

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.101
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2019)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language – Basic
SDL 2010

Recommendation ITU-T Z.101

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.101 (10/2019) i

Recommendation ITU-T Z.101

Specification and Description Language – Basic SDL-2010

Summary
Recommendation ITU-T Z.101 defines the basic features of the Specification and Description
Language. Together with Recommendations ITU-T Z.100, ITU-T Z.102, ITU-T Z.103,
ITU-T Z.104, ITU-T Z.105, ITU-T Z.106 and ITU-T Z.107, this Recommendation is part of a
reference manual for the language. The language defined in this document covers the essential
features of the language, which is further defined in other Recommendations in the ITU-T Z.100
series.

Coverage
The Specification and Description Language has concepts for behaviour, data description and
(particularly for larger systems) structuring. The basis of behaviour description is extended finite
state machines communicating by messages. Data description is based on data types for values and
objects. The basis for structuring is hierarchical decomposition and type hierarchies. A distinctive
feature of the Specification and Description Language is the graphical representation. This
Recommendation covers the main features of the language such as agent (block, process) type
diagrams, agent diagrams for structures with channels, diagrams for extended finite state machines
and the associated semantics for these basic features. The concrete grammar given is the graphical
representation. The alternative textual programming representation is given in Recommendation
ITU-T Z.106. The concrete grammar in this Recommendation gives a canonical syntax, which is
extended in Recommendation ITU-T Z.103 to a syntax that is easier to use. The basic part of the
language given in this Recommendation does not include the details of expressions, data definitions
and action language, which is defined in Recommendation ITU-T Z.104 and for object-oriented data
in ITU-T Z.107. The features of the language defined in Recommendation ITU-T Z.102 make the
language more comprehensive.

Applications
The Specification and Description Language is applicable within standard bodies and industry. The
main application areas for which The Specification and Description Language has been designed are
stated in ITU-T Z.100, but the language is generally suitable for describing reactive systems. The
range of application is from requirement description to implementation. The features of the language
defined in ITU-T Z.101 allow basic models to be defined and provide a basis for other features
defined in other Recommendations in the ITU-T Z.100 series.

History
Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.101 2011-12-22 17 11.1002/1000/11388
2.0 ITU-T Z.101 2016-04-29 17 11.1002/1000/12847
3.0 ITU-T Z.101 2019-10-14 17 11.1002/1000/14052

Keywords
Actions, agents, Basic SDL-2010, canonical syntax, channels, data, essential features, extended finite
state machine, SDL-2010, Specification and Description Language, structure.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11
830-en.

http://handle.itu.int/11.1002/1000/11388
http://handle.itu.int/11.1002/1000/12847
http://handle.itu.int/11.1002/1000/14052
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Z.101 (10/2019)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.101 (10/2019) iii

Table of Contents
Page

1 Scope and objective .. 1

1.1 Objective ... 1

1.2 Application ... 1

2 References... 2

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 General rules ... 3

6.1 Lexical rules ... 3

6.2 End terminator and comment ... 10

6.3 Empty clause .. 10

6.4 Solid association symbol .. 10

6.5 The metasymbol is followed by and flow line symbols 11

6.6 Names and identifiers, name resolution and visibility 11

6.7 Empty clause .. 16

6.8 Informal text ... 16

6.9 Text symbol .. 17

6.10 Frame symbol and page numbers ... 17

7 Organization of Specification and Description Language specifications 18

7.1 Framework .. 18

7.2 Package ... 19

7.3 Referenced definition ... 21

8 Structural concepts.. 22

8.1 Types, instances and gates .. 22

8.2 Type references and operation references .. 28

9 Agents ... 30

9.1 System .. 34

9.2 Block ... 35

9.3 Process .. 36

9.4 Procedure .. 37

10 Communication .. 40

10.1 Channel ... 40

10.2 Connection .. 43

10.3 Signal .. 44

10.4 Signal list area .. 44

iv Rec. ITU-T Z.101 (10/2019)

Page
11 Behaviour .. 45

11.1 Start ... 45

11.2 State .. 45

11.3 Input .. 48

11.4 Empty clause .. 49

11.5 Empty clause .. 49

11.6 Empty clause .. 49

11.7 Save .. 49

11.8 Empty clause .. 50

11.9 Empty clause .. 51

11.10 Label (connector name) .. 51

11.11 State machine and composite state ... 51

11.12 Transition .. 53

11.13 Action ... 58

11.14 Statement lists ... 66

11.15 Timer .. 66

12 Data ... 68

12.1 Data definitions .. 68

12.2 Use of data .. 90

12.3 Active use of data ... 99

 Rec. ITU-T Z.101 (10/2019) v

Introduction
This Recommendation is part of the ITU-T Z.100 to ITU-T Z.107 series of Recommendations that
give the complete language reference manual for SDL-2010. The text of this Recommendation is
stable. For more details see Recommendation ITU-T Z.100.

 Rec. ITU-T Z.101 (10/2019) 1

Recommendation ITU-T Z.101

Specification and Description Language – Basic SDL-2010

1 Scope and objective
This Recommendation defines the basic features of the Specification and Description Language.
The language defined in this document covers the essential features of the language, which is
further defined in other Recommendations in the ITU-T Z.100 series. Together with
Recommendations [ITU-T Z.100], [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.105],
[ITU-T Z.106] and [ITU-T Z.107], this Recommendation forms a reference manual for the
language.

1.1 Objective
The objective of this Recommendation is to define the basic features of the Specification and
Description Language in a canonical concrete syntax. The language defined in this
Recommendation is a strict subset of SDL-2010.
The main features not included in this Recommendation are macros, specialization, context
parameters, remote procedures and remote variables, state aggregation, priority input, enabling
conditions, spontaneous transitions, exceptions, compound statements (other than as task bodies),
object data types, synonyms and generic system definition. Where there is choice of syntax for the
same abstract grammar the graphical syntax has been chosen, so that, for example, procedure
diagram is used rather than procedure definition.
A specification in SDL-2010 starts with an instantiation of a system type. For that reason,
Basic SDL-2010 does not include a system diagram. In Comprehensive SDL-2010 such a diagram
is considered shorthand for the instantiation of a system type. Similarly, block diagrams and process
diagrams are not included, only diagrams for agent types and other types such as composite state
and procedure.
The canonical syntax is chosen to be the syntax supported by most tools in the cases where that is
simply an alternative to the syntax introduced in SDL-2000 (for example, the use of the keyword
returns rather than <result sign>).

1.2 Application
This Recommendation is part of the reference manual for the Specification and Description
Language. The part of the language defined by this Recommendation does not usually include
shorthand notation or Model clauses, so that a model written using only this part of SDL-2010 is not
as concise or as readable as one using the full language. The part of the language defined in this
Recommendation is mainly applicable if a model is required that is limited in the language features
it uses, and it is intended that the model is presented in a concrete form that closely matches the
abstract syntax.
In some cases a Model clause or shorthand has been included, because this was considered the most
practical way to describe a feature. One example is the Model clause for expression that explains
how the concrete infix syntax maps to operation application.

2 Rec. ITU-T Z.101 (10/2019)

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.
[ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)

(Formerly International Alphabet No. 5 or IA5) − Information technology − 7-bit
coded character set for information interchange.

[ITU-T Z.100] Recommendation ITU-T Z.100 (2019), Specification and Description Language –
Overview of SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2019), Specification and Description Language –
Comprehensive SDL-2010.

[ITU-T Z.103] Recommendation ITU-T Z.103 (2019), Specification and Description Language –
Shorthand notation and annotation in SDL-2010.

[ITU-T Z.104] Recommendation ITU-T Z.104 (2019), Specification and Description Language –
Data and action language in SDL-2010.

[ITU-T Z.105] Recommendation ITU-T Z.105 (2019), Specification and Description Language –
SDL-2010 combined with ASN.1 modules.

[ITU-T Z.106] Recommendation ITU-T Z.106 (2019), Specification and Description Language –
Common interchange format for SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2019), Specification and Description Language –
Object-oriented data in SDL-2010.

[ITU-T Z.111] Recommendation ITU-T Z.111 (2016), Notations and guidelines for the definition
of ITU-T languages.

3 Definitions

3.1 Terms defined elsewhere
This Recommendation uses the following terms defined elsewhere:
The definitions of [ITU-T Z.100] apply.

3.2 Terms defined in this Recommendation
None.

4 Abbreviations and acronyms
This Recommendation uses the following abbreviations and acronyms:
The abbreviations and acronyms defined in [ITU-T Z.100] apply.

5 Conventions
The conventions defined in [ITU-T Z.100] apply; these include the conventions defined in
[ITU-T Z.111].

 Rec. ITU-T Z.101 (10/2019) 3

Each abstract syntax item in this Recommendation is contained by at least one other abstract syntax
item in this Recommendation except:

Sdl-specification which is the container for all other items.

The concrete syntax rules defined in this Recommendation are all used by other syntax rules in this
Recommendation except the following:

<sdl specification> The starting rule for the concrete syntax.
<lexical unit> A rule to collect the lexical units.
<flow line symbol> Implicit for is followed by.
<simple expression> Only used in combination with semantic subcategories.
<type expression> Only used in combination with semantic subcategories.

6 General rules
General rules cover: lexical units; the use of a semicolon with comment as a terminator; commonly
used symbols; the visibility, resolution and use of names and identifiers; the use of frames and page
numbers.

6.1 Lexical rules
Lexical rules define lexical units. Lexical units are terminal symbols of the Concrete grammar.
<lexical unit> ::=
 <name>
 | <integer name>
 | <real name>
 | <character string>
 | <hex string>
 | <bit string>
 | <note>
 | <comment body>
 | <composite special>
 | <special>
 | <semicolon>
 | <other character>
 | <quoted operation name>
 | <keyword>
NOTE 1 – A lexical distinction is made between a <name>, an <integer name> and a <real name> whereas
in SDL-2000 these are all <name>.
NOTE 2 – The alternatives of <composite special> (such as <result sign>, <range sign>), <special> (such as
<asterisk>, and including the alternatives of <other special> such as <hyphen>) are used as terminal symbols
in the Concrete grammar. The alternatives of <keyword> are also used in the Concrete grammar. Other
lexical rules (such as <word> and <other character> that are not alternatives of <lexical unit> are used only
in the lexical rules.
NOTE 3 – As a lexical unit, <other character> only occurs in the Concrete grammar as part of annotations
such as in <comment>.
<name> ::=
 <underline>+ <word> {<underline>+ <word>}* <underline>*
 | <word> <underline>+ [<word>{<underline>+ <word>}* <underline>*]
 | <decimal digit>* <letter> <alphanumeric>*

If a <letter> sequence is defined as a <keyword>, it is not allowed as a <name>. For example, block
is not allowed as a name. This resolves the lexical ambiguity that otherwise would exist in this case
in a way that is independent of the use of the lexical unit in the Concrete grammar.
<integer name> ::=
 <decimal digit>+

4 Rec. ITU-T Z.101 (10/2019)

<real name> ::=
 <integer name> <full stop> <integer name>
 [{ e | E } [<hyphen> | <plus sign>] <integer name>]

<word> ::=
 {<alphanumeric>}+

<alphanumeric> ::=
 <letter>
 | <decimal digit>

<letter> ::=
 <uppercase letter> | <lowercase letter>

<uppercase letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M
 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lowercase letter> ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m
 | n | o | p | q | r | s | t | u | v | w | x | y | z

<decimal digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<quoted operation name> ::=
 <quotation mark> <infix operation name> <quotation mark>
 | <quotation mark> <monadic operation name> <quotation mark>
 | <quotation mark> <equals sign> <quotation mark>
 | <quotation mark> <not equals sign> <quotation mark>

<infix operation name> ::=
 or | xor | and | in | mod | rem
 | <plus sign> | <hyphen>
 | <asterisk> | <solidus>
 | <greater than sign> | <less than sign>
 | <less than or equals sign> | <greater than or equals sign>
 | <concatenation sign> | <implies sign>

<monadic operation name> ::=
 <hyphen> | not

<character string> ::=
 <apostrophe> { <general text character>
 | <special>
 | <semicolon>
 | <apostrophe> <apostrophe>
 }* <apostrophe>

<apostrophe> <apostrophe> represents an <apostrophe> within a <character string>.
<hex string> ::=
 <apostrophe> { <decimal digit>
 | a | b | c | d | e | f
 | A | B | C | D | E | F
 }* <apostrophe> { H | h }

<bit string> ::=
 <apostrophe> { 0 | 1
 }* <apostrophe> { B | b }

<note> ::=
 <solidus> <asterisk> <note text> <asterisk>+ <solidus>

 Rec. ITU-T Z.101 (10/2019) 5

<note text> ::=
 { <general text character>
 | <solidus>
 | <asterisk>+ <not asterisk or solidus>
 | <number sign>
 | <other special>
 | <apostrophe> }*

A <note> is lexical unit that is a form of annotation. The <note> has no formal semantic meaning.
<not asterisk or solidus> ::=
 <general text character> | <other special> | <apostrophe> | <number sign>

<general text character> ::=
 <alphanumeric> | <other character> | <space>

<comment body> ::=
 <solidus> <number sign> <comment text> <number sign>+ <solidus>
NOTE 4 – A <comment body> is used in contexts where annotation is needed and a <comment> is not
possible because there is no <semicolon> at this point. This occurs before <left curly bracket> in several
places such as in <data type definition>. A <comment body> is also allowed within a <comment> so that a
<semicolon> included in the <comment body> does not end the <comment>.
<comment text> ::=
 { <general text character>
 | <semicolon>
 | <solidus>
 | <asterisk>
 | <number sign>+ <not number or solidus>
 | <other special>
 | <apostrophe> }*

<not number or solidus> ::=
 <general text character> | <other special> | <semicolon> | <apostrophe> | <asterisk>

<composite special> ::=
 <result sign>
 | <range sign>
 | <composite begin sign>
 | <composite end sign>
 | <concatenation sign>
 | <history dash sign>
 | <greater than or equals sign>
 | <implies sign>
 | <is assigned sign>
 | <less than or equals sign>
 | <not equals sign>
 | <qualifier begin sign>
 | <qualifier end sign>

<result sign> ::=
 <hyphen> <greater than sign>

<range sign> ::=
 <full stop> <full stop>

<composite begin sign> ::=
 <left parenthesis> <full stop>

<composite end sign> ::=
 <full stop> <right parenthesis>

<concatenation sign> ::=
 <solidus> <solidus>

<history dash sign> ::=
 <hyphen> <asterisk>

6 Rec. ITU-T Z.101 (10/2019)

<greater than or equals sign> ::=
 <greater than sign> <equals sign>

<implies sign> ::=
 <equals sign> <greater than sign>

<is assigned sign> ::=
 <colon> <equals sign>

<less than or equals sign> ::=
 <less than sign> <equals sign>

<not equals sign> ::=
 <solidus> <equals sign>

<qualifier begin sign> ::=
 <less than sign> <less than sign>

<qualifier end sign> ::=
 <greater than sign> <greater than sign>

<special> ::=
 <solidus> | <asterisk> | <number sign> | <other special>

<other special> ::=
 <exclamation mark>
 | <left parenthesis> | <right parenthesis>
 | <plus sign> | <comma> | <hyphen>
 | <full stop> | <colon>
 | <less than sign> | <equals sign> | <greater than sign>
 | <left square bracket> | <right square bracket>
 | <left curly bracket> | <right curly bracket>

<other character> ::=
 <quotation mark> | <dollar sign> | <percent sign>
 | <ampersand> | <question mark> | <commercial at>
 | <reverse solidus> | <circumflex accent> | <underline>
 | <grave accent> | <vertical line> | <tilde>

<exclamation mark> ::= !

<quotation mark> ::= "

<left parenthesis> ::= (

<right parenthesis> ::=)

<asterisk> ::= *

<plus sign> ::= +

<comma> ::= ,

<hyphen> ::= -

<full stop> ::= .

<solidus> ::= /

<colon> ::= :

<semicolon> ::= ;

<less than sign> ::= <

<equals sign> ::= =

<greater than sign> ::= >

<left square bracket> ::= [

<right square bracket> ::=]

<left curly bracket> ::= {

<right curly bracket> ::= }

 Rec. ITU-T Z.101 (10/2019) 7

<number sign> ::= #

<dollar sign> ::= $

<percent sign> ::= %

<ampersand> ::= &

<apostrophe> ::= '

<question mark> ::= ?

<commercial at> ::= @

<reverse solidus> ::= \

<circumflex accent> ::= ^

<underline> ::= _

<grave accent> ::= `

<vertical line> ::= |

<tilde> ::= ~

8 Rec. ITU-T Z.101 (10/2019)

<keyword> ::=
 abstract | active | adding
 | all | aggregation | alternative
 | and | any | as
 | association | atleast | block
 | break | call | channel
 | choice | comment | composition
 | connect | connection | constants
 | continue | create | dcl
 | decision | decode | default
 | else | encode | endalternative
 | endblock | endchannel | endconnection
 | enddecision | endexceptionhandler | endinterface
 | endmacro | endmethod | endobject
 | endnewtype | endoperator | endpackage
 | endprocedure | endprocess | endselect
 | endstate | endsubstructure | endsyntype
 | endsystem | endtype | endvalue
 | env | exception | exceptionhandler
 | export | exported | external
 | fi | finalized | fpar
 | from | gate | handle
 | if | import | in
 | inherits | input | interface
 | join | literals | loop
 | macro | macrodefinition | macroid
 | method | methods | mod
 | nameclass | newtype | nextstate
 | nodelay | none | not
 | now | object | offspring
 | onexception | operator | operators
 | optional | or | ordered
 | own | out | output
 | package | parent | part
 | priority | private | procedure
 | protected | process | provided
 | public | raise | redefined
 | ref | referenced | rem
 | remote | reset | return
 | returns | save | select
 | self | sender | set
 | signal | signallist | signalset
 | size | spelling | start
 | state | stop | struct
 | substructure | synonym | syntype
 | system | task | then
 | this | timer | to
 | try | type | use
 | value | via | virtual
 | with | xor

<space> ::=

Some keywords (such as exceptionhandler and object) are not used in SDL-2010 but were valid
keywords in SDL-2000 and therefore are not allowed as names to avoid issues for tools that support
earlier versions of the language.
The keywords ref and own are introduced for object-oriented data and are not used in this
Recommendation, [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104] or [ITU-T Z.105].
The characters in <lexical unit>s and in <note>s as well as the character <space> and control
characters are defined by the International Reference Version (IRV) of the International Reference

 Rec. ITU-T Z.101 (10/2019) 9

Alphabet [ITU-T T.50]). The lexical unit <space> represents the ITU-T T.50 SPACE character
(acronym SP), which (for obvious reasons) it is not possible to show.
IRV delete characters are completely ignored.
If an extended character set is used, the printing characters that are not defined by IRV are
permitted to appear freely in a <character string> in a <comment> or within a <note>. A printing
character of an extended character set that corresponds to an IRV <letter> is equivalent to the IRV
<letter>. Similarly, printing character of an extended character set that corresponds to an IRV
<decimal digit>, <special>, <other special> or <other character> is equivalent to the IRV <decimal
digit>, <special>, <other special> or <other character>, respectively. A printing character of an
extended character set that represents a letter in some script and does not correspond to an IRV
<letter> is allowed to be used as a <letter>. Characters of an extended character set are treated in the
order they occur in the model source, which possibly does not correspond to the apparent printing
order depending on how characters in the script are printed (such as right to left, left to right or in
combination).
When an <underline> character is followed by one or more <space>s or control characters, all of
these characters (including the <underline>) are ignored, e.g., A_ B denotes the same <name> as
AB. This use of <underline> allows <lexical unit>s to be split over more than one line. This rule is
applied before any other lexical rule.
NOTE 5 – A <name> ending in an <underline> followed by a <space> or control character has to be written
with an extra <underline>. For example, the definition an integer variable with the name "IV_" is written
"dcl IV__ Integer;".

A (non-space) control character is allowed wherever a <space> is allowed, and has the same
meaning as a <space>.
An occurrence of a control character is not significant in <informal text> and in <note>. In order to
construct a character string expression containing control characters, the <concatenation sign>
operator and the literals for control characters have to be used. All spaces in a character string are
significant: a sequence of spaces is not treated as one space in a character string.
It is allowed to insert any number of <space>s before or after any <lexical unit>. Inserted <space>s
or <note>s have no syntactic relevance, but sometimes a <space> or <note> is needed to separate
one <lexical unit> from another.
In all <lexical unit>s except keywords, uppercase <letter>s and lowercase letters are distinct.
Therefore AB, aB, Ab and ab represent four different <word>s. An all uppercase <keyword> has
the same use as the all lowercase <keyword> with the same spelling (ignoring case), but a mixed
case letter sequence with the same spelling as a <keyword> represents a <word>.
For conciseness within the lexical rules and the Concrete grammar, the lowercase <keyword> as a
terminal denotes that the uppercase <keyword> with the same spelling is allowed at the same place.
For example, the keyword
 default

represents the lexical alternatives
 { default | DEFAULT }

NOTE 6 − Boldface lower case is used for keywords within this Recommendation. Distinguishing by font
attributes is not a mandatory requirement, but is useful to the readers of a specification.
NOTE 7 − Versions of the language before SDL-2000 were not case sensitive. Keywords of the language
could be in mixed case, and different occurrences of the same name could have a different case mix.
Although it is possible that some tools support a mode where they are case insensitive, a model that is not
case correct in the spelling of keywords and inconsistent in the case usage for a name is not valid. The model
is required to be case correct according to SDL-2010 lexical rules.

10 Rec. ITU-T Z.101 (10/2019)

The first character that is not part of the <lexical unit> according to the syntax specified above
terminates the <lexical unit>.
NOTE 8 − If a <lexical unit> is possible either a <name> and a <keyword>, it is a <keyword> (see the
constraint on <name> above).

If two <quoted operation name>s differ only in case, the semantics of the lowercase name applies,
so that (for example) the expression "OR"(a, b) means the same as "or"(a, b), which means the same
as (a or b).
Special lexical rules apply within macros (see [ITU-T Z.102]).

6.2 End terminator and comment
A semicolon is used in many places as a terminator. In most contexts it is possible to precede it by a
comment.

Concrete grammar
<end> ::=
 [<comment>] <semicolon>

<comment> ::=
 comment { <name or number>
 | <string name>
 | <note>
 | <comment body>
 | <composite special>
 | <special>
 | <other special>
 | <other character>
 | <keyword> }*

See clause 6.6 for <name or number> and <string name>.
The lexical elements in a <comment> are treated as annotation and do not have any formal meaning
and are ignored when any transformations are applied.
An <end> in <package text area>, <agent text area>, <procedure text area>,
<composite state text area> and <operation text area> shall not contain <comment>.
NOTE – It is not easy to state this last rule by syntax, because it applies to all non-terminals used by the
above non-terminals, but they are also used in other non-terminals where comment is allowed.

6.3 Empty clause
This clause is intentionally left blank.

6.4 Solid association symbol
The solid association symbol is used in several places with other graphical symbols, for example,
between a state symbol and an <input area> of the state.

Concrete grammar
<solid association symbol> ::=

A <solid association symbol> is a line symbol (see Concrete grammar in clause 5.3.2 of
[ITU-T Z.100]).

 Rec. ITU-T Z.101 (10/2019) 11

6.5 The metasymbol is followed by and flow line symbols

Concrete grammar
The metasymbol is followed by is used in the concrete syntax between a graphical non-terminal
symbol as the left hand argument and right hand argument that is a group of syntactic elements
within curly brackets or a single syntactic element. The representation is that there is a <flow line
symbol> between the left hand argument and the right hand argument. The logical direction of flow
is from the left hand argument to the right hand argument.
<flow line symbol> ::=
 <flow line symbol with arrowhead>

<flow line symbol with arrowhead> ::=

The non-terminal <flow line symbol> is never used explicitly in the concrete syntax rules, and
therefore only occurs in diagrams as a representation of is followed by in a syntax rule.
A <flow line symbol> is a line symbol (see Concrete grammar in clause 5.3.2 of [ITU-T Z.100]).
A <flow line symbol> by default flows from the middle bottom of the left hand argument to the
middle top of the right hand argument of is followed by. A number of straight-line segments are
allowed in the flow line, so two arguments of is followed by are able to be below or above or to the
left or the right of each other in a diagram.

6.6 Names and identifiers, name resolution and visibility
The name of an item is established by the definition of the item. It is allowed to use the same name
for different items, but the identity of the item includes the context of the definition, the entity kind
and in some cases other attributes such as the signature in the case of an operation. The definition
context is the path to the item definition from an outer level package or the system. When an item is
used, the identity of the item is usually established through an identifier, which includes a qualifier
that gives the path to the item definition. However, if the complete qualifier were given in the
concrete syntax for every identifier, all these qualifiers would obscure the specification and make it
tedious to write. For this reason it is allowed to omit the qualifier or part of the qualifier in the
concrete syntax of an identifier if the item is still unambiguously established. In most cases a name
is sufficient. This is a shorthand notation that therefore should in principle be in [ITU-T Z.103], but
because of the importance in making specifications readable this shorthand is described here.
In the context of most definitions only the concrete syntax for an alphanumeric <name> is allowed.
For most identifiers therefore only a <name> is allowed as the name part. In some cases (such as
literals and operation names) other forms such as numbers and <quoted operation name>s are
allowed. The syntax for <identifier> therefore includes these alternatives, but the name of an agent
(for example) has to be defined in the form <name>.
If only the features defined in the basic language defined in this Recommendation are used, name
resolution is fairly simple. The additional features defined in [ITU-T Z.102], [ITU-T Z.103] and
[ITU-T Z.104] increase the complexity of name resolution. This clause includes the parts of name
resolution relevant to [ITU-T Z.102], [ITU-T Z.103] and [ITU-T Z.104], to avoid confusion by
introducing name resolution incrementally in the different places.
To use a name in an identifier it also has to be visible. There are scope units that restrict the
visibility of names of items defined within the scope unit. This avoids every name having global
visibility, so that re-use of names is possible in different places without the need to qualify the
corresponding identifiers.

12 Rec. ITU-T Z.101 (10/2019)

Abstract grammar
Identifier :: Qualifier Name

Qualifier = Path-item*

Path-item = Package-qualifier
 | Agent-type-qualifier
 | Agent-qualifier
 | State-type-qualifier
 | State-qualifier
 | Data-type-qualifier
 | Procedure-qualifier
 | Interface-qualifier

Package-qualifier :: Package-name

Agent-type-qualifier :: Agent-type-name

Agent-qualifier :: Agent-name

State-type-qualifier :: State-type-name

State-qualifier :: State-name

Data-type-qualifier :: Data-type-name

Procedure-qualifier :: Procedure-name

Interface-qualifier :: Interface-name

Package-name = Name

Agent-type-name = Name

Agent-name = Name

State-type-name = Name

Data-type-name = Name

Interface-name = Name

Name :: Token

The Path-item list of a Qualifier shall give the full path to the identified entity. For the system and
any package not contained in another package the full path is an empty Path-item list.
Each Name has a different Token.

Concrete grammar
<identifier> ::=
 [<qualifier>] <name or number>

<qualifier> ::=
 <qualifier begin sign> <path item> { / <path item> }* <qualifier end sign>

If the <qualifier> is omitted or the <path item> list does not give the full path to the named item, the
Qualifier is determined by name resolution and the Model given below is applied.
NOTE 1 – If the full path were given for every identifier, in most cases the <identifier> would be longer than
necessary and the description would be unreadable. For each use of the Identifier, there is usually a minimal
form where the <qualifier> is omitted or as many leftmost <path item> elements are omitted as possible. In
the minimal form, for each <path item> that is needed the <scope unit kind> is omitted wherever possible
(see below). As a guideline this minimal form (usually just the <name or number>) should be used whenever
possible, and is considered the canonical concrete syntax form and adding a redundant <path item> or
<scope unit kind> is considered annotation.

 Rec. ITU-T Z.101 (10/2019) 13

<name or number> ::=
 <name>
 | <integer name>
 | <real name>
 | <quoted operation name>
 | <string name>

<string name> ::=
 <character string>
 | <bit string>
 | <hex string>

A <name or number> of <identifier> represents the Name of an Identifier in the Abstract syntax.
The Token for the Name of an Identifier is determined by the name resolution given below. Except
for an <operation name> or <quoted operation name>, each distinct <name> in a particular
specification always corresponds to a distinct Token and each occurrence of the <name>
corresponds to the same Token. Similarly, each distinct <integer name>, <real name> or <string
name> corresponds to a distinct Token, and each occurrence of this item corresponds to the same
Token. In the case of an <operation name> or <quoted operation name>, the Token depends on the
signature of the operation (the name, parameters and the result).
<path item> ::=
 [<scope unit kind>] <name>

<scope unit kind> ::=
 package
 | system type
 | system
 | block
 | block type
 | process
 | process type
 | state
 | state type
 | procedure
 | signal
 | type
 | operator
 | method
 | interface

Scope units are defined by the following non-terminal symbols of the concrete grammar:
 package <package diagram>
 system type <system type diagram>
 system <typebased system definition> (and system diagram in [ITU-T Z.103]).
 block type <block type diagram>
 block <typebased block definition> (and block diagram in [ITU-T Z.103]).
 process type <process type diagram>
 process <typebased process definition> (and process diagram in [ITU-T Z.103]).
 state type <composite state type diagram>
 state <typebased composite state>
 (and typebased state partition definition
 or composite state diagram in [ITU-T Z.103]).
 procedure <procedure diagram>
 signal <signal definition> (for specialization, see [ITU-T Z.102])
 type <data type definition>
 operator <operation diagram> (for an operator)
 method <operation diagram> (for a method in [ITU-T Z.104])
 interface <interface definition>

It is allowed to omit the optional <scope unit kind> in a <path item> if the <name> of the
<path item> otherwise uniquely determines the scope unit.

14 Rec. ITU-T Z.101 (10/2019)

If given, the <scope unit kind> determines the qualifier kind (Agent-type-qualifier, Agent-qualifier,
State-type-qualifier, State-qualifier, Data-type-qualifier, Procedure-qualifier, Interface-qualifier)
and the resolution of the <name> of the <path item> is for that kind of scope unit. If no <scope unit
kind> is given, the resolution of the <name> of a <path item> shall be a <name> of a scope unit and
determines the qualifier kind (Agent-type-qualifier, Agent-qualifier, State-type-qualifier,
State-qualifier, Data-type-qualifier, Procedure-qualifier, Interface-qualifier).
NOTE 2 − There is no <scope unit kind> corresponding to the scope units defined by <task area>.

The corresponding abstract syntax for the <scope unit kind> denoted by operator (or method,
see [ITU-T Z.104]) is the implicit procedure that corresponds to the operation in the abstract syntax.
A scope unit has a list of definitions attached. Each of the definitions defines one or more entities
belonging to a certain entity kind and having an associated name. These definitions include <gate
definition>s, <agent formal parameters> and <formal variable parameters> contained in the scope
unit.
Entities are grouped into entity kinds. The following entity kinds exist:
a) packages;
b) agents (system, blocks, processes);
c) agent types (system types, block types, process types);
d) channels, gates;
e) signals, timers, interfaces, data types;
f) procedures, remote procedures (only when applying [ITU-T Z.102]);
g) variables (including formal parameters), synonyms (only when applying [ITU-T Z.104]);
h) literals, operators, (and methods see [ITU-T Z.104]);
i) remote variables (only when applying [ITU-T Z.104]);
j) sorts;
k) state types;
l) exceptions.
Each entity has its defining context in the scope unit that defines it.
Either the <qualifier> refers to a supertype or the <qualifier> reflects the logical hierarchical
structure from the system or package level to the defining context, such that the system or package
level is the leftmost textual part. The Identifier of an entity is then represented by the qualifier, the
name of the entity, and, only for entities of kind h), the signature (see [ITU-T Z.104]). Each entity
of a kind shall have an Identifier different from any other entity of the same kind.
NOTE 3 − Consequently, no two definitions in the same scope unit and belonging to the same entity kind are
allowed to have the same <name>, except operations defined in the same <data type definition> that differ in
at least one argument <sort> or the result <sort> (see [ITU-T Z.104]).
NOTE 4 − Any gate names occurring in channel definitions, state names, connector names, macro formal
parameter names and macro names have special visibility rules and qualification is not possible. Special
visibility rules are explained in the appropriate clauses.

