

... ...

..
.

.

..
.

. ..

......

......

......

......

.. .

Z.151(12)_F76

[CS]

[CW]

WaitingPlace

ii) EmptyPoint - WaitingPlace

[CS]
[CE]

i) EmptyPoint - StartPoint

StartPoint
StartPoint

EndPoint

iv) EndPoint - Start Point

WaitingPlace [CW]

v) EndPoint - Waiting Place

EndPoint
[CE]

[CT]

Timer

iii) EmptyPoint - Timer

[CTO]

vi) EndPoint - Timer

EndPoint

[CE]

Timer

[CT]

[CTO]

Figure 76 – Examples: UCM connects

 The second UCM path that either touches a start point or waiting place or that ends with an

end point connected to a start point or waiting place in the above examples is called a trigger

path. The second UCM path that either touches a timer or that ends with an end point

connected to a timer in the above examples is called a release path. The path segment before

a waiting place or timer is called the waiting path.

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

– A Connect does not have a Label.

– A Connect does not have a Position.

– There shall not be any visual spacing between the symbols for the path nodes before and

after the Connect.

c) Semantics

 Connect does not have any scenario semantics of its own but rather facilitates the

synchronous and asynchronous connection of two paths. Consequently, the traversal of a

UCM path simply passes through a connect and immediately continues on to the path node

following the connect. An asynchronous connection involves an EmptyPoint, while a

synchronous connection involves an EndPoint. In an asynchronous connection the traversal

of the UCM path continues along the trigger or release path regardless of what happens at

the connected StartPoint, WaitingPlace or Timer. In a synchronous connection, the traversal

of the trigger or release path comes to an end at the end point. Only the traversal of the waiting

path continues.

 All possible combinations of NodeConnections with connects are summarized in Table 8.

92 Rec. ITU-T Z.151 (10/2018)

Table 8 – Combinations of node connections with connects

First node connection Second node connection
Visualized in

Source node Target node Source node Target node

Empty Point Connect Same Connect Start Point Figure 76 (i)

Empty Point Connect Same Connect Waiting Place Figure 76 (ii)

Empty Point Connect Same Connect Timer Figure 76 (iii)

End Point Connect Same Connect Start Point Figure 76 (iv)

End Point Connect Same Connect Waiting Place Figure 76 (v)

End Point Connect Same Connect Timer Figure 76 (vi)

8.3 UCM stubs and plug-ins

Stubs and their PluginBindings enable hierarchical structuring of UCM specifications. A

PluginBinding binds (i.e., connects) model elements on the parent map that contains the stub with

models elements on a plug-in map. PluginBindings specify ComponentBindings (covered in

clause 8.4), InBindings and OutBindings. An InBinding binds the in-path of a stub (i.e., a

NodeConnection) with a start point on the plug-in map, while an OutBinding binds the out-path of a

stub (another NodeConnection) with an end point on the plug-in map (see Figure 77).

Figure 77 – Abstract grammar: UCM stubs and plug-ins

8.3.1 Stub

Stub is a path node that indicates the presence of hierarchically-structured UCM maps (see Figures 60

and 77).

a) Abstract grammar

i) Attributes

– Inherits attributes from PathNode.

Stub

dynamic : Boolean = false

synchronizing : Boolean = false

blocking : Boolean = false

UCMmap

InBinding

OutBinding

PluginBinding

id : String

probability : Integer = 100

replicationFactor : String

0..*

1

bindings 0..*

stub 1

0..*

1

parentStub

0..*

plugin 1

0..*

1

in

0..*

binding
1

0..*

1

out
0..*

binding
1

EndPoint

0..*

1

outBindings0..*

endPoint1

StartPoint

0..*

1

inBindings0..*

startPoint1

NodeConnection

1

0..*

stubEntry
1

inBindings

0..*

1

0..*

stubExit

1

outBindings

0..*

Condition

0..1

0..1pluginBinding

0..1 precondition

0..1

0..1

0..1

endPoint0..1

postcondition0..1

0..1

0..1

startPoint0..1

precondition0..1

0..1

0..1 nodeConnection

0..1condition

0..1

 Rec. ITU-T Z.151 (10/2018) 93

– dynamic (Boolean): Indicates whether the stub is dynamic (true), i.e., can have more than

one plug-in map, or static (false), i.e., can have at the most one plug-in map. Default

value is false.

– synchronizing (Boolean): Indicates whether the stub synchronizes its plug-in maps (true)

or not (false). Default value is false.

– blocking (Boolean): Indicates whether the stub allows its plug-in maps to be visited more

than once at the same time (false) or whether the stub blocks an additional visit (true).

Default value is false.

ii) Relationships

– Inherits relationships from PathNode.

– Composition of PluginBinding (0..*): A Stub may contain plug-in bindings.

iii) Constraints

– Inherits constraints from PathNode.

– If synchronizing is true, then dynamic is true.

– If blocking is true, then synchronizing is true.

– If static is true, then the number of PluginBindings contained by the Stub is zero or one.

– If static is true, then the precondition of PluginBinding of the Stub is true.

– If static is true, then the replicationFactor of PluginBinding of the Stub is one.

b) Concrete grammar

 The basic symbol for Stub on a UCM path is defined as a diamond symbol () with the

name of the stub (from superclass URNmodelElement) optionally displayed next to the

symbol according to Label coordinates of the stub.

Figure 78 – Symbol: UCM static, dynamic and synchronizing stubs

 A static stub is rendered with a solid outline, a dynamic stub is rendered with a dashed outline

and a synchronizing stub is rendered with the letter S inside the stub symbol (see Figure 78).

IN and OUT labels may optionally be shown for all kinds of stubs, but the synchronization

threshold shall be shown for an out-path of a synchronizing stub if the threshold has been

defined by the modeller (see Figure 79). The synchronization threshold is defined by the

threshold attribute of the NodeConnection that represents an out-path of the stub (e.g., ST).

The synchronization threshold is appended at the end of the OUT label. IN and OUT labels

are shown as defined in the concrete syntax of NodeConnection. A blocking stub adds a B

rendered in subscript to the symbol of the synchronizing stub, while replicated plug-in maps

add an X rendered in superscript to the symbol of a dynamic stub. Replicated plug-in maps

are defined by the replicationFactor attribute of PluginBinding.

Figure 79 – Symbol: UCM stubs with further annotations

… …
StaticStub

… …… …
StaticStub

… …
DynamicStub

… …… …
DynamicStub

… …S

SynchronizingStub

[ST]… …S… …S

SynchronizingStub

[ST]

… …
StaticStub

IN1 OUT1… …
StaticStub

… …… …
StaticStub

IN1 OUT1 … …
DynamicStub

IN1 OUT1… …
DynamicStub

… …… …
DynamicStub

IN1 OUT1 OUT1 [ST]… …
BlockingStub (replicated)

IN1
S

X

B

OUT1 [ST]… …
BlockingStub (replicated)

IN1
S

X

B

94 Rec. ITU-T Z.151 (10/2018)

 The incoming node connection of the stub is called in-path, while the outgoing node

connection is called out-path. Any kind of stub may have zero or many in-paths and out-

paths as shown in Figure 80.

Figure 80 – Example: UCM stubs with different numbers of

in-paths and out-paths

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

c) Semantics

 Stub represents hierarchical structuring of UCM specifications through containment of plug-

in maps. When the traversal of a UCM path reaches a stub, the traversal continues with the

plug-in maps of the stubs. When the traversal reaches an end point on a plug-in map, the

traversal may return to the map of the stub (i.e., the parent map) and proceed past the stub.

The exact binding of the parent map to the plug-in map is specified with the help of

PluginBindings, ComponentBindings (covered in clause 8.4), InBindings and OutBindings.

i) Types of stubs

 Several types of stubs exist as explained in the following paragraphs.

– A static stub has at the most one plug-in map that cannot be replicated and that is

always selected (see PluginBinding) when the traversal of the UCM path reaches the

static stub.

– A dynamic stub may have many plug-in maps that can be replicated and that are

selected based on the preconditions of their PluginBindings when the traversal of the

UCM path reaches the dynamic stub. The selected plug-in maps of the stub are

traversed in parallel.

– A synchronizing stub is a dynamic stub that in addition synchronizes its plug-in maps

before the traversal of the UCM path is allowed to continue past the stub. By default,

a synchronizing stub expects as many plug-in maps as were selected to arrive at an

out-path before the scenario is continued (i.e., not necessarily all plug-in maps

defined for the stub). A synchronization threshold (the threshold attribute of the

NodeConnections representing the out-paths of the stub) may override the default.

The synchronization threshold is an Integer expression greater than zero and can be

defined for each out-path of a stub. The synchronization threshold may be greater

than the number of plug-in maps defined for the stub, because a single plug-in map

may arrive at a stub's out-path multiple times due to loops. All plug-in maps that

arrive at a stub's out-path after its synchronization threshold has been reached are

ignored.

– Finally, a blocking stub is a synchronizing stub that does not allow its plug-in maps

to be visited more than once at the same time.

…
Stub

…
Stub

…
Stub

……
Stub

…
Stub

……
Stub

…
…

… …S

Stub

OUT2 [ST2]

OUT1 [ST1]

OUT3 [ST3]

…
…

IN2

IN1

IN3

…
…

… …S

Stub

OUT2 [ST2]

OUT1 [ST1]

OUT3 [ST3]

…
…

IN2

IN1

IN3

 Rec. ITU-T Z.151 (10/2018) 95

 A visit in the context of synchronizing and blocking stubs is defined by how often an in-

path of the stub has been traversed. If an in-path is traversed the first time, then it is the

first visit of the stub. If the same in-path is traversed the nth time, then it is the nth visit

of the stub. If another in-path of the stub is traversed for the first time, then it is the first

visit of the stub. Plug-in maps that have been instantiated because of a visit are said to

belong to the visit.

 The concept of a visit also applies to unconnected start points on non-singleton plug-in

maps regardless of the type of the plug-in map's stub. When such an unconnected start

point is traversed for the nth time, it is the nth visit of the plug-in map and hence the

plug-in map instantiated for the nth visit is traversed.

ii) Plug-in map runtime instances

 Plug-in maps that are plugged into a stub are instantiated when the stub is reached the

first time during the traversal of a UCM path. The fact that stubs are often used to

restructure a complicated map implies that a stub runtime instance shall contain not more

than one runtime instance of a plug-in map at any time (with the exception of replicated

plug-in maps which require that the specified number of runtime instances is created).

This also applies to a stub that is used in a loop. The "not more than one map runtime

instance per stub runtime instance" rule ensures the equivalence of a plug-in maps-based

UCM specification with its flattened representation that uses only one single map.

Synchronizing stubs are an exception for this rule and are discussed later on in this clause.

 Since maps can be designated as singleton maps, there are three cases a modeller may

want to capture, as illustrated in the example below (see Figure 81).

– Map G is a singleton and therefore the same runtime instance of this map is used by

the stubs on Map A, Map B and Map C. The same applies to Map H and the stubs

on Map D, Map E and Map F.

– Map I, on the other hand, is not a singleton. Therefore, the stubs on Map G and Map

H use different runtime instances of Map I.

– Finally, if a group of stubs are to use the same runtime instance of a plug-in map,

this is achieved with an intermediary layer of singleton maps. For example, the group

of stubs on Map A, Map B and Map C uses the same runtime instance of Map I but

the group of stubs on Map D, Map E and Map F uses a different runtime instance of

Map I.

Z.151(12)_F81

Map A Map DMap C Map F

R

Map B Map E

Map G Map H

Map I

Singleton Singleton

Uses 1 instancest Uses 2 instancend

Figure 81 – Example: UCM plug-in map runtime instances

96 Rec. ITU-T Z.151 (10/2018)

iii) Flattened UCM models

 The flattening of a static stub and its plug-in map is as follows. The in-paths of the stub

are merged with the start points on the plug-in map according to the specified InBindings.

The out-paths of the stub are merged with the end points on the plug-in map according

to the specified OutBindings. The structural specifications on the parent map are merged

with the structural specifications on the plug-in map according to the specified

ComponentBindings. Structural specifications are treated the same way as for all types

of stubs.

 The semantics for a dynamic stub is similar to static stubs in that a dynamic stub shall

contain only one runtime instance of each of its plug-in maps at a time. The semantics

differs as the purpose of a dynamic stub is to model AND-forks and OR-joins in addition

to simple hierarchical structuring (see Figure 82). Each in-path is equivalent to an AND-

fork that is connected to the flattened plug-in maps according to the specified InBindings.

Analogously, each out-path corresponds to an OR-join connected to the flattened plug-

in maps based on the specified OutBindings. Plug-in bindings are indicated in the

example below by labelling in-paths, out-paths, start points and end points with iN and

oN. Preconditions of plug-in maps are indicated in square brackets next to the name of

the plug-in map.

Z.151(12)_F82

Map P2 [C2]

i1

i2

i2

i1

i2

o1

R2

Map A

R3

Map P1 [C1]

Map P3 [C3]

i1

R1

o1 o1

o1

[C1]

[C3]

[C3]

i2

i1

R3

R1

o1

[C2]

R2

Figure 82 – Example: Semantic flattening of a dynamic stub

 The semantics of an AND-fork in a flattened UCM model corresponds to the semantics

of stubs with guarded plug-in maps and not the semantics of regular AND-forks in non-

flattened models, i.e., guards on concurrent branches of an AND-fork are allowed. The

URN metamodel accommodates these guards only for the purpose of flattened UCM

models. AND-forks with guards, however, are not used in standard URN models.

 The semantics for a synchronizing stub in terms of runtime instances of maps, however,

is slightly different from the semantics for static and dynamic stubs, because the plug-in

maps bound to a synchronizing stub have to act as one group. If an in-path of the

synchronizing stub is visited for a second time, a second group of plug-in maps have to

be created. Therefore, synchronizing stubs can contain more than one runtime instance

of a plug-in map at the same time. This behaviour, however, is equivalent to one runtime

instance with tokens flowing between AND-forks and AND-joins that can only

synchronize if they were created by an AND-fork during the same visit. The

synchronizing stub is therefore still conceptually equivalent to its flattened counterpart

(see Figure 83) with each in-path converted to an AND-fork and each out-path converted

to an AND-join. The connections of the AND-fork and AND-join to the flattened plug-

in maps are again based on the specified InBindings and OutBindings.

 Rec. ITU-T Z.151 (10/2018) 97

Figure 83 – Example: Semantic flattening of a synchronizing stub

 The semantics of AND-forks in flattened UCM models is the same as for dynamic stubs

explained earlier. The semantics of AND-joins corresponds to synchronizing stubs and

not the regular AND-joins in non-flattened models. Thus, they allow the specification of

synchronization thresholds. Again, the URN metamodel already allows for these

thresholds for the purpose of flattening UCM models even though they are not used in

standard URN models.

d) Model

 None.

e) Examples

 Multiple plug-in map runtime instances for a synchronizing stub with multiple in-paths are

created as follows. If an in-path is visited for the first time after a different in-path was visited

the first time, then no new plug-in map runtime instances need to be created, because both

traversals belong to the same visit. See the UCMs in Figure 84 and the first, second and third

column of Table 9 for an example. Given a synchronizing stub with three in-paths i1, i2 and

i3, two plug-in maps bound to the stub as indicated in the example below, and a traversal

order of the in-paths (i1: 1st, 4th, 5th; i2: 2nd, 6th; i3: 3rd, 7th, 8th, 9th), there will be four

visits where runtime instances of both plug-in maps P1 and P2 are created. The first runtime

instances of P1 and P2 are created at the first traversal of in-path i1. The second and third

traversals do not cause new runtime instances to be created because these in-paths have not

yet been used for the first runtime instances, and hence are part of the same visit. The fourth

traversal creates the second set of runtime instances (second visit) because in-path i1 is

traversed for the second time. The fifth traversal creates the third set of runtime instances

because in-path i1 is again traversed. The sixth and seventh traversals use the runtime

instances of the plug-in maps that belong to the second visit because the events go to the

longest-waiting runtime instance of a plug-in map. The eighth traversal uses the third set of

runtime instances. Finally, the ninth traversal causes the fourth set of runtime instances to be

created because in-path i3 is traversed for the fourth time.

 The traversal of in-paths is important for the creation of plug-in map runtime instances. The

traversal of start points on the plug-in map, however, is not important except in the case of

an unconnected start point on a non-singleton plug-in map. Such a start point may also cause

the creation of a plug-in map runtime instance. Consequently, if the needed runtime instance

has already been created by the arrival at the unconnected start point, the traversal of an in-

path then shall not trigger the creation of a plug-in map runtime instance.

NOTE 1 – Such a start point does not exist in the plug-in maps in Figure 84 as all of the start points

are connected to the stub via plug-in bindings.

 Furthermore, if a replication factor is defined for a plug-in map, then as many runtime

instances of the plug-in map as specified by the replication factor are created.

98 Rec. ITU-T Z.151 (10/2018)

NOTE 2 – It is only possible to define a replication factor other than the default value for plug-in

maps of dynamic stubs.

Table 9 – Runtime instances and synchronizing stubs

In-path Resulting action

{specified synchronization threshold}

Resulting action

{default synchronization threshold}

1 i1 Create 1st P1 and 1st P2;

continue with i1 on 1st P1

Create 1st P1 and 1st P2;

set synchronization threshold to 2;

continue with i1 on 1st P1

2 i2 Continue with i2 on 1st P1

(for the second time on that runtime

instance)

and 1st P2

Continue with i2 on 1st P1 (for the second

time on that runtime instance) and 1st P2

{the synchronization threshold is reached

and traversal continues past the stub}

3 i3 Continue with i3 on 1st P2

{the synchronization threshold is reached

and traversal continues past the stub}

Continue with i3 on 1st P2

{ignore arrival at out-path}

4 i1 Create 2nd P1 and 2nd P2;

continue with i1 on 2nd P1

Create 2nd P1 and 2nd P2;

set synchronization threshold to 2;

continue with i1 on 2nd P1

5 i1 Create 3rd P1 and 3rd P2;

continue with i1 on 3rd P1

Create 3rd P1 and 3rd P2;

set synchronization threshold to 2;

continue with i1 on 3rd P1

6 i2 Continue with i2 on 2nd P1

(for the second time on that runtime

instance) and 2nd P2

Continue with i2 on 2nd P1 (for the second

time on that runtime instance) and 2nd P2

{the synchronization threshold is reached

and traversal continues past the stub}

7 i3 Continue with i3 on 2nd P2

{the synchronization threshold is reached

and traversal continues past the stub}

Continue with i3 on 2nd P2

{ignore arrival at out-path}

8 i3 Continue with i3 on 3rd P2 Continue with i3 on 3rd P2

9 i3 Create 4th P1 and 4th P2;

continue with i3 on 4th P2

Create 4th P1 and 4th P2;

set synchronization threshold to 2;

continue with i3 on 4th P2

 If the synchronization threshold is not specified in the example in Figure 84, then the default

behaviour stipulates that as many plug-in map runtime instances shall arrive at the out-path

as are traversed in parallel before the traversal is allowed to continue. The fourth column in

Table 9 explains the behaviour of the synchronizing stub in this case assuming that both plug-

in maps are selected.

 The synchronization threshold is always specified upon first arrival at a stub during each

visit. Subsequent arrivals during the same visit along other in-paths do not change the

synchronization threshold for that visit, even if the number of plug-in map runtime instances

that are being traversed changes.

 Rec. ITU-T Z.151 (10/2018) 99

Z.151(12)_F84

Map P1
Map P2

i2

i3

i2i1

i3i2

S

Map A
[3]

i1

Figure 84 – Example: UCM synchronizing stub with threshold

8.3.2 PluginBinding

PluginBinding defines the binding (i.e., connection) of behavioural and structural specifications on a

parent map to behavioural and structural specifications on a plug-in map with the help of

ComponentBindings (covered in clause 8.4), InBindings and OutBindings. A plug-in binding is

contained by a stub and has a precondition that defines when the plug-in map is to be selected.

Furthermore, a replication factor can be defined for a plug-in map, specifying how many runtime

instances of the plug-in map are to be traversed in parallel. Finally, a plug-in map has a probability

value stating the likelihood with which the plug-in map is selected in the UCM specification (see

Figures 77 and 85).

a) Abstract grammar

i) Attributes

– id (String): The identifier of the plug-in binding.

– probability (Nat): The probability with which the plug-in map is selected in the UCM

specification. Default value is 100.

– replicationFactor (String): The replication factor is an Integer expression that indicates

how many runtime instances of the plug-in map are used.

ii) Relationships

– Contained by Stub (1): A PluginBinding is contained in one stub.

– Composition of Condition (0..1): A PluginBinding may contain one precondition.

– Composition of InBinding (0..*): A PluginBinding may contain in-bindings.

– Composition of OutBinding (0..*): A PluginBinding may contain out-bindings.

– Composition of ComponentBinding (0..*): A PluginBinding may contain component

bindings.

– Association with UCMmap (1): A PluginBinding has one plug-in map.

iii) Constraints

– id shall be unique within the URN specification.

– probability 0 and probability 100.

– The replicationFactor shall be empty or an Integer expression, as defined in clause 9.3.

– The replicationFactor shall evaluate to a positive Integer value or it may be empty, in

which case it is deemed to evaluate to 1.

– If the singleton attribute of the UCMmap of a PluginBinding its set to true, then the

replicationFactor shall evaluate to 1.

100 Rec. ITU-T Z.151 (10/2018)

– The UCMmap of a PluginBinding is the same as the UCMmaps that contain the

StartPoints that belong to the InBindings of the PluginBinding.

– The UCMmap of a PluginBinding is the same as the UCMmaps that contain the EndPoints

that belong to the OutBindings of the PluginBinding.

– The UCMmap containing the Stub of a PluginBinding is the same as the UCMmaps that

contain the NodeConnections that belong to the InBindings of the PluginBinding.

– The UCMmap containing the Stub of a PluginBinding is the same as the UCMmaps that

contain the NodeConnections that belong to the OutBindings of the PluginBinding.

– A UCMmap shall not be associated with more than one PluginBinding of the same Stub.

b) Concrete grammar

 A PluginBinding does not have a graphical visual representation. Optionally, a PluginBinding

is visualized next to its stub using the textual syntax for PluginBinding as specified in

Annex B.

c) Semantics

 PluginBinding groups together the ComponentBindings, InBindings and OutBindings of one

plug-in map for one stub. The Condition of a plug-in map is a Boolean expression for a

precondition that determines whether the plug-in map is selected when the traversal of a

UCM path reaches the stub. If the plug-in map is selected, the traversal of the path continues

on the plug-in map.

 In addition, several attributes are defined by a PluginBinding. First, a PluginBinding is

uniquely identified by its id.

 Second, a replicationFactor defines for a plug-in map how many runtime instances of the

plug-in map are to be traversed in parallel. A replication factor other than the default value

may be defined for dynamic stubs but not for static stubs. Replicated maps for a dynamic

stub are conceptually the same as copying one UCM map many times and plugging all copies

with the same preconditions and the same bindings into the same stub.

 Third, and for performance analysis purposes, a plug-in binding may have a probability which

expresses the likelihood that the plug-in map is selected. The value of a probability is

expressed relative to the probabilities of other plug-in maps of the same stub. A probability

value in per cent is derived by dividing the value of the probability attribute by the sum of

the probabilities of all plug-in maps of the same stub (i.e., 100 means that the plug-in map is

selected, 0 means that the plug-in map is not selected, and 75 means that there is a 3:1 chance

that the plug-in map is selected). Probabilities have no effect on the regular traversal of UCM

models.

 If no in-bindings are defined for a plug-in map or the precondition of the plug-in map

evaluates to false, then the traversal of the UCM path stops at the stub on the parent map. If

no out-bindings are defined for a plug-in map, the traversal of the UCM path stops at an end

point on the plug-in map. If a condition is not specified for at least one alternative plug-in

map (incompleteness), the traversal also stops and an error is generated.

8.3.3 InBinding

InBinding defines the connection of an in-path of a stub (i.e., a NodeConnection) on a parent map

with a StartPoint on a plug-in map of the stub (see Figure 77).

a) Abstract grammar

i) Attributes

– None.

 Rec. ITU-T Z.151 (10/2018) 101

ii) Relationships

– Contained by PluginBinding (1): An InBinding is contained in one plug-in binding.

– Association with NodeConnection (1): An InBinding consists of one node connection

that represents an in-path of a stub.

– Association with StartPoint (1): An InBinding consists of one start point.

iii) Constraints

– The target PathNode of the NodeConnection of an InBinding is the Stub that contains

the PluginBinding of the InBinding.

– A StartPoint shall occur only once in all InBindings of a PluginBinding.

– Each in-path of a stub shall be in at least one InBinding.

b) Concrete grammar

 An InBinding does not have a graphical visual representation. Optionally, an InBinding is

visualized as part of its PluginBinding using the textual syntax for InBinding as specified in

Annex B.

c) Semantics

 The traversal of a UCM path utilizes the InBindings of a Stub's plug-in map to move from the

parent map to the plug-in map.

8.3.4 OutBinding

OutBinding defines the connection of an out-path of a stub (i.e., a NodeConnection) on a parent map

with an EndPoint on a plug-in map of the stub (see Figure 77).

a) Abstract grammar

i) Attributes

– None.

ii) Relationships

– Contained by PluginBinding (1): An OutBinding is contained in one plug-in binding.

– Association with NodeConnection (1): An OutBinding consists of one node connection

that represents the out-path of a stub.

– Association with EndPoint (1): An OutBinding consists of one end point.

iii) Constraints

– The source PathNode of the NodeConnection of an OutBinding is the Stub that contains

the PluginBinding of the OutBinding.

– An EndPoint shall occur only once in all OutBindings of a PluginBinding.

– Each out-path of a stub shall be in at least one OutBinding.

b) Concrete grammar

 An OutBinding does not have a graphical visual representation. Optionally, an OutBinding is

visualized as part of its PluginBinding using the textual syntax for OutBinding as specified in

Annex B.

c) Semantics

 The traversal of a UCM path utilizes the OutBindings of a Stub's plug-in map to move from

the plug-in map back to the parent map. The traversal shall only return to the same Stub

through which the plug-in map was entered. The traversal, however, does not always return

only one Stub. For example, if the traversal of two UCM paths entered a plug-in map through

102 Rec. ITU-T Z.151 (10/2018)

two different Stubs S1 and S2 and the two UCM paths subsequently synchronize in the plug-

in map and reach an end point E, then the traversal returns to S1 and S2 as long as an

OutBinding exists from E to one out-path in each Stub.

8.4 UCM components

Components enable modelling of scenarios structure by specifying the entities involved in a scenario,

covering the environment as well as the architectural structure of a system. Components may contain

other components. Paths including any path node may be superimposed over components, thus

allocating scenario behaviour to scenario structure. Map elements residing inside a component are

said to be bound to the component. Components are characterized by a component kind and may also

be typed. Component bindings belong to a plug-in binding and specify the relationship of components

on a parent map with components on a plug-in map (see Figure 85).

Figure 85 – Abstract grammar: UCM components

8.4.1 Component

A Component (also referred to as component definition) is a generic and abstract entity that can

represent software entities (e.g., objects, processes, databases or servers) as well as non-software

entities (e.g., actors or hardware). A component definition is characterized by its kind and its optional

type, may contain other component definitions or be contained in other component definitions, may

require the context of a parent scenario to be fully defined and may allow at the most one UCM path

to be active inside its boundary at any time (i.e., a mutual exclusion mechanism) (see Figure 85).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

– kind (ComponentKind): The kind of component. Default value is Team.

– protected (Boolean): Indicates whether the traversal of UCM paths allocated to the

component definition is ruled by a mutual exclusion mechanism (true) or not (false).

Default value is false (i.e., the component is not protected).

– context (Boolean): Indicates whether the component definition requires a component

from a parent map to be connected to the component definition with the help of a

component plug-in binding (true) or not (false). Default value is false.

ComponentType

PathNode

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false
0..*

0..*

includedComponents

0..*

includingComponents 0..*

0..*

0..1

instances0..*

type 0..1

UCMmap

ComponentRef

0..* 0..1

children

0..*

parent

0..1

0..1

0..* contRef

0..1nodes

0..*

1

0..* compDef

1

compRefs
0..*

1

0..*

diagram 1

contRefs
0..*

PluginBinding

ComponentBinding

0..*

1

parentBindings

0..*

parentComponent

1

0..*

1

pluginBindings

0..*

pluginComponent

1

1

0..*

binding 1

components 0..*

ComponentKind

Team

Object

Process

Agent

Actor

<<enumeration>>

 Rec. ITU-T Z.151 (10/2018) 103

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A Component definition is contained in the UCM

specification (see Figure 58).

– Association with ComponentType (0..1): A Component definition may have one

component type.

– Association with Component (includingComponents, 0..*): A Component definition

may be included by component definitions.

– Association with Component (includedComponents, 0..*): A Component definition may

include component definitions.

– Association with ComponentRef (0..*): A Component definition may be referenced by

component references.

– Association with ProcessingResource (0..1): A Component definition may be hosted by

one processing resource (see Figure 94).

– Association with PassiveResource (0..1): A Component definition may correspond to

one passive resource (see Figure 94).

– Uses ComponentKind enumeration.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– Any two Component definitions cannot share the same name inside a URN specification.

– The name of a Component definition cannot be the empty String "".

– The Component containment hierarchy established by the includedComponents

relationship does not contain any cycles (i.e., a Component definition shall not appear

more than once on a path from a top node to a leaf node in the containment hierarchy).

– The context attribute of the Component definition of a pluginComponent in a

ComponentBinding shall be true.

– The kind attribute of the Component definition of a pluginComponent in a

ComponentBinding shall be Team.

– The Component definition of a pluginComponent in a ComponentBinding shall not have

a ComponentType.

b) Concrete grammar

 Component definition has no concrete syntax, but component references (see

ComponentRef, clause 8.4.4) for the component definition are visualized. The line and fill

colours of a component definition are specified in its definition's ConcreteStyle and are hence

shared by all the component definition's references.

i) Relationships

– Inherits relationships from UCMmodelElement.

– Composition of ConcreteStyle (0..1): A Component definition may have one concrete

style (see Figure 55).

c) Semantics

 Component definitions represent the underlying structure of scenarios and may contain other

components. A component definition may itself be contained in other components. The

containment hierarchy of component definitions does not necessarily have to match the

containment hierarchy of component references (see ComponentRef in clause 8.4.4) as

intermediate ComponentRefs may not be shown on a UCM diagram. A component definition

104 Rec. ITU-T Z.151 (10/2018)

may have a user-defined ComponentType, which further characterizes the component

definition but does not influence the traversal of a UCM path bound to the component.

 The traversal of a UCM path, however, is influenced by the kind of component as detailed in

clause 8.4.3. The traversal also takes into account the protected attribute of a component

definition. Upon entering a component reference associated with a protected component

definition along a path, the traversal continues only if no other path is being traversed in the

component definition.

 The context attribute specifies that a ComponentBinding should exist for the component

definition (i.e., when the component reference to the component definition is used on a plug-

in map, then a binding to a component on the parent map should be specified). The existence

of such a component binding, however, is not mandatory. If the traversal reaches a

component reference to a component definition with the context attribute set to true, but no

component binding is specified, then the traversal issues only a warning but continues the

scenario.

 A component definition may have several includingComponents (i.e., more than one parent),

therefore allowing the capture of several architectural alternatives in one UCM model. A

modeller may investigate various allocations of sub-components to components, usually

defined in different plug-in maps of a dynamic stub, and reason about trade-offs involving

these alternatives. The alternatives may also be reasoned about and evaluated more formally

in the URN model with the help of GRL models for the alternative component structures.

 Component definitions also play a role in the performance analysis of UCM specifications

as explained in clause 8.6. A component definition can be optionally hosted on a

ProcessingResource, which then becomes the target of host demands made by responsibility

references bound to references to that component definition. A component definition may

optionally be considered as a PassiveResource.

NOTE – Semantic variation: Modellers are allowed to impose additional constraints on the

containment hierarchy of component definitions. For example, if the specification of architectural

alternatives in one UCM model is not desired, a component definition is allowed to be contained at

most in only one parent component definition. Furthermore, additional constraints could be imposed

in terms of how different kinds of components may be contained in other components. For example,

a component of kind Process is not allowed to be contained in a component of kind Object. Such

constraints could also be extended to user-defined ComponentTypes, so that:

 – A Component is only allowed to be included at the most by one other Component; and

 – Let C1 and C2 be Component definitions and the kind of C1 be set to Object. If C1 is the

ancestor of C2 in the containment hierarchy of Component definitions established by the

includedComponents relationship of Component definitions, then the kind of C2 is not

allowed to be set to Process.

8.4.2 ComponentType

A ComponentType allows the definition of user-defined types of components (see Figure 85).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A ComponentType is contained in the UCM specification

(see Figure 58).

– Association with Component (0..*): A ComponentType may be assigned to component

definitions.

 Rec. ITU-T Z.151 (10/2018) 105

iii) Constraints

– Inherits constraints from UCMmodelElement.

b) Concrete grammar

 A ComponentType does not have a graphical visual representation. However, it influences

the presentation of components references (see clause 8.4.4).

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

 ComponentTypes group Component definitions according to a user-defined name. For

example, a call scenario may include two call agents, one for subscriber A and one for

subscriber B. While the names of the component definitions for these call agents are

"subscriber A" and "subscriber B", the name of the component type is "call agent" and is

associated with both component definitions. The component type, however, does not

influence the traversal of UCM paths.

8.4.3 ComponentKind

A component definition can be a Team, a Process, an Object, an Agent or an Actor (see Figure 85).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by Component.

iii) Constraints

– None.

b) Concrete grammar

 None (enumeration metaclass). However, it influences the presentation of components

references (see clause 8.4.4).

c) Semantics

 ComponentKind differentiates between several kinds of components. A Team is a generic

component, used as a container for sub-components of any kind. A Process is an active

component, which implies the existence of a control thread. An Object is a passive

component, which is usually controlled by a process. An Agent is an autonomous component,

which acts on behalf of other components. An Actor is an external component that describes

an entity, either human or artificial, that interacts with the system.

 The traversal of UCM paths treats all kinds of components the same way with the exception

of components of kind Object. The traversal interleaves the traversal of path nodes of parallel

branches that are bound to the same component definition, if the component definition is of

kind Object.

8.4.4 ComponentRef

ComponentRef references a component definition. In a URN specification, the same component

definition may be referenced many times in the same UCM diagram and in many UCM diagrams.

Component references may contain other component references and path nodes. Relationships

between component references on a parent map and component references on a plug-in map may be

established with the help of component plug-in bindings (see Figure 85).

106 Rec. ITU-T Z.151 (10/2018)

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMmap (1): A ComponentRef is contained in one UCM map.

– Association with PathNode (0..*): A ComponentRef may contain path nodes.

– Association with Component (1): A ComponentRef references one component

definition.

– Association with ComponentBinding (parentBindings, 0..*): A ComponentRef may be

the parent component in component bindings.

– Association with ComponentBinding (pluginBindings, 0..*): A ComponentRef may be

the component on the plug-in map in component bindings.

– Association with ComponentRef (parent, 0..1): A ComponentRef may be included by

one component reference.

– Association with ComponentRef (children, 0..*): A ComponentRef may include

component references.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– The name of a ComponentRef shall be the same as the name of its associated Component

definition.

– The UCMmap that contains the ComponentRef shall be the UCMmap that contains

ComponentRefs associated as children.

– The containment hierarchy of ComponentRefs established by the children relationship

does not contain any cycles (i.e., a ComponentRef shall not appear more than once on a

path from a top node to a leaf node in the containment hierarchy).

– Let CR1 and CR2 be ComponentRefs. If CR1 is the parent of CR2, then the Component

definition of CR1 shall be an ancestor of the Component definition of CR2 in the

containment hierarchy of Component definitions established by the

includedComponents relationship of Component definitions.

b) Concrete grammar

 The symbol for ComponentRef on a UCM map depends on the kind of the Component

definition to which the ComponentRef refers: a rectangle for Team, a parallelogram for

Process, a rounded-corner rectangle for Object, a rectangle with a thick border for Agent and

a rectangle with a stickman icon in its top-left corner for Actor (see Figure 86, where the

name of each component reference is the same as its kind, for illustration purposes).

Figure 86 – Symbol: UCM component reference

 If the protected attribute of the Component definition to which the ComponentRef refers is

true, then a second, slightly smaller outline is added to the symbol for ComponentRef as

shown in Figure 87.

 Rec. ITU-T Z.151 (10/2018) 107

Figure 87 – Symbol: UCM protected and context-dependent

component reference

 The name of the component reference (from superclass URNmodelElement) is displayed

next to the symbol according to Label coordinates. Optionally, the ComponentType of the

Component to which the ComponentRef refers is shown in parentheses next to the name of

the component reference. If the context attribute of the Component definition to which the

ComponentRef refers is true, then the name is prefixed with "parent:" in italic font (see

Figure 87). The coordinate conventions of clause 5.3.2 apply. The top-left corner of the

ComponentRef is indicated by its Position (x, y) and the bottom-right corner by its Position

and Size (x+width, y+height). The bottom-left corner of the Label is relative to the Position

(x-deltaX, y-deltaY) (see Figure 88) for an illustration of these layout principles.

Z.151(12)_F88

x-axis(0.0)

x

y TheLabeldeltaX

Widthy-
ax

is

deltaY

Height

Figure 88 – Layout: Position, size and label for ComponentRef

i) Relationships

– Inherits relationships from UCMmodelElement.

– Composition of Label (0..1): A ComponentRef may have one label (see Figure 52).

– Composition of Size (0..1): A ComponentRef may have one size (see Figure 54).

– Composition of Position (0..1): A ComponentRef may have one position (see Figure 53).

ii) Constraints

– A ComponentRef shall have one Label.

– A ComponentRef shall have one Size.

– A ComponentRef shall have one Position.

– The symbol of a ComponentRef shall not overlap with the symbol of another

ComponentRef, unless it is entirely inside the symbol of that ComponentRef.

108 Rec. ITU-T Z.151 (10/2018)

c) Semantics

 ComponentRef allows for the reuse of the same Component definition in multiple locations

on one or more UCMmaps. The semantics of ComponentRef is defined by the attributes of

its Component definition and its ComponentBindings (see clauses 8.4.1 and 8.4.5,

respectively).

d) Model

 None.

e) Examples

 The following examples demonstrate the relationship of component definitions and

component references in terms of component containment. First of all, if Component

definition C1 is the parent of Component definition C2, which in turn is the parent of

Component definition C3, then a UCM diagram may show a ComponentRef to C3 being

contained in a ComponentRef to C1 without showing a ComponentRef for the intermediary

C2. This is possible because constraints 8.4.1d and 8.4.4e stipulating that containment

hierarchies shall be cycle-free and that C1 shall be an ancestor of C3 in the containment

hierarchy is not violated (see Figure 89.i).

 If, however, a ComponentRef to C4 is the parent of a ComponentRef to C5 and another

ComponentRef to C5 is the parent of another ComponentRef to C4, then the constraints are

violated, because an attempt to satisfy both ComponentRef containments leads to a cycle in

the containment hierarchy (see Figure 89.ii).

 On the other hand, if a ComponentRef to C6 is the parent of a ComponentRef to C7 and a

ComponentRef to C8 is the parent of another ComponentRef to C7, then the constraints are

not violated. In this case, however, the containment hierarchy for Component definitions is

not yet fully specified as there are several possible options for the parent of C7. First, C6 is

the parent of C8, which in turn is the parent of C7. Second, C8 is the parent of C6, which in

turn is the parent of C7. Third, the UCM model may specify structural alternatives and

therefore only one of C6 and C8 is the parent of C7 but there is no containment relationship

between C6 and C8. The third option is the most general interpretation of the hierarchy of

component references and is therefore reflected in the containment hierarchy of component

definitions (see Figure 89.iii).

Z.151(12)_F89

C1

C2

C3

C1

i) Valid containment

C3

ii) Invalid containment iii) Valid containment

C4

C5

C5

C4

C6

C7

C8

C7

C7

C6 C8

Figure 89 – Examples: UCM component containment hierarchies

8.4.5 ComponentBinding

ComponentBinding captures the relationship of component references on a parent map with

components references on a plug-in map (see Figure 85).

a) Abstract grammar

i) Attributes

– None.

 Rec. ITU-T Z.151 (10/2018) 109

ii) Relationships

– Contained by PluginBinding (1): A ComponentBinding is contained in one plug-in

binding.

– Association with ComponentRef (parentComponent, 1): A ComponentBinding consists

of one component reference on the parent map.

– Association with ComponentRef (pluginComponent, 1): A ComponentBinding consists

of one component reference on the plug-in map.

iii) Constraints

– The UCMmap of the ComponentRef associated as parentComponent is the UCMmap of

the Stub of the PluginBinding of the ComponentBinding.

– The UCMmap of the ComponentRef associated as pluginComponent is the UCMmap of

the PluginBinding of the ComponentBinding.

– Let M be a non-singleton UCMmap and let PG be a pluginComponent group where each

pluginComponent is contained in M, has the same Component definition, and belongs to

a ComponentBinding in the same PluginBinding. Then, each Component definition of a

parentComponent of a ComponentBinding of the pluginComponents in PG shall be the

same.

– Let M be a singleton UCMmap and let PG be a pluginComponent group where each

pluginComponent is contained in M, has the same Component definition, and belongs to

a ComponentBinding in any PluginBinding. Then, each Component definition of a

parentComponent of a ComponentBindings of the pluginComponents in PG shall be the

same.

b) Concrete grammar

 A ComponentBinding does not have a graphical visual representation. Optionally, a

ComponentBinding is visualized as part of its PluginBinding using the textual syntax for

ComponentBinding as specified in Annex B.

c) Semantics

 ComponentBinding establishes a relationship between a component reference on a parent

map with a component reference on a plug-in map. When a component reference with a

component plug-in binding is reached on a plug-in map during the traversal of a UCM path,

the component definition of the component reference on the plug-in map is not used by the

traversal. Instead, the traversal of a UCM path uses the component definition of the parent

component reference. Consequently, the component definition of the component reference

on the plug-in map is irrelevant. Therefore, its component kind and type are also irrelevant

and not specified.

