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Summary 

The computational complexity of the block-coding algorithm of Rec. ITU-T T.800 | ISO/IEC 15444-1 can be a challenge 

in some applications. 

Rec. ITU-T T.814 | ISO/IEC 15444-15 specifies a high-throughput (HT) block-coding algorithm that can be used in place 

of the block-coding algorithm specified in Rec. ITU-T T.800 | ISO/IEC 15444-1. 

The HT block-coding algorithm increases decoding and encoding throughput and allows mathematically lossless 

transcoding to and from the block-coding algorithm specified in Rec. ITU-T T.800 | ISO/IEC 15444-1. This is achieved at 

the expense of some loss in coding efficiency and substantial elimination of quality scalability. 

The HT block-coding algorithm adopts a coding pass structure like that of the block-coding algorithm of Rec. ITU-T T.800 

| ISO/IEC 15444-1. No more than three coding passes are required for any given code-block in the final codestream, and 

arithmetic coding is replaced with a combination of variable length coding tools, adaptive run-length coding and simple 

bit-packing. The algorithm involves three passes: a significance propagation pass (HT SigProp coding pass), a magnitude 

refinement pass (HT MagRef coding pass) and a cleanup pass (HT cleanup coding pass). 

The HT MagRef coding pass is identical to that of the block-coding algorithm of Rec. ITU-T T.800 | ISO/IEC 15444-1, 

operating in the bypass mode, except that code bits are packed into bytes with a little-endian bit order. That is, the first 

code bit in a byte appears in its LSB, as opposed to its MSB. 

The HT SigProp coding pass is also very similar to that of the block-coding algorithm of Rec. ITU-T T.800 | ISO/IEC 

15444-1, operating in the BYPASS mode, with the following two differences: 

• code bits are again packed into bytes of the raw bit-stream with a little-endian bit order, instead of big-

endian bit packing order; and 

• the significance bits associated with a set of four stripe columns are emitted first, followed by the associated 

sign bits, before advancing to the next set of stripe columns, instead of inserting any required sign bit 

immediately after the same sample's magnitude bit. 

The HT cleanup coding pass is, however, significantly different from that of the block-coding algorithm of Rec. ITU-T 

T.800 | ISO/IEC 15444-1, and most of ITU-T T.814 | ISO/IEC 15444-15 is devoted to its description. 

Aside from the block-coding algorithm itself and the parsing of packet headers, the HT block-coding algorithm preserves 

the syntax and semantics of other parts of the codestream specified in Rec. ITU-T T.800 | ISO/IEC 15444-1. 

Recommendation ITU-T T.814 (2019) is a common text with ISO/IEC 15444-15:2019, both in their first edition. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 

telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the 

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other 

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of 

such words does not suggest that compliance with the Recommendation is required of any party. 
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INTERNATIONAL STANDARD 

ITU-T RECOMMENDATION  

Information technology – JPEG 2000 image coding system: High-throughput JPEG 2000 

1 Scope 

This Recommendation | International Standard specifies an alternate block-coding algorithm that can be used in place of 

the block-coding algorithm specified in Rec. ITU-T T.800 | ISO/IEC 15444-1. This alternate block-coding algorithm 

offers a significant increase in throughput at the expense of slightly reduced coding efficiency, while a) allowing 

mathematically lossless transcoding to and from codestreams that use the block-coding algorithm specified in Rec. ITU-T 

T.800 | ISO/IEC 15444-1, and b) preserving codestream syntax and features specified in Rec. ITU-T T.800 | ISO/IEC 

15444-1. 

Recommendation ITU-T T.814 (2019) is a common text with ISO/IEC 15444-15:2019, both in their first edition. 

2 Normative references 

The following Recommendations and International Standards contain provisions which, through reference in this text, 

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated 

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this 

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition 

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid 

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid 

ITU-T Recommendations.  

2.1 Identical Recommendations | International Standards 

– Recommendation ITU-T T.800 (2019) | ISO/IEC 15444-1:2019, Information technology – JPEG 2000 

image coding system: Core coding system.  

2.2 Paired Recommendations | International Standards equivalent in technical content 

– Recommendation ITU-T H.273 (2016), Coding-independent code points for video signal type 

identification. 

– ISO/IEC 23001-8:2016, Information technology – MPEG systems technologies – Part 8: Coding-

independent code points.  

2.3 Additional references 

– ISO/IEC 15076-1, Image technology colour management – Architecture, profile format and data 

structure – Part 1: Based on ICC.1:2010. 

3 Terms and definitions 

For the purposes of this Recommendation | International Standard, the terms and definitions given in Rec. ITU-T T.800 | 

ISO/IEC 15444-1 apply. 

4 Abbreviations  

For the purposes of this Recommendation | International Standard, the abbreviations and symbols defined in Rec. ITU-T 

T.800 | ISO/IEC 15444-1 and the following apply.  

AZC All Zero Context 

CUP  Cleanup coding Pass 

CPF Corresponding Profile 

CxtVLC Context adaptive Variable Length Code 

EMB Exponent Max Bound 

FRAG Fragmented 

HT High-Throughput 

HTJ2K High-Throughput JPEG 2000 
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HTIRV High-Throughput Irreversible 

HTREV High-Throughput Reversible 

LSB Least-Significant Bit 

MAGB Magnitude Bound 

MagRef Magnitude Refinement 

MagSgn Magnitude and Sign 

MRP MagRef coding pass  

MSB Most-Significant Bit 

SigProp Significance Propagation 

U-VLC Unsigned residual VLC 

VLC Variable Length Coding 

5 Conventions and symbols 

For the purposes of this Recommendation | International Standard, the symbols defined in Rec. ITU-T T.800 | ISO/IEC 

15444-1 and the following apply: 

Dcup[n] Byte n of an HT Cleanup segment 

Dref[n] Byte n of an HT Refinement segment 

Hblk Height of a code-block, measured in samples 

Lcup Length in bytes of HT Cleanup segment 

Lref Length in bytes of HT Refinement segment 

MEL Adaptive run-length coding algorithm 

MEL_E  MEL Exponent Table 

Pcup HT Cleanup segment prefix length 

QH  Height of a code-block, measured in quads 

QW  Width of a code-block, measured in quads 

Scup HT Cleanup segment suffix length 

SPP  HT SigProp coding Pass 

u_ext U-VLC extension component 

u_pfx  U-VLC prefix component 

u_sfx U-VLC suffix component 

Wblk Width of a code-block, measured in samples 

Z_blk Number of passes that can be processed within an HT Set 

6 Conformance 

6.1 HTJ2K codestream 

A high-throughput JPEG 2000 (HTJ2K) codestream shall conform to Annex A. 

6.2 HTJ2K decoding algorithm 

The HTJ2K decoding algorithm processes an HTJ2K codestream as specified in Rec. ITU-T T.800 | ISO/IEC 15444-1 

together with any additional signalled capability, with the exception of HT code-blocks, as defined in Annex B, in which 

case the following applies: 

• the HT code-blocks are processed according to clause 7; and 
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• the resulting number of magnitude bits 𝑁𝑏, the magnitude bits MSBi(𝑏)and the sign bits 𝑠𝑏 are processed 

according to Rec. ITU-T T.800 | ISO/IEC 15444-1, together with any additional signalled capability. 

NOTE 1 – If the two most significant bits of Ccap15 are 0 for a codestream, all code-blocks are HT code-blocks and the decoding 
procedures defined in Annexes C and D of Rec. ITU-T T.800 | ISO/IEC 15444-1 are not used. 

NOTE 2 – The processing of HT code-blocks specified herein is compatible with the additional capabilities specified in Rec. ITU-T 
T.801 | ISO/IEC 15444-2. 

NOTE 3 – The symbols 𝑁𝑏, MSBi(𝑏) and 𝑠𝑏 are defined in Rec. ITU-T T.800 | ISO/IEC 15444-1. 

6.3 JPH file 

A JPH file shall conform to Annex D. 

7 HT block-decoding algorithm 

7.1 Retrieving bit-streams from HT segments 

7.1.1 General 

This clause specifies the process for extracting bit-streams from an HT set and its associated parameters Z_blk and 

S_blk, as defined in Annex B. 

If Z_blk equals 0, no HT segments are available for the code-block, and so all sample output values for the block shall 

be 0. 

There are at most two HT segments available to the HT block-decoding algorithm: 

• The HT cleanup segment holds the coded bytes belonging to the HT cleanup coding pass (CUP); 

• The HT refinement segment holds the coded bytes belonging to the HT significance propagation (SigProp) 

coding pass and, optionally, an HT magnitude refinement (MagRef) coding pass. The HT refinement 

segment is available if and only if Z_blk is greater than 1, while an HT MagRef coding pass is available 

if and only if Z_blk is equal to 3. 

NOTE 1 – Multiple sets of HT cleanup and HT refinement segments can be found within the codestream for a given code-block, 
but the decoding procedure described here processes only Z_blk coding passes, whose coded bytes are found within one HT 
cleanup segment and, if Z_blk is greater than 1, the one HT refinement segment that follows this HT cleanup segment. 

As illustrated in Figure 1, the HT segments are comprised of byte-streams, each an ordered sequence of bytes. From each 

byte-stream, a bit-stream, which is an ordered sequence of bits, can be unpacked as follows: 

• The magnitude and sign (MagSgn) bit-stream is recovered from the MagSgn byte-stream, which extends 

forward from byte 0 of the HT cleanup segment for a total of Pcup bytes, with prefix length, Pcup = 

Lcup − Scup; where Lcup is the length (in bytes) of the HT cleanup segment, and Scup is a suffix 

length. 

• The adaptive run-length coding algorithm (MEL) bit-stream is recovered from the MEL byte-stream, 

which extends forward from byte Pcup of the HT cleanup segment, for at most Scup bytes. 

• The variable length coding (VLC) bit-stream is recovered from the VLC byte-stream, which extends 

backward from the last byte of the HT cleanup segment, for at most Scup bytes. The VLC and MEL byte-

streams may overlap. 

• If Z_blk is greater than 1, the SigProp bit-stream is recovered from the SigProp byte-stream, which 

extends forwards from byte 0 of the HT refinement segment, for at most Lref bytes, where Lref is the 

length of the HT refinement segment. 

• If Z_blk is equal to 3, the MagRef bit-stream is recovered from the MagRef byte-stream, which extends 

backwards from the end (byte Lref-1) of the HT refinement segment, for at most Lref bytes. The 

MagRef and SigProp byte-streams may overlap. 
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Figure 1 – HT segments and their byte-streams 

The HT cleanup segment: 

• shall have length Lcup such that 2 ≤ Lcup < 65535;  

• shall not contain any consecutive pair of bytes whose value, as a big-endian 16-bit unsigned integer, 

exceeds 0xFF8F; 

• shall not terminate with a byte whose value is 0xFF. 

The HT refinement segment: 

• shall have length Lref satisfying 0 ≤ Lref < 2047; 

• shall also contain no consecutive pair of bytes whose value, as a big-endian 16-bit unsigned integer, 

exceeds 0xFF8F; 

• shall not terminate with a byte whose value is 0xFF. 

The suffix length Scup is found from the last two bytes of the HT cleanup segment as follows: 

Scup = (16  Dcup[Lcup-1]) + (Dcup[Lcup-2] & 0x0F) 

where Dcup[n] denotes byte n of the HT cleanup segment, and where n takes value from 0 to Lcup-1. 

After Scup is recovered from its last two bytes, Dcup[n] is accessed using the following procedure: 

Procedure: modDcup 

Returns: Modified Dcup array 

State: Dcup, pos 

 

if (pos == Lcup – 1) 

  return 0xFF 

else if (pos == Lcup – 2) 

  return Dcup[pos] | 0x0F 

else 

  return Dcup[pos] 

 

NOTE 2 – This procedure overwrites the last byte and the four least-significant bits (LSBs) of the second-last byte of the HT 
cleanup segment with 1s. 

The value of Scup obtained in this way, shall satisfy: 

2 ≤ Scup ≤ min(Lcup, 4079) 

Furthermore, the codestream shall be constructed such that, if Scup < Lcup, so that Pcup > 0, byte Pcup-1 of the 

HT cleanup segment shall not have the value 0xFF.  

NOTE 3 – The importMagSgnBit procedure in clause 7.1.2 effectively synthesizes a byte equal to 0xFF to replace any 
byte equal to 0xFF that might have been discarded during encoding to satisfy this constraint. 
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Details of the procedures to be used in recovering each bit-stream from its respective byte-stream are provided in 

clauses 7.1.2 to 7.1.6. 

Similar to the HT cleanup segment, Dref[n] denotes byte n of the HT refinement segment, where n takes values from 

0 to Lref-1, except that no modification is made to the bytes of the HT refinement segment.  

The procedure error() denotes a state resulting from a codestream that does not conform to this specification, and for 

which behaviour is undefined. 

7.1.2 Magsgn bit-stream recovery 

HT MagSgn bits are retrieved from the HT MagSgn byte-stream, as required by other elements of the decoding procedure, 

using the importMagSgnBit procedure in the following. This procedure is part of a state machine with state variables 

MS_pos, MS_bits, MS_tmp and MS_last that are initialized using the initMS procedure, prior to first use of the 

importMagSgnBit procedure for an HT code-block. 

Procedure: initMS 

State: MS_pos, MS_bits, MS_tmp, MS_last 

 

MS_pos = 0 

MS_bits = 0 

MS_tmp = 0 

MS_last = 0 

 

Procedure: importMagSgnBit 

Returns: next MagSgn bit 

State: MS_pos, MS_bits, MS_tmp, MS_last 

 

if (MS_bits == 0) 

    MS_bits = (MS_last == 0xFF)? 7 : 8 

    if (MS_pos < Pcup) 

        MS_tmp = modDcup(Dcup, MS_pos) 

        if ((MS_tmp & (1<<MS_bits)) != 0) 

            error() 

    else if (MS_pos == Pcup) 

        MS_tmp = 0xFF 

    else 

        error() 

    MS_last = MS_tmp 

    MS_pos = MS_pos + 1 

bit = MS_tmp & 1 

MS_tmp = MS_tmp >> 1 

MS_bits = MS_bits – 1 

return bit 

 

NOTE 1 – These procedures effectively unpack bits from the HT MagSgn byte-stream in little-endian order, skipping over stuffing 
bits that appear in the MSB position of any byte that follows a byte equal to 0xFF. 

NOTE 2 – The value of Pcup can be as small as 0. 

NOTE 3 – The procedure in the foregoing effectively appends at most one byte equal to 0xFF to the HT MagSgn byte-stream, 
which is sufficient to allow recovery of all required HT MagSgn bits if the codestream conforms to this  
Specification. 
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NOTE 4 – The importMagSgnBit procedure is designed such that the MSB of a byte that follows a byte equal to 0xFF is 
0, unless that byte does not contribute to the MagSgn bit-stream. This is intended to simplify decoder implementations. 

7.1.3 MEL bit-stream recovery 

MEL bits are retrieved from the MEL byte-stream, as required by other elements of the decoding procedure, using the 

importMELBit procedure in the following. This procedure is part of a state machine with state variables MEL_pos, 

MEL_bits, MEL_tmp that are initialized using the initMEL procedure, prior to first use of the importMELBit 

procedure for an HT code-block. 

Procedure: initMEL 

State: MEL_pos, MEL_bits, MEL_tmp 

 

MEL_pos = Pcup 

MEL_bits = 0 

MEL_tmp = 0 

 

Procedure: importMELBit 

Returns: next MEL bit 

State: MEL_pos, MEL_bits, MEL_tmp 

 

if (MEL_bits == 0) 

    MEL_bits = (MEL_tmp == 0xFF) ? 7 : 8 

    if (MEL_pos < Lcup) 

        MEL_tmp = modDcup(Dcup,MEL_pos) 

        MEL_pos = MEL_pos + 1 

    else 

        MEL_tmp = 0xFF     

MEL_bits = MEL_bits – 1 

bit = (MEL_tmp >> MEL_bits) & 1 

return bit 

 

NOTE – These procedures effectively unpack bits from the MEL byte-stream in big-endian order, skipping over stuffing bits that 
appear in the MSB position of any byte that follows a byte equal to 0xFF. 

7.1.4 HT VLC bit-stream recovery 

HT VLC bits are retrieved from the HT VLC byte-stream, as required by other elements of the decoding procedure, using 

the importVLCBit procedure in the following. This procedure is part of a state machine with state variables VLC_pos, 

VLC_bits, VLC_tmp and VLC_last that are initialized using the initVLC procedure in the following, prior to first 

use of the importVLCBit procedure for an HT code-block. 

Procedure: initVLC 

State: VLC_pos, VLC_bits, VLC_tmp, VLC_last 

 

VLC_pos = Lcup-3 

VLC_last = modDcup(Dcup ,Lcup-2) 

VLC_tmp = VLC_last >> 4 

VLC_bits = ((VLC_tmp & 7) < 7)?4:3 
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Procedure: importVLCBit 

Returns: next VLC bit 

State: VLC_pos, VLC_bits, VLC_tmp, VLC_last 

 

if (VLC_bits == 0) 

    if (VLC_pos >= Pcup) 

        VLC_tmp = modDcup(Dcup, VLC_pos) 

    else 

        error() 

    VLC_bits = 8 

    if (VLC_last > 0x8F) and ((VLC_tmp & 0x7F) == 0x7F) 

        VLC_bits = 7 

    VLC_last = VLC_tmp 

    VLC_pos = VLC_pos - 1 

bit = VLC_tmp & 1 

VLC_tmp = VLC_tmp >> 1 

VLC_bits = VLC_bits – 1 

return bit 

 

NOTE – These procedures effectively unpack bits from the HT VLC byte-stream in little-endian order, while consuming bytes in 
reverse order, skipping over stuffing bits that appear in the MSB position of any byte whose 7 LSBs are all 1s if the byte that was 
last consumed was larger than 0x8F, and also skipping over the 12 bits that were replaced with 1s after using them to find the 
Scup value. 

7.1.5 HT SigProp bit-stream recovery 

If Z_blk is greater than or equal to 2, HT SigProp bits are retrieved from the HT SigProp byte-stream, as required by 

other elements of the decoding procedure, using the importSigPropBit procedure in the following. This procedure 

is part of a state machine with state variables SP_pos, SP_bits, SP_tmp and SP_last that are initialized using the 

initSP procedure in the following, prior to first use of the importSigPropBit procedure for an HT code-block. 

Procedure: initSP 

State: SP_pos, SP_bits, SP_tmp, SP_last 

SP_pos = 0 

SP_bits = 0 

SP_tmp = 0 

SP_last = 0 
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Procedure: importSigPropBit 

Returns: next SigProp bit 

State: SP_pos, SP_bits, SP_tmp, SP_last 

 

if (SP_bits == 0) 

    SP_bits = (SP_last == 0xFF) ? 7 : 8 

    if (SP_pos < Lref) 

        SP_tmp = Dref[SP_pos] 

        SP_pos = SP_pos + 1 

        if ((SP_tmp & (1<<SP_bits)) != 0) 

            error() 

    else 

        SP_tmp = 0 

    SP_last = SP_tmp 

bit = SP_tmp & 1 

SP_tmp = SP_tmp >> 1 

SP_bits = SP_bits – 1 

return bit 

 

NOTE 1 – These procedures are similar to those used to import bits from the HT MagSgn byte-stream, except that a separate set 
of state variables is used, and any bytes required from beyond the Dref buffer are taken to be 0 – no byte equal to 0xFF is 
synthesized by the decoder.  

NOTE 2 – The importSigPropBit procedure is designed such that the MSB of a byte that follows a byte equal to 0xFF is 0, 
unless that byte is not involved in the SigProp decoding process. This property can simplify decoder implementations. 

7.1.6 HT MagRef bit-stream recovery 

If Z_blk is equal to 3, HT MagRef bits are retrieved from the HT MagRef byte-stream, as required by other elements of 

the decoding procedure, using the importMagRefBit procedure in the following. This procedure is part of a state 

machine with state variables MR_pos, MR_bits, MR_tmp and MR_last that are initialized using the initMR 

procedure in the following, prior to first use of the importMagRefBit procedure for an HT code-block. 

Procedure: initMR 

State: MR_pos, MR_bits, MR_tmp, MR_last 

 

MR_pos = Lref - 1 

MR_bits = 0 

MR_last = 0xFF 

MR_tmp = 0 
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Procedure: importMagRefBit 

Returns: next HT MagRef bit 

State: MR_pos, MR_bits, MR_tmp, MR_last 

if (MR_bits == 0) 

    if (MR_pos >= 0) 

        MR_tmp = Dref[MR_pos] 

        MR_pos = MR_pos - 1 

    else 

        MR_tmp = 0 

    MR_bits = 8 

    if (MR_last > 0x8F) and ((MR_tmp & 0x7F) == 0x7F) 

        MR_bits = 7 

    MR_last = MR_tmp     

bit = MR_tmp & 1 

MR_tmp = MR_tmp >> 1 

MR_bits = MR_bits – 1 

return bit 

 

NOTE – These procedures are similar to those used to import bits from the VLC byte-stream, except that there are no initial bits to 
skip and the initialization conditions are such that the MSB of the last byte in the HT MagRef byte-stream will be skipped if its 
seven LSBs are all 1. Also, any bytes required from before the start of the Dref buffer are taken to be 0. 

7.2 Quad-based scanning pattern 

Figure 2 illustrates the quad-based scanning pattern that is followed when decoding an HT cleanup coding pass. The HT 

code-block samples are arranged within an array of quads where QW is the width of the code-block, measured in quads, 

QH is the height of the code-block measured in quads, and  

QW =  ⌈
Wblk

2
⌉ 

QH =  ⌈
Hblk

2
⌉ 

where Wblk and Hblk are the width and height of the HT code-block, measured in samples. 

If Wblk is not divisible by 2, the HT code-block is padded with an extra column of samples on the right, so that each 

quad spans two sample columns. Similarly, if Hblk is not divisible by 2, the HT code-block is padded with an extra row 

of samples on the bottom, so that each quad spans two sample rows and includes exactly four samples. All padded samples 

shall have output values equal to 0. 

 

Figure 2 – Quad-based scanning pattern used in the HT cleanup pass 
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Throughout this clause, the symbol 𝑞 is used to identify quads, as an index that takes values in the range 

0 ≤ 𝑞 < QW × QH 

Following the quad-based scan of Figure 2, locations 𝑛 within the HT code-block take values in the range 

0 ≤ 𝑛 < 4 × QW × QH 

which can also be written as 

𝑛 = 4𝑞 + 𝑗 

where: 

𝑗 = 0 identifies the top-left sample within its quad; 

𝑗 = 1 identifies the bottom-left sample within its quad; 

𝑗 = 2 identifies the top-right sample within its quad; and 

𝑗 = 3 identifies the bottom-right sample within its quad. 

7.3 HT cleanup decoding algorithm 

7.3.1 Overview 

Figure 3 illustrates the operation of the HT cleanup decoding algorithm. 

  

B1: Compute contexts, as described in clause 7.3.5. 

B2: Decode MEL symbols, as described in clause 7.3.3. 

B3: Decode CxtVLC codewords, as described in clause 7.3.5. 

B4: Compute 𝛾𝒒 from 𝜌𝒒, as described in clause 7.3.7. 

B5: Form exponent predictors, as described in clause 7.3.7. 

B6: Compute MagSgn bit counts 𝑚𝒏 and implicit-1 flags 𝑖𝒏, as described in clauses 7.3.2 and 7.3.8. 

B7: Decode U-VLC codewords, as described in clause 7.3.6. 

B8: Decode MagSgn values, as described in clause 7.3.8. 

B9: Extract byte-streams from HT cleanup segment, as described in clause 7.1.1. 

B10: Extract MagSgn bit-stream from bit-stuffed MagSgn byte-stream, as described in clause 7.1.2. 

B11: Extract MEL bit-stream from bit-stuffed MEL byte-stream, as described in clause 7.1.3. 

B12: Extract VLC bit-stream from bit-stuffed VLC byte-stream, as described in clause 7.1.4. 

C1: HT cleanup segment. 

C2: MagSgn bit-stream. 

C3: MEL bit-stream. 

C4: VLC bit-stream. 
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D1: Retrieved neighbouring significance patterns. 

D2: Generated significance patterns. 

D3: Retrieved neighbouring magnitude exponents. 

D4: Generated magnitude exponents. 

D5: Generated code-block samples. 

M1: Storage for code-block samples and derived quantities, with quad-based scanning, as described in clause 7.2. 

N1: First line-pair of code-block only. 