It is possible to reference an entity using an <identifier>, if the entity is visible. An entity is visible
in a scope unit if:
a) it has its defining context in that scope unit; or
b) the scope unit is a specialization (not in Basic SDL-2010) or an instantiation of a type and

the entity is visible in the base type; and
1) it is not protected from visibility by restricted visibility (see [ITU-T Z.104]); and
2) data specialization renaming has not been applied (see [ITU-T Z.104]); and

 Rec. ITU-T Z.101 (10/2019) 15

3) it is not a formal context parameter that has already been bound to an actual context
parameter (see Recommendation [ITU-T Z.102]); or

c) the scope unit has a <package use clause> which mentions a <package diagram> such that:
1) either the <package use clause> has the <definition selection list> omitted or the

<name> of the entity is mentioned in a <definition selection>; and
2) the <package diagram> that is the defining context for the entity either has the

<package public> clause omitted or <name> of the entity is mentioned in the
<package public> clause; or

d) the scope unit contains an <interface definition> that is the defining context of the entity
(see clause 12.1.2); or

e) the scope unit contains a <data type definition> that is the defining context of the entity (in
particular this applies for literals, operation signatures, and the implicit procedures that
provide the behaviour of operations) and it is not protected from visibility by restricted
visibility (see [ITU-T Z.104]); or

f) the entity is visible in the scope unit that defines that scope unit.
The binding of a <name> of an identifier to a definition through resolution by container proceeds in
the following steps, starting with the scope unit denoted by the partial <qualifier> or (if no
<qualifier> is given) the scope in which the <name> occurs, and considering every entity kind valid
for the context where the name occurs:
a) if a unique entity exists in a scope unit with the same <name> and a valid entity kind, the

<name> is bound to that entity; otherwise
b) if the scope unit is a specialization (not in Basic SDL-2010) or an instantiation of a type,

step a) is repeated recursively through each base type in turn until the <name> is bound to
an entity or a type is reached that has no base type; otherwise

c) if the scope unit has a <package use clause> and a unique entity exists (with the same
<name> and a valid entity kind) and is visible in the <package diagram>, the <name> is
bound to that entity; otherwise

d) if the scope unit has an <interface definition> and a unique entity exists (with the same
<name> and a valid entity kind) and is visible in the <interface definition>, the <name> is
bound to that entity; otherwise

e) resolution by container is attempted in the scope unit that defines the current scope unit.
With respect to visibility and use of qualifiers, a <package use clause> associated with a scope unit
is regarded as representing a package definition directly enclosing the scope unit and defined in the
scope unit where that scope unit is defined. If the <identifier> does not contain a <qualifier>, a
<package use clause> is considered as the nearest enclosing scope unit to the scope unit with which
it is associated and contains the entities visible from the package.
NOTE 5 − In the concrete syntax, it is not possible to define packages inside other scope units. The above
rule is only for defining the visibility rules that apply for packages.

When the <name> part of an <identifier> denotes an entity of the entity kind h), the binding of the
<name> to a definition shall be resolvable by context. Resolution by context is attempted after
resolution by container; that is, if binding of a <name> through resolution by container is possible,
that binding is used even if resolution by context could bind that <name> to an entity also.
Consequently, resolution by context is only applied if no unique binding is found through resolution
by container (typically for a literal or operation of a data type). The context for resolving a <name>
is an <assignment> (if the <name> occurred in an <assignment>), a <decision area> (if the <name>
occurred in the <question> or <answer>s of a <decision area>), or an <expression> that is not part
of any other <expression> otherwise. Resolution by context proceeds as follows.

16 Rec. ITU-T Z.101 (10/2019)

1) For each <name> occurring in the context, find the set of <identifier>s, such that the
<name> part is visible, having the same <name> and partial <qualifier> and a valid entity
type for the context taking renaming into account.

2) Construct the product of the sets of <identifier>s associated with each <name>.
3) Consider only those elements in the product that do not violate any static sort constraints

taking into account also those sorts in packages that are not made visible in a
<package use clause>. Each remaining element represents a possible, statically correct
binding of the <name>s in the <expression> to entities.

4) When polymorphism is present in <assignment> (for example, in the support of
object-oriented data), the static sort of an <expression> is not always the same as the static
sort of the <variable> on the left hand side of the assignment, and similarly for the implicit
assignments in parameters. The number of such mismatches is counted for each element.

5) Compare the elements in pairs, dropping those with more mismatches.
6) If there is more than one remaining element, all non-unique <identifier>s shall represent the

same operation signature; otherwise in the context it is not possible to bind the <name>s to
a definition.

Semantics
Each entity has an Identifier that has a Qualifier as the defining context and a Name that
distinguishes this from other entities of the same kind in this context. When an entity is composite
(such as an instance set or a structure) there are additional mechanisms to identify the components.
For some entities (such as instances of signals or procedures) the Name is implicit and anonymous.

Model

It is allowed to omit some of the leftmost <path item>s, or the whole <qualifier> of an <identifier>
if it is possible to uniquely expand the remaining <path item>s to a full <qualifier>. For example, if
the <name> is unique to one entity in the whole specification, it is always allowed to omit the whole
<qualifier>. If such a uniquely named entity is a scope unit, any <path item> to the left of this
<name> in a <qualifier> is also allowed to be omitted.
When the <name or number> part of an <identifier> denotes an entity that is not of entity kind h),
the <name> is bound to an entity that has its defining context in the nearest enclosing scope unit in
which the <qualifier> of the <identifier> is the same as the rightmost part of the full <qualifier>
denoting this scope unit (resolution by container). If the <identifier> does not contain a <qualifier>,
then the requirement on matching of <qualifier>s does not apply.

6.7 Empty clause
This clause is intentionally left blank.

6.8 Informal text
During the development of a specification, using informal text allows some parts to be informally
specified for later formalization. If a specification contains informal text, it is not completely
formally defined with a consequence that formally there is ambiguity.

Abstract grammar
Informal-text :: ...

Concrete grammar
<informal text> ::=
 <character string>

 Rec. ITU-T Z.101 (10/2019) 17

Semantics
If Informal-text is used in a specification, it means that this text does not have any semantics
defined by the Specification and Description Language. The semantics of the Informal-text is
allowed to be defined by some other means. If during an interpretation of a specification Informal-
text is interpreted, the future behaviour of the specification is not formally well-defined.

6.9 Text symbol
The <text symbol> is used in all kinds of <diagram>. The content depends on the diagram.
Unlike other symbols, text contained in a text symbol is considered as a single piece of text. For
example, a <package text area> contains a single text piece that is a textual list of <signal definition
list> and <data definition> items. By contrast, a <process symbol> for a <typebased process
definition> contains a textual <typebased process heading> and separate textual pieces for each
<gate>.

Concrete grammar
<text symbol> ::=

6.10 Frame symbol and page numbers
The frame symbol is used to frame pages of diagrams. The diagrams in Basic SDL-2010 are
<package diagram>, <agent type diagram>, <procedure diagram>, <operation diagram> and
<composite state type diagram>.

Concrete grammar
<frame symbol> ::=

When a <package use area> is associated with a <frame symbol>, the <package use area> shall be
placed on the top of the <frame symbol>, for example, in a <block type page> or
<process type page>.
A <frame symbol> contains a heading (such as <system type heading>, <process type heading>,
<procedure heading>), which is a textual syntax non-terminal with a name ending in "heading". The
heading is considered to be enclosed in an <implicit text symbol> that contains the heading. The
heading (such as <system type heading>) is placed at the upper left corner of the <frame symbol>.
The <implicit text symbol> is not visible (it is considered to be the same colour as the background)
but implied and provides a clear separation between heading and any other text such as the
<page number area> in the <frame symbol>. The <page number area> is also considered as
contained in an <implicit text symbol>. The heading text is wrapped if necessary within the
<implicit text symbol>.
<page number area> ::=
 [<page number> [(<number of pages>)]]

<page number> ::=
 <name or number>

18 Rec. ITU-T Z.101 (10/2019)

<number of pages> ::=
 <integer name>

The <page number area> is placed at the upper right corner of the <frame symbol>. It is a form of
annotation and has no meaning in the abstract grammar.
The <page number> enables a name or number to be provided for a page of a diagram. The
<number of pages> is optionally used to show how many pages there are in a diagram, which in
Basic SDL-2010 would always be 1. In Comprehensive SDL-2010 a diagram is allowed to have
extra pages.

7 Organization of Specification and Description Language specifications
It is not usually possible to describe a system in a single diagram. The language therefore supports
the partitioning of the specification into a number of diagrams and use of packages in the language
from elsewhere. [ITU-T Z.105] defines how an ASN.1 module is allowed as a package.

7.1 Framework
An <sdl specification> is described as a <system specification> (possibly augmented by a collection
of <package diagram>s) or as a collection of <package diagram>s, in either case with
<referenced definition>s. A <package diagram> allows definitions to be used in different contexts
by "using" the package in these contexts (that is, in systems or packages which are otherwise
independent). A <referenced definition> is a definition that is referenced from its defining context.
Each <referenced definition> is logically "inserted" into exactly one place (the defining context)
using a reference.

Abstract grammar
Sdl-specification :: [Agent-definition]
 Package-definition-set

The Agent-definition (if present) shall have an Agent-type-identifier for an Agent-type-definition
with the Agent-kind SYSTEM.

Concrete grammar
<sdl specification> ::=
 {
 { <package diagram> | <system specification> }
 <referenced definition>* }set

<system specification> ::=
 <typebased agent definition>[is associated with <package use area>]

A <referenced definition> that is a <package diagram> represents a member of the Package-
definition-set if the <qualifier> after the keyword package in the heading is omitted. Otherwise the
<package diagram> is referenced from the context given by the <qualifier> and the <package
diagram> represents a Package-definition in this context.
NOTE − How an <sdl specification> is stored on computer systems for analysis is not defined within this
Recommendation or [ITU-T Z.100], or [ITU-T Z.102] to [ITU-T Z.106], and different approaches are
allowed to be used. It is possible to store the whole <sdl specification> within a single computer file, or to
have a file for each diagram or a file for each page of a diagram. Other schemes are also allowed.

Semantics
An Sdl-specification has the combined semantics of the system agent (if one is given) with the
packages. If no system agent is specified, the specification provides a set of definitions for use in
other specifications.

 Rec. ITU-T Z.101 (10/2019) 19

For an Sdl-specification with an Agent-definition, a type is "potentially instantiated" if it is either
instantiated in the Agent-definition, or instantiated in a potentially instantiated type.

Model
The Package-definition-set of an Sdl-specification always includes the Package-definition of
package Predefined defined in [ITU-T Z.104]; consequently this package does not have to be
explicitly included as a <referenced definition>.

7.2 Package
In order for a type definition to be used in different systems it has to be defined as part of a
package.
Definitions as parts of a package define types, signals and interfaces.
Definitions within a package are made visible to another scope unit by a package use clause.

Abstract grammar
Package-definition :: Package-name
 Package-definition-set
 Data-type-definition-set
 Syntype-definition-set
 Signal-definition-set
 Agent-type-definition-set
 Composite-state-type-definition-set
 Procedure-definition-set

For each Agent-type-definition there is a Data-type-definition that is an Interface-definition that has
a Sort with the same Name as the Agent-type-definition (see clause 12.1.2).

Concrete grammar
<package diagram> ::=
 <package page>

<package page> ::=
 <frame symbol> contains
 { <package heading> <page number area>
 { {<package text area>}*
 {<diagram in package>}* } set }
 [is associated with <package use area>]

<package heading> ::=
 package [<qualifier>] <package name>
 [<package public>]

NOTE 1 − The <package name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).

The <package heading> is placed in the top right-hand corner of the <frame symbol>.
The <package name> of the <package heading> represents the Package-name of the
Package-definition.
<package use area> ::=
 <text symbol> contains {<package use clause>}*

<package text area> ::=
 <text symbol> contains
 { <signal definition list>
 | <data definition> }*

Each <signal definition> of a <signal definition list> of a <package text area> represents a member
of the Signal-definition-set of the Package-definition. Each <data definition> of a
<package text area> represents a member of the Data-type-definition set of the Package-definition

20 Rec. ITU-T Z.101 (10/2019)

if it is a <data type definition> or <interface definition>, and a member of the Syntype-definition set
of the Package-definition if it is a <syntype definition>.
<diagram in package> ::=
 <package reference area>
 | <entity in agent diagram>

<package reference area> ::=
 <package symbol> contains <package name>

Each <package reference area> that is a <diagram in package> represents a member of the
Package-definition set of the Package-definition. Each <entity in agent diagram> that is a <diagram
in package> represents a member of the Agent-type-definition set of the Package-definition if it is
an <agent type reference area>, a member of the Composite-state-type-definition set of the
Package-definition if it is an <composite state type reference area>, and a member of the
Procedure-definition set of the Package-definition if it is an <procedure reference area>.
<package use clause> ::=
 use <package identifier> [/ <definition selection list>] <end>

<definition selection list> ::=
 <definition selection> { , <definition selection>}*

<definition selection> ::=
 [<selected entity kind>] <name>

<selected entity kind> ::=
 system type
 | block type
 | process type
 | package
 | signal
 | procedure
 | type
 | state type
 | synonym
 | signallist
 | interface

The keyword signallist has the same meaning as interface as a <selected entity kind>.
The keyword synonym is used only if [ITU-T Z.104] is being applied.
<package public> ::=
 public <definition selection list>

<package symbol> ::=

The <package use area> shall be placed on the top of the <frame symbol>. The <package name> of
a <package reference area> shall be contained in the lower rectangle of <package symbol>.
For each <package identifier> mentioned in a <package use clause>, there shall exist a
corresponding <package diagram>. This package shall be part of <sdl specification> or a package
contained in another package or else there shall exist a mechanism (not defined by the SDL-2010
Recommendations) for accessing the referenced <package diagram>, just as if it were a part of the
<sdl specification>.
There shall be a <qualifier> in <package identifier> only if the package is logically contained in
another package. If the corresponding <package diagram> is logically contained in another
package, the <package identifier> reflects the hierarchical structure from the outermost
<package diagram> to the defined <package diagram>.

 Rec. ITU-T Z.101 (10/2019) 21

The <package identifier> shall denote a visible package. All <package diagram>s in the <qualifier>
of the fully qualified <package identifier> shall be visible. A package is visible if it is either part of
the <sdl specification> or if its <identifier> is visible according to the visibility rules for
<identifier>. The visibility rules imply that a <package identifier> is made visible with a
<package use clause> and that a package is visible in the scope in which it is logically contained.
This scope extends also to the <package use clause> of the logical container package.
Likewise, if the <system specification> is omitted in an <sdl specification>, there shall exist a
mechanism for using the <package diagram>s in other <sdl specification>s. The mechanism is not
otherwise defined in this Recommendation.
The keyword type is used for selection of a sort name and also a syntype name in a package.
The visibility of the name of an entity defined within a <package diagram> is explained
in clause 6.6.
Signals that are not made visible in a use clause are visible if they are part of an interface made
visible in a use clause, and therefore these signals affect the complete valid input signal set of an
agent.
If a name in a <definition selection> denotes a <sort>, the <definition selection> also implicitly
denotes the data type that defined the <sort> and all the literals and operations defined by the data
type. If a name in a <definition selection> denotes a syntype, the <definition selection> also
implicitly denotes the data type that defined the <parent sort identifier> and all the literals and
operations defined by the data type.
The <selected entity kind> in <definition selection> denotes the entity kind of the <name>. Any
pair of (<selected entity kind>, <name>) shall be distinct within a <definition selection list>. For a
<definition selection> in a <package public> clause, the <selected entity kind> is allowed to be
omitted only if the name is used for just one defining occurrence directly in the <package diagram>.
For a <definition selection> in a <package use clause>, <selected entity kind> is allowed to be
omitted if and only if either exactly one entity of that name is mentioned in any
<definition selection list> for the package or the package has no <definition selection list> and
directly contains a unique definition of that name.

Semantics

A package enables a collection of types, signals and interfaces to be defined, so that it is possible to
use them in a number of different systems or types. A package is allowed to contain other packages.
NOTE – The <system type diagram> for a system has to be logically enclosed in a package. The package
Predefined is visible to the package enclosing the <system type diagram> because the package is included in
the Package-definition-set of any Sdl-specification.

Model
If a package is mentioned in several <package use clause> items of a definition (in the same text
area or different text areas of the definition), these are replaced by one <package use clause> in one
text area that selects the union of the definitions selected in the <package use clause> items.

7.3 Referenced definition

Concrete grammar
<referenced definition> ::=
 <diagram>

22 Rec. ITU-T Z.101 (10/2019)

<diagram> ::=
 <package diagram>
 | <agent type diagram>
 | <composite state type diagram>
 | <procedure diagram>
 | <operation diagram>

For each <referenced definition> except any outermost <package diagram>, there shall be a
reference in the associated <package diagram> or <system specification>.
An optional <qualifier> and <name> is present in a <referenced definition> after the initial
keyword(s). For each reference there shall exist a <referenced definition> with the same entity kind
as the reference, and whose <qualifier>, if present, denotes a path, from a scope unit enclosing the
reference, to the reference. If two <referenced definition> items of the same entity kind have the
same <name>, the <qualifier> of one shall not constitute the leftmost part of the other <qualifier>,
and neither <qualifier> is allowed to be omitted. The <qualifier> in a <referenced definition> shall
be present if the <referenced definition> is a <package diagram> referenced from another context,
except if the <package diagram> represents an outermost Package-definition.
The referenced definition is logically placed at the point of the reference to determine the properties
of the system specification. That is, the abstract grammar for the referenced definition is determined
by the context of the reference, which is the logical context for the referenced definition. In the case
of a <package diagram> without a <qualifier> the Package-definition is a member of the
Package-definition-set of the Sdl-specification.
It is not allowed to specify a <qualifier> after the initial keyword(s) for definitions which are not
<referenced definition> items.

8 Structural concepts
This clause introduces a number of language mechanisms to support the modelling of
application-specific phenomena by instances and application-specific concepts by types.
The language mechanisms introduced provide:
a) (pure) type definitions that are allowed to be defined anywhere in a system or in a package;
b) typebased instance definitions that define instances or instance sets according to types.

8.1 Types, instances and gates
There is a distinction between definition of instances (or set of instances) and definition of types.
This clause introduces (in clause 8.1.1) type definitions for agents and composite states, while the
introduction of other types are in procedures (clause 9.4), signals (clause 10.3), timers
(clause 11.15), sorts (clause 12.1) and interfaces (clause 12.1.2). An agent type definition is not
connected (by channels) to any instances; instead, agent type definitions introduce gates
(clause 8.1.4). These are connection points on the typebased instances for channels.
A type defines a set of properties. All instances of the type have this set of properties.
An instance (or instance set) always has a type.

8.1.1 Structural type definitions
These are type definitions for entities that are used in the structure of a specification. In contrast,
procedure definitions are also type definitions, but organize behaviour rather than structure.

8.1.1.1 Agent types
An agent type is a system, block or process type. When the type is used to define an agent, the agent
is of corresponding kind (system, block or process).

 Rec. ITU-T Z.101 (10/2019) 23

Abstract grammar
Agent-type-definition :: Agent-type-name
 Agent-kind
 [Agent-type-identifier]
 Agent-formal-parameter*
 Data-type-definition-set
 Syntype-definition-set
 Signal-definition-set
 Timer-definition-set
 Variable-definition-set
 Agent-type-definition-set
 Composite-state-type-definition-set
 Procedure-definition-set
 Agent-definition-set
 Gate-definition-set
 Channel-definition-set
 State-machine

Agent-kind = SYSTEM | BLOCK | PROCESS

Agent-type-identifier = Identifier

Agent-formal-parameter = Parameter

Parameter :: Variable-name
 Sort-reference-identifier
 Parameter-aggregation

Parameter-aggregation :: Aggregation-kind

State-machine :: State-name
 Nextstate-parameters
 Composite-state-type-identifier

A system type definition (an Agent-type-definition with Agent-kind SYSTEM) shall not be logically
contained in any other Agent-type-definition.
The Agent-formal-parameter list of a system shall be empty.
A process type definition (an Agent-type-definition with Agent-kind PROCESS) shall not contain a
block type definition (an Agent-type-definition with Agent-kind BLOCK) or a block definition
(an Agent-definition with Agent-kind BLOCK).
An Agent-type-definition shall have a Name that is different from the Name of every explicitly
defined interface Data-type-definition or Agent-definition in the same scope.
NOTE 1 − This constraint on names is because every agent type has an implicitly defined interface with the
same name, so the agent type has to have a different name from every explicitly defined interface and every
agent (these also have implicit interfaces) defined in the same scope, otherwise there are name clashes.

The optional Agent-type-identifier of Agent-type-definition identifies the base type (super type) of a
specialization.
NOTE 2 − Specialization is defined in [ITU-T Z.102] and is not included in Basic SDL-2010, and for
Basic SDL-2010 Agent-type-identifier is always omitted, but the abstract syntax is included here so
Agent-type-definition does not have to be redefined in [ITU-T Z.102].

For each member of an Agent-type-definition-set of the Agent-type-definition there is a
corresponding Data-type-definition that is an Interface-definition that has a Sort with the same
Name as the member of the Agent-type-definition-set (see clause 12.1.2).
For each member of an Agent-definition-set of the Agent-type-definition there is a corresponding
Data-type-definition that is an Interface-definition that has a Sort with the same Name as the
member of the Agent-definition-set (see clause 12.1.2).

24 Rec. ITU-T Z.101 (10/2019)

For the State-machine of the Agent-type-definition there is a corresponding Data-type-definition that
is an Interface-definition that has a Sort with the same Name as State-name of the State-machine
(see clause 12.1.2).
The State-machine of the Agent-type-definition shall identify a Composite-state-type-definition that
has a non-empty Gate-identifier-set that defines the gates of the state machine.

Concrete grammar
<agent type diagram> ::=
 { <system type diagram> | <block type diagram> | <process type diagram> }

<type preamble> ::=
 {}

NOTE 3 − In Basic SDL-2010 <type preamble> is empty, but is added here to avoid the need to redefine
agent type headings in [ITU-T Z.102].
<agent type additional heading> ::=
 <agent additional heading>

<agent additional heading> ::=
 [<agent formal parameters>]

<agent formal parameters> ::=
 [<end>] fpar <aggregation kind> <parameters of sort>
 {, <aggregation kind> <parameters of sort>}*

NOTE 4 − The syntax of SDL-2000 that uses round brackets rather than fpar is in [ITU-T Z.103].

The <agent formal parameters> of an <agent additional heading> represents the
Agent-formal-parameter list of the Agent-type-definition, but the <agent formal parameters> of a
<composite state type heading> represent a Composite-state-formal-parameter list of a
Composite-state-type-definition.
<parameter aggregation> ::=
 <aggregation kind>

<parameters of sort> ::=
 <variable name> {, <variable name>}* <sort>

NOTE 5 − The <variable name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).

Each <variable name> of <parameters of sort> of <agent formal parameters> of <agent additional
heading> of <agent type additional heading> represents a different Agent-formal-parameter with
the <variable name> representing the Variable-name of the Parameter that is the
Agent-formal-parameter. The <sort> of the <parameters of sort> represents the
Sort-reference-identifier of each Parameter for the <parameters of sort>.
NOTE 6 − Agent parameters do not have a <parameter kind> and are always in parameters.

Semantics
An Agent-type-definition defines an agent type. All agents of an agent type have the same properties
as defined for that agent type.
The definition of an agent type implies the definition of an interface in the same scope of the agent
type (see clause 12.1.2). The pid sort implicitly defined by this interface is identified with the Name
of the Agent-type-name and is visible in the same scope unit as where the agent type is defined.
The complete output set of an agent type is the union of all signals mentioned, either directly or as
part of interfaces, in the outgoing signal lists associated with the gates of the agent type.
Other properties defined in an Agent-type-definition such as the Procedure-definition-set,
Agent-definition-set, and Gate-definition-set determine the properties of any Agent-definition based
on the type, and are therefore described in clause 9.

 Rec. ITU-T Z.101 (10/2019) 25

Model
An <agent formal parameters> list item with a <parameters of sort> that defines multiple parameter
names is replaced by a sequence of <agent formal parameters> list items with the same
<aggregation kind> each <parameters of sort> defining one name.

8.1.1.2 System type
A system type definition is a top-level agent type definition. It is denoted by the keywords
system type.

Concrete grammar
<system type diagram> ::=
 <system type page>

<system type page> ::=
 <frame symbol>
 contains {<system type heading> <page number area> <agent structure area> }
 { is connected to <gate on diagram> }*
 [is associated with <package use area>]

<system type heading> ::=
 system type [<qualifier>] <system type name>
 <agent type additional heading>

NOTE − The <system type name> has to be a <name>, whereas in SDL-2000 it is a name or a number
(an <integer name> or a <real name>).

The <agent type additional heading> in a <system type diagram> shall not include
<agent formal parameters>.
The <gate on diagram>s of a <system type diagram> shall be outside the diagram frame.
A <system type diagram> defines an Agent-type-definition with Agent-kind SYSTEM.
Each <gate on diagram> of the <system type page> represents a Gate-definition-set item of the
Agent-type-definition.

8.1.1.3 Block type

Concrete grammar
<block type diagram> ::=
 <block type page>

<block type page> ::=
 <frame symbol>
 contains {<block type heading> <page number area> <agent structure area> }
 { is connected to <gate on diagram> }*
 [is associated with <package use area>]

<block type heading> ::=
 <type preamble>
 block type [<qualifier>] <block type name>
 <agent type additional heading>

NOTE − The <block type name> has to be a <name>, whereas in SDL-2000 it is a name or a number
(an <integer name> or a <real name>).

The <gate on diagram>s of a <block type diagram> shall be outside the diagram frame.
A <block type diagram> defines an Agent-type-definition with Agent-kind BLOCK.
Each <gate on diagram> of the <block type page> represents a Gate-definition-set item of the
Agent-type-definition.

26 Rec. ITU-T Z.101 (10/2019)

8.1.1.4 Process type

Concrete grammar
<process type diagram> ::=
 <process type page>

<process type page> ::=
 <frame symbol>
 contains {<process type heading> <page number area> <agent structure area> }
 { is connected to <gate on diagram> }*
 [is associated with <package use area>]

<process type heading> ::=
 <type preamble>
 process type [<qualifier>] <process type name>
 <agent type additional heading>

NOTE − The <process type name> has to be a <name>, whereas in SDL-2000 it is a name or a number
(an <integer name> or a <real name>).

The <gate on diagram>s of a <process type diagram> shall be outside the diagram frame.
A <process type diagram> defines an Agent-type-definition with Agent-kind PROCESS.
Each <gate on diagram> of the <process type page> represents a Gate-definition-set item of the
Agent-type-definition.

8.1.1.5 Composite state type

Abstract grammar
Composite-state-type-definition :: State-type-name
 Composite-state-formal-parameter*
 Gate-definition-set
 Data-type-definition-set
 Syntype-definition-set
 Composite-state-type-definition-set
 Variable-definition-set
 Procedure-definition-set
 Composite-state-graph

Composite-state-formal-parameter = Agent-formal-parameter

Composite-state-type-identifier = Identifier

The Gate-definition-set of a Composite-state-type-definition shall not be empty if there is a
State-machine based on the Composite-state-type-definition.

Concrete grammar
<composite state type diagram> ::=
 <composite state type page>

<composite state type page> ::=
 <frame symbol>
 contains {
 <composite state type heading> <page number area>
 <composite state structure area> }
 { is connected to <gate on diagram> }*
 [is associated with <package use area>]

Each <gate on diagram> of the <composite state type page> represents a Gate-definition-set item of
Composite-state-type-definition.
<composite state type heading> ::=
 <type preamble> state type [<qualifier>] <composite state type name>
 [<agent formal parameters>]

 Rec. ITU-T Z.101 (10/2019) 27

NOTE 1 − The <composite state type name> has to be a <name>, whereas in SDL-2000 it is a name or a
number (an <integer name> or a <real name>).
The <agent formal parameters> represent the Composite-state-formal-parameter list of the Composite-state-
type-definition.

Each <variable name> of <parameters of sort> of <agent formal parameters> of
<composite state type heading> represents a different Composite-state-formal-parameter with the
<variable name> representing the Variable-name of the Parameter that is the Agent-formal-
parameter that is the Composite-state-formal-parameter. The <sort> of the <parameters of sort>
represents the Sort-reference-identifier of each Parameter for the <parameters of sort>.
NOTE 2 − Composite state parameters do not have a <parameter kind> and are always in parameters.

The <package use area> shall be placed on the top of the <frame symbol>.
The <gate on diagram>s of a <composite state type diagram> shall be outside the diagram frame.

Semantics
A Composite-state-type-definition defines a composite state type. All composite states of a
composite state type have the same properties as defined for that composite state type. The
semantics are further defined in clause 11.11.

8.1.2 Type expression
A type expression is used to define the properties of an instance (or set of instances) in terms of a
type. In Basic SDL-2010 a type expression simply identifies a type.

Concrete grammar
<type expression> ::=
 <base type>

<base type> ::=
 <identifier>

A <type expression> yields the type identified by the identifier of <base type>.
In addition to fulfilling any static conditions on the definition denoted by the <base type>, usage of
the <type expression> shall also fulfil any static condition on the resultant type.
NOTE – The static properties on the usage of a <type expression> are violated if an output in a scope unit
refers to a gate or a channel that is not defined for the nearest enclosing type having gates, or if there is no
communication path to the gate. Instantiation of that type results in an erroneous specification.

8.1.3 Empty clause
This clause is intentionally left blank.

8.1.4 Gate
Gates are defined in agent types (block types, process types) or state types and represent connection
points for channels, connecting instances of these types with other instances or with gates on the
enclosing frame symbol.
It is possible also to define gates in agents and composite states and this represents a notation for
specifying that the considered entity has a named connection point.

Abstract grammar
Gate-definition :: Gate-name
 In-signal-identifier-set
 Out-signal-identifier-set

28 Rec. ITU-T Z.101 (10/2019)

Gate-name = Name

In-signal-identifier = Signal-identifier

Out-signal-identifier = Signal-identifier

Concrete grammar
<gate on diagram> ::=
 <gate definition>

<gate definition> ::=
 <gate symbol 1>
 is associated with { <gate> <signal list area> }set
 | <gate symbol 2>
 is associated with { <gate> <signal list area> <signal list area> }set

<gate symbol 1> ::=

<gate symbol 2> ::=

<gate> ::=
 <gate name>

NOTE 1 − The <gate name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).
NOTE 2 − If [ITU-T Z.103] is applied, it is permitted to omit the <signal list area> if it is possible to derive
the signal list from other communication path information.

The <gate on diagram> is outside the diagram frame.
The <signal list area> elements are associated with the directions of the <gate symbol 1> or <gate
symbol 2> as denoted by the arrowheads. A <signal list area> shall be unambiguously close enough
to the arrowhead to which it is associated. The arrowhead indicates whether the <signal list area>
represents an In-signal-identifier-set or an Out-signal-identifier-set. An In-signal-identifier
is represented by a <signal list item> element of the <signal list area> associated with an arrowhead
at the end of a <gate symbol 1> or <gate symbol 2> connected to the diagram frame.
An Out-signal-identifier is represented by a <signal list item> element of the <signal list area>
associated with an arrowhead at the end of a <gate symbol 1> or <gate symbol 2> not connected to
the diagram frame.
If the type denoted by <base type> in a <typebased block definition> or
<typebased process definition> contains channels, the following rule applies: for each combination
of a gate, a signal, and the direction of the <signal list> of the gate defined by the type, the type
shall contain at least one channel that − for the given direction − is connected to the frame at this
gate and mentions the signal (or has no explicit <signal list area> associated if [ITU-T Z.103] is
being applied to allow the <signal list area> to be omitted).

Semantics
The use of gates in type definitions corresponds to the use of communication paths in the enclosing
scope in (a set of) instance specifications.

8.2 Type references and operation references
Type diagrams have type references. The referenced diagram defines the properties of the type. The
type is fully described in the referenced diagram.
An operation reference is a special case of a type reference, because there is no symbol for an
operation reference and instead the reference is given textually. The use of operation reference is

 Rec. ITU-T Z.101 (10/2019) 29

allowed only within a data type definition, which is only textual, so a symbol could not be used to
denote the reference.
The same type definition is allowed to have several type references. If there are several references
to the same type in a scope unit, this is the same as having one reference.
To enable the concrete grammar to be extended more easily in [ITU-T Z.102], [ITU-T Z.103] and
[ITU-T Z.104], the concrete syntax given for type references has some use of rules (rather than
syntax) to limit allowed productions, and several non-terminal productions are introduced here.