 Component bindings may specify four different relationships as illustrated in the examples

in Figure 90. The path on the plug-in map may not be bound to a component reference at all

(i), the structure of the parent component C1 is refined on the plug-in map as component C2

is contained in the parent component (ii), the parent component C1 is playing a role specified

on the plug-in map (e.g., a role in an architectural or behavioural pattern) (iii), and the parent

component C1 uses the services provided by component C2 as specified by the path bound

to C2 on the plug-in map (iv). Consequently, the location of a stub relative to components on

the parent map does not have any semantic significance (i.e., the behaviour and structure

defined on a plug-in map of a stub do not necessarily have to be bound to the same component

reference as the stub).

110 Rec. ITU-T Z.151 (10/2018)

Z.151(12)_F90

C1

Parent: Name Parent: Name C2

ii) Refinement iii) Role iv) Service

i) Not bound

C2

Figure 90 – Example: Plug-in bindings for components

d) Model

 None.

e) Example

 With the help of plug-in bindings for components, the relationship of multiple components

on a parent map and on plug-in maps may also be modelled as shown in the example in

Figure 91. Components on the plug-in map for which plug-in bindings are supposed to exist

are identified as usual by the prefix "parent:". Parent component C1 is bound to component

Name1 on the plug-in map, whereas parent component C3 is bound to component Name2 on

the plug-in map. This example also shows that component plug-in bindings may be

established regardless of the location of the stub on the parent map, i.e., even if the stub is

not bound to any component reference on the parent map.

Z.151(12)_F91

C1 C2

Parent: Name1 Parent: Name2

C4

C3

Figure 91 – Example: Plug-in bindings for multiple components

8.5 UCM scenario definitions

Scenario definitions (see ScenarioDef, clause 8.5.2) make use of path variables and conditions to

identify individual scenarios in an integrated collection of UCMs. Conditions allow the explicit

definition of otherwise hidden causal dependencies of path segments, thereby reducing the number

of path segments that can be combined to create useful and sensible end-to-end scenarios. Once

defined, such scenarios can be grouped or used for highlighting and animating specific paths or for

generating other representations such as Message Sequence Charts or TTCN-3 test cases (see

Figure 92).

There are no specific concrete grammar metaclasses for the model elements defined in this clause.

 Rec. ITU-T Z.151 (10/2018) 111

Figure 92 – Abstract grammar: UCM scenario definitions

8.5.1 ScenarioGroup

ScenarioGroup is a collection of scenario definitions. It is used to organize scenario definitions and

to manipulate them as a group (see Figure 92).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A ScenarioGroup is contained in the UCM specification

(see Figure 58).

– Association with ScenarioDef (0..*): A ScenarioGroup may refer to scenario definitions.

iii) Constraints

– Inherits constraints from UCMmodelElement.

b) Concrete grammar

 A ScenarioGroup does not have a graphical visual representation. Optionally, a

ScenarioGroup is visualized using the textual syntax for ScenarioGroup as specified in

Annex B.

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

 None (ScenarioGroup is a structural concept only).

EnumerationType

values : String

Variable

type : DatatypeKind = Boolean

0..1

0..*

enumerationType 0..1

instances 0..*

ScenarioGroup

Condition

Initialization

value : String

1 0..*variable 1 initializations 0..*

StartPoint EndPoint

ScenarioDef

1..*

0..*groups

1..*

scenarios

0..*

0..*

0..*

parentScenarios

0..*

{ordered}
includedScenarios

0..*

0..*

0..1

preconditions0..*

scenarioDefPre

0..1

0..*

0..1

postconditions

0..*

scenarioDefPost

0..1

0..*

1

initializations
0..*

scenarioDef

1

0..*

0..*

startPoints
0..*

scenarioDefs

0..*

{ordered}

0..*

0..*

endPoints
0..*

scenarioDefs

0..*

DatatypeKind

Boolean

Integer

Enumeration

<<enumeration>>

112 Rec. ITU-T Z.151 (10/2018)

8.5.2 ScenarioDef

ScenarioDef defines a scenario through the UCM model (i.e., a path through the model for which

alternatives at each choice point have been chosen). A scenario definition includes the start points of

the scenario, the desired end points to be reached, preconditions and postconditions that have to be

satisfied and initialization values for variables in the global data model of the URN specification (see

clause 9.1) (see Figure 92).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A ScenarioDef is contained in the UCM specification (see

Figure 58).

– Composition of Condition (preconditions, 0..*): A ScenarioDef may contain

preconditions.

– Composition of Condition (postconditions, 0..*): A ScenarioDef may contain

postconditions.

– Composition of Initialization (0..*): A ScenarioDef may contain variable initializations.

– Association with ScenarioGroup (1..*): A ScenarioDef is referenced by at least one

group of scenarios.

– Association with ScenarioDef (parentScenarios, 0..*): A ScenarioDef may be included

by scenario definitions.

– Association with ScenarioDef (includedScenarios, 0..*) {ordered}: A ScenarioDef may

have an ordered collection of included scenario definitions.

– Association with StartPoint (0..*) {ordered}: A ScenarioDef may define an ordered

collection of start points to be triggered.

– Association with EndPoint (0..*): A ScenarioDef may define end points to be reached.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– The scenario containment hierarchy established by the includedScenarios relationship

does not contain any cycles (i.e., a ScenarioDef shall not appear more than once on a

path from a top node to a leaf node in the containment hierarchy).

b) Concrete grammar

 A ScenarioDef does not have a graphical visual representation. Optionally, a ScenarioDef is

visualized using the textual syntax for ScenarioDef as specified in Annex B.

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

 ScenarioDef is used as the starting point for the UCM traversal mechanism. The traversal of

a path begins at the first StartPoint specified in a scenario definition, if the preconditions (see

Condition, clause 6.1.6) are satisfied after initializing the variables in the global data model

of the URN specification according to the Initializations specified in the scenario definition.

If a precondition is not satisfied, the traversal of the scenario failed and an error is generated.

 Rec. ITU-T Z.151 (10/2018) 113

 The start points are triggered in the order specified in the scenario definition, beginning with

the first one. The following start point is only triggered when the traversal triggered by the

first start point cannot proceed any further. If an error occurs, none of the remaining start

points are triggered.

 At the end of the traversal of a path, the reached EndPoints are compared against the desired

EndPoints specified in the scenario definition and the postconditions of the scenario

definition are evaluated. Postconditions of scenario definitions may make use of variable

names with the suffix "_pre", denoting the value of a variable Initialization. The scenario

traversal completed successfully if all desired end points have been reached and all

postconditions evaluate to true. In all other cases, the traversal of the scenario failed and an

error is generated.

 If a scenario definition contains another scenario definition, the traversal of a UCM path

considers the union of the StartPoints, EndPoints, preconditions and postconditions for its

purposes. For conflicting Initializations (i.e., initializations of the same variable), however,

the Initialization of the containing scenario overrides the Initialization of the contained

scenario. If more than one scenario definition is included, then the last scenario definition in

the ordered list of included scenarios takes precedence over the previous ones (i.e., the

initializations are applied beginning with the first included scenario definition in the ordered

list; then each other scenario definition is applied up to the last included scenario definition,

and finally the initializations of the including scenario are applied).

 If the preconditions of a scenario definition contradict the preconditions defined by its

contained scenario definitions, then the traversal will never be able to start. Analogously for

postconditions, the traversal will never be able to finish successfully if postconditions

contradict each other. The order of the start points in the union of start points from all

included scenarios and the scenario itself is determined by the ordered list of included

scenarios defined in a scenario definition. The start points of the first included scenario

definition have priority over all other start points, followed by the next included scenario

definition, and eventually the last included scenario definition. The start points of the scenario

definition itself are triggered last. Within each set of start points, the start points are again

ordered and the first start point has the highest priority.

d) Model

 None.

e) Examples

 Scenario definitions can help identify problems with a UCM specification as they can be used

to specify desired scenario behaviour. Essentially, scenario definitions are test cases that can

be run by the UCM path traversal against a UCM specification. The example in this clause

builds on the example UCM model from clause 8.2.1, illustrates different ways of structuring

scenario definitions, and shows how the UCM path traversal may help detect undesired

interactions between scenarios.

 One approach to structuring scenario definitions defines complete end-to-end scenarios for

each scenario definition. End-to-end scenarios may consist of many features defined on

separate plug-in maps as shown in Figure 61. With this approach, a scenario definition does

not include other scenario definitions but specifies all required scenario definition elements

itself. For example, the scenario definitions in Table 10 are structured according to this

approach.

114 Rec. ITU-T Z.151 (10/2018)

Table 10 – Example: End-to-end UCM scenario definitions

Name Start points Initializations1) End points

Basic Call

success

request !subOCS, !subTL, !subTCS, !busy ring, ringing

Basic Call busy request !subOCS, !subTL, !subTCS, busy busy

OCS success request subOCS, !subTL, !subTCS, !busy, !onOCSlist ring, ringing

OCS busy request subOCS, !subTL, !subTCS, busy, !onOCSlist busy

OCS denied request subOCS, !subTL, !subTCS, onOCSlist notify

TL success request !subOCS, subTL, !subTCS, !busy, !TLactive ring, ringing

TL pin success request,

enterPIN

!subOCS, subTL, !subTCS, !busy, TLactive,

PINvalid

ring, ringing

TL busy request !subOCS, subTL, !subTCS, busy, !TLactive busy

TL pin busy request,

enterPIN

!subOCS, subTL, !subTCS, busy, TLactive, PINvalid busy

TL invalid pin request,

enterPIN

!subOCS, subTL, !subTCS, !busy, TLactive,

!PINvalid

notify

TL timeout request !subOCS, subTL, !subTCS, !busy, TLactive notify

TCS success request !subOCS, !subTL, subTCS, !busy, !onTCSlist ring, ringing

TCS busy request !subOCS, !subTL, subTCS, busy, !onTCSlist busy

TCS denied request !subOCS, !subTL, subTCS, onTCSlist notify

TL pin TCS

success

request,

enterPIN

!subOCS, subTL, subTCS, !busy, TLactive, PINvalid,

!onTCSlist

ring, ringing

1) <variable> is shorthand for <variable> = true; !<variable> is shorthand for <variable> = false.

 The first two scenario definitions specify basic call behaviour, the next three the OCS feature

combined with basic call, the next six the TL feature combined with basic call, and the next

three feature the TCS feature combined with basic call. The last scenario definition specifies

the behaviour of a combination of TL, TCS and basic call.

 Another way of structuring scenario definitions is to use one scenario definition per feature

that captures the common specifications for all basic scenario definitions of the feature. For

example, the scenario definitions in Table 11 show a common scenario definition used by the

TL feature.

Table 11 – Example: End-to-end UCM scenario definitions with common elements

Name Start points Initializations1) End points

TL common request !subOCS, subTL, !subTCS, !busy, TLactive,

PINvalid

The following scenario definitions include TL common (elements that are scenario definition-specific and

not defined in TL common are shown in bold and italic):

TL success request !subOCS, subTL, !subTCS, !busy, !TLactive,

PINvalid
ring, ringing

TL pin success request,

enterPIN

!subOCS, subTL, !subTCS, !busy, TLactive,

PINvalid
ring, ringing

TL busy request !subOCS, subTL, !subTCS, busy, !TLactive,

PINvalid
busy

 Rec. ITU-T Z.151 (10/2018) 115

Table 11 – Example: End-to-end UCM scenario definitions with common elements

Name Start points Initializations1) End points

TL pin busy request,

enterPIN

!subOCS, subTL, !subTCS, busy, TLactive, PINvalid busy

TL invalid pin request,

enterPIN

!subOCS, subTL, !subTCS, !busy, TLactive,

!PINvalid

notify

TL timeout request !subOCS, subTL, !subTCS, !busy, TLactive,

PINvalid
notify

1) <variable> is shorthand for <variable> = true; !<variable> is shorthand for <variable> = false.

 The elements from the common scenario definition are merged with the elements from the

including scenario definition. The including scenario definition may override initializations

of the common scenario definition (e.g., TL success and TL busy override TLactive, TL busy

and TL pin busy override busy, and TL invalid pin overrides PINvalid). This second approach

of structuring scenario definitions demonstrates one reason for providing included scenarios

in the abstract UCM metamodel. Common prefixes of a scenario can be captured and reused

across many scenario definitions. By including a scenario definition, a scenario is positioned

at the desired path location. For example, any TL scenario always proceeds from the request

start point to the OrigFeatures stub. Any TCS scenario, on the other hand, always proceeds

from the request start point to the TermFeatures stub.

 A third way of structuring scenario definitions defines feature-specific scenario definitions

that do not describe end-to-end scenarios. An end-to-end scenario is created by including

several scenario definitions in another scenario definition. Table 12 gives an example of this

approach with the help of the basic call, OCS, TL and TCS features. Elements of a scenario

definition that are scenario definition-specific and not defined in an included scenario

definition are shown in bold and italic. The basic feature-specific scenarios are highlighted

in bold.

Table 12 – Example: Feature-specific UCM scenario definitions

Name1) Start points Initializations2) End points

Basic Call core request !subOCS, !subTL, !subTCS, !busy

Basic Call success

+Basic Call core

request !subOCS, !subTL, !subTCS, !busy ring, ringing

Basic Call busy

+Basic Call core

request !subOCS, !subTL, !subTCS, busy busy

OCS core subOCS, !onOCSlist

OCS success

+Basic Call success,

+OCS core

request subOCS, !subTL, !subTCS, !busy, !onOCSlist ring, ringing

OCS busy

+Basic Call busy,

+OCS core

request subOCS, !subTL, !subTCS, busy, !onOCSlist busy

OCS denied

+Basic Call core

+OCS core

request subOCS, !subTL, !subTCS, onOCSlist notify

TL core subTL, TLactive, PINvalid

116 Rec. ITU-T Z.151 (10/2018)

Table 12 – Example: Feature-specific UCM scenario definitions

Name1) Start points Initializations2) End points

TL core PIN

+TL core

enterPIN subTL, TLactive, PINvalid

TL success

+Basic Call success

+TL core

request !subOCS, subTL, !subTCS, !busy, !TLactive,

PINvalid

ring, ringing

TL pin success

+Basic Call success

+TL core PIN

request,

enterPIN

!subOCS, subTL, !subTCS, !busy, TLactive,

PINvalid

ring, ringing

TL busy

+Basic Call busy

+TL core

request !subOCS, subTL, !subTCS, busy, !TLactive,

PINvalid

busy

TL pin busy

+Basic Call busy

+TL core PIN

request,

enterPIN

!subOCS, subTL, !subTCS, busy, TLactive,

PINvalid

busy

TL invalid pin

+Basic Call core

+TL core PIN

request,

enterPIN

!subOCS, subTL, !subTCS, !busy, TLactive,

!PINvalid

notify

TL timeout

+Basic Call core

+TL core

request !subOCS, subTL, !subTCS, !busy, TLactive,

PINvalid
notify

TCS core subTCS, !onTCSlist

TCS success

+Basic Call success

+TCS core

request !subOCS, !subTL, subTCS, !busy, !onTCSlist ring, ringing

TCS busy

+Basic Call busy

+TCS core

request !subOCS, !subTL, subTCS, busy, !onTCSlist busy

TCS denied

+Basic Call core

+TCS core

request !subOCS, !subTL, subTCS, onTCSlist notify

Below are scenario definitions that combine more than two features:

TL pin TCS success

+Basic Call success

+TL core PIN

+TCS core

request,

enterPIN

!subOCS, subTL, subTCS, !busy, TLactive,

PINvalid, !onTCSlist

ring, ringing

TL invalid pin OCS

+Basic Call core

+TL core PIN

+OCS core

request,

enterPIN

subOCS, subTL, !subTCS, !busy, TLactive,

!PINvalid, !onOCSlist
notify

1) + denotes an included scenario.

2) <variable> is shorthand for <variable> = true; !<variable> is shorthand for <variable> = false.

 The last two scenario definitions are of particular interest because the more features are

combined, the more likely it is that undesired interactions between these features manifest

themselves in the UCM model. The penultimate scenario definition is not problematic, but

the last one is. If the UCM path traversal attempts to run this scenario, the traversal will

encounter two active plug-in maps for the TermFeatures stub, because the preconditions for

 Rec. ITU-T Z.151 (10/2018) 117

both the Teen Line plug-in map and the Originating Call Screening plug-in map are fulfilled.

Both plug-in maps are therefore run in parallel. However, only the Teen Line feature fails

and ends at the notify end point. The Originating Call Screening feature, however, succeeds

and continues to the ring and ringing end points. This is an undesired interaction, because the

active Teen Line feature has been circumvented and the scenario ends at both ring/ringing as

well as notify.

 There are different ways of resolving this conflict. One solution requires the following

changes to the UCM model, as shown in Figure 93:

– Add two new Boolean variables: chkOCS and chkTL.

– Add responsibility initFeatures just before the OrigFeatures stub (initializes the new

variables: chkOCS = subOCS; chkTL = subTL).

– Change the precondition for the OCS plug-in map of the OrigFeatures stub: chkOCS.

– Change the precondition for the Teen Line plug-in map of the OrigFeatures stub: chkTL

and not chkOCS.

– Change the precondition for the Default plug-in map of the OrigFeatures stub: not

(chkOCS or chkTL).

– Add an OR-fork just after the OrigFeatures stub on the OUT1 out-path.

– Loop back to the OrigFeatures stub if (chkOCS or chkTL) (FeatureLeft branch), continue

otherwise (NoFeatureLeft branch).

– Add a variable assignment to the responsibility checkOCS on the Originating Call

Screening plug-in map (chkOCS = false).

– Add a variable assignment to the responsibility checkTime on the Teen Line plug-in map

(chkTL = false).

 This solution gives priority to OCS over Teen Line (see preconditions of plug-in maps)

because OCS does not require user interaction and it is not worth asking the originating user

for a PIN if the call is blocked by OCS. This solution does not run the plug-in maps in parallel

but one at the time. Each time the traversal reaches the OrigFeatures stub, a different feature

is chosen, because a chk<Feature> variable was changed by a responsibility on the previously

run plug-in map (see the variable assignments in the last two bullets).

Z.151(12)_F93

sendRequestStart Success
OrigFeatures

Fail OUT2

OUT1

Parent: Agent

initFeatures

[FeatureLeft]

[NoFeatureLeft]

Originating features (improved)

Figure 93 – Example: UCM model (improved)

NOTE – All approaches for structuring scenario definitions in this clause could have specified preconditions

and postconditions for the scenarios in addition to start point, end points and initializations but did not for

simplicity of the example UCM model.

8.5.3 Initialization

Initialization specifies the initial value of a variable in a scenario definition (see Figure 92).

a) Abstract grammar

i) Attributes

– value (String): The initial value of a variable.

118 Rec. ITU-T Z.151 (10/2018)

ii) Relationships

– Contained by ScenarioDef (1): An Initialization is contained in one scenario definition.

– Association with Variable (1): An Initialization is for one variable.

iii) Constraints

– The value shall be a Boolean literal as defined in clause 9.2.1, if the type of the Variable

is Boolean.

– The value shall be an Integer literal (possibly preceded by the additive complement

operator) as defined in clause 9.2.2, if the type of the Variable is Integer.

– The value shall be an enumeration literal from the values of the EnumerationType of the

Variable as defined in clause 9.2.3, if the type of the Variable is Enumeration.

b) Concrete grammar

 An Initialization does not have a graphical visual representation. Optionally, an Initialization

is visualized as part of its ScenarioDef using the textual syntax for Initialization as specified

in Annex B.

c) Semantics

 Initializations are used by the traversal of a UCM path to set variables of the global data model

in the URN specification (see clause 9.1) before traversing the UCM model based on a

scenario definition.

8.5.4 Variable

Variables are part of the global data model in the URN specification (see clause 9.1). A variable may

be one of several types and is initialized by the UCM traversal mechanism with Initialization values

(see Figure 92).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

– type (DatatypeKind): The type of the variable. Default value is Boolean.

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A Variable is contained in the UCM specification (see

Figure 58).

– Association with EnumerationType (0..1): A Variable may be of Enumeration type.

– Uses DatatypeKind enumeration.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– Any two Variables cannot share the same name inside a URN specification.

– A Variable has one EnumerationType if and only if the type of the Variable is

Enumeration.

– The name of a Variable shall be different from the following keywords: and, or, xor, not,

mod, true, false, if, else, UCMFailures as well as all keywords for TURN as specified in

Annex B.

– The name of a Variable shall not end with "_pre".

 Rec. ITU-T Z.151 (10/2018) 119

b) Concrete grammar

 A Variable does not have a graphical visual representation. Optionally, a Variable is

visualized using the textual syntax for Variable as specified in Annex B.

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

 Variable is defined by its type and may be initialized according to an Initialization at the

beginning of the traversal of a UCM path. The value of a variable may change during the

traversal of a UCM path because of the expression of a Responsibility definition. The initial

value of a Variable provided by its Initialization is accessible in data expressions (see

clause 9.3) by using its name with the "_pre" suffix. A variable has a data item of the same

type, or it is "undefined".

8.5.5 EnumerationType

EnumerationType defines the valid values of an Enumeration (see Figure 92).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

– values (String): A comma-separated list of values specifies the valid choices for an

Enumeration type.

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): An EnumerationType is contained in the UCM specification

(see Figure 58).

– Association with Variable (0..*): An EnumerationType may be used for variables.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– values shall be a comma-separated list of enumeration literals as defined in clause 9.2.3.

– Each individual value in values shall be unique within values.

– Each individual value in values shall be different from all Variable names.

– Each individual value in values shall not end with "_pre".

– Each individual value in values shall be different from the following keywords: and, or,

xor, not, mod, true, false, if, else as well as all keywords for TURN as specified in Annex

B.

b) Concrete grammar

 An EnumerationType does not have a graphical visual representation. Optionally, an

EnumerationType is visualized using the textual syntax for EnumerationType as specified in

Annex B.

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

 EnumerationType specifies the choices of valid values for a variable of type Enumeration.

An Enumeration consists of at least one String value. If more than one value is specified for

120 Rec. ITU-T Z.151 (10/2018)

an Enumeration, a list of values separated by commas is used. For example, "Value1,Value2"

specifies an Enumeration with two valid values.

8.5.6 DatatypeKind

A variable can be a Boolean, an Integer or an Enumeration (see Figure 92).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by Variable.

iii) Constraints

– None.

b) Concrete grammar

 None (enumeration metaclass). However, it influences the presentation of variables using the

textual syntax (see clause 8.5.4).

c) Semantics

 DatatypeKind defines the data type for a variable and therefore influences the valid values,

valid expressions and valid uses a variable may have. All of these are defined for Boolean,

Integer and Enumeration in more detail in clause 9 – Data language.

8.6 UCM performance annotations

UCM performance annotations enable the performance analysis of UCM models. Different kinds of

resources can be defined so that potential deployments and usages of UCM components supporting

scenarios can be analysed. A Component may be hosted on a ProcessingResource or may be

considered as a PassiveResource. A RespRef may make a demand on the processing resource

hosting its containing component. A Responsibility may also make explicit demands (e.g., service

requests) on ExternalOperations. A StartPoint may contain a Workload describing the load density

applied to a scenario. Workloads can be open with different arrival distributions, or closed with a

fixed population. The time units used are specified in the workload (see Figure 94).

These annotations, together with others in metaclasses previously defined (hostDemand and

repetitionCount in RespRef, probability in NodeConnection, and probability in PluginBinding), enable

transformations of UCM models to models specified in languages suitable for performance analysis.

Such transformations are, however, outside the scope of this Recommendation.

There are no specific concrete grammar metaclasses for the model elements defined in this clause.

 Rec. ITU-T Z.151 (10/2018) 121

Figure 94 – Abstract grammar: UCM performance annotations

8.6.1 Workload

Workload is a characterization of the load intensity applied to a scenario initiated at a StartPoint. A

workload is open or closed and specifies a time unit (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

– unit (TimeUnit): The unit of time used by the other attributes of the workload. Default

value is ms (millisecond).

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by StartPoint (1): A Workload is contained in one start point.

– Uses TimeUnit enumeration.

– Workload is a superclass of OpenWorkload and ClosedWorkload.

iii) Constraints

– Inherits constraints from UCMmodelElement.

122 Rec. ITU-T Z.151 (10/2018)

– All instances of Workload shall appear in one of its subclasses (that is, metaclass

Workload is abstract).

b) Concrete grammar

 A Workload does not have a visual representation.

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

 A Workload characterizes the requests for a scenario at a start point. A workload shall be

either open (OpenWorkload) or closed (ClosedWorkload).

 The time unit used in the definition of workload parameters (in OpenWorkload and

ClosedWorkload subclasses) are specified by the unit attribute.

8.6.2 TimeUnit

The time unit used by a workload definition can be year (year), day (day), hour (h), second (s),

millisecond (ms), microsecond (μs) or nanoseconds (ns) (see Figure 94).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by Workload and ActiveResource.

iii) Constraints

– None.

b) Concrete grammar

 None (enumeration metaclass).

c) Semantics

 A time unit (used by a workload) can be one of the following:

– year: year (365 days)

– day: day (24 hours)

– h: hour (3600 seconds)

– s: second

– ms: millisecond (1/1000 second)

– μs: microsecond (1/1000 millisecond)

– ns: nanosecond (1/1000 microsecond)

8.6.3 ClosedWorkload

A ClosedWorkload is a Workload with a fixed number of active users that cycle through the system

(see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from Workload.

– population (String): The number of active users in a closed workload.

 Rec. ITU-T Z.151 (10/2018) 123

– externalDelay (String): The mean think time of users between requests on the containing

start point.

ii) Relationships

– Inherits relationships from Workload.

iii) Constraints

– Inherits constraints from Workload.

– The population shall be an Integer expression, as defined in clause 9.3.

– The population shall evaluate to a non-negative Integer value.

– The externalDelay shall be an Integer expression, as defined in clause 9.3.

– The externalDelay shall evaluate to a non-negative Integer value.

b) Concrete grammar

 A ClosedWorkload does not have a visual representation.

i) Relationships

– Inherits relationships from Workload.

c) Semantics

 A ClosedWorkload is a Workload that has a population attribute defining the finite number

of active users of the containing scenario start point, as well as an external delay

(externalDelay) defining the mean think time of each user between requests on that start

point. The time unit of the external delay is specified by the workload's unit attribute.

8.6.4 OpenWorkload

An OpenWorkload is a Workload that represents streams of requests which arrive at a given rate in

some predetermined pattern (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from Workload.

ii) Relationships

– Inherits relationships from Workload.

– OpenWorkload is a superclass of OWPoisson, OWPeriodic, OWUniform and

OWPhaseType.

iii) Constraints

– Inherits constraints from Workload.

– All instances of OpenWorkload shall appear in one of its subclasses (that is, metaclass

OpenWorkload is abstract).

b) Concrete grammar

 An OpenWorkload does not have a visual representation.

i) Relationships

– Inherits relationships from Workload.

c) Semantics

 An OpenWorkload is a Workload with an open arrival pattern defined by one of its subclasses.

The arrival pattern represents streams of requests which arrive at the workload's start point.

124 Rec. ITU-T Z.151 (10/2018)

8.6.5 OWPoisson

OWPoisson is an OpenWorkload with a Poisson arrival distribution (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from OpenWorkload.

– mean (String): The mean of the Poisson distribution is the value of the mean attribute

divided by 1000.

ii) Relationships

– Inherits relationships from OpenWorkload.

iii) Constraints

– Inherits constraints from OpenWorkload.

– The mean shall be an Integer expression, as defined in clause 9.3.

– The mean shall evaluate to a positive Integer value.

b) Concrete grammar

 An OWPoisson does not have a visual representation.

i) Relationships

– Inherits relationships from Workload.

c) Semantics

 OWPoisson is an OpenWorkload with a mathematical Poisson arrival distribution. The mean

of the distribution (often called λ in mathematics) is the mean attribute (a positive Integer)

divided by 1000.

8.6.6 OWPeriodic

OWPeriodic is an OpenWorkload with a periodic arrival (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from OpenWorkload.

– period (String): The period of the periodic arrival.

– deviation (String): The maximal deviation of the periodic arrival.

ii) Relationships

– Inherits relationships from OpenWorkload.

iii) Constraints

– Inherits constraints from OpenWorkload.

– The period shall be an Integer expression, as defined in clause 9.3.

– The period shall evaluate to a positive Integer value.

– The deviation shall be an Integer expression, as defined in clause 9.3.

– The deviation shall evaluate to a non-negative Integer value.

b) Concrete grammar

 An OWPeriodic does not have a visual representation.

i) Relationships

– Inherits relationships from Workload.

 Rec. ITU-T Z.151 (10/2018) 125

c) Semantics

 OWPeriodic is an OpenWorkload with a periodic arrival characterized by a period and a

maximal deviation. The time units of the period and deviation are specified by the workload's

unit attribute.

8.6.7 OWUniform

OWUniform is an OpenWorkload with a uniform arrival distribution and a sampling interval

(see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from OpenWorkload.

– start (String): The start of the sampling interval.

– end (String): The end of the sampling interval.

ii) Relationships

– Inherits relationships from OpenWorkload.

iii) Constraints

– Inherits constraints from OpenWorkload.

– The start shall be an Integer expression, as defined in clause 9.3.

– The start shall evaluate to a non-negative Integer value.

– The end shall be an Integer expression, as defined in clause 9.3.

– The end shall evaluate to a positive Integer value greater than start's evaluated value.

b) Concrete grammar

 An OWUniform does not have a visual representation.

i) Relationships

– Inherits relationships from Workload.

c) Semantics

 OWUniform is an OpenWorkload with a mathematical (discrete) uniform arrival distribution.

The time units of the start and end are specified by the workload's unit attribute.

8.6.8 OWPhaseType

OWPhaseType is an OpenWorkload with a phase-type arrival distribution (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from OpenWorkload.

– alpha (String): The probability row-vector of the phase-type arrival distribution. Each

probability is expressed in thousandth.

– s (String): The subgenerator square matrix of the phase-type arrival distribution.

ii) Relationships

– Inherits relationships from OpenWorkload.

iii) Constraints

– Inherits constraints from OpenWorkload.

126 Rec. ITU-T Z.151 (10/2018)

b) Concrete grammar

 An OWPhaseType does not have a visual representation.

i) Relationships

– Inherits relationships from Workload.

c) Semantics

 OWPhaseType is an OpenWorkload with a mathematical phase-type arrival distribution (that

results from a system of one or more interrelated Poisson processes occurring in sequence,

or phases). A phase-type distribution can be used to describe other types of distributions,

which are special cases: exponential, Erlang, deterministic, Coaxian, hyper-exponential and

hypo-exponential distributions.

 The alpha attribute is vector of Integer values, where the values represent probabilities

multiplied by 1000 and are separated by commas (e.g., "900, 100, 0").

 The s attribute is a square matrix of Integer values, where each row is a vector between square

brackets and each vector is separated by a comma (e.g., "[–3, 0, 0], [0, –4, 0], [0, 0, –5]").

 The time units used in the s matrix are specified by the workload's unit attribute.

8.6.9 GeneralResource

GeneralResource is a UCM model element that represents a resource that can be used by

responsibilities or that can be used to deploy components on (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from UCMmodelElement (see Figure 59).

– multiplicity (Nat): The number of available resources. Default value is 1.

– schedPolicy (String): The type of scheduling policy.

ii) Relationships

– Inherits relationships from UCMmodelElement.

– Contained by UCMspec (1): A GeneralResource is contained in the UCM specification

(see Figure 58).

– GeneralResource is a superclass of PassiveResource and ActiveResource.

iii) Constraints

– Inherits constraints from UCMmodelElement.

– All instances of GeneralResource shall appear in one of its subclasses (that is, metaclass

GeneralResource is abstract).

b) Concrete grammar

 A GeneralResource does not have a visual representation.

i) Relationships

– Inherits relationships from UCMmodelElement.

c) Semantics

GeneralResource is an abstract class used to define attributes common to the other resources. The

multiplicity represents the number of copies of the same resource. An optional schedPolicy attribute

can be used to assign a specific scheduling policy to the resource, but its format is outside the scope

of this Recommendation.

 Rec. ITU-T Z.151 (10/2018) 127

8.6.10 PassiveResource

PassiveResource is a GeneralResource that represents a resource that can be acquired and released

(see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from GeneralResource.

ii) Relationships

– Inherits relationships from GeneralResource.

– Association with Component (0..1): A PassiveResource may have one component

definition.

iii) Constraints

– Inherits constraints from GeneralResource.

b) Concrete grammar

 A PassiveResource does not have a visual representation.

i) Relationships

– Inherits relationships from GeneralResource.

c) Semantics

 Passive resources are resources that do not have their own threads of control. Passive

resources represent resources that shall be held but which do not perform operations. A

Component associated to a passive resource represents that passive resource on UCM

diagrams.

8.6.11 ActiveResource

ActiveResource is a GeneralResource that executes or processes its operations itself within the

context of a performance model (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from GeneralResource.

– opTime (String): The time required by the ActiveResource to do one operation.

– unit (TimeUnit): The unit of time used by opTime. Default value is ms (millisecond).

ii) Relationships

– Inherits relationships from GeneralResource.

– ActiveResource is a superclass of ProcessingResource and ExternalOperation.

– Uses TimeUnit enumeration.

iii) Constraints

– Inherits constraints from GeneralResource.

– All instances of ActiveResource shall appear in one of its subclasses (that is, metaclass

ActiveResource is abstract).

– The opTime shall be an Integer expression, as defined in clause 9.3.

– The opTime shall evaluate to a non-negative Integer value.

b) Concrete grammar

 An ActiveResource does not have a visual representation.

128 Rec. ITU-T Z.151 (10/2018)

i) Relationships

– Inherits relationships from GeneralResource.

c) Semantics

 ActiveResources are resources that have their own thread of control. Active resources

represent resources that perform operations. The opTime attribute describes the time needed

by the resource to perform one operation, in the time unit specified.

8.6.12 ProcessingResource

ProcessingResource is an ActiveResource that represents a hardware processor (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from ActiveResource.

– kind (DeviceKind): The specific kind of hardware processing device represented by the

resource. Default value is Processor.

ii) Relationships

– Inherits relationships from ActiveResource.

– Association with Component (0..*): A ProcessingResource may have component

definitions for which it acts as a host.

– Uses DeviceKind enumeration.

iii) Constraints

– Inherits constraints from ActiveResource.

b) Concrete grammar

 A ProcessingResource does not have a visual representation.

i) Relationships

– Inherits relationships from ActiveResource.

c) Semantics

 A ProcessingResource represents a hardware host for the software Components associated

with it. The kind attribute defines the type of hardware being represented by the resource.

8.6.13 DeviceKind

A processing resource can be a Processor, a Disk or a digital signal processor (DSP) (see Figure 94).

a) Abstract grammar

i) Attributes

– None (enumeration metaclass).

ii) Relationships

– Used by ProcessingResource.

iii) Constraints

– None.

b) Concrete grammar

 None (enumeration metaclass).

 Rec. ITU-T Z.151 (10/2018) 129

c) Semantics

 DeviceKind is an enumerated type representing one of three kinds of hardware (processor,

disk or DSP).

8.6.14 ExternalOperation

An ExternalOperation is an ActiveResource that represents services provided by external devices

which are not defined in the current model (see Figure 94).

a) Abstract grammar

i) Attributes

– Inherits attributes from ActiveResource.

ii) Relationships

– Inherits relationships from ActiveResource.

– Association with Demand (0..*): An ExternalOperation may have demands made on it.

iii) Constraints

– Inherits constraints from ActiveResource.

b) Concrete grammar

 An ExternalOperation does not have a visual representation.

i) Relationships

– Inherits relationships from ActiveResource.

c) Semantics

 An ExternalOperation represents a service performed by a resource or set of resources

defined outside of the scope of the current model. ExternalOperations are used to describe

operations done by external services.

8.6.15 Demand

A Demand describes an average service request to (or use of) an ExternalOperation performed by a

Responsibility (see Figure 94).

a) Abstract grammar

i) Attributes

– quantity (String): The average number of requests to the ExternalOperation per use of

the scenario is the value of the quantity attribute divided by 1000.

ii) Relationships

– Contained by Responsibility (1): A Demand is contained in one responsibility definition.

– Association with ExternalOperation (1): A Demand is for one external operation.

iii) Constraints

– The quantity shall be an Integer expression, as defined in clause 9.3.

– The quantity shall evaluate to a non-negative Integer value.

b) Concrete grammar

 None.

c) Semantics

 A Demand quantifies the average number of service requests of a Responsibility to an

ExternalOperation per traversal of a scenario. A responsibility can have multiple demands to

130 Rec. ITU-T Z.151 (10/2018)

external operations, in addition to its own hostDemand (on the processing resource that hosts

the component that contains the responsibility).

8.7 UCM concrete grammar metaclasses

The only concrete grammar metaclasses specific to the UCM notation is the direction arrow. All other

concrete grammar metaclasses that may be contained by some of the UCM abstract grammar

metaclasses have been covered in previous clauses. Concrete condition, label, position, size, concrete

style and comment have already been covered in clauses 6.2.3, 7.8.8, 7.8.10, 7.8.11, 7.8.12 and 7.8.13,

respectively (see Figures 7, 52, 53, 54, 55 and 56, respectively). See Figure I.10 for a complete

overview of the concrete grammar metaclasses for the UCM notation.

Figure 95 – Concrete grammar: DirectionArrow metaclasses

8.7.1 DirectionArrow

DirectionArrow visualizes the direction of causal flow of a path in a UCM diagram. They are useful

for long paths or for paths whose visualization would be otherwise ambiguous in terms of direction

(see Figure 95).

a) Abstract grammar

 DirectionArrow has no abstract syntax.

i) Attributes

– Inherits attributes from PathNode.

ii) Relationships

– Inherits relationships from PathNode.

iii) Constraints

– Inherits constraints from PathNode.

b) Concrete grammar

 The symbol for DirectionArrow on a UCM path is defined as an open arrow-head (>) pointing

towards the successor node connection (see Figure 96).

Figure 96 – Symbol: UCM direction arrow

i) Relationships

– Inherits relationships from PathNode.

ii) Constraints

– Inherits constraints from PathNode.

– A DirectionArrow is the source PathNode of exactly one NodeConnection.

– A DirectionArrow is the target PathNode of exactly one NodeConnection.

c) Semantics

 DirectionArrow is a special case in that it is a concrete grammar metaclass that is specializing

an abstract grammar metaclass. The abstract URN metamodel, therefore, ignores PathNodes

of type DirectionArrow as if DirectionArrows do not exist, replacing the two NodeConnections

DirectionArrowPathNode

… …… …

 Rec. ITU-T Z.151 (10/2018) 131

for a DirectionArrow (PathNode P1 DirectionArrow PathNode P2) with one

NodeConnection (PathNode P1 PathNode P2).

d) Model

 None.

e) Example

 The example in Figure 97 shows one stub with two in-paths and two out-paths. One pair of

in-path and out-path forms a loop, first exiting the stub and then re-entering the stub.

Although the direction of the loop is defined in the UCM model, the visualization of the loop

is ambiguous if no direction arrow is used. With the direction arrow, however, it is possible

to determine from the visualization that responsibility R2 follows responsibility R1, and not

the opposite.

Z.151(12)_F97

R2 R1

Figure 97 – Example: UCM direction arrow

9 Data language

URN supports simple data types and a data language sufficient to enable the evaluation of GRL

strategies, the traversal of UCM models according to scenario definitions and UCM performance

analysis. Though URN offers modellers a concrete syntax that is mostly graphical, the data language

is textual and is based on a subset of the data language for SDL-2010 [ITU-T Z.104]. In order to

accommodate modellers less experienced with SDL-2010, the concrete textual syntax also allows for

operators from conventional programming languages (e.g., C and Java) to be used.

This clause is divided as follows:

– Clause 9.1: URN data model

– Clause 9.2: URN data types

– Clause 9.3: Grammar for expressions

– Clause 9.4: Grammar for actions

NOTE – Though the SDL-2010-like and programming language concrete syntaxes are supported by this

grammar, it is recommended not to mix both styles to define the expressions and actions in a URN model.

9.1 URN data model

The data model of a URN specification is defined by the Variables the URN specification contains

together with the annotations attached to URN model elements (e.g., performance annotations). In

URN, variables are global. They are strongly typed and hence they can only contain values of their

type (e.g., an Integer value cannot be assigned to a Boolean variable, or vice versa). Variables and

annotations for which no value was provided are "undefined".

The primary intent of the URN data model is not to capture domain model data or complex data

structures but to support GRL strategy evaluations, UCM scenario traversal and UCM performance

annotations. It is hence simpler than most data languages found in programming languages and other

specification languages.

132 Rec. ITU-T Z.151 (10/2018)

9.2 URN data types

URN has three predefined basic data types, namely Boolean, Integer and Enumeration (see

Figure 98). These represent a subset of the data types of [ITU-T Z.104], with support for a subset of

the SDL-2010 syntax, operators and semantics.

Figure 98 – URN data types

9.2.1 Boolean

The Boolean data type corresponds to a subset of the predefined Boolean sort in [ITU-T Z.104]. It is

used to represent true and false values, which are the only two literals of this type:

<boolean literal> ::= true | false

Often a Boolean is used as the result of a comparison.

Table 13 lists the Boolean operators supported in URN, together with their SDL-2010 and alternative

syntaxes, as well as signatures. The semantics is that of SDL-2010 Booleans.

Table 13 – Operators of the Boolean data type

Operator
SDL-2010

syntax

Alternative

syntax
Signature

Equal = == (Boolean, Boolean) Boolean

Not Equal /= != (Boolean, Boolean) Boolean

Negation not ! (Boolean) Boolean

Conjunction and && (Boolean, Boolean) Boolean

Disjunction or || (Boolean, Boolean) Boolean

Exclusive Disjunction xor ^ (Boolean, Boolean) Boolean

Logical Implication => => (Boolean, Boolean) Boolean

9.2.2 Integer

The Integer data type corresponds to a subset of the predefined Integer sort in [ITU-T Z.104]. It is

used to represent mathematical integers with a decimal notation. The literals are non-empty sequences

of decimal digits:

<integer literal> ::= <decimal digit>+

<decimal digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Table 14 lists the Integer operators supported in URN, together with their SDL-2010 and alternative

syntaxes, as well as signatures. The semantics is that of SDL-2010 Integers. However, unlike the

division of SDL, division in URN does not generate any exception;1 attempting to divide an Integer

by zero results in an error (e.g., during the traversal of a UCM scenario, see clause 11.2).