S1: De-interleave quad-pair VLC bits, as described in clause 7.3.4 

Figure 3 – Operation of the HT cleanup decoding algorithm (informative). Each block in the diagram refers to 

the clause that defines its operation 

7.3.2 Significance, exponents, predictors, MagSgn values and EMB pattern bits 

This clause introduces notation and formulae that are used to describe the block-decoding procedures associated with the 

HT cleanup coding pass, as presented in clauses 7.3.3 to 7.3.8. 

The HT cleanup coding pass produces magnitude values μ𝑛, along with sign values 𝑠𝑛 ∈ {0,1} for each sample of the HT 

code-block, where 𝑠𝑛 = 1 corresponds to a negative value, and all values with zero magnitude shall have 𝑠𝑛 = 0. 

Sample magnitudes shall satisfy 

0 ≤ μ𝑛 < 274 

NOTE 1 – The upper bound here comes from the combination of a) the maximum number of bit-planes (37) for any given sub-
band (see clause B.10.5 of Rec. ITU-T T.800 | ISO/IEC 15444-1), and b) the maximum value of SPrgn (37) allowed in HTJ2K 
codestreams (see clause A.5). 

The significance of a sample σ𝑛 ∈ {0,1} identifies whether its magnitude is 0; it satisfies: 

σ𝑛 = {
0 if μ𝑛 = 0
1 if μ𝑛 > 0

 

Padded samples that have been added to HT code-blocks with odd width or height, as explained in clause 7.2, shall have 

σ𝑛 = 0. The significance of an entire quad q is denoted 𝜎𝑞 ∈ {0,1}, indicating whether any sample in the quad is 

significant, and satisfies: 

σ̅𝑞 = σ4𝑞  | σ4𝑞+1 | σ4𝑞+2 | σ4𝑞+3 

The significance pattern for a quad 𝑞, denoted ρ𝑞, is a 4-bit value comprised of the 1-bit significance values associated 

with each of the quad's samples; that is, 

ρ𝑞 = σ4𝑞 + 2σ4𝑞+1 + 4σ4𝑞+2 + 8σ4𝑞+3 

For significant samples (𝜎𝑛 = 1) the magnitude and sign values are encapsulated within an HT MagSgn value 𝑣𝑛 that is 

defined as follows: 

𝑣𝑛 = 2(μ𝑛 − 1) + 𝑠𝑛 

The magnitude exponent 𝐸𝑛 for a sample is derived from its magnitude as follows: 

𝐸𝑛 = min{𝐸 ∈ ℕ | (2μn − 1) < 2E} 

Table 1 provides a detailed elaboration of the relationship between sample magnitude 𝜇 and exponent 𝐸. No magnitude 

exponent shall have a value larger than 75. 
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Table 1 – Mapping of sub-band sample magnitudes to magnitude exponents 

𝛍𝒑 𝑬𝒑 

0 0 

1 1 

2 2 

3 to 4 3 

5 to 8 4 

9 to 16 5 

… … 

273 + 1 to 274 75 

For significant samples, the HT MagSgn value 𝑣𝑛 is determined by unpacking 𝑚𝑛 bits from the HT MagSgn bit-stream, 

as explained in clause 7.3.8 and adding 𝑖𝑛 ∙ 2𝑚𝑛 , where 𝑖𝑛 ∈ {0,1} . For insignificant samples, 𝑚𝑛 = 0 , while for 

significant samples 𝑚𝑛 is obtained by subtracting a 1-bit quantity 𝑘𝑛 ∈ {0,1} from a common exponent bound 𝑈𝑞 for the 

quad 𝑞 to which location 𝑛 belongs. These quantities are linked by the following relationships: 

𝑚𝑛 = 𝜎𝑛 ⋅ 𝑈𝑞 − 𝑘𝑛 

𝑖𝑛 ≤ 𝑘𝑛 ≤ 𝜎𝑛 

where the magnitude exponents of all samples in a quad 𝑞 satisfy 

𝐸𝑛 ≤ 𝑈𝑞  for 𝑛 ∈ {4𝑞, 4𝑞 + 1,4𝑞 + 2,4𝑞 + 3} 

The decoder determines the quad's 𝑈𝑞 value by adding an unsigned residual value 𝑢𝑞 to an exponent predictor 𝜅𝑞. 

The value of 𝑢𝑞 is decoded in two steps, the first of which decodes an "unsigned residual offset" value 𝑢𝑞
off ∈ {0,1} that 

indicates whether 𝑢𝑞 is 0, while the second step decodes the value of 𝑢𝑞  − 1 for quads in which 𝑢𝑞
off=1, meaning that the 

unsigned residual is non-zero. 

The exponent max bound (EMB) pattern information for a quad 𝑞 consists of two 4-bit patterns, 𝜖�̅�
k and 𝜖�̅�

1, whose bits 

are the quantities 𝑖𝑛 and 𝑘𝑛 introduced in the foregoing. That is, 

𝜖�̅�
k = 𝑘4𝑞 + 2𝑘4𝑞+1 + 4𝑘4𝑞+2 + 8𝑘4𝑞+3 

and 

𝜖�̅�
1 = 𝑖4𝑞 + 2𝑖4𝑞+1 + 4𝑖4𝑞+2 + 8𝑖4𝑞+3 

The significance pattern 𝜌𝑞, EMB known bit pattern 𝜖�̅�
k and EMB known-1 pattern 𝜖�̅�

1 are decoded together with 𝑢𝑞
off, based 

on a single variable length codeword for the quad 𝑞. 

In this Specification, 𝜖�̅�
k  and 𝜖�̅�

1  are both 0 if 𝑢𝑞
off = 0. Moreover, if 𝑢𝑞

off = 1, the value of 𝑈𝑞  shall be equal to the 

maximum of the magnitude exponents 𝐸𝑛, of the quad's samples. 

NOTE 2 – The EMB patterns 𝜖�̅�
k and 𝜖�̅�

1 provide information about whether individual magnitude exponents 𝐸𝑛 are equal to the 
quad's maximum magnitude exponent. The variable length codewords for a quad may provide the decoder with EMB information 
for some, none or all samples in the quad; the known bit pattern 𝜖�̅�

k identifies which samples have such information. The known-1 
pattern 𝜖�̅�

1 provides the EMB information itself; each bit 𝑖𝑛 in this pattern is 1 if 𝑘𝑛 = 1 and 𝐸𝑛 is equal to the maximum exponent 
for the quad. 

7.3.3 MEL symbol decoding procedure 

The HT cleanup coding pass decoding procedure involves at most one MEL symbol 𝑠𝑞
mel for each quad 𝑞, that is retrieved 

by decoding the MEL bit-stream using the decodeMELSym procedure in the following. This procedure is part of a state 

machine with state variables MEL_k, MEL_run and MEL_one that are initialized using the initMELDecoder 

procedure in the following, prior to first use of the decodeMELSym procedure for an HT code-block. 

The MEL decoding procedure uses an exponent table MEL_E[], whose entries are listed in Table 2. 
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Procedure: initMELDecoder 

State: MEL_k, MEL_run, MEL_one 

 

MEL_k = 0 

MEL_run = 0 

MEL_one = 0 

 

Procedure: decodeMELSym 

Returns: next MEL symbol 𝒔
mel

 

State: MEL_k, MEL_run, MEL_one 

 

if (MEL_run == 0) and (MEL_one == 0) 

    eval = MEL_E[MEL_k] 

    bit = importMELBit 

    if (bit == 1) 

        MEL_run = 1 << eval 

        MEL_k = min(12,MEL_k+1) 

    else 

        MEL_run = 0 

        while (eval > 0) 

            bit = importMELBit 

            MEL_run = 2 * MEL_run + bit  

            eval = eval - 1 

        MEL_k = max(0,MEL_k-1) 

        MEL_one = 1 

if (MEL_run > 0) 

    MEL_run = MEL_run - 1 

    return 0 

else 

    MEL_one = 0 

    return 1 

 

Table 2 – MEL Exponent Table MEL_E[k] 

k exponent MEL_E k exponent MEL_E 

0 0 7 2 

1 0 8 2 

2 0 9 3 

3 1 10 3 

4 1 11 4 

5 1 12 5 

6 2 
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7.3.4 Quad-pair interleaved decoding for the VLC bit-stream 

This clause describes the quad-pair interleaving structure that shall be followed when decoding bits from the VLC bit-

stream to produce significance patterns ρ𝑔, unsigned residuals 𝑢𝑔 and EMB patterns 𝜖�̅�
k and 𝜖�̅�

1. The decoding procedures 

themselves are described in clauses 7.3.5 and 7.3.6. 

Figure 4 illustrates the sequence of decoding steps. For each pair of horizontally adjacent quads, the variable length 

decoding procedure identified as CxtVLC is performed first, for each of the quads; as described in clause 7.3.5, this 

consumes between 0 and 7 bits from the VLC bit-stream. Next, the variable length U-VLC prefix decoding process is 

performed for each of the two quads. As described in clause 7.3.6, this consumes between 0 and 3 bits from the VLC bit-

stream for each of the quads, and uniquely determines the number of U-VLC suffix bits that shall occur for each of the 

two quads. Any U-VLC suffix bits associated with the first quad in the pair are retrieved from the VLC bit-stream before 

those associated with the second quad. Finally, the decoder extracts any U-VLC extension bits for the quad-pair, 

extracting first the extension bits for the first quad in the pair and then the extension bits for the second quad in the pair. 

As explained in clause 7.3.6, the number of extension bits for a quad is 0 or 4, and is determined by the value of the 

corresponding U-VLC suffix. 

U-VLC extensions shall have zero length in cases where the sample magnitudes 𝜇𝑛 cannot exceed 236. 

EXAMPLE – If the parameter B specified in clause 8.7.3 is less than or equal to 36, a decoder can rely upon the fact that there will be 

no U-VLC extensions. 

 

Figure 4 – Quad-pair interleaving of VLC decoding steps 

(Arrows identify dependencies) 

If QW is odd, the final quad-pair on each row only has a first quad. For such quad-pairs, the decoder shall not perform any 

of the decoding steps suggested in the foregoing for the missing second quad.  

7.3.5 Decoding of significance and EMB patterns and unsigned residual offsets 

This clause describes the context-adaptive variable length decoding procedure that is used to decode the significance 

pattern 𝜌𝑞, the unsigned residual offset 𝑢𝑞
off and the EMB patterns 𝜖�̅�

k and 𝜖�̅�
1 for each quad 𝑞. 

The decoding procedure depends upon a context value 𝑐𝑞 that is computed from the significance of a set of neighbouring 

samples, as shown in Figure 5. 
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Figure 5 – Significance neighbourhood information used to form coding contexts 𝒄𝒒 for quads found in non-

initial (𝒒 ≥ QW) and initial (𝒒 < QW) line-pairs within a HT code-block 

The  superscript labels (nw, n, ne, nf, w, sw, f, and sf) are used to identify the relevant neighbours 

The neighbours used in the first row of quads for the HT code-block, where 𝑞 < QW, are denoted 

(σ𝑞
sw, σ𝑞

w, σ𝑞
sf, σ𝑞

f ) = {
(σ4𝑞−1, σ4𝑞−2, σ4𝑞−3, σ4𝑞−4) if 𝑞 > 0

(0, 0, 0, 0) if 𝑞 = 0
 

and in this case the context value is computed as follows: 

 𝑐𝑞 = (σ𝑞
f |σ𝑞

sf) + 2σ𝑞
w + 4σ𝑞

sw (1) 

The neighbours used in non-initial quad rows of the HT code-block, where 𝑞 ≥ QW, are denoted 

σ𝑞
n = σ4(𝑞−QW)+1, σ𝑞

ne = σ4(𝑞−QW)+3, 

σ𝑞
nw = {

σ4(𝑞−QW)−1 if mod(𝑞,QW) ≠ 0

0 otherwise
 and σ𝑞

nf = {
σ4(𝑞−QW)+5 if mod(𝑞 + 1,QW) ≠ 0

0 otherwise
 

and in this case the context value is computed as follows: 

 𝑐𝑞 = (σ𝑞
nw|σ𝑞

n ) + 2(σ𝑞
w|σ𝑞

sw) + 4(σ𝑞
ne|σ𝑞

nf) (2) 

Quads 𝑞 for which 𝑐𝑞 = 0 are identified as all zero context (AZC) quads and receive special treatment in the decoding 

process, which is represented by the decodeSigEMB procedure in the following. This procedure relies upon the 

decodeMELSym procedure, as well as a decodeCxtVLC procedure in the following, which is used for non-AZC quads 

and for AZC quads that are determined to be significant because the decodeMELSym procedure returns a 1. 

The decodeCxtVLC procedure itself is based on a separate prefix code for each context 𝑐𝑞. Prefix codes are further 

differentiated based on quad-type – i.e., whether the quad being decoded belongs to the first row of quads for the HT 

code-block (𝑞 < QW) or not. Bits from the VLC bit-stream are imported using the importVLCbit procedure described 

in clause 7.1, until one of the codewords of the prefix code is matched, revealing the tuple (𝜌𝑞 , 𝑢𝑞
off, 𝜖�̅�

k, 𝜖�̅�
1) as the decoded 

result. Annex C provides the code tables CxtVLC_table_0 and CxtVLC_table_1, corresponding to each quad-

type. The function test_match returns true if a codeword prefix cwd, length len and context 𝑐𝑞 match the 𝑤, 𝑙𝑤 and 

𝑐𝑞 fields of an entry in the table. The function get_match returns the (𝜌𝑞 , 𝑢𝑞
off, 𝜖�̅�

k, 𝜖�̅�
1) values from the matching entry. 
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Procedure: decodeCxtVLC 

Input: quad index q and context 𝑐𝑞 

Returns: (ρ𝑞 , 𝑢𝑞
off, ϵ̅𝑞

k , ϵ̅𝑞
1) tuple for quad q 

 

if (q < QW) 

    table = CxtVLC_table_0 

else 

    table = CxtVLC_table_1 

len = 1 

cwd = importVLCbit 

while (!test_match(table, 𝑐𝑞,cwd,len)) 

    bit = importVLCbit 

    cwd = cwd | (bit << len) 

    len = len + 1 

(ρ𝑞 , 𝑢𝑞
off, ϵ̅𝑞

k , ϵ̅𝑞
1) = get_match(table, 𝑐𝑞,cwd,len) 

return (ρ𝑞 , 𝑢𝑞
off, ϵ̅𝑞

k , ϵ̅𝑞
1 )  

 

Procedure: decodeSigEMB 

Input: quad index q and context 𝑐𝑞 

Returns: (ρ𝑞 , 𝑢𝑞
off, ϵ̅𝑞

k , ϵ̅𝑞
1) tuple for quad q 

 

if (𝑐𝑞 == 0) 

    sym = decodeMELSym 

    if (sym == 0) 

        return (ρ𝑞 , 𝑢𝑞
off, ϵ̅𝑞

k , ϵ̅𝑞
1 )  = (0,0,0,0) 

(𝜌𝑞 , 𝑢𝑞
off, 𝜖�̅�

k , 𝜖�̅�
1) = decodeCxtVLC 

return (ρ𝑞 , 𝑢𝑞
off, ϵ̅𝑞

k , ϵ̅𝑞
1 )  

 

7.3.6 Decoding of unsigned residuals 

This clause describes the procedure used to decode the unsigned residual value 𝑢𝑞 for a quad 𝑞 in which the decoded 

value of 𝑢𝑞
off is 1. If 𝑢𝑞

off = 0, the unsigned residual 𝑢𝑞 is 0 and no further unsigned residual decoding is required for the 

quad. 

When 𝑢𝑞
off = 1, the value of 𝑢𝑞 is decoded with the aid of a U-VLC variable length decoding procedure that involves up 

to three steps. The first step is to decode the variable length U-VLC prefix. For certain prefix values, a second step is 

required, in which a U-VLC suffix is decoded. The number of U-VLC suffix bits that need to be decoded from the VLC 

bit-stream is determined entirely by the U-VLC prefix value. If the U-VLC suffix value is greater than 27, a third step is 

required, in which 4 bits are imported from the VLC bit-stream to form a U-VLC extension code. The U-VLC prefix, 

suffix and extension decoding steps for each pair of quads are interleaved, as described in clause 7.3.4. 

Table 3 provides the complete U-VLC code that is used as-is to decode the 𝑢𝑞 value for quads belonging to a non-initial 

line-pair of the HT code-block – i.e., whenever 𝑞 ≥ QW. The same method is used to decode the 𝑢𝑞 values for quad-pairs 

belonging to the initial line-pair of the HT code-block, where quads 𝑞1 and 𝑞2 of the quad-pair do not both have 𝑢𝑞1
off = 1 

and 𝑢𝑞2
off = 1. The final decoded value for 𝑢𝑞 in these cases is: 

 𝑢 = u_pfx + u_sfx + 4 * u_ext (3) 



ISO/IEC 15444-15:2019 (E) 

  Rec. ITU-T T.814 (06/2019) 17 

where u_pfx is decoded using the decodeUPrefix procedure, then u_sfx is decoded using the decodeUSuffix 

procedure, then u_ext is decoded using the decodeUExtension procedure, all of which appear in the following. 

Table 3 – U-VLC code used to encode unsigned residuals 𝒖 > 𝟎. The prefix string here is matched against bits 

from the VLC bit-stream from left to right, consuming 𝒍𝒑(𝒖) bits. The suffix and extension words are unsigned 

integers with 𝒍𝒔(𝒖) and 𝒍𝒆(𝒖) bits that are imported from the VLC bit-stream in little-endian order (i.e., least 

significant bit first) 

𝒖 Prefix Suffix Extension 𝒍𝒑(𝒖) 𝒍𝒔(𝒖) 𝒍𝒆(𝒖) 𝒍𝒑(𝒖) + 𝒍𝒔(𝒖) + 𝒍𝒆(𝒖) 

 cwd u_pfx u_sfx u_ext     

1 "1" 1 -- -- 1 0 0 1 

2 "01" 2 -- -- 2 0 0 2 

3 "001" 3 (𝑢 − 3) -- 3 1 0 4 

4 "001" 3 (𝑢 − 3) -- 3 1 0 4 

5 "000" 5 (𝑢 − 5) -- 3 5 0 8 

6 "000" 5 (𝑢 − 5) -- 3 5 0 8 

… … … … -- … … … … 

32 "000" 5 27 -- 3 5 0 8 

33 "000" 5 28+mod((u-33),4) ⌊(𝑢 − 33)/4⌋ 3 5 4 12 

34 "000" 5 28+mod((u-33),4) ⌊(𝑢 − 33)/4⌋ 3 5 4 12 

… … … … … … … … 12 

74 "000" 5 29 10 3 5 4 12 

 

Procedure: decodeUPrefix 

Returns: U-VLC prefix value u_pfx 

 

bit = importVLCBit 

if (bit == 1) return 1 

bit = importVLCBit 

if (bit == 1) return 2 

bit = importVLCBit 

return (bit == 1)? 3:5 
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Procedure: decodeUSuffix 

Input: U-VLC prefix value u_pfx 

Returns: U-VLC suffix value u_sfx 

 

if (u_pfx < 3) return 0 

val = importVLCBit 

if (u_pfx == 3) return val 

for (i=1; i < 5; i++) 

    bit = importVLCBit 

    val = val + (bit << i) 

return val 

 

Procedure: decodeUExtension 

Input: U-VLC suffix value u_sfx 

Returns: U-VLC extension value u_ext 

 

if (u_sfx < 28) return 0 

val = importVLCBit 

for (i=1; i < 4; i++) 

    bit = importVLCBit 

    val = val + (bit << i) 

return val 

 

For quads belonging to the first line-pair of the HT code-block (i.e., when 𝑞 < QW), the process used to decode a non-

zero 𝑢𝑞 value (i.e., when 𝑢𝑞
off is 1) is modified where quads 𝑞1 and 𝑞2 of a quad-pair are found to have both 𝑢𝑞1

off = 1 and 

𝑢𝑞2
off = 1. In this case, a single MEL symbol 𝑠𝑞1𝑞2

mel  is decoded for the quad-pair by invoking the decodeMELSym 

procedure. For clarity, this is done after the decodeCxtVLC steps have been performed for the quad-pair to which quad 

𝑞 belongs. The decoding of 𝑢𝑞1
 and 𝑢𝑞2

 then proceeds in one of two ways, depending upon the value of the decoded MEL 

symbol 𝑠𝑞1𝑞2
mel . If 𝑠𝑞1𝑞2

mel = 1, the decodeUPrefix, decodeUSuffix and decodeUExtension procedures are used 

to decode prefix, suffix and extension values u_pfx, u_sfx and u_ext, exactly as in the foregoing, for each quad, and 

the decoded 𝑢𝑞 values are found from 

 𝑢 = 2+u_pfx + u_sfx + 4 * u_ext (4) 

Otherwise, if 𝑠𝑞1𝑞2
mel = 0, the first quad's unsigned residual 𝑢𝑞1

 is found using Formula (3), but decoding of the second 

quad's unsigned residual 𝑢𝑞2
 depends upon the decoded  𝑢𝑞1

 values. Specifically, where 𝑢𝑞1
> 2, the U-VLC prefix 

decoding step for 𝑢𝑞2
 is replaced by using importVLCBit directly to import a single bit 𝑢bit from the VLC bit-stream 

and setting u_pfx = 𝑢bit + 1; the decoded 𝑢𝑞2
 value is then 

𝑢𝑞2
= 𝑢bit + 1 

Where 𝑢𝑞1
≤ 2 the decoding of 𝑢𝑞2

 proceeds in the same way as 𝑢𝑞1
, using Formula (3). 

NOTE – When 𝑢𝑞1

off = 𝑢𝑞2

off = 1 and 𝑠𝑞1𝑞2

mel = 0, the condition 𝑢𝑞1
> 2 means that the decodeUPrefix procedure for 

the first quad returns u_pfx > 2, or equivalently, that the first quad's U-VLC prefix has length 3. 

7.3.7 Determination of predictors and exponent bounds 

This clause describes the procedure by which a decoder computes exponent predictors 𝜅𝑞 for each quad 𝑞, and combines 

these with the unsigned residual values 𝑢𝑞 to deduce exponent bounds 𝑈𝑞. 

For the first row of quads in an HT code-block (𝑞 < QW), the exponent predictor satisfies 
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𝜅𝑞 = 1 

For all other quads, 𝜅𝑞 is computed from the magnitude exponents of neighbouring decoded samples from the preceding 

line in the HT code-block, as illustrated in Figure 6. Specifically, the exponents that are used are: 

𝐸𝑞
n = 𝐸4(𝑞−QW)+1, 𝐸𝑞

ne = 𝐸4(𝑞−QW)+3, 

𝐸𝑞
nw = {

𝐸4(𝑞−QW)−1 if mod(𝑞,QW) ≠ 0

0 otherwise
 and 𝐸𝑞

nf = {
𝐸4(𝑞−QW)+5 if mod(𝑞 + 1,QW) ≠ 0

0 otherwise
 

The decoder derives these exponents from decoded sample magnitudes 𝜇𝑛, using the procedure expounded via Table 1. 

 

Figure 6 – Neighbourhood information used to form exponent predictors for quads in  

non-initial line-pairs of a block 

These exponents are converted to an exponent predictor 𝜅𝑞, using 

 𝜅𝑞 = max{1, γ𝑞 ∙ (max{𝐸𝑞
nw , 𝐸𝑞

n, 𝐸𝑞
ne, 𝐸𝑞

nf} − 1)}, (5) 

where γ𝑞 ∈ {0,1} indicates whether quad 𝑞 has more than one significant sample. Specifically, 

 𝛾𝑞 = {
0 if ρ𝑞 ∈ {0,1,2,4,8}

1 otherwise
 (6) 

The exponent bound 𝑈𝑞 for quad 𝑞 is obtained from 

𝑈𝑞 = κq + 𝑢𝑞 

The decoded unsigned residual 𝑢𝑞 shall have the smallest non-negative value that is consistent with the constraint 

𝑈𝑞 ≥ 𝐸𝑛 for each 𝑛 ∈ {4𝑞, 4𝑞 + 1,4𝑞 + 2,4𝑞 + 3} 

where 𝐸𝑛 is the magnitude exponent associated with each decoded sample magnitude 𝜇𝑛. 