Concrete grammar
Each of the following is a type reference: <agent type reference area>,
<composite state type reference area>, <procedure reference area>.
In Basic SDL-2010, identity of the scope unit directly enclosing the type reference is used with the
<name> given in the type reference to determine the Identifier of the referenced type: the type
reference and the referenced type are logically in the same scope unit – the scope unit containing
the reference.
There shall be at least one type reference for the <referenced definition> in the logically containing
scope unit. This enables the <referenced definition> to be located, so that it is possible to map the
concrete diagrams to the logically enclosing scope in the complete system specification in the
abstract grammar.
<agent type reference area> ::=
 { <system type reference area>
 | <block type reference area>
 | <process type reference area> }

<system type reference area> ::=
 <system type symbol> contains { system <system type name> }
NOTE 1 – The keyword system in a <system type reference area> for a system allows a type based system
to be more easily distinguished from a type based block set. The keyword system was not allowed in
SDL-2000, but was required by some tools.
<block type reference area> ::=
 <block type symbol> contains <block type name>

<process type reference area> ::=
 <process type symbol> contains <process type name>

<composite state type reference area> ::=
 <composite state type symbol> contains <composite state type name>

<procedure reference area> ::=
 <procedure symbol> contains <procedure reference heading>

<procedure reference heading> ::=
 <procedure name>

<system type symbol> ::=
 <block type symbol>

<block type symbol> ::=

<process type symbol> ::=

30 Rec. ITU-T Z.101 (10/2019)

<composite state type symbol> ::=

<procedure symbol> ::=

<operation reference> ::=
 <operation kind> <operation signature> referenced <end>

<operation kind> ::=
 { operator }

<arguments> and <result> of the <operation signature> in an <operation reference> are allowed to
be omitted if there is no other <operation reference> within the same sort of data that has the same
name. In this case, the referenced <operation diagram> is identified simply by its name. The
<operation reference> enables the referenced <operation diagram> to be located, so that it is
possible to map the concrete diagrams to the enclosing data type definition in the logical hierarchy
in the abstract grammar.

9 Agents
An agent definition defines an (arbitrarily large) set of agents. An agent is characterized by having
variables, procedures, a state machine (based on a composite state type) and sets of contained
agents.
There are two kinds of agents: blocks and processes. A system is the outermost block. The state
machine of a block is interpreted concurrently with its contained agents, while the state machine of
a process is interpreted alternating with its contained agents: only one at a given time.
A typebased agent definition defines an agent instance set according to a type denoted by
<type expression>. The defined entities get the properties of the types that they are based on.

Abstract grammar
Agent-definition :: Agent-name
 Number-of-instances
 Agent-type-identifier

Number-of-instances :: Initial-number [Maximum-number] Lower-bound

Initial-number = Nat

Maximum-number = Nat

Lower-bound = Nat

If there is a Maximum-number, the Initial-number of instances shall be less than or equal to
Maximum-number and Maximum-number shall be greater than zero. The Lower-bound shall be less
than or equal to the Initial-number.

Concrete grammar
<typebased agent definition> ::=
 <typebased system definition>
 | <typebased block definition>
 | <typebased process definition>

The agent type denoted by <base type> in the type expression of a <typebased agent definition>
shall contain an unlabelled start transition in its state machine.
<number of instances> ::=
 ([<initial number>] [, [<maximum number>] [, <lower bound>]])

 Rec. ITU-T Z.101 (10/2019) 31

<initial number> ::=
 <Natural simple expression>

<maximum number> ::=
 <Natural simple expression>

<lower bound> ::=
 <Natural simple expression>

<agent structure area> ::=
 { {<agent text area>}*
 {<entity in agent diagram>}*
 <interaction area> }set

<agent text area> ::=
 <text symbol>
 contains {
 { <valid input signal set>
 | <signal definition list>
 | <variable definition>
 | <data definition>
 | <timer definition> }* }

An <agent text area> of a system type or block type shall not contain a <variable definition> in
Basic SDL-2010. The state machine of a system or block is allowed to define local variables.
Each <data definition> of an <agent text area> represents a member of the Data-type-definition set
of the Agent-type-definition for the agent if it is a <data type definition> or <interface definition>,
and a member of the Syntype-definition set of the Agent-type-definition for the agent if it is a
<syntype definition>.
<entity in agent diagram> ::=
 <agent type reference area>
 | <composite state type reference area>
 | <procedure reference area>

<interaction area> ::=
 { <state machine area> { <agent area> | <channel definition area>}* }set

<state machine area> ::=
 <state symbol> contains { <typebased composite state> { <gate>*}set }

The <gate>s contained in a <state symbol> in a <state machine area> are placed near the border of
the symbol and associated with the connection point to channels. They are placed close to the
endpoint of the channels at the <state symbol>. Each <gate> shall have a <gate name> that
identifies a Gate-definition of the Composite-state-type-definition identified by the State-machine.
The <state machine area> of <interaction area> defines the state machine (composite state) of the
agent. In Basic SDL-2010, the state machine is defined by <state machine area> with a <typebased
composite state>. The <state name> that is the <composite state name> of the <typebased
composite state> represents the State-name of the State-machine of the Agent-type-definition. The
<nextstate parameters> of the <typebased composite state> represent the Nextstate-parameters of
the State-machine of the Agent-type-definition. The type of the <typebased composite state>
represents the Composite-state-type-identifier of the State-machine of the Agent-type-definition.
<agent area> ::=
 <typebased agent definition>

An <agent area> represents an Agent-definition as further described for <typebased system
definition>, <typebased block definition> and <typebased process definition>.
<valid input signal set> ::=
 signalset [<signal list>] <end>

The following is valid for agents in general. Special properties of systems, blocks and processes are
treated in separate clauses on these concepts.

32 Rec. ITU-T Z.101 (10/2019)

The Initial-number of instances and Maximum-number of instances contained in Number-of-
instances are derived from <number of instances>. If <initial number> is omitted, then Initial-
number is 1. If <maximum number> is omitted, then Maximum-number is unbounded (it is omitted
in Number-of-instances). If the <lower bound> is omitted, the Lower-bound is zero.
The <valid input signal set> of an agent defines signals in the valid input signal set of the state
machine of the agent. Signals occurring in an explicitly defined <valid input signal set> and not
defined for a communication path allow communication between instances within the same instance
set.

Semantics
An Agent-definition has a Name, which it is allowed to use as a Path-item of a Qualifier for items
defined within the agent (system, block or process depending on the kind of the agent).
An Agent-definition defines a set of agent instances. It is possible for several agent instances in the
set to exist at the same time and be interpreted asynchronously and in parallel or alternating with
each other and with instances of other agent sets in the system.
The first value Initial-number in the Number-of-instances represents the number of instances of the
agent set which exist when the system or containing entity is created (initial instances). The second
value Maximum-number (if present) represents the maximum number of simultaneous instances of
the agent set. The last value Lower-bound represents the minimum number of simultaneous
instances of the agent set that shall exist at any time after the initial instances have been created. If
Maximum-number and Lower-bound have the same value, it is not possible to create or stop
instances.
Some behaviour of an Agent-definition in an Agent-definition-set depends on whether the
containing Agent-definition is a block or process, and therefore is defined for block and process
separately. The system agent is the special case of a block not contained within another block.
An agent instance of an Agent-definition has a communicating extended finite state machine defined
by the State-machine of the Agent-type-definition identified by the Agent-type-identifier of the
Agent-definition. Whenever the state machine is in a state, on input of a given signal it will perform
a certain sequence of actions, denoted as a transition. The completion of the transition results in the
state machine of the agent instance waiting in another state, which is not necessarily different from
the first one.
When an agent is interpreted, the initial agents it contains are created. The signal communication
between the finite state machines of these initial agents, the finite state machine of the agent and
their environment commences only when all the initial agents have been created. It is possible that
the time taken to create an agent is significant or insignificant. The formal parameters of the initial
agents have no associated data items (they are "undefined").
Agent instances exist from the time that the containing agent is created or they are created by create
request actions of agents being interpreted; their interpretations start when their start action is
interpreted and they cease to exist by performing stop actions.
When the state machine of an agent interprets a stop, it enters a "stopping condition". The state
machine of such an agent remains in the stopping condition until all contained agents have
terminated, after which the agent terminates. While in the stopping condition, the agent will not
accept any stimuli (other than the implicit set and get remote procedure calls, if any, introduced for
each global variable as described in [ITU-T Z.102], [ITU-T Z.103] and [ITU-T Z.104]). After an
agent has terminated, its pid is no longer valid.
The way the state machine of an agent behaves is determined by the Composite-state-type-definition
identified by the Composite-state-type-identifier of the State-machine of the Agent-type-definition
identified by the Agent-type-identifier of the Agent-definition. Contained agents and variables

 Rec. ITU-T Z.101 (10/2019) 33

(including agent parameters) initialized before the Nextstate-parameters of the State-machine are
evaluated and the composite state is invoked in the same way as entering a composite state from a
Nextstate-node. If the composite state interprets a return to the agent, this is interpreted as a Stop-
node and the agent enters the stopping condition. The simplest Composite-state-type-definition has
a Composite-state-graph that has a State-start-node with a Transition that has an empty Graph-
node list and that has a Return-node as a Terminator. For an agent with such a minimal state
machine, as soon as all the initial contained agents have been created the agent enters a stopping
condition. An agent with no contained initial instances and only a minimal state machine therefore
ceases to exist as soon as it is created.
Signals received by agent instances are denoted as input signals, and signals sent from agent
instances are denoted as output signals.
NOTE 1 – Calling and serving remote procedure calls, and accessing remote variables, also correspond to
exchange of signals (see [ITU-T Z.102], [ITU-T Z.103] and [ITU-T Z.104]), but these features are not parts
of Basic SDL-2010.

Signals are consumed by the state machine of an agent instance only when it is in a state. The
complete valid input signal set is the union of:
a) the set of signals in all channels or gates leading to the state machine of the agent;
b) the valid input signal set defined explicitly for the agent;
c) the valid input signal set defined explicitly for the state machine of the agent;
d) the implicit input signals introduced (see [ITU-T Z.102], [ITU-T Z.103] and

[ITU-T Z.104]); and
e) the timer signals.
Exactly one input port is associated with the finite state machine of each agent instance. Signals that
are sent to a container agent of the agent are delivered to this input port of the agent, provided that
the signal appears on a channel connected to its state machine. If a signal conveys an availability
time, the signal is not delivered to the input port until this time has been reached.
The finite state machine of an agent is either waiting in a state or active, performing a transition. For
each state, there is a save signal set (see also clause 11.7). When waiting in a state, an input signal
whose identifier is not in the save signal set is taken from the input port and consumed by the agent
and the associated transition is initiated.
The input port is able to retain any number of input signals, so that it is possible that several input
signals are queued for the finite state machine of the agent instance. For each signal the identity of
the gate (of the Composite-state-type-definition of the State-machine of the local agent) via which it
arrived is retained, so that this is available to decide which transition to initiate when the signal is
consumed. The set of retained signals is ordered in the queue for delivery according to their
availability time, which for each signal that does not convey an availability time is the same as its
arrival time (that is, the signal is available as soon as it arrives). Two or more signals are arbitrarily
ordered, if they have the same availability time and same signal priority. For signals that do not
convey an availability time and arrive on different paths it is possible that the sequence of the
arrival events is not determined (they are "simultaneous") and therefore the signals have the same
availability time. For a signal that does not convey an availability time it is also possible that the
arrival time (and therefore availability time) of the signal has the same availability time of a signal
that previously arrived with an availability time. It is also possible that two signals with availability
time have the same availability time. Signal instances that are "simultaneous" and convey different
signal priorities are ordered according to the signal priority value, so that signals with lower values
are before signals with higher values.
When the agent is created, its finite state machine is given an empty input port, and local variables
of the agent are created.

34 Rec. ITU-T Z.101 (10/2019)

When a container agent instance is created, the initial agents of the contained agent sets are created.
If the container is created by a <create body>, parent of the contained agents (see Model below)
receives the pid of the container. The formal parameters are variables, which are created either
when the system is created (but no actual parameters are passed to them and therefore they are
"undefined") or when the agent instance is dynamically created.
The definition of an agent implies the definition of an interface in the same scope of the agent
(see clause 12.1.2). The pid sort defined by this interface is identified with Agent-name and is
visible in the same scope unit as where the agent is defined.
NOTE 2 − Because every agent has an implicitly defined interface with the same name, the agent is required
to have a different name from every explicitly defined interface, and every agent type (these also have
implicit interfaces) defined in the same scope; otherwise, there are name clashes.

The complete output set of an agent set is the same as the complete output set of the type of the
agent set.
In all agent instances, there are four expressions: Self-expression, Parent-expression,
Offspring-expression and Sender-expression. They give a result for:
a) the agent instance (Self-expression) of the pid sort of the agent;
b) the creating agent instance (Parent-expression) of the Pid sort;
c) the most recent agent instance created by the agent instance (Offspring-expression) of the

Pid sort;
d) the agent instance from which the last input signal has been consumed (Sender-expression)

(see also (a)) of the Pid sort.

Each Pid-expression above gives the value of an anonymous variable of the agent (referred to here
as self, parent, offspring, and sender, respectively, and further explained in clause 12.3.4.2).
For all agent instances created when the containing instance is created, parent is initialized to Null.

For all newly created agent instances, sender and offspring are initialized to Null.

9.1 System
A system is the outermost agent and has the Agent-kind SYSTEM. The semantics of agents applies
with the additions provided in this subclause.

Abstract grammar
An agent with the Agent-kind SYSTEM has Agent-definition with an Agent-type-identifier that
identifies an Agent-type-definition with an Agent-kind SYSTEM. An agent with the Agent-kind
SYSTEM shall not be contained in any other agent.
The definitions of all signals, channels, data types and syntypes used in the interface with the
environment and between contained agents of the system (including itself) are contained in the
Agent-definition of the system.
The Initial-number of instances is 1 and the Maximum-number of instances is 1.

Concrete grammar
<typebased system definition> ::=
 <block symbol> contains <typebased system heading>

<typebased system heading> ::=
 system <system name> <colon> <system type expression>

NOTE 1 − The <system name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).

 Rec. ITU-T Z.101 (10/2019) 35

NOTE 2 − <number of instances> is not allowed in a <typebased system heading>, because the number is
always 1.

A <typebased system definition> defines an Agent-definition with Agent-kind SYSTEM that is an
instantiation of the system type denoted by the <system type expression>. The <system name>
represents the Agent-name of the Agent-definition. The <base type> of the
<system type expression> represents the Agent-type-definition of the Agent-definition.

Semantics
An Agent-definition with the Agent-kind SYSTEM is the Specification and Description Language
representation of a specification or description of a system. A system is the outermost block. This
means that agents within a system are blocks and processes that are interpreted concurrently with
each other and with the possible state machine of the system.
A system is separated from its environment by a system boundary and contains a set of agents.
Communication between the system and the environment or between agents within the system takes
place using signals. Within a system, the communication signals are conveyed on channels. The
channels connect the contained agents to one another or to the system boundary.
A system instance is an instantiation of a system type identified by an Agent-definition with the
Agent-kind SYSTEM. The interpretation of a system instance is performed by an abstract
Specification and Description Language machine, which thereby gives semantics to the
Specification and Description Language concepts. To interpret a system instance is to:
a) initiate the system time;
b) interpret the contained agents and their connected channels; and
c) interpret the state machine of the system.

9.2 Block
A block is an agent with the Agent-kind BLOCK. The semantics of agents therefore applies with
the additions provided in this subclause.
The instances contained within a block instance are interpreted concurrently and asynchronously
with each other and with the state machine of the containing block instance or the system. All
communication between different contained instances directly within the block is performed
asynchronously using signal exchange.

Concrete grammar
<typebased block definition> ::=
 <block symbol> contains { <typebased block heading> { <gate>* }set }

<block symbol> ::=

The <gate>s are placed near the border of the <block symbol> and associated with the connection
point to channels.
<typebased block heading> ::=
 <block name> [<number of instances>] <colon> <block type expression>

NOTE − The <block name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an <integer
name> or a <real name>).

A <typebased block definition> defines an Agent-definition of Agent-kind BLOCK that is an
instantiation of the block type denoted by the <block type expression>. The <block name>
represents the Agent-name of the Agent-definition. The <base type> of the <block type expression>
represents the Agent-type-definition of the Agent-definition.

36 Rec. ITU-T Z.101 (10/2019)

Semantics
A block definition is an agent definition that defines a container for a state machine (possibly with
minimal behaviour) and zero or more process or block definitions.
A block instance is an instantiation of a block type identified by an Agent-definition with the
Agent-kind BLOCK. To interpret a block instance is to:
a) interpret the contained agents and their connected channels;
b) interpret the state machine of the block.
In a block the state machine of the block is created as part of the creation of the block (and its
contained agents), and it is interpreted concurrently with the agents in the block.

9.3 Process
A process is an agent with the Agent-kind PROCESS. The semantics of agents therefore applies
with the additions provided in this subclause.
A process is used to introduce shared data into a specification, allowing the variables of the
containing process to be used. All instances in a process are able to access the local variables of the
process.
To achieve safe communication despite the sharing of data in a process, all instances are interpreted
using alternating semantics. This implies that for any two instances inside a process no two
transitions are interpreted in parallel and also that the interpretation of a transition in one instance is
not interrupted by another instance. When an instance is waiting for a signal, it is in a state;
therefore it is possible for an alternate instance to be interpreted.

Abstract grammar
Any contained Agent-definition of an Agent-definition with the Agent-kind PROCESS shall have
the Agent-kind PROCESS.

Concrete grammar
<typebased process definition> ::=
 <process symbol> contains { <typebased process heading> { <gate>* }set }

<process symbol> ::=

The <gate>s are placed near the border of the <process symbol> and associated with the connection
point to channels.
<typebased process heading> ::=
 <process name> [<number of instances>] <colon> <process type expression>

NOTE − The <process name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).

A <typebased process definition> defines an Agent-definition with Agent-kind PROCESS that is an
instantiation of the process type denoted by the <process type expression>. The <process name>
represents the Agent-name of the Agent-definition. The <base type> of the
<process type expression> represents the Agent-type-definition of the Agent-definition.

Semantics
A process definition is an agent definition that defines a container for a state machine (possibly with
minimal behaviour) and zero or more process definitions. A process instance is an instantiation of a
process type identified by an Agent-definition with the Agent-kind PROCESS.

 Rec. ITU-T Z.101 (10/2019) 37

An instance of a process with contained process instance sets is interpreted by interpreting the
instances in the contained process instance sets alternating with each other and with the state
machine of the containing process instance. Alternating interpretation implies that only one of the
instances inside the alternating context interprets a transition at a time, and also that once
interpretation of a transition of an involved process instance has started, it continues until a state is
reached or the process instance terminates.

9.4 Procedure
Procedures are defined by means of procedure definitions. The procedure is invoked by means of a
procedure call identifying the procedure definition. Parameters are associated with a procedure call.
Which variables are affected by the interpretation of a procedure is controlled by the parameter
passing mechanism. Procedure calls are actions or expressions (value returning procedures only).

Abstract grammar
Procedure-definition :: Procedure-name
 Procedure-formal-parameter*
 [Result]
 [Procedure-identifier]
 Data-type-definition-set
 Syntype-definition-set
 Variable-definition-set
 Composite-state-type-definition-set
 Procedure-definition-set
 Procedure-graph

The optional Procedure-identifier of Procedure-definition identifies the base type (super type) of a
specialization.
NOTE 1 − Specialization is defined in [ITU-T Z.102] and is not included in Basic SDL-2010, and for
Basic SDL-2010 Procedure-identifier is always omitted, but the syntax is included here so Procedure-
definition does not have to be redefined in [ITU-T Z.102].

If a Procedure-definition contains Result, it corresponds to a value returning procedure.
Procedure-name = Name

Procedure-formal-parameter = In-parameter
 | Inout-parameter
 | Out-parameter

In-parameter :: Parameter

Inout-parameter :: Parameter

Out-parameter :: Parameter

Result :: Sort-reference-identifier
 Result-aggregation

Result-aggregation :: Aggregation-kind

Procedure-graph :: [Procedure-start-node]
 State-node-set
 Free-action-set

Procedure-start-node :: Transition

Procedure-identifier = Identifier

In an Sdl-specification, all potentially instantiated procedures shall have a Procedure-start-node.
If a Procedure-definition is identified by the Procedure-identifier of an Operation-signature it
defines how an operation behaves. The Procedure-graph of the Procedure-definition for an
operation shall not contain a State-node (explicit or implicit). The Procedure-definition-set of the
Procedure-definition for an operation shall be empty.

38 Rec. ITU-T Z.101 (10/2019)

Concrete grammar
<procedure diagram> ::=
 <procedure page>

<procedure page> ::=
 <frame symbol> contains {
 <procedure heading> <page number area>
 { <procedure text area>*
 <composite state type reference area>*
 <procedure reference area>*
 <procedure body area> }set }
 [is associated with <package use area>]

The <package use area> shall be placed on the top of the <frame symbol>.
<procedure heading> ::=
 <procedure preamble>
 procedure [<qualifier>] <procedure name>
 [<procedure formal parameters>]
 [<procedure result>]

NOTE 2 − The <procedure name> has to be a <name>, whereas in SDL-2000 it is a name or a number
(an <integer name> or a <real name>).
<procedure preamble> ::=
 <type preamble>

<procedure formal parameters> ::=
 [<end>] fpar <formal variable parameters> {, <formal variable parameters> }*

NOTE 3 − The syntax of SDL-2000 that uses round brackets rather than fpar is in [ITU-T Z.103].
<formal variable parameters> ::=
 <parameter kind> <parameter aggregation> <parameters of sort>

<parameter kind> ::=
 in/out | in | out

Each <variable name> of <parameters of sort> of <formal variable parameters> of <procedure
formal parameters> represents a different Procedure-formal-parameter with the variable name>
representing the Variable-name of the Parameter, which is an In-parameter if <parameter kind> is
in, and Out-parameter if <parameter kind> is out, and an Inout-parameter if <parameter kind> is
in/out. The <parameter kind> is the one before the <parameters of sort>. The <sort> of the
<parameters of sort> represents the Sort-reference-identifier of each Parameter for the <parameters
of sort>. The <parameter aggregation> before the <parameters of sort> represents the Parameter-
aggregation of each Parameter for the <parameters of sort>.
NOTE 4 − In Basic SDL-2010 the parameter kind has to be given. In [ITU-T Z.103] it is optional and the
default is in.
<procedure result> ::=
 returns <result aggregation> <sort>

NOTE 5 − In Basic SDL-2010 it is not allowed to name a variable for the result.
<result aggregation> ::=
 <aggregation kind>

<entity in procedure> ::=
 <variable definition>
 | <data definition>

<procedure text area> ::=
 <text symbol> contains
 { <entity in procedure> }*

Each <variable definition> as an <entity in procedure> of a <procedure text area> represents a
member of the Variable-definition set of the Procedure-definition.

 Rec. ITU-T Z.101 (10/2019) 39

Each <data definition> as an <entity in procedure> of a <procedure text area> represents a member
of the Data-type-definition set of the Procedure-definition if it is a <data type definition> or
<interface definition>, and a member of the Syntype-definition set of the Procedure-definition if it is
a <syntype definition>.
<procedure body area> ::=
 { [<procedure start area>]
 {<state area> | <in connector area> }* } set

<procedure start area> ::=
 <procedure start symbol>
 is followed by <transition area>

<procedure start symbol> ::=

Semantics
A procedure is a means of giving a name to an assembly of items and representing this assembly by
a single reference. The rules for procedures impose a discipline upon the way in which the assembly
of items is chosen, and limit the scope of the name of variables defined in the procedure.
A procedure variable is a local variable within the procedure. A procedure variable is not allowed to
be exported. It is created when the procedure start node is interpreted, and it ceases to exist when
the return node of the procedure graph is interpreted.
The interpretation of a Call-node (represented by a <procedure call area>; see clause 11.13.3), a
Value-returning-call-node (represented by a <value returning procedure call>; see clause 12.3.5), or
an Operation-application (represented by an <operation application>; see clause 12.2.6) causes the
creation of a procedure instance as part of the agent or procedure instance being interpreted and the
interpretation of the new procedure instance to commence in the following way.
a) A local variable is created for each In-parameter, having the Name and Sort and

Parameter-aggregation of the In-parameter. The variable is associated with the result of
the expression by interpreting an assignment between the variable and the expression given
by the corresponding actual parameter (if present). Otherwise, the variable gets no
associated data item; that is, it becomes "undefined".

b) A local variable is created for each Out-parameter, having the Name and Sort and
Parameter-aggregation of the Out-parameter. The variable gets no data item; that is, it
becomes "undefined".

c) A local variable is created for each Variable-definition in the Procedure-definition.
d) Each Inout-parameter denotes a variable that is given by the actual parameter expression

in clause 11.13.3. The contained Variable-name is used throughout the interpretation of the
Procedure-graph when referring to the data item associated with the variable or when
assigning a new data item to the variable.

e) The Transition contained in the Procedure-start-node is interpreted.
f) Before interpretation of a Return-node contained in the Procedure-graph, each Out-

parameter is given the data item of the corresponding local variable.
The nodes of the procedure graph are interpreted in the same manner as the equivalent nodes of an
agent; that is, the procedure has the same complete valid input signal set as the enclosing agent, and
the same input port as the instance of the enclosing agent that has called it, either directly or
indirectly.

40 Rec. ITU-T Z.101 (10/2019)

NOTE 6 – The Call-node or Value-returning-call-node is always in the same enclosing agent as the
Procedure-definition, because a subtype Procedure-definition is implicitly created locally if necessary
(see clause 11.13.3).

Model
A <formal variable parameters> with a <parameters of sort> that defines multiple parameter names
is replaced by a sequence of <formal variable parameters> with the same <parameter kind> and
<aggregation kind>, and each <parameters of sort> defining one name.

10 Communication

10.1 Channel

Abstract grammar
Channel-definition :: Channel-name
 [NODELAY]
 Channel-path-set

Channel-path :: Channel-endpoint
 Originating-gate
 Channel-endpoint
 Destination-gate
 Signal-identifier-set

Originating-gate = Gate-identifier

Destination-gate = Gate-identifier

Gate-identifier = Identifier

Agent-identifier = Identifier

Channel-name = Name

Channel-endpoint = Agent-identifier
 State-identifier
 ENV

State-identifier = Identifier

The Channel-path-set contains at least one Channel-path and no more than two. When there are
two paths, the channel is bidirectional and the Originating-gate of each Channel-path shall be the
same as the Destination-gate of the other Channel-path.
If the Originating-gate and the Destination-gate are gates of the same agent, the channel shall be
unidirectional (there shall be only one element in the Channel-path-set).
If the Originating-gate and the Destination-gate are both gates of the same state machine, the
channel shall be unidirectional (there shall be only one element in the Channel-path-set).
The Originating-gate or Destination-gate shall be defined in the same scope unit (which includes
directly enclosed scopes) in the abstract syntax in which the channel is defined.
NODELAY denotes that the channel has no delay.
A channel is allowed to connect the two directions of a bidirectional gate to each other.
Each gate and the channel shall have at least one common element in their signal lists in the same
direction.

 Rec. ITU-T Z.101 (10/2019) 41

Concrete grammar
<channel definition area> ::=
 <channel symbol 1>
 is associated with
 { <channel name> <signal list area> }set
 is attached to {
 { <agent area> | <state machine area> | <gate on diagram> }
 { <agent area> | <state machine area> | <gate on diagram> } }set
 | <channel symbol 2>
 is associated with
 { <channel name> <signal list area> <signal list area> }set
 is attached to {
 { <agent area> | <state machine area> | <gate on diagram> }
 { <agent area> | <state machine area> | <gate on diagram> } }set

NOTE − The <channel name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>). In Basic SDL-2010 the channel name has to be given.

If the <channel symbol 1> or <channel symbol 2> is attached to an <agent area> that is a
<typebased agent definition>, there shall be a <gate> in the <typebased agent definition> placed
near the channel attachment to the area. If the <channel symbol 1> or <channel symbol 2> is
attached to a <state machine area> defined by a <typebased composite state>, there shall be a
<gate> in the <state machine area> placed near the channel attachment to the area. This <gate> in
the <agent area> or <state machine area> represents either the Destination-gate or Originating-gate,
with the other gate determined by the other end of the channel. The <gate> shall be closer to the
channel attachment to the area than any other <gate> in the area. The <gate> in the area attached to
a channel identifies a Gate-definition of the agent or state machine. For an <agent area>, the <gate>
identifies the Gate-definition of the Agent-type-identifier of the Agent-definition corresponding to
the area, where the Gate-definition has the Gate-name given by <gate>. For a <state machine area>
the <gate> identifies the Gate-definition of the Composite-state-type-identifier of the State-machine
corresponding to the area, where the Gate-definition has the Gate-name given by <gate>.
For a <channel symbol 1>, there is only one Channel-path in the Channel-definition.
If the arrowhead of a <channel symbol 1> points away from an attached <agent area>, the first
Channel-endpoint is the Agent-identifier for that agent. If the arrowhead of a <channel symbol 1>
points away from an attached <state machine area>, the first Channel-endpoint is the State-
identifier for the state machine. Otherwise, if the <channel symbol 1> points away from an attached
<gate on diagram> the first Channel-endpoint is ENV.
If the arrowhead of a <channel symbol 1> points away from an attached <agent area> (or <state
machine area>), the <gate> in this area represents the Gate-identifier of the Originating-gate of the
Channel-path and identifies the Gate-definition of this agent (or state machine respectively). If the
arrowhead of a <channel symbol 1> points away from an attached <gate on diagram>, this gate
represents the Originating-gate.
If the arrowhead of a <channel symbol 1> points to an attached <agent area>, the second Channel-
endpoint is the Agent-identifier for that agent. If the arrowhead of a <channel symbol 1> points to
an attached <state machine area>, the second Channel-endpoint is the State-identifier for the state
machine. Otherwise, if the <channel symbol 1> points to an attached <gate on diagram> the second
Channel-endpoint is ENV.
If the arrowhead of a <channel symbol 1> points to an attached <agent area> (or <state machine
area>), the <gate> in this area represents the Gate-identifier of the Destination-gate of this
Channel-path and identifies the Gate-definition of this agent (or state machine respectively). If the
arrowhead of a <channel symbol 1> points to an attached <gate on diagram>, this gate represents
the Destination-gate.

42 Rec. ITU-T Z.101 (10/2019)

For a <channel symbol 2> there are two Channel-path items: one arrowhead corresponds to one
Channel-path and the other arrowhead to the other Channel-path.
<channel symbol 1> ::=
 <delaying channel symbol 1>
 | <nondelaying channel symbol 1>

<channel symbol 2> ::=
 <delaying channel symbol 2>
 | <nondelaying channel symbol 2>

<delaying channel symbol 1> ::=

<delaying channel symbol 2> ::=

<nondelaying channel symbol 1> ::=

<nondelaying channel symbol 2> ::=

The symbols <delaying channel symbol 1>, <delaying channel symbol 2>, <nondelaying channel
symbol 1> and <nondelaying channel symbol 2> are line symbols (see Concrete grammar in
clause 5.3.2 of [ITU-T Z.100]).
For each arrowhead on the <channel symbol 2>, there shall be one <signal list area> close enough
to the arrowhead to be associated unambiguously with the arrowhead (compared with any other
<signal list area>) and represents the Signal-identifier-set for the corresponding Channel-path. The
arrowhead indicates the direction of the channel path for the signal list associated with it. The
Channel-endpoint items, Originating-gate and Destination-gate for this Channel-path are
determined in the same way as for the arrowhead on a <channel symbol 1>.
The arrowheads for <nondelaying channel symbol 1> and <nondelaying channel symbol 2> are
placed at the end(s) of the channel and indicate that the channel has no delay and represents
NODELAY in the Channel-definition.
A channel with both endpoints being gates of one <typebased agent definition> represents
individual channels from each of the agents in this set to all agents in the set, including the
originating agent. In Basic SDL-2010 such channels shall be defined in one direction only using
<channel symbol 1>.
NOTE − A bi-directional channel connecting an agent in the set to the agent itself is split into two
unidirectional channels by a model discussed in [ITU-T Z.102].

In Basic SDL-2010 all channels are explicit. When [ITU-T Z.102] and [ITU-T Z.103] are applied,
there are also implicit channels. The following rules ensure that implicit channels are not required
(that is, the implicit channels in [ITU-T Z.102] or [ITU-T Z.103] are not needed):
One signal list element (interface, or signal) matches another signal list element if:
a) both denote the same interface or both denote the same signal; or
b) the first denotes a signal and the second denotes an interface and the interface includes the

signal.
In the following rules an instance is the state machine of the agent type or an instance of an
enclosed agent.
Rule 1: Ensuring there are no implicit channels between entities inside one agent type

 Rec. ITU-T Z.101 (10/2019) 43

a) If an element of the outgoing signal list associated with a gate of an instance in an agent
type matches an element of an incoming signal list associated with a gate of another
instance in the same agent type, then

b) at least one of these gates shall have an explicit channel attached to it.
Rule 2: Ensuring there are no implicit channels from the incoming gates on an agent type
a) If an element of the incoming signal list associated with a gate outside an agent type

matches an element of an incoming signal list associated with a gate of an instance in the
agent type, then

b) there shall be either an explicit channel inside the agent type attached to the gate outside the
agent type, or an explicit channel attached to the gate of the instance inside the agent type.