1 Though the handling of the exception raised by division is not defined in SDL-2010.

Integer EnumerationBoolean

DataType

 Rec. ITU-T Z.151 (10/2018) 133

Table 14 – Operators of the Integer data type

Operator
SDL-2010

syntax

Alternative

syntax
Signature

Equal = == (Integer, Integer) Boolean

Not Equal /= != (Integer, Integer) Boolean

Greater Than > > (Integer, Integer) Boolean

Lower Than < < (Integer, Integer) Boolean

Greater or Equal to >= >= (Integer, Integer) Boolean

Lower or Equal to <= <= (Integer, Integer) Boolean

Addition + + (Integer, Integer) Integer

Subtraction - - (Integer, Integer) Integer

Multiplication * * (Integer, Integer) Integer

Division / / (Integer, Integer) Integer

Modulus mod % (Integer, Integer) Integer

Additive Complement - - (Integer) Integer

9.2.3 Enumeration

The Enumeration data type corresponds to a data type definition in [ITU-T Z.104] where only literals

are listed (enumerating the elements of the sort). The literals are non-empty sequences of letters,

decimal digits and underscores, but they are not allowed to start with a decimal digit or be solely

composed of underscores. Each literal shall be unique within the enumeration type, and its name shall

be different from operator keywords used in the grammars of clauses 9.3 and 9.4 (namely: and, or,

xor, not, mod, true, false, if, else) as well as all keywords from TURN as specified in Annex B. A

letter is a printable, alphabetical character from UCS [ITU-T T.55] and it can include accents or not.

Letters are case sensitive.

<enumeration literal> ::= <identifier>

<identifier> ::= {<letter> [<word>] | <underscore>+ <word>}

 {<underscore>+ <word>}* <underscore>*

<word> ::= {<letter> | <decimal digit>}+

<letter> ::= (any character recommended in UCS [ITU-T T.55] with LETTER

 as part of name of the character)

<underscore> :: = _

Table 15 lists the Enumeration operators supported in URN, together with their SDL-2010 and

alternative syntaxes, as well as signatures. The name of the Enumeration (EnumerationName) is the

type of the enumeration's literals. Only equality and inequality operators are supported; there is no

notion of ordering of the literals of the enumeration. Two enumeration literals compared for equality

shall be of the same type (i.e., they are from the same Enumeration type).

Table 15 – Operators of the Enumeration data type

Operator
SDL-2010

syntax

Alternative

syntax
Signature

Equal = == (EnumerationName, EnumerationName) Boolean

Not Equal /= != (EnumerationName, EnumerationName) Boolean

134 Rec. ITU-T Z.151 (10/2018)

9.3 Grammar for expressions

The following grammar defines the concrete syntax for URN data expression (<expression>).

SDL-2010 operator precedence rules apply. As explained in clause 8.5.4, variable names are not

allowed to end with "_pre", so that this suffix can be used in expressions to refer to the initial value

of the variable, as provided by a scenario definition.

<expression> ::= <implication>

<implication> ::= <disjunction> {<implies> <disjunction>}*

<disjunction> ::= <conjunction> {{<or> | <xor>} <conjunction>}*

<conjunction> ::= <comparison> {<and> <comparison>}*

<comparison> ::= <boolean unit> {{<equals> | <not equals>} <boolean unit>}*

<boolean unit> ::= <negation> | <relational expression> | <boolean literal>

<negation> ::= <not> <boolean unit>

<relational expression> ::=

 <additive expression> [{ <greater than>

 | <greater or equal to>

 | <lower than>

 | <lower or equal to> }

 <additive expression>]

<additive expression> ::=

 <multiplicative expression> {{<addition> | <substraction>}

 <multiplicative expression>}*

<multiplicative expression> ::=

 <unary expression> {

 {<multiplication> | <division> | <modulus>}

 <unary expression> }*

<unary expression> ::= [<addition> | <substraction>]

 { <left parenthesis> <expression> <right parenthesis>

 | <integer literal>

 | <enumeration literal>

 | <variable> }

<equals> ::= = | ==

<not equals> ::= /= | !=

<and> ::= and | &&

<or> ::= or | ||

<xor> ::= xor | ^

<implies> ::= =>

<not> ::= not | !

<greater than> ::= >

<greater or equal to> ::= >=

<lower than> ::= <

<lower or equal to>::= <=

<addition> ::= +

<substraction> ::= -

<multiplication> ::= *

 Rec. ITU-T Z.151 (10/2018) 135

<division> ::= /

<modulus> ::= mod | %

<left parenthesis> ::= (

<right parenthesis>::=)

<boolean literal> ::= true | false

<integer literal> ::= <decimal digit>+

<decimal digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<enumeration literal> ::= <identifier>

<variable> ::= <variable name> | <pre variable name>

<variable name> ::= <identifier>

<pre variable name> ::= <variable name> <pre suffix>

<identifier> ::= {<letter> [<word>] | <underscore>+ <word>}

 {<underscore>+ <word>}* <underscore>*

<word> ::= {<letter> | <decimal digit>}+

<letter> ::= (any character recommended in UCS [ITU-T T.55] with LETTER

 as part of the name of the character)

<underscore> ::= _

<pre suffix> ::= _pre

The type of an expression is computed using the signatures of the operators used. An expression

between parentheses has the same type as the contained expression.

An <identifier> is an <enumeration literal> if it is one of the enumeration values of one of

the EnumerationTypes defined in the URN specification. Its type is then the name of that

EnumerationType.

An <identifier> is a <variable name> if it is the name of a Variable defined in the URN

specification. Its type is then the type of that Variable.

An <identifier> that is neither an <enumeration literal> nor a <variable name> shall

generate an error. A type mismatch shall also generate an error.

An expression that contains <pre variable name> shall only be used for postconditions of scenario

definitions (see clause 8.5.2). Otherwise, an error shall be generated.

Of particular interests are the following types of expression, often used in String attributes of

metaclasses:

– A Boolean expression is an <expression> whose computed type is Boolean.

– An Integer expression is an <expression> whose computed type is Integer.

9.4 Grammar for actions

URN supports a simple action language for modifying the values of variables. An action (<action>)

is used by the expression attribute of a UCM Responsibility (see clause 8.2.4). Actions include simple

assignments, compound statements and conditional statements. Actions are of a special type called

Void, which is different from any data type, including user-defined enumerations. The different

actions, together with their syntax and signatures, are defined in Table 16.

136 Rec. ITU-T Z.151 (10/2018)

Table 16 – Actions and their signatures

Operator
SDL-2010

syntax

Alternative

syntax
Signature

Boolean Assignment := = (Boolean, Boolean) Void

Integer Assignment := = (Integer, Integer) Void

Enumeration Assignment := = (EnumerationName, EnumerationName) Void

If Statement if if (Boolean, Void) Void

If-Else Statement if else if else (Boolean, Void, Void) Void

Compound Statement { } { } (Void)* Void

The concrete syntax for actions is defined by the following grammar. It supplements the grammar for

expressions defined in clause 9.3. The type of an action is computed according to the signatures

defined in Table 16 and the rules from clause 9.3. A type mismatch shall generate an error.

<action> ::= <statement>*

<statement> ::= <assignment> | <compound statement> | <if statement>

<assignment> ::= <variable name> <assignment operator> <expression>

 <statement terminator>

<compound statement> ::= <left curly bracket> <statement>* <right curly bracket>

<if statement> ::= <if> <left parenthesis> <expression>

 <right parenthesis> <statement> [<else> <statement>]

<assignment operator> ::= = | :=

<if> ::= if

<else> ::= else

<statement terminator>::= ;

<left curly bracket> ::= {

<right curly bracket> ::= }

For assignments, the value of a variable is replaced with the result of the evaluation of the

<expression>. The types of <variable name> and of <expression> shall be the same; otherwise

an error is generated. A value cannot be assigned to a Variable whose name ends with "_pre" (see

clause 8.5.4), as such a variable name refers to the value of an Initialization.

Compound statements simply execute their inner statements in sequence.

An <if statement> executes its <statement> only when its Boolean <expression> evaluates to

true. An <if-else statement> executes its first <statement> if its Boolean <expression>

evaluates to true, and its second <statement> (after the else) if its Boolean <expression> evaluates

to false.

9.5 Grammar for failures

URN supports a simple language for specifying failures or exceptions. A failure (<failure>) is used

by the failure attribute of a UCM FailurePoint (see clause 8.2.17). A failure shall be the enumeration

value (see clause 9.2.3) of the EnumerationType which has the reserved name UCMFailures and is

defined in the URN specification. A failure list (<failure list>) is used by the failureList attribute

of a UCM StartPoint (see clause 8.2.6). The failure list may be empty.

<failure list> ::= [<failure> {<comma> <failure>}*]

<failure> ::= <enumeration literal>

<comma> ::= ,

 Rec. ITU-T Z.151 (10/2018) 137

10 URN interchange format

Files describing URN models are expressed in XML. An XML schema definition (XSD)

[W3C XSD1], specified in Annex A, defines the URN interchange format. It uses the UTF-8

encoding of UCS, which supports multiple natural languages, as recommended in [ITU-T T.55].

This schema is a serialization of the URN concrete syntax metamodel, which extends the abstract

syntax metamodel. Concrete metaclasses are optional in the metamodel, and hence in the schema.

Consequently, this format can be used to describe models based on the concrete syntax, or based

solely on the abstract syntax.

The following rules were followed for the generation of the XSD schema in Annex A.

– Enumeration class: A simpleType element is declared for the enumeration class with the

name attribute set to the class name. A restriction element is generated with base set to string.

Each of the class attributes are appended to the restriction element as XSD enumeration

elements with value set to the attribute name. They are presented first in the schema, in

alphabetical order.

– Normal metaclass: A complexType element is declared for the metaclass with the name

attribute set to the class name. The attributes and association roles are defined in a sequence

element. They are also sorted in alphabetical order.

– Data type: URN and ITU-T Z.111 data types were converted to their XSD equivalent

[W3C XSD2]: xsd:nonNegativeInteger for Nat, xsd:boolean for Boolean, xsd:string for

String (Token) and xsd:integer for Integer. This enables some validation of the values by

XML tools. The Boolean, Integer, Enumeration and DataType metaclasses are not included

in the schema.

– Attribute: An element is declared for each class attribute. The element name is set to that of

the attribute name of the metaclass. The XSD minOccurs and maxOccurs are left unspecified

(minOccurs and maxOccurs default to 1). Default values are provided for enumeration types.

– Identifiers: The id attribute of URNmodelElement is of XSD type ID. An ID attribute of the

same name was added to NodeConnection as the latter did not have an identifier while it is

referenced by associations.

– Association: An element is declared for each navigable association owned by a class. The

element name is set to that of the association role. The minOccurs and maxOccurs reflect the

cardinality of the association (default to 1 if absent). IDREF is used as a type, with the target

metaclass name provided as a comment. If the role is {ordered}, then IDREFS is used instead

of IDREF.

– Composition: An element is declared for each of composition owned by a class. The element

name is set to that of the association role. The minOccurs and maxOccurs reflect the

cardinality of the association (default to 1 if absent). The name of the target metaclass is used

as a type.

– Inheritance: An extension element is generated with the base attribute set to the base class

name.

– Root element: URNspec is defined as the root element of the schema.

– Constraints: Static semantics constraints of the language are not enforced by the schema.

NOTE – In this XSD schema, when unspecified, the default values for elements of types xsd:boolean,

xsd:integer and xsd:string are false, 0 and "", respectively.

11 URN analysis

URN models can be analysed in many ways. This clause focuses on two important techniques, namely

GRL model evaluation and UCM scenario path traversal. As GRL models can be used for different

138 Rec. ITU-T Z.151 (10/2018)

purposes, the goal-oriented modelling community has developed many analysis approaches. It is

premature to standardize any of them, but GRL evaluation algorithms should be described according

to different criteria and shall meet minimal requirements. Examples of evaluation algorithms are

formalized and illustrated in Appendix II. The UCM path traversal mechanism is presented as a set

of requirements that further define the dynamic semantics of UCM models. These requirements allow

implementers to develop their own traversal algorithm and optimize or extend various aspects of it

according to their needs. Two examples of a traversal algorithm are illustrated in Appendix III.

Although UCM models support a predefined set of performance annotations, quantitative

performance analysis based on annotated UCMs is outside the scope of this Recommendation.

11.1 GRL model evaluation

During GRL model evaluation, for each GRLLinkableElement (i.e., GRL IntentionalElement, GRL

Indicator and GRL Actor), three new evaluation values shall be created: one that is qualitative

(qualitativeVal of type QualitativeLabel), one that is quantitative (quantitativeVal, an Integer value in

the range [–100..100]) and one for the exceeds flag (exceedsVal, a Boolean value). Furthermore, a

set of these three evaluation values is also created for the GRL model itself.

A GRL model is evaluated by assigning satisfaction values to a subset of the intentional elements and

indicators (this is done with an EvaluationStrategy) and then propagating these values to the other

intentional elements and indicators via the ElementLinks connecting them. Each Evaluation of an

EvaluationStrategy shall see its values copied to its associated GRLContainableElement

(i.e., IntentionalElement or Indicator): in the case of an IntentionalElement, evaluation is copied to

quantitativeVal, qualitativeEvaluation is copied to qualitativeVal and exceeds is copied to

exceedsVal. If the Evaluation is associated with an Indicator, then the realWorldValue and

realWorldLabel of the IndicatorEvaluation of the Evaluation are first converted based on the

IndicatorConversion of the Evaluation, before copying the resulting values to the quantitativeVal,

qualitativeVal and exceeds evaluation attributes. The quantitativeVal, qualitativeVal and exceedsVal

evaluation attributes of all other intentional elements, indicators, actors and the GRL model shall be

initially set to 0, None and false, respectively.

From this initial context, goal models can be evaluated in many ways. Although no specific algorithm

is given here, algorithms and tools for GRL model evaluation should consider the following non-

exhaustive list of criteria when describing and formalizing evaluation algorithms.

a) Evaluation type: Three general types of evaluations are considered:

– Quantitative evaluation: uses the quantitativeContribution attribute of Contribution, the

importanceQuantitative attribute of GRLLinkableElements and the new quantitativeVal

attribute of GRLContainableElements initialized from the selected EvaluationStrategy.

– Qualitative evaluation: uses the qualitative contribution attribute of Contribution, the

importance attribute of GRLLinkableElements and the new attribute qualitativeVal of

GRLContainableElements initialized from the selected EvaluationStrategy.

– Hybrid evaluation: uses another combination of the above three categories of attributes

(for contribution, importance and containable element evaluation value).

b) Propagation direction: Three different propagation directions for the evaluation values

through different GRL element links are considered:

– Forward propagation: the EvaluationStrategy initializes some of the

IntentionalElements and Indicators in the GRL model (source nodes, often leaves in the

graph), and the evaluation values are propagated in a bottom-up way to higher-level

intentional elements and indicators (targets) of the model. The results of selected

alternatives can be analysed and conflicts detected.

– Backward propagation: the EvaluationStrategy initializes some of the

IntentionalElements and Indicators in the GRL model (target nodes, often roots in the

 Rec. ITU-T Z.151 (10/2018) 139

graph), and the evaluation values are propagated in a top-down way to lower-level

intentional elements and indicators (sources) of the model. Such propagation is used to

find a set of alternatives that, if satisfied, would lead to the initial values provided.

– Mixed propagation: a combination of the above where the EvaluationStrategy initializes

some of the IntentionalElements and Indicators that are neither leaves nor roots. From

these elements, forward propagation is used to compute evaluation values of higher-level

intentional elements and indicators whereas backward propagation is used to compute

evaluation values of lower-level intentional elements and indicators.

c) Overall GRL model satisfaction: An algorithm may evaluate an evaluation level for the

whole GRL model, or not.

d) Actor satisfaction: An algorithm may evaluate actor evaluation levels, or not.

e) Exceeding expectations: An algorithm may consider the exceeds attribute, or not. The

exceeds attribute can be used to assess whether expectations are exceeded.

f) Automation: An algorithm may be fully automated, or interactive (e.g., to resolve conflicts).

g) Cycles: An algorithm may handle cycles in GRL models (completely or partially), or require

models to be acyclic.

h) Conflicts: An algorithm may determine that multiple contributions targeting the same

intentional elements or indicators are conflicting, or not. In addition, if conflicts are detected,

then there could be one or many categories of conflicts.

i) Strategy consistency: An algorithm may allow inconsistent strategies, or not. An

EvaluationStrategy is inconsistent if some of the initial evaluations it contains propagate into

evaluations of intentional elements and indicators that are also initialized by the strategy, but

with different values.

j) Evaluation overriding: An algorithm may allow some evaluations defined as part of a

strategy to be overridden during the propagation, or not.

k) Relation to UCM: The results of the propagation may impact the values of UCM scenario

variables, or not. In addition, updates to UCM scenario variables after path traversal may

impact intentional element evaluations, or not.

l) Evaluation ordering for links: GRL element links (decompositions, contributions and

dependencies) may be evaluated in different orders. An algorithm should either specify that

order or mention that there is no order.

m) Link evaluations: An evaluation algorithm should provide functions to compute results of

decomposition, contribution and dependency link usages.

n) Tolerance: For contribution links, an algorithm may define a tolerance to help decide

whether an intentional element becomes satisfied or just weakly satisfied (and respectively

denied or just weakly denied) because of contributions.

Other criteria for which GRL could not easily offer support (e.g., probabilistic evaluations, separate

values for satisfaction and denial, ranges of evaluation values instead of single values or optimistic

and pessimistic evaluations) are outside the scope of this Recommendation.

GRL model evaluations are performed using the abstract syntax metaclasses, independently of the

presence or absence of GRL diagrams. During model evaluations, however, the presentation of

IntentionalElementRefs in GRL diagrams should be updated to reflect the current evaluation values

(quantitativeVal, qualitativeVal and exceedsVal) of the referenced intentional element or indicator

(see Figures 37 and 38). Similarly, the presentation of ActorRef and CollapsedActorRef in GRL

diagrams should be updated to reflect the current evaluation values (quantitativeVal, qualitativeVal

and exceedsVal) of the referenced actors (see Figures 32, 34 and 40).

140 Rec. ITU-T Z.151 (10/2018)

11.2 UCM scenario path traversal

11.2.1 Overview

The path traversal (PT) mechanism is based on the abstract grammar metaclasses of the UCM

notation. The path traversal mechanism traverses a UCM model by starting at the first start point as

defined in a scenario definition by the modeller. The actual path to be traversed is determined by the

initial, user-defined values of path variables and the changes to these values at responsibilities during

the traversal. The path traversal mechanism moves from one path element to the next if path

continuation criteria (PCC) are met. If more than one next path element meet the continuation criteria,

all of these path elements are visited in parallel. Each UCM path element has specific criteria. The

traversal ends when the last end point is reached. If the traversal stopped at a path element that is not

an end point, a warning or error is issued. If the traversal cannot move from one currently visited path

element to its next path element, the traversal continues with other path elements that are currently

visited in parallel, if any exist. If none exist or all currently visited path elements cannot continue to

their next path nodes, the traversal continues with the next start point in the ordered list of start points

defined for the scenario definition. If the traversal is forcibly terminated, then the traversal is not

allowed to continue for all path elements that are currently visited in parallel as well as all remaining

start points and the traversal comes to a complete stop.

As a prerequisite for the path traversal, the start points, end points, initializations, preconditions and

postconditions of all included scenario definitions shall be merged with the corresponding elements

from the scenario definition itself as defined in the semantics of clause 8.5.2. The path traversal then

operates on the merged scenarios as explained above. Initial values of the variables are accessible in

postconditions by adding "_pre" to a variable name. Since initializations of included scenarios may

be overridden by the including scenario, the initial value of a variable refers to the initialization

applied after the merging of included scenarios.

The path traversal mechanism as defined below assumes a sequential implementation of parallel

paths. Furthermore, the choice of which parallel path to follow at any given time may be made at

random since UCMs do not provide timing information sufficient enough for a more realistic

simulation of parallel paths. If the path traversal mechanism encounters a non-deterministic choice

point, a warning shall be issued. The traversal, however, may continue possibly by interacting with

the modeller or by expanding multiple scenarios. If the path traversal mechanism continues – because

of a failure or exception at a failure point – with a failure or abort start point on a map that is not in

the map hierarchy at the time the traversal reached the failure point, the traversal continues and a

warning may be issued. A warning is also issued if a failure or exception occurs at a failure point, but

there is no failure or abort start point specified for the traversal to continue.

The current requirements for the path traversal mechanism (Table 17) cover all path elements and

some component features. The path traversal mechanism is the basis for many advanced applications

of UCMs. Most of these applications require additional capabilities. Scenario highlighting and

animation can be done with the basic path traversal mechanism. The ability to associate path elements

with sequence numbers indicating the order in which the path elements were traversed, however,

makes repeated highlighting and animation more efficient. The generation of Message Sequence

Charts requires the ability to deal with component information and a well-nestedness

transformation/warning mechanism. The generation of performance models requires the ability to

deal with arrival and device characteristics, device demands, data access modes and response-time

requirements. Test case generation requires the ability to deal with information about controllable

and observable activities. None of these additional capabilities, however, is currently a requirement

for the path traversal mechanism.

 Rec. ITU-T Z.151 (10/2018) 141

11.2.2 Requirements for path traversal mechanism

The requirements for the path traversal mechanism use the terms traversal root map, unconnected

start point, abort scope and visit which are shown in bold and underline in Table 17 and are defined

in clause 3.

Table 17 – Requirements for path traversal mechanism

ID Requirement

1 Path traversal (PT) shall start at the first start point of the scenario definition.

2 PT shall start with the initial values for path data variables as defined by the variable initializations

of the scenario definition.

3 PT shall start with the special initial value "undefined" for path data variables not initialized by the

variable initializations of the scenario definition.

4 PT shall evaluate an expression to "undefined" if any value within the expression evaluates to

"undefined".

5 PT shall forcibly terminate the traversal if the result of an expression is "undefined".

6 PT shall forcibly terminate the traversal if the preconditions of the scenario definition are not

fulfilled.

7 PT shall move in parallel from path element A to path elements B1, B2, … and BN if

a) the traversal is currently visiting path element A, and

b) there is a direct node connection from A to B1, from A to B2, …, and from A to BN, and

c) the Path continuation criteria (PCC) of A is fulfilled.

8 PT shall continue at the next start point of the scenario definition if it cannot move to another path

element from any of the currently visited path elements.

9 PT shall stop the traversal if

a) it cannot move to another path element from any of the currently visited path elements and

b) there is no unused start point remaining in the scenario definition.

10 PT shall issue a warning if

a) the traversal has stopped and

b) the traversal is currently visiting at least one path element other than an end point.

11 PT shall issue an error if the traversal has stopped and

a) at least one end point of the scenario definition has not been visited or

b) at least one postcondition of the scenario definition is not fulfilled or

c) a postcondition of at least one currently visited end point is not fulfilled.

12 The PCC for a start point that is not a failure start point or abort start point shall be fulfilled if the

precondition of the start point evaluates to true.

13 The PCC for an end point shall be fulfilled if the postcondition of the end point evaluates to true.

14 The PCC for a responsibility reference shall be always fulfilled.

15 Upon arrival at a responsibility reference, PT shall evaluate the expression for the repetition count of

the responsibility reference.

16 After evaluating the repetition count of a responsibility reference, PT shall execute the expression of

the responsibility definition of the responsibility reference as many times as specified by the

repetition count.

17 PT shall execute the value assignment statements in the expression of a responsibility definition in

the order defined by the modeller.

18 PT shall update the values of the path data variables immediately after executing one value

assignment statement.

142 Rec. ITU-T Z.151 (10/2018)

Table 17 – Requirements for path traversal mechanism

ID Requirement

19 PT shall forcibly terminate the traversal if the execution of a value assignment statement results in a

division by zero.

20 PT shall forcibly terminate the traversal if the evaluation of a condition results in a division by zero.

21 The PCC for an OR-fork shall be fulfilled if the PCC of exactly one branch of the OR-fork is

fulfilled.

22 The PCC for a branch of an OR-fork shall be fulfilled if its condition evaluates to true.

23 The PCC shall forcibly terminate the traversal if a condition for a branch of an OR-fork is not

specified.

24 The PCC for an OR-join shall be always fulfilled.

25 The PCC for an AND-fork shall be always fulfilled.

26 The PCC for an AND-join shall be fulfilled if the traversal is currently visiting the AND-join for all

of its incoming paths.

27 The PCC for an empty point shall be always fulfilled.

28 The PCC for a connect shall be always fulfilled.

29 Upon arrival at a persistent waiting place, transient waiting place, persistent timer or transient timer

along the waiting path WP, PT shall increase the number of arrivals along WP by 1 (the initial

number of arrivals along WP is 0).

30 Upon arrival at a persistent waiting place or persistent timer along the trigger/release path TRP, PT

shall increase the number of arrivals along TRP by 1 (the initial number of arrivals along TRP is 0).

31 Upon arrival at a transient waiting place or transient timer along the trigger/release path TRP, PT

shall set the number of arrivals along TRP to 1, if the number of arrivals along the waiting path is

greater than 0 (the initial number of arrivals along TRP is 0).

32 The PCC for a waiting place W shall be fulfilled if

a) W's condition evaluates to true or

b) the number of arrivals along the waiting path of W is at least one and the number of arrivals

along the trigger/release path of W is at least one.

33 The PCC for a timer shall be fulfilled if the PCC of exactly one branch (i.e., either the PCC of its

regular path or the PCC of its timeout path) is fulfilled.

34 The PCC for a regular path RP of a timer shall be fulfilled if the condition of RP evaluates to true.

35 The PCC of the regular path RP of a timer T shall be fulfilled if

a) the condition of RP evaluates to false, and

b) the condition of T's timeout path evaluates to false, and

c) the number of arrivals along the waiting path of T is at least one and the number of arrivals along

the trigger/release path of T is at least one.

36 The PCC for a timeout path of a timer T shall be fulfilled if the PCC of T's regular path is not

fulfilled.

37 PT shall decrease NWP, the number of arrivals along the waiting path, by 1 when continuing past

the waiting place or timer unless NWP is already 0.

38 PT shall decrease NTRP, the number of arrivals along the trigger/release path. by 1 when continuing

past the waiting place or timer unless NTRP is already 0.

39 The PCC for a failure point FP shall be fulfilled if the condition of FP evaluates to true.

40 Upon arrival at a failure point FP with failure V and the condition of FP evaluating to false, PT shall

traverse in parallel the failure and abort start points whose failure lists contain V.

 Rec. ITU-T Z.151 (10/2018) 143

Table 17 – Requirements for path traversal mechanism

ID Requirement

41 Upon arrival at a failure start point or abort start point FAS, PT shall adjust the map hierarchy of the

traversal by reducing it to the subset of the map hierarchy starting at the map of FAS.

42 Upon arrival at an abort start point A, PT shall stop the traversal of all path elements in the abort

scope of A.

43 PT shall be deemed to be visiting a stub S if at least one path element on at least one plug-in map of

S is being visited.

44 Upon arrival at a stub S, PT shall first traverse in parallel the plug-in maps of S before continuing

with the traversal.

45 Upon arrival at a dynamic stub S, PT shall traverse in parallel the number of runtime instances of a

plug-in map M of S as specified by the replication factor of the plug-in binding of M.

46 For each plug-in map runtime instance M of stub S, PT shall move in parallel from S to start points

SP1, SP2, … and SPN of plug-in map runtime instance M if

a) the traversal is currently visiting path element S, and

b) the traversal has reached the stub via a direct node connection NC from path element A to S, and

c) there is an in-binding of M from NC to SP1, from NC to SP2, …, and from NC to SPN, and

d) the PCC of the plug-in map runtime instance M is fulfilled.

47 The PCC for the plug-in map runtime instance of a static stub shall be always fulfilled.

48 The PCC for a plug-in map runtime instance M of a dynamic stub shall be fulfilled if the

precondition of the plug-in binding for M evaluates to true.

49 The PCC for an out-path O from the non-synchronizing stub S to a path element shall be fulfilled if

a) the traversal is visiting an end point E on a plug-in map runtime instance M of S, and

b) an out-binding OB from E to O exists for M and OB belongs to the same plug-in binding used to

arrive at M.

50 The PCC for an out-path O from the synchronizing stub S to path element B shall be fulfilled if

a) the traversal has visited end points E1, E2, … or EN on a plug-in map runtime instance M of S as

often as specified by O's synchronization threshold during the same visit, and

b) out-bindings OB1 from E1 to O, OB2 from E2 to O, … and OBN from EN to O exist and OB1, OB2,

… and OBN belong to the same plug-in binding used to arrive at M.

51 PT shall synchronize a synchronizing stub's plug-in map runtime instances, only if they belong to the

same visit.

52 Once for each visit upon first arrival at a synchronizing stub S with the default synchronization

threshold for an out-path O, PT shall set the synchronization threshold of O to the number of S's

plug-in map runtime instances with preconditions evaluating to true.

53 PT shall ignore the arrival of plug-in map runtime instances at an out-path O of a synchronizing stub

S during a visit, if the synchronization threshold of O has been reached for the visit.

54 Upon arrival at a synchronizing stub S with blocking enabled, PT shall allow an in-path of S to be

traversed another time when all plug-in map runtime instances of S have been traversed.

55 When all plug-in map runtime instances of a synchronizing stub S have been traversed in the Nth

visit, PT shall treat an in-path of S as having been visited N times, if the in-path was visited less than

N times.

56 Upon arrival at a singleton map M, PT shall traverse the only runtime instance of M that exists in the

UCM model.

57 Upon arrival at an unconnected start point S of a non-singleton traversal root map M, PT shall

traverse the Nth runtime instance of M where N is the number of times S has been visited in the

current traversal.

144 Rec. ITU-T Z.151 (10/2018)

Table 17 – Requirements for path traversal mechanism

ID Requirement

58 Upon arrival at a non-singleton plug-in map M of a non-synchronizing stub S, PT shall traverse

a) a different runtime instance of M per different runtime instance of a stub and

b) the same runtime instance of M for the same runtime instance of S.

59 Upon arrival at a non-singleton replicated plug-in map M of a non-synchronizing stub S, PT shall

traverse

a) a different set of replicated runtime instances of M per different runtime instance of a stub and

b) the same set of replicated runtime instances of M for the same runtime instance of S.

60 Upon arrival at a non-singleton plug-in map M along an in-path of a synchronizing stub S, PT shall

traverse

a) a different runtime instance of M per different runtime instance of a stub, and

b) the Nth runtime instance of M for this runtime instance of S during the Nth visit, and

c) the same runtime instance of M for the same runtime instance of S in the same visit.

61 Upon arrival at a non-singleton replicated plug-in map M along an in-path of a synchronizing stub S,

PT shall traverse

a) a different set of replicated runtime instances of M per different runtime instance of a stub, and

b) the Nth set of replicated runtime instances of M for this runtime instance of S during the Nth

visit, and

c) the same set of replicated runtime instances of M for the same runtime instance of S in the same

visit.

62 Upon entering a protected component reference C along a path P, PT shall start the traversal of P

when no other path is being traversed in any component reference of the component definition of C.

63 PT shall interleave path nodes of parallel branches that are bound to the same component reference

C, if the component definition of C is of kind Object.

64 Upon arrival at a component reference C on a plug-in map runtime instance with a component plug-

in binding to a component reference CP on the parent map runtime instance, PT shall use the

component definition of CP as the component definition of C.

65 Upon arrival at a component reference C for which a plug-in binding is expected to be specified, PT

shall issue a warning and continue with the traversal without replacing C.

12 Compliance statement

[ITU-T Z.150] lists each of the language requirements defined for the URN (FR and NFR). Table 18

recalls the requirements identified in Table 2 of [ITU-T Z.150] and provides the compliance statement

of this Recommendation against these requirements.

Each language requirement possesses a unique identifier (ID) and his type. A language requirement

is of type FR if it relates exclusively to functional requirements. A language requirement is of type

NFR if it relates exclusively to non-functional requirements. A language requirement is of type URN

if it is common to both functional and non-functional requirements. Language requirements are also

defined as being essential (E), i.e., shall be supported, or desirable (D), i.e., should be supported. A

language requirement is expressed as a capability the URN has. Table 18 lists all these attributes.

For each requirement in Table 18, compliance is established by listing the model elements defined in

this Recommendation (or more precisely the clauses where they are defined) that satisfy the

requirement. Brief additional explanations are provided, where needed, in the last column.

 Rec. ITU-T Z.151 (10/2018) 145

Table 18 – Compliance statement of this Recommendation

against ITU-T Z.150 language requirements

ID ITU-T Z.150 language requirement Type E/D

ITU-T

Z.151

clauses

Explanations

1 Specify tentative and ill-defined

requirements.

NFR E 7.1.1, 7.3.1 Goal specifications,

intentional elements

2 Specify refinement of goals and NFRs. NFR E 7.4.5 AND-type decompositions

3 Specify alternative refinement of goals

and NFRs.

NFR E 7.4.5 IOR-type and XOR-type

decompositions

4 Specify alternative functional

(operational) requirements.

NFR E 7.4.5 IOR-type and XOR-type

decompositions,

means-end

5 Specify satisficeability of goals and

NFRs.

NFR E 7.5 Evaluation strategies

6 Support (qualitative) goals and NFRs that

do not have clear metrics and

measurements for their achievements.

NFR E 7.3.1, 7.3.2 Intentional elements of

type softgoal

7 Support quantitative goals and NFRs. NFR E 7.3.1, 7.3.2 Intentional elements

of type goal

8 Specify trade-offs in goals and NFRs. NFR E 7.5 Evaluation strategies

9 Specify argumentation during modelling. NFR E 7.3.1, 7.3.2 Intentional elements of

type belief

10 Specify business, organizational and

system objectives.

NFR E 7.2 GRL actors

11 Specify links between high-level

objectives and lower-level specifications.

NFR E 7.4, 6.1.3 Element links, URN links

12 Specify multiple stakeholders'

requirements and interests.

NFR E 7.2 GRL actors

13 Specify synergies and conflicts among

goals and NFRs.

NFR E 7.4 Element links

14 Support requirements priorities. NFR E 7.3.1 Importance attributes

15 Support negotiation for solving

conflicting goals and NFRs.

NFR E 7.5 Evaluation strategies

16 Support requirements evolution and

changes.

NFR E 6.1.2, 7.5 Identifiers, evaluation

strategies (for regression)

17 Handle functional and non-functional

requirements concurrently.

NFR E 7.3.1, 7.3.2 Goals and softgoals

18 Specify selection criteria when choosing

among alternative functional

requirements.

NFR E 7.5 Evaluation strategies

19 Support incremental commitments of

requirements.

NFR E 7.3.1, 7.5 Beliefs and evaluation

strategies

20 Support requirements management during

all development phases.

NFR E 6.1.2 URNmodelElement with

unique id attribute

146 Rec. ITU-T Z.151 (10/2018)

Table 18 – Compliance statement of this Recommendation

against ITU-T Z.150 language requirements

ID ITU-T Z.150 language requirement Type E/D

ITU-T

Z.151

clauses

Explanations

21 Have model elements that are identifiable

and connectable to artefacts in external

models.

NFR E 6.1.2 URNmodelElement with

unique id attribute

22 Support multiple levels of formality. NFR E 7.3.1, 6.1.3,

8.1.2

GRL Intentional elements,

URN links, UCM model

elements

23 Provide ease of use for customers and

system users.

URN E Tool issue

24 Provide precise requirements for

developers and testers.

NFR E 6.1.3, 7.4.5 URN links, GRL

decomposition

25 Support modular descriptions of goal and

NFR models.

NFR E 7.8.2, 8.2 GRL graphs and UCM

maps

26 Support the reuse of goals, NFRs and

knowledge in general.

NFR D Tool issue

27 Support performance indicators and

mappings to satisfaction levels.

NFR E 7.6 Indicators including

evaluations of indicators

and conversion methods

28 Support the mapping of input events and

preconditions to output events and

postconditions in various degrees of

detail.

FR E 8.2 UCM maps

29 Specify the set of input events at a

scenario start point.

FR E 8.2.6 Start point

30 Specify the set of output events at a

scenario end point.

FR E 8.2.8 End point

31 Specify preconditions at scenario start

points.

FR E 6.1.6, 8.2.6 Preconditions of start

points

32 Specify postconditions at scenario end

points.

FR E 6.1.6, 8.2.8 Postconditions of end

points

33 Specify input sources (human or

machine).

FR E 8.4 Components

34 Specify output sinks (human or machine). FR E 8.4 Components

35 Specify responsibilities and references to

these responsibilities.

FR E 8.2.4, 8.2.5 Responsibilities and

responsibility references

36 Specify system operations as causal flows

of responsibilities (paths).

FR E 8.2.2, 8.2.3 Path nodes and node

connections

37 Specify alternative paths. FR E 8.2.9 Or-forks

38 Specify common paths. FR E 8.2.10 Or-joins

39 Specify condition-based decision-making

at branching points.

FR E 6.1.6, 8.2.9 Conditions on Or-forks

 Rec. ITU-T Z.151 (10/2018) 147

Table 18 – Compliance statement of this Recommendation

against ITU-T Z.150 language requirements

ID ITU-T Z.150 language requirement Type E/D

ITU-T

Z.151

clauses

Explanations

40 Define a data model and expression

evaluator to express and evaluate

conditions at branching points.

FR E 9, 6.1.6,

8.2.9

URN data language, with

use in conditions on Or-

forks

41 Specify parallel or concurrent paths. FR E 8.2.11 And-forks

42 Specify synchronization of paths within a

scenario.

FR E 8.2.12 And-joins

43 Specify synchronization between paths

from multiple scenarios.

FR E 8.2.14,

8.2.16,

8.2.18

Waiting places, wait kinds

and connects

44 Specify timed synchronization, with a

timeout path.

FR E 8.2.15,

8.2.16,

8.2.18

Timers, wait kinds and

connects

45 Specify repetitive actions within a

scenario.

FR E 8.2.5 Responsibility reference

with repetitionCount

attribute

46 Support hierarchical decomposition of

scenarios.

FR E 8.3 Stubs and plug-ins

47 Specify subscenarios as scenarios. FR E 8.3 Stubs and plug-ins

48 Specify subscenario preconditions and

postconditions.

FR E 8.3.2, 6.1.6 Conditions on plug-in

bindings

49 Specify scenario containers with multiple

subscenarios.

FR E 8.3.1 Dynamic stubs

50 Define a data model and expression

evaluator to select subscenarios in

dynamic containers.

FR E 9, 6.1.6,

8.3.1

URN data language, with

use in conditions on

dynamic stubs

51 Group-related scenarios. FR E 8.2, 8.5.1 UCM maps and scenario

groups

52 Extract individual scenarios from grouped

scenarios.

FR E 8.5.2, 11.2 Scenario definitions and

UCM path traversal

mechanism

53 Specify individual scenarios using a data

model and initializations.

FR E 8.5.3, 9 Initializations and URN

data model

54 Express desirable feature interactions in

scenarios.

FR E 8.5.2, 11.2 Scenario definitions and

successful UCM path

traversal mechanism

55 Detect undesirable feature interactions in

scenarios.

FR E 11.2 UCM path traversal

mechanism errors and

warnings

56 Specify scenario cancellation situations

with scope.

FR E 8.2.6, 8.2.7,

8.2.17

Abort start points with

abort scope

57 Specify scenarios describing recovery

mechanisms.

FR E 8.2.6, 8.2.7,

8.2.17

Failure points, failure start

points and abort start

points

148 Rec. ITU-T Z.151 (10/2018)

Table 18 – Compliance statement of this Recommendation

against ITU-T Z.150 language requirements

ID ITU-T Z.150 language requirement Type E/D

ITU-T

Z.151

clauses

Explanations

58 Specify qualitative time-dependent

behaviour in scenarios.

FR E 8.2.15 Timers

59 Specify timer types in time-dependent

behaviour.

FR E 8.2.15,

8.2.16

Timers and wait kinds

60 Specify components and references to

these components.

FR E 8.4.1, 8.4.4 Components and

component references

61 Specify scenarios without reference to

components.

FR E 8.2.2 Path nodes do not need to

be bound to components

62 Specify scenarios where scenario

elements are allocated to components.

FR E 8.2.2, 8.4.1,

8.4.4

Path nodes may be bound

to components

63 Specify abstract components and COTS. FR E 8.4.2, 8.4.5 Component types and

component bindings

64 Specify dynamic entities. FR E 8.4.3, 8.4.5 Component kinds and

component bindings

65 Specify system boundaries. FR E 8.4.1, 8.4.3 Components of kind other

than Actor

66 Specify the behaviour of the system's

environment.

FR E 8.2.2, 8.4.1,

8.4.4

Path nodes not bound to

components

67 Specify actors external to the system. FR E 8.4.1, 8.4.3 Components of kind Actor

68 Support backward traceability from URN

to source documents.

URN E 6.1.2, 6.1.4 Unique model element

identifier, metadata

69 Support forward traceability from URN to

the other models used in the development

process.

URN E 6.1.2, 6.1.4 Unique model element

identifier, metadata

70 Support facilities to connect URN

elements to external requirements objects.

URN E 6.1.2, 6.1.4 Unique model element

identifier, metadata

71 Enable transformations to elements of

other languages in the ITU-T family of

languages and of UML.

URN D 11.2 UCM path traversal

mechanism

72 Support traceability between operational

aspects of goal/NFR models and

responsibilities/scenarios in scenario

models.

URN E 6.1.3 URN links

73 Support traceability between performance

constraints in NFR models and

responsibilities/scenarios/response-time

requirements in scenario models.