7.3.8 Unpacking the HT MagSgn bit-stream 

Using the exponent bound 𝑈𝑞, significance pattern 𝜌𝑞 and EMB patterns 𝜖�̅�
k and 𝜖�̅�

1 for each quad, the decoder determines 

the number of bits 𝑚𝑛 according to 

𝑚𝑛 = σ𝑛 ⋅ 𝑈𝑞 − 𝑘𝑛 for each 𝑛 ∈ {4𝑞, 4𝑞 + 1,4𝑞 + 2,4𝑞 + 3} 

and then recovers the HT MagSgn values for each sample, following the scanning pattern in Figure 2, by using procedure 

decodeMagSgnValue that appears in the following. Here, 𝜎𝑛, 𝑘𝑛 and 𝑖𝑛 are the individual bits of the 4-bit patterns 

ρ𝑞, 𝜖�̅�
k and 𝜖�̅�

1, respectively, as explained in clause 7.3.2. 
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Procedure: decodeMagSgnValue 

Input: number of mag-sign bits 𝑚𝑛 and known-1 value 𝑖𝑛 for a sample 𝑛 

Returns: HT MagSgn value 𝑣𝑛 for the sample 

 

val = 0 

for (i=0; i < 𝑚𝑛; i++) 

    bit = importMagSgnBit 

    val = val + (bit << i) 

val = val + (𝑖𝑛 << 𝑚𝑛) 

return val 

 

From the decoded HT MagSgn values 𝑣𝑛, the decoder recovers magnitude values 𝜇𝑛 and sign bits 𝑠𝑛 as follows: 

μ𝑛 = {
⌊𝑣𝑛/2⌋ + 1 if 𝑚𝑛 ≠ 0

0 if 𝑚𝑛 = 0
   𝑠𝑛 = {

mod(𝑣𝑛, 2) if 𝑚𝑛 ≠ 0
0 if 𝑚𝑛 = 0

 

NOTE – Before the decodeMagSgnValue procedure can be used to reconstruct HT MagSgn values within a current non-initial 
row of quads, samples from the preceding row of quads must be decoded and at least some of them converted to magnitude 
exponents, so as to enable computation of 𝜅𝑞 and 𝑈𝑞 values for the current non-initial row of quads.  

7.4 HT SigProp decoding procedure 

This clause describes the procedure for decoding an HT SigProp coding pass, which is performed when Z_blk is greater 

than 1. The decoder uses significance information 𝜎𝑛 produced by decoding the HT cleanup pass, together with the HT 

SigProp bit-stream, to recover binary refinement values 𝑟𝑛 ∈ {0,1} and refinement indicators 𝑧𝑛 ∈ {0,1} for each sample 

in the HT code-block. Prior to performing the HT SigProp decoding procedure, the 𝑟𝑛 and 𝑧𝑛 values for all samples in the 

HT code-block are set to 0. The decoder then progressively updates these values, depending on the significance 

information from the HT cleanup pass, as well as the bits found within the HT SigProp bit-stream. During this process, 

additional sign values 𝑠𝑛 are also decoded for samples where 𝑟𝑛 = 1. 

HT SigProp decoding follows the same four-line stripe-oriented scanning pattern as the block decoder defined in REC. 

ITU-T T.800 | ISO/IEC 15444-1, which is illustrated in Figure 7. In this Specification, however, the location 𝑛 that is 

used to identify individual samples conforms to the notation introduced in clause 7.2, corresponding to the quad-based 

scanning order. In following the stripe-oriented scan of Figure 7, the decoder shall skip any location that lies outside the 

HT code-block, which means that the last stripe in the block is truncated, if necessary, to Hblk − 4 · ⌊(Hblk − 1)/4⌋ 
lines. 

To facilitate the explanation, two neighbourhoods of the sample at location 𝑛  are introduced: a propagation 

neighbourhood 𝒩𝑛; and a scan-causal neighbourhood �̅�𝑛 .  

If bit 3 of the SPcod or SPcoc field is 0 (see clause A.4), the propagation neighbourhood 𝒩𝑛  for a sample consists of all 

locations within the HT code-block that are immediate neighbours of the sample with location 𝑛; for clarity, there are 

eight such neighbours, for all samples apart from those that lie on the boundaries of the HT code-block. 

If bit 3 of the SPcod or SPcoc field is 1 (see clause A.4), the propagation neighbourhood 𝒩𝑛  for a sample consists of all 

locations within the same stripe or a previous stripe, that are immediate neighbours of the sample with location 𝑛. 

NOTE 1 – Samples on the last line of a stripe have at most six propagation neighbours in this case, while samples on other lines 
within a stripe have at most eight propagation neighbours. 

The scan-causal neighbourhood �̅�𝑛 is the subset of 𝒩𝑛 corresponding to samples that appear earlier than the sample with 

location 𝑛 in the stripe-oriented scan.  

NOTE 2 – As illustrated in Figure 7, the location of a sample in the stripe-oriented scan affects the number of samples that belong 
to its scan-causal neighbourhood. 



ISO/IEC 15444-15:2019 (E) 

  Rec. ITU-T T.814 (06/2019) 21 

 

Figure 7 – Stripe-oriented scan illustrating scan-causal neighbourhoods �̅̅̅�𝒏 for a sample n, where sample indices 

are ordered according to the quad-based scanning convention of Figure 2.  

In the example, the HT code-block has height H=7, so the last stripe (b) in the stripe-oriented scan has only three 

lines, whereas stripe (a) has four 

The HT SigProp decoding procedure involves a magnitude decoding step and a sign decoding step, that are interleaved 

on a quad-column basis. Following the stripe-oriented scan of Figure 7, the decoder performs the magnitude decoding 

step by invoking the decodeSigPropMag procedure in the following, for four stripe columns (a column-group), after 

which it passes through the same samples a second time, in the same order, performing the sign decoding step using the 

decodeSigPropSign procedure in the following. The process is repeated for all column-groups in a stripe, before 

proceeding with the next stripe. If the HT code-block width Wblk is not divisible by 4, the number of columns in the 

final column-group of each stripe is reduced to mod(Wblk,4). 

Procedure: decodeSigPropMag 

Input: sample location 𝑛, significance values 𝜎 and existing refinement values 𝑟  

Side effects: May change 𝑧𝑛 and 𝑟𝑛 

 

mbr = 0 

if (𝜎𝑛 == 0) 

    for each 𝑚 ∈ 𝒩𝑛 

        mbr = mbr | 𝜎𝑚 

    for each 𝑚 ∈ �̅�𝑛 

        mbr = mbr | 𝑟𝑚 

if (mbr != 0) 

    set 𝑧𝑛 = 1 

    set 𝑟𝑛 = importSigPropBit 
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Procedure: decodeSigPropSign 

Input: sample location 𝑛 and refinement value 𝑟𝑛 

Side effects: May change sign value 𝑠𝑛 

 

if (𝑟𝑛 != 0) 

    set 𝑠𝑛 = importSigPropBit 

 

7.5 HT MagRef decoding procedure 

This clause describes the procedure for decoding an HT MagRef coding pass, which is performed when Z_blk is equal 

to 3. The decoder uses significance information 𝜎𝑛 produced by decoding the HT cleanup pass, together with the HT 

MagRef bit-stream, to recover binary refinement values 𝑟𝑛 ∈ {0,1} and refinement indicators 𝑧𝑛 ∈ {0,1} for each sample 

in the HT code-block. Prior to performing the HT MagRef decoding procedure, 𝑟𝑛 and 𝑧𝑛 for each sample have the values 

determined by the HT SigProp decoding procedure, which shall be performed first. 

HT MagRef decoding follows the same four-line stripe-oriented scanning pattern as the HT SigProp coding pass, as 

illustrated in Figure 7. Again, however, the location 𝑛 that is used to identify individual samples here conforms to the 

notation introduced in clause 7.2, corresponding to the quad-based scanning order. 

The HT MagRef decoding procedure involves only a magnitude decoding step that is performed by applying the 

decodeMagRefValue procedure in the following to each sample, following the four-line stripe-oriented scan. 

Procedure: decodeMagRefValue 

Input: sample location 𝑛 and significance value σ𝑛 

Side effects: May change 𝑧𝑛 and 𝑟𝑛 

 

if (σ𝑛 != 0) 

    set 𝑧𝑛 = 1 

    set 𝑟𝑛 = importMagRefBit  

 

7.6 Sample output values 

This clause describes the process whereby a decoder converts decoded magnitude values 𝜇𝑛, sign values 𝑠𝑛, refinement 

values 𝑟𝑛 and refinement indicators 𝑧𝑛 into values for processing by the inverse quantization procedure defined in Annex 

E of Rec. ITU-T T.800 | ISO/IEC 15444-1, after the application of any applicable region of interest transformation, as 

described in Annex H of Rec. ITU-T T.800 | ISO/IEC 15444-1. Following the notation in Rec. ITU-T T.800 | ISO/IEC 

15444-1, these values are the number of magnitude bits 𝑁𝑏(𝑥, 𝑦), the magnitude bits MSBi(𝑏, 𝑥, 𝑦) and the sign bits 

𝑠𝑏(𝑥, 𝑦), where (𝑥, 𝑦) identifies a location within sub-band b, and 1 ≤ 𝑖 ≤ 𝑁𝑖(𝑥, 𝑦). 

The procedure here depends upon the quantity S_blk that identifies the number of skipped magnitude bit-planes 

associated with the HT cleanup coding pass, as described in Annex B. In what follows, b identifies the sub-band to which 

a decoded HT code-block belongs, and (𝑥𝑛 , 𝑦𝑛) denotes the sub-band-based coordinates of the sample with location 𝑛 in 

this decoded HT code-block. 

The number of decoded magnitude bit-planes is found from 

𝑁𝑏(𝑥𝑛 , 𝑦𝑛) = S_blk + 1 + 𝑧𝑛 

while the sign bits are assigned as 

𝑠𝑏(𝑥𝑛 , 𝑦𝑛) = 𝑠𝑛 

For each 𝑖 in the range 1 ≤ 𝑖 ≤  S_blk + 1, the magnitude bit MSBi(𝑏, 𝑥, 𝑦) is given by 

MSBi(𝑏, 𝑥𝑛 , 𝑦𝑛) = mod (⌊
μ𝑛

2S_blk+1−𝑖
⌋ , 2)  

Finally, if 𝑧𝑛 is non-zero, 
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MSBS_blk+2(𝑏, 𝑥𝑛 , 𝑦𝑛) = 𝑟𝑛 

8 Constrained codestream sets 

8.1 Overview 

Clause 8 defines sets of HTJ2K codestreams, each conforming to one or more specified constraints.  

These sets partition the space of all possible HTJ2K codestreams as a function of implementation throughput and 

complexity. They are provided to simplify the task of creating profiles and defining decoder capabilities. 

EXAMPLE – In order to reduce implementation complexity, a profile definition can specify that only HTJ2K codestreams that belong 

to the HTONLY set specified in clause 8.2 are permitted. 

8.2 HTONLY, HTDECLARED and MIXED sets 

The HTONLY set is the set of HTJ2K codestreams where all code-blocks are HT code-blocks. 

The HTDECLARED set is the set of HTJ2K codestreams where all code-blocks within a given tile-component are either 

a) HT code-blocks, or b) code-blocks as specified in Rec. ITU-T T.800 | ISO/IEC 15444-1. 

The MIXED set is the set of all HTJ2K codestreams that are not in the HTDECLARED set. 

NOTE 1 – A codestream that belongs to the HTONLY set also belongs to the HTDECLARED set, but the converse is not true. In 
particular, an HTJ2K codestream where all code-blocks conform to Rec. ITU-T T.800 | ISO/IEC 15444-1 belong to the 
HTDECLARED set, but not the HTONLY set. 

NOTE 2 – Decoding of HTJ2K codestreams that belong to the HTONLY set does not require decoding of code-blocks that conform 
to Rec. ITU-T T.800 | ISO/IEC 15444-1. 

8.3 SINGLEHT and MULTIHT sets 

The SINGLEHT set is the set of HTJ2K codestreams where at most one HT set is ever present for each HT code-block. 

The MULTIHT set is the set of all HTJ2K codestreams that are not in the SINGLEHT set. 

NOTE – Although a decoder is not required to decode more than one HT set for any HT code-block, parsing is more complex for 
codestreams in the MULTIHT set. 

EXAMPLE – The use of multiple non-empty HT sets in a code-block results in redundancy. This can be used, for instance, in content 

distribution systems to avoid the need for decoding and re-encoding code-blocks when transcoding to different coded data rates. The 

resulting transcoded codestream, however, normally contains at most one HT set per HT code-block. 

8.4 RGN and RGNFREE sets  

The RGNFREE set is the set of HTJ2K codestreams that do not contain any RGN marker segment. 

The RGN set is the set of all HTJ2K codestreams that are not in the RGNFREE set. 

NOTE 1 – Whether an HTJ2K codestream contains RGN marker segments impacts HT cleanup magnitude bounds as described in 
clause 8.7.3. 

NOTE 2 – RGN marker segments are typically used in the progressive communication of images that contain defined spatial 
regions of interest; however, the HT block-coder does not provide an effective mechanism for progressive coding. 

NOTE 3 – The presence of RGN marker segments complicates the dequantization procedure that is applied after block decoding. 

8.5 HOMOGENEOUS and HETEROGENEOUS sets 

The HOMOGENEOUS set is the set of HTJ2K codestreams where: 

• none of the functional marker segments, e.g., COD, COC, RGN, QCD, QCC, and POC, are present in any 

tile-part header; and 

• no PPT marker segment is present. 

The HETEROGENEOUS set is the set of all HTJ2K codestreams that are not in the HOMOGENEOUS set. 

NOTE – Decoder configuration information can be retrieved entirely from the main header if the HTJ2K codestream belongs to 
the HOMOGENEOUS set. Conversely, decoding codestreams that belong to the HETEROGENEOUS set can require a decoder to 
be reconfigured between tiles, which cannot be done until after its first tile-part is encountered. 
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8.6 LOCAL and FRAG sets 

The LOCAL set is the set of HTJ2K codestreams where: 

• the exponents PPx and PPy satisfy PPx + PPy  16, except in the lowest resolution level within each tile-

component, where PPx + PPy  14; and 

• either (i) the codestream has only one quality layer, as identified via the SGcod parameter, or (ii) the 

progression order value for the SGcod, SPcoc, and Ppoc parameters is in the range 2 to 4 (see Table A.16 

at Rec. ITU-T T.800 | ISO/IEC 15444-1). 

The FRAG set is the set of all HTJ2K codestreams that are not in the LOCAL set. 

NOTE 1 – The first condition in the foregoing limits the extent to which co-located code-blocks from sub-bands with different 
orientations can be separated within the codestream. The second condition prevents individual code-block byte-streams from being 
fragmented across non-consecutive packets within the codestream. Together, these conditions can reduce the amount of compressed 
data re-ordering needed when decoding a codestream. 

NOTE 2 – Fragmentation is typically used in combination with quality scalability; however, the HT block-coder does not provide 
an effective mechanism for progressive coding. 

8.7 Bounded magnitude sets 

8.7.1 Overview 

Clause 8.7 defines sets that correspond to bounds on the magnitudes 𝜇𝑛 that are produced by the HT cleanup decoding 

procedure. The bounds depend upon whether an irreversible spatial wavelet transformation is employed, so there are two 

types of bounded magnitude sets: those in which an irreversible transform is associated with HT code-blocks; and those 

where only reversible transforms are associated with HT code-blocks. 

NOTE – Unlike the block-decoding algorithm specified in Rec. ITU-T T.800 | ISO/IEC 15444-1, the HT block-coding algorithm 
does not allow decoders to discard bits in order to accommodate limitations to their internal working precision. As a result, the 
magnitude bound affects implementation complexity. At the time of this writing, a reasonable magnitude bound for CPU-based 
implementations is 𝐵 = 31, where the interpretation of 𝐵 is found in clause 8.7.3. 

8.7.2 HTIRV and HTREV sets 

The high-throughput reversible (HTREV) set is the set of HTJ2K codestreams where every tile-component that contains 

one or more HT code-blocks signals a reversible transform. 

The high-throughput irreversible (HTIRV) set is the set of all HTJ2K codestreams that are not in the HTREV set. 

NOTE 1 – The use of reversible transforms impacts the MAGBP sets, as described in clause 8.7.3. 

NOTE 2 – In transcoding operations that reduce image resolution by discarding the k highest resolution levels from each tile-
component, the magnitude bound 𝐵 is increased by k for codestreams in the HTIRV set, while no such adjustment is made for 
codestreams in the HTREV set.  

8.7.3 MAGBP sets 

Each MAGBP set specified in Table 4 is associated with a value of the parameter B, and consists of the HTJ2K 

codestreams where all HT Cleanup magnitudes 𝜇𝑛 of a given sub-band b are smaller than 𝜇𝑏𝑜𝑢𝑛𝑑, where: 

𝜇𝑏𝑜𝑢𝑛𝑑 = 2𝐵, if 𝐵 > 31 or the sub-band's transformation type is not an irreversible transform; or 

𝜇𝑏𝑜𝑢𝑛𝑑 = 2min{31,𝐵+⌈𝑛𝑏⌉−1} where 𝑛𝑏 is the sub-band decomposition level, otherwise. 

NOTE 1 – If no RGN marker segment is present in the codestream, then all magnitudes 𝜇𝑛 necessarily satisfy 𝜇𝑛 <  237. If RGN 
marker segments are present in an HTJ2K codestream, then all magnitudes M necessarily satisfy μ𝑛 <  274. 

NOTE 2 – If the arbitrary decomposition extensions specified in Annex F of Rec. ITU-T T.801 | ISO/IEC 15444-2 is used, the sub-
band decomposition level 𝑛𝑏 can be an even or an odd integer multiple of ½. The expression ⌈𝑛𝑏⌉ ensures that 𝜇𝑏𝑜𝑢𝑛𝑑 is always an 
integer power of 2. 

EXAMPLE – A decoder can increase throughput by using a hardware-accelerated implementation if the HT cleanup magnitudes are 

below a given threshold, i.e., if the HTJ2K codestream belongs to a set where parameter B is below a certain threshold; and reverting 

to a slower software implementation otherwise. 
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Table 4 – HT cleanup magnitudes bound codestream sets 

Set MAGBP Parameter B 

MAGB0 8 

MAGB1 9 

MAGB2 10 

MAGB3 11 

MAGB4 12 

MAGB5 13 

MAGB6 14 

MAGB7 15 

MAGB8 16 

MAGB9 17 

MAGB10 18 

MAGB11 19 

MAGB12 20 

MAGB13 21 

MAGB14 22 

MAGB15 23 

MAGB16 24 

MAGB17 25 

MAGB18 26 

MAGB19 27 

MAGB20 31 

MAGB21 35 

MAGB22 39 

MAGB23 43 

MAGB24 47 

MAGB25 51 

MAGB26 55 

MAGB27 59 

MAGB28 63 

MAGB29 67 

MAGB30 71 

MAGB31 74 

 

8.8 CPFN sets 

The set CPF𝑁 consists of all HTJ2K codestreams that can be obtained using the following procedure. 

• Let C1 be an Rec. ITU-T T.800 | ISO/IEC 15444-1 codestream conforming to profile N. 

• Let C2 be an HTJ2K codestream. 

• Block transcoding. Each code-block in C2 is either unchanged from C1 or transcoded to an HT code-block 

by decoding and then re-encoding such that it conforms to Annex B. The final HT cleanup pass of each 

transcoded code-block corresponds to the final cleanup pass from the original code-block in C1, except 

where this cleanup pass involve sample magnitudes 𝜇𝑛 that are inconsistent with constraints imposed on 

C2, in which case the smallest number of original coding passes necessary to avoid such inconsistency are 

discarded. If, after any such discarding, the original code-block in C1 has a SigProp pass that follows the 

final cleanup pass, the transcoded code-block in C2 has a corresponding HT SigProp pass. Similarly, if the 

original code-block in C1 has a MagRef pass that follows the final non-discarded cleanup pass, the 

transcoded code-block in C2 has a corresponding HT MagRef pass. 

NOTE 1 – Constraints on C2 are signalled using the CAP marker segment, as specified in clause A.3, and the PRF marker segment, 
as specified in Rec. ITU-T T.800 | ISO/IEC 15444-1. 
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• Packetization. For each packet of C1, there shall be a corresponding packet of C2 and vice-versa. The 

code-block-coding passes within each packet in C2 shall be identical to the coding passes included within 

each packet in C1, with the exception only of those coding passes from C1 that are discarded as specified 

in the foregoing. 

• Marker segment generation. All functional, fixed information and pointer marker segments from C1 are 

preserved in C2, except that the values of the SPcod/SPcoc parameter in COD/COC marker segments are 

modified to reflect the use of HT block coding, the SIZ, CAP and PRF marker segments are modified or 

introduced according to the requirements of Annex A, and SOT, PLT, PLM and TLM marker segments 

are updated to reflect the lengths of the transcoded code-blocks. No new marker segments are introduced 

into C2 that were not present in C1, apart from the CAP marker segment, and, optionally, a PRF marker 

segment. 

• Codestream ordering. For each tile-part header of C1, there is a corresponding tile-part header in C2, and 

vice-versa, and all tile-part headers and packets for C2 appear in the same order as the corresponding tile-

part headers and packets in C1. 

NOTE 2 – There is no one-to-one mapping between the set 𝐶𝑃𝐹𝑁 and the set of Rec. ITU-T T.800 | ISO/IEC 15444-1 codestreams 
with profile number N since the termination of codeword segments is not uniquely defined in either this Specification, or in Rec. 
ITU-T T.800 | ISO/IEC 15444-1. 

9 Media types 

Annex E specifies media types as defined in IETF RFC 6838. 
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HTJ2K  codestream syntax 
(This annex forms an integral part of this Recommendation | International Standard.) 

A.1 General 

This annex specifies the extensions and constraints to the codestream syntax specified in Rec. ITU-T T.800 | ISO/IEC 

15444-1 necessary to support HT code-blocks. 

Table A.1 lists the marker segments affected by this Specification. 

Table A.1 – Marker segments affected by this Specification (informative) 

Extensions to marker segments specified in 
Rec. ITU-T T.800 | ISO/IEC 15444-1 

CAP, COD, COC 

Constraints to marker segments specified in 
Rec. ITU-T T.800 | ISO/IEC 15444-1 

SIZ, RGN 

Marker segments specified in this 
Recommendation | International Standard 

CPF 

 

Unless specified otherwise in clauses A.2 to A.6, an HTJ2K codestream syntax shall conform to Annex A of Rec. ITU-T 

T.800 | ISO/IEC 15444-1, together with any other signalled capability.  

In the tables of this annex, the symbol "r" denotes bits that are reserved, and the symbol "x" denotes bits whose value can 

be either 0 or 1. 

For HTJ2K codestreams conforming to this Specification, the value of each bit denoted with an "r" shall be 0. 

NOTE – The behaviour of implementations that conform to this Specification is left unspecified when processing an HTJ2K 
codestream where the value of any bit denoted with an "r" is not 0. 

A.2 SIZ marker segment 

Bit 14 of Rsiz shall be equal to 1.  

A.3 CAP marker segment 

A.3.1 General 

The CAP marker segment shall be present. 

The value of Pcap15 shall be equal to 1. 

NOTE 1 – Pcap15 is the 15th most significant bit of the Pcap field. 

Table A.2 defines values for the Ccap15 field. 

NOTE 2 – The Ccap15 field contains information that allows a decoder to fast-fail gracefully, optimize its throughput, or generally 
simplify its operations, without requiring the codestream to be processed in its entirety.  
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Table A.2 – Ccap15 syntax and semantics 

Values (bits) Capability 

MSB LSB 

00xx xxxx xxxx xxxx All code-blocks are HT code-blocks. 

10xx xxxx xxxx xxxx  Each tile-component either consists entirely of HT code-blocks, or consists entirely 
of code-blocks conforming to Rec. ITU-T T.800 | ISO/IEC 15444-1. 

11xx xxxx xxxx xxxx Code-blocks within a tile-component can either be HT code-blocks, or conform to 
Rec. ITU-T T.800 | ISO/IEC 15444-1. 

01xx xxxx xxxx xxxx Reserved for future use by ITU-T | ISO/IEC 

xx0x xxxx xxxx xxxx Zero or one HT set is present for any HT code-block. 

xx1x xxxx xxxx xxxx More than one HT sets can be present for an HT code-block, indicating that the 
codestream, when decoded, can result in different quality reconstructions (see 
Annex B). 

xxx0 xxxx xxxx xxxx No region-of-interest marker present 

xxx1 xxxx xxxx xxxx Region-of-interest marker can be present 

xxxx 0xxx xxxx xxxx Homogeneous codestream 

xxxx 1xxx xxxx xxxx Heterogeneous codestream 

xxxx xxxx xx0x xxxx HT code-blocks only used with reversible transforms 

xxxx xxxx xx1x xxxx HT code-blocks can be used with irreversible transforms 

xxxx xxxx xxxp pppp Bits pi specify the HT cleanup magnitude bound 

xxxx xrrr rrxx xxxx Reserved for future use by ITU-T | ISO/IEC 

 

A.3.2 Bits 14-15 of Ccap15 

If Bits 14 and 15 of Ccap15 are 0, then: 

• the codestream shall belong to the HTONLY set specified in clause 8.2; and 

• bits 6 and 7 of all SPcod or SPcoc values are equal to 0. 