Rule 3: Ensuring there are no implicit channels to the outgoing gates on instances
a) If an element of the outgoing signal list associated with a gate outside an agent type

matches an element of an outgoing signal list associated with a gate of an instance in the
agent type, then

b) there shall be either an explicit channel inside the agent type attached to the gate outside the
agent type, or an explicit channel connected to the gate of the instance inside the agent type.

Semantics
A Channel-definition represents a transportation path for signals (including the implicit signals
implied by remote procedures and remote variables, see [ITU-T Z.102], [ITU-T Z.103] and
[ITU-T Z.104]). A channel is considered as one or two independent unidirectional channel paths
between two agents or between an agent and its environment. Alternatively, a channel connects the
state machine (composite state) of an agent with the environment or with a contained agent.
The Signal-identifier-set in each Channel-path in the Channel-definition contains the signals that
are conveyed on that Channel-path.
Signals conveyed by channels are delivered to the destination endpoint.
Signals are presented at the destination endpoint of a channel in the same order they have been
presented at their origin. If two or more signals are presented simultaneously to the channel, they
are arbitrarily ordered.
A channel with delay is allowed to delay the signals conveyed by the channel. That means that a
First-In-First-Out (FIFO) delaying queue is associated with each direction in a channel. When a
signal is presented to the channel, it is put into the delaying queue. After an indeterminate and
possibly non-constant time interval, the first signal instance in the queue is released and given to
one of the endpoints that is attached to the channel.
It is possible that several channels exist between the same two endpoints. It is possible to convey
the same signal type on different channels.
When a signal instance is sent to an instance of the same agent instance set, interpretation of the
Output-node either implies that the signal is put directly in the input port of the destination agent, or
that the signal is sent via a channel without delay which connects the agent instance set to itself.

10.2 Connection
A connection is the point where a channel inside a frame symbol for an agent diagram is connected
to names of one or more channels outside a frame symbol. This feature is associated with agent
diagrams, which are not included in Basic SDL-2010.

44 Rec. ITU-T Z.101 (10/2019)

10.3 Signal

Abstract grammar
Signal-definition :: Signal-name
 Signal-parameter*

Signal-parameter :: Aggregation-kind
 Sort-reference-identifier

Signal-identifier = Identifier

Signal-name = Name

The Signal-parameter list is a list of the aggregation kind and sort for each parameter defined for
this signal type.
The Identifier of a Signal-identifier shall either identify a Signal-definition (a signal) or a
Timer-definition (a timer signal).

Concrete grammar
<signal definition list> ::=
 signal <signal definition> { , <signal definition> }* <end>

<signal definition> ::=
 <type preamble>
 <signal name>
 [<sort list>]

NOTE − The <signal name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an <integer
name> or a <real name>).
<sort list> ::=
 (<aggregation kind> <sort> { , <aggregation kind> <sort>}*)

Each <signal definition> represents one Signal-definition. Each <aggregation kind> and <sort> in
the <sort list> of a <signal definition> adds the Aggregation-kind and Sort-reference-identifier of a
Signal-parameter to the end of the Signal-parameter list.
If several <signal definition> items are specified in one <signal definition list>, this is equivalent to
individual <signal definition list>s for each of them.

Semantics
A signal instance is a flow of information between agents, and is an instantiation of a signal type
defined by a Signal-definition. A signal instance is sent by either the environment or an agent and is
always directed to either an agent or the environment. A signal instance is created when an
Output-node is interpreted and ceases to exist when an Input-node is interpreted.

10.4 Signal list area
A signal list and signal list area are used to define the communication items (signals, interfaces,
etc.) associated with a gate, channel or input.

Concrete grammar
<signal list area> ::=
 <signal list symbol> contains <signal list>

<signal list symbol> ::=

<signal list> ::=
 <signal list item> { , <signal list item>}*

 Rec. ITU-T Z.101 (10/2019) 45

<signal list item> ::=
 <signal identifier>
 | <timer identifier>
 | (<interface identifier>)

A <signal list item>, which is an <identifier>, denotes a <signal identifier> or <timer identifier>;
otherwise the bracketed <identifier> shall be an <interface identifier>.
NOTE − The entity kind for signals is the same as the entity kind for timers (and interfaces), therefore it is
not allowed to have the same name for a signal and a timer (or for a signal and an interface, or a timer and an
interface) in the same scope, so a name of a <signal list item> always resolves to a unique item in a given
scope.

A <signal list> of a <signal list area> denotes a Signal-identifier-set of the Channel-path in the
Abstract grammar.
Each <signal identifier> of a <signal list> of a <signal list area> has a corresponding Signal-
identifier in the Signal-identifier-set that identifies a Signal-definition.
Each <timer identifier> of a <signal list> of a <signal list area> has a corresponding Signal-
identifier in the Signal-identifier-set that identifies a Timer-definition.
Each <interface identifier> of a <signal list> of a <signal list area> has a corresponding
Signal-identifier in the Signal-identifier-set for each Signal-identifier of Signal-identifier-set of the
identified Interface-definition.
Each Signal-identifier in the Signal-identifier-set appears only once, even if it corresponds to more
than one item in the <signal list>.

11 Behaviour

11.1 Start

Abstract grammar
State-start-node :: Transition

Concrete grammar
<start area> ::=
 <start symbol>
 is followed by <transition area>

<start symbol> ::=

Semantics
The Transition of the State-start-node is interpreted.

11.2 State

Abstract grammar
State-node :: State-name
 Save-signalset
 Input-node-set
 [Composite-state-type-identifier Connect-node-set]

State-name = Name

Each State-node within a graph (State-transition-graph or Procedure-graph) shall have State-name
different from any other State-node in the same graph.

46 Rec. ITU-T Z.101 (10/2019)

A State-node without Composite-state-type-identifier represents a basic state. A State-node with
Composite-state-type-identifier represents a composite state application. The term "within a
composite state" for a state means that the State-node for the state is part of the Composite-state-
graph of an instance of a Composite-state-type-definition that is identified by the Composite-state-
type-identifier of the State-node.
The Connect-node-set shall contain at most one unnamed Connect-node.
NOTE 1 − Basic SDL-2010 does not allow a Connect-node to have a name, therefore the Connect-node-set
in Basic SDL-2010 contains at most one Connect-node.

In the following, Save-item and Input-node refer, respectively, to a Save-item of the Save-signalset
of a basic State-node and an Input-node of the Input-node-set of the same basic State-node. If an
Input-node has no Gate-identifier, the Signal-identifier of that Input-node shall not appear without a
Gate-identifier in another Input-node or a Save-item. If an Input-node has a Gate-identifier, the
Signal-identifier of that Input-node shall not appear with the same Gate-identifier in another
Input-node or a Save-item. If a Signal-identifier is in the In-signal-identifier-set of a Gate-definition
of the state machine that owns the state, the Signal-identifier shall occur
a) with the Gate-identifier for that gate (in an Input-node or a Save-item); or
b) without the Gate-identifier (in an Input-node or a Save-item); or
c) if and only if the basic State-node is within a composite State-node, letting 'composite

Save-item' refer to a Save-item of the Save-signalset of the composite State-node and
letting 'composite Input-node' refer an Input-node of the Input-node-set of the same
composite State-node
1) with the Gate-identifier for that gate in a composite Input-node or a composite

Save-item; or
2) without the Gate-identifier in a composite Input-node or a composite Save-item; or
3) if the composite State-node is within another composite State-node similarly and

recursively until a State-node of the state machine is reached.
If a State-node is in a Procedure-graph of a Procedure-definition, the State-node is within a
composite state if and only if the Procedure-definition is in the composite state (that is, the
Procedure-definition is in the Procedure-definition-set of the Composite-state-type-definition for
the composite state).

Concrete grammar
<state area> ::=
 <state symbol> contains <state list>
 is associated with
 { <input association area>
 | <save association area>
 | <connect association area> }*

<state symbol> ::=

<state list> ::=
 { <basic state name> | <typebased composite state> }

NOTE 2 − Basic SDL-2010 does not include the shorthand feature of multiple names in a state symbol.
<basic state name> ::=
 <state name>

NOTE 3 − The <state name> in a <basic state name> or <composite state name> has to be a <name>,
whereas in SDL-2000 it is a name or a number (an <integer name> or a <real name>).

 Rec. ITU-T Z.101 (10/2019) 47

<typebased composite state> ::=
 <composite state name> <nextstate parameters>
 <colon> <composite state type expression>

<composite state name> ::=
 <state name>

NOTE 4 − <typebased composite state> is included for <state area> in Basic SDL-2010 because the State-
machine of an agent in the abstract syntax has the way it behaves identified by a Composite-state-type-
identifier.
<input association area> ::=
 <solid association symbol> is connected to <input area>

<save association area> ::=
 <solid association symbol> is connected to <save area>

In Basic SDL-2010, a <state area> represents a State-node.
A <basic state name> is the name of a state that is not defined by a <typebased composite state>. A
<composite state name> in a <state list> is the name of a state that is defined by a
<typebased composite state>. The <composite state type expression> of a
<typebased composite state> in a <state list> identifies the Composite-state-type-identifier of the
State-node.
In Basic SDL-2010 the <state list> contains one <state name>, and the <state name> represents a
State-node. For each State-node, the Save-signalset is represented by the <save area> (and any
implicit signal saves). For each State-node, the Input-node-set is represented by the <input area>
and any implicit input signals.
The <solid association symbol>s originating from a <state symbol> are allowed to have a common
originating path.
A <connect association area> is only allowed for a <state area> with <state list> that contains a
<typebased composite state>.
A <typebased composite state> of a <state list> shall only contain non-empty <nextstate
parameters> if it is in a <state area> that coincides with a <nextstate area>, which is not allowed in
Basic SDL-2010.

Semantics
A state represents either a basic state or a composite state application.
The semantics for composite state application is given in clause 11.11.
A basic state represents a particular condition in which the state machine of an agent is able to
consume a signal instance. If a signal instance is consumed, the associated transition is interpreted.
For each basic state, the Save-signalset and the Input-node-set are interpreted in the following steps.
Each time the steps are repeated, the set of signals considered is updated to the signals on the input
port; otherwise, the same set is considered in each step.
a) Signals for inputs that have priority are handled in priority order (in Basic SDL-2010 there

is no priority, so no such signals are handled); otherwise
b) in the order of the signals on the input port:

1) it is evaluated if the current signal is enabled (in Basic SDL-2010 this means checking
that the signal is not saved for this state or for the gate of arrival, and the availability
time has been reached);

2) if the current signal is enabled, this signal is consumed for the Input-node
(see clause 11.3); otherwise

48 Rec. ITU-T Z.101 (10/2019)

3) if the current state is within a composite state and the current signal is enabled for an
Input-node (see clause 11.3) of a containing composite state, this signal is consumed
for the Input-node of the most local such state leaving the composite state; otherwise

4) the next signal on the input port is selected.
c) If no enabled signal was found, any continuous signals are handled (in Basic SDL-2010,

continuous signals are not supported so the result will always be to skip to step (d)).
d) If no enabled signal was found, as soon as the available signals on the input port differ from

the set of signals already considered, the steps are repeated.

11.3 Input

Abstract grammar
Input-node :: Signal-identifier [Gate-identifier]
 [Variable-identifier]*
 Transition

Variable-identifier = Identifier

The optional Gate-identifier shall be a gate of the enclosing state machine: the Gate-identifier shall
identify a Gate-definition of the Composite-state-type-definition identified by the Composite-state-
type-identifier of the State-machine for the Input-node. The Gate-definition shall include the
Signal-identifier in its In-signal-identifier-set.
The length of the list of optional Variable-identifier items shall be the same as the number of
Signal-parameter items in the Signal-definition denoted by the Signal-identifier.
The sorts of the variables shall correspond by position to the sorts of the data items that are carried
by the signal.

Concrete grammar
<input area> ::=
 <input symbol> contains { <input list> }
 is followed by <transition area>

<input symbol> ::=
 <plain input symbol>

<plain input symbol> ::=

<input list> ::=
 <stimulus>

<stimulus> ::=
 <signal list item>
 [([<variable>] { , [<variable>] }*)]
 [<via path>]

In Basic SDL-2010 the <signal list item> of a <stimulus> shall not represent an interface.
<via path> ::=
 via <gate identifier>
NOTE 1 – In Basic SDL-2010 every signal in the valid input signal set has to be mentioned in either an input
or a save for a given basic state. In [ITU-T Z.103] the implicit transition feature is introduced as a shorthand
notation for consuming any signals not explicitly mentioned.

An <input area> whose <input list> contains one <stimulus> corresponds to one Input-node. The
<signal identifier> or <timer identifier> contained in the <input symbol> gives the Signal-identifier

 Rec. ITU-T Z.101 (10/2019) 49

for the Input-node that this <input symbol> represents. The <gate identifier> of the optional <via
path> of a <stimulus> represents the optional Gate-identifier of the Input-node.
In the Abstract grammar, timer signals (<timer identifier>) are also represented by Signal-identifier.
Timer signals and ordinary signals are distinguished only where appropriate, as in many respects
they have similar properties. The exact properties of timer signals are defined in clause 11.15.
The <variable> list in <stimulus> represents the Variable-identifier list.
NOTE 2 – In [ITU-T Z.103] it is allowed to omit variables, any resulting trailing commas or the complete
variable list in the concrete syntax if the values conveyed in the signal are not needed.

A <variable> of a <stimulus> shall not be a global variable of a system (type) or block (type) except
if the <stimulus> is within the state machine actions of system (type) or block (type).

Semantics
A signal instance is enabled for an Input-node if the signal has the same Signal-identifier and if the
Input-node has a Gate-identifier that identifies the gate where the signal arrived, and the current
time is greater than or equal to the availability time for the signal instance.
A signal instance is enabled for an Input-node if the signal has the same Signal-identifier and if the
Input-node does not have a Gate-identifier, and the current time is greater than or equal to the
availability time for the signal instance.
If a signal instance is enabled for an Input-node that has a Gate-identifier, this takes precedence
over an Input-node that does not have a Gate-identifier.
An input allows the consumption of the specified input signal instance. The consumption of the
input signal makes the information conveyed by the signal available to the agent. The variables
associated with the input are assigned the data items conveyed by the consumed signal.
The data items are assigned to the variables from left to right. If there is no variable associated with
the input for a sort specified in the signal, the corresponding data item is discarded. If there is no
data item associated with a sort specified in the signal, the corresponding variable becomes
"undefined". Assignment is described in clause 12.3.3. For the assignment the data item of the
signal is treated as a Variable-access to a variable with the aggregation kind and sort defined by the
Signal-parameter.
The sender variable of the consuming agent is given the pid of the originating agent, as carried by
the signal instance.
Signal instances flowing from the environment to an agent instance within the system always carry
a pid different from any in the system.

11.4 Empty clause
This clause is intentionally left blank.

11.5 Empty clause
This clause is intentionally left blank.

11.6 Empty clause
This clause is intentionally left blank.

11.7 Save
A save specifies a set of signal identifiers whose instances are not relevant to the agent in the state
to which the save is attached, and which need to be saved for future processing.

50 Rec. ITU-T Z.101 (10/2019)

Abstract grammar
Save-signalset = Save-item-set

Save-item = Signal-identifier [Gate-identifier]

The optional Gate-identifier shall be a gate of the enclosing state machine: the Gate-identifier shall
identify a Gate-definition of the Composite-state-type-definition identified by the Composite-state-
type-identifier of the State-machine for the Input-node. The Gate-definition shall include the
Signal-identifier in its In-signal-identifier-set.

Concrete grammar
<save area> ::=
 <save symbol> contains { <save list> }

<save symbol> ::=

<save list> ::=
 <save item>

<save item> ::=
 <signal list item> [<via path>]

A <save list> represents the Save-signalset.
Each <signal identifier> of a <signal list item> of a <save list> has a corresponding Signal-
identifier in a Save-item that identifies the Signal-definition.
Each <timer identifier> of a <signal list item> of a <save list> has a corresponding Signal-identifier
in a Save-item that identifies the Timer-definition.
Each <interface identifier> of a <signal list item> of a <save list> has a corresponding Save-item for
each Signal-definition of Signal-definition-set of the identified Interface-definition.
The <gate identifier> of the optional <via path> of a <save item> represents an optional Gate-
identifier of the Save-item. In the case of an <interface identifier> as the <save item> with a <via
path>, each corresponding Save-item has the Gate-identifier.
Each Signal-identifier in the Save-signalset appears only once without a Gate-identifier, even if it
corresponds to more than one <save item>.

Semantics
A signal in a Save-signalset of a state is only enabled for that state if the Signal-identifier appears in
an Input-node of the state; otherwise the signal is saved. If every Input-node of a state with the
Signal-identifier also has a Gate-identifier, a Save-item without a Gate-identifier for that state
means that the signal is saved for other gates (if any) for that signal. If there is an Input-node of a
state with the Signal-identifier and no Gate-identifier, a Save-item for that state with a Gate-
identifier means that the signal is saved for that gate.
The saved signals are retained in the input port in the order of their availability time and with the
arrival gate information as long as the agent remains in the state.
The effect of the save is valid only for the state to which the save is attached. In the following state,
signal instances that have been "saved" are treated as normal signal instances that are either
consumed or saved in that state.

11.8 Empty clause
This clause is intentionally left blank.

 Rec. ITU-T Z.101 (10/2019) 51

11.9 Empty clause
This clause is intentionally left blank.

11.10 Label (connector name)

Abstract grammar
Free-action :: Connector-name
 Transition

Connector-name = Name

Concrete grammar
<in connector area> ::=
 <in connector symbol> contains <connector name>
 is followed by <transition area>

<connector name> ::=
 <name>
 | <integer name>

<in connector symbol> ::=

The term "body" is used to refer to a state machine graph, possibly after transformation from
models. A body in Basic SDL-2010 therefore refers to <procedure body area>,
<operation body area> or <composite state body area>.
All the <connector name>s defined in a body shall be distinct.
A label <in connector area> is the entry point of a transfer of control from the corresponding joins
with the same <connector name>s in the same body.
Transfer of control is only allowed to labels within the same body.
An <in connector area> represents the continuation of a <flow line symbol> from a corresponding
<out connector area> with the same <connector name> in the same body.

Semantics
A Free-action defines the target of a Join-node.

11.11 State machine and composite state
A composite state is a state that consists of sequentially interpreted substates (with associated
transitions). A substate of a composite state is also a state, and therefore is allowed to be a
composite state.
The properties of a composite state (its local substates, transitions, variables and procedures) are
defined by its composite state type together with transitions of the state based on the composite state
type. These transitions apply to all the substates of the composite state. In Basic SDL-2010 the
composite state graph returns control only by an unlabelled return node with interpretation
continuing via the unlabelled connect association of the composite state.

11.11.1 Composite state graph
In a composite state graph, the transitions are interpreted sequentially.

52 Rec. ITU-T Z.101 (10/2019)

Abstract grammar
Composite-state-graph :: State-transition-graph

State-transition-graph :: [State-start-node]
 State-node-set
 Free-action-set

In a specification, all potentially instantiated agents shall have a State-start-node. There shall be
exactly one unlabelled State-start-node in an agent (in the State-transition-graph of the
Composite-state-graph of the Composite-state-type-definition identified by the Composite-state-
type-identifier of the State-machine of the Agent-type-definition identified by the Agent-definition).
A Composite-state-graph in Basic SDL-2010 shall have a State-start-node.
NOTE – The State-start-node is defined as optional in a State-transition-graph so that it is possible to omit it
in an abstract state type or in a state type that inherits its State-start-node from another state type
(see [ITU-T Z.102]).

Concrete grammar
<composite state structure area> ::=
 { <composite state text area>*
 <entity in composite state area>*
 <composite state body area> }set

<composite state text area> ::=
 <text symbol> contains
 { <valid input signal set>
 | <variable definition>
 | <data definition>}*

Each <data definition> of a <composite state text area> represents a member of the
Data-type-definition set of the Composite-state-type-definition if it is a <data type definition>
or <interface definition>, and a member of the Syntype-definition set of the Composite-state-type-
definition if it is a <syntype definition>.
A <composite state text area> shall contain a <valid input signal set> only if the corresponding
Composite-state-type-definition is used for State-machine items of agent types. A <composite state
text area> containing a <valid input signal set> shall not be used for Composite-state-type-definition
identified by a composite State-node.
<entity in composite state area> ::=
 <procedure reference area>
 | <composite state type reference area>

<composite state body area> ::=
 { <start area>
 { <state area> | <in connector area> }* } set

<composite state body area> represents a Composite-state-graph.

Semantics

If a Composite-state-graph does not contain a State-node, the Composite-state-graph is interpreted
as an encapsulated part of a transition.
The unlabelled State-start-node of the Composite-state-graph is the default entry point of the
composite state. In Basic SDL-2010 there is no alternative State-start-node.
An Action-return-node in a composite state is interpreted as the default exit point of the composite
state. Interpretation of an Action-return-node triggers the Connect-node without a Name in the
enclosing entity. In Basic SDL-2010 there is only a Connect-node without a Name.

 Rec. ITU-T Z.101 (10/2019) 53

The nodes of the state graph of any substate are interpreted in the same manner as the equivalent
nodes of an agent or procedure graph. That is, the state graph has the same complete valid input
signal set as the enclosing agent, and the same input port as the instance of the enclosing agent.
A composite state is created when the enclosing entity is created, and deleted when the enclosing
entity is deleted.
Local variables of the composite state are created and deleted when the composite state is created
and deleted respectively.
Each Composite-state-formal-parameter is a local variable that is created when the composite state
is created. A variable is assigned the result of the expression given by the corresponding actual
parameter if present in the Nextstate-parameters of a Nextstate-node (or State-machine) through
which the composite state is entered. Otherwise, the result of the variable becomes undefined.
A transition emanating from a substate has higher priority than a conflicting transition emanating
from any of the containing states. Conflicting transitions are transitions triggered by the same
stimulus as an input or save of the substate.

11.11.2 Empty clause
This clause is intentionally left blank.

11.11.3 Empty clause
This clause is intentionally left blank.

11.11.4 Connect

Abstract grammar
Connect-node :: Transition

Concrete grammar
<connect association area> ::=
 <solid association symbol>
 is followed by <exit transition area>

<exit transition area> ::=
 <transition area>

A <connect association area> represents a Connect-node.

Semantics
A Connect-node represents an exit point on a composite state. Interpretation is resumed at this point
if in the Composite-state-graph there is interpretation of a Return-node.

11.12 Transition

11.12.1 Transition body

Abstract grammar
Transition :: Graph-node*
 { Terminator | Decision-node }

Graph-node :: { Task-node
 | Output-node
 | Create-request-node
 | Call-node
 | Set-node
 | Reset-node }

54 Rec. ITU-T Z.101 (10/2019)

Terminator :: { Nextstate-node
 | Stop-node
 | Return-node
 | Join-node }

Concrete grammar
<transition area> ::=
 [<transition string area> is followed by]
 <terminator area>

<terminator area> ::=
 <nextstate area>
 | <decision area>
 | <stop symbol>
 | <out connector area>
 | <return area>

<transition string area> ::=
 <action area>
 [is followed by <transition string area>]

<action area> ::=
 <task area>
 | <output area>
 | <create request area>
 | <procedure call area>

A transition consists of a sequence of actions to be performed by the agent.
The <transition area> represents Transition and <transition string area> represents the Graph-node
list.
A <transition area> in an <operation body area> shall not contain a <state area> or a
<nextstate area>.

Semantics
A transition performs a sequence of actions. During a transition, the data of an agent is possibly
manipulated and signals possibly output (depending on the content of the transition). The transition
ends with the state machine of the agent entering a state, with a stop, with a return or with the
transfer of control to another transition.
It is possible to interpret a transition in one agent of a block at the same time as a transition in
another agent of the same block (provided they are not both enclosed by the same process) or of
another block. Transitions of processes contained in a process are interpreted interleaving: that is,
only one contained process interprets a transition at a time until it reaches a nextstate (run-to-
completion). A valid model of the interpretation of an SDL-2010 system is a complete interleaving
of different agents at the level of all actions that it is not possible to transform (by the rules given in
the Model clauses in SDL-2010 Recommendations) into other actions, and are not excluded because
they are in a transition alternating with a transition that is being interpreted (see clause 9.3): that is,
waiting for the transition in a containing process to reach a nextstate.
An undefined amount of time passes while an action is interpreted. It is valid for the time taken to
vary each time the action is interpreted. It is also valid for the time taken to be the same at each
interpretation or for it to be zero (that is, the result of now, is not changed; see clause 12.3.4.1).

 Rec. ITU-T Z.101 (10/2019) 55

11.12.2 Transition terminator

11.12.2.1 Nextstate

Abstract grammar
Nextstate-node = Dash-nextstate | Named-nextstate

Named-nextstate :: State-name
 [Nextstate-parameters]

Nextstate-parameters :: Actual-parameters

Dash-nextstate :: [HISTORY]

Nextstate-parameters shall only be present if State-name denotes a composite state.
The State-name specified in a nextstate shall be the name of a state within the same State-transition-
graph or Procedure-graph.
Every Transition that terminates in a Dash-nextstate shall originate from a State-node within the
same State-transition-graph or Procedure-graph, either directly or via Decision-node items or Join-
node items and Free-action items.
NOTE 1 − For example, it is not allowed to have a Dash-nextstate reachable from a State-start-node without
interpretation of a State-node.

If a Named-nextstate includes Nextstate-parameters, the State-name shall refer to a composite state
(a State-node with a Composite-state-type-identifier). In that case, the Actual-parameters shall have
the same number of elements as the Composite-state-formal-parameter list of the identified
Composite-state-type-definition. Each Expression of the Actual-parameters shall have a sort that is
compatible with the sort of the corresponding by position Composite-state-formal-parameter in the
Composite-state-type-definition.

Concrete grammar
<nextstate area> ::=
 <state symbol> contains <nextstate body>

<nextstate body> ::=
 <nextstate body name>
 | <dash nextstate>
 | <history dash nextstate>

<nextstate body name> ::=
 <basic state name>
 | <composite state name> <nextstate parameters>

<nextstate parameters> ::=
 [<actual parameters>]

<dash nextstate> ::=
 <hyphen>

<history dash nextstate> ::=
 <history dash sign>

A <history dash nextstate> represents a Nextstate-node that is a Dash-nextstate with HISTORY. A
<dash nextstate> represents a Nextstate-node that is a Dash-nextstate without HISTORY.

Semantics
A nextstate represents a terminator of a transition. It specifies the state of the agent, procedure or
composite state when terminating the transition.
For a Named-nextstate the state is the State-node within the same State-transition-graph or
Procedure-graph that has the State-name of the Named-nextstate. If the State-name refers to a
composite state (a State-node with a Composite-state-type-identifier), each Expression of the

56 Rec. ITU-T Z.101 (10/2019)

Nextstate-parameters is interpreted and assigned to the corresponding by position Composite-state-
formal-parameter. If the sort of a Composite-state-formal-parameter is a syntype, a range check is
performed as further described under Semantics in clause 12.2.1. For each UNDEFINED element of
the Nextstate-parameters the corresponding by position Composite-state-formal-parameter has no
data associated: that is, it is "undefined". If Nextstate-parameters are omitted, each Composite-
state-formal-parameter has no data associated: that is, it is "undefined".
For a Dash-nextstate, the activating state is the State-node within the same State-transition-graph or
Procedure-graph that activated the current Transition, or – if that Transition was activated by
another Transition (for example, a Transition ending in Decision-node) – the activating state of that
Transition.
An empty Dash-nextstate means that the activating state is entered again. An empty Dash-nextstate
for a composite state implies that the next state is the composite state, and is entered in the same
way as a Named-nextstate for that composite state without Nextstate-parameters.
NOTE 2 − If there is only one state that leads to the Dash-nextstate, the Dash-nextstate has the same
meaning as a Nextstate-node that has the State-name of this state.

When a Dash-nextstate with HISTORY is interpreted, the next state is the activating state, or a
state within the activating state, if the activating state is a composite state. If the activating state is
not a composite state, the meaning is the same as an empty Dash-nextstate. If a composite state is
re-entered, the next state is the last state in the composite state (if any) before the exit from the
composite state. If this state was itself a composite state this inner composite state is re-entered in
the same way. If there was no last state in the composite state, the composite state is re-entered in
the same way as an empty Dash-nextstate.
NOTE 3 − In Comprehensive SDL-2010 if interpretation re-enters a composite state, its entry procedure if it
exists is invoked. Entry procedures are not a feature of Basic SDL-2010.

When determining the activating state, any procedure call is ignored, even if the procedure contains
internal states.
NOTE 4 − In Comprehensive SDL-2010 implicit states exist for items such a remote procedure calls. These
are also treated as encapsulated in procedure calls and therefore are not considered for the activating state.

11.12.2.2 Join
A join alters the flow in a body by expressing that the next <action area> to be interpreted is the one
that contains the same <connector name>.

Abstract grammar
Join-node :: Connector-name

Concrete grammar
<out connector area> ::=
 <out connector symbol> contains <connector name>

<out connector symbol> ::=
 <in connector symbol>

For each <out connector area> in a body area (such as <composite state body area>,
<operation body area> or <procedure body area>), there shall be exactly one <in connector area> in
that body area with the same <connector name>.
NOTE – In [ITU-T Z.103] it is possible to join two transitions with a merge area which is transformed into
<out connector area>s and an <in connector area>.

Semantics

When a Join-node is interpreted, interpretation continues with the Free-action named with
Connector-name.

 Rec. ITU-T Z.101 (10/2019) 57

11.12.2.3 Stop

Abstract grammar
Stop-node :: { }

Concrete grammar
<stop symbol> ::=

A <stop symbol> represents a Stop-node.

Semantics
If the number of instances in the agent instance set is already at the Lower-bound for that instance
set, the predefined exception OutOfRange is raised.
NOTE – To avoid OutOfRange being raised, it is possible to use an active agents expression (see
clause 12.3.4.4) to determine if the number of instances is already at the Lower-bound.

If OutOfRange is not raised, the stop causes the agent interpreting it to perform a stop.

This means that the retained stimuli in the input port (other than the implicit set and get remote
procedure calls, if any, introduced for each global variable as described in [ITU-T Z.102],
[ITU-T Z.103] and [ITU-T Z.104]) are discarded and the state machine of the agent goes into a
stopping state. When all contained agents have ceased to exist, the agent itself will cease to exist.
The interpretation of a Stop-node in a Procedure-graph or State-transition-graph causes the agent
interpreting that graph to stop. Interpretation of the procedure (or operation, or composite state if
appropriate) terminates, and the stop propagates outwards to the caller and is treated as if a Stop-
node were interpreted at the place of the procedure call (or operation application, or entry to the
composite state if appropriate). Termination propagates outwards until the containing agent is
reached.

11.12.2.4 Return

Abstract grammar
Return-node = Action-return-node
 | Value-return-node

Action-return-node :: { }

Value-return-node :: Expression

An Action-return-node shall only be contained in the Procedure-graph of a Procedure-definition
without Result or a Composite-state-graph. A Value-return-node shall only be contained in the
Procedure-graph of a Procedure-definition containing Result.
The Expression of a Value-return-node shall be sort compatible with the sort of the Result of the
enclosing Procedure-definition.

Concrete grammar
<return area> ::=
 <return symbol>
 is associated with <return body>

<return body> ::=
 [<expression>]

58 Rec. ITU-T Z.101 (10/2019)

<return symbol> ::=

A <return area> with an empty <return body> represents an Action-return-node. A <return area>
with an <expression> for a <return body> represents a Value-return-node.
An <expression> that is a <return body> in <return area> is allowed if and only if the enclosing
scope is an operator (or method; see [ITU-T Z.104]), or a procedure that has a <procedure result>.
The <expression> that is a <return body> in <return area> shall not be omitted if the enclosing
scope is an operator (or method; see [ITU-T Z.104]) with an <operation result>, or a value returning
procedure with a <procedure result> without a <variable name> (a <procedure result> never has a
<variable name> in Basic SDL-2010).

Semantics
A Return-node in a procedure is interpreted in the following ways.
a) If a Value-return-node is interpreted, the result of Expression is interpreted in the same way

as an Expression assigned to a variable with the sort of the result (see clause 12.3.3), but
without the result being associated with a variable or a range check taking place and the
result is returned for use in the calling context.

b) All variables created by the interpretation of the Call-node or Value-returning-call-node
cease to exist.

c) The interpretation of the Procedure-graph is completed and the procedure instance ceases
to exist.

d) Interpretation of the calling context continues.
An Action-return-node in the composite state that is the state machine of an agent is interpreted as a
Stop-node.
An Action-return-node (a Value-return-node is not allowed) in a composite state that is not the state
machine of an agent results in activation of a Connect-node, and interpretation continues at the
Connect-node without a name.