URN E 6.1.3 URN links

74 Support the testing of requirements. URN E 8.5 Scenario definitions

75 Support testing based on requirements. FR E 8.5 Scenario definitions

76 Support the evaluation of the satisfaction

of goals and NFRs.

NFR E 7.5,

Appendix II

Evaluation strategies,

GRL evaluation

algorithms

 Rec. ITU-T Z.151 (10/2018) 149

Table 18 – Compliance statement of this Recommendation

against ITU-T Z.150 language requirements

ID ITU-T Z.150 language requirement Type E/D

ITU-T

Z.151

clauses

Explanations

77 Enable preliminary analysis of

performance properties.

URN E 8.6 UCM performance

annotations

78 Attach performance/workload annotations

to scenario elements.

FR E 8.6 UCM performance

annotations

79 Specify the environment's processing

capacity, network delays and services

provided.

FR E 8.6 UCM performance

annotations

80 Specify response times in terms of target

fragments of scenarios.

FR E 8.5.2, 8.6 Scenario definitions,

UCM performance

annotations

81 Specify identifiers for the model elements. URN E 6.1.2 URNmodelElement with

unique id attribute

82 Specify document versions. URN E 6.2.1 specVersion

83 Support textual annotations traceable to

graphical elements.

URN E 7.8.13 Comments

84 Support a graphical representation of

requirements.

URN E 6.2, 7.8, 8.7 Concrete grammar

metaclasses and graphical

concrete syntax

85 Support a tool-oriented interchange

format.

URN E 10 URN interchange format

86 Support textual annotations displayable on

conventional media.

URN E 7.8.13 Comments

87 Support the grouping of any elements in a

model.

URN E 6.1.5 Concern

88 Support annotating any model element

with name-value pairs.

URN E 6.1.4 Metadata

89 Support linking any pair of model

elements.

URN E 6.1.3 URN links

13 Tool compliance

This clause defines the compliance for tools that claim to support the User Requirements Notation

and which therefore should be capable of creating, editing, presenting and analysing valid URN

specifications. The validity of a URN specification is defined as in clause 5.2.1.

13.1 Definitions of valid tools

13.1.1 Compliant URN tool

A tool that detects non-compliance of a description with this Recommendation. If the tool handles a

superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

150 Rec. ITU-T Z.151 (10/2018)

13.1.2 Valid URN tool

A compliant URN tool that supports the abstract grammar defined in this Recommendation and fulfils

the requirements of the GRL model evaluation and of the UCM path traversal mechanism defined in

clause 11.

13.1.3 Valid graphical URN tool

A valid URN tool that also supports the concrete grammar defined in this Recommendation.

13.1.4 Compliant GRL tool

A tool that detects non-compliance of a GRL description with this Recommendation. If the tool

handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a

failure.

13.1.5 Valid GRL tool

A compliant GRL tool that supports the GRL abstract grammar defined in this Recommendation and

fulfils the requirements of the GRL model evaluation defined in clause 11.1.

13.1.6 Valid graphical GRL tool

A valid GRL tool that also supports the GRL concrete grammar defined in this Recommendation.

13.1.7 Compliant UCM tool

A tool that detects non-compliance of a UCM description with this Recommendation. If the tool

handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a

failure.

13.1.8 Valid UCM tool

A compliant UCM tool that supports the UCM abstract grammar defined in this Recommendation

and fulfils the requirements of the UCM path traversal mechanism defined in clause 11.2.

13.1.9 Valid graphical UCM tool

A valid UCM tool that also supports the UCM concrete grammar defined in this Recommendation.

13.2 Conformance

A conformance statement clearly identifying the language features and requirements not supported

should accompany any tool that handles a subset of this Recommendation. If no conformance

statement is provided, it shall be assumed that the tool is a valid graphical URN tool. It is therefore

preferable to supply a conformance statement; otherwise, any unsupported feature allows the tool to

be rejected as invalid.

 Rec. ITU-T Z.151 (10/2018) 151

Annex A

URN interchange format: XML schema

(This annex forms an integral part of this Recommendation.)

The following XML schema defines the URN interchange format. It is explained in clause 10.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!--

== XML Schema for the User Requirements Notation (Recommendation ITU-T Z.151)

== Version: 20120902

-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified"

 elementFormDefault="qualified">

 <!-- ========================== -->

 <!-- ===== Root Element ===== -->

 <!-- ========================== -->

 <xsd:element name="URNspec" type="URNspec"/>

 <!-- == -->

 <!-- ============ Simple Type Definitions ============ -->

 <!-- == -->

 <!-- ~~ -->

 <!-- ComponentKind -->

 <!-- ~~ -->

 <xsd:simpleType name="ComponentKind">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Team"/>

 <xsd:enumeration value="Object"/>

 <xsd:enumeration value="Process"/>

 <xsd:enumeration value="Agent"/>

 <xsd:enumeration value="Actor"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- ContributionType -->

 <!-- ~~ -->

 <xsd:simpleType name="ContributionType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Make"/>

 <xsd:enumeration value="Help"/>

 <xsd:enumeration value="SomePositive"/>

 <xsd:enumeration value="Unknown"/>

 <xsd:enumeration value="SomeNegative"/>

 <xsd:enumeration value="Hurt"/>

 <xsd:enumeration value="Break"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- DatatypeKind -->

 <!-- ~~ -->

 <xsd:simpleType name="DatatypeKind">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Boolean"/>

 <xsd:enumeration value="Integer"/>

 <xsd:enumeration value="Enumeration"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- DecompositionType -->

 <!-- ~~ -->

 <xsd:simpleType name="DecompositionType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="AND"/>

 <xsd:enumeration value="XOR"/>

152 Rec. ITU-T Z.151 (10/2018)

 <xsd:enumeration value="IOR"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- DeviceKind -->

 <!-- ~~ -->

 <xsd:simpleType name="DeviceKind">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Processor"/>

 <xsd:enumeration value="Disk"/>

 <xsd:enumeration value="DSP"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- FailureKind -->

 <!-- ~~ -->

 <xsd:simpleType name="FailureKind">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Failure"/>

 <xsd:enumeration value="Abort"/>

 <xsd:enumeration value="None"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- ImportanceType -->

 <!-- ~~ -->

 <xsd:simpleType name="ImportanceType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="High"/>

 <xsd:enumeration value="Medium"/>

 <xsd:enumeration value="Low"/>

 <xsd:enumeration value="None"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- IntentionalElementType -->

 <!-- ~~ -->

 <xsd:simpleType name="IntentionalElementType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Softgoal"/>

 <xsd:enumeration value="Goal"/>

 <xsd:enumeration value="Task"/>

 <xsd:enumeration value="Resource"/>

 <xsd:enumeration value="Belief"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- QualitativeLabel -->

 <!-- ~~ -->

 <xsd:simpleType name="QualitativeLabel">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Denied"/>

 <xsd:enumeration value="WeaklyDenied"/>

 <xsd:enumeration value="WeaklySatisfied"/>

 <xsd:enumeration value="Satisfied"/>

 <xsd:enumeration value="Conflict"/>

 <xsd:enumeration value="Unknown"/>

 <xsd:enumeration value="None"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- TimeUnit -->

 <!-- ~~ -->

 <xsd:simpleType name="TimeUnit">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="year"/>

 <xsd:enumeration value="day"/>

 <xsd:enumeration value="h"/>

 <xsd:enumeration value="s"/>

 <xsd:enumeration value="ms"/>

 Rec. ITU-T Z.151 (10/2018) 153

 <xsd:enumeration value="us"/>

 <xsd:enumeration value="ns"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- ~~ -->

 <!-- WaitKind -->

 <!-- ~~ -->

 <xsd:simpleType name="WaitKind">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Transient"/>

 <xsd:enumeration value="Persistent"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- == -->

 <!-- ============ Complex Type Definitions =========== -->

 <!-- == -->

 <!-- ~~ -->

 <!-- ActiveResource -->

 <!-- ~~ -->

 <xsd:complexType name="ActiveResource">

 <xsd:complexContent>

 <xsd:extension base="GeneralResource">

 <xsd:sequence>

 <xsd:element name="opTime" type="xsd:string"/>

 <xsd:element default="ms" name="unit" type="TimeUnit"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Actor -->

 <!-- ~~ -->

 <xsd:complexType name="Actor">

 <xsd:complexContent>

 <xsd:extension base="GRLLinkableElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="collapsedRefs" type="xsd:IDREF"/>

 <!-- CollapsedActorRef -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="actorRefs" type="xsd:IDREF"/> <!-- ActorRef -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="elems" type="xsd:IDREF"/>

 <!-- GRLContainableElement -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ActorRef -->

 <!-- ~~ -->

 <xsd:complexType name="ActorRef">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element name="label" type="Label"/>

 <xsd:element name="actorDef" type="xsd:IDREF"/> <!-- Actor -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="nodes" type="xsd:IDREF"/> <!-- GRLNode -->

 <xsd:element name="pos" type="Position"/>

 <xsd:element name="size" type="Size"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- AndFork -->

 <!-- ~~ -->

 <xsd:complexType name="AndFork">

 <xsd:complexContent>

 <xsd:extension base="PathNode"/>

 </xsd:complexContent>

 </xsd:complexType>

154 Rec. ITU-T Z.151 (10/2018)

 <!-- ~~ -->

 <!-- AndJoin -->

 <!-- ~~ -->

 <xsd:complexType name="AndJoin">

 <xsd:complexContent>

 <xsd:extension base="PathNode"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ClosedWorkload -->

 <!-- ~~ -->

 <xsd:complexType name="ClosedWorkload">

 <xsd:complexContent>

 <xsd:extension base="Workload">

 <xsd:sequence>

 <xsd:element name="population" type="xsd:string"/>

 <xsd:element name="externalDelay" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- CollapsedActorRef -->

 <!-- ~~ -->

 <xsd:complexType name="CollapsedActorRef">

 <xsd:complexContent>

 <xsd:extension base="GRLNode">

 <xsd:sequence>

 <xsd:element name="actor" type="xsd:IDREF"/> <!-- Actor -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Comment -->

 <!-- ~~ -->

 <xsd:complexType name="Comment">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string"/>

 <xsd:element name="x" type="xsd:integer"/>

 <xsd:element name="y" type="xsd:integer"/>

 <xsd:element name="width" type="xsd:integer"/>

 <xsd:element name="height" type="xsd:integer"/>

 <xsd:element name="fillColor" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Component -->

 <!-- ~~ -->

 <xsd:complexType name="Component">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element name="kind" type="ComponentKind"/>

 <xsd:element name="protected" type="xsd:boolean"/>

 <xsd:element name="context" type="xsd:boolean"/>

 <xsd:element minOccurs="0" name="type" type="xsd:IDREF"/> <!-- ComponentType -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="includedComponents" type="xsd:IDREF"/>

 <!-- Component -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="includingComponents" type="xsd:IDREF"/>

 <!-- Component -->

 <xsd:element minOccurs="0" name="host" type="xsd:IDREF"/> <!-- ProcessingResource -->

 <xsd:element minOccurs="0" name="resource" type="xsd:IDREF"/> <!-- PassiveResource -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="compRefs" type="xsd:IDREF"/>

 <!-- ComponentRef -->

 <xsd:element minOccurs="0" name="style" type="ConcreteStyle"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 Rec. ITU-T Z.151 (10/2018) 155

 <!-- ~~ -->

 <!-- ComponentBinding -->

 <!-- ~~ -->

 <xsd:complexType name="ComponentBinding">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:ID" /> <!-- ADDED because ComponentBinding is not a URNmodelElement (no ID) -->

 <xsd:element name="parentComponent" type="xsd:IDREF"/> <!-- ComponentRef -->

 <xsd:element name="pluginComponent" type="xsd:IDREF"/> <!-- ComponentRef -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ComponentRef -->

 <!-- ~~ -->

 <xsd:complexType name="ComponentRef">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="parentBindings" type="xsd:IDREF"/>

 <!-- ComponentBinding -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="pluginBindings" type="xsd:IDREF"/>

 <!-- ComponentBinding -->

 <xsd:element name="compDef" type="xsd:IDREF"/> <!-- Component -->

 <xsd:element minOccurs="0" name="label" type="Label"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="children" type="xsd:IDREF"/> <!-- ComponentRef -->

 <xsd:element minOccurs="0" name="parent" type="xsd:IDREF"/> <!-- ComponentRef -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="nodes" type="xsd:IDREF"/> <!-- PathNode -->

 <xsd:element minOccurs="0" name="pos" type="Position"/>

 <xsd:element minOccurs="0" name="size" type="Size"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ComponentType -->

 <!-- ~~ -->

 <xsd:complexType name="ComponentType">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="instances" type="xsd:IDREF"/> <!-- Component -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Concern -->

 <!-- ~~ -->

 <xsd:complexType name="Concern">

 <xsd:complexContent>

 <xsd:extension base="URNmodelElement">

 <xsd:sequence>

 <xsd:element minOccurs="0" name="condition" type="Condition"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="elements" type="xsd:IDREF"/>

 <!-- URNmodelElement -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ConcreteCondition -->

 <!-- ~~ -->

 <xsd:complexType name="ConcreteCondition">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string"/>

 <xsd:element name="description" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ConcreteGRLspec -->

 <!-- ~~ -->

156 Rec. ITU-T Z.151 (10/2018)

 <xsd:complexType name="ConcreteGRLspec">

 <xsd:sequence>

 <xsd:element name="showAsMeansEnd" type="xsd:boolean"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ConcreteStrategy -->

 <!-- ~~ -->

 <xsd:complexType name="ConcreteStrategy">

 <xsd:sequence>

 <xsd:element name="author" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ConcreteStyle -->

 <!-- ~~ -->

 <xsd:complexType name="ConcreteStyle">

 <xsd:sequence>

 <xsd:element name="lineColor" type="xsd:string"/>

 <xsd:element name="fillColor" type="xsd:string"/>

 <xsd:element name="filled" type="xsd:boolean"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ConcreteURNspec -->

 <!-- ~~ -->

 <xsd:complexType name="ConcreteURNspec">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string"/>

 <xsd:element name="author" type="xsd:string"/>

 <xsd:element name="created" type="xsd:string"/>

 <xsd:element name="modified" type="xsd:string"/>

 <xsd:element name="specVersion" type="xsd:string"/>

 <xsd:element name="urnVersion" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Condition -->

 <!-- ~~ -->

 <xsd:complexType name="Condition">

 <xsd:sequence>

 <xsd:element name="expression" type="xsd:string"/>

 <xsd:element minOccurs="0" name="desc" type="ConcreteCondition"/>

 <xsd:element minOccurs="0" name="label" type="Label"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Connect -->

 <!-- ~~ -->

 <xsd:complexType name="Connect">

 <xsd:complexContent>

 <xsd:extension base="PathNode"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Contribution -->

 <!-- ~~ -->

 <xsd:complexType name="Contribution">

 <xsd:complexContent>

 <xsd:extension base="ElementLink">

 <xsd:sequence>

 <xsd:element default="Unknown" name="contribution" type="ContributionType"/>

 <xsd:element name="quantitativeContribution" type="xsd:integer"/>

 <xsd:element name="correlation" type="xsd:boolean"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ContributionChange -->

 Rec. ITU-T Z.151 (10/2018) 157

 <!-- ~~ -->

 <xsd:complexType name="ContributionChange">

 <xsd:sequence>

 <xsd:element default="Unknown" name="newContribution" type="ContributionType"/>

 <xsd:element name="newQuantitativeContribution" type="xsd:integer"/>

 <xsd:element name="contribution" type="xsd:IDREF"/> <!-- Contribution -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ContributionContext -->

 <!-- ~~ -->

 <xsd:complexType name="ContributionContext">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="changes" type="ContributionChange"/>

 <xsd:element maxOccurs="unbounded" name="groups" type="xsd:IDREF"/>

 <!-- ContributionContextGroup -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="parentContexts" type="xsd:IDREF"/>

 <!-- ContributionContext -->

 <xsd:element minOccurs="0" name="includedContexts" type="xsd:IDREFS"/>

 <!-- ContributionContext {ordered} -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ContributionContextGroup -->

 <!-- ~~ -->

 <xsd:complexType name="ContributionContextGroup">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="contribs" type="xsd:IDREF"/>

 <!-- ContributionContext -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Decomposition -->

 <!-- ~~ -->

 <xsd:complexType name="Decomposition">

 <xsd:complexContent>

 <xsd:extension base="ElementLink"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Demand -->

 <!-- ~~ -->

 <xsd:complexType name="Demand">

 <xsd:sequence>

 <xsd:element name="quantity" type="xsd:string"/>

 <xsd:element name="resource" type="xsd:IDREF"/> <!-- ExternalOperation -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Dependency -->

 <!-- ~~ -->

 <xsd:complexType name="Dependency">

 <xsd:complexContent>

 <xsd:extension base="ElementLink"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Description -->

 <!-- ~~ -->

 <xsd:complexType name="Description">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string"/>

158 Rec. ITU-T Z.151 (10/2018)

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- DirectionArrow -->

 <!-- ~~ -->

 <xsd:complexType name="DirectionArrow">

 <xsd:complexContent>

 <xsd:extension base="PathNode"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ElementLink -->

 <!-- ~~ -->

 <xsd:complexType name="ElementLink">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="refs" type="xsd:IDREF"/> <!-- LinkRef -->

 <xsd:element name="dest" type="xsd:IDREF"/> <!-- GRLLinkableElement -->

 <xsd:element name="src" type="xsd:IDREF"/> <!-- GRLLinkableElement -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- EmptyPoint -->

 <!-- ~~ -->

 <xsd:complexType name="EmptyPoint">

 <xsd:complexContent>

 <xsd:extension base="PathNode"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- EndPoint -->

 <!-- ~~ -->

 <xsd:complexType name="EndPoint">

 <xsd:complexContent>

 <xsd:extension base="PathNode">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="outBindings" type="xsd:IDREF"/>

 <!-- OutBinding -->

 <xsd:element minOccurs="0" name="postcondition" type="Condition"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- EnumerationType -->

 <!-- ~~ -->

 <xsd:complexType name="EnumerationType">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element name="values" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="instances" type="xsd:IDREF"/> <!-- Variable -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Evaluation -->

 <!-- ~~ -->

 <xsd:complexType name="Evaluation">

 <xsd:sequence>

 <xsd:element name="evaluation" type="xsd:integer"/>

 <xsd:element default="None" name="qualitativeEvaluation" type="QualitativeLabel"/>

 <xsd:element name="exceeds" type="xsd:boolean"/>

 <xsd:element minOccurs="0" name="indicatorEval" type="IndicatorEvaluation"/>

 <xsd:element name="intElement" type="xsd:IDREF"/> <!-- GRLContainableElement -->

 <xsd:element minOccurs="0" name="conversion" type="IndicatorConversion"/>

 Rec. ITU-T Z.151 (10/2018) 159

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- EvaluationStrategy -->

 <!-- ~~ -->

 <xsd:complexType name="EvaluationStrategy">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="evaluations" type="Evaluation"/>

 <xsd:element maxOccurs="unbounded" name="group" type="xsd:IDREF"/> <!-- StrategiesGroup -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="parentStrategies" type="xsd:IDREF"/>

 <!-- EvaluationStrategy -->

 <xsd:element minOccurs="0" name="includedStrategies" type="xsd:IDREFS"/>

 <!-- EvaluationStrategy {ordered} -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ExternalOperation -->

 <!-- ~~ -->

 <xsd:complexType name="ExternalOperation">

 <xsd:complexContent>

 <xsd:extension base="ActiveResource">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="demands" type="xsd:IDREF"/> <!-- Demand -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- FailurePoint -->

 <!-- ~~ -->

 <xsd:complexType name="FailurePoint">

 <xsd:complexContent>

 <xsd:extension base="PathNode">

 <xsd:sequence>

 <xsd:element name="failure" type="xsd:string"/>

 <xsd:element minOccurs="0" name="failureLabel" type="Label"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- GeneralResource -->

 <!-- ~~ -->

 <xsd:complexType name="GeneralResource">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element default="1" name="multiplicity" type="xsd:nonNegativeInteger"/>

 <xsd:element name="schedPolicy" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- GRLGraph -->

 <!-- ~~ -->

 <xsd:complexType name="GRLGraph">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="connections" type="LinkRef"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="nodes" type="GRLNode"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="contRefs" type="ActorRef"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="comments" type="Comment"/>

 </xsd:sequence>

 </xsd:extension>

160 Rec. ITU-T Z.151 (10/2018)

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- GRLContainableElement -->

 <!-- ~~ -->

 <xsd:complexType name="GRLContainableElement">

 <xsd:complexContent>

 <xsd:extension base="GRLLinkableElement">

 <xsd:sequence>

 <xsd:element minOccurs="0" name="actor" type="xsd:IDREF"/> <!-- Actor -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="refs" type="xsd:IDREF"/>

 <!-- IntentionalElementRef -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- GRLLinkableElement -->

 <!-- ~~ -->

 <xsd:complexType name="GRLLinkableElement">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element default="None" name="importance" type="ImportanceType"/>

 <xsd:element name="importanceQuantitative" type="xsd:integer"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="linksDest" type="xsd:IDREF"/> <!-- ElementLink -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="linksSrc" type="xsd:IDREF"/> <!-- ElementLink -->

 <xsd:element minOccurs="0" name="style" type="ConcreteStyle"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- GRLmodelElement -->

 <!-- ~~ -->

 <xsd:complexType name="GRLmodelElement">

 <xsd:complexContent>

 <xsd:extension base="URNmodelElement"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- GRLNode -->

 <!-- ~~ -->

 <xsd:complexType name="GRLNode">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="pred" type="xsd:IDREF"/> <!-- LinkRef -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="succ" type="xsd:IDREF"/> <!-- LinkRef -->

 <xsd:element minOccurs="0" name="contRef" type="xsd:IDREF"/> <!-- ActorRef -->

 <xsd:element name="pos" type="Position"/>

 <xsd:element name="size" type="Size"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- GRLspec -->

 <!-- ~~ -->

 <xsd:complexType name="GRLspec">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="intElements" type="GRLContainableElement"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="indConversions" type="IndicatorConversion"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="contribContextGroups" type="ContributionContextGroup"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="contribContexts" type="ContributionContext"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="actors" type="Actor"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="links" type="ElementLink"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="groups" type="StrategiesGroup"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="strategies" type="EvaluationStrategy"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="grlGraphs" type="GRLGraph"/>

 Rec. ITU-T Z.151 (10/2018) 161

 <xsd:element minOccurs="0" name="info" type="ConcreteGRLspec"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- InBinding -->

 <!-- ~~ -->

 <xsd:complexType name="InBinding">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:ID" /> <!-- ADDED because InBinding is not a URNmodelElement (no ID) -->

 <xsd:element name="startPoint" type="xsd:IDREF"/> <!-- StartPoint -->

 <xsd:element name="stubEntry" type="xsd:IDREF"/> <!-- NodeConnection -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Indicator -->

 <!-- ~~ -->

 <xsd:complexType name="Indicator">

 <xsd:complexContent>

 <xsd:extension base="GRLContainableElement">

 <xsd:sequence>

 <xsd:element name="unit" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- IndicatorConversion -->

 <!-- ~~ -->

 <xsd:complexType name="IndicatorConversion">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element name="unit" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="evals" type="xsd:IDREF"/>

 <!-- Evaluation -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- IndicatorEvaluation -->

 <!-- ~~ -->

 <xsd:complexType name="IndicatorEvaluation">

 <xsd:sequence>

 <xsd:element name="realWorldValue" type="xsd:integer"/>

 <xsd:element name="realWorldLabel" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Initialization -->

 <!-- ~~ -->

 <xsd:complexType name="Initialization">

 <xsd:sequence>

 <xsd:element name="value" type="xsd:string"/>

 <xsd:element name="variable" type="xsd:IDREF"/> <!-- Variable -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- IntentionalElement -->

 <!-- ~~ -->

 <xsd:complexType name="IntentionalElement">

 <xsd:complexContent>

 <xsd:extension base="GRLContainableElement">

 <xsd:sequence>

 <xsd:element name="type" type="IntentionalElementType"/>

 <xsd:element default="AND" name="decompositionType" type="DecompositionType"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

162 Rec. ITU-T Z.151 (10/2018)

 <!-- ~~ -->

 <!-- IntentionalElementRef -->

 <!-- ~~ -->

 <xsd:complexType name="IntentionalElementRef">

 <xsd:complexContent>

 <xsd:extension base="GRLNode">

 <xsd:sequence>

 <xsd:element name="def" type="xsd:IDREF"/> <!-- GRLContainableElement -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Label -->

 <!-- ~~ -->

 <xsd:complexType name="Label">

 <xsd:sequence>

 <xsd:element name="deltaX" type="xsd:integer"/>

 <xsd:element name="deltaY" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- LinearConversion -->

 <!-- ~~ -->

 <xsd:complexType name="LinearConversion">

 <xsd:complexContent>

 <xsd:extension base="IndicatorConversion">

 <xsd:sequence>

 <xsd:element name="targetValue" type="xsd:integer"/>

 <xsd:element name="thresholdValue" type="xsd:integer"/>

 <xsd:element name="worstValue" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- LinkRef -->

 <!-- ~~ -->

 <xsd:complexType name="LinkRef">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element name="curve" type="xsd:boolean"/>

 <xsd:element name="link" type="xsd:IDREF"/> <!-- ElementLink -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="bendpoints" type="LinkRefBendpoint"/>

 <!-- {ordered} -->

 <xsd:element minOccurs="0" name="label" type="Label"/>

 <xsd:element name="target" type="xsd:IDREF"/> <!-- GRLNode -->

 <xsd:element name="source" type="xsd:IDREF"/> <!-- GRLNode -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- LinkRefBendpoint -->

 <!-- ~~ -->

 <xsd:complexType name="LinkRefBendpoint">

 <xsd:sequence>

 <xsd:element name="x" type="xsd:integer"/>

 <xsd:element name="y" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Metadata -->

 <!-- ~~ -->

 <xsd:complexType name="Metadata">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="value" type="xsd:string"/>

 </xsd:sequence>

 Rec. ITU-T Z.151 (10/2018) 163

 </xsd:complexType>

 <!-- ~~ -->

 <!-- NodeConnection -->

 <!-- ~~ -->

 <xsd:complexType name="NodeConnection">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:ID"/> <!-- ADDED because NodeConnection is not a URNmodelElement (no ID) -->

 <xsd:element default="100" name="probability" type="xsd:nonNegativeInteger"/>

 <xsd:element name="threshold" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="inBindings" type="xsd:IDREF"/> <!-- InBinding -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="outBindings" type="xsd:IDREF"/> <!-- OutBinding -->

 <xsd:element minOccurs="0" name="condition" type="Condition"/>

 <xsd:element minOccurs="0" name="timer" type="xsd:IDREF"/> <!-- Timer -->

 <xsd:element minOccurs="0" name="label" type="Label"/>

 <xsd:element name="target" type="xsd:IDREF"/> <!-- PathNode -->

 <xsd:element name="source" type="xsd:IDREF"/> <!-- PathNode -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- OWPeriodic -->

 <!-- ~~ -->

 <xsd:complexType name="OWPeriodic">

 <xsd:complexContent>

 <xsd:extension base="OpenWorkload">

 <xsd:sequence>

 <xsd:element name="period" type="xsd:string"/>

 <xsd:element name="deviation" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- OWPhaseType -->

 <!-- ~~ -->

 <xsd:complexType name="OWPhaseType">

 <xsd:complexContent>

 <xsd:extension base="OpenWorkload">

 <xsd:sequence>

 <xsd:element name="alpha" type="xsd:string"/>

 <xsd:element name="s" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- OWPoisson -->

 <!-- ~~ -->

 <xsd:complexType name="OWPoisson">

 <xsd:complexContent>

 <xsd:extension base="OpenWorkload">

 <xsd:sequence>

 <xsd:element name="mean" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- OWUniform -->

 <!-- ~~ -->

 <xsd:complexType name="OWUniform">

 <xsd:complexContent>

 <xsd:extension base="OpenWorkload">

 <xsd:sequence>

 <xsd:element name="start" type="xsd:string"/>

 <xsd:element name="end" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

164 Rec. ITU-T Z.151 (10/2018)

 <!-- OpenWorkload -->

 <!-- ~~ -->

 <xsd:complexType name="OpenWorkload">

 <xsd:complexContent>

 <xsd:extension base="Workload"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- OrFork -->

 <!-- ~~ -->

 <xsd:complexType name="OrFork">

 <xsd:complexContent>

 <xsd:extension base="PathNode"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- OrJoin -->

 <!-- ~~ -->

 <xsd:complexType name="OrJoin">

 <xsd:complexContent>

 <xsd:extension base="PathNode"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- OutBinding -->

 <!-- ~~ -->

 <xsd:complexType name="OutBinding">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:ID" /> <!-- ADDED because OutBinding is not a URNmodelElement (no ID) -->

 <xsd:element name="endPoint" type="xsd:IDREF"/> <!-- EndPoint -->

 <xsd:element name="stubExit" type="xsd:IDREF"/> <!-- NodeConnection -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- PassiveResource -->

 <!-- ~~ -->

 <xsd:complexType name="PassiveResource">

 <xsd:complexContent>

 <xsd:extension base="GeneralResource">

 <xsd:sequence>

 <xsd:element minOccurs="0" name="component" type="xsd:IDREF"/> <!-- Component -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- PathNode -->

 <!-- ~~ -->

 <xsd:complexType name="PathNode">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element minOccurs="0" name="label" type="Label"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="pred" type="xsd:IDREF"/>

 <!-- NodeConnection -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="succ" type="xsd:IDREF"/>

 <!-- NodeConnection -->

 <xsd:element minOccurs="0" name="contRef" type="xsd:IDREF"/> <!-- ComponentRef -->

 <xsd:element minOccurs="0" name="pos" type="Position"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- PluginBinding -->

 <!-- ~~ -->

 <xsd:complexType name="PluginBinding">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:ID"/> <!-- ADDED because PluginBinding is not a URNmodelElement (no ID) -->

 <xsd:element default="100" name="probability" type="xsd:nonNegativeInteger"/>

 Rec. ITU-T Z.151 (10/2018) 165

 <xsd:element name="replicationFactor" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="in" type="InBinding"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="out" type="OutBinding"/>

 <xsd:element name="plugin" type="xsd:IDREF"/> <!-- UCMmap -->

 <xsd:element minOccurs="0" name="precondition" type="Condition"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="components" type="ComponentBinding"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Position -->

 <!-- ~~ -->

 <xsd:complexType name="Position">

 <xsd:sequence>

 <xsd:element name="x" type="xsd:integer"/>

 <xsd:element name="y" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ProcessingResource -->

 <!-- ~~ -->

 <xsd:complexType name="ProcessingResource">

 <xsd:complexContent>

 <xsd:extension base="ActiveResource">

 <xsd:sequence>

 <xsd:element default="Processor" name="kind" type="DeviceKind"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="components" type="xsd:IDREF"/>

 <!-- Component -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- QualToQMapping -->

 <!-- ~~ -->

 <xsd:complexType name="QualToQMapping">

 <xsd:sequence>

 <xsd:element name="realWorldLabel" type="xsd:string"/>

 <xsd:element name="evaluation" type="xsd:integer"/>

 <xsd:element name="qualitativeEvaluation" type="QualitativeLabel"/>

 <xsd:element name="exceeds" type="xsd:boolean"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- QualToQMappings -->

 <!-- ~~ -->

 <xsd:complexType name="QualToQMappings">

 <xsd:complexContent>

 <xsd:extension base="IndicatorConversion">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="mappings" type="QualToQMapping"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Responsibility -->

 <!-- ~~ -->

 <xsd:complexType name="Responsibility">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element name="expression" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="demands" type="Demand"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="respRefs" type="xsd:IDREF"/> <!-- RespRef -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- RespRef -->

166 Rec. ITU-T Z.151 (10/2018)

 <!-- ~~ -->

 <xsd:complexType name="RespRef">

 <xsd:complexContent>

 <xsd:extension base="PathNode">

 <xsd:sequence>

 <xsd:element name="repetitionCount" type="xsd:string"/>

 <xsd:element name="hostDemand" type="xsd:string"/>

 <xsd:element name="respDef" type="xsd:IDREF"/> <!-- Responsibility -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ScenarioDef -->

 <!-- ~~ -->

 <xsd:complexType name="ScenarioDef">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="initializations" type="Initialization"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="postconditions" type="Condition"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="preconditions" type="Condition"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="parentScenarios" type="xsd:IDREF"/>

 <!-- ScenarioDef -->

 <xsd:element minOccurs="0" name="includedScenarios" type="xsd:IDREFS"/> <!-- ScenarioDef {ordered} -->

 <xsd:element maxOccurs="unbounded" name="groups" type="xsd:IDREF"/> <!-- ScenarioGroup -->

 <xsd:element minOccurs="0" name="startPoints" type="xsd:IDREFS"/> <!-- StartPoint {ordered} -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="endPoints" type="xsd:IDREF"/>

 <!-- EndPoint -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- ScenarioGroup -->

 <!-- ~~ -->

 <xsd:complexType name="ScenarioGroup">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="scenarios" type="xsd:IDREF"/>

 <!-- ScenarioDef -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Size -->

 <!-- ~~ -->

 <xsd:complexType name="Size">

 <xsd:sequence>

 <xsd:element name="width" type="xsd:integer"/>

 <xsd:element name="height" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- StartPoint -->

 <!-- ~~ -->

 <xsd:complexType name="StartPoint">

 <xsd:complexContent>

 <xsd:extension base="PathNode">

 <xsd:sequence>

 <xsd:element default="None" name="failureKind" type="FailureKind"/>

 <xsd:element name="failureList" type="xsd:string"/>

 <xsd:element minOccurs="0" name="failureLabel" type="Label"/>

 <xsd:element minOccurs="0" name="workload" type="Workload"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="inBindings" type="xsd:IDREF"/>

 <!-- InBinding -->

 <xsd:element minOccurs="0" name="precondition" type="Condition"/>

 </xsd:sequence>

 Rec. ITU-T Z.151 (10/2018) 167

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- StrategiesGroup -->

 <!-- ~~ -->

 <xsd:complexType name="StrategiesGroup">

 <xsd:complexContent>

 <xsd:extension base="GRLmodelElement">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="strategies" type="xsd:IDREF"/>

 <!-- EvaluationStrategy -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Stub -->

 <!-- ~~ -->

 <xsd:complexType name="Stub">

 <xsd:complexContent>

 <xsd:extension base="PathNode">

 <xsd:sequence>

 <xsd:element name="dynamic" type="xsd:boolean"/>

 <xsd:element name="synchronizing" type="xsd:boolean"/>

 <xsd:element name="blocking" type="xsd:boolean"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="bindings" type="PluginBinding"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Timer -->

 <!-- ~~ -->

 <xsd:complexType name="Timer">

 <xsd:complexContent>

 <xsd:extension base="WaitingPlace">

 <xsd:sequence>

 <xsd:element minOccurs="0" name="timeoutPath" type="xsd:IDREF"/> <!-- NodeConnection -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- UCMmap -->

 <!-- ~~ -->

 <xsd:complexType name="UCMmap">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element name="singleton" type="xsd:boolean"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="parentStub" type="xsd:IDREF"/>

 <!-- PluginBinding -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="contRefs" type="ComponentRef"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="connections" type="NodeConnection"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="nodes" type="PathNode"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="comments" type="Comment"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- UCMmodelElement -->

 <!-- ~~ -->

 <xsd:complexType name="UCMmodelElement">

 <xsd:complexContent>

 <xsd:extension base="URNmodelElement"/>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

168 Rec. ITU-T Z.151 (10/2018)

 <!-- UCMspec -->

 <!-- ~~ -->

 <xsd:complexType name="UCMspec">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="enumerationTypes" type="EnumerationType"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="variables" type="Variable"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="scenarioGroups" type="ScenarioGroup"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="resources" type="GeneralResource"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="ucmMaps" type="UCMmap"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="components" type="Component"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="componentTypes" type="ComponentType"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="responsibilities" type="Responsibility"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="scenarioDefs" type="ScenarioDef"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- URNlink -->

 <!-- ~~ -->

 <xsd:complexType name="URNlink">

 <xsd:complexContent>

 <xsd:extension base="URNmodelElement">

 <xsd:sequence>

 <xsd:element name="type" type="xsd:string"/>

 <xsd:element name="toElem" type="xsd:IDREF"/> <!-- URNmodelElement -->

 <xsd:element name="fromElem" type="xsd:IDREF"/> <!-- URNmodelElement -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- URNmodelElement -->

 <!-- ~~ -->

 <xsd:complexType name="URNmodelElement">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:ID"/>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="metadata" type="Metadata"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="toLinks" type="xsd:IDREF"/> <!-- URNlink -->

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="fromLinks" type="xsd:IDREF"/> <!-- URNlink -->

 <xsd:element minOccurs="0" name="desc" type="Description"/>

 <xsd:element minOccurs="0" name="concern" type="xsd:IDREF"/> <!-- Concern -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- URNspec -->

 <!-- ~~ -->

 <xsd:complexType name="URNspec">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element minOccurs="0" name="ucmspec" type="UCMspec"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="metadata" type="Metadata"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="urnLinks" type="URNlink"/>

 <xsd:element minOccurs="0" name="grlspec" type="GRLspec"/>

 <xsd:element minOccurs="0" name="info" type="ConcreteURNspec"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="concerns" type="Concern"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Variable -->

 <!-- ~~ -->

 <xsd:complexType name="Variable">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element default="Boolean" name="type" type="DatatypeKind"/>

 <xsd:element minOccurs="0" name="enumerationType" type="xsd:IDREF"/> <!-- EnumerationType -->

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 Rec. ITU-T Z.151 (10/2018) 169

 <!-- ~~ -->

 <!-- WaitingPlace -->

 <!-- ~~ -->

 <xsd:complexType name="WaitingPlace">

 <xsd:complexContent>

 <xsd:extension base="PathNode">

 <xsd:sequence>

 <xsd:element name="waitType" type="WaitKind"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ~~ -->

 <!-- Workload -->

 <!-- ~~ -->

 <xsd:complexType name="Workload">

 <xsd:complexContent>

 <xsd:extension base="UCMmodelElement">

 <xsd:sequence>

 <xsd:element default="ms" name="unit" type="TimeUnit"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

</xsd:schema>

170 Rec. ITU-T Z.151 (10/2018)

Annex B

Textual URN specification

(This annex forms an integral part of this Recommendation.)

B.1 Introduction to the Textual URN specification

This annex describes the textual syntax for the User Requirements Notation, called TURN (Textual

URN). For the purpose of this annex, the URN definitions in clauses 6 to 8 are referred to as URN,

GRL, or UCM, while the textual syntax defined in this annex is referred to as the Textual URN,

Textual GRL, or Textual UCM. The annex shows an example for GRL and UCM, respectively, and

their corresponding TURN specification. In addition, the TURN grammar is specified.

The main objective of TURN is to support the modeling of very large URN specifications, where

scalability issues have been encountered with the graphical syntax. Navigating thousands of separate

maps or goal graphs as distinct diagrams becomes unwieldy. Similarly, a map with many paths that

cannot be shown on a single screen or printed page becomes difficult to understand. In addition, the

entering of large specifications in graphical tools has proven tedious, as the user must be concerned

with layout issues that are unrelated to the information that is attempted to be modeled. In general,

TURN offers an alternative input medium for URN specifications. This is also useful for small URN

specification, where the modeler may choose to use both representations, i.e. the textual syntax which

is typically faster for entering a specification and the graphical syntax which is typically faster for

understanding small to medium-sized specifications.

The TURN grammar strikes a balance between supporting as many language features of URN as

possible and the usability, convenience, and expediency of the textual syntax. Not all URN concepts

are supported. The differences are highlighted and a mapping is described from the TURN grammar

to the abstract grammar of URN. The textual syntax for GRL covers the abstract grammar of GRL in

its entirety. Collapsed actor references from the concrete grammar of GRL are not covered. The

textual syntax for UCM does not cover performance concepts, component types, descriptions of

model elements (all not an essential part of the UCM notation), and empty points from the abstract

grammar of UCM but everything else from the abstract grammar of UCM. The first two are not

essential to a URN specification, while empty points are covered indirectly and comments may be

used for descriptions. Direction arrows from the concrete grammar of UCM are not supported.

Logically a TURN specification is a single body of text that for handling purposes may be split into

more than one file, but how multiple files are treated as a single body is a methodology and/or tool

issue beyond the scope of this Recommendation. Furthermore, even though this annex only uses

keywords with lower case characters in the TURN grammar, all keywords are case-insensitive.

All constraints and default values specified in clauses 6, 7, and 8 also apply to a TURN specification

unless stated otherwise and only if the corresponding metaclass is covered by TURN. In the TURN

grammar, referenced elements are identified by a <Name> instead of the id attribute used in URN as

explained in more detail in B.2. The <Name> is used instead of the numerical id attribute, because

the unique id attribute is automatically assigned to ensure uniqueness and not directly used by a

modeller. Having to explicitly keep track of such numbers is error-prone and inconvenient.

The TURN grammar in this annex builds on the grammar defined in clause 9. Text conforming to the

grammar defined in clause 9 is used as the Text describing the detail of conditions, responsibility

actions, or metadata.

As with all grammars defined in this Recommendation, the conventions of [ITU-T Z.111] also apply

to this annex. The mapping from TURN to URN adheres to the following general guidelines. TURN

production rules are mapped by default to the URN metaclass with the same name as the TURN

 Rec. ITU-T Z.151 (10/2018) 171

production rule including any attributes with the same name. The mapping of the Textual URN to the

abstract syntax is given in English text augmenting the grammar.

Comments in TURN are in C++/Java style, supporting both bounded comments (enclosed by "/*"

and "*/", which can be nested) and terminated comments which extend from "//" to the end of the

current line.

B.2 User Requirements Notation: core concepts

The TURN grammar in this section covers clause 6, i.e. the core concepts of URN. All concepts are

covered by TURN. Listing B.1 shows the grammar interspersed with explanatory text that introduces

the Textual URN by example, while Listing B.2 gives a concrete example TURN specification of the

core concepts of URN. For the abstract grammar of a URN model to be complete, additional links

have to be created between the objects of the constructed URN model. These links can be inferred

from the abstract grammar and are not further described.