If bit 14 of Ccap15 is 0 and bit 15 of Ccap15 is 1, then: 

• the codestream shall belong to the HTDECLARED set specified in clause 8.2; and 

• bit 7 of all SPcod or SPcoc values is equal to 0. 

If bit 14 of Ccap15 is 1 and bit 15 of Ccap15 is 1, then the codestream may belong to the MIXED set specified in clause 

8.2. 

NOTE – A codestream that belongs to the HTONLY set can still contain SPcod or SPcoc values where both bits 6 and 7 are equal 
to 1. 

A.3.3 Bit 13 of Ccap15 

If bit 13 of Ccap15 is 0, then the codestream shall belong to the SINGLEHT set specified in clause 8.3. 

If bit 13 of Ccap15 is 1, then the codestream may belong to the MULTIHT set specified in clause 8.3. 

A.3.4 Bit 12 of Ccap15 

If bit 12 of Ccap15 is 0, then the codestream shall belong to the RGNFREE set specified in clause 8.4. 

If bit 12 of Ccap15 is 1, then the codestream may belong to the RGN set specified in clause 8.4. 

A.3.5 Bit 11 of Ccap15 

If bit 11 of Ccap15 is 0, then the codestream shall belong to the HOMOGENEOUS set specified in clause 8.5. 

If bit 11 of Ccap15 is 1, then the codestream may belong to the HETEROGENEOUS set specified in clause 8.5. 

A.3.6 Bit 5 of Ccap15 

If bit 5 of Ccap15 is 0, then: 

• the codestream shall belong to the HTREV set specified in clause 8.6; and 

• tile-components for which an irreversible transform is signalled shall have bit 6 of the SPcod or SPcoc 

value equal to 0. 
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If bit 5 of Ccap15 is 1, then the codestream may belong to the HTIRV set specified in clause 8.6. 

A.3.7 Bits 0-4 of Ccap15 

The codestream shall belong to the MAGBP set specified in clause 8.7.3, with the parameter B equal to: 

𝐵 = {

8, 𝑃 = 0
𝑃 + 8, 𝑃 < 20

4(𝑃 − 19) + 27, 20 ≤ 𝑃 < 31
74, 𝑃 = 31

 

where 

𝑃 = ∑ Ccap𝑖
15 ∙ 2𝑖4

𝑖=0  , and 

Ccapi
15 is bit 𝑖 of Ccap15 with 𝑖 = 0 corresponding to the LSB. 

NOTE – Upper bounds on the HT cleanup magnitudes 𝜇𝑛 can also be determined from quantization parameters found in QCD and 
QCC marker segments, possibly modified by the presence of RGN marker segments. These bounds can be smaller than the bound 
signalled by bits 0-4 of Ccap15.  

A.4 COD and COC marker segments 

The COD and COC marker segments defined in Rec. ITU-T T.800 | ISO/IEC 15444-1 are modified as follows. 

For a given SPcod or SPcoc value, if bit 6 is equal to 0: 

• no code-blocks within the corresponding tile-component shall be HT code-blocks; and 

• the semantics of the SPcod or SPcoc value are as defined in Table A.19 at Rec. ITU-T T.800 | ISO/IEC 

15444-1. 

Table A.3 – SPcod and SPcoc parameters semantics when bits 6 and 7 are 1 and 0, respectively 

Value (bits) 
Code-block style 

MSB LSB 

01rr 0rrr No vertically causal context 

01rr 1rrr Vertically causal context 

For a given SPcod or SPcoc value, if bit 6 is equal to 1 and bit 7 is equal to 0: 

• all code-blocks within the corresponding tile-component shall be HT code-blocks as defined in Annex B; 

and 

• the semantics of the SPcod or SPcoc value shall be as defined in Table A.3. 

Table A.4 – SPcod and SPcoc parameters semantics when bits 6 and 7 are 1 

Value (bits) 
Code-block style 

MSB LSB 

11xx xr0r 

 
11xx xr1r 

No reset of context probabilities on coding pass boundaries (does not apply to HT code-blocks) 

 
Reset context probabilities on coding pass boundaries (does not apply to HT code-blocks) 

11xx 0rxr 

 
11xx 1rxr 

No vertically causal context (applies to both Rec. ITU-T T.800 | ISO/IEC 15444-1 and HT code-
blocks) 

Vertically causal context (applies to both Rec. ITU-T T.800 | ISO/IEC 15444-1 and HT code-
blocks) 

11x0 xrxr 
11x1 xrxr 

No predictable termination (does not apply to HT code-blocks) 
Predictable termination (does not apply to HT code-blocks) 

110x xrxr 

 
111x xrxr 

No segmentation symbols are used (does not apply to HT code-blocks) 

 
Segmentation symbols are used (does not apply to HT code-blocks) 

For a given SPcod or SPcoc value, if bit 6 is equal to 1 and bit 7 is equal to 1: 

• zero or more of the code-blocks within the corresponding tile-component shall be HT code-blocks as 

defined in Annex B, and the remaining code-blocks shall conform to Rec. ITU-T T.800 | ISO/IEC 15444-1; 
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• if a code-block is an HT code-block, and given its first non-zero length codeword segment: 

– the first bit of that codeword segment length, as defined in clause B.10.7.1 of ITU-T T.800 | ISO/IEC 

15444-1, shall be 0; and 

– Lblock, as defined in clause B.10.7.1 of ITU-T T.800 | ISO/IEC 15444-1, shall be greater than 3. 

• Rec. ITU-T T.800 | ISO/IEC 15444-1 code-blocks shall use neither selective arithmetic coding bypass nor 

termination on each coding pass; and 

• the semantics of the SPcod or SPcoc value shall be as defined in Table A.4. 

NOTE – An HT code-block can be differentiated from a Rec. ITU-T T.800 | ISO/IEC 15444-1 code-block by processing the code-
block assuming it conforms to Annex B. Failure of such processing indicates that the code-block might conform to Rec. ITU-T 
T.800 | ISO/IEC 15444-1. 

A.5 RGN marker segment 

If the RGN marker segment is present, the value of the SPrgn parameter shall be less than or equal to 37. 

A.6 CPF marker segment 

Function: The corresponding profile (CPF) marker segment is provided to facilitate the reversible transcoding of HTJ2K 

codestreams to and from codestreams that conform to Rec. ITU-T T.800 | ISO/IEC 15444-1. 

Zero or one CPF marker segment shall be present in an HTJ2K codestream. 

If the CPF marker segment is present, the HTJ2K codestream shall be in the set 𝐶𝑃𝐹𝑋, as specified in clause 8.8, with X 

equal to the CPFnum parameter of the CPF marker segment. 

NOTE – An HTJ2K codestream that contains a CPF marker segment is subject to the constraints specified in the Ccap15 field of 
the CAP marker segment, and by any profile signalled in the PRF marker segment.  

CPFnum shall be equal to the value found in bits 0 to 11 of Rsiz of the corresponding codestream, unless that value is 

4095, in which case CPFnum shall be equal to the PRFnum value found in the PRF marker segment of the corresponding 

codestream. 

CPFnum is computed from the 𝑃𝑐𝑝𝑓𝑖integers as follows: 

CPFnum = −1 + ∑ 𝑃𝑐𝑝𝑓𝑖 ∙ 216∙(𝑖−1)

𝑁

𝑖=1

 

Usage: Optional. If present, the CPF marker segment shall appear after the SIZ marker segment, CAP marker segment 

and, if present, the PRF marker segment, but before any other marker segments defined in Rec. ITU-T T.800 | ISO/IEC 

15444-1. 

Length: Variable. See Figure A.1. 

  

Figure A.1 – Corresponding profiles syntax 

CPF Marker Code. 

Lcpf Length in bytes of the CPF marker segment (not including the marker). Lcpf is given by the following formula: 

𝐿cpf =  2 +  2𝑁 

where N, the number of Pcpfi values used to express CPFnum, is given by: 

𝑁 =  ⌊
log2 (1 + CPFnum)

16
⌋  +  1 

Pcpfi Pcpfi are 16-bit integers that encode CPFnum. Pcpf N shall not be zero. 
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Table A.5 – Corresponding profile parameter values 

Parameter Size (bits) Value 

CPF 16 0xFF59 

Lcpf 16 4-65534 

Pcpfi 16 0x0000-0xFFFF 
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HT data organization 
(This annex forms an integral part of this Recommendation | International Standard.) 

B.1 HT sets 

As illustrated in Figure B.1, an HT code-block consists of: 

• 3 ∙ 𝑃0  coding passes, called placeholder passes, for which no codeword segment bytes appear in the 

codestream; 

• followed by groups of coding passes, called HT sets, each of which consists of three coding passes, except 

for the last HT set, which consists of 1, 2 or 3 coding passes. 

NOTE – In many cases, the first coding pass contribution from a code-block to any packet will include an HT cleanup pass and 
have non-zero length. However, placeholder passes can be used to preserve quality layer boundaries from a codestream that was 
encoded using the block-coding algorithm from Rec. ITU-T T.800 | ISO/IEC 15444-1 and was subsequently transcoded. Similarly, 
placeholder passes can be used to provide suggested quality layer boundaries to use when transcoding the HT block-coding 
algorithm representation to one that uses the block-coding algorithm from Rec. ITU-T T.800 | ISO/IEC 15444-1.  

The coding passes within an HT set are defined as follows: 

• The first coding pass is an HT cleanup coding pass; 

• If present, the second coding pass is an HT SigProp coding pass; 

• If present, the third coding pass is an MagRef coding pass. 

 

Figure B.1 – HT code-block structure. The solid vertical lines indicate HT set boundaries. The dotted lines 

indicate coding pass boundaries. (a) are HT cleanup segments, (b) are HT refinement segments, (c) are 

placeholder passes and (d) are HT sets. 

B.2 HT segments 

As illustrated in Figure B.1, coding passes are arranged in HT segments based on a set T of coding pass indices. 

Each index in the set T defines one HT segment and corresponds to the last coding pass of the HT segment.  

T = ⋃(3𝑃0 + 𝑇𝑘)

𝑘∈ℕ

,   where 𝑇𝑘 = ⌈
3𝑘

2
⌉ 

An HT cleanup segment is an HT segment that contains an HT cleanup coding pass. 

An HT refinement segment is an HT segment that contains an HT SigProp coding pass. 

B.3 Packets, Z_blk and S_blk 

The packet, as defined in Rec. ITU-T T.800 | ISO/IEC 15444-1, that contains the first HT cleanup coding pass for a code-

block shall include only one HT cleanup coding pass. 

NOTE 1 – This packet can contain at most two additional coding passes: HT SigProp coding pass and HT MagRef coding pass. 

Each codeword segment for a given code-block in a packet terminates with either: 

• a coding pass of the code-block with an index in set T defined in clause B.2; or  
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• the last coding pass of the code-block included in the packet. 

The bytes of an HT segment are obtained by concatenating the bytes of its constituent codeword segments, and the length 

of an HT segment is the sum of the lengths of those codeword segments. 

Except for the first HT cleanup segment of a code-block, the length of an HT cleanup segment shall be either 0 or greater 

than 1. 

The length of the first HT cleanup segment of a code-block shall be greater than 1.  

If the length of an HT cleanup segment within an HT set is 0, then the length of any HT refinement segment in the same 

HT set shall be 0. 

NOTE 2 – HT sets that contain only zero-length HT segments can be used to skip bit-planes between non-empty HT sets. 

Given an HT set, Z_blk is defined as follows: 

• Z_blk = 0, if the length of the HT cleanup segment is 0; 

• Z_blk = 1, if the HT cleanup segment is the only segment of the HT set whose length is not 0; 

• Z_blk is the number of coding passes in the HT set, otherwise. 

NOTE 3 – As detailed in clause 7.1.1, Z_blk is the number of coding passes processed by the decoder. The condition where 
Z_blk is equal to 1 allows multiple HT cleanup coding passes to be included for a code-block, without including any SigProp or 
MagRef code bytes, while avoiding any concern that the empty coding passes might be decoded, impacting reconstructed image 
quality.  

Given an HT set, the number of skipped magnitude bit-planes S_blk is defined as follows: 

S_blk = P + P0 + S_skip 

where P is the number of zero-bit-planes recovered from the packet that contains the first contribution for the code-block, 

and S_skip is the number of HT sets preceding the given HT set. 

NOTE 4 – The first contribution for the code-block can consist only of placeholder passes. 
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CxtVLC tables 

(This annex forms an integral part of this Recommendation | International Standard.) 

Annex C specifies the CxtVLC_table_0 and CxtVLC_table_1 coding tables that are used by the decodeCxtVLC 

procedure. 

The values of a coding table are specified using the bracket notation { {...}, {...} }, where inner pair of brackets are 

separated by commas and each inner pair of brackets specifies the values of the fields of an entry. The values of the fields 

are separated by commas and appear in the following order: 𝑐𝑞 , ρ𝑞 , 𝑢𝑞
off, ϵ̅𝑞

𝑘 , ϵ̅𝑞
1 , 𝑤, 𝑙𝑤.  

Hexadecimal notation is indicated by prefixing the hexadecimal number by "0x". For example, 0x41 represents an eight-

bit string having only its second and its last bits (counted from the most to the LSB) equal to 1. 

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values. 

The field 𝑤 represents the codeword as a little-endian integer, meaning that the LSB of the integer 𝑤 appears first in the 

VLC bit-stream, followed by the second LSB and so forth, for a total number of bits indicated by field 𝑙𝑤. 

CxtVLC_table_0 is specified as follows: 

CxtVLC_table_0 = {{0, 0x1, 0x0, 0x0, 0x0, 0x06, 4}, 

{0, 0x1, 0x1, 0x1, 0x1, 0x3F, 7}, 

{0, 0x2, 0x0, 0x0, 0x0, 0x00, 3}, 

{0, 0x2, 0x1, 0x2, 0x2, 0x7F, 7}, 

{0, 0x3, 0x0, 0x0, 0x0, 0x11, 5}, 

{0, 0x3, 0x1, 0x2, 0x2, 0x5F, 7}, 

{0, 0x3, 0x1, 0x3, 0x1, 0x1F, 7}, 

{0, 0x4, 0x0, 0x0, 0x0, 0x02, 3}, 

{0, 0x4, 0x1, 0x4, 0x4, 0x13, 6}, 

{0, 0x5, 0x0, 0x0, 0x0, 0x0E, 5}, 

{0, 0x5, 0x1, 0x4, 0x4, 0x23, 6}, 

{0, 0x5, 0x1, 0x5, 0x1, 0x0F, 7}, 

{0, 0x6, 0x0, 0x0, 0x0, 0x03, 6}, 

{0, 0x6, 0x1, 0x0, 0x0, 0x6F, 7}, 

{0, 0x7, 0x0, 0x0, 0x0, 0x2F, 7}, 

{0, 0x7, 0x1, 0x2, 0x2, 0x4F, 7}, 

{0, 0x7, 0x1, 0x2, 0x0, 0x0D, 6}, 

{0, 0x8, 0x0, 0x0, 0x0, 0x04, 3}, 

{0, 0x8, 0x1, 0x8, 0x8, 0x3D, 6}, 

{0, 0x9, 0x0, 0x0, 0x0, 0x1D, 6}, 

{0, 0x9, 0x1, 0x0, 0x0, 0x2D, 6}, 

{0, 0xA, 0x0, 0x0, 0x0, 0x01, 5}, 

{0, 0xA, 0x1, 0x8, 0x8, 0x35, 6}, 

{0, 0xA, 0x1, 0xA, 0x2, 0x77, 7}, 

{0, 0xB, 0x0, 0x0, 0x0, 0x37, 7}, 

{0, 0xB, 0x1, 0x1, 0x1, 0x57, 7}, 

{0, 0xB, 0x1, 0x1, 0x0, 0x09, 6}, 

{0, 0xC, 0x0, 0x0, 0x0, 0x1E, 5}, 
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{0, 0xC, 0x1, 0xC, 0xC, 0x17, 7}, 

{0, 0xC, 0x1, 0xC, 0x4, 0x15, 6}, 

{0, 0xC, 0x1, 0xC, 0x8, 0x25, 6}, 

{0, 0xD, 0x0, 0x0, 0x0, 0x67, 7}, 

{0, 0xD, 0x1, 0x1, 0x1, 0x27, 7}, 

{0, 0xD, 0x1, 0x5, 0x4, 0x47, 7}, 

{0, 0xD, 0x1, 0xD, 0x8, 0x07, 7}, 

{0, 0xE, 0x0, 0x0, 0x0, 0x7B, 7}, 

{0, 0xE, 0x1, 0x2, 0x2, 0x4B, 7}, 

{0, 0xE, 0x1, 0xA, 0x8, 0x05, 6}, 

{0, 0xE, 0x1, 0xE, 0x4, 0x3B, 7}, 

{0, 0xF, 0x0, 0x0, 0x0, 0x5B, 7}, 

{0, 0xF, 0x1, 0x9, 0x9, 0x1B, 7}, 

{0, 0xF, 0x1, 0xB, 0xA, 0x6B, 7}, 

{0, 0xF, 0x1, 0xF, 0xC, 0x2B, 7}, 

{0, 0xF, 0x1, 0xF, 0x8, 0x39, 6}, 

{0, 0xF, 0x1, 0xE, 0x6, 0x73, 7}, 

{0, 0xF, 0x1, 0xE, 0x2, 0x19, 6}, 

{0, 0xF, 0x1, 0xF, 0x5, 0x0B, 7}, 

{0, 0xF, 0x1, 0xF, 0x4, 0x29, 6}, 

{0, 0xF, 0x1, 0xF, 0x1, 0x33, 7}, 

{1, 0x0, 0x0, 0x0, 0x0, 0x00, 2}, 

{1, 0x1, 0x0, 0x0, 0x0, 0x0E, 4}, 

{1, 0x1, 0x1, 0x1, 0x1, 0x1F, 7}, 

{1, 0x2, 0x0, 0x0, 0x0, 0x06, 4}, 

{1, 0x2, 0x1, 0x2, 0x2, 0x3B, 6}, 

{1, 0x3, 0x0, 0x0, 0x0, 0x1B, 6}, 

{1, 0x3, 0x1, 0x0, 0x0, 0x3D, 6}, 

{1, 0x4, 0x0, 0x0, 0x0, 0x0A, 4}, 

{1, 0x4, 0x1, 0x4, 0x4, 0x2B, 6}, 

{1, 0x5, 0x0, 0x0, 0x0, 0x0B, 6}, 

{1, 0x5, 0x1, 0x4, 0x4, 0x33, 6}, 

{1, 0x5, 0x1, 0x5, 0x1, 0x7F, 7}, 

{1, 0x6, 0x0, 0x0, 0x0, 0x13, 6}, 

{1, 0x6, 0x1, 0x0, 0x0, 0x23, 6}, 

{1, 0x7, 0x0, 0x0, 0x0, 0x3F, 7}, 

{1, 0x7, 0x1, 0x2, 0x2, 0x5F, 7}, 

{1, 0x7, 0x1, 0x2, 0x0, 0x03, 6}, 

{1, 0x8, 0x0, 0x0, 0x0, 0x02, 4}, 

{1, 0x8, 0x1, 0x8, 0x8, 0x1D, 6}, 

{1, 0x9, 0x0, 0x0, 0x0, 0x2D, 6}, 

{1, 0x9, 0x1, 0x0, 0x0, 0x0D, 6}, 
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{1, 0xA, 0x0, 0x0, 0x0, 0x35, 6}, 

{1, 0xA, 0x1, 0x8, 0x8, 0x15, 6}, 

{1, 0xA, 0x1, 0xA, 0x2, 0x6F, 7}, 

{1, 0xB, 0x0, 0x0, 0x0, 0x2F, 7}, 

{1, 0xB, 0x1, 0x1, 0x1, 0x4F, 7}, 

{1, 0xB, 0x1, 0x1, 0x0, 0x11, 6}, 

{1, 0xC, 0x0, 0x0, 0x0, 0x01, 5}, 

{1, 0xC, 0x1, 0x8, 0x8, 0x25, 6}, 

{1, 0xC, 0x1, 0xC, 0x4, 0x05, 6}, 

{1, 0xD, 0x0, 0x0, 0x0, 0x0F, 7}, 

{1, 0xD, 0x1, 0x1, 0x1, 0x17, 7}, 

{1, 0xD, 0x1, 0x5, 0x4, 0x39, 6}, 

{1, 0xD, 0x1, 0xD, 0x8, 0x77, 7}, 

{1, 0xE, 0x0, 0x0, 0x0, 0x37, 7}, 

{1, 0xE, 0x1, 0x2, 0x2, 0x57, 7}, 

{1, 0xE, 0x1, 0xA, 0x8, 0x19, 6}, 

{1, 0xE, 0x1, 0xE, 0x4, 0x67, 7}, 

{1, 0xF, 0x0, 0x0, 0x0, 0x07, 7}, 

{1, 0xF, 0x1, 0xB, 0x8, 0x29, 6}, 

{1, 0xF, 0x1, 0x8, 0x8, 0x27, 7}, 

{1, 0xF, 0x1, 0xA, 0x2, 0x09, 6}, 

{1, 0xF, 0x1, 0xE, 0x4, 0x31, 6}, 

{1, 0xF, 0x1, 0xF, 0x1, 0x47, 7}, 

{2, 0x0, 0x0, 0x0, 0x0, 0x00, 2}, 

{2, 0x1, 0x0, 0x0, 0x0, 0x0E, 4}, 

{2, 0x1, 0x1, 0x1, 0x1, 0x1B, 6}, 

{2, 0x2, 0x0, 0x0, 0x0, 0x06, 4}, 

{2, 0x2, 0x1, 0x2, 0x2, 0x3F, 7}, 

{2, 0x3, 0x0, 0x0, 0x0, 0x2B, 6}, 

{2, 0x3, 0x1, 0x1, 0x1, 0x33, 6}, 

{2, 0x3, 0x1, 0x3, 0x2, 0x7F, 7}, 

{2, 0x4, 0x0, 0x0, 0x0, 0x0A, 4}, 

{2, 0x4, 0x1, 0x4, 0x4, 0x0B, 6}, 

{2, 0x5, 0x0, 0x0, 0x0, 0x01, 5}, 

{2, 0x5, 0x1, 0x5, 0x5, 0x2F, 7}, 

{2, 0x5, 0x1, 0x5, 0x1, 0x13, 6}, 

{2, 0x5, 0x1, 0x5, 0x4, 0x23, 6}, 

{2, 0x6, 0x0, 0x0, 0x0, 0x03, 6}, 

{2, 0x6, 0x1, 0x0, 0x0, 0x5F, 7}, 

{2, 0x7, 0x0, 0x0, 0x0, 0x1F, 7}, 

{2, 0x7, 0x1, 0x2, 0x2, 0x6F, 7}, 

{2, 0x7, 0x1, 0x3, 0x1, 0x11, 6}, 
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{2, 0x7, 0x1, 0x7, 0x4, 0x37, 7}, 