11.13 Action

11.13.1 Task

Abstract grammar
Task-node = Assignment
 | Informal-text

Concrete grammar
<task area> ::=
 { <task symbol> contains <task body> }

<task body> ::=
 <non terminating statements> <end>*
 | <informal text>

<task symbol> ::=

In Basic SDL-2010 <non terminating statements> of <task body> of <task area> is a single
<statement> that is an <assignment statement>, <set statement> or <reset statement>. A <task area>
containing a single <assignment> represents an Assignment in the Task-node. A <task area>

 Rec. ITU-T Z.101 (10/2019) 59

containing a single <set statement> corresponds to a Set-node as an element of the Graph-node list
for the Transition of <transition area> containing the <task symbol>. A <task area> containing a
single <reset statement> corresponds to a Reset-node as an element of the Graph-node list for the
Transition of <transition area> containing the <task symbol>.

Semantics
The interpretation of a Task-node is the interpretation of the Assignment or the interpretation of the
Informal-text.

11.13.2 Create

Abstract grammar
Create-request-node :: { Agent-identifier | THIS }
 Actual-parameters

The length of the Actual-parameters list shall be the same as the number of Agent-formal-
parameter items in the Agent-definition of the Agent-identifier.
Each Expression of the Actual-parameters corresponding by position to an Agent-formal-parameter
shall have a sort that is compatible with the sort of the Agent-formal-parameter in the Agent-
definition denoted by Agent-identifier, or the local Agent-type-definition if THIS is given.
THIS shall only be specified in an Agent-type-definition and in scopes enclosed by an
Agent-type-definition.

Concrete grammar
<create request area> ::=
 <create request symbol> contains <create body>

<create request symbol> ::=

<create body> ::=
 { <agent identifier> | this } [<actual parameters>]
NOTE – The alternative of an <agent type identifier> is not allowed in Basic SDL-2010.

this represents THIS.
A <create body> of a <create request area> represents a Graph-node that is a Create-request-node.

Semantics
The create action causes the creation of an instance of the set identified by Agent-identifier either
inside the agent that performs the create, or in an agent that contains the agent that performs the
create. The parent of the created agent (see clause 9) has the same pid as returned by self of the
creating agent. self of the created agent (see clause 9) and offspring of the creating agent (see
clause 9) have both the same unique, new pid.
When an agent instance is created, it is given an empty input port, and variables are created. The
creating agent offspring is set and the actual parameter expressions are interpreted and assigned to
the corresponding formal parameters, and if the sort of a formal parameter is a syntype, a range
check is made as further described under Semantics in clause 12.2.1. If the created agent has
contained agent sets, then the initial instances of these sets (if any) are created with parent as Null.
Then the agent starts by interpreting the start node in the agent graph, and the start nodes of the
initial contained agents are interpreted in some order, before transitions caused by signals are
interpreted.

60 Rec. ITU-T Z.101 (10/2019)

The created agent is then interpreted asynchronously and concurrently or alternating with other
agents depending on the kind of the containing agent (system, block, process).
If an attempt is made to create more agent instances than specified by the maximum number of
instances in the agent definition, then no new instance is created, the offspring of the creating
agent (see clause 9) has the result Null and interpretation continues.

If an Expression in Actual-parameters is UNDEFINED, the corresponding formal parameter has no
data item associated; that is, it is "undefined". If OutOfRange is raised assigning a parameter, the
creation continues, but the remaining parameter has no data associated with it as if the
corresponding Actual-parameters element was UNDEFINED.
THIS identifies the Agent-identifier of the set of instances of the agent in which the create is being
interpreted.

11.13.3 Procedure call

Abstract grammar
Call-node ::
 Procedure-identifier
 Actual-parameters

Value-returning-call-node ::
 Procedure-identifier
 Actual-parameters

The Procedure-identifier shall identify Procedure-definition with a Procedure-graph that has a
Procedure-start-node.
The length of the Actual-parameters list shall be the same as the number of the Procedure-formal-
parameter items in the Procedure-definition denoted by the Procedure-identifier.
Each Expression in the Actual-parameters list corresponding by position to an In-parameter shall
be sort compatible with the sort of the Procedure-formal-parameter.
Each element in the Actual-parameters list corresponding by position to an Inout-parameter or
Out-parameter shall be an Expression for a Variable-identifier with the same Sort-reference-
identifier as the Procedure-formal-parameter.

Concrete grammar
<procedure call area> ::=
 <procedure call symbol> contains <procedure call body>

<procedure call symbol> ::=

<procedure call body> ::=
 <procedure type expression> [<actual parameters>]
NOTE 1 – In Basic SDL-2010 <procedure type expression> is limited to <base type>, which is a
<procedure identifier>. In [ITU-T Z.102] actual context parameters are allowed in <type expression> and in
this case the Procedure-identifier identifies an implicitly created procedure definition.

A <procedure call area> represents a Call-node. A <value returning procedure call> (see
clause 12.3.5) represents a Value-returning-call-node.

Semantics
The interpretation of a procedure Call-node or Value-returning-call-node interprets the actual
parameter expressions in the order given. If no exceptions are raised by the parameter interpretation,
interpretation is then transferred to the procedure definition referenced by the Procedure-identifier,
and that procedure graph is interpreted (the explanation is contained in clause 9.4).

 Rec. ITU-T Z.101 (10/2019) 61

If an Expression in Actual-parameters is omitted, the corresponding formal parameter has no data
item associated; that is, it is "undefined".
If an argument sort of the Call-node or Value-returning-call-node for an In-parameter of the
procedure is a syntype, the range check defined in clause 12.1.8.2 is applied to the result of the
Expression. If the range check is the predefined Boolean value false at the time of interpretation,
then the predefined exception OutOfRange is raised instead of interpreting further actual parameters
or the procedure definition.
If OutOfRange is not raised, the interpretation of the transition containing a Call-node continues
when the interpretation of the called procedure is finished.
If OutOfRange is not raised, the interpretation of the transition containing a Value-returning-call-
node continues when the interpretation of the called procedure is finished. The result of the called
procedure is returned by the Value-returning-call-node.
The (static) sort of the Value-returning-call-node is the sort identified by the Result of the
Procedure-definition identified by the Procedure-identifier. The aggregation kind of a
Value-returning-call-node is the Result-aggregation of the Procedure-definition identified by the
Procedure-identifier.
If the result sort of a value returning procedure call is a syntype, the range check defined in
clause 12.1.8.2 is applied to the result of the procedure call. If the range check is the predefined
Boolean value false at the time of interpretation, then the predefined exception OutOfRange is
raised.

Model
If the procedure identified by the <procedure type expression> of the <procedure call body> is not
defined within the agent type enclosing the call, within the enclosing agent type there is an
implicitly defined local procedure with the same name as identified by the <procedure type
expression> and the call uses this local procedure. In the local procedure, identifiers of items (such
as variables) external to the procedure definition are bound in the context of the original procedure
definition rather than the context of the procedure call if that is different.
NOTE 2 − An implicitly defined local procedure is an inherited subtype of the procedure identified by the
<procedure type expression> of the <procedure call body> (see clause 8.4 Specialization of [ITU-T Z.102],
and clause 9.4 Procedure of [ITU-T Z.102]).

11.13.4 Output

Abstract grammar
Output-node :: Signal-identifier
 Actual-parameters
 Activation-delay
 Signal-priority
 [Signal-destination]
 Direct-via

Activation-delay = Expression

Signal-priority = Expression

Signal-destination :: { Expression | Agent-identifier | THIS } [Destination-number]

Destination-number = Expression

Direct-via = Gate-identifier-set

The Signal-identifier shall identify a Signal-definition.
The length of the Actual-parameters list shall be the same as the number of Signal-parameter items
in the Signal-definition denoted by the Signal-identifier.

62 Rec. ITU-T Z.101 (10/2019)

Each Expression of the Actual-parameters list shall be sort compatible with the Sort-reference-
identifier of the corresponding (by position) Signal-parameter in the Signal-definition.
The Expression of the Activation-delay shall be a Duration expression.
The Expression of the Signal-priority shall be a Natural expression.
For each Gate-identifier in Direct-via, there shall exist zero or more channels such that the gate via
this path is reachable with the Signal-identifier from the agent and the Out-signal-identifier-set of
the gate shall include the Signal-identifier.
The sort of Expression of a Signal-destination shall either be the sort Pid (see clause 12.1.5), or the
sort Interface-definition with the Signal-identifier in its Signal-identifier-set. The Destination-
number is always omitted for a Signal-destination that is an Expression.
The Agent-identifier of a Signal-destination shall identify an agent instance set reachable from the
originating agent. The Expression of the Destination-number shall be a Natural expression.

Concrete grammar
<output area> ::=
 <output symbol> contains <output body>

<output symbol> ::=
 <plain output symbol>

<plain output symbol> ::=

<output body> ::=
 <output body item>
 <communication constraints>

<output body item> ::=
 <signal identifier> [<actual parameters>] [<activation delay>] [<signal priority>]

<communication constraints> ::=
 { to <destination> | <via path> }*

<destination> ::=
 <pid expression0>
 | { [system | block | process] <agent identifier> | this } [<destination number>]

<destination number> ::=
 <left square bracket> <Natural expression0> <right square bracket>

<activation delay> ::=
 active <Duration expression>

<signal priority> ::=
 priority <Natural expression>

The <pid expression0> or the <agent identifier> in <destination> represents the Signal-destination.
There is a syntactic ambiguity between <pid expression0> and <agent identifier> in <destination>.
If it is possible to interpret the <destination> as a <pid expression0> without violating any static
conditions, it is interpreted as <pid expression0>, otherwise as <agent identifier>.
Signals mentioned in <output body>s of the state machine of an agent type shall be in the complete
valid input signal set of the agent type or in the <signal list> of a gate in the direction from the agent
type.
In Basic SDL-2010, a <communication constraints> shall contain at most one to <destination>
clause.
Each <via path> of <communication constraints> represents a Gate-identifier in the Direct-via.

 Rec. ITU-T Z.101 (10/2019) 63

The optional keyword (system, block or process) before an <agent identifier> in <destination>
shall match the Agent-kind.
this represents THIS.
If <activation delay> is omitted, the Activation-delay is zero: that is, there is no delay in activating
the signal at the destination.
If <signal priority> is omitted, the Signal-priority is zero: that is, the signal has the highest signal
priority.

Semantics
Stating an Agent-identifier with no Destination-number in Signal-destination indicates
Signal-destination is the pid value of any existing instance of the set of agent instances indicated by
Agent-identifier. If no instances exist, the signal is discarded.
Stating THIS with no Destination-number in a Signal-destination is the pid value of one the set of
instances of the agent in which the output is being interpreted.
Stating an Agent-identifier or THIS with a Destination-number in Signal-destination indicates
Signal-destination is the pid of the indicated instance of the set of agent instances. The agent
instances are numbered consecutively from 1 when the Signal-destination or THIS is interpreted in
the order in which the instances were created: this allows for changes in numbering due to instances
terminating. If Destination-number is zero or greater than the number of instances in the set of
agent instances, the signal is discarded.
If no Gate-identifier is specified in Direct-via and no Signal-destination is specified, any agent for
which there exists a communication path is able to receive the signal.
If there is a process instance that contains both the sender and the receiver, the data items conveyed
by the signal instance are the results of the actual parameters of the output. Otherwise, the data
items conveyed by the signal instance are newly created replicates of the results of the actual
parameters of the output. Each conveyed data item is equal to the corresponding actual parameter of
the output.
NOTE 1 − For Basic SDL-2010 replicates of the results of the actual parameters of the output are the same as
results of the actual parameters, so there is no difference in the information passed in the two cases. The
distinction is only relevant for parameters that contain elements to identify created data items, as existed with
object data types in SDL-2000.

If an Expression in Actual-parameters is omitted, no data item is conveyed with the corresponding
place of the signal instance; that is, the corresponding place is "undefined". Otherwise the
Expression is assigned to the parameter of the signal as if this is a variable (see clause 12.3.3) with
the aggregation kind and sort as defined by the Signal-parameter.
The pid of the originating agent is also conveyed by the signal instance.
If a syntype is specified in the signal definition and an expression is specified in the output, then the
range check defined in clause 12.1.8.2 is applied to the expression.
If Signal-destination is an Expression and the static sort of the pid expression is Pid, then the output
compatibility check (see clause 12.1.5) is performed for the destination given by the pid expression
and the signal denoted by the Signal-identifier.
The signal instance is then delivered to a communication path able to convey it. It is possible to
restrict the set of communication paths able to convey the signal to include at least one of the paths
mentioned in the Direct-via.
If Signal-destination is an Expression, the signal instance is delivered to the agent instance denoted
by Expression. If this instance does not exist or is not reachable from the originating agent, the
signal instance is discarded.

64 Rec. ITU-T Z.101 (10/2019)

If Signal-destination is an Agent-identifier, the signal instance is delivered to an arbitrary instance
of the agent instance set denoted by Agent-identifier. If no such instance exists, the signal instance
is discarded.
NOTE 2 − If Signal-destination is Null in an Output-node, the signal instance will be discarded when the
Output-node is interpreted.
When the output is interpreted, the Activation-delay is added to the current value of now to determine the
availability Time: that is, the time after which the signal is made available in the input port of the destination.
If the Activation-delay is positive the signal instance contains the availability Time; otherwise the signal
instance is sent without this information.
If the Signal-priority is non-zero, the value is conveyed with the signal instance to the destination; therefore
a zero signal priority is implied for any signal instance that does not contain a signal priority value.

If no Signal-destination is specified, the receiver is selected in two steps. First, the signal is sent to
an agent instance set, which is reachable by the communication paths able to convey the signal
instance. This agent instance set is arbitrarily chosen. Second, when the signal instance arrives at
the end of the communication path, it is delivered to an instance of the agent instance set. The
instance is arbitrarily selected. If no instance is selectable, the signal instance is discarded.
When a signal instance is delivered to an instance of an agent instance set and there is an internal
communication path that conveys the signal to the state machine of the agent instance, the signal
instance is delivered to that state machine. Otherwise, a communication path within the agent
instance able to convey the signal instance is arbitrarily chosen and the signal instance is delivered
to an instance set of a contained agent.
NOTE 3 − Specifying the same Gate-identifier in the Direct-via of two different Output-node occurrences
does not necessarily mean that the signals are queued in the input port in the same order as the Output-node
occurrences are interpreted. However, order is preserved if the paths conveying the two signals are identical
(that is, the signals take the same route), or they are only conveyed on paths with no delay. If the first or both
signals have a positive Activation-delay, the order the signals are queued in the input port depends on the
time the signals are received and the calculated availability time of each signal instance.

11.13.5 Decision

Abstract grammar
Decision-node = Decision-body

Decision-body :: Decision-question
 Decision-answer-set
 [Else-answer]

Decision-question = Expression
 | Informal-text

Decision-answer :: { Range-condition | Informal-text }
 Transition

Else-answer :: Transition

Each Constant-expression of the Range-condition shall be sort compatible with the sort of the
Decision-question. If the Decision-question is an Expression, the Range-condition of each
Decision-answer shall be sort compatible with the sort of the Decision-question.

Concrete grammar
<decision area> ::=
 <decision symbol> contains <question>
 {is followed by <answer part>}+
 [is followed by <else part>]

 Rec. ITU-T Z.101 (10/2019) 65

<decision symbol> ::=

<question> ::=
 <expression> | <informal text>

<answer part> ::=
 <transition area> is associated with <graphical answer>

<graphical answer> ::=
 (<answer>)

<answer> ::=
 <range condition> | <informal text>

<else part> ::=
 <transition area> is associated with else

The <graphical answer> and else are placed alongside the <flow line symbol>, or over the
<flow line symbol> leading to the <transition area> of the <answer part> or <else part>,
respectively. In the diagram is followed by is shown by <flow line symbol> between the <decision
symbol> and <answer part> or <else part>.
The <flow line symbol>s originating from a <decision symbol> are allowed to have a common
originating path (that is, a part of the <flow line symbol>s overlap), but each <flow line symbol>
shall also have some distinct part leading to the <transition area>. The <graphical answer> or else
are placed sufficiently close to this distinct part of the line so that the association with the <answer
part> or <else part> is unambiguous, or is placed over the line. Each <flow line symbol> originates
from the left or bottom or right vertex of the <decision symbol>. It is not required that each <flow
line symbol> originates from the same vertex.
A <decision area> represents a Decision-node. A <question> represents a Decision-question of a
Decision-body and the following <answer part> set and optional <else part> represent the
Decision-answer-set and optional Else-answer, respectively. The <range condition> or <informal
text> of the <answer> represent the Range-condition or Informal-text of the Decision-answer. The
<transition area> of the <answer part> represents the Transition of the Decision-answer.
There is syntactic ambiguity between <informal text> and <character string> in <question> and
<answer>. If the <question> and all <answer>s are <character string>s, all of these are treated as
<informal text>. If the <question> is a <character string> or any <answer> is a <character string>
and this does not match the context of the decision, the <character string> denotes <informal text>.
The context of the decision (that is, the sort) is determined without regard to <answer>s that are
<character string>s.

Semantics
A Decision-body transfers the interpretation to the Transition of the outgoing Decision-answer,
whose Range-condition contains the result given by the interpretation of the question, or if there is
no such Decision-answer to the Else-answer (if there is one). The determination of whether the
Decision-question is contained in each Decision-answer is carried out once for each
Decision-answer in an arbitrary order until a Range-condition containing the Decision-question is
identified, or until this determination requires interpretation of an operation application that raises
an exception, or an Informal-text is chosen.
The Else-answer indicates the Transition to be interpreted when the result of the expression on
which the question is posed is not covered by the results specified in the other answers.

66 Rec. ITU-T Z.101 (10/2019)

Whenever the Else-answer is not specified, and the result from the evaluation of the Decision-
question does not match any Decision-answer, the predefined exception NoMatchingAnswer is
raised.

11.14 Statement lists
In this Recommendation statement list is limited to one statement, but in [ITU-T Z.102] the syntax
is extended to include additional kinds of statements and extended in [ITU-T Z.103] to include
further shorthand notations.

Concrete grammar
<non terminating statements> ::=
 <non terminating statement>

<non terminating statement> ::=
 <statement>

<statement> ::=
 <assignment statement>
 | <set statement>
 | <reset statement>

<assignment statement> ::=
 <assignment>

An <assignment statement> represents an Assignment in a Task-node.
<set statement> ::=
 set <set body>

A <set statement> represents a Set-node (see clause 11.15).
<reset statement> ::=
 reset <reset body>

A <reset statement> represents a Reset-node (see clause 11.15).

11.15 Timer

Abstract grammar
Timer-definition :: Timer-name
 Sort-reference-identifier*
 [Timer-default-initialization]

Timer-default-initialization = Constant-expression

Timer-name = Name

Set-node :: Time-expression
 Timer-identifier
 Expression*

Reset-node :: Timer-identifier
 Expression*

Timer-identifier = Identifier

Time-expression = Expression

The sorts of the Expression list in the Set-node and Reset-node shall correspond by position to the
Sort-reference-identifier list directly following the Timer-name in the Timer-definition identified by
the Timer-identifier.
The number of items of the Expression list in the Set-node and Reset-node shall be the same as the
number of items in the Sort-reference-identifier list directly following the Timer-name in the
Timer-definition identified by the Timer-identifier.

 Rec. ITU-T Z.101 (10/2019) 67

Concrete grammar
<timer definition> ::=
 timer
 <timer definition item> { , <timer definition item>}* <end>

<timer definition item> ::=
 <timer name> [<sort list>] [<timer default initialization>]

NOTE 1 − The <timer name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).

Each <aggregation kind> in the <sort list> of a <timer definition item> shall be empty.
NOTE 2 − To simplify the syntax <sort list> is used rather than introduce a timer sort list, but aggregation
kind is not relevant for timers.

Each <timer definition item> represents a Timer-definition.
Each <sort> in the <sort list> of a <timer definition item> adds the Sort-reference-identifier to the
end of the Sort-reference-identifier list of the Timer-definition.
<timer default initialization> ::=
 <is assigned sign> <Duration constant expression>

A <timer default initialization> represents the optional Timer-default-initialization.
<reset body> ::=
 (<reset clause>)

<reset clause> ::=
 <timer identifier> [(<expression list>)]

<set body> ::=
 <set clause>

<set clause> ::=
 ([<Time expression> ,] <timer identifier> [(<expression list>)])

A <set clause> with a <Time expression> represents a Set-node where the <Time expression>
represents the Time-expression.
If a <set clause> has no <Time expression>, the Time-expression of the Set-node is the time value
for now + the value of the Timer-default-initialization of the identified Timer-definition.
NOTE 3 − That is: a <set clause> with no <Time expression> is equivalent to a <set clause> where <Time
expression> is:
 now + <Duration constant expression>

where <Duration constant expression> is derived from the <timer default initialization> in the timer
definition.

It is allowed to omit <Time expression> in a <set clause>, only if the identified Timer-definition has
a Timer-default-initialization.

Semantics
A Timer-definition defines both the type of a timer and a set of timer instances. A Signal-identifier
for a signal instance put into the input port of the agent owning the timer identifies the Timer-
definition. When a Timer-definition has an empty Sort-reference-identifier list, there is only one
timer instance; otherwise there are as many timer instances as there are possible different actual
values for the Expression list in Set-node interpretations for the Timer-identifier.
NOTE 4 − The number of timer instances for a timer with parameters is in principle unbounded if there are
an unbounded possible number of values for the Expression list. However, in practice in a finite run of the
system it is necessary to include in the implementation of the set of timer instances only those that have been
set, and treat any other timer instance as inactive.

68 Rec. ITU-T Z.101 (10/2019)

A timer instance is active or inactive. Two occurrences of a timer identifier followed by an
expression list refer to the same timer instance only if the equality expression (see clause 12.2.4)
applied to all corresponding expressions in the two lists yields the predefined Boolean value true
(that is, if the two expression lists have the same result).
When an inactive timer is set, a Time value is associated with the timer. Provided there is no reset
or other setting of this timer before the system time reaches this Time value, a signal instance with a
Signal-identifier that identifies the Timer-definition is put in the input port of the agent. The same
action is taken if the timer is set to a Time value less than or equal to now. After consumption of a
timer signal, the sender expression yields the same result as the self expression. If an expression list
is given when the timer is set, the results of these expression(s) are contained in the timer signal in
the same order. A timer is active from the moment of setting up to the moment of consumption of
the timer signal.
If a sort specified in a timer definition is a syntype, then the range check defined in clause 12.1.8.2
applied to the corresponding expression in a set or reset shall be the predefined Boolean value true;
otherwise, the predefined exception OutOfRange is raised.

When an inactive timer is reset, it remains inactive.
When an active timer is reset, the association with the Time value is lost; if there is a corresponding
retained timer signal in the input port, then it is removed, and the timer becomes inactive.
When an active timer is set, this is equivalent to resetting the timer, immediately followed by setting
the timer. Between this reset and set, the timer remains active.
Before the first setting of a timer instance, the timer is inactive.
The Expression items in a Set-node or Reset-node are evaluated in the order given, left to right.

12 Data
The concept of basic data in SDL-2010 is defined in this clause. Data are more fully defined in
[ITU-T Z.104] and is further extended for object-oriented data in [ITU-T Z.107].

12.1 Data definitions
Data definitions are used to define data types. The basic mechanisms to define data are data type
definitions (see clause 12.1.1) and interfaces (see clause 12.1.2). The definition of the sort of a data
type (as well as operations implied for the sort) are given by data type constructors (see clause
12.1.6). Additional operations are defined as described in clause 12.1.3. The way to define
behaviour of the operations of a data type is described in clause 12.1.7.
Since predefined data are defined in a predefined and implicitly used package
Predefined (see clause 7.2), the predefined sorts (for example, Boolean and Natural) and their
operations are available to be freely used throughout the system. The semantics of Equality
(clause 12.2.4), Conditional expressions (clause 12.2.5), and Syntypes (clause 12.1.8.1) rely on the
definition of the Boolean data type.

Abstract grammar
Data-type-definition = Value-data-type-definition
 | Interface-definition

Value-data-type-definition :: Sort
 [Data-type-identifier]
 Literal-signature-set
 Static-operation-signature-set
 Procedure-definition-set
 Data-type-definition-set
 Syntype-definition-set

 Rec. ITU-T Z.101 (10/2019) 69

 [Default-initialization]

Interface-definition :: Sort
 Null-literal-signature
 Data-type-identifier-set
 Signal-definition-set
 Signal-identifier-set

Null-literal-signature = Literal-signature

Data-type-identifier = Identifier

Sort-reference-identifier = Sort-identifier
 | Syntype-identifier

Sort-identifier = Identifier

Sort = Name

A Data-type-definition introduces a sort that is visible in the enclosing scope unit in the abstract
syntax. It additionally and optionally introduces a set of literals and/or operations.
The Data-type-identifier of a Value-data-type-definition is omitted for data types (such as those
defined by Basic SDL-2010) that do not use inheritance.
Each Procedure-definition of the Procedure-definition-set of a Value-data-type-definition is a
Procedure-definition associated with an Operation-signature according to clause 12.1.7.

Concrete grammar
<data definition> ::=
 <entity in data type>
 | <interface definition>

The Default-initialization of a Value-data-type-definition is included only for an <entity in data
type> that is a <data type definition> including a <default initialization> (see clauses 12.1.1 and
12.3.3.2).
A <data definition> represents a member of the Data-type-definition set of the enclosing entity if it
is an <interface definition>, or an <entity in data type> that is a <data type definition>, or a member
of the Syntype-definition set of the enclosing entity if it is an <entity in data type> that is a
<syntype definition>.
<sort> ::=
 <basic sort>
 | <pid sort>

<basic sort> ::=
 <datatype type expression>
 | <syntype>

<pid sort> ::=
 <sort identifier>

A <sort identifier> identifies a sort (a set of elements or data items) introduced by a data type
definition.
Each <data type definition> introduces a sort with the same name as the <data type name>
(see clause 12.1.1). Each <interface definition> introduces a sort with the same name as the
<interface name> (see clause 12.1.2).
NOTE − To avoid cumbersome text, the convention is used that the phrase "the sort S" (or "the S sort") is
often used in SDL-2010 Recommendations instead of "the sort defined by the data type S" or "the sort
defined by the interface S" when no confusion is likely to arise.

The <sort identifier> in a <pid sort> shall identify a pid sort: that is, a Sort introduced by an
Interface-definition.

70 Rec. ITU-T Z.101 (10/2019)

Semantics
A data definition is used either for the definition of a data type or interface. A Value-data-type-
definition introduces a Sort that is a set of values as further defined in clause 12.1.1, and an
Interface-definition introduces a pid sort as further defined in clause 12.1.8.1.
A sort is a set of elements: values or pids (that is, identities of agents). Two different sorts have no
elements in common.
The Data-type-identifier of a Value-data-type-definition identifies the base data type (super type) of
the data type. In Basic SDL-2010 this is always omitted. There are generic operations that apply to
all data types, such as equal that compares two values for equality, and other generic operations
that apply to all literal, or all structure or all choice sorts.
NOTE − Specialization (as defined in [ITU-T Z.102] and not included in Basic SDL-2010) allows the
Data-type-identifier of the base type to be given.

A Data-type-name used as a Data-type-qualifier to identify a Value-data-type-definition as a scope
unit has the same Name as the Sort of the Value-data-type-definition.
An Interface-name used as an Interface-qualifier to identify an Interface-definition as a scope unit
has the same Name as the Sort of the Interface-definition.

12.1.1 Data type definition
A data type definition has a body that usually contains a data type constructor.
The data type constructor defines how to construct sets of values (structured values, literal values
and choice values). If the data type definition is a value type, these values are the elements of the
sort.

Concrete grammar
<entity in data type> ::=
 <data type definition>
 | <syntype definition>

<data type definition> ::=
 {<package use clause>}*
 <type preamble> <data type heading>
 { <end>
 | [<comment body>] <left curly bracket> <data type definition body>
 <right curly bracket> }

A <comment body> is a form of annotation and has no formal semantic meaning.
<data type definition body> ::=
 {<entity in data type>}* [<data type constructor>] <operations>
 [<default initialization> <end>]

A <data type constructor> (see clause 12.1.6) describes the elements of the sort and operations
included by the way the sort is composed. The <operations> defines a set of operations for elements
of a sort (see clause 12.1.3 and clause 12.1.7).
<data type heading> ::=
 value type <data type name>

NOTE − The <data type name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).

A <data type name> represents the Sort of the Data-type-definition, and this <name> is the
Data-type-qualifier as the <name> of a <path item> for a <qualifier> to identify the
Data-type-definition as a scope unit.

 Rec. ITU-T Z.101 (10/2019) 71

<operations> ::=
 <operation signatures>
 <operation definitions>

A <value data type definition> contains the keyword value in <data type heading> and represents a
Value-data-type-definition.
For each <operation signature> of <operation signatures>, there shall be one and only one
corresponding <operation reference> in the <operation definitions> of the <operations>.

12.1.2 Interface definition
Interfaces are defined in packages, agents or agent types.
An interface definition defines the set of signals for the interface. These signals include the signals
defined within the interface and signals defined outside the interface included through a list of
interfaces used in the interface. An interface definition introduces a pid sort, which has elements
that are identities of agents that handle the signals for the interface. The defining context of entities
defined in the interface is the scope unit of the interface, and the entities defined are visible where
the interface is visible.
An interface is used in a signal list to denote that the signals of the interface definition are included
in the signal list.

Abstract grammar
Interface-definition is defined in clause 12.1.
Each Data-type-identifier of the Data-type-identifier-set of an Interface-definition shall identify an
interface, or there shall be only one item in the Data-type-identifier-set of the Interface-definition
and this shall identify the data type Pid.
NOTE 1 − For Basic SDL-2010 the Data-type-identifier-set of an Interface-definition always has just one
Pid item.

Concrete grammar
Each agent type (and agent and state machine) implicitly defines an Interface-definition as detailed
below. This Interface-definition is in the same context as the definition of the agent type (or agent
or state machine), so that (for example) the implicit Interface-definition for an item of the
Agent-type-definition-set of an Agent-type-definition is an item of the Data-type-definition-set of the
Agent-type-definition.
Interfaces are implicitly defined by each agent type definition and each agent definition (except the
outermost agent) and by the state machine of each agent type definition. The implicitly defined
interface for an agent or an agent type has the same name and is defined in the same scope unit as
the agent or agent type that defined it. The implicitly defined interface for a state machine has the
same name as the containing agent type but is defined in the same scope unit as the state machine
that defined it: that is, inside the agent type.
<interface definition> ::=
 {<package use clause>}*
 <interface heading>
 { [<comment body>]
 <left curly bracket>
 <entity in interface>*
 <right curly bracket> }

A <comment body> is a form of annotation and has no formal semantic meaning.
<interface heading> ::=
 interface <interface name>

72 Rec. ITU-T Z.101 (10/2019)

<entity in interface> ::=
 <signal definition list>
 | <interface use list>

<interface use list> ::=
 use <signal list> <end>

Each <signal list item> of the <signal list> in an <interface use list> of an <interface definition>
shall be a <signal identifier> or an <interface identifier>. An <interface identifier> that is part of the
<signal list> shall also respect the restriction.
The <interface definition> shall not contain the <interface identifier> defined by the <interface
definition> either directly or indirectly (via another <interface identifier>).
An <interface name> represents the Sort of the Interface-definition, and this <name> is the
Interface-qualifier as the <name> of a <path item> for a <qualifier> to identify the Interface-
definition as a scope unit.
NOTE 2 − The <interface name> in the heading has to be a <name>, whereas in SDL-2000 it is a name or a
number (an <integer name> or a <real name>).
NOTE 3 − To avoid cumbersome text, the convention is used that the phrase "the pid sort of the agent A" is
often used instead of "the pid sort defined by the interface implicitly defined by the agent A" when no
confusion is likely to arise.
NOTE 4 − An <interface use list> does not define entities.

In Basic SDL-2010 the Data-type-identifier set of the Interface-definition for a pid sort contains
only the data type Pid, which is further defined in clause 12.1.5 and fully defined [ITU-T Z.104].

A <signal list> of an <interface use list> denotes items in the Signal-identifier-set of the
Interface-definition as follows.
a) Each <signal identifier> of a <signal list> of an <interface use list> represents a

corresponding Signal-identifier in the Signal-identifier-set that identifies a Signal-
definition.

b) Each <timer identifier> of a <signal list> of an <interface use list> represents a
corresponding Signal-identifier in the Signal-identifier-set that identifies a Timer-definition.

c) Each <interface identifier> of a <signal list> of an <interface use list> represents
corresponding Signal-identifier items in the Signal-identifier-set: one for each Signal-
definition of Signal-definition-set of the identified Interface-definition.

d) Each Signal-identifier in the Signal-identifier-set appears only once, even if it corresponds
to more than one item in the <signal list> of an <interface use list>.