Listing B.1(a) – Grammar for core concepts of Textual User Requirements Notation

<URNspec> ::= urnModel <TURNidentifier>
 [<ConcreteURNspec>]
 {<GRLspec> | <UCMspec> | <Concern> | <URNlink> | <Metadata>}*

<ConcreteURNspec> ::= <left curly bracket>
 [description <String>]
 [author <String>]
 [created <String>]
 [modified <String>]
 [version <String>]
 [urnVersion <String>]
<right curly bracket>

A <URNspec> represents a URNspec. <TURNidentifier> represents URNSpec.name.

A <ConcreteURNspec> represents a ConcreteURNSpec. 'description', 'author', 'created', 'modified',

'version', and 'urnVersion' map to the attributes of ConcreteURNspec with the same name.

For more information on <GRLspec>, see clause B.3 on the Goal-oriented Requirement Language.

For more information on <UCMspec>, see Section B.4 on Use Case Maps.

Listing B.1(b) – Grammar for core concepts of TURN (continued)

<Concern> ::= concern <Name> <colon>
 [<Condition>]
 <QualifiedReferenceToURNmodelElement> {<comma>
 <QualifiedReferenceToURNmodelElement>}*

A <Concern> represents a Concern. <Name> is mapped to Concern.name according to the rules

specified for <Name>. <QualifiedReferenceToURNmodelElement> items uniquely identify

Concern.elements. The optional <Condition> represents Concern.condition.

Listing B.1(c) – Grammar for core concepts of TURN (continued)

<Condition> ::=
 {<left square bracket> <BooleanExpression> <right square bracket>}

A <Condition> represents a Condition. <BooleanExpression> represents Condition.expression.

172 Rec. ITU-T Z.151 (10/2018)

Listing B.1(d) – Grammar for core concepts of TURN (continued)

<URNlink> ::= link [<Name> <colon>]
 [<left square bracket> <Text> <right square bracket>]
 <QualifiedReferenceToURNmodelElement> <long arrow>
 <QualifiedReferenceToURNmodelElement>

A <URNlink> represents a URNlink. <Name> is mapped to URNlink.name according to the rules

specified for <Name>. If <Name> is not specified, the name is empty. <Text> represents

URNlink.type. The first <QualifiedReferenceToURNmodelElement> uniquely identifies

URNlink.fromElem. The second <QualifiedReferenceToURNmodelElement> uniquely identifies

URNlink.toElem.

Listing B.1(e) – Grammar for core concepts of TURN (continued)

<Metadata> ::=
 {metadata | {<QualifiedReferenceToURNmodelElement> <colon>}}
 <identifier> <equal sign> <left square bracket> <Text> <right square
bracket>

A <Metadata> represents a Metadata. When a <QualifiedReferenceToURNmodelElement> is

specified, then the <Metadata> is contained in the referenced URNmodelElement. When 'metadata'

is present, the <Metadata> is contained in the URNspec (i.e. it is for the URNspec). <identifier>

represents Metadata.name. <Text> represents Metadata.value.

Listing B.1(f) – Grammar for core concepts of TURN (continued)

<QualifiedReferenceToURNmodelElement> ::= <QualifiedTURNidentifier>

<QualifiedTURNidentifier> ::= {<Name> <full stop>}* <Name>

The <QualifiedTURNidentifier> of a <QualifiedReferenceToURNmodelElement> uniquely identi-

fies the referenced URNmodelElement (i.e. a <Concern>, <URNlink>, <Actor>,

<GRLContainableElement> (<IntentionalElement>, <Indicator>), <ElementLink> (<Contribution>,

<Decomposition>, <Dependency>), <StrategiesGroup>, <EvaluationStrategy>, <IndicatorConver-

sion> (<LinearConversion>, <QualToQMappings>), <ContributionContextGroup>, <Contribu-

tionContext>, <UCMmap>, <StartPoint>, <RespRef>, <OrJoin>, <AndJoin>, <WaitingPlace>,

<Timer>, <FailurePoint>, <OrFork>, <AndFork>, <Stub>, <EndPoint>, <ComponentRef>, <Sce-

narioGroup>, <ScenarioDef>, <Variable>, or <EnumerationType>).

Since the names of some URN model elements may be the same (e.g., start points and end points on

different maps), a <QualifiedTURNidentifier> includes the name of the container of a model element.

The left <Name> is always the container of the right <Name> for any pair of adjacent <Name> items

separated by a <full stop> (i.e., several nested containers may be specified).

Listing B.1(g) – Grammar for core concepts of TURN (continued)

<Name> ::= {<TURNidentifier> [<hash sign> <DisplayName>]} | [<DisplayName>]

<TURNidentifier> ::= <identifier> | <String>

<DisplayName> ::= <identifier> | <String>

A <Name> identifies a model element. The <TURNidentifier> represents the unique identifier of the

model element in the TURN specification. If <TURNidentifier> is not specified, then the

<DisplayName> is used as the unique identifier. The <DisplayName> represents the name of the

model element. If the <DisplayName> is not specified, then the <TURNidentifier> is also used for

the name of the model element. The motivation behind <Name> is to allow elements to be identified

 Rec. ITU-T Z.151 (10/2018) 173

and referenced easily within a TURN specification using the shorter <TURNidentifier> instead of the

longer <DisplayName>. Furthermore, <RespRef> and <ComponentRef> make use of the <Name>

to also identify the associated Responsibility and Component, respectively, as explained below.

<identifier> is defined in clause 9. Any keyword of the Textual URN may not be used as an

<identifier> in TURN, as a <String> in <TURNidentifier>, and as a <String> in <DisplayName>.

The following examples illustrate the three cases for <Name>.

1) Full name (e.g., fwd1#"forward Signal" or fwd1#forwardSignal or "forward 1"#"forward

Signal" or "forward 1"#forwardSignal)

2. <DisplayName> only (e.g., "forward Signal" or forwardSignal)

3. <TURNidentifier> only (e.g., fwd1 or "forward 1")

Case 1 introduces a short <TURNidentifier> to be used in references instead of having to write the

long <DisplayName> all the time. The name of the model element is the <DisplayName>. The unique

identifier of the model element in the TURN specification is the <TURNidentifier>.

For <RespRef> and <ComponentRef>, the <TURNidentifier> is the unique identifier of the

<RespRef> or <ComponentRef>, the <DisplayName> is the unique identifier of the associated

Reponsibility (i.e., RespRef.respDef) or Component (i.e, ComponentRef.compDef), and the <Display

Name> is the name of the <RespRef> or <ComponentRef> as well as the name of their associated

Responsibility or Component, respectively.

For Case 2, the model element is identified and referenced with its <DisplayName>, i.e. the long

name is used for referencing. Hence, the <DisplayName> is used as the unique identifier of the model

element in the TURN specification. The name of the model element is also the <DisplayName>.

For <RespRef> and <ComponentRef>, the <RespRef> and <ComponentRef> does not need to be

uniquely identified and hence the <DisplayName> is the unique identifier of the associated

Reponsibility (i.e., RespRef.respDef) or Component (i.e, ComponentRef.compDef). The <Display

Name> is also the name of the <RespRef> or <ComponentRef> as well as the name of their associated

Responsibility or Component, respectively.

For Case 3, the model element is identified and referenced with its <TURNidentifier>, i.e., a long

name is not required for this particular model element. Hence, the <TURNidentifier> is used as the

unique identifier of the model element in the TURN specification. The name of the model element is

also the <TURNidentifier>.

For <RespRef> and <ComponentRef>, the <RespRef> and <ComponentRef> does not need to be

uniquely identified and hence the <TURNidentifier> is the unique identifier of the associated

Reponsibility (i.e., RespRef.respDef) or Component (i.e, ComponentRef.compDef). The

<TURNidentifier> is also the name of the <RespRef> or <ComponentRef> as well as the name of

their associated Responsibility or Component, respectively.

A <Name> does not have to be globally unique. The following rules apply: (i) the <Name> of each

top-level element in the core (<Concern>, <URNLink>), in the GRL specification (<Actor>,

<StrategiesGroup>, <EvaluationStrategy>, <IndicatorConversion>, <ContributionContextGroup>,

<ContributionContext>; see clause B.3), and the UCM specification (<UCMmap>,

<ScenarioGroup>, <ScenarioDef>, <Variable>, <EnumerationType>; see clause B.4) must be

unique; (ii) the <Name> of each referencable element within a GRL <Actor> must be unique; (iii)

the <Name> of each referencable element within a <UCMmap> must be unique with the exception

of <RespRef> items and <EndPoint> items. A <Name> is unique because either the

<TURNidentifier> is unique or the <DisplayName> is unique if <TURNidentifier> is not used.

If a <Name> occurs in a definition (i.e., not in a production rule that contains "ReferenceTo"), and

no <hash sign> is present, the <Name> is interpreted as <TURNidentifier>. The name of the model

element is then considered to be identical to the unique identifier of the model element. If a <Name>

174 Rec. ITU-T Z.151 (10/2018)

occurs in a reference (i.e., a production rule that contains "ReferenceTo"), the name is first interpreted

as a <TURNidentifier> and the specification is searched for a matching model element. If a model

element with a matching identifier is found, the <Name> refers to that model element. If no matching

model element is found, the <Name> is interpreted as <DisplayName>, and the specification is

searched for a matching model element. If a model element with a matching name is found, the

<Name> refers to that model element. If no matching model element is found, the specification is not

well-formed. A <hash sign> must not be present in a reference.

When an <EndPoint>, <StartPoint>, <WaitingPlace>, <Timer>, or <FailurePoint> does not have a

name, an anonymous name is used as the identifier of the PathNode and the empty string is used as

its name.

Listing B.1(h) – Grammar for core concepts of TURN (continued)

<Text> ::= <not right square bracket>+
<String> ::= <quotation mark>
 <not quotation mark or space> <not quotation mark>*
<quotation mark>
<BooleanExpression> ::= <expression>

<not right square bracket> ::= (any printable character or space character
 recommended in UCS [ITU-T T.55] except RIGHT SQUARE BRACKET)
<not quotation mark or space> ::= (any printable character recommended in UCS
 [ITU-T T.55] except QUOTATION MARK)
<not quotation mark> ::= (any printable character or space character recommended in
 UCS [ITU-T T.55] except QUOTATION MARK)

<left curly bracket> ::= {
<right curly bracket> ::= }
<colon> ::= :
<comma> ::= ,
<left square bracket> ::= [
<right square bracket> ::=]
<long arrow> ::= -->
<equal sign> ::= =
<full stop> ::= .
<hash sign> ::= #
<quotation mark> ::= "

A <BooleanExpression> is an <expression> whose computed type is Boolean as defined in clause 9.3.

<expression> and <integer literal> are defined in clause 9. Note that Listing B.1(h) shows all lexical

definitions required for the textual syntax of the core concepts of URN, but also for the Textual GRL

(see B.3) and Textual UCM (see B.4).

Listing B.2 – Example TURN for URN core concepts

urnModel Example {
 description "This is an example."
 author "ITU-T"
 created "Feb-20-2017"
 modified "Feb-20-2017"
 version "1.0"
 urnVersion "29.0"
}

... // see section for Goal-oriented Requirement Language

... // see section for Use Case Maps

concern TCConcern : TelP

 Rec. ITU-T Z.151 (10/2018) 175

link [trace] TelP --> OAgent
link [trace] TelP --> TAgent

TCConcern : CompanyValue = [High]

B.3 Goal-oriented Requirement Language

The TURN grammar in this section covers clause 7, i.e. the GRL concepts of URN. All concepts in

the abstract grammar of GRL are covered by TURN. Listing B.3 gives a concrete example TURN

specification of the GRL concepts of URN, showing a possible textual syntax for the graphical URN

model in Figure B.1. Listing B.4 shows the grammar interspersed with explanatory text that

introduces the Textual GRL by example.

Figure B.1 – Example GRL model

While the TURN grammar matches the GRL metamodel to a large degree, there are some minor

differences:

1. The TURN grammar does not allow links among actors to be specified. However, this is

more of a graphical visualization issue than a specification issue and hence not as useful for

a TURN specification.

2. The TURN grammar requires an intentional element to be specified inside an actor, which

results in a well-nested specification that is easier to comprehend and maintain. Intentional

elements outside an actor are not allowed.

3. The TURN grammar allows either qualitative or quantitative importance/contribution values

to be specified for an element but not both at the same time. However, this restriction reflects

the spirit of URN.

Listing B.3 – TURN for example GRL model from Figure B.1

actor TelP#"Telecom Provider" {
 importance 100
 goal VoiceConn#"Voice Connection Be Setup" {
 importance 50
 }
 softgoal HighRel#"High Reliability" {

176 Rec. ITU-T Z.151 (10/2018)

 description "This is the most important objective of the stakeholder."
 importance 75
 }
 softgoal SpecUsage#"Minimize Spectrum Usage" {
 importance 60
 }
 task MakeVoiceOverInternet#"Make Voice Connection Over Internet" {
 contributesTo HighRel with somePositive
 contributesTo SpecUsage correlated with somePositive
 xor decomposes VoiceConn
 }
 task MakeVoiceOverWireless#"Make Voice Connection Over Wireless" {
 contWirelessVoiceConnToHighRel contributesTo HighRel with make
 contributesTo SpecUsage correlated with someNegative
 xor decomposes VoiceConn
 }
 indicator VoiceConnFailureRate#"Failure Rate for Voice ConnectionOver
 Internet" {
 unit "failures/week/10000 connections"
 contVoiceConnFailureRateToInternetVoiceConn contributesTo
 MakeVoiceOverInternet with 100
 dependsOn Tech.LoggEquip
 }
 belief WirelessReliability#"Wireless is less reliable than Internet" {
 contributesTo HighRel with SomeNegative
 }
}
actor Tech#"Technician" {
 resource LoggEquip#"Logging Equipment" {
 dependsOn EquipSetup
 }
 task EquipSetup#"Correctly setup logging equipment" {
 importance 100
 }
}
strategiesGroup SG1 : Eval1
strategy Eval1#"Internet Connection" {
 author "ITU-T"
 Tech.EquipSetup evaluation 100
 TelP.VoiceConnFailureRate real 265 convertedWith LC1
}
linearConversion LC1#"Weakly Failures" {
 unit "failures/week/10000 connections"
 target 0
 threshold 500
 worst 10000
}
// The following mappingConversion is an alternative to the above linearConversion
as
// only one may be specified for the same element (i.e. VoiceConnFailureRate). If
the
// mappingConversion is used, then the mappingConversion replaces the
// linearConversion in strategy Eval1 (TelP.VoiceConnFailureRate {real "Class 2"
// convertedWith MC1}). Note that Class 2 in Table 3 at the end of clause 7.6 is
// assumed to map to 47 instead of 25 to match the example in Figure B.1.
MappingConversion MC1#"EquipmentClassification" {
 unit "equipment class"
 real "Class 1" --> 100
 real "Class 2" --> 47
 real "Class 3" --> -25
}
// These examples of conributionContexts describe the situation where (a) the make

 Rec. ITU-T Z.151 (10/2018) 177

// contribution in Figure B.2 is changed to a help contribution (as described by
the
// Pessimistic context) and (b) the 100 contribution is additionally changed to 50
// (as described by the PessimisticIneffective context).
contributionContextGroup CCG1 : CCP, CCPI
contributionContext CCP#"Pessimistic" {
 contWirelessVoiceConnToHighRel with help
}
contributionContext CCPI#"PessimisticIneffective" {
 contVoiceConnFailureRateToInternetVoiceConn with 50
 includes Pessimistic
}

Listing B.4 provides the grammar for the Textual GRL. The text between the listings describes the

mapping from the textual syntax to the abstract grammar of GRL. The mapping is provided by

describing the element in the abstract grammar of GRL that are created corresponding to the concrete

syntax elements encountered in a Textual GRL specification. For the abstract grammar of a GRL

model to be complete, additional links have to be created between the objects of the constructed GRL

model. These links can be inferred from the abstract grammar and are not further described.

Listing B.4(a) – Grammar for Textual GRL

<GRLspec> ::=
 [showAsMeansEnd]
 {<Actor> | <StrategiesGroup> | <EvaluationStrategy> | <IndicatorConversion>
| <ContributionContextGroup> | <ContributionContext>}*

A <GRLspec> represents a GRLspec.

If 'showAsMeansEnd' is present, GRLspec.info.showAsMeansEnd is true; otherwise it is false.

Listing B.4(b) – Grammar for Textual GRL (continued)

<Actor> ::= actor <Name> <left curly bracket>
 [importance {<ImportanceType> | <QuantitativeValue>}]
 <GRLContainableElement>*
<right curly bracket>

<ImportanceType> ::= high | medium | low | none

An <Actor> represents an Actor. <Name> is mapped to Actor.name according to the rules specified

for <Name>. <ImportanceType> represents Actor.importance. If <ImportanceType> is 'high', then

Actor.importance is High. If <ImportanceType> is 'medium', then Actor.importance is Medium. If

<ImportanceType> is 'low', then Actor.importance is Low. If <ImportanceType> is 'none', then

Actor.importance is None. <QuantitativeValue> represents Actor.importanceQuantitative.

Listing B.4(c) – Grammar for Textual GRL (continued)

<GRLContainableElement> ::=
 <IntentionalElement> | <Indicator>

<IntentionalElement> ::= <IntentionalElementType> <Name> <left curly bracket>
 [importance {<ImportanceType> | <QuantitativeValue>}]
 <ElementLink>*
<right curly bracket>

<IntentionalElementType> ::= softgoal | goal | task | resource | belief

<Indicator> ::= indicator <Name> <left curly bracket>
 [importance {<ImportanceType> | <QuantitativeValue>}]

178 Rec. ITU-T Z.151 (10/2018)

 [unit <String>]
 <ElementLink>*
<right curly bracket>

A <GRLContainableElement> represents a GRLContainableElement. An <IntentionalElement>

represents an IntentionalElement. An <Indicator> represents an Indicator. Note that the

<DecompositionType> is specified with <Decomposition>.

For <IntentionalElement>, <Name> is mapped to IntentionalElement.name according to the rules

specified for <Name>. <IntentionalElementType> represents IntentionalElement.type. If <Inten-

tionalElementType> is 'softgoal', 'goal', 'task', 'resource', or 'belief', then IntentionalElement.type is

Softgoal, Goal, Task, Resource, or Belief, respectively. <ImportanceType> represents Intention-

alElement.importance. If <ImportanceType> is 'high', then IntentionalElement.importance is High. If

<ImportanceType> is 'medium', then IntentionalElement.importance is Medium. If <Im-

portanceType> is 'low', then IntentionalElement.importance is Low. If <ImportanceType> is 'none',

then IntentionalElement.importance is None. <QuantitativeValue> represents Intention-

alElement.importanceQuantitative.

For <Indicator>, <Name> is mapped to Indicator.name according to the rules specified for <Name>.

<ImportanceType> represents Indicator.importance. If <ImportanceType> is 'high', then

Indicator.importance is High. If <ImportanceType> is 'medium', then Indicator.importance is

Medium. If <ImportanceType> is 'low', then Indicator.importance is Low. If <ImportanceType> is

'none', then Indicator.importance is None. <QuantitativeValue> represents Indica-

tor.importanceQuantitative. The unit of an Indicator is covered by the 'unit' <String>.

Listing B.4(d) – Grammar for Textual GRL (continued)

<ElementLink> ::=
 <Contribution> | <Decomposition> | <Dependency>

<Contribution> ::= [<Name>]
 contributesTo <ReferenceToGRLContainableElement>
 [correlated] with {<ContributionType> | <QuantitativeValue>}

<ContributionType> ::= make | help | somePositive | unknown | someNegative| hurt |
 break

An <ElementLink> represents an ElementLink.

A <Contribution> represents a Contribution. <Name> is mapped to Contribution.name according to

the rules specified for <Name>. If <Name> is not specified, the name is empty.

<ReferenceToGRLContainableElement> uniquely identifies Contribution.dest. Contribution.src is

the IntentionalElement or Indicator represented by the <GRLContainableElement> in which this

<Contribution> is contained. <QuantitativeValue> represents Contribution.quantitativeContribution.

If 'corrleated' is present, Contribution.correlation is true; otherwise it is false. If <ContributionType>

is 'make', 'help', 'somePositive', 'unknown', 'someNegative', 'hurt', or 'break', then

Contribution.contribution is Make, Help, SomePositive, Unknown, SomeNegative, Hurt, or Break,

respectively.

Listing B.4(e) – Grammar for Textual GRL (continued)

<Decomposition> ::= [<Name>]
 <DecompositionType> decomposes <ReferenceToGRLContainablelElement>

<DecompositionType> ::= and | or | xor

 Rec. ITU-T Z.151 (10/2018) 179

A <Decomposition> represents a Decomposition. <Name> is mapped to Decomposition.name

according to the rules specified for <Name>. If <Name> is not specified, the name is empty.

<ReferenceToGRLContainableElement> uniquely identifies Decomposition.dest.

Decomposition.src is the IntenionalElement or Indicator represented by the

<GRLContainableElement> in which this <Decomposition> is contained. If <DecompositionType>

is 'and', then Decomposition.dest.decompositionType is AND. If <DecompositionType> is 'or', then

Decomposition.dest.decompositionType is OR. If <DecompositionType> is 'xor', then

Decomposition.dest.decompositionType is XOR.

If two <Decomposition> items exist that references the same <GRLContainableElement> and the

<DecompositionType> of the <Decomposition> items is not the same, then the specification is not

well-formed.

Listing B.4(f) – Grammar for Textual GRL (continued)

<Dependency> ::= [<Name>]
 dependsOn <ReferenceToGRLContainableElement>

A <Dependency> represents a Dependency. <Name> is mapped to Dependency.name according to

the rules specified for <Name>. If <Name> is not specified, the name is empty.

<ReferenceToGRLContainableElement> uniquely identifies Dependency.dest. Dependency.src is

the IntentionalElement or Indicator represented by the <GRLContainableElement> in which this

<Dependency> is contained.

Listing B.4(g) – Grammar for Textual GRL (continued)

<StrategiesGroup> ::= strategiesGroup <Name> <colon>
 <ReferenceToEvaluationStrategy> {<comma> <ReferenceToEvaluationStrategy>}*

<EvaluationStrategy> ::= strategy <Name> <left curly bracket>
 [<ConcreteStrategy>]
 <Evaluation>*
 [includes <ReferenceToEvaluationStrategy> {<comma>
 <ReferenceToEvaluationStrategy>}*]
<right curly bracket>

<ConcreteStrategy> ::=
 author <String>

A <StrategiesGroup> represents a StrategiesGroup. <Name> is mapped to StrategiesGroup.name

according to the rules specified for <Name>. <ReferenceToEvaluationStrategy> items uniquely

identify StrategiesGroup.strategies.

An <EvaluationStrategy> represents a EvaluationStrategy. <Name> is mapped to EvaluationStrat-

egy.name according to the rules specified for <Name>. Its <ConcreteStrategy> represents Evalua-

tionStrategy.info. Its <Evaluation> items represent EvaluationStrategy.evaluations. <Refer-

enceToEvaluationStrategy> items uniquely identify EvaluationStrategy.includedStrategies.

A <ConcreteStrategy> represents a ConcreteStrategy. The 'author' <String> represent

ConcreteStrategy.author.

Listing B.4(h) – Grammar for Textual GRL (continued)

<Evaluation> ::=
 {<QualifiedReferenceToIntentionalElement> [exceeding]
 evaluation {<QualitativeLabel> | <QuantitativeValue>}}
 | {<QualifiedReferenceToIndicator> [exceeding]
 <IndicatorEvaluation> convertedWith <ReferenceToIndicatorConversion>}

180 Rec. ITU-T Z.151 (10/2018)

<QualitativeLabel> ::= denied | weaklyDenied | weaklySatisfied | satisfied |
 conflict | unknown | none

<IndicatorEvaluation> ::=
 real {<String> | <RealWorldValue>}

An <Evaluation> represents an Evaluation. <QualifiedReferenceToIntentionalElement> and

<QualifiedReferenceToIndicator> uniquely identify Evaluation.intElement. If 'exceeding' is present,

Evaluation.exceeds is true; otherwise it is false. <QualitativeLabel> represents

Evaluation.qualitativeEvaluation. If <QualitativeLable> is 'denied','weaklyDenied', 'weaklySatisfied'

'satisfied', 'conflict', 'unknown', or 'none', then Evaluation.qualitativeEvaluation is Denied,

WeaklyDenied, WeaklySatisfied, Satisfied, Conflict, Unknown, or None, respectively.

<QuantitativeValue> maps to Evaluation.evaluation. Its <IndicatorEvaluation> represents

Evaluation.indicatorEval. <ReferenceToIndicatorConversion> uniquely identifies

Evaluation.conversion.

An <IndicatorEvaluation> represents an IndicatorEvaluation. <String> represents IndicatorEvalua-

tion.realWorldLabel. <RealWorldValue> represents IndicatorEvaluation.realWorldValue.

Listing B.4(i) – Grammar for Textual GRL (continued)

<IndicatorConversion> ::=
 <LinearConversion> | <QualToQMappings>

<LinearConversion> ::= linearConversion <Name> <left curly bracket>
 unit <String>
 target <RealWorldValue>
 threshold <RealWorldValue>
 worst <RealWorldValue>
<right curly bracket>

<QualToQMappings> ::= mappingConversion <Name> <left curly bracket>
 unit <String>
 <QualToQMapping>*
<right curly bracket>

<QualToQMapping> ::=
 [exceeding] real <String> <long arrow> {<QualitativeLabel> |
 <QuantitativeValue>}

An <IndicatorConversion> represents an IndicatorConversion.

A <LinearConversion> represents a LinearConversion. <Name> is mapped to

LinearConversion.name according to the rules specified for <Name>. The 'unit' <String> represents

LinearConversion.unit. The 'target' <RealWorldValue> represents LinearConversion.targetValue.

The 'threshold' <RealWorldValue> represents LinearConversion.thresholdValue. The 'worst'

<RealWorldValue> represents LinearConversion.worstValue.

A <QualToQMappings> represents a QualToQMappings. <Name> is mapped to

QualToQMappings.name according to the rules specified for <Name>. The 'unit' <String> represents

QualToQMappings.unit. Its <QualToQMapping> items represent QualToQMappings.mappings.

A <QualToQMapping> represents a QualToQMapping. If 'exceeding' is present, QualToQMap-

ping.exceeds is true; otherwise it is false. <String> represents QualToQMapping.realWorldLabel.

<QualitativeLabel> represents QualToQMapping.qualitativeEvaluation. If <QualitativeLable> is

'denied','weaklyDenied', 'weaklySatisfied' 'satisfied', 'conflict', 'unknown', or 'none', then Qual-

ToQMapping.qualitativeEvaluation is Denied, WeaklyDenied, WeaklySatisfied, Satisfied, Conflict,

Unknown, or None, respectively. <QuantitativeValue> maps to QualToQMapping.evaluation.

 Rec. ITU-T Z.151 (10/2018) 181

Listing B.4(j) – Grammar for Textual GRL (continued)

<ContributionContextGroup> ::= contributionContextGroup <Name> <colon>
 <ReferenceToContributionContext> {<comma> <ReferenceToContributionContext>}*

<ContributionContext> ::= contributionContext <Name> <left curly bracket>
 <ContributionChange>*
 [includes <ReferenceToContributionContext> {<comma>
 <ReferenceToContributionContext>}*]
<right curly bracket>

<ContributionChange> ::=
 <QualifiedReferenceToContribution> with {<ContributionType> |
 <QuantitativeValue>}

A <ContributionContextGroup> represents a ContributionContextGroup. <Name> is mapped to

ContributionContextGroup.name according to the rules specified for <Name>.

<ReferenceToContributionContext> items uniquely identify ContributionContextGroup.contribs.

A <ContributionContext> represents a ContributionContext. <Name> is mapped to

ContributionContext.name according to the rules specified for <Name>. Its <ContributionChange>

items represent ContributionContext.changes. <ReferenceToContributionContext> items uniquely

identify ContributionContext.includedContexts.

A <ContributionChange> represents a ContributionChange. <QualifiedReferenceToContribution>

uniquely identifies ContributionChange.contribution. If <ContributionType> is 'make', 'help',

'somePositive', 'unknown', 'someNegative', 'hurt', or 'break', then

ContributionChange.newContribution is Make, Help, SomePositive, Unknown, SomeNegative, Hurt,

or Break, respectively. <QuantitativeValue> represents

ContributionChange.newQuantitativeContribution.

Listing B.4(k) – Grammar for Textual GRL (continued)

<ReferenceToGRLContainableElement> ::=
 <ReferenceToIntentionalElement> | <ReferenceToIndicator>
<ReferenceToIntentionalElement> ::= <Name>
<ReferenceToIndicator> ::= <Name>
<QualifiedReferenceToIntentionalElement> ::= <QualifiedTURNidentifier>
<QualifiedReferenceToIndicator> ::= <QualifiedTURNidentifier>
<ReferenceToEvaluationStrategy> ::= <Name>
<ReferenceToIndicatorConversion> ::= <Name>
<ReferenceToContributionContext> ::= <Name>
<QualifiedReferenceToContribution> ::= <QualifiedTURNidentifier>

The <Name> of a <ReferenceToIntentionalElement> uniquely identifies the referenced Intention-

alElement. The <QualifiedTURNidentifier> of a <QualifiedReferenceToIntentionalElement>

uniquely identifies the referenced IntentionalElement. The <QualifiedTURNidentifier> of a <Quali-

fiedReferenceToIndicator> uniquely identifies the referenced Indicator. The <Name> of a <Refer-

encesToEvaluationStrategy> uniquely identifies the referenced EvaluationStrategy. The <Name> of

a <ReferenceToIndicatorConversion> uniquely identifies the referenced IndicatorConversion. The

<Name> of a <ReferenceToContributionContext> uniquely identifies the referenced Contribution-

Context. The <Name> of a <ReferenceToContribution> uniquely identifies the referenced

Contribution.

Listing B.4(l) – Grammar for Textual GRL (continued)

<QuantitativeValue> ::= [<plus sign> | <minus sign>]
 {<decimal digit> [<decimal digit>] | 100}
<RealWorldValue> ::= [<plus sign> | <minus sign>] <integer literal> // an Integer

182 Rec. ITU-T Z.151 (10/2018)

<PositiveInteger> ::= <integer literal> // an Integer that is greater than 0

<Name>, <QualifiedTURNidentifier>, <String>, <Text> are defined in Listing B.1.

<plus sign> ::= +
<minus sign> ::= -

<left curly bracket>, <right curly bracket>, <colon>, <comma>, and <long arrow> are
defined in Listing B.1.

<decimal digit> and <integer literal> are defined in clause 9.

B.4 Use Case Map

The grammar in this annex covers clause 8, i.e., the UCM concepts of URN. All concepts of the

abstract grammar of UCM are covered by TURN except for the performance annotations in clause 8.6

(see Figure I.7), ComponentType, and EmptyPoint. Performance annotations including the

probability attributes of NodeConnection and PluginBinding, as well as ComponentTypes do not

constitute an essential part of the UCM notation. EmptyPoint is covered indirectly as needed for

TURN.

Figure B.2 – Example UCM model

While UCM does not have the explicit concept of a Path, the Textual UCM mirrors closely the

abstract grammar of UCM. It specifies a UCM map as (i) a set of paths composed of path nodes and

 Rec. ITU-T Z.151 (10/2018) 183

connections between them and (ii) a set of component references which binds path nodes to

components. In addition, the Textual UCM allows plugin bindings to be specified on the map which

contains a corresponding plugin stub. This textual representation may also be used by the graphical

representation of UCM.

Figure B.2 repeats the Example UCM model shown in Figure 61 but annotates the maps with the

plugin bindings summarized informally in clause 8.2.1(e). Listings B.5(a)-(g) show a possible

representation of this UCM model in the Textual UCM. The example is interspersed with explanatory

text that introduces the textual UCM by example.

This example shall later be used to describe some of the alternative representations afforded by the

Textual UCM, see Listing B.6 through B.9.

Listing B.10 shows the grammar of the Textual UCM except for scenario definitions along with the

mapping to be applied to a specification in textual UCM to yield the abstract syntax of UCM. The

description of this mapping adheres to the guide lines established in [ITU-T Z.111]. Listings B.11

and B.12 show a concrete example for the textual syntax of scenario definitions and the corresponding

grammar, respectively. The example is based on the first three scenario definitions from Table 12

(see clause 8.5.2).

The representation of the UCM model depicted in Figure B.2 in Textual UCM is given in Listing B.5

below. The listing is interspersed with explanations of the preceding portion of the listing.

Listing B.5(a) – TURN for example UCM model from Figure B.2

map Default {
 start> -> continue.
}

The above Listing B.5(a) specifies the map "Default". The map has a single start point, "start" and a

single end point "continue". A start point is indicated by its name followed by the symbol ">", that

is, "start>" and is meant to indicate that the path begins here (comes out of the "start"). An end point

is indicated by the name of the end point followed by the full stop (".") symbol, that is "end.". The

node connection between them is indicated by the arrow ("->") symbol.

Listing B.5(b) – TURN for example UCM model from Figure B.2 (continued)

map "Simple Connection" {
 request> -> in1>Originating("Originating Features": success=out1, fail=out2,
 start=in1, Agent=OriginatingAgent) {
 out1> -> in1>Terminating("Terminating Features": success=out1,
 reportSuccess=out2, busy=out3, fail=out4,
 start=in1, Agent=TerminatingAgent) {
 out1> -> ring.
 out2> -> forwardSignal -> ringing.
 out3> -> forwardSignal -> busy.
 out4> -> notify.
 }
 out2> -> notify.
 }
 actor OriginatingUser: request, notify, busy, ringing
 team OriginatingAgent: Originating, forwardSignal
 team TerminatingAgent: Terminating
 team TerminatingUser: ring
}

The above Listing B.5(b) specifies the map "Simple Connection". Names (e.g., the name of this map)

do not need to adhere to the syntax of identifiers but can be given as a string. The map has a single

start point, "request", indicated by "request>". The path leads from this start point to the stub

184 Rec. ITU-T Z.151 (10/2018)

"Originating". The plugin bindings for this stub are given in parenthesis. This map is a static map as

only one set of plugin bindings is provided. The stub is bound to the map "Originating Features". The

plugin bindings describe two out-paths, labelled "out1" and "out2" and an in-path labelled "in1". The

former is bound to the end point "success" on the plugin map, the latter is bound to the end point

"fail". The single in-path labelled "in1" is bound to the start point "start". The plugin map also has a

component binding for a component reference labelled "Agent" which is bound to the component

reference "OriginatingAgent" on the calling map.

The paths enters the stub at an in-path, which is shown by its name, followed by a trailing ">" symbol,

followed by the stub.

The paths exiting the stub are shown within the curly braces. There are two such paths. The path

starting at out-path "out1" begins with the symbol "out1>" and leads to the stub "Terminating". The

path starting at out-path "out2" begins with the symbol "out2>" and leads to the end point "notify".

For the stub "Terminating", there are four out-paths, labelled "out1" through "out4". The first out-

path (from "out1>") leads to the end point "ring". The second (from "out2>") leads to a responsibility

named "forwardSignal" and then to the end point "ringing". The third path (from "out3>") leads to

another responsibility named "forwardSignal" and then to the end point "busy". The last path (from

"out4>") leads to the end point "notify".

Note that Figure B.2 shows the paths leading to end point "notify" merging at an OR-join before

reaching the end point. The Textual UCM provides a convenient short cut: The OR-join may be elided

and the paths may be shown as directly connecting to the end point.

After the specification of the path from "request>", the component references are defined. A

component reference gives the kind of component, the name of the component reference, and then a

list of the path nodes bound to that component reference. For example, the actor OriginatingUser

contains the start point "request", and the end points "notify", "busy", and "ringing".

Both responsibilities named "forwardSignal" are bound to the component reference OriginatingAgent

and therefore need not be distinguished.

UCM allows nodes in a specification to have the same name. The graphical syntax only supports

showing that name. In order to uniquely identify a node, the textual UCM allows the id of UCM

model elements to be used also. Both id and name may conform to the syntax of an identifier or they

may be arbitrary text strings. When text is shown in a definition, it is the id of the node. If both id and

name shall be shown, they id is shown first, followed by the hash ("#") symbol, followed by the name.

For example, we could have differentiated the responsibilities as "fwd1#forwardSignal" and

"fwd2#forwardSignal" and then referred to them by their id in the component reference. When a text

is shown in a reference, it may be either the id or the name and must be resolved.

Listing B.5(c) – TURN for example UCM model from Figure B.2 (continued)

map Default {
 start> -> continue.
 parent Agent: start, continue
}

In Listing B.5(a), the component binding was omitted. In this map, the component is defined as being

provided by the context. That is, when this map is used as a plugin map, a component binding must

be provided. A component is specified as defined by context by using the name "parent" as component

kind (see Listing B.5(c)). The actual component kind is taken from the component provided in the

component binding.

Listing B.5(d) – TURN for example UCM model from Figure B.2 (continued)

map "Originating Features" {
 start> -> OrigFeatures(

 Rec. ITU-T Z.151 (10/2018) 185

 [!subTL] Default: continue=out1, start=in1, Agent=Agent
 [subTL] "Teen Line (TL)": start=in1, success=out1, fail=out2, Agent=Agent
) {
 out1> -> sendRequest -> success.
 out2> -> fail.
 }
 parent Agent: start..success, fail
}

After the start point "start>", the path enters the stub "OrigFeatures". It is not shown at which in-path

the path enters the stub. TURN allows the in-path to be omitted if either there is only one in-path, or

all other in-paths have already been specified explicitly.

The map "Originating Features" contains a dynamic stub "OrigFeatures". For a dynamic stub,

multiple sets of plugin bindings are provided and the active plugin bindings are selected based on

some condition. There are two bindings, the first is selected when the "subTL" is false, the second is

selected when "subTL" is true. The syntax for conditions is as in UCM. When "subTL" is false, the

map "Default" is used as plugin map, and the out-paths and component references are bound as

shown. If "subTL" is true, the map "Teen Line (TL)" is used as the plugin map.

Listing B.5(e) – TURN for example UCM model from Figure B.2 (continued)

map "Terminating Features" {
 start> -> TermFeatures(
 [!subTCS] Default: continue=out1, start=in1, Agent=Agent
 [subTCS] "Terminating Call Screening (TCS)": success=out1, fail=out2
) {
 out1> -> {
 [!busy] -> {|
 ringTreatment -> success.
 ringingTreatment -> reportSuccess.
 |}
 [busy] -> busyTreatment -> busy.
 }
 out2> -> fail.
 }
 parent Agent: start..success, start..reportSuccess, start..busy, fail
}

The map "Terminating Features" contains an OR-fork and an AND-fork. An OR-fork is denoted by

a pair of curly braces; an AND-fork is a denoted by a pair of braces coupled with a vertical bar symbol

(i.e., "{|" and "|}"; the vertical bar reminds of the bar symbol used in the graphical notation). The

branches following the fork are shown within the curly braces. The forks may be named. The OR-

fork, reached when the stub "TermFeatures" is exited at out-path "out1", has two branches, depending

on whether "busy" is true or false. If "busy" is false, we reach the AND-fork. If "busy" is true, the

responsibility "busyTreatment" is performed and then the end point "busy" is reached. The AND-fork

also has two branches, leading to the end points "success" and "reportSuccess", respectively. When

the stub "TermFeatures" is exited at out-path "out2", the end point "fail" is reached.

For the in-path, no binding has been provided for the TCS plugin map. There is only a single in-path,

connecting to the single start point "start". In TURN, such binding can be inferred and need not be

specified. Similarly, a component binding is also not specified for the TCS plugin map, as there is

only one component on the parent map and one parent component on the plugin map. Again, the

binding can be inferred in TURN.

The component reference selects all responsibilities on the paths between "start" and "success",

between "start" and "reportSuccess", and between "start" and "busy", as well as the end point "fail".

186 Rec. ITU-T Z.151 (10/2018)

Listing B.5(f) – TURN for example UCM model from Figure B.2 (continued)

map "Teen Line (TL)" {
 start> -> checkTime -> {
 [!TLactive] -> success.
 [TLactive] -> @getPIN { J1; } -> {
 [PINvalid] -> success.
 [!PINvalid] -> >J1 -> deny -> fail.
 }
 }
 enterPIN> -> ^getPIN;
 parent Agent: start..fail, success
 actor OriginatingUser: enterPIN
}

The map "Teen Line (TL)" contains a timer "getPIN" (the timer is indicated by the "@" symbol,

which may remind of a clock). A timer has a regular path, shown as continuing after the timer. A

timer may also have a timeout path which is shown inside the curly braces following the name of the

timer. When the timeout path is taken, the traversal continues with "J1". When the regular path is

taken, the traversal continues with the OR-fork. The timeout trigger indicated by the "^" symbol

preceeding a join to the timer. On this map, when the traversal enters at the start point "enterPIN",

the timer is triggered.

After the OR-fork, traversal continues to the end point "success" (if "PINvalid" is true) or it continues

to responsibility "deny" and exits the map at end point "fail" (if "PINvalid" is false). Before

responsibility "deny", this path leads to an OR-join "J1", indicated by the leading ">" symbol

(reminiscent of the shape of the paths leading to an OR-join). The continuation of a path at another

path node is indicated by this path terminating with the symbol ";", see the timeout path of the "getPin"

timer which continues execution at the OR-join "J1".

Listing B.5(g) – TURN for example UCM model from Figure B.2 (continued)

map "Terminating Call Screening (TCS)" {
 start> -> checkTCS -> {
 [!onTCSlist] -> success.
 [onTCSlist] -> fail.
 }
 parent Agent: start..success, fail, TCSCreeningList
 team TCSCreeningList: checkTCS
}

The TURN provides a number of short cuts or constructions to make modeling of large specifications

more convenient. Some of these are highlighted in Listing B.5(g) and in the following examples,

Listing B.6 through B.9. In map "Terminating Call Screening (TCS)" in Listing B.6(g), the binding

of elements to a component uses the ".." short cut notation, which only indicates the first and last

element of a path segment. All path elements in this path segment are bound to the component.