{2, 0x8, 0x0, 0x0, 0x0, 0x02, 4}, 

{2, 0x8, 0x1, 0x8, 0x8, 0x4F, 7}, 

{2, 0x9, 0x0, 0x0, 0x0, 0x3D, 6}, 

{2, 0x9, 0x1, 0x0, 0x0, 0x1D, 6}, 

{2, 0xA, 0x0, 0x0, 0x0, 0x2D, 6}, 

{2, 0xA, 0x1, 0x0, 0x0, 0x0D, 6}, 

{2, 0xB, 0x0, 0x0, 0x0, 0x0F, 7}, 

{2, 0xB, 0x1, 0x2, 0x2, 0x77, 7}, 

{2, 0xB, 0x1, 0x2, 0x0, 0x35, 6}, 

{2, 0xC, 0x0, 0x0, 0x0, 0x15, 6}, 

{2, 0xC, 0x1, 0x4, 0x4, 0x25, 6}, 

{2, 0xC, 0x1, 0xC, 0x8, 0x57, 7}, 

{2, 0xD, 0x0, 0x0, 0x0, 0x17, 7}, 

{2, 0xD, 0x1, 0x8, 0x8, 0x05, 6}, 

{2, 0xD, 0x1, 0xC, 0x4, 0x39, 6}, 

{2, 0xD, 0x1, 0xD, 0x1, 0x67, 7}, 

{2, 0xE, 0x0, 0x0, 0x0, 0x27, 7}, 

{2, 0xE, 0x1, 0x2, 0x2, 0x7B, 7}, 

{2, 0xE, 0x1, 0x2, 0x0, 0x19, 6}, 

{2, 0xF, 0x0, 0x0, 0x0, 0x47, 7}, 

{2, 0xF, 0x1, 0xF, 0x1, 0x29, 6}, 

{2, 0xF, 0x1, 0x1, 0x1, 0x09, 6}, 

{2, 0xF, 0x1, 0x3, 0x2, 0x07, 7}, 

{2, 0xF, 0x1, 0x7, 0x4, 0x31, 6}, 

{2, 0xF, 0x1, 0xF, 0x8, 0x3B, 7}, 

{3, 0x0, 0x0, 0x0, 0x0, 0x00, 3}, 

{3, 0x1, 0x0, 0x0, 0x0, 0x04, 4}, 

{3, 0x1, 0x1, 0x1, 0x1, 0x3D, 6}, 

{3, 0x2, 0x0, 0x0, 0x0, 0x0C, 5}, 

{3, 0x2, 0x1, 0x2, 0x2, 0x4F, 7}, 

{3, 0x3, 0x0, 0x0, 0x0, 0x1D, 6}, 

{3, 0x3, 0x1, 0x1, 0x1, 0x05, 6}, 

{3, 0x3, 0x1, 0x3, 0x2, 0x7F, 7}, 

{3, 0x4, 0x0, 0x0, 0x0, 0x16, 5}, 

{3, 0x4, 0x1, 0x4, 0x4, 0x2D, 6}, 

{3, 0x5, 0x0, 0x0, 0x0, 0x06, 5}, 

{3, 0x5, 0x1, 0x5, 0x5, 0x1A, 5}, 

{3, 0x5, 0x1, 0x5, 0x1, 0x0D, 6}, 

{3, 0x5, 0x1, 0x5, 0x4, 0x35, 6}, 

{3, 0x6, 0x0, 0x0, 0x0, 0x3F, 7}, 

{3, 0x6, 0x1, 0x4, 0x4, 0x5F, 7}, 
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{3, 0x6, 0x1, 0x6, 0x2, 0x1F, 7}, 

{3, 0x7, 0x0, 0x0, 0x0, 0x6F, 7}, 

{3, 0x7, 0x1, 0x6, 0x6, 0x2F, 7}, 

{3, 0x7, 0x1, 0x6, 0x4, 0x15, 6}, 

{3, 0x7, 0x1, 0x7, 0x3, 0x77, 7}, 

{3, 0x7, 0x1, 0x7, 0x1, 0x25, 6}, 

{3, 0x7, 0x1, 0x7, 0x2, 0x0F, 7}, 

{3, 0x8, 0x0, 0x0, 0x0, 0x0A, 5}, 

{3, 0x8, 0x1, 0x8, 0x8, 0x07, 7}, 

{3, 0x9, 0x0, 0x0, 0x0, 0x39, 6}, 

{3, 0x9, 0x1, 0x1, 0x1, 0x37, 7}, 

{3, 0x9, 0x1, 0x9, 0x8, 0x57, 7}, 

{3, 0xA, 0x0, 0x0, 0x0, 0x19, 6}, 

{3, 0xA, 0x1, 0x8, 0x8, 0x29, 6}, 

{3, 0xA, 0x1, 0xA, 0x2, 0x17, 7}, 

{3, 0xB, 0x0, 0x0, 0x0, 0x67, 7}, 

{3, 0xB, 0x1, 0xB, 0x1, 0x27, 7}, 

{3, 0xB, 0x1, 0x1, 0x1, 0x47, 7}, 

{3, 0xB, 0x1, 0x3, 0x2, 0x09, 6}, 

{3, 0xB, 0x1, 0xB, 0x8, 0x7B, 7}, 

{3, 0xC, 0x0, 0x0, 0x0, 0x31, 6}, 

{3, 0xC, 0x1, 0x4, 0x4, 0x11, 6}, 

{3, 0xC, 0x1, 0xC, 0x8, 0x3B, 7}, 

{3, 0xD, 0x0, 0x0, 0x0, 0x5B, 7}, 

{3, 0xD, 0x1, 0x9, 0x9, 0x1B, 7}, 

{3, 0xD, 0x1, 0xD, 0x5, 0x2B, 7}, 

{3, 0xD, 0x1, 0xD, 0x1, 0x21, 6}, 

{3, 0xD, 0x1, 0xD, 0xC, 0x6B, 7}, 

{3, 0xD, 0x1, 0xD, 0x4, 0x01, 6}, 

{3, 0xD, 0x1, 0xD, 0x8, 0x4B, 7}, 

{3, 0xE, 0x0, 0x0, 0x0, 0x0B, 7}, 

{3, 0xE, 0x1, 0xE, 0x4, 0x73, 7}, 

{3, 0xE, 0x1, 0x4, 0x4, 0x13, 7}, 

{3, 0xE, 0x1, 0xC, 0x8, 0x3E, 6}, 

{3, 0xE, 0x1, 0xE, 0x2, 0x33, 7}, 

{3, 0xF, 0x0, 0x0, 0x0, 0x53, 7}, 

{3, 0xF, 0x1, 0xA, 0xA, 0x0E, 6}, 

{3, 0xF, 0x1, 0xB, 0x9, 0x63, 7}, 

{3, 0xF, 0x1, 0xF, 0xC, 0x03, 7}, 

{3, 0xF, 0x1, 0xF, 0x8, 0x12, 5}, 

{3, 0xF, 0x1, 0xE, 0x6, 0x23, 7}, 

{3, 0xF, 0x1, 0xF, 0x5, 0x1E, 6}, 
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{3, 0xF, 0x1, 0xF, 0x4, 0x02, 5}, 

{3, 0xF, 0x1, 0xF, 0x3, 0x43, 7}, 

{3, 0xF, 0x1, 0xF, 0x1, 0x1C, 5}, 

{3, 0xF, 0x1, 0xF, 0x2, 0x2E, 6}, 

{4, 0x0, 0x0, 0x0, 0x0, 0x00, 2}, 

{4, 0x1, 0x0, 0x0, 0x0, 0x0E, 4}, 

{4, 0x1, 0x1, 0x1, 0x1, 0x3F, 7}, 

{4, 0x2, 0x0, 0x0, 0x0, 0x06, 4}, 

{4, 0x2, 0x1, 0x2, 0x2, 0x1B, 6}, 

{4, 0x3, 0x0, 0x0, 0x0, 0x2B, 6}, 

{4, 0x3, 0x1, 0x2, 0x2, 0x3D, 6}, 

{4, 0x3, 0x1, 0x3, 0x1, 0x7F, 7}, 

{4, 0x4, 0x0, 0x0, 0x0, 0x0A, 4}, 

{4, 0x4, 0x1, 0x4, 0x4, 0x5F, 7}, 

{4, 0x5, 0x0, 0x0, 0x0, 0x0B, 6}, 

{4, 0x5, 0x1, 0x0, 0x0, 0x33, 6}, 

{4, 0x6, 0x0, 0x0, 0x0, 0x13, 6}, 

{4, 0x6, 0x1, 0x0, 0x0, 0x23, 6}, 

{4, 0x7, 0x0, 0x0, 0x0, 0x1F, 7}, 

{4, 0x7, 0x1, 0x4, 0x4, 0x6F, 7}, 

{4, 0x7, 0x1, 0x4, 0x0, 0x03, 6}, 

{4, 0x8, 0x0, 0x0, 0x0, 0x02, 4}, 

{4, 0x8, 0x1, 0x8, 0x8, 0x1D, 6}, 

{4, 0x9, 0x0, 0x0, 0x0, 0x11, 6}, 

{4, 0x9, 0x1, 0x0, 0x0, 0x77, 7}, 

{4, 0xA, 0x0, 0x0, 0x0, 0x01, 5}, 

{4, 0xA, 0x1, 0xA, 0xA, 0x2F, 7}, 

{4, 0xA, 0x1, 0xA, 0x2, 0x2D, 6}, 

{4, 0xA, 0x1, 0xA, 0x8, 0x0D, 6}, 

{4, 0xB, 0x0, 0x0, 0x0, 0x4F, 7}, 

{4, 0xB, 0x1, 0xB, 0x2, 0x0F, 7}, 

{4, 0xB, 0x1, 0x0, 0x0, 0x35, 6}, 

{4, 0xC, 0x0, 0x0, 0x0, 0x15, 6}, 

{4, 0xC, 0x1, 0x8, 0x8, 0x25, 6}, 

{4, 0xC, 0x1, 0xC, 0x4, 0x37, 7}, 

{4, 0xD, 0x0, 0x0, 0x0, 0x57, 7}, 

{4, 0xD, 0x1, 0x1, 0x1, 0x07, 7}, 

{4, 0xD, 0x1, 0x1, 0x0, 0x05, 6}, 

{4, 0xE, 0x0, 0x0, 0x0, 0x17, 7}, 

{4, 0xE, 0x1, 0x4, 0x4, 0x39, 6}, 

{4, 0xE, 0x1, 0xC, 0x8, 0x19, 6}, 

{4, 0xE, 0x1, 0xE, 0x2, 0x67, 7}, 
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{4, 0xF, 0x0, 0x0, 0x0, 0x27, 7}, 

{4, 0xF, 0x1, 0x9, 0x9, 0x47, 7}, 

{4, 0xF, 0x1, 0x9, 0x1, 0x29, 6}, 

{4, 0xF, 0x1, 0x7, 0x6, 0x7B, 7}, 

{4, 0xF, 0x1, 0x7, 0x2, 0x09, 6}, 

{4, 0xF, 0x1, 0xB, 0x8, 0x31, 6}, 

{4, 0xF, 0x1, 0xF, 0x4, 0x3B, 7}, 

{5, 0x0, 0x0, 0x0, 0x0, 0x00, 3}, 

{5, 0x1, 0x0, 0x0, 0x0, 0x1A, 5}, 

{5, 0x1, 0x1, 0x1, 0x1, 0x7F, 7}, 

{5, 0x2, 0x0, 0x0, 0x0, 0x0A, 5}, 

{5, 0x2, 0x1, 0x2, 0x2, 0x1D, 6}, 

{5, 0x3, 0x0, 0x0, 0x0, 0x2D, 6}, 

{5, 0x3, 0x1, 0x3, 0x3, 0x5F, 7}, 

{5, 0x3, 0x1, 0x3, 0x2, 0x39, 6}, 

{5, 0x3, 0x1, 0x3, 0x1, 0x3F, 7}, 

{5, 0x4, 0x0, 0x0, 0x0, 0x12, 5}, 

{5, 0x4, 0x1, 0x4, 0x4, 0x1F, 7}, 

{5, 0x5, 0x0, 0x0, 0x0, 0x0D, 6}, 

{5, 0x5, 0x1, 0x4, 0x4, 0x35, 6}, 

{5, 0x5, 0x1, 0x5, 0x1, 0x6F, 7}, 

{5, 0x6, 0x0, 0x0, 0x0, 0x15, 6}, 

{5, 0x6, 0x1, 0x2, 0x2, 0x25, 6}, 

{5, 0x6, 0x1, 0x6, 0x4, 0x2F, 7}, 

{5, 0x7, 0x0, 0x0, 0x0, 0x4F, 7}, 

{5, 0x7, 0x1, 0x6, 0x6, 0x57, 7}, 

{5, 0x7, 0x1, 0x6, 0x4, 0x05, 6}, 

{5, 0x7, 0x1, 0x7, 0x3, 0x0F, 7}, 

{5, 0x7, 0x1, 0x7, 0x2, 0x77, 7}, 

{5, 0x7, 0x1, 0x7, 0x1, 0x37, 7}, 

{5, 0x8, 0x0, 0x0, 0x0, 0x02, 5}, 

{5, 0x8, 0x1, 0x8, 0x8, 0x19, 6}, 

{5, 0x9, 0x0, 0x0, 0x0, 0x26, 6}, 

{5, 0x9, 0x1, 0x8, 0x8, 0x17, 7}, 

{5, 0x9, 0x1, 0x9, 0x1, 0x67, 7}, 

{5, 0xA, 0x0, 0x0, 0x0, 0x1C, 5}, 

{5, 0xA, 0x1, 0xA, 0xA, 0x29, 6}, 

{5, 0xA, 0x1, 0xA, 0x2, 0x09, 6}, 

{5, 0xA, 0x1, 0xA, 0x8, 0x31, 6}, 

{5, 0xB, 0x0, 0x0, 0x0, 0x27, 7}, 

{5, 0xB, 0x1, 0x9, 0x9, 0x07, 7}, 

{5, 0xB, 0x1, 0x9, 0x8, 0x11, 6}, 
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{5, 0xB, 0x1, 0xB, 0x3, 0x47, 7}, 

{5, 0xB, 0x1, 0xB, 0x2, 0x21, 6}, 

{5, 0xB, 0x1, 0xB, 0x1, 0x7B, 7}, 

{5, 0xC, 0x0, 0x0, 0x0, 0x01, 6}, 

{5, 0xC, 0x1, 0x8, 0x8, 0x3E, 6}, 

{5, 0xC, 0x1, 0xC, 0x4, 0x3B, 7}, 

{5, 0xD, 0x0, 0x0, 0x0, 0x5B, 7}, 

{5, 0xD, 0x1, 0x9, 0x9, 0x6B, 7}, 

{5, 0xD, 0x1, 0x9, 0x8, 0x1E, 6}, 

{5, 0xD, 0x1, 0xD, 0x5, 0x1B, 7}, 

{5, 0xD, 0x1, 0xD, 0x4, 0x2E, 6}, 

{5, 0xD, 0x1, 0xD, 0x1, 0x2B, 7}, 

{5, 0xE, 0x0, 0x0, 0x0, 0x4B, 7}, 

{5, 0xE, 0x1, 0x6, 0x6, 0x0B, 7}, 

{5, 0xE, 0x1, 0xE, 0xA, 0x33, 7}, 

{5, 0xE, 0x1, 0xE, 0x2, 0x0E, 6}, 

{5, 0xE, 0x1, 0xE, 0xC, 0x73, 7}, 

{5, 0xE, 0x1, 0xE, 0x8, 0x36, 6}, 

{5, 0xE, 0x1, 0xE, 0x4, 0x53, 7}, 

{5, 0xF, 0x0, 0x0, 0x0, 0x13, 7}, 

{5, 0xF, 0x1, 0x7, 0x7, 0x43, 7}, 

{5, 0xF, 0x1, 0x7, 0x6, 0x16, 6}, 

{5, 0xF, 0x1, 0x7, 0x5, 0x63, 7}, 

{5, 0xF, 0x1, 0xF, 0xC, 0x23, 7}, 

{5, 0xF, 0x1, 0xF, 0x4, 0x0C, 5}, 

{5, 0xF, 0x1, 0xD, 0x9, 0x03, 7}, 

{5, 0xF, 0x1, 0xF, 0xA, 0x3D, 7}, 

{5, 0xF, 0x1, 0xF, 0x8, 0x14, 5}, 

{5, 0xF, 0x1, 0xF, 0x3, 0x7D, 7}, 

{5, 0xF, 0x1, 0xF, 0x2, 0x04, 5}, 

{5, 0xF, 0x1, 0xF, 0x1, 0x06, 6}, 

{6, 0x0, 0x0, 0x0, 0x0, 0x00, 3}, 

{6, 0x1, 0x0, 0x0, 0x0, 0x04, 4}, 

{6, 0x1, 0x1, 0x1, 0x1, 0x03, 6}, 

{6, 0x2, 0x0, 0x0, 0x0, 0x0C, 5}, 

{6, 0x2, 0x1, 0x2, 0x2, 0x0D, 6}, 

{6, 0x3, 0x0, 0x0, 0x0, 0x1A, 5}, 

{6, 0x3, 0x1, 0x3, 0x3, 0x3D, 6}, 

{6, 0x3, 0x1, 0x3, 0x1, 0x1D, 6}, 

{6, 0x3, 0x1, 0x3, 0x2, 0x2D, 6}, 

{6, 0x4, 0x0, 0x0, 0x0, 0x0A, 5}, 

{6, 0x4, 0x1, 0x4, 0x4, 0x3F, 7}, 
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{6, 0x5, 0x0, 0x0, 0x0, 0x35, 6}, 

{6, 0x5, 0x1, 0x1, 0x1, 0x15, 6}, 

{6, 0x5, 0x1, 0x5, 0x4, 0x7F, 7}, 

{6, 0x6, 0x0, 0x0, 0x0, 0x25, 6}, 

{6, 0x6, 0x1, 0x2, 0x2, 0x5F, 7}, 

{6, 0x6, 0x1, 0x6, 0x4, 0x1F, 7}, 

{6, 0x7, 0x0, 0x0, 0x0, 0x6F, 7}, 

{6, 0x7, 0x1, 0x6, 0x6, 0x4F, 7}, 

{6, 0x7, 0x1, 0x6, 0x4, 0x05, 6}, 

{6, 0x7, 0x1, 0x7, 0x3, 0x2F, 7}, 

{6, 0x7, 0x1, 0x7, 0x1, 0x36, 6}, 

{6, 0x7, 0x1, 0x7, 0x2, 0x77, 7}, 

{6, 0x8, 0x0, 0x0, 0x0, 0x12, 5}, 

{6, 0x8, 0x1, 0x8, 0x8, 0x0F, 7}, 

{6, 0x9, 0x0, 0x0, 0x0, 0x39, 6}, 

{6, 0x9, 0x1, 0x1, 0x1, 0x37, 7}, 

{6, 0x9, 0x1, 0x9, 0x8, 0x57, 7}, 

{6, 0xA, 0x0, 0x0, 0x0, 0x19, 6}, 

{6, 0xA, 0x1, 0x2, 0x2, 0x29, 6}, 

{6, 0xA, 0x1, 0xA, 0x8, 0x17, 7}, 

{6, 0xB, 0x0, 0x0, 0x0, 0x67, 7}, 

{6, 0xB, 0x1, 0x9, 0x9, 0x47, 7}, 

{6, 0xB, 0x1, 0x9, 0x1, 0x09, 6}, 

{6, 0xB, 0x1, 0xB, 0xA, 0x27, 7}, 

{6, 0xB, 0x1, 0xB, 0x2, 0x31, 6}, 

{6, 0xB, 0x1, 0xB, 0x8, 0x7B, 7}, 

{6, 0xC, 0x0, 0x0, 0x0, 0x11, 6}, 

{6, 0xC, 0x1, 0xC, 0xC, 0x07, 7}, 

{6, 0xC, 0x1, 0xC, 0x8, 0x21, 6}, 

{6, 0xC, 0x1, 0xC, 0x4, 0x3B, 7}, 

{6, 0xD, 0x0, 0x0, 0x0, 0x5B, 7}, 

{6, 0xD, 0x1, 0x5, 0x5, 0x33, 7}, 

{6, 0xD, 0x1, 0x5, 0x4, 0x01, 6}, 

{6, 0xD, 0x1, 0xC, 0x8, 0x1B, 7}, 

{6, 0xD, 0x1, 0xD, 0x1, 0x6B, 7}, 

{6, 0xE, 0x0, 0x0, 0x0, 0x2B, 7}, 

{6, 0xE, 0x1, 0xE, 0x2, 0x4B, 7}, 

{6, 0xE, 0x1, 0x2, 0x2, 0x0B, 7}, 

{6, 0xE, 0x1, 0xE, 0xC, 0x73, 7}, 

{6, 0xE, 0x1, 0xE, 0x8, 0x3E, 6}, 

{6, 0xE, 0x1, 0xE, 0x4, 0x53, 7}, 

{6, 0xF, 0x0, 0x0, 0x0, 0x13, 7}, 
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{6, 0xF, 0x1, 0x6, 0x6, 0x1E, 6}, 

{6, 0xF, 0x1, 0xE, 0xA, 0x2E, 6}, 

{6, 0xF, 0x1, 0xF, 0x3, 0x0E, 6}, 

{6, 0xF, 0x1, 0xF, 0x2, 0x02, 5}, 

{6, 0xF, 0x1, 0xB, 0x9, 0x63, 7}, 

{6, 0xF, 0x1, 0xF, 0xC, 0x16, 6}, 

{6, 0xF, 0x1, 0xF, 0x8, 0x06, 6}, 

{6, 0xF, 0x1, 0xF, 0x5, 0x23, 7}, 

{6, 0xF, 0x1, 0xF, 0x1, 0x1C, 5}, 

{6, 0xF, 0x1, 0xF, 0x4, 0x26, 6}, 

{7, 0x0, 0x0, 0x0, 0x0, 0x12, 5}, 

{7, 0x1, 0x0, 0x0, 0x0, 0x05, 6}, 

{7, 0x1, 0x1, 0x1, 0x1, 0x7F, 7}, 

{7, 0x2, 0x0, 0x0, 0x0, 0x39, 6}, 

{7, 0x2, 0x1, 0x2, 0x2, 0x3F, 7}, 

{7, 0x3, 0x0, 0x0, 0x0, 0x5F, 7}, 

{7, 0x3, 0x1, 0x3, 0x3, 0x1F, 7}, 

{7, 0x3, 0x1, 0x3, 0x2, 0x6F, 7}, 

{7, 0x3, 0x1, 0x3, 0x1, 0x2F, 7}, 

{7, 0x4, 0x0, 0x0, 0x0, 0x4F, 7}, 

{7, 0x4, 0x1, 0x4, 0x4, 0x0F, 7}, 

{7, 0x5, 0x0, 0x0, 0x0, 0x57, 7}, 

{7, 0x5, 0x1, 0x1, 0x1, 0x19, 6}, 

{7, 0x5, 0x1, 0x5, 0x4, 0x77, 7}, 

{7, 0x6, 0x0, 0x0, 0x0, 0x37, 7}, 

{7, 0x6, 0x1, 0x0, 0x0, 0x29, 6}, 

{7, 0x7, 0x0, 0x0, 0x0, 0x17, 7}, 

{7, 0x7, 0x1, 0x6, 0x6, 0x67, 7}, 

{7, 0x7, 0x1, 0x7, 0x3, 0x27, 7}, 

{7, 0x7, 0x1, 0x7, 0x2, 0x47, 7}, 

{7, 0x7, 0x1, 0x7, 0x5, 0x1B, 7}, 

{7, 0x7, 0x1, 0x7, 0x1, 0x09, 6}, 

{7, 0x7, 0x1, 0x7, 0x4, 0x07, 7}, 

{7, 0x8, 0x0, 0x0, 0x0, 0x7B, 7}, 

{7, 0x8, 0x1, 0x8, 0x8, 0x3B, 7}, 

{7, 0x9, 0x0, 0x0, 0x0, 0x5B, 7}, 

{7, 0x9, 0x1, 0x0, 0x0, 0x31, 6}, 

{7, 0xA, 0x0, 0x0, 0x0, 0x53, 7}, 

{7, 0xA, 0x1, 0x2, 0x2, 0x11, 6}, 

{7, 0xA, 0x1, 0xA, 0x8, 0x6B, 7}, 

{7, 0xB, 0x0, 0x0, 0x0, 0x2B, 7}, 

{7, 0xB, 0x1, 0x9, 0x9, 0x4B, 7}, 
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{7, 0xB, 0x1, 0xB, 0x3, 0x0B, 7}, 

