

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Y.4475
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(08/2020)

SERIES Y: GLOBAL INFORMATION
INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS,
NEXT-GENERATION NETWORKS, INTERNET OF
THINGS AND SMART CITIES

Internet of things and smart cities and communities –
Frameworks, architectures and protocols

Lightweight intelligent software framework for
Internet of things devices

Recommendation ITU-T Y.4475

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION

NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE

General Y.100–Y.199

Services, applications and middleware Y.200–Y.299

Network aspects Y.300–Y.399

Interfaces and protocols Y.400–Y.499

Numbering, addressing and naming Y.500–Y.599

Operation, administration and maintenance Y.600–Y.699

Security Y.700–Y.799

Performances Y.800–Y.899

INTERNET PROTOCOL ASPECTS

General Y.1000–Y.1099

Services and applications Y.1100–Y.1199

Architecture, access, network capabilities and resource management Y.1200–Y.1299

Transport Y.1300–Y.1399

Interworking Y.1400–Y.1499

Quality of service and network performance Y.1500–Y.1599

Signalling Y.1600–Y.1699

Operation, administration and maintenance Y.1700–Y.1799

Charging Y.1800–Y.1899

IPTV over NGN Y.1900–Y.1999

NEXT GENERATION NETWORKS

Frameworks and functional architecture models Y.2000–Y.2099

Quality of Service and performance Y.2100–Y.2199

Service aspects: Service capabilities and service architecture Y.2200–Y.2249

Service aspects: Interoperability of services and networks in NGN Y.2250–Y.2299

Enhancements to NGN Y.2300–Y.2399

Network management Y.2400–Y.2499

Network control architectures and protocols Y.2500–Y.2599

Packet-based Networks Y.2600–Y.2699

Security Y.2700–Y.2799

Generalized mobility Y.2800–Y.2899

Carrier grade open environment Y.2900–Y.2999

FUTURE NETWORKS Y.3000–Y.3499

CLOUD COMPUTING Y.3500–Y.3599

BIG DATA Y.3600–Y.3799

QUANTUM KEY DISTRIBUTION NETWORKS Y.3800–Y.3999

INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES

General Y.4000–Y.4049

Definitions and terminologies Y.4050–Y.4099

Requirements and use cases Y.4100–Y.4249

Infrastructure, connectivity and networks Y.4250–Y.4399

Frameworks, architectures and protocols Y.4400–Y.4549

Services, applications, computation and data processing Y.4550–Y.4699

Management, control and performance Y.4700–Y.4799

Identification and security Y.4800–Y.4899

Evaluation and assessment Y.4900–Y.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Y.4475 (08/2020) i

Recommendation ITU-T Y.4475

Lightweight intelligent software framework for Internet of things devices

Summary

Recommendation ITU-T Y.4475 addresses the concept of the lightweight intelligent software

framework (LISF) that supports Internet of things (IoT) applications requiring intelligent processing,

and enables such processing to work on resource-limited IoT devices. Recommendation ITU-T Y.4475

identifies general requirements and provides a functional architecture for the LISF based on the IoT

reference model established in Recommendation ITU-T Y.4000.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Y.4475 2020-08-29 20 11.1002/1000/14377

Keywords

IoT device, intelligence software framework, lightweight.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/14377
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Y.4475 (08/2020)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected

by patents, which may be required to implement this Recommendation. However, implementers are cautioned

that this may not represent the latest information and are therefore strongly urged to consult the TSB patent

database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Y.4475 (08/2020) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 Introduction .. 3

7 LISF features and requirements .. 5

7.1 LISF features .. 5

7.2 LISF requirements .. 7

8 Functional architecture of the LISF .. 9

8.1 Online partial learning function .. 10

8.2 Approximate inference function ... 13

8.3 Performance-monitoring function .. 14

8.4 Accelerated processing function ... 16

Appendix I – Use case – Personal customization service with drone devices 19

Appendix II – Use case – Personal vision aids service .. 22

Bibliography... 25

 Rec. ITU-T Y.4475 (08/2020) 1

Recommendation ITU-T Y.4475

Lightweight intelligent software framework for Internet of things devices

1 Scope

This Recommendation specifies general requirements and functionalities of the lightweight

intelligent software framework (LISF) working on resource-limited Internet of things (IoT) devices.