Listing B.6 – Stub declaration

map "Originating Features" {
 OrigFeatures = (
 [!subTL] Default: continue=out1, start=in1, Agent=Agent
 [subTL] "Teen Line (TL)": start=in1, success=out1, fail=out2, Agent=Agent
)

 start> -> OrigFeatures {
 out1> -> sendRequest -> success.
 out2> -> fail.
 }
}

 Rec. ITU-T Z.151 (10/2018) 187

At times, the plugin bindings are long and visually disrupt the flow of the path. To make the path

easier to read, plugin bindings may be given separately in the form of a definition, as shown in Listing

B.6 for the map "Originating Features". The name of the stub is used to identify the plugin bindings.

On the path, only the name of the stub is used. This form of specifying plugin bindings is also used

in the graphical representation of UCM.

Listing B.7 – Implicit OR-join before referenced path node

map "Teen Line (TL)" {
 start> -> checkTime -> {
 [!TLactive] -> success.
 [TLactive] -> @getPIN { deny; } -> {
 [PINvalid] -> success.
 [!PINvalid] -> deny -> fail.
 }
 }
 enterPIN> -> ^getPIN;
}

In Listing B.5(f), an OR-join was shown to merge two branches before performing the responsibility

"deny". As this situation is common, the TURN allows the short cut to show a path leading directly

to a path node. An implicit OR-join is created in such situations. In the example above, when the

timeout occurs, the path continues at the responsibility "deny".

Listing B.8 – Implicit OR-join at end of path

map "Teen Line (TL)" {
 start> -> checkTime -> {
 [!TLactive] -> success.
 [TLactive] -> @getPIN { deny; } -> {
 [PINvalid] -> success.
 [!PINvalid] -> ;
 } -> deny -> fail.
 }
 enterPIN> -> ^getPIN;
}

At times we may consider that the continuation of one or more branches of an OR-fork, AND-fork,

or a stub is important to be highlighted, or maybe all branches join together. This situation can be

depicted by a branch continuing after the closing brace of the OR-fork, AND-fork, or stub. In that

case, an implicit OR-join is created (AND-join in the case of an AND-fork), and all branches that are

not terminated will continue at that implicit OR-join. A branch that is not terminated is indicated by

a lone ";" symbol. For a stub, when the single path implied by the plugin bindings is not shown within

the braces following the stub, it is assumed to begin at the implicit OR-join after the stub. This allows

for a convenient notation for stubs with a single out-binding, in which case no braces are shown and

the path is shown continuing immediately after the stub.

In above example, the path is shown to continue with the responsibility "deny" after the second OR-

fork. The path that is taken when "PINvalid" is false is shown to lead to this continuation.

Listing B.9 – Path fragments

map "Teen Line (TL)" {
 start> -> checkTime -> {
 [! TLactive] -> success.
 [TLactive] -> @getPIN { deny; } -> {
 [PINvalid] -> success.
 [! PINvalid] -> deny;
 }

188 Rec. ITU-T Z.151 (10/2018)

 }
 deny -> fail.
 enterPIN> -> ^getPIN;
}

At times there are deeply nested paths where path fragments merge many times. Sometimes, in such

situations, a place where a path or a group of paths merges is considered an important structuring tool

to understand the behaviour of the map. In a graphical specification, we can draw attention to such

path nodes by putting them in the center of the diagram or leaving space around that point on the map

so that the user's attention is drawn to those nodes. In TURN, we can draw attention to such nodes by

interrupting the path at such nodes and placing them at the start of a path. In the example in Listing

B.9, the path fragment starting with the responsibility "deny" is considered a central point of the map.

We can place it at the top level of the map, and have paths continue there from deeply nested locations.

The user could read above map as: "The path leads either to success or to denial and failure."

Listing B.10 provides the grammar for the Textual UCM except for scenario definitions. The

paragraphs interspersed between the listings of the grammar describe the mapping from the concrete

syntax to the URN abstract syntax. The mapping is provided by describing (i) constraints which apply

to a Textual UCM specification, (ii) transformations that remove concepts or syntax introduced by

the Textual UCM, and (iii) a description of the relationship between the concrete syntax and the

abstract syntax.

Transformations involve the concrete syntax of the Textual UCM only. The transformations are

applied in the following order: (i) inline stub declarations, (ii) simplify, (iii) realize multiple start

points, (iv) realize multiple end points, (v) introduce implicit joins, (vi) migrate lifted path nodes,

(vii) migrate trailing path nodes, (viii) remove dangling joins, and (ix) fix bindings.

Subsequent to applying these transformations, nodes of the abstract syntax are created corresponding

to the concrete syntax elements found in a Textual UCM specification.

Listing B.10(a) – Grammar for Textual UCM

<UCMspec> ::= { <UCMmap> | <ScenarioGroup> | <ScenarioDef> | <Variable> |
 <EnumerationType>}*

<UCMmap> ::= [singleton] map <Name> <left curly bracket>
 {<Path> | <ComponentRef> | <StubDeclaration> | <ResponsibilityAction>}*
<right curly bracket>

A <UCMspec> represents a UCMspec. <UCMmap> represents a UCMmap. <Name> is mapped to

UCMmap.name according to the rules specified for <Name>. If 'singleton' is present,

UCMmap.singleton is true; otherwise it is false. <Path> represents UCMmap.nodes and

UCMmap.connections. <ComponentRef> maps to UCMmap.contRefs.

Listing B.10(b) – Grammar for Textual UCM (continued)

<Path> ::=
 <StartPoint> <short arrow> <PathBody>
 | <LiftedPathBodyNode> <short arrow> <PathBody>
 | <RegularEnd>

<PathBody> ::= <PathWithRegularEnd> | <PathWithReferencedEnd>

<PathBodyWithImplicitJoin> ::= <PathBody> | <PathWithConnectToImplicitJoin>

If an <EndPoint> is used in the <RegularEnd>, it must have a <Name>.

A <Path> with a <StartPoint> represents a StartPoint, followed by a NodeConnection, followed by

the PathNodes and NodeConnections represented by <PathBody>. The <StartPoint> represents the

 Rec. ITU-T Z.151 (10/2018) 189

StartPoint. The NodeConnection is its succ. The target of the NodeConnection is the first PathNode

represented by <PathBody>.

In contrast to <PathBody>, a <PathBodyWithImplicitJoin> may end with an implicit join and is only

used for the <GuardedPath> of an <OrFork>, the <GuardedPath> of a <Timer>, as well as an

<AndFork>, and a <StubOutPath>.

Migrate lifted path nodes: For each <OrJoin> or <AndJoin> in a <LiftedPathBodyNode>, an arbitrary

<ReferencedEnd> which references this <OrJoin> or <AndJoin> is selected. This <ReferencedEnd>

is replaced by the <PathBody> of the <Path> containing the <OrJoin> or <AndJoin> as

<LiftedPathBodyNode>. This <Path> is then deleted from the map. If the <OrJoin> or <AndJoin> is

not referenced by a <ReferencedEnd>, the <Path> is deleted from the map.

Migrate lifted path nodes: For each <Stub> in a <LiftedPathBodyNode>, an arbitrary

<ReferencedEnd> containing a <ReferenceToStub> referencing this <Stub> is located such that the

<InPath> on <Stub> and <ReferencedEnd> match. This <ReferencedEnd> is replaced by the <Stub>.

The <Path> is then deleted from the map.

NOTE: Other transformations explained for Listing B.10(l) ensure that only <OrJoin>, <AndJoin>,

or <Stub> items will remain as <LiftedPathBodyNode> items, and hence have to be migrated.

Listing B.10(c) – Grammar for Textual UCM (continued)

<StartPoint> ::=
 [<Name>] <greater than> [<Condition>]
 | <FailureKind> [<Name>] <greater than> <FailureList>

<FailureKind> ::= abort | failure

<FailureList> ::=
 <left double square bracket> <failure list> <right double square bracket>

A <StartPoint> without a <FailureList> represents a StartPoint with failureKind None. <Name> is

mapped to StartPoint.name according to the rules specified for <Name>. If <Name> is not specified,

the name is empty. The <Condition> maps to the StartPoint.precondition, if present.

A <StartPoint> with a <FailureList> maps to a StartPoint. <Name> is mapped to StartPoint.name

according to the rules specified for <Name>. If <Name> is not specified, the name is empty. If the

<FailureKind> is 'abort', the FailureKind is Abort. If the <FailureKind> is 'failure', the FailureKind

is Failure. The nonempty list of <failure> items represents the StartPoint.failureList string.

<failure list> is defined in clause 9.

Listing B.10(d) – Grammar for Textual UCM (continued)

<PathWithRegularEnd> ::= <PathBodyNodes> <RegularEnd>

A <PathWithRegularEnd> represents the PathNodes and NodeConnections represented by

<PathBodyNodes> and <RegularEnd>. The first PathNode represented by <RegularEnd> is the target

of the last NodeConnection represented by <PathBodyNodes>.

Listing B.10(e) – Grammar for Textual UCM (continued)

<PathWithReferencedEnd> ::= <PathBodyNodes> <ReferencedEnd> <semicolon>

A <PathWithReferencedEnd> represents the PathNodes and NodeConnections represented by

<PathBodyNodes> and <ReferencedEnd>. The first PathNode represented by <ReferencedEnd> is

the target of the last NodeConnection represented by <PathBodyNodes>.

190 Rec. ITU-T Z.151 (10/2018)

Listing B.10(f) – Grammar for Textual UCM (continued)

<PathWithConnectToImplicitJoin> ::= <PathBodyNodes> <semicolon>

A <PathWithConnectToImplicitJoin> represents the PathNodes and NodeConnections represented

by <PathBodyNodes>. The target of the last NodeConnection represented by <PathBodyNodes> is

the implicit OrJoin created for the containing stub or fork, see B.10(h). If no such implicit OrJoin

exists, the specification is not well-formed.

Listing B.10(g) – Grammar for Textual UCM (continued)

<PathBodyNodes> ::= <PathFragment> *

<PathFragment> ::= <PathBodyNode> <short arrow>

A <PathFragment> represents a PathNode or PathNodes, as represented by the <PathBodyNode> of

the <PathFragment> followed by a NodeConnection as succ of the PathNode. The PathNode

represented by the following <PathFragment> is the target of the NodeConnection.

Listing B.10(h) – Grammar for Textual UCM (continued)

<PathBodyNode> ::=
 <RespRef> | <OrJoin> | <AndJoin> | <WaitingPlace> | <Timer> | <FailurePoint> |
 <OrFork> | <AndFork> | <Stub> | <Connect>

Introduce implicit joins: When an <OrFork> is the <PathBodyNode> of a <PathFragment> and there

are any <PathWithConnectToImplicitJoin> terminating a <GuardedPath> of the <OrFork>, then an

<OrJoin> is created and inserted after the <OrFork>. The <PathWithConnectToImplicitJoin> is

replaced with a <ReferenceToPathBodyNode> referencing that <OrJoin>.

Migrate trailing path nodes: Otherwise, when an <OrFork> is the <PathBodyNode> of a

<PathFragment>, the first <OrJoin> or <AndJoin> among the following path body nodes is located.

Then, for an arbitrary <ReferencedEnd> referencing that <OrJoin> or <AndJoin>, replace it by the

path body nodes following the <OrJoin> or <AndJoin> and delete the <OrJoin> or <AndJoin> and

the following path body nodes from the <PathFragment>.

Introduce implicit joins: When an <AndFork> is the <PathBodyNode> of a <PathFragment> and

there are any <PathWithConnectToImplicitJoin> terminating a <PathBody> of the <AndFork>, then

an <AndJoin> is created and inserted after the <AndFork>. The <PathWithConnectToImplicitJoin>

is replaced with a <ReferenceToPathBodyNode> referencing that <AndJoin>.

Migrate trailing path nodes: Otherwise, when an <AndFork> is the <PathBodyNode> of a

<PathFragment>, the first <OrJoin> or <AndJoin> among the following path body nodes is located.

Then, for an arbitrary <ReferencedEnd> referencing that <OrJoin> or <AndJoin>, replace it by the

path body nodes following the <OrJoin> or <AndJoin> and delete the <OrJoin> or <AndJoin> and

the following path body nodes from the <PathFragment>.

Introduce implicit joins: When a <Stub> is the <PathBodyNode> of a <PathFragment> and there are

any <PathWithConnectToImplicitJoin> terminating a <StubOutPath> of the <Stub>, then an

<OrJoin> is created and inserted after the <Stub>. The <PathWithConnectToImplicitJoin> is replaced

with a <ReferenceToPathBodyNode> referencing that <OrJoin>.

Migrate trailing path nodes: Otherwise, when an <Stub> with a <StubOutPath> is the

<PathBodyNode> of a <PathFragment>, the first <OrJoin> or <AndJoin> among the following path

body nodes is located. Then, for an arbitrary <ReferencedEnd> referencing that <OrJoin> or

<AndJoin>, replace it by the path body nodes following the <OrJoin> or <AndJoin> and delete the

<OrJoin> or <AndJoin> and the following path body nodes from the <PathFragment>.

 Rec. ITU-T Z.151 (10/2018) 191

Introduce implicit joins: When a <Stub> without <StubOutPath> items is the <PathBodyNode> of a

<PathFragment>, then a <StubOutPath> is created such that the following path body nodes are the

<PathBody> of this <StubOutPath>. The <PathName> of the <StubOutPath> is inferred from the

unique <OutBinding> of the <Stub>, if such is present. Otherwise, an anonymous <PathName> is

created. This <StubOutPath> is used as the single <StubOutPath> of this <Stub>.

Introduce implicit joins: When a <Timer> is the <PathBodyNode> of a <PathFragment> and there is

a <PathWithConnectToImplicitJoin> terminating the <GuardedPath> of the <Timer>, then an

<OrJoin> is created and inserted after the <Timer>. The <PathWithConnectToImplicitJoin> is

replaced with a <ReferenceToPathBodyNode> referencing that <OrJoin>.

When a <Connect> is the <PathBodyNode> of a <PathFragment>, the <PathFragment> represents

an EmptyPoint point with two succ NodeConnections, where one NodeConnection has a target path

node of type Connect. The other succ NodeConnection is identified by the continuing path after the

<PathFragment>. This Connect models an asynchronous trigger path to the referenced node.

NOTE – After above transformations, an <OrFork>, <AndFork>, or <Stub> should no longer be a

<PathBodyNode> item of the <PathBodyNodes>. If such remain, the specification is not well-formed, as these

path body nodes would not be reachable.

Listing B.10(i) – Grammar for Textual UCM (continued)

<LiftedPathBodyNode> ::=
 <RespRef> | <OrJoin> | <AndJoin> | <FailurePoint> | <OrFork> | <AndFork> |
 <Stub>

By transformations defined in B.10(b) and (k), all <LiftedPathBodyNode> items will be removed

from the <UCMmap>.

Listing B.10(j) – Grammar for Textual UCM (continued)

<RegularEnd> ::= <EndPoint> | <OrFork> | <AndFork> | <StubWithBody> | <StubAtEnd>

The PathNode represented by the <RegularEnd> is the target of the NodeConnection represented by

the preceding node.

Listing B.10(k) – Grammar for Textual UCM (continued)

<ReferencedEnd> ::=
 <ReferenceToPathBodyNode> | <InPath> <ReferenceToStub> | <Connect>

When an <InPath> followed by a <ReferenceToStub> is used in a <ReferencedEnd>, the

<ReferencedEnd> represents a NodeConnection that is an InBinding of the referenced stub. The

target path node is uniquely identified by the <ReferenceToStub>. The <InPath> represents the in-

path to the stub referred to in the InBinding of the NodeConnection.

Introduce implicit joins: When a <Stub> is referenced as a <ReferenceToPathBodyNode>, then the

default or single in-path is referenced. An <OrJoin> is inserted before the referenced <Stub>. The

<ReferencedEnd> is replaced by a <ReferencedEnd> that is a <ReferenceToPathBodyNode> which

references the created <OrJoin>.

When a <Connect> is used in a <ReferencedEnd>, the <ReferencedEnd> represents an EndPoint with

one succ NodeConnection which has a target path node of type Connect. This Connect models a

synchronous trigger path to the referenced node.

Introduce implicit join: When a <ReferenceToPathBodyNode> is used in a <ReferencedEnd>, and

the <ReferencedEnd> is not referencing an <OrJoin>, an <AndJoin>, a <WaitingPlace>, a

<StartPoint>, or a <Timer>, an anonymous <OrJoin> is inserted before the path body node identified

by the <ReferenceToPathBodyNode>. The name of the <ReferenceToPathBodyNode> is replaced by

192 Rec. ITU-T Z.151 (10/2018)

the anonymous name. For all other <ReferenceToPathBodyNode> items that reference the same path

body node, replace the name of the <ReferenceToPathBodyNode> by the anonymous name.

NOTE – By above transformations, a <Path> that is a <RegularEnd> will be converted to a path that begins

with a <LiftedPathBodyNode>, and only <OrJoin>, <AndJoin>, or <Stub> items will remain as

<LiftedPathBodyNode> items.

Listing B.10(l) – Grammar for Textual UCM (continued)

<InPath> ::= <PathName> <greater than>

<PathName> ::= <TURNidentifier>

The <PathName> of an <InPath> identifies a NodeConnection that is the stubEntry of an InBinding.

Listing B.10(m) – Grammar for Textual UCM (continued)

<RespRef> ::= <Name>

A <RespRef> represents a RespRef referencing a Responsibility as respDef. <Name> is mapped to

RespRef.name and RespRef.respDef.name according to the rules specified for <Name>.

Responsibilities (i.e., responsibility definitions) are not modeled explicitly, but any two <RespRef>

items with the same <TURNidentifier> or same <DisplayName> refer to the same definition (they

represent two RespRefs with the same Responsibility).

Listing B.10(n) – Grammar for Textual UCM (continued)

<OrJoin> ::= <greater than> <Name>

An <OrJoin> represents an OrJoin. <Name> is mapped to OrJoin.name according to the rules

specified for <Name>. If <Name> is not specified, the name is empty.

Remove dangling joins: For every <OrJoin> which is not referenced by a <ReferencedEnd>, delete

this <OrJoin> from the containing <Path>.

Listing B.10(o) – Grammar for Textual UCM (continued)

<AndJoin> ::= <vertical bar> <Name>

An <AndJoin> represents an AndJoin. <Name> is mapped to AndJoin.name according to the rules

specified for <Name>. If <Name> is not specified, the name is empty.

Remove dangling joins: For every <AndJoin> which is not referenced by a <ReferencedEnd>, delete

this <AndJoin> from the containing <Path>.

NOTE – While in the Recommendation an AndJoin is at times shown with an optional condition or an optional

threshold for illustration purposes, these are not part of the concrete syntax of UCM.

Listing B.10(p) – Grammar for Textual UCM (continued)

<WaitingPlace> ::= [<WaitKind>] [<Name>] <greater than> [<Condition>]

<WaitKind> ::= persistent | transient

A <WaitingPlace> represents a WaitingPlace. <Name> is mapped to WaitingPlace.name according

to the rules specified for <Name>. If <Name> is not specified, the name is empty. If the <WaitKind>

is 'transient', the WaitingPlace.waitType is Transient. If the <WaitKind> is 'persistent' or does not

exist, the WaitingPlace.waitType is Persistent. The optional <Condition> maps to

WaitingPlace.succ.condition.

 Rec. ITU-T Z.151 (10/2018) 193

NOTE – The arrival of a synchronous or asynchronous trigger event is modeled with a second path that is

connected to the WaitingPlace, see <Connect>.

Listing B.10(q) – Grammar for Textual UCM (continued)

<Timer> ::= [WaitKind>] <timer> [<Name>] [<left curly bracket>
 <GuardedPath>
<right curly bracket>] [<Condition>]

A <Timer> represents a Timer. <Name> is mapped to Timer.name according to the rules specified

for <Name>. If <Name> is not specified, the name is empty. If the <WaitKind> is 'transient', the

waitType is Transient. If the <WaitKind> is 'persistent' or does not exist, the waitType is Persistent.

If the <GuardedPath> is present, it represents the timeout path. <Condition> represents

Timer.succ.condition (the Condition on the regular path). The <Condition> of the <Guard> represents

Timer.timeoutPath.condition (the Condition of the timeout path).

If the <Condition> of the <Timer> is not present, Timer.succ.condition shall evaluate to false. If the

<Condition> of the <Guard> of the <GuardedPath> is not present, Timer.timeoutPath.condition shall

evaluate to false.

NOTE – The arrival of a synchronous or asynchronous trigger event is modeled with a second path that is

connected to the Timer, see <Connect>.

Listing B.10(r) – Grammar for Textual UCM (continued)

<Connect> ::= <trigger> <ReferenceToConnectableNode>

A <Connect> maps to a Connect path node. The <ReferenceToConnectableNode> uniquely identifies

the target PathNode of the succ NodeConnection of the Connect.

Listing B.10(s) – Grammar for Textual UCM (continued)

<FailurePoint> ::=
 {<trigger> [<Name>] [<Condition>] <FailureLabel>}
 | {<trigger> [<Name>] <FailureLabel> [<Condition>]}

<FailureLabel> ::=
 <left double square bracket> <failure> <right double square bracket>

A <FailurePoint> represents a FailurePoint. <Name> is mapped to FailurePoint.name according to

the rules specified for <Name>. If <Name> is not specified, the name is empty. The <failure>

represents the FailurePoint.failure string. The optional <Condition> represents the

FailurePoint.succ.condition.

<failure> is defined in clause 9.

Listing B.10(t) – Grammar for Textual UCM (continued)

<EndPoint> ::= [<Name>] [<Condition>] <full stop>

An <EndPoint> represents an EndPoint. <Name> is mapped to EndPoint.name according to the rules

specified for <Name>. If <Name> is not specified, the name is empty. The optional <Condition>

represents EndPoint.postcondition.

NOTE – The optional succ NodeConnection of an EndPoint is modeled by a <Connect>.

Realize multiple end points: When several <EndPoint> items with the same <Name> occur in a map,

an <OrJoin> is inserted before one of these <EndPoint> items. All other such <EndPoint> items are

replaced with a <ReferenceToPathBodyNode> that references the created <OrJoin>.

194 Rec. ITU-T Z.151 (10/2018)

Listing B.10(u) – Grammar for Textual UCM (continued)

<OrFork> ::= [<Name>] <left curly bracket>
 <GuardedPath>*
<right curly bracket>

An <OrFork> represents an OrFork. <Name> is mapped to OrFork.name according to the rules

specified for <Name>. If <Name> is not specified, the name is empty. For each <GuardedPath> there

exists a NodeConnection. The first PathNode represented by each <GuardedPath> is the target of the

corresponding NodeConnection. The Condition represented by each <Guard>, if present, and the

implied Condition represented by the <Else> are the Conditions of the corresponding

NodeConnection.

Simplify: If the <OrFork> contains only one <GuardedPath>, a second <GuardedPath> is created

with an <Else> and a <PathBody> which contains an <EndPoint> with an anonymous name.

Listing B.10(v) – Grammar for Textual UCM (continued)

<GuardedPath> ::= [<Guard> | <Else>] <PathBodyWithImplicitJoin>

An <Else> may be present only if at least one other <GuardedPath> item of the containing <OrFork>

has a <Guard>. The same containing <OrFork> may have at most one <Else>.

An <Else> may not be present in the <GuardedPath> of a <Timer>.

A <GuardedPath> represents the PathNodes and NodeConnections represented by the

<PathBodyWithImplicitJoin>.

Listing B.10(w) – Grammar for Textual UCM (continued)

<Guard> ::= <Condition> <short arrow>

A <Guard> represents the first NodeConnection for the branch of an <OrFork> or <Timer>. The

Condition of the NodeConnection is represented by the <Condition>.

Listing B.10(x) – Grammar for Textual UCM (continued)

<Else> ::= <left square bracket> else <right square bracket> <short arrow>

An <Else> represents the first NodeConnection for the branch of an <OrFork> and the Condition of

the NodeConnection. The Condition is the negation of the disjunction of all the Conditions

represented by the <Guard> elements of the <GuardedPath> elements of the containing <OrFork>.

Listing B.10(y) – Grammar for Textual UCM (continued)

<AndFork> ::= [<Name>] <left curly bracket> <vertical bar>
 <PathBodyWithImplicitJoin>*
<vertical bar> <right curly bracket>

An <AndFork> represents an AndFork. <Name> is mapped to AndFork.name according to the rules

specified for <Name>. If <Name> is not specified, the name is empty. For each

<PathBodyWithImplicitJoin> there exists a NodeConnection. The first PathNode represented by each

<PathBodyWithImplicitJoin> is the target of the corresponding NodeConnection. An <AndFork>

must have at least two <PathBodyWithImplicitJoin> items, i.e., branches.

Listing B.10(z) – Grammar for Textual UCM (continued)

<Stub> ::= <StubWithBody> | <StubHead>

<StubAtEnd> ::= <StubWithBody> | <StubHead> <full stop>

 Rec. ITU-T Z.151 (10/2018) 195

<StubHead> ::=
 [<InPath>] [<Name>] <StubParameters>
 | [<InPath>] <ReferenceToStubDeclaration>
 | [<InPath>] [<ReferenceToStubDeclaration>] <StubParameter>

<StubWithBody> ::= <StubHead> <left curly bracket>
 <StubOutPath>*
<right curly bracket>

<StubDeclaration> ::= <Name> <equal sign> <StubParameters>

A <Stub> represents a Stub. <Name> in <StubHead> and <StubDeclaration> is mapped to Stub.name

according to the rules specified for <Name>. If <Name> is not specified, the name is empty. If

<InPath> is present, it represents a NodeConnection. The target path node is represented by the

<Stub>. The <InPath> represents the in-path to the stub referred to in the InBinding of the

NodeConnection.

Simplify: If <InPath> is not present, a default <InPath> is created from the unique <InBinding> of

this <Stub> which has not yet been referenced elsewhere in the specification, see B.10(ad). If there

is no such unique <InBinding>, the specification is not well-formed.

Simplify: If a <Stub> with <StubParameters> does not have a <Name> and there exists a unique

name in the <PluginBinding> elements of the <StubParameters>, that name is used as the <Name>

of the <Stub>.

Inline stub declaration: If a <Stub> with <StubParameter> does not have a

<ReferenceToStubDeclaration> and there exists a unique name in the <PluginBinding> of the

<StubParameter>, that name is used as the <ReferenceToStubDeclaration> of the <Stub>.

Inline stub declaration: When a <ReferenceToStubDeclaration> is used, the <StubDeclaration> that

matches the <DisplayName> of the <Name> of the <Stub> is identified and the

<ReferenceToStubDeclaration> is replaced by the <Name> and <StubParameters> of the identified

<StubDeclaration>. When a <StubParameter> is present, the <Binding> elements of the

<PluginBinding> override the matching <Binding> of the <StubDeclaration>.

Listing B.10(aa) – Grammar for Textual UCM (continued)

<StubOutPath> ::=
 <PathName> <greater than> [<Threshold>] <short arrow>
<PathBodyWithImplicitJoin>

<Threshold> ::= <left square bracket> <PositiveInteger> <right square bracket>

A <StubOutPath> represents a NodeConnection identified by <PathName>. This NodeConnection is

the stubExit of the associated OutBinding. The target of this NodeConnection is the first PathNode

represented by the <PathBodyWithImplicitJoin>. The <PositiveInteger> of <Threshold> represents

the NodeConnection.threshold string.

Listing B.10(ab) – Grammar for Textual UCM (continued)

<StubParameter> ::= <left parenthesis> [<PluginBinding>] <right parenthesis>

<StubParameters> ::= [<StubType>] <left parenthesis>
 <PluginBinding>*
<right parenthesis>

<StubType> ::= synchronizing | blocking

196 Rec. ITU-T Z.151 (10/2018)

If <StubType> is empty in <StubParameters>, and there is one or no <PluginBinding> element,

Stub.dynamic, Stub.synchronizing, and Stub.blocking are false. If <StubType> is empty, and there is

more than one <PluginBinding> element, Stub.dynamic is true. If <StubType> is 'synchronizing',

Stub.dynamic and Stub.synchronizing are true. If <StubType> is 'blocking', Stub.dynamic,

Stub.synchronizing, and Stub.blocking are true.

Listing B.10(ac) – Grammar for Textual UCM (continued)

<PluginBinding> ::=
 [<Condition>] [<Replication>]
 { <ReferenceToUCMmap> [<colon> <BindingList>] | < BindingList> }

<Replication> ::= <PositiveInteger>

<BindingList> ::= <Binding> {<comma> <Binding>}*

<Binding> ::= <InBinding> | <OutBinding> | <ComponentBinding>

A <PluginBinding> represents a PluginBinding. The <Condition>, if present, represents

PluginBinding.precondition. The <Replication>, if present, represents the

PluginBinding.replicationFactor string. <ReferenceToUCMmap> uniquely identifies an associated

UCMmap, i.e., PluginBinding.plugin. <BindingList> represents associated InBindings, OutBindings,

and ComponentBindings. PluginBinding.in contains the <InBinding> items of the <Binding> items

in <BindingList>. PluginBinding.out contains the <OutBinding> items of the <Binding> items in

<BindingList>. PluginBinding.components contains the <ComponentBinding> items of the

<Binding> items in <BindingList>.

A <PluginBinding> may omit <InBinding> or <OutBinding> items for out-paths or in-paths of the

stub, which will be inferred per B.10(ad) and B.10(ae). If an omitted binding cannot be inferred, the

specification is incomplete.

A <PluginBinding> must not include <PathName> items in its <InBinding> or <OutBinding> items

which do not occur in an <InPath> or <StubOutPath> of the <Stub>, respectively, with the exception

of <PathName> items used in inferred bindings.

Simplify: The <ReferenceToUCMmap> may be omitted only if there is only one <PluginBinding>

item in the <Stub>. If the <ReferenceToUCMmap> was omitted from the <StubParameters>, the

<Name> of the <Stub> is used as the <ReferenceToUCMmap>.

Listing B.10(ad) – Grammar for Textual UCM (continued)

<InBinding> ::= <ReferenceToStartPoint> <equal sign> <PathName>

An <InBinding> represents an InBinding. <PathName> represents the name of the associated

NodeConnection.

Fix bindings: If there is no <InPath> for a <Stub> and there is a single <InBinding> of the

<PluginBinding> of this <Stub> for which no <InPath> exists in a <ReferencedEnd> with the same

<PathName>, then a default <InPath> is constructed from the <PathName> of this <InBinding> and

used as the <InPath> of the <Stub>.

Fix bindings: If there is no <InPath> for a <Stub> and there is a single <StartPoint> on the plugin

map referenced by the <PluginBinding> of this <Stub> which is not referenced in an <InBinding> of

this <PluginBinding>, an <InBinding> is created from an anonymous <PathName> and the

unconnected <StartPoint>. Then a default <InPath> is created from the anonymous <PathName> and

used as the <InPath> of the <Stub>.

Fix bindings: Otherwise, if there is a single <StartPoint> on the plugin map referenced by the

<PluginBinding> of a <Stub> which is not referenced in an <InBinding> of the <PluginBinding>,

 Rec. ITU-T Z.151 (10/2018) 197

and an <InPath> exists on the <Stub> which is not referenced in an <InBinding> of this

<PluginBinding>, an <InBinding> between the <StartPoint> and the <PathName> of that <InPath>

is created.

Fix bindings: Otherwise, if the <InPath> of the <Stub> is bound in an <InBinding> of this

<PluginBinding> but there is a unique <ReferencedEnd> containing a <ReferenceToStub>

referencing this <Stub> and the <PathName> of the <InPath> of this <ReferencedEnd> is not

referenced in an <InBinding> of this <PluginBinding>, then an <InBinding> is created from this

<PathName> and the <StartPoint>.

Fix bindings: If there is no <InPath> for a <Stub> and there is no plugin map referenced in a

<PluginBinding> or a <PathName> cannot be inferred from the <PluginBinding> as indicated above,

an anonymous name is created as <PathName>. Then a default <InPath> is created from this

anonymous <PathName> and used as the <InPath> of the <Stub>.

Realize multiple start points: If the same <PathName> exists in multiple <InBinding> elements of

the same <PluginBinding>, a <StartPoint> with anonymous name is created for each occurrence of

<ReferenceToStartPoint>. An <OrJoin> is created and inserted as the first path body node in the

<Path> starting with the <StartPoint> referenced by <PathName>. A <Path> is created for each

created <StartPoint> containing that <StartPoint> and a <ReferencedEnd> referencing the created

<OrJoin>.

Listing B.10(ae) – Grammar for Textual UCM (continued)

<OutBinding> ::= <ReferenceToEndPoint> <equal sign> <PathName>

An <OutBinding> represents an OutBinding. <PathName> represents the name of the associated

NodeConnection. <ReferenceToEndPoint> uniquely identifies an EndPoint.

Fix bindings: If the path continues after a <Stub> and there is an <OutBinding> among the

<PluginBindings> of this <Stub> for which no <StubOutPath> exists with a matching <PathName>,

a <StubOutPath> is created with the <PathName> of the <OutBinding> as its <PathName> and the

path nodes after the <Stub> as the <Path> of this <StubOutPath>. The path nodes after the <Stub>

are then deleted.

Fix bindings: If the path continues after a <Stub> and there is a single <EndPoint> on the plugin map

referenced by the <PluginBinding> of this <Stub> which is not referenced in an <OutBinding> of

this <PluginBinding>, an <OutBinding> is created for an anonymous <PathName> and the

unconnected <EndPoint>. Then a <StubOutPath> is created with the anonymous <PathName> as its

<PathName> and the path nodes after the <Stub> as the <Path> of this <StubOutPath>. The path

nodes after the <Stub> are then deleted.

Fix bindings: If the path continues after a <Stub> and there is no plugin map referenced in a

<PluginBinding> or a <PathName> cannot be inferred from the <PluginBinding> as indicated above,

a <StubOutPath> is created with an anonymous <PathName> as its <PathName> and the path nodes

after the <Stub> as the <Path>. The path nodes after the <Stub> are then deleted.

Fix bindings: If the path does not continue after the <Stub> and there is a single <EndPoint> on the

plugin map referenced by the <PluginBinding> of a <Stub> which is not referenced in an

<OutBinding> of the <PluginBinding>, and there is a <StubOutPath> with a <PathName> that is not

referenced in an <OutBinding>, an <OutBinding> between the <EndPoint> and the <PathName> in

the <StubOutPath> is created.

Realize multiple end points: When several <Name> items in the <OutBinding> items of a

<PluginBinding> are bound to the same <PathName>, then an anonymous <OrJoin> is created as the

first path body node of the <StubOutPath> with this <PathName>. Then, for all but one of the

<PathName> items, a new anonymous name is created and new <PathName> items are constructed.

For each such <PathName> item, a <StubOutPath> is created which has a

198 Rec. ITU-T Z.151 (10/2018)

<ReferenceToPathBodyNode> that references the anonymous <OrJoin> as the sole path body item

in its <PathBody>. Each such <StubOutPath> is inserted into the <Stub>.

Listing B.10(af) – Grammar for Textual UCM (continued)

<ComponentBinding> ::=
 <ReferenceToComponentRef> <equal sign> <ReferenceToComponentRef>

A <ComponentBinding> represents a ComponentBinding. The first <ReferenceToComponentRef>

uniquely identifies the pluginComponent on the plugin map. The second

<ReferenceToComponentRef> uniquely identifies the parentComponent on the parent map.

If only one <ComponentRef> exists on the parent map, only one <ComponentRef> for which 'parent'

is present exists on the plugin map, and no <ComponentBinding> exists that references the

<ComponentRef> on the plugin map, a <ComponentBinding> between the two <ComponentRef>

items is inferred.

Listing B.10(ag) – Grammar for Textual UCM (continued)

<ComponentRef> ::=
 [protected] <ComponentKind> <Name> [<colon> <BoundElementList>]
 | parent <Name> [<colon> <BoundElementList>]

<ComponentKind> ::= team | object | process | agent | actor

A <ComponentRef> represents a ComponentRef referencing a Component as compDef. <Name> is

mapped to ComponentRef.name and ComponentRef.compDef.name according to the rules specified

for <Name>. If 'protected' is present, ComponentRef.compDef.protected is true; otherwise it is false.

If <ComponentKind> is 'team', ComponentRef.compDef.kind is Team. If <ComponentKind> is

'object', ComponentRef.compDef.kind is Object. If <ComponentKind> is 'process', Compo-

nentRef.compDef.kind is Process. If <ComponentKind> is 'agent', ComponentRef.compDef.kind is

Agent. If <ComponentKind> is 'actor', ComponentRef.compDef.kind is Actor. If 'parent' is present,

ComponentRef.compDef.context is true; otherwise it is false.

Components (i.e., component definitions) are not modeled explicitly, but any two <ComponentRef>

items with the same <TURNidentifier> or same <DisplayName> refer to the same definition (they

represent two ComponentRefs with the same Component). If two such <ComponentRef> items

specify different <ComponentKind>, parent flags, or protected flags, then the specification is not

well-formed.

Listing B.10(ah) – Grammar for Textual UCM (continued)

<BoundElementList> ::= <BoundElement> {<comma> <BoundElement>}*

<BoundElement> ::=
 <ReferenceToStartPoint>
 | <ReferenceToPathBodyNode>
 | <ReferenceToEndPoint>
 | <ReferencedPath>
 | <ReferenceToComponentRef>

<ReferencedPath> ::=
 <ReferencedPathElement> <double full stop> <ReferencedPathElement>

<ReferencedPathElement> ::=
 <ReferenceToStartPoint>
 | <ReferenceToPathBodyNode>
 | <ReferenceToEndPoint>

 Rec. ITU-T Z.151 (10/2018) 199

<BoundElementList>, if present, represents ComponentRef.nodes (a list of PathNodes) and Com-

ponentRef.children (a list of ComponentRefs) as well as ComponentRef.comp-

Def.includedComponents (a list of Components) of the <ComponentRef> in which the

<BoundElementList> is contained.

A <BoundElement> that is not contained in a <ReferencedPath> represents the PathNode items

represented by the element referenced by the <BoundElement>.

A <ReferencedPath> represents the PathNodes that are on the path starting with the PathNode

represented by the first <ReferencedPathElement> up to and including the PathNode represented by

the second <ReferencedPathElement>. The path nodes represented start with the PathNode

represented by the first <ReferencedPathElement> and then follow the path that the element

referenced by this <ReferencedPathElement> is on or starts. Every node encountered along this path

until the element referenced by the second <ReferencedPathElement> is reached is represented,

including the element referenced by the second <ReferencedPathElement>. If a stub, or-fork, or and-

fork is encountered, the element referenced is represented, and each out path, guarded path, or path,

respectively is followed in turn. If the end of such path is reached without encountering the element

referenced by the second <ReferencedPathElement>, the nodes encountered since the stub, or-fork,

or and-fork, respectively, are not represented and the next out-path, guarded path, or path,

respectively, is traversed.

For any <PathNode> which is not referenced by a <BoundElement> or implicitly by a

<ReferencedPath> and which has an anonymous name or is not named, if this <PathNode> is on a

path between two <PathNode> items which are referenced by a <BoundElement> or implicitly by a

<ReferencedPath>, then it is represented by an arbitrary one of these <BoundElement> or

<ReferencedPath> items.

If a <PathNode> is bound to a <ComponentRef> individually and also as part of a <ReferencedPath>,

then the individual binding takes precedence.

Listing B.10(ai) – Grammar for Textual UCM (continued)

<ReferenceToPathBodyNode> ::=
 <ReferenceToRespRef> | <ReferenceToOrJoin> | <ReferenceToAndJoin> |
 <ReferenceToFailurePoint> | <ReferenceToOrFork> | <ReferenceToAndFork> |
 <ReferenceToStub> | <ReferenceToWaitingPlace> | <ReferenceToTimer>

<ReferenceToConnectableNode> ::=
 <ReferenceToWaitingPlace> | <ReferenceToTimer> | <ReferenceToStartPoint>

<ReferenceToOrJoin> ::= <Name>
<ReferenceToOrFork> ::= <Name>
<ReferenceToAndJoin> ::= <Name>
<ReferenceToAndFork> ::= <Name>
<ReferenceToWaitingPlace> ::= <Name>
<ReferenceToTimer> ::= <Name>
<ReferenceToStub> ::= <Name>
<ReferenceToUCMmap> ::= <Name>
<ReferenceToStartPoint> ::= <Name>
<ReferenceToEndPoint> ::= <Name>
<ReferenceToFailurePoint> ::= <Name>
<ReferenceToRespRef> ::= <Name>
<ReferenceToComponentRef> ::= <Name>
<ReferenceToStubDeclaration> ::= <Name>

The <Name> of a <ReferenceToOrJoin> uniquely identifies the referenced OrJoin. The <Name> of

a <ReferenceToOrFork> uniquely identifies the referenced OrFork. The <Name> of a <Refer-

enceToAndJoin> uniquely identifies the referenced AndJoin. The <Name> of a <Refer-

200 Rec. ITU-T Z.151 (10/2018)

enceToAndFork> uniquely identifies the referenced AndFork. The <Name> of a <ReferenceTo-

WaitingPlace> uniquely identifies the referenced WaitingPlace. The <Name> of a <ReferenceTo-

Timer> uniquely identifies the referenced Timer. The <Name> of a <ReferenceToStub> uniquely

identifies the referenced Stub. The <Name> of a <ReferenceToUCMmap> uniquely identifies the

referenced UCMmap. The <Name> of a <ReferenceToStartPoint> uniquely identifies the referenced

StartPoint. The <Name> of a <ReferenceToEndPoint> uniquely identifies the referenced EndPoint.

The <Name> of a <ReferenceToFailurePoint> uniquely identifies the referenced FailurePoint. The

<Name> of a <ReferenceToRespRef> uniquely identifies the referenced RespRef. The <Name> of a

<ReferenceToComponentRef> uniquely identifies the referenced ComponentRef. The <Name> of a

<ReferenceToStubDeclaration> uniquely identifies the referenced StubDeclaration.