{7, 0xB, 0x1, 0xB, 0x1, 0x73, 7}, 

{7, 0xB, 0x1, 0xB, 0xA, 0x33, 7}, 

{7, 0xB, 0x1, 0xB, 0x2, 0x21, 6}, 

{7, 0xB, 0x1, 0xB, 0x8, 0x13, 7}, 

{7, 0xC, 0x0, 0x0, 0x0, 0x63, 7}, 

{7, 0xC, 0x1, 0x8, 0x8, 0x23, 7}, 

{7, 0xC, 0x1, 0xC, 0x4, 0x43, 7}, 

{7, 0xD, 0x0, 0x0, 0x0, 0x03, 7}, 

{7, 0xD, 0x1, 0x9, 0x9, 0x7D, 7}, 

{7, 0xD, 0x1, 0xD, 0x5, 0x5D, 7}, 

{7, 0xD, 0x1, 0xD, 0x1, 0x01, 6}, 

{7, 0xD, 0x1, 0xD, 0xC, 0x3D, 7}, 

{7, 0xD, 0x1, 0xD, 0x4, 0x3E, 6}, 

{7, 0xD, 0x1, 0xD, 0x8, 0x1D, 7}, 

{7, 0xE, 0x0, 0x0, 0x0, 0x6D, 7}, 

{7, 0xE, 0x1, 0x6, 0x6, 0x2D, 7}, 

{7, 0xE, 0x1, 0xE, 0xA, 0x0D, 7}, 

{7, 0xE, 0x1, 0xE, 0x2, 0x1E, 6}, 

{7, 0xE, 0x1, 0xE, 0xC, 0x4D, 7}, 

{7, 0xE, 0x1, 0xE, 0x8, 0x0E, 6}, 

{7, 0xE, 0x1, 0xE, 0x4, 0x75, 7}, 

{7, 0xF, 0x0, 0x0, 0x0, 0x15, 7}, 

{7, 0xF, 0x1, 0xF, 0xF, 0x06, 5}, 

{7, 0xF, 0x1, 0xF, 0xD, 0x35, 7}, 

{7, 0xF, 0x1, 0xF, 0x7, 0x55, 7}, 

{7, 0xF, 0x1, 0xF, 0x5, 0x1A, 5}, 

{7, 0xF, 0x1, 0xF, 0xB, 0x25, 7}, 

{7, 0xF, 0x1, 0xF, 0x3, 0x0A, 5}, 

{7, 0xF, 0x1, 0xF, 0x9, 0x2E, 6}, 

{7, 0xF, 0x1, 0xF, 0x1, 0x00, 4}, 

{7, 0xF, 0x1, 0xF, 0xE, 0x65, 7}, 

{7, 0xF, 0x1, 0xF, 0x6, 0x36, 6}, 

{7, 0xF, 0x1, 0xF, 0xA, 0x02, 5}, 

{7, 0xF, 0x1, 0xF, 0x2, 0x0C, 4}, 

{7, 0xF, 0x1, 0xF, 0xC, 0x16, 6}, 

{7, 0xF, 0x1, 0xF, 0x8, 0x04, 4}, 

{7, 0xF, 0x1, 0xF, 0x4, 0x08, 4}} 

 

CxtVLC_table_1 is specified as follows: 

CxtVLC_table_1 = {{0, 0x1, 0x0, 0x0, 0x0, 0x00, 3}, 

{0, 0x1, 0x1, 0x1, 0x1, 0x27, 6}, 
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{0, 0x2, 0x0, 0x0, 0x0, 0x06, 3}, 

{0, 0x2, 0x1, 0x2, 0x2, 0x17, 6}, 

{0, 0x3, 0x0, 0x0, 0x0, 0x0D, 5}, 

{0, 0x3, 0x1, 0x0, 0x0, 0x3B, 6}, 

{0, 0x4, 0x0, 0x0, 0x0, 0x02, 3}, 

{0, 0x4, 0x1, 0x4, 0x4, 0x07, 6}, 

{0, 0x5, 0x0, 0x0, 0x0, 0x15, 5}, 

{0, 0x5, 0x1, 0x0, 0x0, 0x2B, 6}, 

{0, 0x6, 0x0, 0x0, 0x0, 0x01, 5}, 

{0, 0x6, 0x1, 0x0, 0x0, 0x7F, 7}, 

{0, 0x7, 0x0, 0x0, 0x0, 0x1F, 7}, 

{0, 0x7, 0x1, 0x0, 0x0, 0x1B, 6}, 

{0, 0x8, 0x0, 0x0, 0x0, 0x04, 3}, 

{0, 0x8, 0x1, 0x8, 0x8, 0x05, 5}, 

{0, 0x9, 0x0, 0x0, 0x0, 0x19, 5}, 

{0, 0x9, 0x1, 0x0, 0x0, 0x13, 6}, 

{0, 0xA, 0x0, 0x0, 0x0, 0x09, 5}, 

{0, 0xA, 0x1, 0x8, 0x8, 0x0B, 6}, 

{0, 0xA, 0x1, 0xA, 0x2, 0x3F, 7}, 

{0, 0xB, 0x0, 0x0, 0x0, 0x5F, 7}, 

{0, 0xB, 0x1, 0x0, 0x0, 0x33, 6}, 

{0, 0xC, 0x0, 0x0, 0x0, 0x11, 5}, 

{0, 0xC, 0x1, 0x8, 0x8, 0x23, 6}, 

{0, 0xC, 0x1, 0xC, 0x4, 0x6F, 7}, 

{0, 0xD, 0x0, 0x0, 0x0, 0x0F, 7}, 

{0, 0xD, 0x1, 0x0, 0x0, 0x03, 6}, 

{0, 0xE, 0x0, 0x0, 0x0, 0x2F, 7}, 

{0, 0xE, 0x1, 0x4, 0x4, 0x4F, 7}, 

{0, 0xE, 0x1, 0x4, 0x0, 0x3D, 6}, 

{0, 0xF, 0x0, 0x0, 0x0, 0x77, 7}, 

{0, 0xF, 0x1, 0x1, 0x1, 0x37, 7}, 

{0, 0xF, 0x1, 0x1, 0x0, 0x1D, 6}, 

{1, 0x0, 0x0, 0x0, 0x0, 0x00, 1}, 

{1, 0x1, 0x0, 0x0, 0x0, 0x05, 4}, 

{1, 0x1, 0x1, 0x1, 0x1, 0x7F, 7}, 

{1, 0x2, 0x0, 0x0, 0x0, 0x09, 4}, 

{1, 0x2, 0x1, 0x2, 0x2, 0x1F, 7}, 

{1, 0x3, 0x0, 0x0, 0x0, 0x1D, 5}, 

{1, 0x3, 0x1, 0x1, 0x1, 0x3F, 7}, 

{1, 0x3, 0x1, 0x3, 0x2, 0x5F, 7}, 

{1, 0x4, 0x0, 0x0, 0x0, 0x0D, 5}, 

{1, 0x4, 0x1, 0x4, 0x4, 0x37, 7}, 
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{1, 0x5, 0x0, 0x0, 0x0, 0x03, 6}, 

{1, 0x5, 0x1, 0x0, 0x0, 0x6F, 7}, 

{1, 0x6, 0x0, 0x0, 0x0, 0x2F, 7}, 

{1, 0x6, 0x1, 0x0, 0x0, 0x4F, 7}, 

{1, 0x7, 0x0, 0x0, 0x0, 0x0F, 7}, 

{1, 0x7, 0x1, 0x0, 0x0, 0x77, 7}, 

{1, 0x8, 0x0, 0x0, 0x0, 0x01, 4}, 

{1, 0x8, 0x1, 0x8, 0x8, 0x17, 7}, 

{1, 0x9, 0x0, 0x0, 0x0, 0x0B, 6}, 

{1, 0x9, 0x1, 0x0, 0x0, 0x57, 7}, 

{1, 0xA, 0x0, 0x0, 0x0, 0x33, 6}, 

{1, 0xA, 0x1, 0x0, 0x0, 0x67, 7}, 

{1, 0xB, 0x0, 0x0, 0x0, 0x27, 7}, 

{1, 0xB, 0x1, 0x0, 0x0, 0x2B, 7}, 

{1, 0xC, 0x0, 0x0, 0x0, 0x13, 6}, 

{1, 0xC, 0x1, 0x0, 0x0, 0x47, 7}, 

{1, 0xD, 0x0, 0x0, 0x0, 0x07, 7}, 

{1, 0xD, 0x1, 0x0, 0x0, 0x7B, 7}, 

{1, 0xE, 0x0, 0x0, 0x0, 0x3B, 7}, 

{1, 0xE, 0x1, 0x0, 0x0, 0x5B, 7}, 

{1, 0xF, 0x0, 0x0, 0x0, 0x1B, 7}, 

{1, 0xF, 0x1, 0x4, 0x4, 0x6B, 7}, 

{1, 0xF, 0x1, 0x4, 0x0, 0x23, 6}, 

{2, 0x0, 0x0, 0x0, 0x0, 0x00, 1}, 

{2, 0x1, 0x0, 0x0, 0x0, 0x09, 4}, 

{2, 0x1, 0x1, 0x1, 0x1, 0x7F, 7}, 

{2, 0x2, 0x0, 0x0, 0x0, 0x01, 4}, 

{2, 0x2, 0x1, 0x2, 0x2, 0x23, 6}, 

{2, 0x3, 0x0, 0x0, 0x0, 0x3D, 6}, 

{2, 0x3, 0x1, 0x2, 0x2, 0x3F, 7}, 

{2, 0x3, 0x1, 0x3, 0x1, 0x1F, 7}, 

{2, 0x4, 0x0, 0x0, 0x0, 0x15, 5}, 

{2, 0x4, 0x1, 0x4, 0x4, 0x5F, 7}, 

{2, 0x5, 0x0, 0x0, 0x0, 0x03, 6}, 

{2, 0x5, 0x1, 0x0, 0x0, 0x6F, 7}, 

{2, 0x6, 0x0, 0x0, 0x0, 0x2F, 7}, 

{2, 0x6, 0x1, 0x0, 0x0, 0x4F, 7}, 

{2, 0x7, 0x0, 0x0, 0x0, 0x0F, 7}, 

{2, 0x7, 0x1, 0x0, 0x0, 0x17, 7}, 

{2, 0x8, 0x0, 0x0, 0x0, 0x05, 5}, 

{2, 0x8, 0x1, 0x8, 0x8, 0x77, 7}, 

{2, 0x9, 0x0, 0x0, 0x0, 0x37, 7}, 
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{2, 0x9, 0x1, 0x0, 0x0, 0x57, 7}, 

{2, 0xA, 0x0, 0x0, 0x0, 0x1D, 6}, 

{2, 0xA, 0x1, 0xA, 0xA, 0x7B, 7}, 

{2, 0xA, 0x1, 0xA, 0x2, 0x2D, 6}, 

{2, 0xA, 0x1, 0xA, 0x8, 0x67, 7}, 

{2, 0xB, 0x0, 0x0, 0x0, 0x27, 7}, 

{2, 0xB, 0x1, 0xB, 0x2, 0x47, 7}, 

{2, 0xB, 0x1, 0x0, 0x0, 0x07, 7}, 

{2, 0xC, 0x0, 0x0, 0x0, 0x0D, 6}, 

{2, 0xC, 0x1, 0x0, 0x0, 0x3B, 7}, 

{2, 0xD, 0x0, 0x0, 0x0, 0x5B, 7}, 

{2, 0xD, 0x1, 0x0, 0x0, 0x1B, 7}, 

{2, 0xE, 0x0, 0x0, 0x0, 0x6B, 7}, 

{2, 0xE, 0x1, 0x4, 0x4, 0x2B, 7}, 

{2, 0xE, 0x1, 0x4, 0x0, 0x4B, 7}, 

{2, 0xF, 0x0, 0x0, 0x0, 0x0B, 7}, 

{2, 0xF, 0x1, 0x4, 0x4, 0x73, 7}, 

{2, 0xF, 0x1, 0x5, 0x1, 0x33, 7}, 

{2, 0xF, 0x1, 0x7, 0x2, 0x53, 7}, 

{2, 0xF, 0x1, 0xF, 0x8, 0x13, 7}, 

{3, 0x0, 0x0, 0x0, 0x0, 0x00, 2}, 

{3, 0x1, 0x0, 0x0, 0x0, 0x0A, 4}, 

{3, 0x1, 0x1, 0x1, 0x1, 0x0B, 6}, 

{3, 0x2, 0x0, 0x0, 0x0, 0x02, 4}, 

{3, 0x2, 0x1, 0x2, 0x2, 0x23, 6}, 

{3, 0x3, 0x0, 0x0, 0x0, 0x0E, 5}, 

{3, 0x3, 0x1, 0x3, 0x3, 0x7F, 7}, 

{3, 0x3, 0x1, 0x3, 0x2, 0x33, 6}, 

{3, 0x3, 0x1, 0x3, 0x1, 0x13, 6}, 

{3, 0x4, 0x0, 0x0, 0x0, 0x16, 5}, 

{3, 0x4, 0x1, 0x4, 0x4, 0x3F, 7}, 

{3, 0x5, 0x0, 0x0, 0x0, 0x03, 6}, 

{3, 0x5, 0x1, 0x1, 0x1, 0x3D, 6}, 

{3, 0x5, 0x1, 0x5, 0x4, 0x1F, 7}, 

{3, 0x6, 0x0, 0x0, 0x0, 0x1D, 6}, 

{3, 0x6, 0x1, 0x0, 0x0, 0x5F, 7}, 

{3, 0x7, 0x0, 0x0, 0x0, 0x2D, 6}, 

{3, 0x7, 0x1, 0x4, 0x4, 0x2F, 7}, 

{3, 0x7, 0x1, 0x5, 0x1, 0x1E, 6}, 

{3, 0x7, 0x1, 0x7, 0x2, 0x6F, 7}, 

{3, 0x8, 0x0, 0x0, 0x0, 0x06, 5}, 

{3, 0x8, 0x1, 0x8, 0x8, 0x4F, 7}, 
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{3, 0x9, 0x0, 0x0, 0x0, 0x0D, 6}, 

{3, 0x9, 0x1, 0x0, 0x0, 0x35, 6}, 

{3, 0xA, 0x0, 0x0, 0x0, 0x15, 6}, 

{3, 0xA, 0x1, 0x2, 0x2, 0x25, 6}, 

{3, 0xA, 0x1, 0xA, 0x8, 0x0F, 7}, 

{3, 0xB, 0x0, 0x0, 0x0, 0x05, 6}, 

{3, 0xB, 0x1, 0x8, 0x8, 0x39, 6}, 

{3, 0xB, 0x1, 0xB, 0x3, 0x17, 7}, 

{3, 0xB, 0x1, 0xB, 0x2, 0x19, 6}, 

{3, 0xB, 0x1, 0xB, 0x1, 0x77, 7}, 

{3, 0xC, 0x0, 0x0, 0x0, 0x29, 6}, 

{3, 0xC, 0x1, 0x0, 0x0, 0x09, 6}, 

{3, 0xD, 0x0, 0x0, 0x0, 0x37, 7}, 

{3, 0xD, 0x1, 0x4, 0x4, 0x57, 7}, 

{3, 0xD, 0x1, 0x4, 0x0, 0x31, 6}, 

{3, 0xE, 0x0, 0x0, 0x0, 0x67, 7}, 

{3, 0xE, 0x1, 0x4, 0x4, 0x27, 7}, 

{3, 0xE, 0x1, 0xC, 0x8, 0x47, 7}, 

{3, 0xE, 0x1, 0xE, 0x2, 0x6B, 7}, 

{3, 0xF, 0x0, 0x0, 0x0, 0x11, 6}, 

{3, 0xF, 0x1, 0x6, 0x6, 0x07, 7}, 

{3, 0xF, 0x1, 0x7, 0x3, 0x7B, 7}, 

{3, 0xF, 0x1, 0xF, 0xA, 0x3B, 7}, 

{3, 0xF, 0x1, 0xF, 0x2, 0x21, 6}, 

{3, 0xF, 0x1, 0xF, 0x8, 0x01, 6}, 

{3, 0xF, 0x1, 0xA, 0x8, 0x5B, 7}, 

{3, 0xF, 0x1, 0xF, 0x5, 0x1B, 7}, 

{3, 0xF, 0x1, 0xF, 0x1, 0x3E, 6}, 

{3, 0xF, 0x1, 0xF, 0x4, 0x2B, 7}, 

{4, 0x0, 0x0, 0x0, 0x0, 0x00, 1}, 

{4, 0x1, 0x0, 0x0, 0x0, 0x0D, 5}, 

{4, 0x1, 0x1, 0x1, 0x1, 0x7F, 7}, 

{4, 0x2, 0x0, 0x0, 0x0, 0x15, 5}, 

{4, 0x2, 0x1, 0x2, 0x2, 0x3F, 7}, 

{4, 0x3, 0x0, 0x0, 0x0, 0x5F, 7}, 

{4, 0x3, 0x1, 0x0, 0x0, 0x6F, 7}, 

{4, 0x4, 0x0, 0x0, 0x0, 0x09, 4}, 

{4, 0x4, 0x1, 0x4, 0x4, 0x23, 6}, 

{4, 0x5, 0x0, 0x0, 0x0, 0x33, 6}, 

{4, 0x5, 0x1, 0x0, 0x0, 0x1F, 7}, 

{4, 0x6, 0x0, 0x0, 0x0, 0x13, 6}, 

{4, 0x6, 0x1, 0x0, 0x0, 0x2F, 7}, 
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{4, 0x7, 0x0, 0x0, 0x0, 0x4F, 7}, 

{4, 0x7, 0x1, 0x0, 0x0, 0x57, 7}, 

{4, 0x8, 0x0, 0x0, 0x0, 0x01, 4}, 

{4, 0x8, 0x1, 0x8, 0x8, 0x0F, 7}, 

{4, 0x9, 0x0, 0x0, 0x0, 0x77, 7}, 

{4, 0x9, 0x1, 0x0, 0x0, 0x37, 7}, 

{4, 0xA, 0x0, 0x0, 0x0, 0x1D, 6}, 

{4, 0xA, 0x1, 0x0, 0x0, 0x17, 7}, 

{4, 0xB, 0x0, 0x0, 0x0, 0x67, 7}, 

{4, 0xB, 0x1, 0x0, 0x0, 0x6B, 7}, 

{4, 0xC, 0x0, 0x0, 0x0, 0x05, 5}, 

{4, 0xC, 0x1, 0xC, 0xC, 0x27, 7}, 

{4, 0xC, 0x1, 0xC, 0x8, 0x47, 7}, 

{4, 0xC, 0x1, 0xC, 0x4, 0x07, 7}, 

{4, 0xD, 0x0, 0x0, 0x0, 0x7B, 7}, 

{4, 0xD, 0x1, 0x0, 0x0, 0x3B, 7}, 

{4, 0xE, 0x0, 0x0, 0x0, 0x5B, 7}, 

{4, 0xE, 0x1, 0x2, 0x2, 0x1B, 7}, 

{4, 0xE, 0x1, 0x2, 0x0, 0x03, 6}, 

{4, 0xF, 0x0, 0x0, 0x0, 0x2B, 7}, 

{4, 0xF, 0x1, 0x1, 0x1, 0x4B, 7}, 

{4, 0xF, 0x1, 0x3, 0x2, 0x0B, 7}, 

{4, 0xF, 0x1, 0x3, 0x0, 0x3D, 6}, 

{5, 0x0, 0x0, 0x0, 0x0, 0x00, 2}, 

{5, 0x1, 0x0, 0x0, 0x0, 0x1E, 5}, 

{5, 0x1, 0x1, 0x1, 0x1, 0x3B, 6}, 

{5, 0x2, 0x0, 0x0, 0x0, 0x0A, 5}, 

{5, 0x2, 0x1, 0x2, 0x2, 0x3F, 7}, 

{5, 0x3, 0x0, 0x0, 0x0, 0x1B, 6}, 

{5, 0x3, 0x1, 0x0, 0x0, 0x0B, 6}, 

{5, 0x4, 0x0, 0x0, 0x0, 0x02, 4}, 

{5, 0x4, 0x1, 0x4, 0x4, 0x2B, 6}, 

{5, 0x5, 0x0, 0x0, 0x0, 0x0E, 5}, 

{5, 0x5, 0x1, 0x4, 0x4, 0x33, 6}, 

{5, 0x5, 0x1, 0x5, 0x1, 0x7F, 7}, 

{5, 0x6, 0x0, 0x0, 0x0, 0x13, 6}, 

{5, 0x6, 0x1, 0x0, 0x0, 0x6F, 7}, 

{5, 0x7, 0x0, 0x0, 0x0, 0x23, 6}, 

{5, 0x7, 0x1, 0x2, 0x2, 0x5F, 7}, 

{5, 0x7, 0x1, 0x2, 0x0, 0x15, 6}, 

{5, 0x8, 0x0, 0x0, 0x0, 0x16, 5}, 

{5, 0x8, 0x1, 0x8, 0x8, 0x03, 6}, 
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{5, 0x9, 0x0, 0x0, 0x0, 0x3D, 6}, 

{5, 0x9, 0x1, 0x0, 0x0, 0x1F, 7}, 

{5, 0xA, 0x0, 0x0, 0x0, 0x1D, 6}, 

{5, 0xA, 0x1, 0x0, 0x0, 0x2D, 6}, 

{5, 0xB, 0x0, 0x0, 0x0, 0x0D, 6}, 

{5, 0xB, 0x1, 0x1, 0x1, 0x4F, 7}, 

{5, 0xB, 0x1, 0x1, 0x0, 0x35, 6}, 

{5, 0xC, 0x0, 0x0, 0x0, 0x06, 5}, 

{5, 0xC, 0x1, 0x4, 0x4, 0x25, 6}, 

{5, 0xC, 0x1, 0xC, 0x8, 0x2F, 7}, 

{5, 0xD, 0x0, 0x0, 0x0, 0x05, 6}, 

{5, 0xD, 0x1, 0x1, 0x1, 0x77, 7}, 

{5, 0xD, 0x1, 0x5, 0x4, 0x39, 6}, 

{5, 0xD, 0x1, 0xD, 0x8, 0x0F, 7}, 

{5, 0xE, 0x0, 0x0, 0x0, 0x19, 6}, 

{5, 0xE, 0x1, 0x2, 0x2, 0x57, 7}, 

{5, 0xE, 0x1, 0xA, 0x8, 0x01, 6}, 

{5, 0xE, 0x1, 0xE, 0x4, 0x37, 7}, 

{5, 0xF, 0x0, 0x0, 0x0, 0x1A, 5}, 

{5, 0xF, 0x1, 0x9, 0x9, 0x17, 7}, 

{5, 0xF, 0x1, 0xD, 0x5, 0x67, 7}, 

{5, 0xF, 0x1, 0xF, 0x3, 0x07, 7}, 

{5, 0xF, 0x1, 0xF, 0x1, 0x29, 6}, 

{5, 0xF, 0x1, 0x7, 0x6, 0x27, 7}, 

{5, 0xF, 0x1, 0xF, 0xC, 0x09, 6}, 

{5, 0xF, 0x1, 0xF, 0x4, 0x31, 6}, 

{5, 0xF, 0x1, 0xF, 0xA, 0x47, 7}, 

{5, 0xF, 0x1, 0xF, 0x8, 0x11, 6}, 

{5, 0xF, 0x1, 0xF, 0x2, 0x21, 6}, 

{6, 0x0, 0x0, 0x0, 0x0, 0x00, 3}, 

{6, 0x1, 0x0, 0x0, 0x0, 0x02, 4}, 

{6, 0x1, 0x1, 0x1, 0x1, 0x03, 6}, 

{6, 0x2, 0x0, 0x0, 0x0, 0x0C, 4}, 

{6, 0x2, 0x1, 0x2, 0x2, 0x3D, 6}, 

{6, 0x3, 0x0, 0x0, 0x0, 0x1D, 6}, 

{6, 0x3, 0x1, 0x2, 0x2, 0x0D, 6}, 

{6, 0x3, 0x1, 0x3, 0x1, 0x7F, 7}, 

{6, 0x4, 0x0, 0x0, 0x0, 0x04, 4}, 

{6, 0x4, 0x1, 0x4, 0x4, 0x2D, 6}, 

{6, 0x5, 0x0, 0x0, 0x0, 0x0A, 5}, 

{6, 0x5, 0x1, 0x4, 0x4, 0x35, 6}, 

{6, 0x5, 0x1, 0x5, 0x1, 0x2F, 7}, 
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{6, 0x6, 0x0, 0x0, 0x0, 0x15, 6}, 