In particular, for the LISF, the scope of this Recommendation covers:

– the concept of the intelligent software framework (ISF) and necessity for a lightweight

version;

– features and general requirements;

– functional architecture.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.4453] Recommendation ITU-T Y.4453 (2016), Adaptive software framework for

Internet of things devices.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 application [b-ITU-T Y.2091]: A structured set of capabilities, which provide value-added

functionality supported by one or more services, which may be supported by an API interface.

3.1.2 Internet of things [b-ITU-T Y.4000]: A global infrastructure for the information society,

enabling advanced services by interconnecting (physical and virtual) things based on existing and

evolving interoperable information and communication technologies.

NOTE 1 – Through the exploitation of identification, data capture, processing and communication capabilities,

the IoT makes full use of things to offer services to all kinds of applications, whilst ensuring that security and

privacy requirements are fulfilled.

NOTE 2 – From a broad perspective, the IoT can be perceived as a vision with technological and societal

implications.

3.1.3 capability [b-ITU-R M.1224-1]: The ability of an item to meet a service demand of given

quantitative characteristics under given internal conditions.

3.1.4 service [b-ITU-T Y.2091]: A set of functions and facilities offered to a user by a provider.

3.1.5 functional entity [b-ITU-T Y.2012]: An entity that comprises an indivisible set of specific

functions. Functional entities are logical concepts, while groupings of functional entities are used to

describe practical, physical implementations.

2 Rec. ITU-T Y.4475 (08/2020)

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms

3.2.1 lightweight intelligent software framework (LISF): Middleware used to enable intelligent

capabilities for each Internet of things (IoT) application by using online partial learning and

inferencing processing with the system resources of IoT devices.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FE Functional Entity

FPS Frames Per Second

GEMM General Matrix Multiply

GPGPU General Purpose Computing Graphics-Processing Unit

GPU Graphics-Processing Unit

HW Hardware

ICT Information and Communication Technology

ID Identifier

IoT Internet of Things

ISF Intelligent Software Framework

KPI Key Performance Indicator

LISF Lightweight Intelligent Software Framework

LMDB Lightning Memory-Mapped Database

OpenCL Open Computing Language

RAM Random Access Memory

SW Software

5 Conventions

The following conventions are used in this Recommendation:

– The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted, if conformance to this Recommendation is to be

claimed.

– The keywords "is prohibited from" indicate a requirement which must be strictly followed

and from which no deviation is permitted, if conformance to this Recommendation is to be

claimed.

– The keywords "is recommended" indicate a requirement which is recommended but which

is not absolutely required. Thus, this requirement need not be present to claim conformance.

 Rec. ITU-T Y.4475 (08/2020) 3

– The keywords "is not recommended" indicate a requirement which is not recommended but

which is not specifically prohibited. Thus, conformance with this Recommendation can still

be claimed even if this requirement is present.

– The keywords "can optionally" indicate an optional requirement which is permissible,

without implying any sense of being recommended. This term is not intended to imply that

the vendor's implementation must provide the option and the feature can be optionally

enabled by the network operator/service provider. Rather, it means the vendor may optionally

provide the feature and still claim conformance with this Recommendation.

– The keyword "functions" is defined as a collection of functionalities.

– The keyword "functional block" is defined as a group of functionalities that have not been

further subdivided at the level of detail described in this Recommendation.

6 Introduction

With the development of IoT technologies, intelligent technologies are rapidly developing and

launching in various information and communication technology (ICT) service domains. In order to

support intelligent capability on resource-limited IoT devices, an IoT software (SW) framework plays

an important role. A relevant IoT SW framework is also published as [ITU-T Y.4453] to support

adaptive application capability for IoT devices.

Generally, an ISF primarily performs in server-side cloud computing and requires high-performance

computing environments with rich resources. A framework conceptually consists of pre-processing

entity, learning entity, and inferencing entity for intelligence processing. Additionally, training data

and real-data are needed. An ISF demands high-quality training data through a pre-processing entity,

generates a learning model by using a learning entity and predicts inferencing for new real-data by

an inferencing entity.

– The pre-processing entity filters data or transforms data into a different format.

– The learning entity searches for regularity and patterns in data.

– The inferencing entity classifies and estimates new real data.

Many kinds of current IoT devices have been embedded by a general-purpose computing graphics-

processing unit (GPGPU) and multicore central processing unit (CPU) with limited processing

capability. Nevertheless, with these IoT devices, new requirements for intelligent IoT services are

demanded to provide near-real-time IoT data processing, privacy handling, and low latency. In order

to provide intelligence capability in embedded systems with limited system resources, there are

several issues when considering their hardware (HW) and SW.