Listing B.10(aj) – Grammar for Textual UCM (continued)

<ResponsibilityAction> ::= <ReferenceToRespRef> <equal sign> <left square bracket>
 <action>
<right square bracket>

An <action> represents the expression of the Responsibility which is the definition of the RespRef

uniquely identified by <ReferenceToRespRef> (i.e., RespRef.respDef.expression).

<action> is defined in clause 9.

An example specification for <ResponsibilityAction> is provided with scenario definitions in Listing

B.11.

Listing B.10(ak) – Grammar for Textual UCM (continued)

<Name> and <Condition> are defined in Listing B.1.

<PositiveInteger> is defined in Listing B.4.

<short arrow> ::= ->
<greater than> ::= >
<left double square bracket> ::= [[
<right double square bracket> ::=]]
<semicolon> ::= ;
<vertical bar> ::= |
<timer> ::= @
<trigger> ::= ^
<left parenthesis> ::= (
<right parenthesis> ::=)
<double full stop> ::= ..

<colon>, <comma>, <left curly bracket>, <right curly bracket>, <left square
bracket>, <right square bracket>, <equal sign>, and <full stop> are defined in
Listing B.1.

Listing B.11 adds preconditions and postconditions to the example scenario definitions from Table 12

to fully demonstrate the grammar in Listing B.12. For the same reason, an Integer variable,

Enumeration variable, an EnumerationType, and an action for a responsibility in the "Originating

Features" map are specified even though they are not needed by the example scenario definitions.

The Integer variable is used as a counter which is incremented by the "sendRequest" responsibility.

Listing B.11 – TURN for example Scenario Definitions from Table 12

scenarioGroup "Feature-specific UCM scenario definitions" :
 BasicCallCore, BasicCallSuccess, BasicCallBusy

scenario BasicCallCore {

 Rec. ITU-T Z.151 (10/2018) 201

 pre subOCS == false
 pre subTL == false
 post counter == 1
 initialize subOCS = false
 initialize subTL = false
 initialize subTCS = false
 initialize busy = false
 initialize counter = 0
 start SC.request
}

scenario BasicCallSuccess {
 end SC.ring, SC.ringing
 includes BasicCallCore
}

scenario BasicCallBusy {
 initialize busy = true
 end SC.busy
 includes BasicCallCore
}

bool subOCS
bool subTL
bool subTCS
bool busy
int counter
Features existingFeatures
enum Features : TeenLine, TerminatingCallScreening, OriginatingCallScreening

map "Originating Features" {
 start> -> OrigFeatures(
 [!subTL] Default: continue=out1, start=in1, Agent=Agent
 [subTL] "Teen Line (TL)": start=in1, success=out1, fail=out2, Agent=Agent
) {
 out1> -> sendRequest -> success.
 out2> -> fail.
 }
 parent Agent: start..success, fail
 sendRequest = [counter = counter + 1;]
}

Listing B.12 provides the grammar for the scenario definitions of the Textual UCM. The paragraphs

interspersed between the listings of the grammar describe the mapping from the concrete syntax to

the URN abstract syntax.

Listing B.12(a) – Grammar for Scenario Definitions of Textual UCM

<ScenarioGroup> ::= scenarioGroup <Name> <colon>
 <ReferenceToScenarioDef> {<comma> <ReferenceToScenarioDef>}*

A <ScenarioGroup> represents a ScenarioGroup. <Name> is mapped to ScenarioGroup.name

according to the rules specified for <Name>. <ReferenceToScenarioDef> items uniquely identify

ScenarioGroup.scenarios.

202 Rec. ITU-T Z.151 (10/2018)

Listing B.12(b) – Grammar for Scenario Definitions of Textual UCM (continued)

<ScenarioDef> ::= scenario <Name> <left curly bracket>
 {pre <Condition>}*
 {post <Condition>}*
 {initialize <Initialization>}*
 [start <QualifiedReferenceToStartPoint> {<comma>
 <QualifiedReferenceToStartPoint>}*]
 [end <QualifiedReferenceToEndPoint> {<comma>
<QualifiedReferenceToEndPoint>}*]
 [includes <ReferenceToScenarioDef> {<comma> <ReferenceToScenarioDef>}*]
<right curly bracket>

A <ScenarioDef> represents a ScenarioDef. <Name> is mapped to ScenarioDef.name according to

the rules specified for <Name>. The 'pre' <Condition> items represent ScenarioDef.preconditions.

The 'post' <Condition> items represent ScenarioDef.postconditions. <Initialization> items represent

ScenarioDef.initializations. <QualifiedReferenceToStartPoint> items uniquely identify

ScenarioDef.startPoints. <QualifiedReferenceToEndPoint> items uniquely identify Scenario-

Def.endPoints. <ReferenceToScenarioDef> items uniquely identify ScenarioDef.includedScenarios.

Listing B.12(c) – Grammar for Scenario Definitions of Textual UCM (continued)

<Initialization> ::=
 {<ReferenceToBooleanVariable> <equal sign> <BooleanExpression>} |
 {<ReferenceToIntegerVariable> <equal sign> <IntegerExpression>} |
 {<ReferenceToEnumVariable> <equal sign> <enumeration literal>}

An <Initialization> represents an Initialization. <ReferenceToBooleanVariable>,

<ReferenceToIntegerVariable>, and <ReferenceToEnumVariable> uniquely identify

Initialization.variable. <BooleanExpression>, <IntegerExpression>, and <enumeration literal>

represent Initialization.value.

<enumeration literal> is defined in clause 9.

Listing B.12(d) – Grammar for Scenario Definitions of Textual UCM (continued)

<Variable> ::= {bool | int | <ReferenceToEnumerationType>} <variable name>

A <Variable> represents a Variable. <variable name> represents Variable.name. 'bool' represents a

Variable with type Boolean (DatatypeKind). 'int' represents a Variable with type Integer

(DatatypeKind). <ReferenceToEnumerationType> uniquely identifies a Variable with type

Enumeration (DatatypeKind). In this case, Variable.enumerationType is the EnumerationType

uniquely identified by <ReferenceToEnumerationType>. In all other cases,

Variable.enumerationType is not defined.

<variable name> is defined in clause 9.

Listing B.12(e) – Grammar for Scenario Definitions of Textual UCM (continued)

<EnumerationType> ::= enum <variable name> <colon>
 <enumeration literal> {<comma> <enumeration literal>}*

An <EnumerationType> represents an EnumerationType. <variable name> represents

EnumerationType.name. <enumaration literal> items represent EnumerationType.values.

<enumeration literal> and <variable name> are defined in clause 9.

 Rec. ITU-T Z.151 (10/2018) 203

Listing B.12(f) – Grammar for Scenario Definitions of Textual UCM (continued)

<ReferenceToScenarioDef> ::= <Name>
<ReferenceToBooleanVariable> ::= <variable name>
<ReferenceToIntegerVariable> ::= <variable name>
<ReferenceToEnumVariable> ::= <variable name>
<ReferenceToEnumerationType> ::= <variable name>
<QualifiedReferenceToStartPoint> ::= <QualifiedTURNidentifier>
<QualifiedReferenceToEndPoint> ::= <QualifiedTURNidentifier>

<IntegerExpression> ::= <expression>

<Condition>, <Name>, <BooleanExpression>, and <QualifiedTURNidentifier> are defined
in Listing B.1.

<colon>, <comma>, <left curly bracket>, <right curly bracket>, and <equal sign> are
defined in Listing B.1.

The <Name> of a <ReferenceToScenarioDef> uniquely identifies the referenced ScenarioDef. The

<variable name> of a <ReferenceToBooleanVariable> uniquely identifies a referenced <Variable>

whose computed type is Boolean. The <variable name> of a <ReferenceToIntegerVariable> uniquely

identifies a referenced <Variable> whose computed type is Integer. The <variable name> of a

<ReferenceToEnumVariable> uniquely identifies a referenced <Variable> whose computed type is

an Enumeration. The <variable name> of a <ReferenceToEnumerationType> uniquely identifies the

referenced <EnumerationType>. The <QualifiedTURNidentifier> of a <Quali-

fiedReferenceToStartPoint> uniquely identifies the referenced StartPoint. The

<QualifiedTURNidentifier> of a <QualifiedReferenceToEndPoint> uniquely identifies the refer-

enced EndPoint.

An <IntegerExpression> is an <expression> whose computed type is Integer as defined in clause 9.3

<expression> and <variable name> are defined in clause 9.

204 Rec. ITU-T Z.151 (10/2018)

Appendix I

Summary of the URN

(This appendix does not form an integral part of this Recommendation.)

I.1 Summary of abstract metamodel

Figure I.1 shows the top level of the abstract metamodel of URN. The diagram shows the top-level

elements URNspec and URNmodelElement as well as the concepts of URNlink and Metadata that can

be used for both GRL and UCM models. Concerns are shown because they encapsulate also both

GRL and UCM model elements.

Figure I.1 – Abstract grammar: URN top level

Figure I.2 presents the core abstract metamodel of GRL. The diagram is linked to Figure I.1 via

GRLspec and GRLmodelElement. The diagram shows the relationships between ElementLinks and

GRLLinkableElements at the top, the relationships between Actors, IntentionalElements and

Indicators on the middle-left and different kinds of ElementLinks on the middle-right.

GRLmodelElementUCMmodelElement

URNmodelElement

id : String

name : String

Condition

expression : String

Metadata

name : String

value : String

0..10..*

elem

0..1

metadata

0..*

URNlink

type : String 0..*

1

toLinks

0..*

toElem
11

0..*

fromElem
1

fromLinks 0..*

GRLspec

Concern

0..1

0..*

concern

0..1

elements

0..*

0..10..1

concern

0..1

condition

0..1

URNspec

name : String

0..1

0..*

urnspec

0..1

metadata

0..*

1 0..*

urnspec

1

urnLinks

0..*

1

0..1

urnspec

1

grlspec 0..1

1

0..*

urnspec

1

concerns
0..*

UCMspec

1

0..1

urnspec
1

ucmspec 0..1

 Rec. ITU-T Z.151 (10/2018) 205

Figure I.2 – Abstract grammar: GRL core overview

Figure I.3 presents the abstract metamodel related to GRL ContributionChanges and their

organization into ContributionContexts and ContributionContextGroups. The diagram is linked to

Figure I.1 via GRLspec and GRLmodelElement.

Figure I.3 – Abstract grammar: GRL contribution changes overview

Figure I.4 presents the abstract metamodel of GRL strategies. The diagram is linked to Figure I.1 via

GRLspec and GRLmodelElement. The diagram shows concepts for the evaluation of GRL models

(StrategiesGroup, EvaluationStrategy and Evaluation) that include indicators (IndicatorEvaluation,

IndicatorConversion, LinearConversion, QualToQMappings and QualToQMapping).

GRLmodelElement

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

GRLLinkableElement

importance : ImportanceType = None

importanceQuantitative : Integer = 0

ActorGRLContainableElement

0..1

0..* actor

0..1elems

0..*

ElementLink
0..*

1

linksDest

0..*

dest1

0..*

1

linksSrc 0..*

src1

GRLspec

0..*

1

actors0..*

grlspec1

0..*

1

intElements
0..*

grlspec

1

0..*

1

links

0..*

grlspec
1

Contribution

contribution : ContributionType = Unknown

quantitativeContribution : Integer = 0

correlation : Boolean = false

Dependency

Decomposition

ContributionType

Make

Help

SomePositive

Unknown

SomeNegative

Hurt

Break

<<enumeration>>
ImportanceType

High

Medium

Low

None

<<enumeration>>

DecompositionType

AND

XOR

IOR

<<enumeration>>

IntentionalElementType

Softgoal

Goal

Task

Resource

Belief

<<enumeration>>

Indicator

unit : String = ""

GRLmodelElement

Contribution

ContributionChange

newContribution : ContributionType = Unknown

newQuantitativeContribution : Integer = 0

0..*

1

changes0..*

contribution1

GRLspec

ContributionContext

1

0..*

grlspec

1

contribContexts
0..*

1

0..* context

1changes

0..*

0..*
0..*

includedContexts
0..*

{ordered}

parentContexts
0..*

ContributionContextGroup
1

0..*

grlspec
1

contribContextGroups

0..*

0..*

1..*

contribs0..*

groups1..*

206 Rec. ITU-T Z.151 (10/2018)

Figure I.4 – Abstract grammar: GRL strategies overview

Figure I.5 presents the core abstract metamodel of the UCM notation. The diagram is linked to

Figure I.1 via UCMspec and UCMmodelElement. The diagram roughly shows path-related concepts

at the top, plug-in binding-related concepts on the middle-left and component-related concepts at the

bottom.

QualitativeLabel

Denied

WeaklyDenied

WeaklySatisfied

Satisfied

Conflict

Unknown

None

<<enumeration>>

QualToQMappings

QualToQMapping

realWorldLabel : String

evaluation : int

qualitativeEvaluation : QualitativeLabel

exceeds : Boolean

1

0..*mappingSet

1 mappings

0..*
LinearConversion

targetValue : Integer = 0

thresholdValue : Integer = 0

worstValue : Integer = 0

IndicatorEvaluation

realWorldValue : Integer = 0

realWorldLabel : String = ""

Evaluation

evaluation : Integer = 0

qualitativeEvaluation : QualitativeLabel = None

exceeds : Boolean = false

1

0..1

eval 1

indicatorEval 0..1

StrategiesGroup

EvaluationStrategy

1..*

0..*

group1..*

strategies
0..*

0..*

0..*

includedStrategies

0..*

{ordered}

parentStrategies 0..*

0..*

1

evaluations

0..*

strategies

1

IndicatorConversion

unit : String = ""

0..*
0..1

evals

0..*
conversion

0..1

GRLContainableElement

1

0..*

intElement

1

evals

0..*

GRLspec
1

0..*

grlspec

1

groups0..*

0..*

1

strategies

0..*

grlspec

1
1

0..*

grlspec
1

indConversions
0..*

0..*

1 intElements

0..*grlspec

1

GRLmodelElement

 Rec. ITU-T Z.151 (10/2018) 207

Figure I.5 – Abstract grammar: UCM core overview

Figure I.6 presents the abstract metamodel of UCM scenarios. The diagram is linked to Figure I.1 via

UCMspec and UCMmodelElement. The diagram also introduces further relationships for StartPoint

and EndPoint.

AndFork

AndJoin

Connect EmptyPoint

OrFork

OrJoin

WaitingPlace

waitType : WaitKind

UCMmodelElement

WaitKind

Transient

Persistent

<<enumeration>>

ComponentKind

Team

Object

Process

Agent

Actor

<<enumeration>>

RespRef

Stub

dynamic : Boolean = false

synchronizing : Boolean = false

blocking : Boolean = false

Responsibility

expression : String

0..*

1

respRefs0..*

respDef1

EndPoint

StartPoint

failureKind : FailureKind = None

failureList : String = ""

ComponentType

PluginBinding

id : String

probability : Integer = 100

replicationFactor : String

0..*

1

bindings
0..*

stub
1

UCMspec

1

0..*

ucmspec

1

responsibilities

0..*

1

0..*

ucmspec
1

componentTypes
0..*

TimerInBinding

0..*

1

inBindings0..*

startPoint1

0..*

1

in

0..*

binding
1

OutBinding

0..*

1

outBindings0..*

endPoint1

0..*

1

out
0..*

binding
1

Condition

expression : String

0..1

0..1

endPoint0..1

postcondition0..1

0..1

0..1

startPoint0..1

precondition0..1
0..1

0..1

pluginBinding
0..1

precondition
0..1

ComponentBinding

1

0..*

binding

1

components

0..*
Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

0..* 0..*includedComponents 0..*

includingComponents
0..*

1

0..*

ucmspec

1

components0..*

0..*

0..1

instances

0..*

type
0..1

UCMmap

singleton : Boolean = true

0..*

1

parentStub

0..*

plugin1

1

0..*

ucmspec

1

ucmMaps

0..*

NodeConnection

probability : Integer = 100

threshold : String

0..1

0..1

timer0..1

timeoutPath

0..1
1

0..*

stubEntry
1

inBindings

0..*

1

0..*

stubExit
1

outBindings

0..*

0..1

0..1

nodeConnection
0..1

condition
0..1

1

0..*

diagram

1

connections
0..*

ComponentRef

0..*
0..1children

0..* parent

0..10..*

1

parentBindings

0..*
parentComponent

1

0..*
1

pluginBindings

0..* pluginComponent
1

1

0..*

diagram

1

contRefs

0..*

1

0..* compDef

1compRefs

0..*

PathNode

1

0..*

diagram 1

nodes
0..*

0..*

1

succ
0..*

source
1

0..*

1

pred
0..*

target
1

0..1

0..*

contRef

0..1

nodes
0..*

FailurePoint

failure : String

FailureKind

Failure

Abort

None

<<enumeration>>

208 Rec. ITU-T Z.151 (10/2018)

Figure I.6 – Abstract grammar: UCM scenarios overview

Figure I.7 presents the abstract metamodel of the performance annotations for the UCM notation. The

diagram is linked to Figure I.1 via UCMspec and UCMmodelElement. The diagram also introduces

further relationships for StartPoint, Responsibility and Component.

DatatypeKind

Boolean

Integer

Enumeration

<<enumeration>>UCMmodelElement Condition

expression : String

Initialization

value : String

StartPoint

EndPoint

EnumerationType

values : String

Variable

type : DatatypeKind = Boolean

0..1

0..*

enumerationType 0..1

instances
0..*

1
0..*variable

1
initializations 0..*

ScenarioGroup

ScenarioDef

0..*

0..*

parentScenarios0..*

{ordered}
includedScenarios
0..*

0..*

0..1

preconditions
0..*

scenarioDefPre
0..1

0..*

0..1

postconditions

0..*

scenarioDefPost

0..1

0..*

1

initializations

0..*

scenarioDef

1

0..*

0..*

startPoints
0..*

scenarioDefs

0..*

{ordered}
0..*

0..*

endPoints
0..*

scenarioDefs
0..*1..*

0..*
groups

1..*

scenarios

0..*

UCMspec
1

0..*

ucmspec

1

enumerationTypes
0..*

1

0..*

ucmspec
1

variables

0..*

1

0..*

ucmspec
1

scenarioGroups

0..*

0..*

1

scenarioDefs

0..*

ucmspec1

 Rec. ITU-T Z.151 (10/2018) 209

Figure I.7 – Abstract grammar: UCM performance overview

I.2 Summary of concrete metamodel

Figure I.9 shows the top level of the concrete metamodel of URN, which extends the abstract grammar

metamodel of Figure I.1. The diagram shows the top-level elements of the abstract metamodel

URNspec and URNmodelElement as well as the concept of Condition (all defined in Figure I.1) and

all their related concrete metamodel classes in grey colour.

Figure I.8 – Concrete grammar: URN top level

Figure I.9 presents the complete concrete metamodel of GRL, which extends the abstract grammar

metamodel of Figure I.1 through Figure I.4. The diagram is linked to Figure I.1 via GRLspec,

URNmodelElement and GRLmodelElement. It is also linked to Figure I.2 via Actor,

DeviceKind

Processor

Disk

DSP

<<enumeration>>

ActiveResource

opTime : String

unit : TimeUnit = ms

Workload

unit : TimeUnit = ms

StartPoint

0..1

1

workload 0..1

startPoint 1

PassiveResource

ProcessingResource

kind : DeviceKind = Processor

ExternalOperation

GeneralResource

multiplicity : Integer = 1

schedPolicy : String

Component

0..1

0..1

resource 0..1

component

0..1

0..1

0..*

host0..1

components0..*

Demand

quantity : String

1

0..*

resource 1

demands 0..*

RespRef

repetitionCount : String

hostDemand : String

UCMspec

1

0..*

ucmspec

1

resources

0..*

1

0..*

ucmspec 1

components
0..*

Responsibility

0..*

1

demands

0..*

responsibility

1

0..*

1

respRefs
0..*

respDef
1

1

0..*

ucmspec
1

responsibilities

0..*

UCMmodelElement

OpenWorkload ClosedWorkload

population : String

externalDelay : String

OWPoisson

mean : String

OWUniform

start : String

end : String

OWPhaseType

alpha : String

s : String

OWPeriodic

period : String

deviation : String

TimeUnit

year

day

h

s

ms

us

ns

<<enumeration>>

Description

description : String
URNmodelElement

0..11

desc

0..1

elem

1

URNspec

ConcreteURNspec

description : String

author : String

created : String

modified : String

specVersion : String

urnVersion : String

1 0..1

urnspec

1

info

0..1

Condition
ConcreteCondition

label : String

description : String

1 0..1

condition

1

desc

0..1

210 Rec. ITU-T Z.151 (10/2018)

GRLLinkableElement, GRLContainableElement and ElementLink. It is finally linked to Figure I.4 via

EvaluationStrategy. The diagram shows all concrete metamodel classes in grey colour.

Figure I.9 – Concrete grammar: GRL

Figure I.10 presents the concrete metamodel of the UCM notation, which extends the abstract

grammar metamodel of Figures I.1, I.5, I.6 and I.7. The diagram is linked to Figure I.1 via

URNmodelElement, UCMmodelElement and Condition. It is linked to Figure I.5 via UCMmap,

PathNode, NodeConnection, Component and ComponentRef. The diagram shows all concrete

metamodel classes in grey colour.

GRLmodelElement

IntentionalElementRef

GRLContainableElement

0..*
1

refs 0..*

def

1

CollapsedActorRef

Position

x : Integer

y : Integer

Actor

0..*

1

collapsedRefs 0..*

actor

1

Size

width : Integer

height : Integer

URNmodelElementDescription

description : String... 10..1

elem

1

desc

0..1

GRLLinkableElement

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..1

linkElement

0..1

style0..1

LinkRefBendpoint

x : Integer

y : Integer

Label

deltaX : Integer

deltaY : Integer

ElementLink

GRLNode

1

0..1

pos
1

grlNode

0..1

1

0..1

size1

grlNode

0..1

Comment

description : String

x : Integer

y : Integer

width : Integer

height : Integer

fillColor : String

ActorRef

1

0..1

pos 1

actorRef

0..1

10..*
actorDef

1

actorRefs
0..*

1

0..1

size
1

actorRef
0..1

0..1

0..*

contRef

0..1

nodes

0..*

0..1

1

actorRef
0..1

label 1

LinkRef

curve : Boolean = false

0..*

1

bendpoints0..*

linkref
1

{ordered}

0..*

1

pred
0..*

target

1
0..*

1

succ
0..*

source
1

0..1

0..1

linkRef

0..1

label

0..1

1

0..*

link

1

refs

0..*

ConcreteStrategy

author : String

ConcreteGRLspec

showAsMeansEnd : Boolean = false

GRLGraph

1

0..*

diagram1

nodes 0..*

0..1

0..*

grlGraph

0..1

comments

0..*

1

0..*

diagram
1

contRefs
0..*

1

0..*

diagram

1

connections

0..*

EvaluationStrategy
1 0..1

strategy

1

info

0..1

GRLspec

0..1

1
info
0..1

grlspec

1

1

0..*

grlspec

1

grlGraphs

0..*

0..*

1

strategies 0..*

grlspec

1

 Rec. ITU-T Z.151 (10/2018) 211

Figure I.10 – Concrete grammar: UCM

Component

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..1

component0..1

style0..1

UCMmap

Comment

description : String

x : Integer

y : Integer

width : Integer

height : Integer

fillColor : String

0..1

0..*

ucmmap
0..1

comments
0..*

UCMmodelElement

URNmodelElement Description

description : String
1 0..1

elem

1

desc

0..1

DirectionArrow

Size

width : Integer

height : Integer

Position

x : Integer

y : Integer

ConcreteCondition

label : String

description : String

NodeConnection

ComponentRef
0..1

0..1

compRef

0..1

size
0..1

0..1

0..1

compRef
0..1

pos
0..1

PathNode

0..1

0..1

pathNode

0..1

pos
0..1

Condition

1

0..1

condition 1

desc0..1

StartPoint

0..1

0..1

startPoint
0..1

precondition

0..1 FailurePoint

Label

deltaX : Integer

deltaY : Integer

0..1

0..1

nodeCon

0..1

label

0..1

0..1

0..1

compRef

0..1

label

0..1

0..1

0..1

pathNode

0..1

label

0..1

0..1

0..1

condition

0..1

label
0..1

0..1

0..1

startPoint
0..1

failureLabel

0..1

0..1

0..1

failurePoint

0..1

failureLabel

0..1

212 Rec. ITU-T Z.151 (10/2018)

I.3 Summary of URN symbols

Figure I.11 – GRL symbols

 Rec. ITU-T Z.151 (10/2018) 213

Figure I.12 – UCM symbols

214 Rec. ITU-T Z.151 (10/2018)

Appendix II

Examples of GRL model evaluation algorithms

(This appendix does not form an integral part of this Recommendation.)

II.1 Introduction

II.1.1 Overview and characteristics

This appendix defines and illustrates three examples of algorithms for GRL model evaluation. These

algorithms share the following common characteristics, explained in the specified numerals of

clause 11.1:

– (b) Forward propagation.

– (c) Overall GRL model satisfaction is evaluated.

– (d) Actor satisfaction is evaluated.

– (e) Exceeding expectations are considered.

– (f) Fully automated.

– (g) Cycles in models are handled partially: a cycle will only be evaluated if one of its elements

has a value initialized by the strategy.

– (i) Inconsistent evaluation strategies are allowed.

– (j) Evaluations defined as part of a strategy are not overridden.

– (l) Element links are evaluated in the following order: decompositions, contributions and

dependencies.

A generic algorithm based on the above characteristics is presented in clause II.1.2.

The differences can be summarized as follows:

– Clause II.2: (a) Quantitative evaluation, (h) no conflict detection, (k) with relation to UCM

and (n) with tolerance.

– Clause II.3: (a) Qualitative evaluation, (h) conflict detection, (k) without relation to UCM

and (n) without tolerance.

– Clause II.4: (a) Hybrid evaluation, (h) no conflict detection, (k) with relation to UCM and (n)

with tolerance.

As for link evaluation functions (m), they will be explained in detail for each algorithm. Algorithms

are explained in plain text when they are trivial, and with pseudocode that takes advantage of the

URN abstract metamodel when they are not trivial. Exceeding expectations are taken into

consideration the same way for all three presented algorithms and are hence discussed in clause II.5.

II.1.2 Generic algorithm overview

The example algorithms all follow the same three steps: 1) initialize the evaluation values of the GRL

intentional elements and indicators based on the strategy selected; 2) do a forward propagation of the

evaluation values to the other elements; and 3) calculate the satisfaction of actors and the overall GRL

model satisfaction. The first step follows the requirements presented in clause 11.1, and the third step

depends on the type of evaluation chosen. This clause discusses the second step in more detail, as it

is common to the three evaluation algorithms illustrated in this appendix.

The forward propagation algorithm in Figure II.1 follows a bottom-up, automated approach that can

handle cycles partially and that does not override the initial evaluation values provided by a strategy,

even when inconsistent. This algorithm takes as inputs the GRL specification and the selected

strategy. It outputs a hash map containing a new evaluation value for each intentional element and

 Rec. ITU-T Z.151 (10/2018) 215

indicator. In this algorithm, each intentional element or indicator knows its number of incoming

source links (totalSourceLink) and tracks the number of links that have been used in the propagation

so far (linkReady).

Algorithm ForwardPropagation

Inputs GRLmodel:GRLspec, currentStrategy:EvaluationStrategy

Output newEvaluations:HashMap

elementsReady:List = // containable elements that can be evaluated

elementsWaiting:List = // containable elements that cannot yet be evaluated

newEvaluations =

for each element:GRLContainableElement in GRLmodel.intElements

{

 element.linkReady = 0

 if (element in currentStrategy.evaluations.intElement) // is the element initialized?

 elementsReady.add(element)

 else

 elementsWaiting.add(element)

}

while (elementsReady.size() > 0)

{

 element = elementsReady.get()

 elementsReady.remove(element)

 newEvaluations.add(element, CalculateEvaluation(element, currentStrategy))

 for each link:ElementLink in element.linksSrc

 {

 destination = link.dest

 destination.linkReady = destination.linkReady + 1

 if (destination.linkReady == destination.totalSourceLink)

 {

 // all source elements have known evaluation values

 elementsWaiting.remove(destination)

 elementsReady.add(destination)

 }

 }

}

return newEvaluations

Figure II.1 – Example: Forward propagation algorithm

The forward propagation algorithm invokes the calculateEvaluation algorithm (Figure II.2), which

first checks whether the element is initialized by the strategy, and if necessary computes a value from

decomposition links (CalculateDecompositions), then considers contribution links

(CalculateContributions) and then dependencies (CalculateDependencies). The result of

CalculateDecompositions is an input for CalculateContributions, and the result of

CalculateContributions is an input for CalculateDependencies. The result of CalculateDependencies

is the final evaluation value. The EvaluationValue type here is a placeholder for the type of evaluation

(QualitativeLabel for qualitative evaluations, and Integer for quantitative evaluations). The content of

216 Rec. ITU-T Z.151 (10/2018)

the three sub-algorithms invoked here depends on the general type of evaluation and will be detailed

for each approach.

Algorithm CalculateEvaluation

Inputs element:GRLContainableElement, currentStrategy:EvaluationStrategy

Output satisfactionValue:EvaluationValue

decompValue:EvaluationValue // intermediate result

contribValue:EvaluationValue // intermediate result

if not(element in currentStrategy.evaluations.intElement) // is the element not initialized?

{

 // calculate based on decompositions, contributions, and dependencies

 decompValue = CalculateDecompositions(element)

contribValue = CalculateContributions(element, decompValue)

satisfactionValue = CalculateDependencies(element, contribValue)

}

return satisfactionValue

Figure II.2 – Example: Calculate evaluation algorithm

II.2 Example of quantitative evaluation algorithm

This quantitative GRL algorithm uses Integer values for the evaluation, and hence uses the

quantitativeContribution attribute of Contribution, the importanceQuantitative attribute of

GRLContainableElements and the new quantitativeVal attribute of containable elements initialized

from the selected EvaluationStrategy.

II.2.1 Calculating quantitative evaluations for decomposition links

This corresponds to the CalculateDecompositions(element) step in Figure II.2. The result depends on

the type of decomposition (AND, IOR or XOR).

The satisfaction level of a containable element with an AND-type decomposition link is the minimum

value of the quantitative evaluation values of its source elements. For an IOR-type decomposition

link, the satisfaction level is the maximum value of the quantitative evaluation of its source elements.

For an XOR-type decomposition link, the maximum is also used, but a warning is generated if more

than one source element have a quantitative evaluation value different from 0.

Figure II.3 provides an example of each decomposition type based on a strategy where two sources

out of three are initialized (*). The difference between (b) and (c) here is that evaluating (c) will

generate a warning as two sources have values different from 0.

Figure II.3 – Example: Quantitative evaluation of decomposition links

 Rec. ITU-T Z.151 (10/2018) 217

II.2.2 Calculating quantitative evaluations for contribution links

This corresponds to the CalculateContributions(element, decompValue) step in Figure II.2. The total

quantitative contribution is the sum of the products of the quantitative evaluation of each source

element by its quantitative contribution level to the element. This value is added to decompValue up

to a predefined tolerance if there is no fully satisfied or denied contribution. Correlations are treated

the same way as contributions.

Algorithm CalculateContributions

Inputs element:GRLContainableElement, decompValue:Integer

Output contribValue:Integer

tolerance:Integer // predefined tolerance, between 0 and 49

oneCont:Integer // one weighted contribution

totalCont:Integer = 0 // weighted sum of the contribution links

hasSatisfy:Boolean // a weighted contribution of 100 is present

hasDeny:Boolean // a weighted contribution of –100 is present

hasSatisfy = (decompValue == 100)

hasDeny = (decompValue == –100)

// compute the weighted sum of contributions

for each link:Contribution in element.linksDest

{

oneCont = link.src.quantitativeVal link.quantitativeContribution

totalCont = totalCont + oneCont

if (oneCont == 100) hasSatisfy = true

if (oneCont == –100) hasDeny = true

}

totalCont = totalCont/100

contribValue = totalCont + decompValue

// contribution value cannot be outside [–100..100]

if (|contribValue| > 100)

 contribValue = 100 (contribValue/|contribValue|)

// take tolerance into account if a weighted contribution of 100 or –100 is not present

if ((contribValue 100 – tolerance) and not(hasSatisfy))

if (totalCont > 0) // positive contribution

 contribValue = max (decompValue, 100 – tolerance) // case A

 // else there is nothing to do, contribValue remains unchanged.

else if ((contribValue –100 + tolerance) and not(hasDeny))

if (totalCont < 0) // negative contribution

 contribValue = min (decompValue, –100 + tolerance) // case B

 // else there is nothing to do, contribValue remains unchanged.

return contribValue

Figure II.4 – Example: Quantitative CalculateContributions algorithm

The algorithm in Figure II.4 ensures that the satisfaction level of each containable element will not

go above 100 or below –100. In addition, the algorithm takes tolerance into account to ensure that the

evaluation value of a containable element can be 100 (respectively –100) only if a) at least one of the

218 Rec. ITU-T Z.151 (10/2018)

containable elements that contribute to the element has a weighted contribution of 100 (respectively

–100) or b) decompValue is 100 (respectively –100). If this is not the case, then the evaluation value

may be adjusted as specified in Figure II.4 and illustrated for positive values in Table II.1 (negative

values are handled analogously).

NOTE – The quantitative propagation algorithm resolves conflicts.

Table II.1 – Example: Calculating contribution values with different tolerance values

Case in

Figure II.4
hasSatisfy decompValue totalCont tolerance limit contribValue

A false

95 3

100 – 10 = 90

max (decompValue,

90) = 95

hasSatisfy true 95 + 3 = 98

below tolerance

limit

false 100 – 1 = 99 95 + 3 = 98

B false

95 –3

100 – 10 = 90
95 – 3 = 92

hasSatisfy true 95 – 3 = 92

below tolerance

limit

false 100 – 4 = 96 95 – 3 = 92

A false

85 13

100 – 10 = 90

max (decompValue,

90) = 90

hasSatisfy true 85 + 13 = 98

below tolerance

limit

false 100 – 1 = 99 85 + 13 = 98

Figure II.5 provides two examples with three contributions each (the initial decompValue is 0).

Strategies initialize two elements. In (a), ((–50 50) + (80 100) + (0 –50))/100 = 55. In (b), where

the tolerance has been set to 10, ((30 90) + (80 90) + (0 –50))/100 = 99. However, as there is

no fully satisfied weighted contribution and decompValue is not 100, then 100 – tolerance = 90 is

output.

Figure II.5 – Example: Quantitative evaluation of contribution links

II.2.3 Calculating quantitative evaluations for dependency links

This corresponds to the CalculateDependencies(element, contribValue) step in Figure II.2. In this

algorithm, the source element of the dependency links cannot have an evaluation value higher than

those of the containable elements it depends on (i.e., the target elements of the dependency links).

This algorithm hence simply returns the minimum between contribValue and the evaluation values

of the target elements.

 Rec. ITU-T Z.151 (10/2018) 219

A simple example is shown in Figure II.6, with a strategy that initializes the two tasks. Consequently,

the qualitative values of other elements are initially set to 0. Internet Connection becomes –75 since

this value is less than 0. Low Costs, on the other hand, will keep its value of 0 because it is less than

50. The Increase Visibility softgoal gets the value min(0, min(–75, 0)) = –75.

Figure II.6 – Example: Quantitative evaluation of dependency links

II.2.4 Calculating quantitative evaluations for actors and the overall GRL model

This is the third and last step discussed in clause II.1.2. In order to compute the quantitative evaluation

value of an actor and the overall GRL model, it is necessary to first identify the quantitative

satisfaction value and quantitative importance value of each containable element bound to the actor.

Only elements with an importance greater than 0 are counted (assume their number to be n and their

references to be elemi with i = 1..n). This algorithm then computes the quantitative evaluation value

of the actor as follows:

actor.quantitativeVal = (

n

i 1

elemi.quantitativeVal elemi.importanceQuantitative)/

n

i 1

 elemi.importanceQuantitative

For example, Figure II.7 shows an actor with four softgoals, three of which with non-zero importance.

The quantitative value of the actor's satisfaction becomes:

 ((100 100) + (100 29) + (–75 60))/(100 + 29 + 60) = 44

Figure II.7 – Example: Quantitative evaluation of actors

Second, the quantitative evaluation value of the overall GRL model is calculated the same way as the

quantitative evaluation value of actors except that the quantitative evaluation values and quantitative

importance values of actors are used instead of containable elements. Assume that the number of

actors with importance values greater than 0 are n and their references to be actori with i = 1..n). This

algorithm then computes the quantitative evaluation value of the overall GRL model m as follows:

220 Rec. ITU-T Z.151 (10/2018)

m.quantitativeVal = (

n

i 1

actori.quantitativeVal actori.importanceQuantitative)/

n

i 1

 actori.importanceQuantitative

II.3 Example of qualitative evaluation algorithm

This qualitative GRL algorithm uses QualitativeLabel values for the evaluation, and hence uses the

qualitative contribution attribute of Contribution, the importance attribute of

GRLContainableElements and the new attribute qualitativeVal of containable elements initialized

from the selected EvaluationStrategy. The qualitative contributions (see clause 7.4.3) are Make,

SomePositive, Help, Unknown, Hurt, SomeNegative and Break. The qualitative evaluation labels (see

clause 7.5.4) are Satisfied, WeaklySatisfied, None, WeaklyDenied, Denied, Conflict and Unknown.

The qualitative importance values (see clause 7.1.4) are High, Medium, Low and None. Since these

values are discrete, the propagation algorithm considers them individually. To this end, lookup tables

and partial orderings are often used to define necessary functions explicitly.

II.3.1 Calculating qualitative evaluations for decomposition links

This corresponds to the CalculateDecompositions(element) step in Figure II.2. The result depends on

the type of decomposition (AND, IOR or XOR).

The satisfaction level of a containable element with an AND-type decomposition link is the minimum

value of the qualitative evaluation values of its source elements, where qualitative values are ordered

from minimum to maximum as follows:

Denied < (Conflict = Unknown) < WeaklyDenied < None < WeaklySatisfied < Satisfied

However, Conflict results are substituted with Unknown as conflicts are not propagated. This

simplifies the discovery of root causes (the first conflict) during the analysis of complex models.

Figure II.8 provides four examples of qualitative AND-type decomposition that illustrate this

propagation.

Figure II.8 – Example: Qualitative evaluation of AND-type decomposition links

 Rec. ITU-T Z.151 (10/2018) 221

For an IOR-type decomposition, the satisfaction level is the maximum value of the qualitative

evaluation of its source elements, where qualitative values are ordered from minimum to maximum

as follows:

Denied < WeaklyDenied < None < WeaklySatisfied < (Conflict = Unknown) < Satisfied

Again, Conflict results are substituted with Unknown as conflicts are not propagated. Figure II.9

provides four examples of qualitative IOR-type decomposition that illustrate this propagation.

Figure II.9 – Example: Qualitative evaluation of IOR-type decomposition links

For an XOR-type decomposition link, the maximum is propagated in the same way as for an IOR-type

decomposition, but a warning is generated if more than one source element have a quantitative

evaluation value different from None.

II.3.2 Calculating qualitative evaluations for contribution links

This corresponds to the CalculateContributions(element, decompValue) step in Figure II.2.

Correlations are treated the same way as contributions. However, unlike the quantitative evaluation

of contribution links, there is no notion of tolerance here. The algorithm is presented in Figure II.10.

222 Rec. ITU-T Z.151 (10/2018)

Algorithm CalculateContributions

Inputs element:GRLContainableElement, decompValue:QualitativeLabel

Output contribValue:QualitativeLabel

oneCont:QualitativeLabel // one weighted contribution

ns:Integer = 0 // number of Satisfied weighted contributions

nws:Integer = 0 // number of WeaklySatisfied weighted contributions

nwd:Integer = 0 // number of WeaklyDenied weighted contributions

nd:Integer = 0 // number of Denied weighted contributions

nu:Integer = 0 // number of Unknown weighted contributions

weightSD:QualitativeLabel // partial weighted contribution from ns and nd

weightWSWD:QualitativeLabel // partial weighted contribution from nws and nwd

// adjust the weighted contribution counters according to decompValue

AdjustContributionCounters(decompValue, ns, nws, nwd, nd, nu)

// compute the numbers of weighted contributions for each kind

for each link:Contribution in element.linksDest

{

oneCont = WeightedContribution(link.src.qualitativeVal, link.contribution)

AdjustContributionCounters(oneCont, ns, nws, nwd, nd, nu)

}

// check for the presence of unknown weighted contributions

if (nu > 0)

 contribValue = Unknown

else

{

 weightSD = CompareSatisfiedAndDenied (ns, nd)

 weightWSWD = CompareWSandWD (nws, nwd)

 contribValue = CombineContributions (weightSD, weightWSWD)

}

return contribValue

Figure II.10 – Example: Qualitative CalculateContributions algorithm

The AdjustContributionCounters algorithm (Figure II.11) is first invoked by CalculateContributions

to increment the weighted contribution counter that corresponds to decompValue. It is then invoked

in the for loop to increment the counters for each individual weighted contribution computed from

contribution links.

Algorithm AdjustContributionCounters

Inputs qualValue:QualitativeLabel

Modifies ns, nws, nwd, nd, nu:Integer

case qualValue of

Satisfied: ns++

WeaklySatisfied: nws++

WeaklyDenied: nwd++

Denied: nd++

Unknown: nu++

Figure II.11 – Example: AdjustContributionCounters algorithm

 Rec. ITU-T Z.151 (10/2018) 223

The CalculateContributions algorithm also uses a WeightedContribution function that computes one

qualitative weighted contribution according to the lookup table in Table II.2, where the rows specify

the possible qualitative evaluation values of the source and where the columns specify the possible

qualitative contribution types of the element's incoming contribution link. Note that previously found

conflicts are not propagated by this function, which propagates Unknown instead.