The defining context of entities defined in the interface (<entity in interface>) is the scope unit of
the interface, and the entities defined are visible where the interface is visible.

Semantics
The Sort of an Interface-definition is a pid sort. Each element of the Sort is the identity of an agent
instance that is able to receive each of the signals identified by the Signal-identifier-set of the
Interface-definition.
The Null-literal-signature of an Interface-definition is the signature for the null literal operator.
The Data-type-identifier set of an Interface-definition identifies the base interface types (super
types) of an interface specialization. Pid is directly or indirectly the base interface types of any
Interface-definition for a pid sort.
NOTE 5 − Specialization is defined in [ITU-T Z.102] and is not included in Basic SDL-2010, but the
abstract syntax is included so that Interface-definition does not have to be redefined in [ITU-T Z.102].

 Rec. ITU-T Z.101 (10/2019) 73

The Signal-identifier-set of an Interface-definition identifies signals defined outside the interface
that are used by the interface and also each signal defined by a Signal-definition of the Interface-
definition.
The Signal-definition-set of an Interface-definition is the set of signals defined for the interface. The
scope of the signals is such that they are visible wherever the interface is visible. These signals are
included in the Signal-identifier-set of the Interface-definition.
The Signal-identifier-set of an Interface-definition is the set of signal identities that apply when the
interface appears in the syntax, and the set of signal identities for the pid sort of the
Interface-definition. An identity of an agent instance is compatible with the pid sort if every
Signal-identifier set of the pid sort is in the valid input signal set of the agent.
The implicit Interface-definition for an agent type (or agent or state machine) has a Sort with the
same Name as the agent type (or agent or state machine respectively).
Internally connected gates of an agent type are gates of the agent type that are connected via
channels to the gates of either a contained agent or the state machine of the agent type. The
internally connected gates of an agent are the gates of the agent that correspond to the internally
connected gates of the agent type for the agent.
The implicit Interface-definition defined by an agent type contains (in its interface specialization –
see [ITU-T Z.104]) all interfaces given in the incoming signal lists associated with internally
connected gates. The Interface-definition contains in its Signal-identifier-set all signals given in the
incoming signal lists associated with internally connected gates.
The implicit Interface-definition defined by a state machine of an agent type contains (in its
interface specialization – see [ITU-T Z.104]) the interface defined by the agent type itself except
any part of that interface concerned only with contained agents. The interface also contains in its
interface specialization all interfaces given in the incoming signal lists associated with any gates of
the state machine. The interface also contains in its <interface use list> all signals given in the
incoming signal lists associated with gates of the state machine.
The Signal-identifier-set of an implicit Interface-definition for an agent type (or agent or state
machine) has a Signal-identifier for each different signal in the set of signals in all channels or gates
for which the destination is the agent type (or agent or state machine respectively), plus the valid
input signal set defined explicitly for the agent type (or agent or state machine respectively).
The implicit Interface-definition of a typebased agent contains the same Signal-identifier-set as the
Interface-definition defined by its type.
NOTE 6 − In Comprehensive SDL-2010 agent definitions given without explicitly defining an agent type
represent an agent based on a type given by the body of the agent definition. This model is expanded before
interfaces for the agent and its (anonymous) agent type are derived as above.
NOTE 7 − Because every agent and agent type has an implicitly defined interface with the same name, any
explicitly defined interface has to have a different name from every agent and agent type defined in the same
scope; otherwise, there are name clashes.

12.1.3 Operation signature

Abstract grammar
Static-operation-signature :: Operation-signature

Operation-signature :: Operation-name
 Formal-argument*
 [Operation-result]
 Procedure-identifier

74 Rec. ITU-T Z.101 (10/2019)

Operation-name = Name

Formal-argument :: Argument

Operation-result :: Sort-reference-identifier

Argument = Sort-reference-identifier

The Procedure-identifier in an operator signature is an anonymous identifier for the anonymous
procedure corresponding to the operation.

Concrete grammar
<operation signatures> ::=
 [<operator list>]

<operator list> ::=
 operators <operation signature> { <end> <operation signature> }* <end>

<operation signature> ::=
 <operation name>
 [<arguments>] <result>

<operation name> ::=
 <operation name>
 | <quoted operation name>

NOTE − An <operation name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).
<arguments> ::=
 (<argument> { , <argument> }*)

<argument> ::=
 <formal parameter>

<formal parameter> ::=
 <parameter kind> <sort>

<result> ::=
 <result sign> <sort>

An <operation signature> of an <operator list> represents a Static-operation-signature.
In an Operation-signature, each Sort-reference-identifier in Formal-argument is represented by an
argument <sort>, and the Operation-result is represented by the result <sort>. The <sort> in the
<formal parameter> of an <argument> of an operation represents the Formal-argument.
The Operation-name is unique within the defining scope unit in the abstract syntax even though the
corresponding <operation name> is not necessarily unique. The unique Operation-name is derived
from:
a) the <operation name>; plus
b) the (possible empty) list of argument sort identifiers; plus
c) the result sort identifier; plus
d) the sort identifier of the data type definition in which the <operation name> is defined.
<quoted operation name> allows for operation names that have special syntactic forms. The special
syntax is introduced so that common operations (for example, arithmetic operations and Boolean
operations) have their usual infix syntactic form. That is, the user writes "(1 + 1) rem 2" rather than
having to use, for example, rem(add(1,1),2).

Semantics
The quoted forms of infix or monadic operations are valid names for operators and each has a
corresponding Name.
An operation has a result sort, which is the sort identified by the result.

 Rec. ITU-T Z.101 (10/2019) 75

12.1.4 Generic data type operations
Every value data type includes generic operations.

Concrete grammar
The constructor that includes a particular generic operation also represents the Procedure-definition
for the generic operation in the Procedure-definition-set of the directly enclosing Data-type-
definition. The Procedure-name of the Procedure-definition for the generic operation is an
anonymous unique name, and the Procedure-definition is associated with the Operation-signature
by the Procedure-identifier in the Operation-signature. The Procedure-formal-parameter list and
Result of the Procedure-definition is derived from the Formal-argument parameter list and
Operation-result of the Operation-signature with arbitrary, anonymous names given to the
parameters. The Procedure-graph of the Procedure-definition of a generic operation is derived
from the language semantics, and it is not possible to specify it explicitly.
For a value data type with the <data type name> S, there are two items in the Operation-signature-
set items equivalent to including the following explicit <operation signature> definitions in the
<operator list> of its <operation signatures>:
 equal (S, S) -> Boolean;
 copy (S) -> S;

where the parameters and the results correspond to an Aggregation-kind of PART.

Semantics

Detail on how generic operators behave for each different type constructor is given in the
description of the type constructor, together with additional generic operators for the specific type
constructor.
The Operation-signature-set of a Value-data-type-definition includes a generic operation that
determines the equality between two values of this sort, and a generic operation that takes the value
of the sort from the interpretation of an expression and returns that value.
The Procedure-graph of the Procedure-definition of a generic operation directly provides the
semantics defined for the generic operation.

12.1.5 Pid and pid sorts
Every interface is (directly or indirectly) a subtype of the interface Pid. When a variable is declared
to be of sort Pid, data items belonging to any pid sort are allowed to be assigned to that variable.

Concrete grammar
The interface data type Pid represents the unique Interface-definition with an empty
Data-type-identifier set, an empty Signal-definition set and an empty Signal-identifier set. The
Null-literal-signature of the Pid sort is the unique named element of the Pid sort, denoted by null.
The interface data type Pid is optionally qualified by package Predefined.

An Interface-definition represented by an <interface definition> (without an interface
specialization; see [ITU-T Z.104]) contains only a Data-type-identifier denoting the interface Pid.
The Null-literal-signature of a pid sort is a unique named element of the sort, denoted by null.

The Pid sort and each pid sort has generic Operation-signature items equivalent to the following
<operation signature> items in the <operator list>:
 Null -> P;
 Make -> P;

where P is the name of the sort (Pid or the name of the pid sort).

76 Rec. ITU-T Z.101 (10/2019)

Semantics
The Pid sort is a sort that contains elements that identify agent instances and a unique named
element, the Null-literal-signature that does not identify any agent. Each agent instance has a
corresponding unnamed element in the sort Pid. A variable or expression of the Pid sort is
therefore allowed to identify any agent instance or the Null-literal-signature of the Pid sort.

For the Pid sort, the generic operator equal is true if its two operands identify the same agent
instance or its two operands are the Null-literal-signature. For the Pid sort, the generic operator
equal is false if its two operands identify different agent instances or only one of its two operands
is the Null-literal-signature.
For the Pid sort, if the operand of the generic operator copy is an expression that identifies an agent
instance, the generic operator copy returns the identity of that agent instance; otherwise it returns
the Null-literal-signature for the Pid sort.

The operator Null of the Pid sort returns the Null-literal-signature of the Pid sort. The operator
Make of the Pid sort creates a new instance of the Pid sort associated with the Null-literal-signature
of the Pid sort. An attempt to obtain an associated agent identity from the Null-literal-signature of
the Pid sort raises the predefined exception InvalidReference.

A pid sort is a Sort introduced by an Interface-definition. All the signals of a pid sort are all the
signals in the Signal-identifier-set of the Interface-definition that introduces the pid sort.
For a pid sort, the generic operator equal is true if its two operands identify the same agent
instance or its two operands are the Null-literal-signature. For a pid sort, the generic operator equal
is false if its two operands identify different agent instances or only one of its two operands is the
Null-literal-signature.
For a pid sort, if the operand is an expression that identifies an agent instance, the generic operator
copy returns the identity of the agent instance identified by the operand if that agent instance that
accepts all the signals of the pid sort, otherwise it returns the Null-literal-signature for the pid sort.
The operator Null of a pid sort returns the Null-literal-signature of the pid sort. An attempt to
obtain an associated agent identity from the Null-literal-signature of the pid sort raises the
predefined exception InvalidReference. The operator Make of a pid sort creates a new instance of
the pid sort associated with the Null-literal-signature of the pid sort.
Each pid sort is based (directly or indirectly through another pid sort) on the Pid sort and therefore
contains a named element for the Null-literal-signature of the Pid data type that does not identify
with any agent. As well as the named element, a pid sort contains elements that identify the agent
instances that accept all the signals of the pid sort. A variable or expression of the pid sort is only
allowed to identify agent instances that accept all the signals of the pid sort. For example, a variable
with the pid sort introduced by the Interface-definition defined by an agent definition is able to be
associated with the identity of the agent from the interpretation of a Create-request-node
(see clause 11.13.2) for the agent.
NOTE 1 − A pid sort expression is allowed to identify an agent that accepts additional signals provided the
agent accepts all the signals of the pid sort.

Each interface adds an output compatibility check operation that, given a signal and a destination
with a pid sort, determines whether either:
a) the signal is defined or used in the interface of the destination: that is, the Signal-identifier

of the signal being output is in the Signal-identifier-set of the Interface-definition for the
destination sort; or

b) the output compatibility check is satisfied for a pid sort introduced by an Interface-
definition identified by the Data-type-identifier-set (that is, the interface specialization) of
the destination sort (see [ITU-T Z.104]).

 Rec. ITU-T Z.101 (10/2019) 77

NOTE 2 − In Basic SDL-2010 there is no specialization of interfaces, so the check in b) does not apply.

If the output compatibility check operation is not fulfilled, the predefined exception
InvalidReference is raised.

12.1.6 Data type constructors
Data type constructors specify the contents of the sort of a data type, either by enumerating the
elements that constitute the sort or by collecting all data items obtained by constructing a tuple from
elements of given sorts.

Concrete grammar
<data type constructor> ::=
 <literal list>
 | <structure definition>
 | <choice definition>

12.1.6.1 Literals constructor
The literal data type constructor specifies the contents of the sort of a data type by enumerating the
(possibly infinitely many) elements of the sort. The literal data type constructor implicitly defines
operations that allow comparison between the elements of the sort. The elements of a literal sort are
called literals.

Abstract grammar
Literal-signature :: Literal-name
 Result
 Literal-natural

Literal-natural = Nat

Literal-name = Name

Each Literal-signature in the Literal-signature set of a Value-data-type-definition shall have a
different Literal-natural.

Concrete grammar
<literal list> ::=
 literals <literal signature> { , <literal signature> }* <end>

<literal signature> ::=
 <literal name>
 | <named number>

<literal name> ::=
 <literal name or number>

<named number> ::=
 <literal name> <equals sign> <Natural simple expression>

In a Literal-signature, the Result is the sort introduced by the <data type definition> defining the
<literal signature>.
The Literal-name is unique within the defining scope unit in the abstract syntax even if the
corresponding <literal name> is not unique. The unique Literal-name is derived from:
a) the <literal name>; plus
b) the sort identifier of the data type definition in which the <literal name> is defined.
The Natural simple expression value of the <Natural simple expression> occurring in a
<named number> represents the Literal-natural of the Literal-signature.
Each <literal name> in a <literal list> is given the lowest possible Natural simple expression value
for the Literal-natural of the Literal-signature not occurring for any other <literal signature>s of the

78 Rec. ITU-T Z.101 (10/2019)

same <literal list>, considering the <literal name>s one by one from left to right. The result is, for
example,
 literals B, A = 2, C, D;

has B < C , C < A , A < D , num(C) = 1, num(D) = 3

Semantics
Each element in the sort is represented by a Literal-signature and has a Literal-natural that has a
corresponding Natural simple expression value.
The result of the generic operator equal is true if and only if its two operands represent the same
Literal-signature (that is, they represent the same element of the sort). The result of the generic
operator copy is the same as the actual argument value.

Additional generic operators exist for a sort defined by a constructor that creates a Literal-signature
set, as follows:
a) an operator that gives the position of each data item in the ordering as the corresponding

Natural simple expression value;
b) operators that compare two data items with respect to the established ordering; and
c) operators that return the first, last, next or previous data item in the ordering.
For a sort named S that is defined by a constructor that creates a Literal-signature set, there is a
Static-operation-signature list equivalent to the following:
 num (S) -> Natural;
 "<" (S, S) -> Boolean;
 ">" (S, S) -> Boolean;
 "<=" (S, S) -> Boolean;
 ">=" (S, S) -> Boolean;
 first -> S;
 last -> S;
 succ (S) -> S;
 pred (S) -> S;

where Boolean is the predefined Boolean sort and Natural is the predefined Natural sort, and the
parameters and the results correspond to an Aggregation-kind of PART.
The operator num returns the Natural simple expression value corresponding to the Literal-natural
of the literal.
The comparison operators "<" (">","<=",">=") represent the standard less-than (greater-than,
less-or-equal-than, and greater-or-equal-than) comparison between the Natural simple expression
values corresponding to each Literal-natural of the two literals. The operator first returns the first
data item in the ordering (the literal with the lowest Natural simple expression value corresponding
to the Literal-natural). The operator last returns the last data item in the ordering (the literal with
the highest Natural simple expression value corresponding to the Literal-natural). The operator
pred returns the preceding data item (that is, the literal with the highest Literal-natural that is less
than the Literal-natural corresponding to the actual parameter), if one exists, or the same as the
operator last, otherwise. The operator succ returns the successor data item (that is, the literal with
the lowest Literal-natural that is greater than the Literal-natural corresponding to the actual
parameter) in the ordering, if one exists, or the same as the operator first, otherwise.

12.1.6.2 Structure data types
The structure data type constructor specifies the contents of a sort by forming the Cartesian product
of a set of given sorts. The elements of a structure sort are called structures. The structure data type
constructor implicitly defines operations that construct structures from the elements of the
component sorts, projection operations to access the component elements of a structure, as well as
operations to update the component elements of a structure.

 Rec. ITU-T Z.101 (10/2019) 79

Concrete grammar
<structure definition> ::=
 struct [<field list>] <end>

<field list> ::=
 <field> { <end> <field> }*

<field> ::=
 | <optional field>
 | <mandatory field>

<optional field> ::=
 <fields of sort> optional

<mandatory field> ::=
 <fields of sort> [<field default initialization>]

<fields of sort> ::=
 <field of kind> <field sort>

<field of kind> ::=
 <aggregation kind> <field name>

<field default initialization> ::=
 default <constant expression>

<field sort> ::=
 <sort>

NOTE 1 − The <field name> of a structure sort has to be a <name>, whereas in SDL-2000 it is a name or a
number (an <integer name> or a <real name>).

Each <field name> of a structure sort shall be different from every other <field name> of the same
<structure definition>.
The <structure definition> for a structure S represents (in the Operation-signature set of the
Data-type-definition for S):
a) in the absence of data type specialization (see [ITU-T Z.104] clause 12.1.9), if no operator

named Make is given with an Operation-result that is the Sort-reference-identifier of the S
structure sort (an S structure result), an Operation-signature for a generic operator named
Make with:
i. a Formal-argument list where each item is the Sort-reference-identifier of the

corresponding (in order) <field name> if the referenced <field> does not contain
optional and does not contain a <field default initialization>;,

ii. an Operation-result that is the S structure result;
iii. the procedure identified by the Operation-signature having each formal parameter of

its Parameter-aggregation derived from the <aggregation kind> of the corresponding
<field name>, and a Result-aggregation that is PART.

b) if data type specialization is present, [ITU-T Z.104] applies and the Operation-signature for
a generic operator named Make is determined as described in [ITU-T Z.104] clause
12.1.6.2.

c) for each field, if the <field name> is fn and the <field sort> is fs, an Operation-signature
for the <operation signature>
fnExtract (S) -> fs;
for a generic operator where
fnExtract is a field-extract-name formed from the concatenation of the field name and
"Extract",
and in the procedure identified by the Operation-signature
S is an in/out parameter with PART Parameter-aggregation for S
and the Result-aggregation is derived from the <aggregation kind> field fn.

80 Rec. ITU-T Z.101 (10/2019)

NOTE 3 − A special syntax is provided as described in clause 12.2.3. To use fnExtract to extract the value
of field fn from a structure variable vs and assign the value to Variable (a variable with the sort of field fn),
the notation is:
 Variable := vs.fn;

d) for each field, if the <field name> is fn and the <field sort> is fs, an Operation-signature
for the <operation signature>
fnModify (S, fs) -> S;
for a generic operator where
fnModify is a field-modify-name formed from the concatenation of the field name and
"Modify",
and in the procedure identified by the Operation-signature
S is an in/out parameter with PART Parameter-aggregation,
fs is an in parameter with Parameter-aggregation derived from the <aggregation kind> of
field fn,
and the Result-aggregation is PART.

NOTE 4 − A special syntax is provided as described in clause 12.3.3.1. To use fnModify to assign the value
of Variable (a variable with the sort of field fn) to field fn of a structure variable vs, the notation is:
 vs.fn := FieldValue;
e) for each field, if the <field name> is fn, an Operation-signature for the <operation

signature>
fnPresent (S) -> <<package Predefined>>Boolean;
for a generic operator where

 fnPresent is a field-present-name formed from the concatenation of the field name and
"Present",
and in the procedure identified by the Operation-signature
S is an in/out parameter with PART Parameter-aggregation,
and the Result-aggregation is PART.

NOTE 5 – In SDL-2000 fnPresent is only defined if the field is optional or has a default value.
f) an Operation-signature for a generic operator named Undefined based on the <operation

signature>
Undefined (S)-> <<package Predefined>>Boolean;
which is true if the structure is "undefined": that is, every field of the structure is
"undefined",
and in the procedure identified by the Operation-signature
S is an in/out parameter with PART Parameter-aggregation,
and the Result-aggregation is PART.

Semantics
A structure sort has elements that are all the tuples constructed from data items belonging to the
sorts given in the field list. An element of a structure sort has as many component elements as there
are fields in the field list. An optional field is a field that does not have to be present. The associated
operations determine the semantics of the structures sort.
The result of the generic operator equal is true if and only if for each field of the structure sort:
a) the field is not present in both operands of equal; or
b) the field is present in both operands of equal, and equal for the sort of the field between

the values of the field in two structures is true.

The generic operator copy behaves as if the following is interpreted:
a) a new structure is created in which each field has no value (it is "undefined"); then
b) for each field that is present in the operand of copy, the corresponding field of the structure

is associated with the data item associated with that field in the operand of copy;

 Rec. ITU-T Z.101 (10/2019) 81

c) for each field that is not present in the operand of copy, and the corresponding field of the
structure has a default initialization, the field of the structure is associated with the data
item for that field in the default initialization.

Additional generic operations exist for the sort defined as a structure as follows:
a) operations to create structure values;
b) operations to modify structures and to access component data items of structures values;

and
c) an operation to test for the presence of optional component data items in structures values,

or if the structure is "undefined".
A Make operation with an empty Formal-argument list creates a structure value with values
associated with fields that have default initialization and all other fields "undefined".
A Make operation with a non-empty Formal-argument list creates a new structure and associates
each field with the result of the corresponding formal parameter, or if no actual argument is given
for the field, the default initialization for that field, or "undefined" if there is no default initialization
for the field.
If, during interpretation, a field of a structure is "undefined", applying the operation to access this
field (with a field-extract-name) to the structure causes the predefined exception UndefinedField
to be raised. Otherwise, the operation to access a field returns the data item associated with that
field. The value associated with a structure is not changed by interpretation of the operation to
access a field of the structure.
The operation to modify a field (with a field-modify-name) associates the field with the result of its
argument Expression. The value associated with the structure after interpreting the operation has the
field associated with the argument value, but no change to the value associated with any other field.
The operation to test for the presence of a field data item based on the field name (with a
field-present-name) returns the predefined Boolean value false if this field is "undefined", and the
predefined Boolean value true otherwise. The value associated with a structure is not changed by
interpretation of the operation to test presence of a field of the structure.
The Undefined operation tests if the structure is "undefined", and returns the Boolean value true if
each of the fields of the structure is "undefined". The value associated with a structure is not
changed by interpretation of the operation to test if the structure is "undefined".

12.1.6.3 Choice data types
A choice data type constructor is a notation for defining data type similar to a structure type with all
fields optional, and that every data item always has at most one component field present or no fields
present at all.

Concrete grammar
<choice definition> ::=
 choice [<choice list>] <end>

<choice list> ::=
 <choice of sort> { <end> <choice of sort> }*

<choice of sort> ::=
 <aggregation kind> <field name> <field sort>

NOTE 1 − The <field name> of a choice sort has to be a <name>, whereas in SDL-2000 it is a name or a
number (an <integer name> or a <real name>).

Each <field name> of a choice sort shall be different from every other <field name> of the same
<choice definition>.

82 Rec. ITU-T Z.101 (10/2019)

The <choice definition> for a choice sort C represents (in the Operation-signature set of the
Data-type-definition for C):
a) an Operation-signature for a generic operator named Make with an empty Formal-argument

list and an Operation-result that is the Sort-reference-identifier of the C choice sort, and the
procedure identified by the Operation-signature has a Result-aggregation that is PART.

b) for each field, if the <field name> is fn and the <field sort> is fs, an Operation-signature
for the operation signature
fn (fs) -> C;
for a generic field association operator where
fn is a field-associate-name which is the same as the field name,
and in the procedure identified by the Operation-signature
fs is an in parameter with Parameter-aggregation derived from the <aggregation kind> of
field fn,
and Result-aggregation is PART.

c) for each field, if the <field name> is fn and the <field sort> is fs, an Operation-signature
for the <operation signature>
fnExtract (C) -> fs;
for a generic operator where
fnExtract is a field-extract-name formed from the concatenation of the field name and
"Extract",
and in the procedure identified by the Operation-signature
C is an in/out parameter with PART Parameter-aggregation,
and Result-aggregation is derived from the <aggregation kind> of field fn.

NOTE 2 − A special syntax is provided as described in clause 12.2.3. To use fnExtract to extract the value
of field fn from a choice variable vc and assign the value to Variable (a variable with the sort of field fn),
the notation is:
 Variable := vc.fn;

d) for each field, if the <field name> is fn and the <field sort> is fs, an Operation-signature
for the <operation signature>
fnModify (C, fs) -> C;
for a generic operator where
fnModify is a field-modify-name formed from the concatenation of the field name and
"Modify",
and in the procedure identified by the Operation-signature
C is an in/out parameter with PART Parameter-aggregation,
fs is an in parameter with Parameter-aggregation derived from the <aggregation kind> of
field fn ,
and Result-aggregation is PART.

NOTE 3 − A special syntax is provided as described in clause 12.3.3.1. To use fnModify to assign the value
of Variable (a variable with the sort of field fn) to field fn of a choice variable vc, the notation is:
 vc.fn := FieldValue;

e) for each field, if the <field name> is fn, an Operation-signature for the <operation
signature>
fnPresent (C) -> <<package Predefined>>Boolean;

 for a generic operator where
fnPresent is a field-present-name formed from the concatenation of the field name and
"Present",
and in the procedure identified by the Operation-signature
C is an in/out parameter with PART Parameter-aggregation,

 and Result-aggregation is PART.

 Rec. ITU-T Z.101 (10/2019) 83

f) an Operation-signature for a generic operator named PresentExtract based on the
<operation signature>
PresentExtract (C)-> AnonPresent;

 where AnonPresent is defined as a literal constructor data type that uses the field names of
the choice as literals as described below,
and in the procedure identified by the Operation-signature
C is an in/out parameter with PART Parameter-aggregation,
and Result-aggregation is PART.

g) an Operation-signature for a generic operator named Undefined based on the <operation
signature>
Undefined (C)-> <<package Predefined>>Boolean;
which is true if the choice is "undefined",
and in the procedure identified by the Operation-signature
where C is an in/out parameter with PART Parameter-aggregation,
and Result-aggregation is PART.

The <choice definition> for a choice sort C also represents an additional (anonymous)
Data-type-definition, that for description above is called AnonPresent. This Data-type-definition is
placed in the Data-type-definition for C, therefore both AnonPresent and its contained Literal-
signature-set are visible where C is visible. This is defined with a Literal-signature-set where each
<field name> of the choice sort C represents a Literal-signature. The order of the literals is the same
as the order in which the <field name>s are specified left to right in the choice sort C. The purpose
of this data type is to allow the operation PresentExtract with a result that corresponds to the
field name. The name of this data type being unknown prevents it being used for other purposes.

Semantics
A choice sort has elements that contain information about the current field that the choice holds,
and the value of that field. If any field of the choice is assigned a value, the previous value is lost
regardless of which field it was in.
The result of the generic operator equal is true if and only if:
a) the field present in both operands of equal is the same field; and
b) equal for the sort of the field between the values of the field in the two choices is true.
NOTE 4 – If either operand of equal is "undefined", the predefined exception UndefinedField is raised
when the operand is accessed.

The generic operator copy behaves as if the following is interpreted:
a) a new choice is created (each field has no value – it is "undefined"); then
b) for the field that is present in the operand of copy, the corresponding field of the choice is

associated with the data item associated with that field in the operand of copy.
NOTE 5 – If the operand of copy is "undefined" – that is, every field is "undefined" – the predefined
exception UndefinedField is raised when the operand is accessed.

Additional generic operations exist for the sort defined as a choice as follows:
a) operations to create a choice;
b) operations to modify a choice and to access the current choice field; and
c) operations to test for the presence of a particular choice field, or if the choice is

"undefined", which field is present.
The Make operation for a choice creates an "undefined" choice value, which is assignable to a
choice variable. Every field of such a choice value is "undefined". Applying an operation to access

84 Rec. ITU-T Z.101 (10/2019)

any field of an "undefined" choice value or to determine which field is present in an "undefined"
choice value raises the predefined exception UndefinedField.

The generic field association operator (with a field-associate-name) creates a choice value where
the field with the same name is associated with the result of its argument Expression. The result is
assignable to a choice variable. Every other field of such a choice value is "undefined". Applying an
operation to access any "undefined" field of the choice value raises the predefined exception
UndefinedField.
NOTE 6 – Applying the generic field association operator for the choice has the same result as applying the
operation to modify the specified field with the given field value Expression to the result of Make operation
for the choice.

If, during interpretation, the field of a choice is "undefined", applying the operation to access this
field (with a field-extract-name) to the choice causes the predefined exception UndefinedField to
be raised. Otherwise, the operation to access a field returns the data item associated with that field.
The value associated with a choice is not changed by interpretation of the operation to access a field
of the choice.
The operation to modify a field (with a field-modify-name) associates the field with the result of its
argument Expression. The choice value after interpreting the operation is not "undefined" and has
the field associated with the argument value, and all other fields are "undefined".
The operation to test for the presence of a field data item based on the field name (with a
field-present-name) returns the predefined Boolean value false if this field is "undefined", and the
predefined Boolean value true otherwise. The value associated with a choice is not changed by
interpretation of the operation to test presence of a field of the choice.
The Undefined operation tests if the structure is "undefined", and returns the Boolean value true if
each of the fields of the structure is "undefined". The value associated with a structure is not
changed by interpretation of the Undefined operation.

If, during interpretation, the field of a choice is "undefined", testing which field is present by the
application of the PresentExtract operation to the choice causes the predefined exception
UndefinedField to be raised. Otherwise, the PresentExtract operation returns the value of the
AnonPresent sort with the same name as the field that is present. The value associated with a
structure is not changed by interpretation of the PresentExtract operation.

12.1.7 Behaviour of operations
A <data type definition> allows operations to be added to a data type. The behaviour of operations
is defined in a manner similar to value returning procedure calls. The operations of a data type
never access or change the global state of the input queues of the agents in which they are called,
therefore only contain a single transition. Otherwise an operation behaves as a restricted kind of
procedure and the Concrete grammar represents Abstract grammar and Semantics that are
described in clause 9.4.

Concrete grammar
<operation definitions> ::=
 <operation definition item>*

<operation definition item> ::=
 <operation reference>

<operation heading> ::=
 operator [<qualifier>] <operation name>
 [<formal operation parameters>]
 [<operation result>]

 Rec. ITU-T Z.101 (10/2019) 85

If the <operation name> of the <operation heading> is a <quoted operation name> that is
<quotation mark> <equals sign> <quotation mark> or is <quotation mark> <not equals sign>
<quotation mark>, the number of <formal operation parameters> shall be less than one or greater
than two.
NOTE 1 − It is not allowed to define an operation with two parameters and an <operation name> that is
<quotation mark> <equals sign> <quotation mark> or <quotation mark> <not equals sign>
<quotation mark>. This avoids any ambiguity between an Operation-application and an Equality-expression
for the generic equal operator.
<operation identifier> ::=
 [<qualifier>] <operation name>

<formal operation parameters> ::=
 [<end>] fpar <formal variable parameters> {, <formal variable parameters> }*

NOTE 2 − The syntax of SDL-2000 that uses round brackets rather than fpar is in [ITU-T Z.104].

The list of <variable name>s of the <parameters of sort> of the <formal variable parameters> is
considered to bind tighter than the list of <formal variable parameters> within
<formal operation parameters>.
<operation result> ::=
 returns <result aggregation> <sort>

<operation diagram> ::=
 <operation page>

<operation page> ::=
 <frame symbol> contains {
 <operation heading> <page number area>
 { <operation text area>* <operation body area> }set }
 [is associated with <package use area>]

<operation body area> ::=
 { [<procedure start area>]
 { <in connector area> }* } set

NOTE 3 − The <procedure start area> of an <operation body area> is optional only if the diagram has
multiple pages (see [ITU-T Z.104]).
<operation text area> ::=
 <text symbol> contains
 { <data definition>
 | <variable definition> }*

The <package use area> shall be placed on the top of the <frame symbol>.
For each <operation signature> at most one corresponding <operation diagram> is given.
<operation body area> shall contain neither an <imperative expression> nor an <identifier> defined
outside the enclosing <operation diagram>, except for <operation identifier>s, <literal identifier>s
and <sort>s.
In Basic SDL-2010 the <operation diagram> shall have a corresponding <operation signature> in
the <operations> of the data type, which represents the corresponding Operation-signature.
An <operation diagram> represents a Procedure-definition in the Procedure-definition-set of the
directly enclosing Data-type-definition. The Procedure-name of the Procedure-definition is an
anonymous unique name, and the Procedure-definition is associated with the Operation-signature
by the Procedure-identifier in the Operation-signature. The <formal operation parameters> list for
the operator represents the Procedure-formal-parameter list of the Procedure-definition in the same
way as the formal parameters for a procedure. The <operation result> represents the Result of the
Procedure-definition, therefore the <result aggregation> represents the Result-aggregation. The
components of the <operation body area> are used in the same way as the components of a

86 Rec. ITU-T Z.101 (10/2019)

<procedure body area> to represent the Data-type-definition-set, Syntype-definition-set,
Variable-definition-set, Procedure-definition-set and Procedure-graph of the Procedure-definition.