– HW: Take into account clock speed, number of cores and efficient power management,

regrading CPU and GPGPU in order to support one specified task or set of tasks.

– SW: Take into account acceleration technology using CPU- and GPGPU-based parallelism

and lightweight technology through optimization.

Generally, embedded systems are dedicated to one specific task or set of tasks so that it is not easy

for them to work complex programs with heavy workloads such as intelligent services, called

CPU-intensive programs. When these heavy programs work on embedded systems, different types of

overhead (e.g., high CPU or GPGPU utilization, CPU or GPGPU thermal and memory leak) can shut

down or crash the entire system. Nevertheless, embedded systems tend to execute complex programs

with heavy workloads in order to provide intelligent services, such as face recognition, vacuum

cleaning and autonomous car or drone driving. Therefore, the LISF needs to consider a method for

supporting intelligence on resource-limited IoT devices. With the LISF, IoT devices can run

intelligent IoT applications handling in a resource-constrained environment and can support

intelligent capability in a standardized way. The combination of IoT devices with the LISF enables

intelligent services for users.

4 Rec. ITU-T Y.4475 (08/2020)

An intelligent job such as machine learning and deep learning require a lot of computation. Therefore,

it is essential to support the best utilization of CPU and GPGPU capacities. The approach can be

provided with accelerating technology based on SW such as Open Computing Language (OpenCL)

and Compute Unified Device Architecture (CUDA). Also, a variety of intelligent applications

working on embedded systems requires a high-performance computing environment, so that

embedded systems need application of accelerating technology. Therefore, the LISF provides a

method for operating an embedded system by accelerating processing capability. This method

initializes, configures and processes in parallel. First, initializing and configuring entities perform

mathematical operations using a parallel managing function entity. The parallel managing function

entity allocates a device memory, copies data from a host to a device, sets a kernel and again copies

results of an operation. Therefore, the instances of the kernel are executed in parallel; each of them

processes a single work item and all are executed together as multiple work items as a part of a work

group. Second, processing in parallel involves mathematical operations performed by an acceleration-

managing function entity using the configured entities. In this situation, most entities have a trade-off

between accuracy (e.g., object recognition rate) and real time (e.g., frames per second (FPS)). For

example, if accuracy for object recognition rate is high, detection or inferencing time for objects can

be slow. As an embedded system has overheads due to a lot of computation, applications and services

may not work properly.

Figure 1 is a schematic diagram showing machine or deep learning from the system resources

perspective. Figure 1 illustrates high-level features of LISF compared to ISF. ISF is designed to work

on systems with rich resources (e.g., server computer, cloud computer), and has basically three

entities, such as pre-processing, full learning and inferencing, and two data sources, such as a learning

model and training data. An ISF focuses on providing faster intelligent services with high resource

capability systems. So, an ISF can support full learning with big data for training. On the other hand,

a LISF is designed to work on systems with limited resources, so that each entity and data must be

optimized for these systems. Therefore, an LISF has three optimized functional entities (FEs), such

as accelerated pre-processing, online partial learning and approximate inferencing, and two sources

of input data, such as an optimal learning model and one-shot data for processing in resource-limited

devices. These FEs constitute the core engine of an LISF.

An accelerated pre-processing entity accelerates data refinement, integration, reduction and

transformation by making the best use of a GPGPU in order to maintain data consistency for learning.

An online partial learning entity updates a part of the learning model without the assistance of a high-

performance computer through real-time learning using one-shot training data, not batch learning. An

initial learning model can be generated by a high-performance computer and the model is sent to

embedded devices. An approximate inferencing entity predicts correspondence to new data when

considering inference speed and accuracy. Additionally, an LISF is composed of two input data

sources.

 Rec. ITU-T Y.4475 (08/2020) 5

Figure 1 – Overview diagram of ISF and LISF in the aspect of system resources

7 LISF features and requirements

This clause describes LISF features and requirements. LISF features are explained by using a client

and server mechanism.

7.1 LISF features

Performance, power and memory on embedded systems are aspects of an LISF when running.

LISF-based artificial intelligence services support their real-time execution. However, the following

three conditions should be avoided for providing the execution:

– slowing of service response time;

– stopping suddenly during execution;

– service termination due to abnormal execution.