Table II.2 – WeightedContribution function for the computation of one weighted contribution

 Make Help SomePositive Unknown SomeNegative Hurt Break

Denied Denied WeaklyDenied WeaklyDenied None WeaklySatisfied WeaklySatisfied Satisfied

Weakly

Denied

WeaklyDenied WeaklyDenied WeaklyDenied None WeaklySatisfied WeaklySatisfied WeaklySatisfied

Weakly

Satisfied

WeaklySatisfied WeaklySatisfied WeaklySatisfied None WeaklyDenied WeaklyDenied WeaklyDenied

Satisfied Satisfied WeaklySatisfied WeaklySatisfied None WeaklyDenied WeaklyDenied Denied

Conflict Unknown Unknown Unknown Unknown Unknown Unknown Unknown

Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown

None None None None None None None None

If there is at least one Unknown weighted contribution detected, then the result is Unknown.

Otherwise, three functions will be used in sequence to compute the result.

The CompareSatisfiedAndDenied function determines if there are Satisfied values without Denied

values, or the opposite. If none of these values are present, then None is returned. However, if there

is at least one of each, then Conflict is returned. Formally:

 CompareSatisfiedAndDenied (ns, nd) = Conflict, if (ns > 0 and nd > 0)

 = Satisfied, if (ns > 0 and nd = 0)

 = Denied, if (nd > 0 and ns = 0)

 = None, if (ns = 0 and nd = 0)

The CompareWSandWD function determines if there are more WeaklySatisfied values than

WeaklyDenied values, or the opposite. If their numbers are equal, then these contributions cancel each

other out and None is returned. Formally:

 CompareWSandWD (ws, wd) = WeaklySatisfied, if (nws > nwd)

 = WeaklyDenied, if (nwd > nws)

 = None, if (nwd = nws)

The final result is computed with the CombineContributions function, which combines the previously

computed values according to Table II.3. In this table, the rows specify the possible qualitative values

representing the global influence of weak contributions (i.e., weightWSWD), whereas the columns

specify the possible qualitative values representing the global influence of Satisfied and Denied

contributions (i.e., weightSD).

Table II.3 – CombineContributions function for the computation of the final contribution

 Denied Satisfied Conflict None

Weakly Denied Denied Weakly Satisfied Conflict Weakly Denied

Weakly Satisfied Weakly Denied Satisfied Conflict Weakly Satisfied

None Denied Satisfied Conflict None

Figure II.12 provides two examples with three contributions each (the initial decompValue is None).

Strategies initialize two elements in each example. In (a), (WeaklyDenied SomePositive) =

224 Rec. ITU-T Z.151 (10/2018)

WeaklyDenied, (WeaklySatisfied Make) = WeaklySatisfied, and (None SomeNegative) = None.

The comparison of Satisfied and Denied results in a 0:0 tie and therefore None. The comparison of

WeaklySatisfied and WeaklyDenied results in a 1:1 tie and therefore None. Finally, the combined

contribution of None and None results in None. In (b), (WeaklySatisfied SomePositive) =

WeaklySatisfied, (WeaklySatisfied Make) = WeaklySatisfied, and (None SomeNegative) = None.

The comparison of Satisfied and Denied results in a 0:0 tie and therefore None. The comparison of

WeaklySatisfied and WeaklyDenied results in a 2:0 win and therefore WeaklySatisfied. Finally, the

combined contribution of None and WeaklySatisfied results in WeaklySatisfied.

Figure II.12 – Example: Qualitative evaluation of contribution links

II.3.3 Calculating qualitative evaluations for dependency links

This corresponds to the CalculateDependencies(element, contribValue) step in Figure II.2. In this

algorithm, the source element of the dependency links cannot have an evaluation value higher than

those of the containable elements it depends on (i.e., the target elements of the dependency links).

This algorithm hence simply returns the minimum value between contribValue and the qualitative

evaluation values of the target elements. The qualitative values are ordered from minimum to

maximum in the same way as for qualitative AND-type decompositions:

Denied < (Conflict = Unknown) < WeaklyDenied < None < WeaklySatisfied < Satisfied

Again, Conflict results are substituted with Unknown as conflicts are not propagated.

Two examples are shown in Figure II.13, with strategies that initialize the two tasks. Consequently,

the qualitative values of other elements are initially set to None. Example (a) is similar to the one

from Figure II.6. Internet Connection becomes WeaklyDenied since this value is less than None. Low

Costs, on the other hand, will keep its value of None because it is less than WeaklySatisfied. The

Increase Visibility softgoal gets the value WeaklyDenied because this is the minimum between None

and WeaklyDenied. Example (b) illustrates that a Conflict value in a target element propagates to an

Unknown value in the source element (e.g., Low Cost), unless there is a Denied value in another target

element or in contribValue (in which case the propagated value is Denied, e.g., for Increase

Visibility).

 Rec. ITU-T Z.151 (10/2018) 225

Figure II.13 – Example: Qualitative evaluation of dependency links

II.3.4 Calculating qualitative evaluations for actors and the overall GRL model

This is the third and last step discussed in clause II.1.2. In order to compute the qualitative evaluation

value of an actor and the overall GRL model, the qualitative satisfaction value and qualitative

importance value of each containable element bound to the actor are first used.

The CalculateActorEvaluation algorithm is similar to the qualitative CalculateContributions

algorithm (Figure II.10) and reuses some of its sub-algorithms. First, the qualitative evaluation value

of each containable element bound to the actor is weighted according to the importance of that

element to the actor. This WeightedImportance function is defined in Table II.4, where the rows

specify the possible qualitative importance values of the element and where the columns specify the

possible qualitative evaluation values of the element. The AdjustEvaluationCounters function is

similar to the AdjustContributionCounters function (see Figure II.11) but also increments the nc

counter if a Conflict is provided as a qualitative value input. Then, the qualitative evaluation value of

the actor is calculated with the same sub-algorithms used to combine the qualitative weighted

evaluation values for contribution links (i.e., CompareSatisfiedAndDenied, CompareWSandWD

CombineContributions).

226 Rec. ITU-T Z.151 (10/2018)

Algorithm CalculateActorEvaluation

Inputs actor:Actor

Output actorEvalValue:QualitativeLabel

oneElemVal:QualitativeLabel // one element value weighted according to its

importance

ns:Integer = 0 // number of Satisfied weighted values

nws:Integer = 0 // number of WeaklySatisfied weighted values

nwd:Integer = 0 // number of WeaklyDenied weighted values

nd:Integer = 0 // number of Denied weighted values

nu:Integer = 0 // number of Unknown weighted values

nc:Integer = 0 // number of Conflict weighted values

weightSD:QualitativeLabel // partial weighted values from ns and nd

weightWSWD:QualitativeLabel // partial weighted values from nws and nwd

// compute the numbers of weighted contributions for each kind

for each boundElem:GRLContainableElement in actor.elems

{

oneElemVal= WeightedImportance(boundElem.qualitativeVal, boundElem.importance)

AdjustEvaluationCounters(oneElemVal, ns, nws, nwd, nd, nu, nc)

}

// check for the presence of unknown and conflict weighted evaluation values

if (nc > 0)

 actorEvalValue = Conflict

else if (nu > 0)

 actorEvalValue = Unknown

else

{

 weightSD = CompareSatisfiedAndDenied (ns, nd)

 weightWSWD = CompareWSandWD (nws, nwd)

 actorEvalValue = CombineContributions (weightSD, weightWSWD)

}

return actorEvalValue

Figure II.14 – Example: Qualitative CalculateActorEvaluation algorithm

Table II.4 – WeightedImportance function for the computation of one element value

 Denied WeaklyDenied WeaklySatisfied Satisfied Conflict Unknown None

High Denied WeaklyDenied WeaklySatisfied Satisfied Conflict Unknown None

Medium WeaklyDenied WeaklyDenied WeaklySatisfied WeaklySatisfied Conflict Unknown None

Low WeaklyDenied None None WeaklySatisfied Conflict Unknown None

None None None None None None None None

For example, Figure II.15 shows an actor with four softgoals, three of which with importance other

than None. The recalculated qualitative evaluation values are:

– Reliability: WeightedImportance (High, Satisfied) = Satisfied

– Low Cost: WeightedImportance (Low, Satisfied) = WeaklySatisfied

 Rec. ITU-T Z.151 (10/2018) 227

– High Perf: WeightedImportance (Medium, WeaklyDenied) = WeaklyDenied

– Low Weight: WeightedImportance (None, WeaklySatisfied) = None

The comparison of Satisfied and Denied results in a 1:0 win and therefore Satisfied. The comparison

of WeaklySatisfied and WeaklyDenied results in a 1:1 tie and therefore None. Finally, the combined

contribution of Satisfied and None results in the actor evaluation of Satisfied.

Figure II.15 – Example: Qualitative evaluation of actors

Second, the qualitative evaluation value of the overall GRL model is calculated the same way as the

qualitative evaluation value of actors except that the qualitative evaluation values and qualitative

importance values of actors are used instead of containable elements.

II.4 Example of hybrid evaluation algorithm

This hybrid GRL algorithm uses Integer values for the evaluation, and hence uses the

importanceQuantitative attribute of GRLContainableElements and the new quantitativeVal attribute

of containable elements initialized from the selected EvaluationStrategy. However, unlike the

quantitative evaluation algorithm seen in clause II.2, the hybrid algorithm uses the qualitative

contribution attribute of Contribution. A conversion table defines a mapping from qualitative

contributions to integer values representing an equivalent quantitative contribution. Once this

conversion is done, the rest of the algorithm is similar to the one in clause II.2.

This is an example where quantitative and quantitative values are mixed. In this example, the discrete

scale for contributions has 7 levels instead of 201 levels ([–100..100]) as in the quantitative evaluation

algorithm. This may improve the usability of models in domains where the weight of contributions

cannot easily be determined with precision.

II.4.1 Calculating hybrid evaluations for decomposition links

This corresponds to the CalculateDecompositions(element) step in Figure II.2. The algorithm is the

same as the quantitative algorithm in clause II.2.1.

II.4.2 Calculating hybrid evaluations for contribution links

This corresponds to the CalculateContributions(element, decompValue) step in Figure II.2. The

algorithm first maps all qualitative contributions to quantitative contributions using Table II.5. The

content of this table reflects the relative ordering of qualitative contributions, however, the associated

quantitative numbers could be defined otherwise (e.g., 67 instead of 75, 33 instead of 25, etc.). Once

all values are integers, the algorithm seen for the quantitative evaluation in clause II.2.2 is used.

228 Rec. ITU-T Z.151 (10/2018)

Table II.5 – Quantitative contribution values for qualitative contributions

Qualitative contribution Quantitative contribution

Make 100

SomePositive 75

Help 25

Unknown 0

Hurt –25

SomeNegative –75

Break –100

Figure II.16 provides two examples with three contributions each (the initial decompValue is 0).

Strategies initialize two elements in each example. The qualitative contributions are mapped to

integer values according to Table II.5. In (a), ((–40 75) + (80 100) + (0 –75))/100 = 50. In (b),

where the tolerance has been set to 10, ((80 75) + (70 100) + (0 –75))/100 = 130. However, as

there is no fully satisfied weighted contribution, then 100 – tolerance = 90 is output.

Figure II.16 – Example: Hybrid evaluation of contribution links

II.4.3 Calculating hybrid evaluations for dependency links

This corresponds to the CalculateDependencies(element, contribValue) step in Figure II.2. The

algorithm is the same as the quantitative algorithm in clause II.2.3.

II.4.4 Calculating hybrid evaluations for actors and the overall GRL model

This is the third and last step discussed in clause II.1.2. The algorithm is the same as the quantitative

algorithm in clause II.2.4.

II.5 Calculating with exceeding expectations

The exceeds attribute is only propagated if all source elements exceed expectations in an AND context

and if at least one source element exceeds expectations in an IOR or XOR context. An AND context

is given for AND-type decomposition links, contribution links and dependency links. Furthermore,

the calculation of evaluation values for actors and the overall GRL model also operates in an AND

context for the purpose of this calculation. An IOR context is given for IOR-type decomposition links

and finally and XOR context is given for XOR-type decomposition links. In addition, a warning is

generated if more than one source element exceeds expectations in an XOR context.

 Rec. ITU-T Z.151 (10/2018) 229

Appendix III

Examples of UCM path traversal mechanisms

(This appendix does not form an integral part of this Recommendation.)

III.1 Introduction

Implementers of a UCM path traversal mechanism may develop their own traversal algorithm,

optimizing or extending various aspects of it according to their needs, as long as the resulting traversal

mechanism complies with the requirements stated in clause 11.2.2. This appendix shows the traversal

of a UCM scenario with the help of the example UCM model introduced in Figure 61. The chosen

scenario, defined in clause 8.5.2, is "TL pin TCS success" (a successful call where the PIN for the TL

feature is correctly entered and the call is not on the TCS list). Two different traversal mechanisms,

a depth-first approach and a breadth-first approach, are illustrated, but the detailed behaviour of the

traversal mechanism for each type of path node is beyond the scope of this appendix.

Each path node in the UCM model keeps track of how often it is visited (visitNumber) during the

traversal of the current scenario and when it was visited with the help of a list of sequence numbers

(sequenceNumbers). Initially, visitNumber is set to zero for all path nodes, sequenceNumbers is set

to empty, and the value of all global variables is set to "undefined". Furthermore, the included and

including scenarios are merged into a new, bigger scenario, and the variables are initialized according

to the new scenario. The new scenario is the input to the actual traversal mechanism. It makes

reference to the UCM model, which is hence provided as input indirectly. Finally, to safe-guard

against infinite loops, the maximum number of visits to a path node is limited to maxVisits.

The results of the traversal mechanism are the values of the visitNumber and sequenceNumbers

attributes of the path nodes in the UCM model and any warnings or errors that may have been issued

by the traversal.

III.2 Example of depth-first UCM path traversal mechanism

A detailed description of a depth-first UCM path traversal mechanism is shown in Figure III.1. First,

the start points of the scenario are assigned to the list of currently visited path nodes. Second, the

traversal mechanism checks the preconditions of the scenario. Then, the traversal mechanism

attempts to move to the next path nodes from the first element in the list of currently visited path

nodes. The first element is removed from the list of currently visited path nodes.

If it is not possible to move to other path nodes from the first element, the first element is added to

the list of blocked path nodes. The traversal mechanism then attempts to move to the next path nodes

from the next element in the list of currently visited path nodes, and so on.

If it is possible to move to other path nodes, then these path nodes are added at the beginning of the

list of enabled path nodes. The first path node in the list of enabled path nodes is then removed and

added at the beginning of the list of currently visited path nodes. That is, the traversal mechanism is

moving from the current path node to the next path node (or one of the next path nodes, if more than

one are enabled from the current path node). Adding path nodes at the beginning of the list of enabled

path nodes and at the beginning of the list of currently visited path nodes ensures a depth-first

approach.

This continues until either an exception is thrown or all enabled and current path nodes are exhausted.

At the end of the traversal, the traversal mechanism checks whether the traversal did not get blocked

somewhere, whether all postconditions are fulfilled and whether all end points of the scenario were

reached.

230 Rec. ITU-T Z.151 (10/2018)

Algorithm UCMPathTraversalMechanism-DepthFirst

Input scenario:ScenarioDef // the merged scenario

Output warningsAndErrors:List // warnings and errors issued during the traversal

List currentPathNodes = scenario.startPoints // currently visited path nodes

List enabledPathNodes = // path nodes that can be visited next

List blockedPathNodes = // path nodes that cannot continue

warningsAndErrors = // initially empty

List enabledPathNodesFromCurrent = // temporary variable

PathNode current, nextCurrent // temporary variables

Integer sequenceNumber = 1 // sequence variable keeps track of the

 // number of traversed path nodes

for each startPoint:PathNode in currentPathNodes

 startPoint.visitNumber++

try

{

 // if preconditions evaluate to false, stop traversal

 if (!EvaluatePreconditions(scenario))

 throw new TraversalException("warning: preconditions not satisfied")

 while (currentPathNodes.size() > 0)

 {

 // remove the first path node from the list of currently visited path nodes

 current = currentPathNodes.removeFirstElement()

 // find the enabled path nodes from the current path node based on

 // the path continuation criteria (PCC)

 enabledPathNodesFromCurrent = GetEnabledPathNodes(current)

 if (enabledPathNodesFromCurrent.size() == 0)

 {

 // the current path node is blocked continue with another current

 // path node in while loop

 blockedPathNodes.addAtEnd(current)

 // add sequence number to an end point of the scenario; to avoid

 // duplicate sequence numbers for end points, this is only done if the

 // number of sequence numbers does not exceed the number of visits

 if ((current is of type EndPoint) and

 (current.visitNumber > current.sequenceNumbers.size()))

 {

 current.sequenceNumbers.add(sequenceNumber);

 sequenceNumber++;

 }

 }

 else

 {

 // add found path nodes to the list of enabled path nodes

 enabledPathNodes.addAtBeginning(enabledPathNodesFromCurrent)

 // add sequence number to path node when the traversal is ready to

 // move on to the next path nodes

 Rec. ITU-T Z.151 (10/2018) 231

 current.sequenceNumbers.add(sequenceNumber);

 sequenceNumber++;

 }

 // if possible, move the first enabled path node to the current path nodes

 if (enabledPathNodes.size() > 0)

 {

 // remove the first element from the list of enabled path nodes

 nextCurrent = enabledPathNodes.removeFirstElement()

 // not shown here but this is the place where any additional behaviour

 // for the nextCurrent path node is executed depending on the type

 // of path node; this may but is not limited to raising further traversal

 // exceptions, removing the same path node as nextCurrent from

 // currentPathNodes or blockedPathNodes in case of synchronization

 // (also adjusts the visitNumber accordingly), and resolving

 // component plug-in bindings

 // add the nextCurrent path node at the beginning of the list

 // of currently visited path nodes, so that the traversal continues

 // in a depth-first way

 currentPathNodes.addAtBeginning(nextCurrent)

 nextCurrent.visitNumber++

 if (nextCurrent.visitNumber > maxVisit)

 throw new TraversalException("warning: infinite loop")

 // since moving to a new path node may impact already blocked

 // path nodes, the blocked path nodes are added back to the currently

 // visited path nodes; however, they are added at the end of the list

 // to ensure a depth-first approach

 currentPathNodes.addAllAtEnd(blockedPathNodes)

 blockedPathNodes.clear()

 }

 }

}

catch (TraversalException te)

{

 warningsAndErrors.add(te.getMessage())

}

// verify successful completion of traversal

for each pn:PathNode in (currentPathNodes blockedPathNodes)

 if (pn is not of type EndPoint)

 warningsAndErrors.add("warning: traversal not at an end point")

 else if (!EvaluateCondition(pn.postcondition))

 warningsAndErrors.add("error: postcondition of end point is false")

for each endPoint:PathNode in scenario.endPoints

 if (endPoint.visitNumber == 0)

 warningsAndErrors.add("error: end point not reached")

for each postcondition:Condition in scenario.postconditions

 if (!EvaluateCondition(postcondition))

 warningsAndErrors.add("error: postcondition is false")

232 Rec. ITU-T Z.151 (10/2018)

return warningsAndErrors

Figure III.1 – Example: Depth-first UCM path traversal mechanism

Given the depth-first algorithm from Figure III.1, the "TL pin TCS success" scenario from the

example in clause 8.5.2 is traversed as follows (variables are only shown if they changed; sequence

numbers are shown in parentheses):

– currentPathNodes = {request, enterPIN}, enabledPathNodes = , blockedPathNodes = ,

and preconditions of the scenario evaluate to true as none are specified.

– Move from request start point (1) to Originating stub: currentPathNodes = {Originating,

enterPIN}.

– Move from Originating stub (2) to start point of the Originating feature plug-in map:

currentPathNodes = {start, enterPIN}.

– Move from start point of the Originating feature plug-in map (3) to OrigFeatures stub:

currentPathNodes = {OrigFeatures, enterPIN}.

– Move from OrigFeatures stub (4) to start point of Teen Line plug-in map because this is the

only plug-in map with a precondition evaluating to true (subTL): currentPathNodes = {start,

enterPIN}.

– Move from start point (5) of Teen Line plug-in map to checkTime responsibility:

currentPathNodes = {checkTime, enterPIN}.

– Move from checkTime responsibility (6) to "TLactive?" OR-fork: currentPathNodes =

{"TLactive?" OR-fork, enterPIN}.

– Move from "TLactive" OR-fork (7) to getPIN timer because the condition of this branch

(TLactive) evaluates to true: currentPathNodes = {getPIN timer, enterPIN}.

– getPIN timer is blocked: currentPathNodes = {enterPIN}, blockedPathNodes = {getPIN

timer}.

– Move from enterPIN start point (8) to getPIN end point: currentPathNodes = {getPIN end

point, getPIN timer}, blockedPathNodes = (because all blockedPathNodes are moved to

currentPathNodes if a new path node is added to the currentPathNodes).

– Move from getPIN end point (9) to getPIN connect: currentPathNodes = {getPIN connect,

getPIN timer}.

– Move from getPIN connect (10) to getPIN timer: currentPathNodes = {getPIN timer}

(because the second timer path node in currentPathNodes was removed as a timer is a

synchronization point of two paths).

– Move from getPIN timer (11) to "PINvalid?" OR-fork because the trigger path arrived:

currentPathNodes = {"PINvalid?" OR-fork}.

– Move from "PINvalid?" OR-fork (12) to OR-join because the condition of this branch

(PINvalid) evaluates to true: currentPathNodes = {OR-join}.

– Move from OR-join (13) to success end point: currentPathNodes = {success}.

– Move from success end point (14) to OUT1 out-path of OrigFeatures stub: currentPathNodes

= {OrigFeatures}.

– Move from OUT1 out-path of OrigFeatures stub (15) to sendRequest responsibility:

currentPathNodes = {sendRequest}.

– Move from sendRequest responsibility (16) to success end point: currentPathNodes =

{success}.

 Rec. ITU-T Z.151 (10/2018) 233

– Move from success end point (17) to OUT1 out-path of Originating stub: currentPathNodes

= {Originating}.

– Move from OUT1 out-path of Originating stub (18) to Terminating stub: currentPathNodes

= {Terminating}.

– Move from Terminating stub (19) to start point of Terminating Features plug-in map:

currentPathNodes = {start}.

– Move from start point of Terminating Features plug-in map (20) to TermFeatures stub:

currentPathNodes = {TermFeatures}.

– Move from TermFeatures stub (21) to start point of Terminating Call Screening plug-in map

because this is the only plug-in map with a precondition evaluating to true (subTCS):

currentPathNodes = {start}.

– Move from start point of Terminating Call Screening plug-in map (22) to checkTCS

responsibility: currentPathNodes = {checkTCS}.

– Move from checkTCS responsibility (23) to "OnTCSList?" OR-fork: currentPathNodes =

{"OnTCSList?" OR-fork}.

– Move from "OnTCSList?" OR-fork (24) to success end point because the condition of this

branch (NotOnTCSList) evaluates to true: currentPathNodes = {success}.

– Move from success end point (25) to OUT1 out-path of TermFeatures stub: currentPathNodes

= {TermFeatures}.

– Move from OUT1 out-path of TermFeatures stub (26) to "Busy?" OR-fork:

currentPathNodes = {"Busy?" OR-fork}.

– Move from "Busy?" OR-fork (27) to AND-fork because the condition of this branch

(NotBusy) evaluates to true: currentPathNodes = {AND-fork}.

– Move from AND-fork (28) to ringTreatment responsibility, therefore exploring the first

branch of the AND-fork in a depth-first way: currentPathNodes = {ringTreatment},

enabledPathNodes = {ringingTreatment}.

– Move from ringTreatment responsibility (29) to success end point: currentPathNodes =

{success}.

– Move from success end point (30) to OUT1 out-path of Terminating stub: currentPathNodes

= {Terminating}.

– Move from OUT1 out-path of Terminating stub (31) to ring end point: currentPathNodes =

{ring}.

– ring end point (32) is blocked because an end point of the scenario has been reached;

therefore, explore the second branch of the AND-fork by moving from AND-fork to

ringingTreatment responsibility: currentPathNodes = {ringingTreatment, ring},

enabledPathNodes = (because the next enabledPathNode is taken from the list and moved

to currentPathNodes; this also causes the blockedPathNode ring to be added back to the

currentPathNodes).

– Move from ringingTreatment responsibility (33) to reportSuccess end point:

currentPathNodes = {reportSuccess, ring}.

– Move from reportSuccess end point (34) to OUT2 out-path of Terminating stub:

currentPathNodes = {Terminating stub, ring}.

– Move from OUT2 out-path of Terminating stub (35) to forwardSignal responsibility:

currentPathNodes = {forwardSignal, ring}.

– Move from forwardSignal responsibility (36) to ringing end point: currentPathNodes =

{ringing, ring}.

234 Rec. ITU-T Z.151 (10/2018)

– ringing end point (37) is blocked because an end point of the scenario has been reached:

currentPathNodes = {ring}, blockedPathNodes = {ringing}.

– try next path node in currentPathNodes; ring end point is blocked because an end point of the

scenario has been reached: currentPathNodes = , blockedPathNodes = {ringing, ring}.

– while loop terminates.

– no warnings and errors are issued because a) only end points remain in currentPathNodes =

 and blockedPathNodes = {ringing, ring}, b) the end points of the scenario (ringing, ring)

were visited, and c) all postconditions are fulfilled.

The flattened UCM model that results from the traversal of the "TL pin TCS success" scenario is

shown in Figure III.2. The sequence number assigned by the traversal mechanism is indicated for

each path node in parentheses. The gaps in the sequence numbers are explained by the fact that the

flattened UCM model does not show all encountered path elements, i.e., path elements that are either

a stub, a start point bound to an in-path of a stub by a plug-in binding or an end point bound to an

out-path of a stub by a plug-in binding. Furthermore, the flattened UCM model shows resolved

component plug-in bindings.

Z.151(12)_FIII.2

ring (32)

OriginatingAgent TerminatingAgent

forwardSignal (36) ringingTreatment (33)

TerminatingUser

checkTCS (23)

TCScreeningList

OriginatingUser

enterPIN (8) (9)

checkTime (6)

getPIN
(11)

sendRequest (16)request (1)

ringing (37)

(28)

ringTreatment (29)

Figure III.2 – Example: Flattened UCM model of depth-first traversed scenario

III.3 Example of breadth-first UCM path traversal mechanism

The difference between the depth-first approach shown in Figure III.1 and the breadth-first approach

shown in Figure III.3 is that in one step the traversal mechanism attempts to move to the next path

nodes not only from the first currently visited path node but from all currently visited path nodes.

Therefore, the algorithm contains a sequence of two for loops. The first identifies all enabled path

nodes given the set of currently visited path nodes. The second moves the traversal from the current

path nodes to the enabled path nodes all at once. Adding path nodes at the end of the list of enabled

path nodes and at the end of the list of currently visited path nodes ensures a breadth-first approach.

The treatment of the start points of the scenario is also slightly different compared to the depth-first

approach as the start points are added only one by one to the list of currently visited path nodes.

Algorithm UCMPathTraversalMechanism-BreadthFirst

Input scenario:ScenarioDef // the merged scenario

Output warningsAndErrors:List // warnings and errors issued during the traversal

List currentPathNodes = // currently visited path nodes

List enabledPathNodes = // path nodes that can be visited next

List blockedPathNodes = // path nodes that cannot continue

warningAndErrors = // initially empty

List enabledPathNodesFromCurrent = // temporary variable

 Rec. ITU-T Z.151 (10/2018) 235

PathNode current, nextCurrent // temporary variables

Integer sequenceNumber = 1 // sequence variable keeps track of the

 // number of traversed path nodes

try

{

 // if preconditions evaluate to false, stop traversal

 if (!EvaluatePreconditions(scenario))

 throw new TraversalException("warning: preconditions not satisfied")

 // add the first start point to the list of currently visited path nodes if it exists

 current = scenario.getNextStartPoint()

 if (current != null)

 {

 current.visitNumber++

 currentPathNodes.add(current)

 }

 while (currentPathNodes.size() > 0)

 {

 // go through all current path nodes at once to discover enabled path nodes

 for each pn:PathNode in currentPathNodes

 {

 // find the enabled path nodes from the current path node based on

 // the path continuation criteria (PCC)

 enabledPathNodesFromCurrent = GetEnabledPathNodes(pn)

 if (enabledPathNodesFromCurrent.size() == 0)

 {

 // the current path node is blocked continue with another

 // current path node in for loop

 blockedPathNodes.addAtEnd(pn)

 // add sequence number to an end point of the scenario; to

 // avoid duplicate sequence numbers for end points, this is

 // only done if the number of sequence numbers does not

 // exceed the number of visits

 if ((pn is of type EndPoint) and

 (pn.visitNumber > pn.sequenceNumbers.size()))

 {

 pn.sequenceNumbers.add(sequenceNumber);

 sequenceNumber++;

 }

 }

 else

 {

 // add found path nodes to the list of enabled path nodes

 enabledPathNodes.addAtEnd(enabledPathNodesFromCurrent)

 // add sequence number to path node when the traversal is

 // ready to move on to the next path nodes

 pn.sequenceNumbers.add(sequenceNumber);

 sequenceNumber++;

 }

 }

 currentPathNodes.clear()

 // at once move all enabled path nodes to the current path nodes

236 Rec. ITU-T Z.151 (10/2018)

 for each pn:PathNode in enabledPathNodes

 {

 // not shown here but this is the place where any additional

 // behaviour for the pn path node is executed depending on the type

 // of path node; for more information on what may occur here see

 // the depth-first algorithm

 // add the pn path node at the end of the list of currently visited path

 // nodes, so that the traversal continues in a breadth-first way

 currentPathNodes.addAtEnd(pn)

 pn.visitNumber++

 if (pn.visitNumber > maxVisit)

 throw new TraversalException("warning: infinite loop")

 }

 enabledPathNodes.clear();

 if (currentPathNodes.size() > 0)

 {

 // since moving to new path nodes may impact already blocked

 // path nodes, the blocked path nodes are added back to the

 // currently visited path nodes; they are added at the end of the list

 // to ensure a breadth-first approach

 currentPathNodes.addAllAtEnd(blockedPathNodes)

 blockedPathNodes.clear()

 }

 else

 {

 // the traversal did not move to a new path node, therefore try the

 // next start point of the scenario

 current = scenario.getNextStartPoint()

 if (current != null)

 {

 current.visitNumber++

 currentPathNodes.add(current)

 }

 }

 }

}

catch (TraversalException te)

{

 warningsAndErrors.add(te.getMessage())

}

// verify successful completion of traversal

for each pn:PathNode in (currentPathNodes blockedPathNodes)

 if (pn is not of type EndPoint)

 warningsAndErrors.add("warning: traversal not at an end point")

 else if (!EvaluateCondition(pn.postcondition))

 warningsAndErrors.add("error: postcondition of end point is false")

for each endPoint:PathNode in scenario.endPoints

 if (endPoint.visitNumber == 0)

 warningsAndErrors.add("error: end point not reached")

for each postcondition:Condition in scenario.postconditions ()

 Rec. ITU-T Z.151 (10/2018) 237

 if (!EvaluateCondition(postcondition))

 warningsAndErrors.add("error: postcondition is false")

return warningsAndErrors

Figure III.3 – Example: Breadth-first UCM path traversal mechanism

Given the breadth-first algorithm from Figure III.3, the "TL pin TCS success" scenario from the

example in clause 8.5.2 is traversed as follows (only the parts that changed from the depth-first

approach are shown; sequence numbers are shown in parentheses):

– Preconditions of the scenario evaluate to true as none are specified, currentPathNodes =

{request}, enabledPathNodes = , and blockedPathNodes = .

– The same as the depth-first approach except enterPIN is not on the currentPathNodes list up

to where getPIN timer is blocked: currentPathNodes = {enterPIN}, blockedPathNodes =

{getPIN timer} (because the next start point of the scenario is added to currentPathNodes).

– The same as the depth-first approach until the AND-fork is reached; move from AND-fork

(28) to ringTreatment responsibility and ringingTreatment responsibility, therefore exploring

both branches of the AND-fork in a breadth-first way: currentPathNodes = {ringTreatment,

ringingTreatment}.

– Move from ringTreatment responsibility (29) to success end point and ringingTreatment

responsibility (30) to reportSuccess end point: currentPathNodes = {success, reportSuccess}.

– Move from success end point (31) to OUT1 out-path of Terminating stub and reportSuccess

end point (32) to OUT2 out-path of Terminating stub: currentPathNodes = {Terminating,

Terminating}.

– Move from OUT1 out-path of Terminating stub (33) to ring end point and OUT2 out-path of

Terminating stub (34) to forwardSignal responsibility: currentPathNodes = {ring,

forwardSignal}.

– ring end point (35) is blocked because an end point of the scenario has been reached; move

from forwardSignal responsibility (36) to ringing end point: currentPathNodes = {ringing,

ring} (because all blockedPathNodes are moved to currentPathNodes if a new path node is

added to the currentPathNodes).

– ringing end point (37) is blocked because an end point of the scenario has been reached; ring

is blocked because an end point of the scenario has been reached: currentPathNodes = ,

blockedPathNodes = {ringing, ring}.

– while loop terminates.

– no warnings and errors are issued because a) only end points remain in currentPathNodes =

 and blockedPathNodes = {ringing, ring}, b) the end points of the scenario (ringing, ring)

were visited, and c) all postconditions are fulfilled.

The flattened UCM model that results from the breadth-first traversal of the "TL pin TCS success"

scenario is the same as the one for the depth-first traversal, as shown in Figure III.2, except for the

sequence numbers of ring and ringingTreatment. The difference can be seen in Figure III.4 for the

path nodes that follow the AND-fork.

238 Rec. ITU-T Z.151 (10/2018)

Z.151(12)_FIII.4

ring (35)

OriginatingAgent TerminatingAgent

forwardSignal (36) ringingTreatment (30)

TerminatingUser

checkTCS (23)

TCScreeningList

OriginatingUser

enterPIN (8) (9)

checkTime (6)

getPIN
(11)

sendRequest (16)request (1)

ringing (37)

(28)

ringTreatment (29)

Figure III.4 – Example: Flattened UCM model of breadth-first traversed scenario

 Rec. ITU-T Z.151 (10/2018) 239

URN Change Request Form

Please fill in the following details

Character of change: error correction clarification

 simplification extension

 modification decommission

Short summary of the change request.

Short justification of the change request.

Have you consulted other users? yes no

Is this view shared in your

organization?

 yes no

How many users do you represent? 1-5 6-10

 11-100 over 100

Your name and address

Please attach further sheets with details if necessary

URN (ITU-T Z.151) Rapporteur, c/o ITU-T, Place des Nations, CH-1211, Geneva 20, Switzerland.

Fax: +41 22 730 5853, e-mail: urn.rapporteur@ties.itu.int.

mailto:urn.rapporteur@ties.itu.int

240 Rec. ITU-T Z.151 (10/2018)

Bibliography

Many papers and theses related to URN, GRL and UCM are available online at the following location:

URN virtual library, <http://www.UseCaseMaps.org/pub/>.

http://www.usecasemaps.org/pub/

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.151 (10/2018) - User Requirements Notation (URN) – Language definition
	1 Scope
	1.1 Goal modelling with URN
	1.2 Scenario modelling with URN
	1.3 Documentation structure

	2 References
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	5.1 Grammars
	5.2 Basic definitions
	5.2.1 Validity

	5.3 Presentation style
	5.3.1 Division of text
	5.3.2 Titled enumeration items

	6 URN basic structural features
	6.1 URN abstract grammar metaclasses
	6.1.1 URNspec
	6.1.2 URNmodelElement
	6.1.3 URNlink
	6.1.4 Metadata
	6.1.5 Concern
	6.1.6 Condition

	6.2 URN concrete grammar metaclasses
	6.2.1 ConcreteURNspec
	6.2.2 Description
	6.2.3 ConcreteCondition

	7 GRL features
	7.1 GRL basic structural features
	7.1.1 GRLspec
	7.1.2 GRLmodelElement
	7.1.3 GRLLinkableElement
	7.1.4 ImportanceType
	7.1.5 GRLContainableElement

	7.2 GRL actors
	7.2.1 Actor

	7.3 GRL intentional elements
	7.3.1 IntentionalElement
	7.3.2 IntentionalElementType

	7.4 GRL links
	7.4.1 ElementLink
	7.4.2 Contribution
	7.4.3 ContributionType
	7.4.4 Dependency
	7.4.5 Decomposition
	7.4.6 DecompositionType

	7.5 GRL strategies
	7.5.1 StrategiesGroup
	7.5.2 EvaluationStrategy
	7.5.3 Evaluation
	7.5.4 QualitativeLabel

	7.6 GRL indicators
	7.6.1 Indicator
	7.6.2 IndicatorEvaluation
	7.6.3 IndicatorConversion
	7.6.4 LinearConversion
	7.6.5 QualToQMappings
	7.6.6 QualToQMapping

	7.7 GRL contribution contexts
	7.7.1 ContributionContextGroup
	7.7.2 ContributionContext
	7.7.3 ContributionChange

	7.8 GRL concrete grammar metaclasses
	7.8.1 ConcreteGRLspec
	7.8.2 GRLGraph
	7.8.3 ActorRef
	7.8.4 GRLNode
	7.8.5 IntentionalElementRef
	7.8.6 CollapsedActorRef
	7.8.7 LinkRef
	7.8.8 Label
	7.8.9 LinkRefBendpoint
	7.8.10 Position
	7.8.11 Size
	7.8.12 ConcreteStyle
	7.8.13 Comment
	7.8.14 ConcreteStrategy

	8 UCM features
	8.1 UCM basic structural features
	8.1.1 UCMspec
	8.1.2 UCMmodelElement

	8.2 UCM maps and path nodes
	8.2.1 UCMmap
	8.2.2 PathNode
	8.2.3 NodeConnection
	8.2.4 Responsibility
	8.2.5 RespRef
	8.2.6 StartPoint
	8.2.7 FailureKind
	8.2.8 EndPoint
	8.2.9 OrFork
	8.2.10 OrJoin
	8.2.11 AndFork
	8.2.12 AndJoin
	8.2.13 EmptyPoint
	8.2.14 WaitingPlace
	8.2.15 Timer
	8.2.16 WaitKind
	8.2.17 FailurePoint
	8.2.18 Connect

	8.3 UCM stubs and plug-ins
	8.3.1 Stub
	8.3.2 PluginBinding
	8.3.3 InBinding
	8.3.4 OutBinding

	8.4 UCM components
	8.4.1 Component
	8.4.2 ComponentType
	8.4.3 ComponentKind
	8.4.4 ComponentRef
	8.4.5 ComponentBinding

	8.5 UCM scenario definitions
	8.5.1 ScenarioGroup
	8.5.2 ScenarioDef
	8.5.3 Initialization
	8.5.4 Variable
	8.5.5 EnumerationType
	8.5.6 DatatypeKind

	8.6 UCM performance annotations
	8.6.1 Workload
	8.6.2 TimeUnit
	8.6.3 ClosedWorkload
	8.6.4 OpenWorkload
	8.6.5 OWPoisson
	8.6.6 OWPeriodic
	8.6.7 OWUniform
	8.6.8 OWPhaseType
	8.6.9 GeneralResource
	8.6.10 PassiveResource
	8.6.11 ActiveResource
	8.6.12 ProcessingResource
	8.6.13 DeviceKind
	8.6.14 ExternalOperation
	8.6.15 Demand

	8.7 UCM concrete grammar metaclasses
	8.7.1 DirectionArrow

	9 Data language
	9.1 URN data model
	9.2 URN data types
	9.2.1 Boolean
	9.2.2 Integer
	9.2.3 Enumeration

	9.3 Grammar for expressions
	9.4 Grammar for actions
	9.5 Grammar for failures

	10 URN interchange format
	11 URN analysis
	11.1 GRL model evaluation
	11.2 UCM scenario path traversal
	11.2.1 Overview
	11.2.2 Requirements for path traversal mechanism

	12 Compliance statement
	13 Tool compliance
	13.1 Definitions of valid tools
	13.1.1 Compliant URN tool
	13.1.2 Valid URN tool
	13.1.3 Valid graphical URN tool
	13.1.4 Compliant GRL tool
	13.1.5 Valid GRL tool
	13.1.6 Valid graphical GRL tool
	13.1.7 Compliant UCM tool
	13.1.8 Valid UCM tool
	13.1.9 Valid graphical UCM tool

	13.2 Conformance

	Annex A URN interchange format: XML schema
	Annex B Textual URN specification
	B.1 Introduction to the Textual URN specification
	B.2 User Requirements Notation: core concepts
	B.3 Goal-oriented Requirement Language
	B.4 Use Case Map

	Appendix I Summary of the URN
	I.1 Summary of abstract metamodel
	I.2 Summary of concrete metamodel
	I.3 Summary of URN symbols

	Appendix II Examples of GRL model evaluation algorithms
	II.1 Introduction
	II.1.1 Overview and characteristics
	II.1.2 Generic algorithm overview

	II.2 Example of quantitative evaluation algorithm
	II.2.1 Calculating quantitative evaluations for decomposition links
	II.2.2 Calculating quantitative evaluations for contribution links
	II.2.3 Calculating quantitative evaluations for dependency links
	II.2.4 Calculating quantitative evaluations for actors and the overall GRL model

	II.3 Example of qualitative evaluation algorithm
	II.3.1 Calculating qualitative evaluations for decomposition links
	II.3.2 Calculating qualitative evaluations for contribution links
	II.3.3 Calculating qualitative evaluations for dependency links
	II.3.4 Calculating qualitative evaluations for actors and the overall GRL model

	II.4 Example of hybrid evaluation algorithm
	II.4.1 Calculating hybrid evaluations for decomposition links
	II.4.2 Calculating hybrid evaluations for contribution links
	II.4.3 Calculating hybrid evaluations for dependency links
	II.4.4 Calculating hybrid evaluations for actors and the overall GRL model

	II.5 Calculating with exceeding expectations

	Appendix III Examples of UCM path traversal mechanisms
	III.1 Introduction
	III.2 Example of depth-first UCM path traversal mechanism
	III.3 Example of breadth-first UCM path traversal mechanism

	Bibliography