{6, 0x6, 0x1, 0x2, 0x2, 0x3F, 7}, 

{6, 0x6, 0x1, 0x6, 0x4, 0x5F, 7}, 

{6, 0x7, 0x0, 0x0, 0x0, 0x25, 6}, 

{6, 0x7, 0x1, 0x2, 0x2, 0x29, 6}, 

{6, 0x7, 0x1, 0x3, 0x1, 0x1F, 7}, 

{6, 0x7, 0x1, 0x7, 0x4, 0x6F, 7}, 

{6, 0x8, 0x0, 0x0, 0x0, 0x16, 5}, 

{6, 0x8, 0x1, 0x8, 0x8, 0x05, 6}, 

{6, 0x9, 0x0, 0x0, 0x0, 0x39, 6}, 

{6, 0x9, 0x1, 0x0, 0x0, 0x19, 6}, 

{6, 0xA, 0x0, 0x0, 0x0, 0x06, 5}, 

{6, 0xA, 0x1, 0xA, 0xA, 0x0F, 7}, 

{6, 0xA, 0x1, 0xA, 0x2, 0x09, 6}, 

{6, 0xA, 0x1, 0xA, 0x8, 0x4F, 7}, 

{6, 0xB, 0x0, 0x0, 0x0, 0x0E, 6}, 

{6, 0xB, 0x1, 0xB, 0x2, 0x77, 7}, 

{6, 0xB, 0x1, 0x2, 0x2, 0x37, 7}, 

{6, 0xB, 0x1, 0xA, 0x8, 0x57, 7}, 

{6, 0xB, 0x1, 0xB, 0x1, 0x47, 7}, 

{6, 0xC, 0x0, 0x0, 0x0, 0x1A, 5}, 

{6, 0xC, 0x1, 0xC, 0xC, 0x17, 7}, 

{6, 0xC, 0x1, 0xC, 0x8, 0x67, 7}, 

{6, 0xC, 0x1, 0xC, 0x4, 0x27, 7}, 

{6, 0xD, 0x0, 0x0, 0x0, 0x31, 6}, 

{6, 0xD, 0x1, 0xD, 0x4, 0x07, 7}, 

{6, 0xD, 0x1, 0x4, 0x4, 0x7B, 7}, 

{6, 0xD, 0x1, 0xC, 0x8, 0x3B, 7}, 

{6, 0xD, 0x1, 0xD, 0x1, 0x2B, 7}, 

{6, 0xE, 0x0, 0x0, 0x0, 0x11, 6}, 

{6, 0xE, 0x1, 0xE, 0x4, 0x5B, 7}, 

{6, 0xE, 0x1, 0x4, 0x4, 0x1B, 7}, 

{6, 0xE, 0x1, 0xE, 0xA, 0x6B, 7}, 

{6, 0xE, 0x1, 0xE, 0x8, 0x21, 6}, 

{6, 0xE, 0x1, 0xE, 0x2, 0x33, 7}, 

{6, 0xF, 0x0, 0x0, 0x0, 0x01, 6}, 

{6, 0xF, 0x1, 0x3, 0x3, 0x4B, 7}, 

{6, 0xF, 0x1, 0x7, 0x6, 0x0B, 7}, 

{6, 0xF, 0x1, 0xF, 0xA, 0x73, 7}, 

{6, 0xF, 0x1, 0xF, 0x2, 0x3E, 6}, 

{6, 0xF, 0x1, 0xB, 0x9, 0x53, 7}, 

{6, 0xF, 0x1, 0xF, 0xC, 0x63, 7}, 
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{6, 0xF, 0x1, 0xF, 0x8, 0x1E, 6}, 

{6, 0xF, 0x1, 0xF, 0x5, 0x13, 7}, 

{6, 0xF, 0x1, 0xF, 0x4, 0x2E, 6}, 

{6, 0xF, 0x1, 0xF, 0x1, 0x23, 7}, 

{7, 0x0, 0x0, 0x0, 0x0, 0x04, 4}, 

{7, 0x1, 0x0, 0x0, 0x0, 0x33, 6}, 

{7, 0x1, 0x1, 0x1, 0x1, 0x13, 6}, 

{7, 0x2, 0x0, 0x0, 0x0, 0x23, 6}, 

{7, 0x2, 0x1, 0x2, 0x2, 0x7F, 7}, 

{7, 0x3, 0x0, 0x0, 0x0, 0x03, 6}, 

{7, 0x3, 0x1, 0x1, 0x1, 0x3F, 7}, 

{7, 0x3, 0x1, 0x3, 0x2, 0x6F, 7}, 

{7, 0x4, 0x0, 0x0, 0x0, 0x2D, 6}, 

{7, 0x4, 0x1, 0x4, 0x4, 0x5F, 7}, 

{7, 0x5, 0x0, 0x0, 0x0, 0x16, 5}, 

{7, 0x5, 0x1, 0x1, 0x1, 0x3D, 6}, 

{7, 0x5, 0x1, 0x5, 0x4, 0x1F, 7}, 

{7, 0x6, 0x0, 0x0, 0x0, 0x1D, 6}, 

{7, 0x6, 0x1, 0x0, 0x0, 0x77, 7}, 

{7, 0x7, 0x0, 0x0, 0x0, 0x06, 5}, 

{7, 0x7, 0x1, 0x7, 0x4, 0x2F, 7}, 

{7, 0x7, 0x1, 0x4, 0x4, 0x4F, 7}, 

{7, 0x7, 0x1, 0x7, 0x3, 0x0F, 7}, 

{7, 0x7, 0x1, 0x7, 0x1, 0x0D, 6}, 

{7, 0x7, 0x1, 0x7, 0x2, 0x57, 7}, 

{7, 0x8, 0x0, 0x0, 0x0, 0x35, 6}, 

{7, 0x8, 0x1, 0x8, 0x8, 0x37, 7}, 

{7, 0x9, 0x0, 0x0, 0x0, 0x15, 6}, 

{7, 0x9, 0x1, 0x0, 0x0, 0x27, 7}, 

{7, 0xA, 0x0, 0x0, 0x0, 0x25, 6}, 

{7, 0xA, 0x1, 0x0, 0x0, 0x29, 6}, 

{7, 0xB, 0x0, 0x0, 0x0, 0x1A, 5}, 

{7, 0xB, 0x1, 0xB, 0x1, 0x17, 7}, 

{7, 0xB, 0x1, 0x1, 0x1, 0x67, 7}, 

{7, 0xB, 0x1, 0x3, 0x2, 0x05, 6}, 

{7, 0xB, 0x1, 0xB, 0x8, 0x7B, 7}, 

{7, 0xC, 0x0, 0x0, 0x0, 0x39, 6}, 

{7, 0xC, 0x1, 0x0, 0x0, 0x19, 6}, 

{7, 0xD, 0x0, 0x0, 0x0, 0x0C, 5}, 

{7, 0xD, 0x1, 0xD, 0x1, 0x47, 7}, 

{7, 0xD, 0x1, 0x1, 0x1, 0x07, 7}, 

{7, 0xD, 0x1, 0x5, 0x4, 0x09, 6}, 
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{7, 0xD, 0x1, 0xD, 0x8, 0x1B, 7}, 

{7, 0xE, 0x0, 0x0, 0x0, 0x31, 6}, 

{7, 0xE, 0x1, 0xE, 0x2, 0x3B, 7}, 

{7, 0xE, 0x1, 0x2, 0x2, 0x5B, 7}, 

{7, 0xE, 0x1, 0xA, 0x8, 0x3E, 6}, 

{7, 0xE, 0x1, 0xE, 0x4, 0x0B, 7}, 

{7, 0xF, 0x0, 0x0, 0x0, 0x00, 3}, 

{7, 0xF, 0x1, 0xF, 0xF, 0x6B, 7}, 

{7, 0xF, 0x1, 0xF, 0x7, 0x2B, 7}, 

{7, 0xF, 0x1, 0xF, 0xB, 0x4B, 7}, 

{7, 0xF, 0x1, 0xF, 0x3, 0x11, 6}, 

{7, 0xF, 0x1, 0x7, 0x6, 0x21, 6}, 

{7, 0xF, 0x1, 0xF, 0xA, 0x01, 6}, 

{7, 0xF, 0x1, 0xF, 0x2, 0x0A, 5}, 

{7, 0xF, 0x1, 0xB, 0x9, 0x1E, 6}, 

{7, 0xF, 0x1, 0xF, 0xC, 0x0E, 6}, 

{7, 0xF, 0x1, 0xF, 0x8, 0x12, 5}, 

{7, 0xF, 0x1, 0xF, 0x5, 0x2E, 6}, 

{7, 0xF, 0x1, 0xF, 0x1, 0x02, 5}, 

{7, 0xF, 0x1, 0xF, 0x4, 0x1C, 5}} 
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JPH file format 

(This annex forms an integral part of this Recommendation | International Standard.) 

D.1 General 

The JPH file format conforms to the JP2 file format specified in Rec. ITU-T T.800 | ISO/IEC 15444-1, unless specified 

otherwise in this annex. 

D.2 JP2 Header box 

In contrast to the JP2 file format, if the UnkC field is non-zero it is not required that a Colour Specification box be present 

within the JP2 Header box. 

If the JP2 Header box does not contain a Colour Specification box: 

• the colourspace of the image data is unspecified; and 

• no Typi field shall be equal to 0. 

D.3 File Type box 

The BR field shall be equal to 'jph\040'. 

The MinV field shall be 0. 

One CLi field shall be equal to the value 'jph\040'. 

D.4 Colour Specification box 

D.4.1 Additional METH values 

This standard defines the METH values listed in Table D.1. 

Table D.1 – Additional METH values 

Value Meaning 

0-2 As specified in Rec. ITU-T T.800 | ISO/IEC 15444-1. 

3 Any International Color Consortium (ICC) method. This Colour Specification box indicates that the colourspace of the 
codestream is specified by an embedded input ICC profile. Contrary to the Restricted ICC method defined in the JP2 file 
format, this method allows for any input ICC profile, described in ISO/IEC 15076-1. 

5 Parameterized colourspace as specified in Rec. ITU-T H.273 | ISO/IEC 23001-8 

 

D.4.2 Any International Color Consortium method 

When the METH field is equal to 3, the Colour Specification box shall be organized as specified in Figure D.1 and Table 

D.2. 

 

Figure D.1 – Organization of the contents of a Colour Specification box when METH = 3 
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Table D.2 – Format of the contents of the Colour Specification box 

Field name Size (bits) Value 

PROFILE Variable ICC input profile as defined by ISO/IEC 15076-1, specifying the 
transformation between the decompressed code values and the PCS. 
Any input ICC profile, regardless of profile class, may be contained 
within this field. 

NOTE – This method is equivalent to the Any ICC method specified in Rec. ITU-T T.801 | ISO/IEC 15444-2. 

D.4.3 Parameterized colourspace 

When the METH field is equal to 5, the Colour Specification box shall be organized as specified in Table D.3 and Figure 

D.2. 

 

Figure D.2 – Organization of the contents of a Colour Specification box when METH = 5 

Table D.3 – Format of the contents of the Colour Specification box 

Field name Size (bits) Value 

COLPRIMS 16 One of the ColourPrimaries enumerated values specified in Rec. 
ITU-T H.273 | ISO/IEC 23001-8 

TRANSFC 16 One of the TransferCharacteristics enumerated values specified in 
Rec. ITU-T H.273 | ISO/IEC 23001-8 

MATCOEFFS 16 One of the MatrixCoefficients enumerated values specified in Rec. 
ITU-T H.273 | ISO/IEC 23001-8 

VIDFRNG 1 Value of the VideoFullRangeFlag specified in Rec. ITU-T H.273 | 
ISO/IEC 23001-8 

VIDFRNG _RSVD 7 Reserved for future use by ITU-T | ISO/IEC 

D.5 Contiguous codestream box 

The Contiguous Codestream box shall contains a valid and complete HTJ2K codestream as specified in clause 6.1. 

NOTE – Rec. ITU-T T.800 | ISO/IEC 15444-1 specifies that, when displaying the image, all codestreams after the first codestream 
found in the file are ignored, and that Contiguous Codestream boxes can be found anywhere in the file except before the JP2 Header 
box. 

D.6 Channel Definition box 

D.6.1 Single alpha channel 

In contrast to the JP2 file format, which supports multiple alpha channels, JPH only supports a single alpha channel. 

If the Channel Definition box is present, at most one Typi field shall be equal to 1 or 2, and the corresponding Asoci field 

shall be equal to 0. 

D.6.2 Multiple channels per colour 

In contrast to the JP2 file format, multiple channels can be associated with the same colour. 

There may be more than one channel with the same Typi and Asoci value pair. 

EXAMPLE – Multiple channels of the same colour in a Bayer pattern can be described using the same Typi and Asoci value pair, and 

but different component registration position, as carried in the optional CRG marker segment. 
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D.6.3 Application-specified colour 

This standard defines the additional Typi values listed in Table D.4. 

Table D.4 – Additional Typi field value 

Value Meaning 

3 The colour associated with this channel is application-defined. 

When Typi is equal to 3, the value of Asoci shall be between 0 and 216 -1 and is application-defined. 

Asoci values are application-specific. 

  



ISO/IEC 15444-15:2019 (E) 

  Rec. ITU-T T.814 (06/2019) 57 

 
 

Media type specifications and registrations 

(This annex forms an integral part of this Recommendation | International Standard.) 

E.1 General 

Many Internet protocols are designed to carry arbitrary labelled content. The mechanism used to label such content is a 

media type, which is defined in IETF RFC 6838 and consists of a top-level type, a subtype, and in some instances, optional 

parameters. 

The media type specifications of clauses E.2 and E.3 have a matching registration in the Internet Assigned Numbers 

Authority central registry, as specified in IETF RFC 6838. 

E.2 JPH file 

E.2.1 General 

The image/jph media type refers to content that consists of a single JPH file as specified in Annex D. 

E.2.2 Registration 

Type name: image 

Subtype name: jph 

Required parameters: N/A 

Optional parameters: N/A 

Encoding considerations: See Section 4.1 of RFC 3745. 

Security considerations: See Section 3 of RFC 3745. 

Interoperability considerations: N/A 

Published specification: Rec. ITU-T T.814 | ISO/IEC 15444-15 

Applications: Multimedia and scientific 

Fragment identifier considerations: N/A 

Restrictions on usage: N/A 

Additional information: 

   Deprecated alias names for this type: N/A 

   Magic number(s): See Section 4.4 of RFC 3745 

   File extension(s): jph 

   Macintosh File Type Code(s): N/A 

Object Identifiers: N/A 

Contact name: ISO/IEC JTC 1/SC 29/WG 1 Convenor 

Contact email address: sc29-sec@itscj.ipsj.or.jp 

Intended usage: COMMON 

Change controller: ITU-T & ISO/IEC JTC 1 

E.3 Single HTJ2K codestream 

E.3.1 General 

The image/jphc media type refers to content that consists of a single HTJ2K codestream, as specified in clause 6.1. 
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E.3.2 Registration 

Type name: image 

Subtype name: jphc 

Required parameters: N/A 

Optional parameters: N/A 

Encoding considerations: binary 

Security considerations: HTJ2K codestreams contain structures of variable length 

and have an extensible syntax. Both of these aspects present potential security 

risks for implementations. In particular, variable length structures present buffer 

overflow risks and extensible syntax could result in the triggering of adverse 

actions. 

Interoperability considerations: HTJ2K codestreams do not contain information on 

the colourspace of the image. This information is implied or provided out-of-band.  

Published specification: Rec. ITU-T T.814 | ISO/IEC 15444-15 

Applications: Multimedia and scientific 

Fragment identifier considerations: N/A 

Restrictions on usage: N/A 

Additional information: 

   Magic number(s): Starts with the following 4-byte sequence: 0xFF 0x4F 0xFF 0x51 

   File extension(s): jhc 

   Macintosh File Type Code(s): N/A 

   Object Identifiers: N/A 

Contact name: ISO/IEC JTC 1/SC 29/WG 1 Convenor 

Contact email address: sc29-sec@itscj.ipsj.or.jp 

Intended usage: COMMON 

Change controller: ITU-T & ISO/IEC JTC 1 

 

 

 



ISO/IEC 15444-15:2019 (E) 

  Rec. ITU-T T.814 (06/2019) 59 

 
 

HT block encoding procedures  

(This annex does not form an integral part of this Recommendation | International Standard.) 

F.1 Overview 

An HT block encoder can produce multiple sets of HT cleanup, SigProp and MagRef coding passes, selecting some or 

all of these to be included in the generated codestream; it can also generate partial sets of coding passes, or no coding 

passes at all, for a given code-block. For most applications, at most three coding passes are included in the codestream 

for each code-block, belonging to one HT set. Rate control strategies, including those that employ post-compression rate-

distortion optimization principals, can be employed to determine which coding passes are included within the codestream. 

Moreover, rate and complexity control strategies can be employed to determine which coding passes are produced by an 

encoder, from which to select the passes that are included in the codestream. 

When transcoding content from a codestream whose code-blocks were encoded according to the algorithm defined in 

Rec. ITU-T T.800 | ISO/IEC 15444-1, it is sufficient to encode at most one HT cleanup, HT SigProp and HT MagRef 

coding pass for each code-block, corresponding to the final cleanup pass and any subsequent SigProp and MagRef passes 

from the original coded representation of that code-block. Specifically, such an approach is sufficient to exactly preserve 

all quantized sample values from the original codestream. Beyond this, it can be desirable to preserve the code-block 

truncation points associated with multiple quality layers in the original codestream. This can be done by including 

"placeholder passes," as explained in Annex B. 

Beyond the use of placeholder passes, an encoder can choose to generate and include multiple HT sets for any given code-

block, as explained in Annex B; this mechanism can be used to provide representations of a code-block at multiple 

precisions, which can be selectively extracted from quality layers. An encoder can also choose to include multiple HT 

cleanup passes without generating or including any intervening HT SigProp or MagRef code bytes, since the HT SigProp 

and MagRef coding passes that are associated with a zero length HT refinement segment are not processed by the decoder; 

in such cases Z_blk is 1. 

In applications where encoded quality (or compressed size) are driven entirely by quantization parameter selection – the 

most common rate control paradigm employed by image and video codecs, – it is sufficient for the HT block encoder to 

produce only one HT cleanup pass for each code-block, yielding a representation that has no quality scalability attributes, 

but retains all other features from the Rec. ITU-T T.800 | ISO/IEC 15444-1 family of standards. 

The most substantial element of the HT block-coding algorithm is the HT cleanup pass, since the other passes are derived 

with only minor modifications from the HT SigProp and HT MagRef passes defined in Rec. ITU-T T.800 | ISO/IEC 

15444-1, operating in the arithmetic coder bypass mode. The main purpose of this annex is to provide an overview of the 

HT cleanup pass coding algorithm from the perspective of an encoder, whereas the main body of this Specification is 

concerned with a normative description of the decoding process. To facilitate the description, Figure F.1 provides a block 

diagram of the HT cleanup encoding process. This can be compared with Figure 3, which provides a corresponding block 

diagram for the HT cleanup decoding process. 
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B1: Compute contexts. 

B2: Encode MEL symbols. 

B3: Encode CxtVLC codewords. 

B4: Compute magnitude exponent bound 𝑈𝑞, residual 𝑢𝑞 and EMB pattern �̅�𝑞. 

B5: Form exponent predictors. 

B6: Compute 𝛾
𝑞
 from 𝜌

𝑞
. 

B7: Compute MagSgn bit counts 𝑚𝑛. 

B8: Encode unsigned residuals 𝑢𝑞 to U-VLC codewords. 

B9: Pack 𝑚𝑛 MagSgn LSBs from each location 𝑛. 

B10: Bit-stuffing to produce MagSgn byte-stream from MagSgn bit-stream. 

B11: Bit-stuffing to produce MEL byte-stream from MEL bit-stream. 

B12: Bit-stuffing to produce VLC byte-stream from VLC bit-stream. 

B13: Combine byte-streams to produce HT cleanup segment. 

C1: Generated HT cleanup segment. 

C2: Generated MagSgn bit-stream. 

C3: Generated MEL bit-stream. 

C4: Generated VLC bit-stream. 

D1: Retrieved neighbouring significance patterns. 

D2: Retrieved significance patterns. 

D3: Retrieved magnitude exponents. 

D4: Retrieved neighbouring magnitude exponents. 

D5: Retrieved MagSgn values. 

M1: Storage for code-block significance, exponents and MagSgn values. 

N1: First line-pair of code-block only. 

S1: Interleave quad-pair VLC bits. 

Figure F.1 – HT cleanup pass encoder overview 

Some features of the coding algorithm are summarized in the following. These features can be readily identified within 

the encoding and decoding block diagrams of Figure F.1 and Figure 3. 

• Sub-band samples within a code-block are processed in 2x2 quads q, each of which is assigned a 4-bit 

significance pattern 𝜌𝑞 that indicates the significance of each sample in the quad. 

• Significance patterns are coded using a combination of two different techniques: an adaptive run-length 

code (MEL code) and a set of non-adaptive VLC codes (CxtVLC codes). 

• Exponent bounds 𝑈𝑞 are coded via "unsigned prediction residuals" 𝑢𝑞 on a quad-by-quad basis. 
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• The predictors 𝜅𝑛  are derived from magnitude exponents of certain previously coded samples, which 

themselves depend upon the MagSgn values of earlier samples in the code-block. 

• The significance pattern 𝜌𝑞 and unsigned prediction residuals 𝑢𝑞 for a quad are coded jointly, using a VLC 

coding scheme that involves two sub-codes, one of which (CxtVLC code) is dependent on a neighbourhood 

significance context 𝑐𝑞  and best suited to table-lookup approaches, while the other (U-VLC code) is 

amenable to direct computation if required. 

• The VLC code bits for pairs of 2x2 quads are interleaved in a manner that facilitates joint encoding or 

decoding of 8 samples at a time, while allowing 4-sample quads to be encoded or decoded individually if 

desired. 

• The CxtVLC also encodes a variable amount of additional information about the magnitude exponents of 

each sample in the quad. This information, known as EMB pattern information, is combined with the 

exponent bound 𝑈𝑞  and significance pattern 𝜌𝑞  to determine the number of sign and least significant 

magnitude bits from each sample of each quad that are packed into a MagSgn bit stream. 

An important property of the HT cleanup pass is that it involves three byte-streams that grow in different directions. Three 

separate bit-streams (MEL, VLC and MagSgn) are subjected to bit-stuffing and packed into the corresponding three byte-

streams in a way that avoids the appearance of false marker codes in the range 0xFF90 to 0xFFFF. Care is required to 

combine the byte-streams into the single HT cleanup segment in such a way that it is free from false marker codes and 

does not terminate with a byte equal to 0xFF, which are fundamental requirements for all codeword segments that 

conform to Rec. ITU-T T.800 | ISO/IEC 15444-1. The adoption of separate bit-steams provides considerable flexibility 

that can be exploited by implementations of the algorithm, to minimize memory, maximize concurrency, or fully utilize 

vector processing capabilities of a particular architecture. 

Clauses F.2 to F.4 provide first an overview of the relevant quantities and relationships for an encoder, then a description 

of the encoding steps, and finally a discussion of bit-stuffing, termination and byte-stream concatenation operations to 

produce valid HT segments. 

F.2 Bit-planes, exponents, MagSgn and EMB patterns 

Each HT cleanup pass is associated with a particular bit-plane p, wherein the magnitude of sample 𝑋𝑛 is taken to be  

μ𝑝,𝑛 = ⌊
|𝑋𝑛|

2𝑝𝛥𝑛

⌋ 

and the sample is considered significant if 𝜇𝑝,𝑛 ≠ 0. Here 𝛥𝑛 is the quantization step size that applies to the sub-band to 

which the code-block belongs, possibly modified to account for an encoded region-of-interest. In the latter case, samples 

belonging to the region of interest use a quantization step size that is smaller than the nominal value for the sub-band by 

a factor of 2SPrgn, where SPrgn is recorded within the RGN marker segment. 

The sample's magnitude exponent 𝐸𝑝,𝑛 is given by 

 𝐸𝑝,𝑛 = min {𝐸 ∈ ℕ|𝜇𝑝,𝑛 −
1

2
< 2𝐸−1}  (F.1) 

An encoder can compute all such exponents in advance of the other coding steps, by counting (scanning) the number of 

leading zeros in a binary representation of 2μ𝑝,𝑛 − 1. Moreover, it is possible to efficiently compute exponents for 

multiple bit-planes p at once, if desired. 

A sample is significant if and only if its magnitude exponent is non-zero. The HT cleanup pass algorithm explicitly codes 

significance information, after which it is only necessary to code the sign 𝑠𝑛 and the value of 𝜇𝑝,𝑛 − 1 for each significant 

sample. This information is combined within "MagSgn" values 

𝑣𝑝,𝑛 = 𝑠𝑛 + 2(μ𝑝,𝑛 − 1) < 2𝐸𝑝,𝑛 

For the remainder of this annex, the bit-plane specific sub-script 𝑝 is dropped, to simplify notation. 

For each quad 𝑞 that contains at least one significant sample, an upper bound on the magnitude exponents within that 

quad is identified as 𝑈𝑞. These bounds are encoded via corresponding unsigned residuals 𝑢𝑞, with respect to exponent 

predictors 𝜅𝑞, so that 

𝑈𝑞 = 𝑢𝑞 + 𝜅𝑞 ≥ 𝐸𝑛 for all 𝑛 ∈ {4𝑞, 4𝑞 + 1,4𝑞 + 2,4𝑞 + 3} 

This bound is required to be tight if 𝑢𝑞 > 0, which implies that 

 𝑈𝑞 = max{𝐸𝑞
max, 𝜅𝑞}, (F.2) 
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where 

 𝐸𝑞
max = max{𝐸4𝑞 , 𝐸4𝑞+1, 𝐸4𝑞+2, 𝐸4𝑞+3}. (F.3) 

𝐸𝑞
max and 𝑈𝑞 are equal when 𝑢𝑞 > 0, which corresponds to the condition that the unsigned residual offset bit 𝑢𝑞

off = 1. 