These three conditions arise due to lack of resources in embedded systems. In order to resolve the

issue, the LISF needs to support the following features:

– efficient use of embedded system resources, in which there are lightweight and accelerated

techniques for CPU, GPGPU and memory;

– support for online partial learning due to resource-limited embedded systems – full learning

generally works on server systems;

– generation of a personalized learning model that adapts to a system environment through

online partial learning;

– collaboration with a client-server model, where the client is a poor-resource and the server a

rich-resource system.

Figure 2 shows a client and server mechanism for the LISF. The server system and IoT device each

have an intelligence framework. The system comprises of the device, platform, context, command

queue and kernel. The device comprises actual processors for performing mathematical operations.

The platform uses at least one CPU and one graphics-processing unit (GPU). The context comprises

an entity for managing the resources in a device set. The command queue comprises an entity for

executing a kernel and performing memory mapping or unmapping and synchronization. The kernel

comprises a code running on the device. The artificial intelligence framework in the server system

pre-processes and learns fully. Full learning can utilize a pruning method in order to generate an

optimized learning model. The pruning method steadily changes superfluous weight values to zero

6 Rec. ITU-T Y.4475 (08/2020)

during learning training data. Pre-processing and full learning require a lot of computation, since they

create an initial learning model using training data, so that the server system has a high-performance

computing environment. The initial learning model transmits to the artificial intelligence framework

of the IoT device.

Figure 2 – Client and server mechanism of the LISF

The LISF consists of accelerated pre-processing, approximate inferencing, and online partial learning.

Since the IoT device is a kind of embedded system, the LISF should be able to use system resources,

such as CPU and GPGPU, as well as memory efficiently. Accelerated pre-processing, approximate

inferencing and online partial learning should utilize accelerated techniques based on a GPGPU

because embedded CPUs have complex computation process limitations. If real-world data input to

an IoT device, the LISF uses the initial learning model to infer.

7.1.1 Accelerated pre-processing

Accelerated pre-processing takes real-world raw input data and converts it into a different form to

generate optimized data for inferencing. Real-world input data may be somewhat inappropriate to use

immediately for inference and learning. Since the LISF requires additional learning, called partial

learning, for input data, it includes a function that generates a consistent learning database, such as

the lightning memory-mapped database (LMDB) and LevelDB (key value-based storage library) in

a pre-processing category. In order to support acceleration for methods of data conversion and

database generation in LISF, LISF has three recipes: kernel-based data processing, internal memory

management and data tiling.

There are many data conversion methods; LISF pre-processing supports four of them: normalization,

transformation, reduction and discretization.

 Rec. ITU-T Y.4475 (08/2020) 7

7.1.2 Online partial learning

Online partial learning processes one data source and updates the processed results in a learning

model, which requires low computing power. In contrast, full learning initially uses a learning model

transmitted from a server computer, which requires large amounts of training data for processing,

called batch learning. The online partial learning mechanism is suitable for use in embedded systems

such as IoT devices.

There are two types of online partial learning as follows.

– Fine-tuning based partial learning: When inferencing input data use a learning model, if an

inference result for input data has low probability, fine-tuning based partial learning is used.

Fine-tuning based partial learning upgrades an existing learning model through re-training

regarding input data. It is possible to infer input data using an updated learning model.

– Scalable-tuning based partial learning: When inferencing input data use a learning model, if

there is no inference result for input data, scalable-tuning based partial learning is used.

Scalable-tuning based partial learning not only upgrades an existing learning model, but also

adds a new class into the classification list (e.g., label.txt).

7.1.3 Approximate inferencing

Approximate inferencing predicts with pre-processed data. The predicted results can be used in a

classification or estimation service, for example. For prediction, an approximate computing method

is applied. Processing finds anr approximate rather than an exact answer. Approximate computing

can achieve quicker response results than accurate ones.

7.1.4 Optimized learning model

The optimized learning model consists of a model architecture and model weighting. The model

architecture determines a model configuration of stack layers from the perspective of machine

learning or deep learning model. Model weights are initialized to arbitrary values, and are updated as

learning proceeds with training data. Saving the learning model stores the model architecture and

model weights. Three methods are used to generate an optimized learning model: sparse coding

mechanism; learning-model compression mechanism; and data type lightweight mechanism.

7.1.5 Full learning

Full learning is a process of constructing a neural network from neural network nodes and then

calculating a weighting of data input to each neural network node through a learning algorithm. Full

learning can be achieved through various neural network-processing engines with learning

algorithms. The neural network models can modify information directly described by the user or

change the structure through editing tools to produce an optimized learning model.