Semantics
An operator is a procedure with an anonymous unique Procedure-name and a Procedure-definition
in a directly enclosing Data-type-definition, where the Procedure-definition is associated with the
Operation-signature for the operator by the Procedure-identifier in the Operation-signature for the
operator in the Data-type-definition.
An operator is a constructor for elements of the sort identified by the result. Usually the same
element of the sort is constructed by several operators and there is no unique set of constructor
operators for a sort, though literal operators are usually considered the prime constructor for the
literal they represent: for example, true and false for Boolean.

An operator shall not modify actual parameters or any items defined outside the scope of the
operator.
An operation is a scope unit defining its own data and variables that are allowed to be manipulated
inside the operation.
Variables introduced in formal parameters (that is, the corresponding Procedure-formal-parameter
list) are local variables of the operation, and modification within the operation is allowed.
If an operation contains informal text, the interpretation of expressions involving the application of
the corresponding operation is not formally defined by the Specification and Description Language
but is determined from the informal text by the interpreter. If informal text is specified, a complete
formal specification has not been given in the Specification and Description Language.

12.1.8 Additional data definition constructs
This subclause introduces further constructs for data.

12.1.8.1 Syntypes
A syntype specifies a subset of the elements of a sort. A syntype used as a sort has the same
semantics as the sort referenced by the syntype except for checks that data items belong to the
specified subset of the elements of the sort.

Abstract grammar
Syntype-identifier = Identifier

Syntype-definition :: Syntype-name
 Parent-sort-identifier
 Range-condition
 [Default-initialization]

Syntype-name = Name

Parent-sort-identifier = Sort-identifier

Concrete grammar
<syntype> ::=
 <syntype identifier>

<syntype definition> ::=
 {<package use clause>}* { <syntype definition syntype> }

<syntype definition syntype> ::=
 syntype <syntype name> <equals sign> <parent sort identifier>
 { [<comment body>] <left curly bracket>
 [{ <default initialization> [[<end>] <constraint>] | <constraint> } <end>]
 <right curly bracket>
 }

 Rec. ITU-T Z.101 (10/2019) 87

A <comment body> is a form of annotation and has no formal semantic meaning.
NOTE 1 − Each <syntype name> has to be a <name>, whereas in SDL-2000 it is a name or a number
(an <integer name> or a <real name>).
<parent sort identifier> ::=
 <sort>

A <syntype> is an alternative for a <sort>.
A <syntype definition> with <syntype definition syntype> corresponds to a Syntype-definition in
the abstract syntax.
When a <syntype identifier> is used as a <sort> in <arguments> when defining an operation, the
sort for the corresponding Formal-argument is the Parent-sort-identifier of the syntype.
When a <syntype identifier> is used as a result of an operation, the sort of the Operation-result is
the Parent-sort-identifier of the syntype.
When a <syntype identifier> is used as a qualifier for a name, the Qualifier is the Parent-sort-
identifier of the syntype.
If the <constraint> is omitted, the <syntype identifier>s for the syntype are in the Abstract grammar
represented as the Parent-sort-identifier.
If a <constraint> could be interpreted as either belonging to the <default initialization> or the
<syntype definition>, it shall be considered part of the <default initialization>.
When a syntype is specified in terms of <syntype identifier>, the two syntypes shall not be mutually
defined: that is, the <parent sort identifier> of a <syntype definition> shall not refer directly or
indirectly to the identity of the syntype being defined.

Semantics
A syntype definition defines a syntype, which identifies a sort identifier (Parent-sort-identifier) and
has a constraint (Range-condition). Specifying a syntype identifier is the same as specifying the
parent sort identifier of the syntype, except for the following cases:
d) assignment to a variable declared with a syntype (see clause 12.3.3);
e) output of a signal if one of the sorts specified for the signal is a syntype (see clause 10.3

and clause 11.13.4);
f) calling a procedure when one of the sorts specified for the procedure in parameter variables

is a syntype (see clause 9.4 and clause 11.13.3);
g) creating an agent when one of the sorts specified for the agent parameters is a syntype

(see clauses 9.2, 9.3 and 11.13.2);
h) input of a signal and one of the variables associated with the input has a sort that is a

syntype (see a));
i) calling an operation application that has a syntype defined as either an argument sort or a

result sort (see clause 12.2.6);
j) set or reset clause or active expression on a timer and one of the sorts in the timer definition

is a syntype (see clause 11.15 and clause 12.3.4.3);
k) procedure formal context parameter with an in/out or out parameter in a

procedure signature matched with an actual context parameter, where the corresponding
formal parameter or the in/out or out parameter in the procedure signature is a syntype (see
[ITU-T Z.102]; context parameters are not allowd in Basic SDL-2010).

A syntype has a sort which is the sort identified by the Parent-sort-identifier given in the syntype
definition.

88 Rec. ITU-T Z.101 (10/2019)

A syntype has a Range-condition that constrains the sort. If a range condition is used, the sort is
constrained to the set of data items specified by the constants of the syntype definition. If a size
constraint is used, the sort is constrained to contain data items given by the size constraint.

12.1.8.2 Constraint

Abstract grammar
Range-condition :: Condition-item-set

Condition-item = Open-range | Closed-range | Size-constraint

Open-range :: Operation-identifier
 Constant-expression

Closed-range :: Constant-expression
 Constant-expression

Size-constraint :: Operation-identifier
 { Open-range | Closed-range }*

Concrete grammar
<constraint> ::=
 constants (<range condition>)
 | <size constraint>

<range condition> ::=
 <range> { , <range> }*

<range> ::=
 <closed range>
 | <open range>

<closed range> ::=
 <constant> { <colon> | <range sign> } <constant>

<open range> ::=
 <constant>
 | <open range with operator>

<open range with operator> ::=
 { <equals sign>
 | <not equals sign>
 | <less than sign>
 | <greater than sign>
 | <less than or equals sign>
 | <greater than or equals sign> } <constant>

<size constraint> ::=
 size (<range condition>)

<constant> ::=
 <constant expression>

The syntype of a <range condition> in a <constraint> of a data type definition (including inline
definitions and <basic sort> with a <range condition>) is the syntype defined by the data type
definition. The syntype for a <range condition> in a <size constraint> is Natural. The syntype or
data type of a <range condition> in an <answer> is the syntype or data type of the corresponding
<question>.
The symbol "<" shall only be used in the concrete syntax of the <range condition> if that symbol
has been defined with an <operation signature>:
 "<" (P, P) -> <<package Predefined>>Boolean;

where P is the sort of the syntype or data type for the context of the <range condition>, and
similarly for the symbols ("<=", ">", ">=", respectively). These symbols represent Operation-
identifier.

 Rec. ITU-T Z.101 (10/2019) 89

A <closed range> shall only be used if the symbol "<=" is defined with an <operation signature>:
 "<=" (P, P) -> <<package Predefined>>Boolean;

where P is the sort of the syntype or data type for the context of the <range condition>.

A <constant expression> in a <range condition> shall have the same sort as the sort of the syntype.
A <size constraint> shall only be used in the concrete syntax of a <constraint> if length has been
defined as an operation with the <operation signature>:
 length (in P) -> <<package Predefined>>Integer;

where P is the sort of the syntype for the context of the <constraint>.

A <constraint> defines a range check: that is, the Range-condition operation to be applied. The
range check is derived as follows where constant, and secondconstant are <constant> items, and
RC is a <range condition> item:
a) Each <open range> or <closed range> or <size constraint> in the <constraint> has a

corresponding Open-range or Closed-range or Size-constraint in the Condition-item-set.
b) An <open range> of the form constant is equivalent to an <open range> of the form =

constant.
c) For a given expression, A, then:

1) an <open range> of the form = constant, /= constant, < constant,
<= constant, > constant, and >= constant has sub-expression in the range check
of the form A = constant, A /= constant, A < constant, A <= constant,
A > constant, and A >= constant, respectively;

2) <closed range> of the form constant : secondconstant has a sub-expression in the
range check of the form ((constant <= A) and (A <= secondconstant)) where
"and" is the predefined Boolean "and" operator;

3) a <size constraint> of the form size (RC) has a corresponding Size-constraint in the
Condition-item-set where the Operation-identifier identifies an implicit operator with
an anonymous unique name in the sort P of the syntype for the range check, with a
formal parameter A of sort P, a Boolean result and a body which is a value return that
is a distributed "or" (see (d) below) over sub-expressions of the form:
i) length(A) = OP, for each <open range> OP in RC of the form constant;
ii) length(A) OP, for each <open range> OP in RC of the form = constant,

/= constant, < constant, <= constant, > constant, and >= constant;
iii) ((constant <= length(A)) and (length(A) <= secondconstant)) where

"and" is the predefined Boolean "and" operator, for each <closed range> in RC of
the form constant : secondconstant.

d) The predefined Boolean "or" operation is used as a distributed operation over sub-
expressions by inserting or between sub-expressions (that is, for expressions A B C…, a
distributed operation of the form A or B or C …). The range check is the expression
formed from this distributed operation over all the sub-expressions corresponding to the
Condition-item-set.

If a syntype is specified without a <constraint> then the range check is the predefined Boolean
value true.

Semantics
A range check is used when a syntype has additional semantics to the sort of the syntype
(see clause 12.3.1, clause 12.1.8.1 and the cases where syntypes have different semantics − see the

90 Rec. ITU-T Z.101 (10/2019)

subclauses referenced in items a) to h) under Semantics in clause 12.1.8.1). A range check is also
used to determine the interpretation of a decision (see clause 11.13.5).
The range check is the application of the operation formed from the Range-condition.
For syntype range checks, the application of this operation shall be equivalent to the predefined
Boolean value true; otherwise, the predefined exception OutOfRange is raised.

12.2 Use of data
This clause defines the general grammar for expressions and how sorts, literals and operators are
interpreted in expressions. The use of active expressions that depend on variables and dynamic
interpretation is defined in clause 12.3.

12.2.1 Expressions and expressions as actual parameters
The interpretation of an expression gives a value. If this value does not depend on the variables or
other active interpretation (such as imperative expressions) the result is a constant value, and the
expression is considered to be "passive". Some kinds of expression (such as a literal for a value) are
always passive. Other kinds (such as a variable access) always depend on interpretation and are
considered "active". Several kinds (such as the application of an operation) have other expressions
as elements and are only passive if all the elements are passive, and therefore have a common
concrete grammar. For that reason the abstract grammar for both passive Constant-expression and
Active-expression is presented here with the common concrete grammar.
A simple expression is a special kind of constant expression that only uses sorts of data defined in
the Predefined package.

The abstract grammar of the language has several places where a list of expressions is required as
actual parameters for other constructs. The general grammar for these actual parameters is placed
here because they are lists of expressions, but additional grammar is applied in the different
contexts where the lists are used.
The non-canonical concrete syntax form is given below to avoid extending the <expression> syntax
in [ITU-T Z.104] to incorporate the very commonly used familiar infix and prefix forms. The
canonical form of the <expression> syntax removes the application of infix and prefix operators
such as and, or, rem, not, <plus sign> and <concatenation sign> and replaces these with the
equivalent <operation application>. For example: A and B is replaced by "and"(A,B); I + J is
replaced by "+"(I,J).

Abstract grammar
Expression = Constant-expression
 | Active-expression

Constant-expression :: Literal
 | Conditional-expression
 | Equality-expression
 | Operation-application
 | Range-check-expression

Active-expression :: Variable-access
 | Conditional-expression
 | Operation-application
 | Equality-expression
 | Imperative-expression
 | Range-check-expression
 | Value-returning-call-node

 Rec. ITU-T Z.101 (10/2019) 91

Actual-parameters :: { Expression | UNDEFINED }*

The length of the list of Expression and UNDEFINED elements in Actual-parameters shall match
the number of elements required in the context Actual-parameters, if used. In general there is a
corresponding list of formal parameters that determines the number of required elements, and each
element that is an Expression in Actual-parameters shall be compatible with the sort of the
corresponding by position formal parameter.

Concrete grammar
For simplicity of description, no distinction is made between the concrete syntax of
Constant-expression and Active-expression.
<expression> ::=
 <expression0>
 | <range check expression>

<expression0> ::=
 <operand>
 | <value returning procedure call>

<operand> ::=
 <operand0>
 | <operand> <implies sign> <operand0>

<operand0> ::=
 <operand1>
 | <operand0> { or | xor } <operand1>

<operand1> ::=
 <operand2>
 | <operand1> and <operand2>

<operand2> ::=
 <operand3>
 | <operand2> { <greater than sign>
 | <greater than or equals sign>
 | <less than sign>
 | <less than or equals sign>
 | in } <operand3>
 | <equality expression>

<operand3> ::=
 <operand4>
 | <operand3> { <plus sign> | <hyphen> | <concatenation sign> } <operand4>

<operand4> ::=
 <operand5>
 | <operand4> { <asterisk> | <solidus> | mod | rem } <operand5>

<operand5> ::=
 [<hyphen> | not] <primary>

<primary> ::=
 <operation application>
 | <literal>
 | (<expression>)
 | <conditional expression>
 | <extended primary>
 | <active primary>

<active primary> ::=
 <variable access>
 | <imperative expression>

<expression list> ::=
 <expression> { , <expression> }*

92 Rec. ITU-T Z.101 (10/2019)

<simple expression> ::=
 <constant expression>

A <simple expression> shall contain only literals, and operations defined within the package
Predefined, as defined in [ITU-T Z.104].
<constant expression> ::=
 <constant expression0>

<actual parameters> ::=
 (<actual parameter list>)

<actual parameter list> ::=
 [<actual parameter>] { , [<actual parameter>] }*

<actual parameter> ::=
 <expression>

If an <actual parameter> is omitted in the <actual parameter list> of <actual parameters>, this
represents UNDEFINED in the abstract syntax, otherwise the <expression> of the <actual
parameter> represents the Expression in the corresponding position in the Actual-parameters list. If
the list of items in the <actual parameter list> of <actual parameters> is shorter than the list required
in the abstract syntax, this represents additional UNDEFINED elements in the abstract syntax to
make the list the correct length. Therefore, it is allowed to omit trailing commas in the <actual
parameter list> of <actual parameters>. The <actual parameter list> of <actual parameters> shall
not be longer than the list required in the abstract syntax.
An <expression0> that does not contain any <active primary>, or a
<value returning procedure call> is a <constant expression0>. A <constant expression0> represents
a Constant-expression in the abstract syntax.
An <expression> that is not a <constant expression> represents an Active-expression.
If an <expression> contains an <extended primary>, the <extended primary> is replaced at the
concrete syntax level as defined in clause 12.2.3 before relationship to the abstract syntax is
considered.
<operand>, <operand1>, <operand2>, <operand3>, <operand4> and <operand5> offer special
syntactic forms for operation names. The special syntax is introduced, for example, so that
arithmetic operations and Boolean operations have their usual syntactic form. That is, the user
writes "(1 + 1) rem 2" rather than being forced to use, for example, rem(add(1,1),2). Which sorts
are valid for each operation will depend on the data type definition.
An <infix operation name> in an expression has the normal semantics of an operation but with infix
or quoted prefix syntax.
A <monadic operation name> in an expression has the normal semantics of an operation but with
the prefix or quoted prefix syntax.
The order of precedence of <infix operation name> items determines the binding of operations.
When the binding is ambiguous, then binding is from left to right.

Semantics
When an expression is interpreted, it returns a data item (a value or pid). The returned data item is
referred to as the result of the expression.
The (static) sort of an expression is the sort of the data item that would be returned by the
interpretation of the expression as determined from analysis of the specification without
consideration of the interpretation semantics.
NOTE 1 − In this Recommendation, [ITU-T Z.102], [ITU-T Z.103] and [ITU-T Z.104] only static sorts
occur, but they are written so that the language they define is extensible for object-oriented data where
polymorphism might occur. Therefore to avoid cumbersome text, the word "sort" always refers to a static

 Rec. ITU-T Z.101 (10/2019) 93

sort, but for clarity, "static sort" is written explicitly in some cases where it is anticipated the interpretation
might differ if the expression is polymorphic.

Expressions have an aggregation kind, which is propagated from the leaf nodes of an expression
tree. Unless otherwise indicated, the aggregation kind of an expression is the aggregation kind of
the data item returned by the interpretation of the expression.
NOTE 2 − In this Recommendation, [ITU-T Z.102], [ITU-T Z.103] and [ITU-T Z.104] only PART
aggregation kind occurs.

Each Constant-expression is interpreted once during initialization of the system, and the result of
the interpretation is preserved. Whenever the value of the Constant-expression is needed during
interpretation, a complete replicate of that computed value is used.
When an Actual-parameters list is interpreted, each Expression is interpreted and is assigned to the
formal parameter before the next Expression to the right is interpreted. If the sort of the formal
parameter is a syntype, the range check defined in clause 12.1.8.2 is applied to the result of the
Expression. If the range check is the predefined Boolean value false at the time of interpretation,
then the predefined exception OutOfRange is raised instead of interpreting further actual parameters
or further interpretation where the Actual-parameters list is used. For each UNDEFINED element
in the Actual-parameters list, the corresponding formal parameter has no data associated with it:
that is, it is "undefined".

Model
An expression of the form:
 <expression> <infix operation name> <expression>

is derived syntax for:
 <quotation mark> <infix operation name> <quotation mark> (<expression>, <expression>)

where <quotation mark> <infix operation name> <quotation mark> represents an Operation-name.
Similarly,
 <monadic operation name> <expression>

is derived syntax for:
 <quotation mark> <monadic operation name> <quotation mark> (<expression>)

where <quotation mark> <monadic operation name> <quotation mark> represents an
Operation-name.

12.2.2 Literal

Abstract grammar
Literal :: Literal-identifier

Literal-identifier = Identifier

The Literal-identifier identifies a Literal-signature.

Concrete grammar
<literal> ::=
 <literal identifier>

<literal identifier> ::=
 [<qualifier>] <literal name>

Whenever a <literal identifier> is specified, the unique Literal-name in Literal-identifier is derived
in the same way, with the result sort derived from context. A Literal-identifier is derived from
context (see clause 6.2) so that if the <literal identifier> is overloaded (that is, the same name is
used for more than one literal or operation), then the Literal-name identifies a visible literal with the

94 Rec. ITU-T Z.101 (10/2019)

same name and result sort consistent with the literal. If there are two literals with the same <name>
but differing by result sorts, each has a different Literal-name.
It shall be possible to bind each unqualified <literal identifier> to exactly one sort that satisfies the
conditions in the construct in which the <literal identifier> is used.
Wherever a <qualifier> of a <literal identifier> ends with a <path item> with the keyword type,
then the <sort name> is used as the result sort to derive the unique Name of the Identifier. The
Qualifier is formed in the usual way from <qualifier>, therefore the <sort name> after the keyword
type is used for both the Qualifier and deriving the Name of the Identifier.

Semantics
A Literal returns the unique data item corresponding to its Literal-signature.
A Literal has an aggregation kind, which is always PART.
The sort of the Literal is the Result in its Literal-signature.

12.2.3 Extended primary
An extended primary is a shorthand syntactic notation. Apart from the special syntactic form, an
extended primary has no special properties and denotes an operation and its parameter(s). The
application of Extract operations (for indexing), field extract operations for structure and choice
data type, and the Make operation are the canonical form, for example: a[i] becomes
Extract(a,i); s.f1 becomes f1Extract(s); and (.x,y.) becomes Make(x,y).

Concrete grammar
<extended primary> ::=
 <indexed primary>
 | <field primary>
 | <composite primary>

<indexed primary> ::=
 <primary> (<actual parameter list>)
 | <primary> <left square bracket> <actual parameter list> <right square bracket>

NOTE 1 − The square bracket form is preferred because it is distinct from parentheses used for expressions
or operation applications. The two forms are otherwise equivalent.
<field primary> ::=
 <primary> <exclamation mark> <field name>
 | <primary> <full stop> <field name>

NOTE 2 − The <full stop> form is most similar to field selection in other languages, but is not always as
obvious and distinct as use of an <exclamation mark>, so the latter is preferred. The two forms are otherwise
equivalent.
<field name> ::=
 <field name>

NOTE 3 − Each <field name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).
<composite primary> ::=
 [<qualifier>] <composite begin sign> <actual parameter list> <composite end sign>

The <actual parameter list> of an <extended primary> corresponds to the application of operations
and therefore it is not allowed to omit any parameters.

Model
An <indexed primary> is derived concrete syntax for:
 Extract (<primary> , <actual parameter list>)

 Rec. ITU-T Z.101 (10/2019) 95

The abstract syntax is determined from this concrete expression according to clause 12.2.1. For
example, a[i][j] becomes Extract(Extract(a,i),j).
NOTE 4 − Extract is defined for the Predefined data types String, Charstring, Array, Vector,
Bitstring and Octetstring. For these types it has two parameters for the primary expression, and the index
of the element to be extracted.

A <field primary> is derived concrete syntax for:
 field-extract-name (<primary>)

where the field-extract-name is formed from the concatenation of the field name and "Extract" in
that order. The abstract syntax is determined from this concrete expression according to clause
12.2.1.
A <composite primary> is derived concrete syntax for:
 <qualifier> Make (<actual parameter list>)

if any actual parameters were present, or:
 <qualifier> Make

otherwise, and where the <qualifier> is inserted only if it was present in the <composite primary>.
The abstract syntax is determined from this concrete expression according to clause 12.2.1.

12.2.4 Equality expression

Abstract grammar
Equality-expression = Positive-equality-expression | Negative-equality-expression

Positive-equality-expression :: First-operand
 Second-operand

Negative-equality-expression :: First-operand
 Second-operand

First-operand = Expression

Second-operand = Expression

An Equality-expression represents the equality of either values or identities of its First-operand and
its Second-operand.

Concrete grammar
<equality expression> ::=
 <operand2> { <equals sign> | <not equals sign> } <operand3>

An <equality expression> is legal concrete syntax only if the sort of one of its operands is sort
compatible to the sort of the other operand. An <equality expression> using the <equals sign>
represents a Positive-equality-expression. An <equality expression> using the <not equals sign>
represents a Negative-equality-expression. The <operand2> represents a First-operand, and the
<operand3> represents a Second-operand.

Semantics
The Equality-expression returns a predefined Boolean true or false, and has an aggregation kind
PART. The Negative-equality-expression returns false if and only if the Positive-equality-
expression for the same operands returns true.

Interpretation of the Equality-expression proceeds by interpretation of its First-operand and its
Second-operand.
If, after interpretation, both operands are pids (that is, a pid sort or the Pid sort), then the
Equality-expression denotes identity between agents. The Positive-equality-expression returns the
predefined Boolean value true if and only if both operands are either Null or identify the same
agent instance.

96 Rec. ITU-T Z.101 (10/2019)

If, after interpretation, both of the operands are values and the aggregation kind of one of the
operands is PART, the Equality-expression denotes equality of values. The Positive-equality-
expression returns the predefined Boolean value true if both operands are “undefined” (they
access a variable which has no value associated), and predefined Boolean value false if only one
operand is “undefined”. Otherwise, the Positive-equality-expression returns the result of the
application of the equal operator to First-operand and Second-operand, where equal corresponds
to an Operation-signature with its Operation-name derived from equal, two Formal-argument
items of the value sort that is compatible with the two operands, and a result being the predefined
Boolean sort.

12.2.5 Conditional expression
A conditional expression is an expression where a Boolean expression is evaluated to determine
whether to interpret a consequence or an alternative expression.

Abstract grammar
Conditional-expression :: Boolean-expression
 Consequence-expression
 Alternative-expression

Boolean-expression = Expression

Consequence-expression = Expression

Alternative-expression = Expression

The sort of the Consequence-expression shall be the same as the sort of the Alternative-expression.

Concrete grammar
<conditional expression> ::=
 if <Boolean expression>
 then <consequence expression>
 else <alternative expression>
 fi

<consequence expression> ::=
 <expression>

<alternative expression> ::=
 <expression>

Semantics
The Boolean-expression is interpreted and either the Consequence-expression or the
Alternative-expression is interpreted.
If the Boolean-expression returns the predefined Boolean value true, the Alternative-expression is
not interpreted. If the Boolean-expression returns the predefined Boolean value false, the
Consequence-expression is not interpreted.
The result of the conditional expression is the result of interpreting the Consequence-expression or
the Alternative-expression.
The static sort of a conditional expression is the static sort of the Consequence-expression (which is
also the sort of the Alternative-expression).

12.2.6 Operation application

Abstract grammar
Operation-application :: Operation-identifier
 Actual-parameters

 Rec. ITU-T Z.101 (10/2019) 97

Operation-identifier = Identifier

The Operation-identifier denotes an Operation-signature. Each Expression in the list of Expression
of the Actual-parameters of the Operation-application shall be sort compatible with the
corresponding (by position) sort in the Formal-argument list of the Operation-signature. There
shall be no UNDEFINED elements in the Actual-parameters of the Operation-application.
Each Operation-signature has associated a Procedure-definition, as described in clause 12.1.7.
Each Expression of the Actual-parameters corresponding by position to an Inout-parameter or
Out-parameter in the Procedure-definition associated with the Operation-signature shall be a
Variable-identifier having the same Sort-reference-identifier as the corresponding (by position) sort
in the Formal-argument list of the Operation-signature.

Concrete grammar
<operation application> ::=
 <operator application>

<operator application> ::=
 <operation identifier> [<actual parameters>]

If the <operation identifier> of the <operator application> is a <quoted operation name> that
is <quotation mark> <equals sign> <quotation mark> or is <quotation mark> <not equals sign>
<quotation mark>, and there are exactly two <actual parameters> where one <expression> of
the <actual parameters> is sort compatible to the sort of the other <expression> of the <actual
parameters>, the <operation application> represents an Equality-expression (see clause 12.2.4). The
two <expression> items of the <actual parameters> represent First-operand and Second-operand of
the Equality-expression. For an <equals sign> the Equality-expression is a Positive-equality-
expression, and for <not equals sign> the Equality-expression is a Negative-equality-expression.
NOTE – Equality-expression uses the generic equal operator. It is not allowed to define an operation with
two parameters and an <operation name> that is <quotation mark> <equals sign> <quotation mark> or
<quotation mark> <not equals sign> <quotation mark>.

Whenever an <operation identifier> is specified, the unique Operation-name in Operation-identifier
is derived in the same way. The list of argument sorts is derived from the actual parameters and the
result sort is derived from context (see clause 6.2). Therefore, if the <operation name> is
overloaded (that is, the same name is used for more than one literal or operation), the
Operation-name identifies a visible operation with the same name and the argument sorts and result
sort consistent with the operation application. If there are two operations with the same <name> but
differing by one or more of the argument or result sorts, each has a different Operation-name.
It shall be possible to bind each unqualified <operation identifier> to exactly one defined
Operation-identifier which satisfies the conditions in the construct in which the
<operation identifier> is used.
Wherever a <qualifier> of an <operation identifier> contains a <path item> with the keyword type,
then the <sort name> after this keyword does not form part of the Qualifier of the Operation-
identifier, but is used to derive the unique Name of the Identifier. In this case, the Qualifier is
formed from the list of <path item>s preceding the keyword type.
If all the <expression>s in the parenthesized list of <expression>s are <constant expression>s, the
<operation application> represents a Constant-expression as defined in clause 12.2.1.
It is allowed to omit <actual parameters> in an <operation application> only if the operation has no
parameters.

Semantics
Resolution by context (see clause 6.2) guarantees that an operation is selected, such that the types of
the actual arguments are pairwise sort compatible with the types of the formal arguments.

98 Rec. ITU-T Z.101 (10/2019)

If an Operation-application has an Operation-identifier that identifies a Static-operation-signature
(always the case in Basic SDL-2010), the Operation-application is interpreted as a Value-returning-
call-node by invoking the Procedure-definition identified by the Procedure-identifier of the
Operation-signature. This Value-returning-call-node has the Procedure-identifier of the
Procedure-definition and the same Actual-parameters as the Operation-application. The abstract
grammar rules and semantics of Value-returning-call-node in clause 11.13.3 apply. The procedure
graph (derived from the operation diagram) is interpreted as explained in clause 9.4.
The interpretation of the transition containing the Operation-application continues when the
interpretation of the called procedure is finished. The result of the operation application is the result
returned by the interpretation of the referenced procedure definition.
An Operation-application has a sort, which is the sort of the result obtained by the interpretation of
the procedure.
The aggregation kind of an Operation-application is the Result-aggregation of the procedure
interpreted.
If the result sort of the operation signature is a syntype, then the range check defined in clause
12.1.8.2 is applied to the result of the operation application. If the range check is the predefined
Boolean value false at the time of interpretation, then the predefined exception OutOfRange is
raised.

12.2.7 Range check expression

A range check expression checks if an expressions is within the range of values given by a sort and
a constraint, or the range of values of a sort (usually a syntype if the range check expression is to be
useful).

Abstract grammar
Range-check-expression :: Expression Parent-sort-identifier Range-condition

The sort of the Expression of a Range-check-expression shall be sort compatible with the sort
identified by the Parent-sort-identifier, or the sort Pid if the Parent-sort-identifier is a pid sort.

Concrete grammar
<range check expression> ::=
 <operand2> in type { <range check constrained sort> | <syntype> | <pid sort> }

<range check constrained sort> ::=
 <sort identifier> <constraint>

The <sort identifier> of a <range check constrained sort> shall not be Pid or a pid sort.

The <operand2> represents the Expression. If the form <range check constrained sort> is used, the
<sort identifier> represents the Parent-sort-identifier that applies to the <constraint>, which
represents the Range-condition as described in clause 12.1.8.2. If the <sort identifier> in <range
check constrained sort> identifies a syntype, this is the same as specifying the parent sort identifier
of the syntype, and the <constraint> is not restricted to the range of the syntype. If the form
<syntype> is used, Parent-sort-identifier and Range-condition are the Parent-sort-identifier and
Range-condition (respectively) of the identified syntype. If the form <pid sort> is used, it
determines the Parent-sort-identifier and the Range-condition is empty.

Semantics
A Range-check-expression is an expression of the predefined Boolean sort. If the Range-condition
is empty and the Parent-sort-identifier identifies a pid sort, the Range-check-expression has the
result true if and only if the Expression identifies an agent instance that is compatible with the
Parent-sort-identifier; otherwise, it has the result false. Otherwise (Range-condition is not empty

 Rec. ITU-T Z.101 (10/2019) 99

or the Parent-sort-identifier does not identify a pid sort), the Range-check-expression has the result
true if the result of the Expression fulfils the Range-condition as described in clause 12.1.8.2;
otherwise, it has the result false. A Range-check-expression has an Aggregation-kind of PART.

12.3 Active use of data
This subclause defines the use of data and declared variables, how an expression involving
variables is interpreted and the imperative expressions, which obtain results from the underlying
system.
A variable has a sort and an associated data item of that sort. By assigning a new data item to the
variable, the data item associated with a variable is changed. The data item associated with the
variable is used in an expression by accessing the variable.
Any expression containing a variable is considered to be "active", because the data item obtained by
interpreting the expression varies according to the data item last assigned to the variable. The result
of interpreting an active expression depends on the current state of the system.

12.3.1 Variable definition
A variable has a data item associated, or it is "undefined".

Abstract grammar
Variable-definition :: Variable-name
 Sort-reference-identifier
 Aggregation-kind
 [Constant-expression]

Variable-name = Name

If the Constant-expression is present, it shall be sort compatible with the Sort-reference-identifier
denoted.
If Sort-reference-identifier is a Syntype-identifier and Constant-expression is present, the result of
the Constant-expression shall be valid for the Range-condition of the syntype.
Aggregation-kind = PART

NOTE 1 − Aggregation-kind is always a PART in Basic SDL-2010 and for data that are not object-oriented.
It is used to determine how assignment is interpreted. Data holders (variables, procedure parameters,
procedure results) and expressions have an aggregation kind. Aggregation-kind is introduced so that
alternatives to PART for object-oriented data, and therefore alternative interpretations of assignment, are
possible.

Concrete grammar
<variable definition> ::=
 dcl <variables of sort> {, <variables of sort> }* <end>

<variables of sort> ::=
 <aggregation kind> <variable name> { , <variable name> }*
 <sort> [<is assigned sign> <constant expression>]

NOTE − Each <variable name> has to be a <name>, whereas in SDL-2000 it is a name or a number (an
<integer name> or a <real name>).

There is a Variable-definition for each <variable name> in <variables of sort>.
<aggregation kind> ::=
 { }

An empty <aggregation kind> represents an Aggregation-kind of PART.
NOTE − In Basic SDL-2010 <aggregation kind> is always empty.

100 Rec. ITU-T Z.101 (10/2019)

The <aggregation kind> represents the Aggregation-kind of the Variable-definition. The <sort>
represents the Sort-reference-identifier of the Variable-definition.
The Constant-expression is represented by:
a) if a <constant expression> is given in the <variable definition>, then this <constant

expression> for each of the variables in the same <variables of sort>;
b) else, if the data type that defined the <sort> has a <default initialization>, then the

<constant expression> of the <default initialization> as described in clause 12.3.3.2;
c) else, if the sort is a pid sort or the sort Pid, the Constant-expression is the Null-literal-

signature for the sort.
Otherwise, the Constant-expression is not present.