The complete 4-bit EMB pattern for quad 𝑞, denoted 𝜖�̅� , identifies those samples within the quad whose magnitude 

exponent is equal to 𝐸𝑞
max, and hence also equal to 𝑈𝑞, when 𝑢𝑞 > 0. Specifically, 

 ϵ̅𝑞 = ϵ4𝑞 + 2ϵ4𝑞+1 + 4ϵ4𝑞+2 + 8ϵ4𝑞+3 (F.4) 

where the binary EMB flags 𝜖𝑛 are defined by 

 ϵ𝑛 = {
𝑢𝑞

off if 𝐸𝑛= 𝐸𝑞
max

0 otherwise
, for all 𝑛 ∈ {4𝑞, 4𝑞 + 1,4𝑞 + 2,4𝑞 + 3} (F.5) 

 

The complete EMB pattern ϵ̅𝑞 = 0 if 𝑢𝑞
off = 0. Moreover, if 𝑢𝑞

off = 1, ϵ̅𝑞 must be non-zero, since at least one of the quad's 

samples must have exponent 𝐸𝑛 equal to the quad's maximum exponent 𝐸𝑞
max. It follows that the value of the 𝑢𝑞

off flag is 

implied by 𝜖�̅�, which is valuable in reducing the size of lookup tables used by the encoder's CxtVLC encoding process, 

as described in the following. 

While the encoder can form the complete EMB pattern 𝜖�̅� directly, the decoder recovers only a subset of the EMB pattern 

information via the CxtVLC decoding process described in clause 7.3.5. In particular, the bits of the complete EMB 

pattern 𝜖�̅� that are recovered by the decoder are identified by the EMB known-bit pattern 𝜖�̅�
k, whose binary digits are 

denoted 𝑘𝑛, as explained in clause 7.3.2. The encoder deduces the known-bit pattern 𝜖�̅�
k from the complete EMB pattern 

𝜖�̅� during the CxtVLC encoding process, using this to determine the number of bits to be packed to the MagSgn bit-

stream. 

F.3 Cleanup pass encoding steps 

This clause provides a description of the individual encoding steps that are found in the block diagram of Figure F.1. The 

reader is reminded that this description is informative only; various encoder implementations may achieve the same 

behaviour using different steps, or applying these steps in a different order, potentially using less memory, computation 

or other resources. 

As a first step, the encoder converts sample magnitude values 𝜇𝑛 to magnitude exponents 𝐸𝑛, following Formula (F.1). 

At the same time, the significance pattern 𝜌𝑞 is determined for each quad 𝑞, along with the derivative quantity 𝛾𝑞 ∈ {0,1} 

that indicates whether or not quad 𝑞 has more than one significant sample, following Formula (6). 

For the first row of quads in a code-block, the exponent predictors are set to 𝜅𝑞 = 1, while for all other quads, predictors 

are set according to Formula (5). 

The encoder forms maximum magnitude exponents 𝐸𝑞
max for each quad 𝑞, according to Formula (F.3) then exponent 

bounds 𝑈𝑞 according to Formula (F.2). From these, the unsigned exponent residuals are found using 

𝑢𝑞 = 𝑈𝑞 − 𝜅𝑞  

and the unsigned residual offset flags 𝑢𝑞
off ∈ {0,1} are found from 

𝑢𝑞
off = {

0 if 𝑢𝑞 = 0

1 if 𝑢𝑞 > 0
 

The encoder can then evaluate the full EMB pattern 𝜖�̅� for each quad 𝑞, using Formula (F.4) and Formula (F.5).  

Context labels 𝑐𝑞 are formed using Formula (1) for the first row of quads in a code-block and Formula (2) for all other 

quads in the code-block. 

The CxtVLC encoding process is readily achieved using a table lookup approach, with 11 bit indices formed from 

𝑛𝑞 =  ϵ̅𝑞 + 16 ⋅ ρ𝑞 + 256 ⋅ 𝑐𝑞 

and table entries containing the triplet (𝑤, 𝑙𝑤 , 𝜖�̅�
k), where 𝑤 is the VLC codeword, 𝑙𝑤 the codeword length, and 𝜖�̅�

k the 

EMB known-bit pattern that will be recovered by the decoder. All valid CxtVLC codewords have lengths in the range 1 

to 7, but it is convenient to assign empty codewords (𝑙𝑤 = 0) to all other entries. In particular, this means that the case 

ρ𝑞 = 𝑐𝑞 = 0, corresponding to an insignificant AZC quad, does not need to be treated specially, since the CxtVLC coding 

of this case will not emit any bits to the CxtVLC bit-stream. 
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Each bit in the 𝜖�̅� pattern can be 1 only if the corresponding bit in ρ𝑞 is 1, so the lookup table indexed by 𝑛𝑞 consists 

mostly of invalid entries that will not be accessed. Thus, more compact representations are possible. 

Separate CxtVLC encoding tables are required for each quad-type: one for the first row of quads in a code-block; and one 

for all other quads. These encoding tables can be derived from the CxtVLC 7-tuples (𝑐𝑞 , 𝜌𝑞 , 𝑢𝑞
off, 𝜖�̅�

𝑘 , 𝜖�̅�
1, 𝑤, 𝑙𝑤) tabulated 

in Annex C. In particular, for a given lookup index 𝑛𝑞, the encoding table's triplet (𝑤, 𝑙𝑤 , 𝜖�̅�
k), can be derived by copying 

the data from any matching 7-tuple (𝑐𝑞 , 𝜌𝑞 , 𝑢𝑞
off, 𝜖�̅�

𝑘, 𝜖�̅�
1, 𝑤, 𝑙𝑤). A match occurs whenever the following conditions are met: 

𝑐𝑞 = ⌊
𝑛𝑞

256
⌋, ρ𝑞 = mod (

𝑛𝑞

16
, 16), 𝜖�̅�

1 = mod(𝑛𝑞 , 16) & ϵ̅𝑞
𝑘 

In the in the foregoing, 𝐴 & 𝐵 indicates the logical AND of the two 4-bit quantities 𝐴 and 𝐵.  

NOTE 1 – There can in general be multiple matching 7-tuples, and hence multiple valid codewords that an encoder can elect to 
use. For maximum coding efficiency, the encoder bases its encoding table on the matching 7-tuple whose EMB known-bit pattern 
𝜖�̅�

𝑘 has the most set bits. 

The encoder combines the 𝜖�̅�
𝑘 pattern produced by its CxtVLC table lookup with the computed magnitude exponent bound 

𝑈𝑞 and significance pattern 𝜌𝑞 to determine the number of MagSgn bits 𝑚𝑛 that need to be emitted for each sample. 

Specifically, the encoder forms 

𝑚𝑛 = σn ⋅ 𝑈𝑞 − 𝑘𝑛, 

noting that σ𝑛 and 𝑘𝑛 are the individual bits within the 4-bit patterns ρ𝑞 and ϵ̅𝑞
𝑘. 

The encoder generates the MagSgn bit-stream by passing the bit-count 𝑚𝑛  and MagSgn value 𝑣𝑛  to the 

emitMagSgnBits procedure defined in clause F.4, for each sample in turn, following the quad-based scanning order 

of Figure 2. The emitMagSgnBits procedure emits the 𝑚𝑛 LSBs of 𝑣𝑛 to the MagSgn bit-stream. 

The MEL bit-stream is formed by applying the encodeMEL procedure in the following to a sequence of binary MEL 

symbols 𝑠𝑞
mel and binary mask values 𝑚𝑞

mel, where 𝑚𝑞
mel indicates whether symbol 𝑠𝑞

mel is to be coded. For non-initial 

quad rows, and for the first quad in each quad-pair within the first row of quads for the code-block, these values are set 

according to 

𝑚𝑞
mel = {

1 if 𝑐𝑞 = 0

0 if 𝑐𝑞 ≠ 0
   and   𝑠𝑞

mel = {
1 if 𝑐𝑞 = 0 and 𝜌𝑞 ≠ 0

0 otherwise
 

For the second quad 𝑞2 in a quad-pair (𝑞1, 𝑞2) within the first row of quads in the code-block, the 𝑚𝑞2
mel and 𝑠𝑞2

mel values 

are set using 

𝑚𝑞2
mel = {

1 if 𝑐𝑞 = 0

𝑚𝑞1,𝑞2
mel if 𝑐𝑞 ≠ 0

   and   𝑠𝑞2
mel = {

1 if 𝑐𝑞 = 0 and 𝜌𝑞 ≠ 0

𝑠𝑞1,𝑞2
mel otherwise

 

where 

𝑚𝑞1,𝑞2
mel = 𝑢𝑞1

off ⋅ 𝑢𝑞2
off   and   𝑠𝑞1,𝑞2

mel = {
1 if min{𝑢𝑞1

, 𝑢𝑞2
} > 2

0 otherwise
 

Before encoding anything for a code-block, the MEL encoding state is initialized using the initMELEncoder 

procedure in the following, after which the encodeMEL procedure can be called with the symbol and mask values 

explained in the foregoing. The MEL_E exponent table used by these procedures is found in Table 2.  

Procedure: initMELEncoder 

State: MEL_k, MEL_run, MEL_t 

 

MEL_k = 0 

MEL_run = 0 

MEL_t = 1 << MEL_E[MEL_k]  
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Procedure: encodeMEL 

Inputs: symbol 𝑠𝑞
mel ∈ {0,1} and mask 𝑚𝑞

mel ∈ {0,1} 

State: MEL_k, MEL_run, MEL_t 

 

if (𝑚𝑞
mel == 1) 

    if (𝑠𝑞
mel == 0) 

        MEL_run = MEL_run + 1 

        if (MEL_run >= MEL_t) 

            emitMELBit(1) 

            MEL_run = 0 

            MEL_k = min(12,MEL_k+1) 

            eval = MEL_E[MEL_k] 

            MEL_t = 1 << eval 

    else 

        emitMELBit(0) 

        eval = MEL_E[MEL_k] 

        while (eval > 0) 

            eval = eval – 1 

            msb = (MEL_run >> eval) & 1 

            emitMELBit(msb) 

        MEL_run = 0 

        MEL_k = max(0,MEL_k-1) 

        eval = MEL_E[MEL_k] 

        MEL_t = 1 << eval 

 

Once all MEL symbols have been encoded, the termMEL procedure is called. 

Procedure: termMEL 

State: MEL_k, MEL_run, MEL_t 

 

if(MEL_run > 0) 

    emitMELBit(1)  

 

NOTE 2 – The emitMELBit procedure is defined in clause F.4. 

The encoder generates the VLC bit-stream by packing CxtVLC codewords and U-VLC codeword components (prefix, 

suffix and extension) from quad-pairs, following the interleaving procedure shown in Figure 4, and passing all codeword 

bits to the emitVLCBits procedure defined in clause F.4. 

In the first row of quads for a code-block, if a quad-pair has 𝑚𝑞1,𝑞2
mel = 1 and 𝑠𝑞1,𝑞2

mel = 1, the U-VLC codeword prefix, 

suffix and extension components for both quads in the pair are obtained by passing 𝑢𝑞1
− 2 and 𝑢𝑞2

− 2 as the u_in 

input to the encodeUVLC procedure in the following. In all other cases, the U-VLC codeword components for a quad 

are obtained by passing 𝑢𝑞 directly as the u_in input to encodeUVLC, except where a quad-pair (𝑞1, 𝑞2) in the first 

row of quads has 𝑚𝑞1,𝑞2
mel = 1, 𝑠𝑞1,𝑞2

mel = 0 and 𝑢𝑞1
> 2. In this last case, it is certain that 𝑢𝑞2

∈ {1,2} and the U-VLC 

components for quad 𝑞2 are assigned as u_pfx = 𝑢𝑞2
− 1, u_sfx = 0 and u_ext = 0. 
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Procedure: encodeUVLC 

Input: u_in 

Returns: u_pfx, u_sfx and u_ext 

 

if (u_in == 0) 

  set u_pfx, u_sfx and u_ext all to empty codewords (no bits) 

else 

  find u_pfx, u_sfx and u_ext from the entry in Table 3 for which 𝑢 = u_in 

F.4 Bit-stuffing and byte-stream termination procedures 

The HT cleanup pass encoding steps produce bits for the MEL, VLC and MagSgn bit-streams of the cleanup pass, which 

are packed into corresponding byte-streams and then assembled into an HT cleanup segment. HT SigProp and MagRef 

coding passes, where used, produce bits for a SigProp or a MagRef bit-stream, which are packed into corresponding byte-

streams and assembled into an HT refinement segment. All bit packing operations are subjected to bit stuffing procedures 

that avoid the appearance of false marker codes within any given byte-stream. While the decoder only needs to read bytes 

from already constructed HT segments, the encoder is responsible for combining byte-streams into final HT segments, 

noting that some byte-streams grow forwards while others grow backwards. This would typically be done at the end, once 

all component byte-streams for a code-block have been generated. During this process, the encoder is responsible for 

terminating the byte-streams in such a way as to avoid the introduction of false marker codes at byte-stream interfaces, 

while ensuring correct decoding. This clause provides procedures that can be used for these purposes. 

To generate the MagSgn byte-stream, an encoder can use the emitMagSgnBits procedure in the following, after 

initializing state variables with the initMSPacker procedure. The emitMagSgnBits procedure assumes the 

existence of a buffer (array) denoted MS_buf, with sufficient length to accommodate all generated MagSgn bytes for the 

code-block. The maximum number of such bytes can be bounded, based on the precision of quantized sub-band samples, 

but the determination of such bounds is beyond the scope of this discussion. Once all MagSgn bits have been emitted for 

a code-block, the MagSgn byte-stream is terminated by invoking the termMSPacker procedure. 

Procedure: initMSPacker 

State: MS_pos, MS_bits, MS_max, MS_tmp 

 

MS_pos = 0 

MS_bits = 0 

MS_max = 8 

MS_tmp = 0  
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Procedure: emitMagSgnBits 

Input: val = 𝑣𝑛 and len = 𝑚𝑛 

State: MS_pos, MS_bits, MS_max, MS_tmp 

 

while (len > 0) 

    bit = val & 1 

    val = val >> 1 

    len = len - 1 

    MS_tmp = MS_tmp | (bit << MS_bits) 

    MS_bits = MS_bits + 1 

    if (MS_bits == MS_max) 

        MS_buf[MS_pos] = MS_tmp 

        MS_pos = MS_pos + 1 

        MS_max = (MS_tmp == 0xFF)?7:8 

        MS_tmp = 0 

        MS_bits = 0  

 

Procedure: termMSPacker 

State: MS_pos, MS_bits, MS_max, MS_tmp 

 

if (MS_bits > 0) 

    while (MS_bits < MS_max) 

        MS_tmp = MS_tmp | (1 << MS_bits) 

        MS_bits = MS_bits + 1 

    if (MS_tmp != 0xFF) 

        MS_buf[MS_pos] = MS_tmp 

        MS_pos = MS_pos + 1 

else if (MS_max == 7) 

    MS_pos = MS_pos – 1  // this discards an already emitted trailing FF  

 

An encoder can pad the HT cleanup segment's prefix with additional bytes that are not consumed by the 

importMagSgnBit procedure, and hence do not contribute to the MagSgn bit-stream. Padding can be useful for 

avoiding buffer underflow in applications with constant data rate constraints. In such a scenario, a recommended strategy 

is to pad the prefix with pairs of bytes in the range 0xFF80 to 0xFF8F, since these do not introduce false marker codes, 

yet they can be distinguished from bytes that contain valid data for the MagSgn bit-stream and hence easily removed 

without any actual decoding. 

To generate the VLC byte-stream, the encoder can use the procedure emitVLCBits in the following, after initializing 

state variables with the initVLCPacker procedure. The emitVLCBits procedure assumes the existence of a buffer 

(array) denoted VLC_buf, with sufficient length to accommodate all generated VLC bytes for the code-block, which can 

readily be bounded. This array is written forwards here, but needs to be reversed when forming the HT cleanup segment. 
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Procedure: initVLCPacker 

State: VLC_pos, VLC_bits, VLC_tmp, VLC_last 

 

VLC_bits = 4 

VLC_tmp = 15 

VLC_buf[0] = 255 

VLC_pos = 1 

VLC_last = 255 

 

Procedure: emitVLCBits 

Input: cwd and len, where cwd is a len-bit codeword in little-endian bit order 

State: VLC_pos, VLC_bits, VLC_tmp, VLC_last 

 

while (len > 0) 

    bit = cwd & 1 

    cwd = cwd >> 1 

    len = len - 1 

    VLC_tmp = VLC_tmp | (bit << VLC_bits) 

    VLC_bits = VLC_bits + 1 

    if ((VLC_last > 0x8F) && (VLC_tmp == 0x7F)) 

        VLC_bits = VLC_bits + 1 

    if (VLC_bits == 8) 

        VLC_buf[VLC_pos] = VLC_tmp 

        VLC_pos = VLC_pos + 1 

        VLC_last = VLC_tmp 

        VLC_tmp = 0 

        VLC_bits = 0 

 

To generate the MEL byte-stream, the encoder can use the procedure emitMELBit in the following, after initializing 

state variables with the initMELPacker procedure. The emitMELBit procedure assumes the existence of a buffer 

(array) denoted MEL_buf, with sufficient length to accommodate all generated MEL bytes for the code-block, which can 

readily be bounded. 

NOTE – The emitMELBit procedure is invoked only from the encodeMEL procedure. 

Procedure: initMELPacker 

State: MEL_pos, MEL_rem, MEL_tmp 

 

MEL_pos = 0 

MEL_rem = 8 

MEL_tmp = 0  
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Procedure: emitMELBit 

Input: bit 

State: MEL_pos, MEL_rem, MEL_tmp 

 

MEL_tmp = 2*MEL_tmp + bit 

MEL_rem = MEL_rem – 1 

if (MEL_rem == 0) 

    MEL_buf[MEL_pos] = MEL_tmp 

    MEL_pos = MEL_pos + 1 

    MEL_rem = (MEL_tmp == 0xFF)?7:8 

    MEL_tmp = 0  

  

Once all VLC bits and MEL bits have been emitted for a code-block, the termMELandVLCPackers procedure is 

invoked, as shown in the following. Here, the MEL and VLC byte-streams are not separately terminated, but their state 

variables are manipulated by the termMELandVLCPackers procedure. This is not the only termination procedure that 

can be used; more aggressive termination schemes can result in the occasional saving of one or even more bytes, by 

considering larger potential overlaps between the MEL and VLC bit-streams. After invoking the 

termMELandVLCPackers procedure, the HT cleanup segment is formed by concatenating the MS_pos byte long 

terminated MagSgn byte-stream, the MEL_pos byte long terminated MEL byte-stream and a reversed copy of the 

VLC_pos byte long VLC byte-stream, yielding an array Dcup with Lcup bytes, the last 2 bytes of which are modified 

to reflect the suffix length Scup = MEL_pos + VLC_POS, as follows: 

Dcup[Lcup-1] = Scup >> 4 

Dcup[Lcup-2] = (Dcup[Lcup-2] & 0xF0) | (Scup & 0x0F) 

Procedure: termMELandVLCPackers 

State: MEL_pos, MEL_rem, MEL_tmp, VLC_pos, VLC_buf, VLC_bits, VLC_last 

 

MEL_tmp = MEL_tmp << MEL_rem 

MEL_mask = (0xFF << MEL_rem) & 0xFF   // if MEL_rem is 8, MEL_mask = 0 

VLC_mask = 0xFF >> (8-VLC_bits)       // if VLC_bits is 0, VLC_mask = 0 

if ((MEL_mask | VLC_mask) == 0) 

    return  // last MEL byte cannot be FF, since then MEL_rem would be < 8 

fuse = MEL_tmp | VLC_tmp 

if (((((fuse ^ MEL_tmp) & MEL_mask) | ((fuse ^ VLC_tmp) & VLC_mask)) == 0) && 

    (fuse != 0xFF)) 

    MEL_buf[MEL_pos] = fuse 

else 

    MEL_buf[MEL_pos] = MEL_tmp   // MEL_tmp cannot be 0xFF here 

    VLC_buf[VLC_pos] = VLC_tmp 

    VLC_pos = VLC_pos + 1 

MEL_pos = MEL_pos + 1  

 

To generate the SigProp byte-stream, the encoder passes magnitude and sign bits, as required, to the emitSPBit 

procedure, after initializing state variables with the initSPPacker procedure. The emitSPBit procedure assumes 

the existence of a buffer (array) denoted SP_buf, with sufficient length to accommodate all generated SigProp bytes, 

which can readily be bounded. 
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Procedure: initSPPacker 

State: SP_pos, SP_bits, SP_max, SP_tmp 

 

SP_pos = 0 

SP_bits = 0 

SP_max = 8 

SP_tmp = 0  

 

Procedure: emitSPBit 

Input: bit 

State: SP_pos, SP_bits, SP_max, SP_tmp 

 

SP_tmp = SP_tmp | (bit << SP_bits) 

SP_bits = SP_bits + 1 

if (SP_bits == SP_max) 

    SP_buf[SP_pos] = SP_tmp 

    SP_pos = SP_pos + 1 

    SP_max = (SP_tmp == 0xFF)?7:8 

    SP_tmp = 0 

    SP_bits = 0  

 

To generate the MagRef byte-stream, the encoder passes magnitude refinement bits, as required, to the emitMRBit 

procedure, after initializing state variables with the initMRPacker procedure. The emitMRBit procedure assumes 

the existence of a buffer (array) denoted MR_buf, with sufficient length to accommodate all generated MagRef bytes, 

which can readily be bounded. 

Procedure: initMRPacker 

State: MR_pos, MR_bits, MR_tmp, MR_last 

 

MR_pos = 0 

MR_bits = 0 

MR_tmp = 0 

MR_last = 255 
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Procedure: emitMRBit 

Input: bit 

State: MR_pos, MR_bits, MR_tmp, MR_last 

 

MR_tmp = MR_tmp | (bit << MR_bits) 

MR_bits = MR_bits + 1 

if ((MR_last > 0x8F) && (MR_tmp == 0x7F)) 

    MR_bits = MR_bits + 1    // this must leave MR_bits equal to 8 

if (MR_bits == 8) 

    MR_buf[MR_pos] = MR_tmp 

    MR_pos = MR_pos + 1 

    MR_last = MR_tmp 

    MR_tmp = 0 

    MR_bits = 0  

 

To generate an HT refinement segment that involves no MagRef information, the encoder can terminate the SigProp byte-

stream by invoking the termSPPacker procedure in the following, after which the terminated SP_pos byte long 

SigProp byte-stream becomes the HT refinement segment. 

Procedure: termSPPacker 

State: SP_pos, SP_bits, SP_max, SP_tmp 

 

if (SP_tmp != 0) 

    SP_buf[SP_pos] = SP_tmp 

    SP_pos = SP_pos + 1 

    SP_max = (SP_tmp == 0xFF)?7 : 8 

if (SP_max == 7) 

    SP_buf[SP_pos] = 0x00 

    SP_pos = SP_pos + 1  // this prevents the appearance of a terminal FF 

 

To generate an HT refinement segment that contains the bits produced by both HT SigProp and HT MagRef coding 

passes, the encoder can invoke the termSPandMRPackers procedure in the following, after which the HT refinement 

segment is formed by concatenating the SP_pos byte long terminated SigProp byte-stream and a reversed copy of the 

MR_pos byte long MagRef byte-stream. In this case, neither the SigProp nor MagRef byte-streams are separately 

terminated, but their state variables are manipulated by the termSPandMRPackers procedure. This is not the only 

termination procedure that can be used; more aggressive termination schemes can result in the occasional saving of one 

or even more bytes, by considering larger potential overlaps between the SigProp and MagRef bit-streams. 
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Procedure: termSPandMRPackers 

State: SP_pos, SP_bits, SP_max, SP_tmp, MR_pos, MR_buf, MR_bits, MR_last 

 

SP_mask = 0xFF >> (8-SP_bits)            // if SP_bits is 0, SP_mask = 0 

SP_mask = SP_mask | ((1<<SP_max) & 0x80) // Augments SP_mask to cover any stuff bit 

MR_mask = 0xFF >> (8-MR_bits)            // if MR_bits is 0, MR_mask = 0 

if ((SP_mask | MR_mask) == 0) 

    return   // last SP byte cannot be FF, since then SP_max would be 7  

fuse = SP_tmp | MR_tmp 

if ((((fuse ^ SP_tmp) & SP_mask) | ((fuse ^ MR_tmp) & MR_mask)) == 0) 

    SP_buf[SP_pos] = fuse   // fuse always < 0x80 here; no false marker risk 

else 

    SP_buf[SP_pos] = SP_tmp   // SP_tmp cannot be 0xFF 

    MR_buf[MR_pos] = MR_tmp 

    MR_pos = MR_pos + 1 

SP_pos = SP_pos + 1  
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