Semantics
The Aggregation-kind of a Variable-definition determines what happens when an assignment to the
variable is interpreted.
When a variable is created and the Constant-expression is present, then the variable is associated
with the result of the Constant-expression.
Otherwise, if no Constant-expression applies, the variable has no data item associated: that is, the
variable is "undefined".

12.3.2 Variable access

Abstract grammar
Variable-access :: Variable-identifier

Concrete grammar
<variable access> ::=
 <variable identifier>

Semantics
A variable access is interpreted as giving the data item associated with the identified variable.
A variable access has a static sort, which is the sort of the variable identified by the variable access.
Provided the variable is not "undefined", a variable access has a result, which is the data item last
associated with the variable. If the variable is "undefined", the predefined exception
UndefinedVariable is raised when the variable is accessed, except in the case the Variable-access
is the First-operand or Second-operand of an Equality-expression.
A variable access has an aggregation kind, which is the Aggregation-kind of the Variable-definition
identified by the Variable-identifier.

12.3.3 Assignment
An assignment creates an association from the variable to the result of interpreting an expression.

Abstract grammar
Assignment :: Variable-identifier
 Expression

In an Assignment, the sort of the Expression shall be sort compatible with the sort of the
Variable-identifier.
If the variable is declared with a Sort-reference-identifier that is a Syntype-identifier and the
Expression is a Constant-expression, the result of the range check defined in clause 12.1.8.2 applied
to the Expression shall be the predefined Boolean value true.

 Rec. ITU-T Z.101 (10/2019) 101

Concrete grammar
<assignment> ::=
 <variable> <is assigned sign> <expression>

<variable> ::=
 <variable identifier>
 | <extended variable>

If the <variable> is a <variable identifier>, then the <expression> in the concrete syntax represents
the Expression in the abstract syntax. An <extended variable> is defined in clause 12.3.3.1.

Semantics
An Assignment is interpreted as creating an association from the variable identified in the
assignment with the result of the expression in the assignment. The previous association of the
variable is lost.
The sort of the variable is the sort identified by the Sort-reference-identifier of the Variable-
definition identified by the Variable-identifier. This is the Sort of a Value-data-type-definition or
Interface-definition if the Sort-reference-identifier is a Sort-identifier, and is a syntype with a
Syntype-name if the Sort-reference-identifier is a Syntype-identifier. For an Interface-definition the
sort is a pid sort.
The Aggregation-kind of the variable is the Aggregation-kind of the Variable-definition identified
by the Variable-identifier.
If the sort of the variable is a syntype, the range check defined in clause 12.1.8.2 is applied to the
result of the Expression. If this range check returns the predefined Boolean value false, the
predefined exception OutOfRange is raised and the variable has no data item associated: that is, the
variable is "undefined".
If the sort of the variable is a pid sort and the result of the Expression identifies an agent instance
that is not compatible with the pid sort of the variable, the predefined exception OutOfRange is
raised and the variable has no data item associated: that is, the variable is "undefined".
Provided the predefined exception OutOfRange is not raised, the variable is associated with the
result of the Expression. The manner in which this association is established depends on the sort
and Aggregation-kind of the variable, and the sort (and Aggregation-kind if there is object oriented
data) of the Expression:
a) If the sort of the variable is the Sort of a Value-data-type-definition, then

1) if the Aggregation-kind of variable is PART, a copy of the value returned by the result
of the Expression is associated with the identified variable.

b) If the sort of the variable is the Pid sort or a pid sort (the Sort of an Interface-definition)
and the result of the Expression is a pid (it identifies an agent instance), the Variable-
identifier is associated with the pid that is the result of Expression.

12.3.3.1 Extended variable
An extended variable allows the target of an assignment to be an indexed variable for data types
that have indexed elements (such as strings, vectors or arrays) or field variables (for structure and
choice data types). The effect of using an extended variable in an assignment is given by a
description, where for an expression a complete composite variable (that is, the complete string,
vector, array, structure or choice) is constructed and then assigned to the composite variable.

Concrete grammar
<extended variable> ::=
 <indexed variable>
 | <field variable>

102 Rec. ITU-T Z.101 (10/2019)

<indexed variable> ::=
 <variable> (<actual parameter list>)
 | <variable> <left square bracket> <actual parameter list> <right square bracket>
NOTE 1 – The <actual parameter list> of an <indexed variable> corresponds to an operation application,
therefore it is not allowed to omit any parameters.
NOTE 2 − The square bracket form is preferred because it is distinct from parentheses used for expressions
or operation applications. The two forms are otherwise equivalent.
<field variable> ::=
 <variable> <exclamation mark> <field name>
 | <variable> <full stop> <field name>

NOTE 3 − The <full stop> form is most similar to field selection in other languages, but is not always as
obvious and distinct as use of an <exclamation mark>, so the latter is preferred. The two forms are otherwise
equivalent.

Model
The concrete syntax alternative of <indexed variable>:
 <variable> (<actual parameter list>) <is assigned sign>

is equivalent to the alternative using square brackets.
The concrete syntax form:
 <variable> <left square bracket> <actual parameter list> <right square bracket> <is assigned sign>
<expression>

is derived concrete syntax for:
 <variable> <is assigned sign> Modify (<variable> , <actual parameter list>, <expression>)

where the parameter list for Modify is constructed by adding <variable> before the
<actual parameter list>, and <expression> after the <actual parameter list>.
The abstract grammar is determined from this concrete expression according to clause 12.2.1. The
same model applies to the first form of <indexed variable>.
NOTE 4 − Modify is defined for the Predefined data types String, Charstring, Array, Vector,
Bitstring and Octetstring. For these types it has three parameters for the variable to be modified, as well
as the index and the new value for the modified element.

The concrete syntax form:
 <variable> <exclamation mark> <field name> <is assigned sign> <expression>

is derived concrete syntax for:
 <variable> <is assigned sign> field-modify-name (<variable>, <expression>)

where the field-modify-name is formed from the concatenation of the field name and "Modify". The
abstract syntax is determined from this concrete expression according to clause 12.2.1. The same
model applies to the second form of <field variable>.

12.3.3.2 Default initialization
A default initialization allows initialization of all variables of a specified sort with the same data
item when the variables are created.

Abstract grammar
Default-initialization = Constant-expression

Concrete grammar
<default initialization> ::=
 default <constant expression>

 Rec. ITU-T Z.101 (10/2019) 103

Semantics
A Default-initialization is applied as the Constant-expression of a Variable-definition only if the
Variable-definition does not have an explicit constant expression.
The Default-initialization of a Data-type-definition represents the Constant-expression of any
otherwise un-initialized Variable-definition of the sort defined by the Data-type-definition.
The Default-initialization of a Syntype-definition represents the Constant-expression of any
otherwise un-initialized Variable-definition of the sort defined by the Syntype-definition.
If no Default-initialization is given in the Syntype-definition for a sort but the Data-type-definition
for the parent sort has a Default-initialization and this is in the range defined for the syntype, this
represents the Constant-expression of any otherwise un-initialized Variable-definition of the sort. If
the Default-initialization is not in the range defined for the syntype, the Constant-expression is
omitted (see clause 12.3.1).

12.3.4 Imperative expression
Imperative expressions obtain results from the underlying system state.

Abstract grammar
Imperative-expression = Now-expression
 | Pid-expression
 | Timer-active-expression
 | Timer-remaining-duration
 | Active-agents-expression

Concrete grammar
<imperative expression> ::=
 <now expression>
 | <pid expression>
 | <timer active expression>
 | <timer remaining duration>
 | <active agents expression>

Imperative expressions are expressions for accessing the system clock, the result of imported
variables, the pid associated with an agent and the status of timers.

12.3.4.1 Now expression

Abstract grammar
Now-expression :: { }

Concrete grammar
<now expression> ::=
 now

Semantics
The now expression is an expression which accesses the system clock variable to determine the
absolute system time.
The now expression represents an expression requesting the current value of the system clock
giving the time. The origin and unit of time are system dependent. Unless otherwise specified, the
time unit is 1 second. Whether two occurrences of now in the same transition give the same value is
system dependent. However, it always holds that:
 now <= now;
A now expression has the Time sort.

104 Rec. ITU-T Z.101 (10/2019)

12.3.4.2 Pid expression

Abstract grammar
Pid-expression = Self-expression
 | Parent-expression
 | Offspring-expression
 | Sender-expression

Self-expression :: { }

Parent-expression :: { }

Offspring-expression :: { }

Sender-expression :: { }

Concrete grammar
<pid expression> ::=
 <self expression>
 | <parent expression>
 | <offspring expression
 | <sender expression>

<self expression> ::=
 self

<parent expression> ::=
 parent

<offspring expression> ::=
 offspring

<sender expression> ::=
 sender

Semantics

A Pid-expression accesses one of the implicit anonymous variables self, parent, offspring or sender
(see clause 9). A Pid-expression has a result, which is the last pid associated with the corresponding
implicit variable.
A Parent-expression, Offspring-expression, Sender-expression or Self-expression has a static sort,
as defined in clause 9.

12.3.4.3 Timer active expression and timer remaining duration

Abstract grammar
Timer-active-expression :: Timer-identifier
 Expression*

Timer-remaining-duration :: Timer-identifier
 Expression*

The sorts of the Expression list in the Timer-active-expression or Timer-remaining-duration shall
correspond by position to the Sort-reference-identifier list directly following the Timer-name
(see clause 11.15) identified by the Timer-identifier.

Concrete grammar
<timer active expression> ::=
 active (<timer identifier> [(<expression list>)])

<timer remaining duration> ::=
 rem (<timer identifier> [(<expression list>)])

 Rec. ITU-T Z.101 (10/2019) 105

Semantics
The timer of a Timer-active-expression or Timer-remaining-duration is the timer identified by
Timer-identifier and set with the same results as denoted by the Expression list (if any). The
expressions are interpreted in the order given.
If a sort specified in a timer definition is a syntype, the range check defined in clause 12.1.8.2
applied to the corresponding Expression in the Expression list of the Timer-active-expression or
Timer-remaining-duration shall be the predefined Boolean value true; otherwise, the predefined
exception OutOfRange is raised.

A Timer-active-expression is an expression of the predefined Boolean sort, which has the result
true, if the timer is active (see clause 11.15). Otherwise, the Timer-active-expression has the result
false.

A Timer-remaining-duration is an expression of the predefined Duration sort. The result value for
an active time is the duration before the timer is due to expire, which is the time the timer was last
set to minus now. The duration will be negative if the timer is active but has already expired. If the
timer is inactive, the value is zero (which can be distinguished from an active time returning zero by
a subsequent timer active expression).

12.3.4.4 Active agents expression
An active agents expression gives the current number of agent instances in an agent instance set.
NOTE – This enables comparison of the current number of instances with the Lower-bound for the instance
set, so that it is possible to avoid interpretation of a stop if the number of instances is equal to the Lower-
bound. However, if the agent instance set is not contained within a process, it is still possible that between
interpreting the active agents expression and interpreting a stop, another instance in the set interprets a stop
with the number of instances already equal to the Lower-bound.

Abstract grammar
Active-agents-expression :: { Agent-identifier | THIS }

Concrete grammar
<active agents expression> ::=
 active ({ <agent identifier> | this })

this shall only be specified in an <agent type diagram> and in scopes enclosed by an
<agent type diagram> and represents THIS.

Semantics
An Active-agents-expression is an expression of the predefined Natural sort. The result value is the
current number of instances in the agent instance set identified by the Agent-identifier or THIS.
THIS identifies the set of instances of the agent in which the Active-agents-expression is being
interpreted.

12.3.5 Value returning procedure call
The abstract grammar for a value returning procedure call and static semantic constraints are shown
in clause 11.13.3.

Concrete grammar
<value returning procedure call> ::=
 [call] <procedure call body>

It is not allowed to omit keyword call if the <value returning procedure call> is syntactically
ambiguous with an operation (or variable) with the same name followed by a parameter list.
NOTE − This ambiguity is not resolved by context.

106 Rec. ITU-T Z.101 (10/2019)

The <procedure identifier> in a <value returning procedure call> shall identify a procedure having a
<procedure result>.
The <procedure call body> represents a Value-returning-call-node, where Procedure-identifier is
represented by the <procedure identifier>, and the Expression list is represented by the list of actual
parameters. The semantics of the Value-returning-call-node is shown in clause 11.13.3.

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy
issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation
and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet
of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	1 Scope and objective
	1.1 Objective
	1.2 Application

	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 General rules
	6.1 Lexical rules
	<lexical unit> ::=
	<name> ::=
	<integer name> ::=
	<real name> ::=
	<word> ::=
	<alphanumeric> ::=
	<letter> ::=
	<uppercase letter> ::=
	<lowercase letter> ::=
	<decimal digit> ::=
	<quoted operation name> ::=
	<infix operation name> ::=
	<monadic operation name> ::=
	<character string> ::=
	<hex string> ::=
	<bit string> ::=
	<note> ::=
	<note text> ::=
	<not asterisk or solidus> ::=
	<general text character> ::=
	<comment body> ::=
	<comment text> ::=
	<not number or solidus> ::=
	<composite special> ::=
	<result sign> ::=
	<range sign> ::=
	<composite begin sign> ::=
	<composite end sign> ::=
	<concatenation sign> ::=
	<history dash sign> ::=
	<greater than or equals sign> ::=
	<implies sign> ::=
	<is assigned sign> ::=
	<less than or equals sign> ::=
	<not equals sign> ::=
	<qualifier begin sign> ::=
	<qualifier end sign> ::=
	<special> ::=
	<other special> ::=
	<other character> ::=
	<exclamation mark> ::= !
	<quotation mark> ::= "
	<left parenthesis> ::= (
	<right parenthesis> ::=)
	<asterisk> ::= *
	<plus sign> ::= +
	<comma> ::= ,
	<hyphen> ::= -
	<full stop> ::= .
	<solidus> ::= /
	<colon> ::= :
	<semicolon> ::= ;
	<less than sign> ::= <
	<equals sign> ::= =
	<greater than sign> ::= >
	<left square bracket> ::= [
	<right square bracket> ::=]
	<left curly bracket> ::= {
	<right curly bracket> ::= }
	<number sign> ::= #
	<dollar sign> ::= $
	<percent sign> ::= %
	<ampersand> ::= &
	<apostrophe> ::= '
	<question mark> ::= ?
	<commercial at> ::= @
	<reverse solidus> ::= \
	<circumflex accent> ::= ^
	<underline> ::= _
	<grave accent> ::= `
	<vertical line> ::= |
	<tilde> ::= ~
	<keyword> ::=
	<space> ::=

	6.2 End terminator and comment
	<end> ::=
	<comment> ::=

	6.3 Empty clause
	6.4 Solid association symbol
	<solid association symbol> ::=

	6.5 The metasymbol is followed by and flow line symbols
	<flow line symbol> ::=
	<flow line symbol with arrowhead> ::=

	6.6 Names and identifiers, name resolution and visibility
	Identifier :: Qualifier Name
	Qualifier = Path-item*
	Path-item = Package-qualifier
	Package-qualifier :: Package-name
	Agent-type-qualifier :: Agent-type-name
	Agent-qualifier :: Agent-name
	State-type-qualifier :: State-type-name
	State-qualifier :: State-name
	Data-type-qualifier :: Data-type-name
	Procedure-qualifier :: Procedure-name
	Interface-qualifier :: Interface-name
	Package-name = Name
	Agent-type-name = Name
	Agent-name = Name
	State-type-name = Name
	Data-type-name = Name
	Interface-name = Name
	Name :: Token
	<identifier> ::=
	<qualifier> ::=
	<name or number> ::=
	<string name> ::=
	<path item> ::=
	<scope unit kind> ::=

	6.7 Empty clause
	6.8 Informal text
	Informal-text :: ...
	<informal text> ::=

	6.9 Text symbol
	<text symbol> ::=

	6.10 Frame symbol and page numbers
	<frame symbol> ::=
	<page number area> ::=
	<page number> ::=
	<number of pages> ::=

	7 Organization of Specification and Description Language specifications
	7.1 Framework
	Sdl-specification :: [Agent-definition]
	<sdl specification> ::=
	<system specification> ::=

	7.2 Package
	Package-definition :: Package-name
	<package diagram> ::=
	<package page> ::=
	<package heading> ::=
	<package use area> ::=
	<package text area> ::=
	<diagram in package> ::=
	<package reference area> ::=
	<package use clause> ::=
	<definition selection list> ::=
	<definition selection> ::=
	<selected entity kind> ::=
	<package public> ::=
	<package symbol> ::=

	7.3 Referenced definition
	<referenced definition> ::=
	<diagram> ::=

	8 Structural concepts
	8.1 Types, instances and gates
	8.1.1 Structural type definitions
	8.1.1.1 Agent types
	Agent-type-definition :: Agent-type-name
	Agent-kind = SYSTEM | BLOCK | PROCESS
	Agent-type-identifier = Identifier
	Agent-formal-parameter = Parameter
	Parameter :: Variable-name
	Parameter-aggregation :: Aggregation-kind
	State-machine :: State-name
	<agent type diagram> ::=
	<type preamble> ::=
	<agent type additional heading> ::=
	<agent additional heading> ::=
	<agent formal parameters> ::=
	<parameter aggregation> ::=
	<parameters of sort> ::=

	8.1.1.2 System type
	<system type diagram> ::=
	<system type page> ::=
	<system type heading> ::=

	8.1.1.3 Block type
	<block type diagram> ::=
	<block type page> ::=
	<block type heading> ::=

	8.1.1.4 Process type
	<process type diagram> ::=
	<process type page> ::=
	<process type heading> ::=

	8.1.1.5 Composite state type
	Composite-state-type-definition :: State-type-name
	Composite-state-formal-parameter = Agent-formal-parameter
	Composite-state-type-identifier = Identifier
	<composite state type diagram> ::=
	<composite state type page> ::=
	<composite state type heading> ::=

	8.1.2 Type expression
	<type expression> ::=
	<base type> ::=

	8.1.3 Empty clause
	8.1.4 Gate
	Gate-definition :: Gate-name
	Gate-name = Name
	In-signal-identifier = Signal-identifier
	Out-signal-identifier = Signal-identifier
	<gate on diagram> ::=
	<gate definition> ::=
	<gate symbol 1> ::=
	<gate symbol 2> ::=
	<gate> ::=

	8.2 Type references and operation references
	<agent type reference area> ::=
	<system type reference area> ::=
	<block type reference area> ::=
	<process type reference area> ::=
	<composite state type reference area> ::=
	<procedure reference area> ::=
	<procedure reference heading> ::=
	<system type symbol> ::=
	<block type symbol> ::=
	<process type symbol> ::=
	<composite state type symbol> ::=
	<procedure symbol> ::=
	<operation reference> ::=
	<operation kind> ::=

	9 Agents
	Agent-definition :: Agent-name
	Number-of-instances :: Initial-number [Maximum-number] Lower-bound
	Initial-number = Nat
	Maximum-number = Nat
	Lower-bound = Nat
	<typebased agent definition> ::=
	<number of instances> ::=
	<initial number> ::=
	<maximum number> ::=
	<lower bound> ::=
	<agent structure area> ::=
	<agent text area> ::=
	<entity in agent diagram> ::=
	<interaction area> ::=
	<state machine area> ::=
	<agent area> ::=
	<valid input signal set> ::=
	9.1 System
	<typebased system definition> ::=
	<typebased system heading> ::=

	9.2 Block
	<typebased block definition> ::=
	<block symbol> ::=
	<typebased block heading> ::=

	9.3 Process
	<typebased process definition> ::=
	<process symbol> ::=
	<typebased process heading> ::=

	9.4 Procedure
	Procedure-definition :: Procedure-name
	Procedure-name = Name
	Procedure-formal-parameter = In-parameter
	In-parameter :: Parameter
	Inout-parameter :: Parameter
	Out-parameter :: Parameter
	Result :: Sort-reference-identifier
	Result-aggregation :: Aggregation-kind
	Procedure-graph :: [Procedure-start-node]
	Procedure-start-node :: Transition
	Procedure-identifier = Identifier
	<procedure diagram> ::=
	<procedure page> ::=
	<procedure heading> ::=
	<procedure preamble> ::=
	<procedure formal parameters> ::=
	<formal variable parameters> ::=
	<parameter kind> ::=
	<procedure result> ::=
	<result aggregation> ::=
	<entity in procedure> ::=
	<procedure text area> ::=
	<procedure body area> ::=
	<procedure start area> ::=
	<procedure start symbol> ::=

	10 Communication
	10.1 Channel
	Channel-definition :: Channel-name
	Channel-path :: Channel-endpoint
	Originating-gate = Gate-identifier
	Destination-gate = Gate-identifier
	Gate-identifier = Identifier
	Agent-identifier = Identifier
	Channel-name = Name
	Channel-endpoint = Agent-identifier
	State-identifier = Identifier
	<channel definition area> ::=
	<channel symbol 1> ::=
	<channel symbol 2> ::=
	<delaying channel symbol 1> ::=
	<delaying channel symbol 2> ::=
	<nondelaying channel symbol 1> ::=
	<nondelaying channel symbol 2> ::=

	10.2 Connection
	10.3 Signal
	Signal-definition :: Signal-name
	Signal-parameter :: Aggregation-kind
	Signal-identifier = Identifier
	Signal-name = Name
	<signal definition list> ::=
	<signal definition> ::=
	<sort list> ::=

	10.4 Signal list area
	<signal list area> ::=
	<signal list symbol> ::=
	<signal list> ::=
	<signal list item> ::=

	11 Behaviour
	11.1 Start
	State-start-node :: Transition
	<start area> ::=
	<start symbol> ::=

	11.2 State
	State-node :: State-name
	State-name = Name
	<state area> ::=
	<state symbol> ::=
	<state list> ::=
	<basic state name> ::=
	<typebased composite state> ::=
	<composite state name> ::=
	<input association area> ::=
	<save association area> ::=

	11.3 Input
	Input-node :: Signal-identifier [Gate-identifier]
	Variable-identifier = Identifier
	<input area> ::=
	<input symbol> ::=
	<plain input symbol> ::=
	<input list> ::=
	<stimulus> ::=
	<via path> ::=

	11.4 Empty clause
	11.5 Empty clause
	11.6 Empty clause
	11.7 Save
	Save-signalset = Save-item-set
	Save-item = Signal-identifier [Gate-identifier]
	<save area> ::=
	<save symbol> ::=
	<save list> ::=
	<save item> ::=

	11.8 Empty clause
	11.9 Empty clause
	11.10 Label (connector name)
	Free-action :: Connector-name
	Connector-name = Name
	<in connector area> ::=
	<connector name> ::=
	<in connector symbol> ::=

	11.11 State machine and composite state
	11.11.1 Composite state graph
	Composite-state-graph :: State-transition-graph
	State-transition-graph :: [State-start-node]
	<composite state structure area> ::=
	<composite state text area> ::=
	<entity in composite state area> ::=
	<composite state body area> ::=

	11.11.2 Empty clause
	11.11.3 Empty clause
	11.11.4 Connect
	Connect-node :: Transition
	<connect association area> ::=
	<exit transition area> ::=

	11.12 Transition
	11.12.1 Transition body
	Transition :: Graph-node*
	Graph-node :: { Task-node
	Terminator :: { Nextstate-node
	<transition area> ::=
	<terminator area> ::=
	<transition string area> ::=
	<action area> ::=

	11.12.2 Transition terminator
	11.12.2.1 Nextstate
	Nextstate-node = Dash-nextstate | Named-nextstate
	Named-nextstate :: State-name
	Nextstate-parameters :: Actual-parameters
	Dash-nextstate :: [HISTORY]
	<nextstate area> ::=
	<nextstate body> ::=
	<nextstate body name> ::=
	<nextstate parameters> ::=
	<dash nextstate> ::=
	<history dash nextstate> ::=

	11.12.2.2 Join
	Join-node :: Connector-name
	<out connector area> ::=
	<out connector symbol> ::=

	11.12.2.3 Stop
	Stop-node :: { }
	<stop symbol> ::=

	11.12.2.4 Return
	Return-node = Action-return-node
	Action-return-node :: { }
	Value-return-node :: Expression
	<return area> ::=
	<return body> ::=
	<return symbol> ::=

	11.13 Action
	11.13.1 Task
	Task-node = Assignment
	<task area> ::=
	<task body> ::=
	<task symbol> ::=

	11.13.2 Create
	Create-request-node :: { Agent-identifier | THIS }
	<create request area> ::=
	<create request symbol> ::=
	<create body> ::=

	11.13.3 Procedure call
	Call-node ::
	Value-returning-call-node ::
	<procedure call area> ::=
	<procedure call symbol> ::=
	<procedure call body> ::=

	11.13.4 Output
	Output-node :: Signal-identifier
	Activation-delay = Expression
	Signal-priority = Expression
	Signal-destination :: { Expression | Agent-identifier | THIS } [Destination-number]
	Destination-number = Expression
	Direct-via = Gate-identifier-set
	<output area> ::=
	<output symbol> ::=
	<plain output symbol> ::=
	<output body> ::=
	<output body item> ::=
	<communication constraints> ::=
	<destination> ::=
	<destination number> ::=
	<activation delay> ::=
	<signal priority> ::=

	11.13.5 Decision
	Decision-node = Decision-body
	Decision-body :: Decision-question
	Decision-question = Expression
	Decision-answer :: { Range-condition | Informal-text }
	Else-answer :: Transition
	<decision area> ::=
	<decision symbol> ::=
	<question> ::=
	<answer part> ::=
	<graphical answer> ::=
	<answer> ::=
	<else part> ::=

	11.14 Statement lists
	<non terminating statements> ::=
	<non terminating statement> ::=
	<statement> ::=
	<assignment statement> ::=
	<set statement> ::=
	<reset statement> ::=

	11.15 Timer
	Timer-definition :: Timer-name
	Timer-default-initialization = Constant-expression
	Timer-name = Name
	Set-node :: Time-expression
	Reset-node :: Timer-identifier
	Timer-identifier = Identifier
	Time-expression = Expression
	<timer definition> ::=
	<timer definition item> ::=
	<timer default initialization> ::=
	<reset body> ::=
	<reset clause> ::=
	<set body> ::=
	<set clause> ::=

	12 Data
	12.1 Data definitions
	Data-type-definition = Value-data-type-definition
	Value-data-type-definition :: Sort
	Interface-definition :: Sort
	Null-literal-signature = Literal-signature
	Data-type-identifier = Identifier
	Sort-reference-identifier = Sort-identifier
	Sort-identifier = Identifier
	Sort = Name
	<data definition> ::=
	<sort> ::=
	<basic sort> ::=
	<pid sort> ::=
	12.1.1 Data type definition
	<entity in data type> ::=
	<data type definition> ::=
	<data type definition body> ::=
	<data type heading> ::=
	<operations> ::=

	12.1.2 Interface definition
	<interface definition> ::=
	<interface heading> ::=
	<entity in interface> ::=
	<interface use list> ::=

	12.1.3 Operation signature
	Static-operation-signature :: Operation-signature
	Operation-signature :: Operation-name
	Operation-name = Name
	Formal-argument :: Argument
	Operation-result :: Sort-reference-identifier
	Argument = Sort-reference-identifier
	<operation signatures> ::=
	<operator list> ::=
	<operation signature> ::=
	<operation name> ::=
	<arguments> ::=
	<argument> ::=
	<formal parameter> ::=
	<result> ::=

	12.1.4 Generic data type operations
	12.1.5 Pid and pid sorts
	12.1.6 Data type constructors
	<data type constructor> ::=
	12.1.6.1 Literals constructor
	Literal-signature :: Literal-name
	Literal-natural = Nat
	Literal-name = Name
	<literal list> ::=
	<literal signature> ::=
	<literal name> ::=
	<named number> ::=

	12.1.6.2 Structure data types
	<structure definition> ::=
	<field list> ::=
	<field> ::=
	<optional field> ::=
	<mandatory field> ::=
	<fields of sort> ::=
	<field of kind> ::=
	<field default initialization> ::=
	<field sort> ::=

	12.1.6.3 Choice data types
	<choice definition> ::=
	<choice list> ::=
	<choice of sort> ::=

	12.1.7 Behaviour of operations
	<operation definitions> ::=
	<operation definition item> ::=
	<operation heading> ::=
	<operation identifier> ::=
	<formal operation parameters> ::=
	<operation result> ::=
	<operation diagram> ::=
	<operation page> ::=
	<operation body area> ::=
	<operation text area> ::=

	12.1.8 Additional data definition constructs
	12.1.8.1 Syntypes
	Syntype-identifier = Identifier
	Syntype-definition :: Syntype-name
	Syntype-name = Name
	Parent-sort-identifier = Sort-identifier
	<syntype> ::=
	<syntype definition> ::=
	<syntype definition syntype> ::=
	<parent sort identifier> ::=

	12.1.8.2 Constraint
	Range-condition :: Condition-item-set
	Condition-item = Open-range | Closed-range | Size-constraint
	Open-range :: Operation-identifier
	Closed-range :: Constant-expression
	Size-constraint :: Operation-identifier
	<constraint> ::=
	<range condition> ::=
	<range> ::=
	<closed range> ::=
	<open range> ::=
	<open range with operator> ::=
	<size constraint> ::=
	<constant> ::=

	12.2 Use of data
	12.2.1 Expressions and expressions as actual parameters
	Expression = Constant-expression
	Constant-expression :: Literal
	Active-expression :: Variable-access
	Actual-parameters :: { Expression | UNDEFINED }*
	<expression> ::=
	<expression0> ::=
	<operand> ::=
	<operand0> ::=
	<operand1> ::=
	<operand2> ::=
	<operand3> ::=
	<operand4> ::=
	<operand5> ::=
	<primary> ::=
	<active primary> ::=
	<expression list> ::=
	<simple expression> ::=
	<constant expression> ::=
	<actual parameters> ::=
	<actual parameter list> ::=
	<actual parameter> ::=

	12.2.2 Literal
	Literal :: Literal-identifier
	Literal-identifier = Identifier
	<literal> ::=
	<literal identifier> ::=

	12.2.3 Extended primary
	<extended primary> ::=
	<indexed primary> ::=
	<field primary> ::=
	<field name> ::=
	<composite primary> ::=

	12.2.4 Equality expression
	Equality-expression = Positive-equality-expression | Negative-equality-expression
	Positive-equality-expression :: First-operand
	Negative-equality-expression :: First-operand
	First-operand = Expression
	Second-operand = Expression
	<equality expression> ::=

	12.2.5 Conditional expression
	Conditional-expression :: Boolean-expression
	Boolean-expression = Expression
	Consequence-expression = Expression
	Alternative-expression = Expression
	<conditional expression> ::=
	<consequence expression> ::=
	<alternative expression> ::=

	12.2.6 Operation application
	Operation-application :: Operation-identifier
	Operation-identifier = Identifier
	<operation application> ::=
	<operator application> ::=

	12.2.7 Range check expression
	Range-check-expression :: Expression Parent-sort-identifier Range-condition
	<range check expression> ::=
	<range check constrained sort> ::=

	12.3 Active use of data
	12.3.1 Variable definition
	Variable-definition :: Variable-name
	Variable-name = Name
	Aggregation-kind = PART
	<variable definition> ::=
	<variables of sort> ::=
	<aggregation kind> ::=

	12.3.2 Variable access
	Variable-access :: Variable-identifier
	<variable access> ::=

	12.3.3 Assignment
	Assignment :: Variable-identifier
	<assignment> ::=
	<variable> ::=
	12.3.3.1 Extended variable
	<extended variable> ::=
	<indexed variable> ::=
	<field variable> ::=

	12.3.3.2 Default initialization
	Default-initialization = Constant-expression
	<default initialization> ::=

	12.3.4 Imperative expression
	Imperative-expression = Now-expression
	<imperative expression> ::=
	12.3.4.1 Now expression
	Now-expression :: { }
	<now expression> ::=

	12.3.4.2 Pid expression
	Pid-expression = Self-expression
	Self-expression :: { }
	Parent-expression :: { }
	Offspring-expression :: { }
	Sender-expression :: { }
	<pid expression> ::=
	<self expression> ::=
	<parent expression> ::=
	<offspring expression> ::=
	<sender expression> ::=

	12.3.4.3 Timer active expression and timer remaining duration
	Timer-active-expression :: Timer-identifier
	Timer-remaining-duration :: Timer-identifier
	<timer active expression> ::=
	<timer remaining duration> ::=

	12.3.4.4 Active agents expression
	Active-agents-expression :: { Agent-identifier | THIS }
	<active agents expression> ::=

	12.3.5 Value returning procedure call
	<value returning procedure call> ::=