7.2 LISF requirements

This clause describes the requirements for a LISF in accordance with the conceptual diagram in

Figure 3. The LISF exists between the intelligent IoT application and the resource. The LISF supports

online partial learning, approximate inference, performance and acceleration processing.

8 Rec. ITU-T Y.4475 (08/2020)

Figure 3 – A conceptual diagram of a LISF

7.2.1 Applications

Intelligent IoT applications utilize the capabilities exposed by the LISF and run on embedded devices.

Intelligent IoT applications work with low latency and efficient energy power on embedded devices.

For development of intelligent IoT applications, based on the exposed capabilities of the LISF:

– it is required to perform intelligent computing (e.g., such as machine learning and deep

learning) on a standalone IoT device;

– it is required to support an efficient, scalable intelligent computing mechanism in a

resource-limited environment;

– it is recommended to support enhanced capabilities for handling low latency and accelerators;

– it is recommended to monitor the information about the resource usage status.

7.2.2 LISF

The LISF has capabilities for learning, inference, performance monitoring and accelerating

processing. The LISF provides artificial intelligence optimized for embedded systems and handles

processing in resource-constrained embedded systems that maximize low-power performance for

real-time operation.

The LISF performs and exposes the capabilities as follows.

– Online partial learning capability performs online partial learning for intelligent IoT

applications.

– Approximate inference capability performs real-time inferencing for intelligent IoT

applications.

– Performance-monitoring capability performs monitoring for resource utilization.

– Accelerating processing capability supports accelerating technology for intelligent IoT

applications.

For online partial learning capability:

– it is required to provide a mechanism for partial learning processing in a resource-limited

environment;

– it is recommended to provide a lightweight learning model for an on-device environment;

 Rec. ITU-T Y.4475 (08/2020) 9

– it is recommended to support high-density compression model and processing performance

for quick learning;

– it is recommended to use parallel computing handling framework for accelerating the matrix

operations of machine learning.

For approximate inference capability:

– it is recommended to support real-time processing for reasoning;

– it is recommended to support optimized graph network flow for inferencing;

– it is recommended to provide operation without network connection and simple configuration

for artificial intelligence application.

For performance-monitoring capability:

– it is recommended to monitor performance for profiling function and data parsing analysis;

– it is recommended to provide information for GPGPU acceleration performance data

collection;

– it is recommended to provide status information for resource execution.

For accelerating processing capability:

– it is recommended to provide GPU-based adaptively accelerating operations for embedded

system performance on a number of IoT devices;

– it is recommended to provide operation in a binary format for parallel and acceleration

processing;

– it is recommended to consider performance of IoT device processing to maximize parallelism

regarding matrices with weights and bias values;

– it is recommended to share a memory between a server and IoT device to minimize the cost

of the mathematical matrix multiply operation;

– it is recommended to provide an accelerator analysis unit with relevant IoT device

information.

7.2.3 Resources

The resources utilize appropriate system-related capabilities, such as CPU/GPU, memory or network.

For the resource layer:

– it is required to collect and manage CPU/GPU to handle real-time processing of intelligent

IoT application and LISF;

– it is recommended to support low-latency response and bandwidth efficiency for the network;

– it is recommended to provide a storage policy to handle private data.

8 Functional architecture of the LISF

The LISF provides intelligence to IoT applications that operate on resource-constrained IoT

embedded devices.

The LISF is composed of four functions for:

1) online partial learning;

2) approximate inference;

3) performance monitoring;

4) accelerated processing.

10 Rec. ITU-T Y.4475 (08/2020)

The LISF starts operations through a service request to the intelligent IoT application, and executes

the online partial learning function or the approximate inference function. It works in conjunction

with accelerated processing capabilities to generate optimized learning models and reasoning output.

The LISF provides the intelligent functionality for intelligent IoT applications consisting of generic

application logic and intelligent processing logic.

The accelerated processing functions have the ability to configure computational resources and

memory based on the processing requirements of the initial optimized learning model. This feature

also enables fast and optimized work with online partial learning and approximate reasoning.

8.1 Online partial learning function

The online partial learning function, shown in Figure 4, is the foundation of the LISF. This function

should run to update the initial learning model if some test dataset or reasoning capabilities of a new

set of learning data are available. The function collects a training dataset from an intelligent IoT

application and then performs machine learning to update the existing learning model. The training

dataset consists of training data with labels in supervised modelling mode and delivers an online

partial learning input. The format of training data with labels is required to comply with the

specifications of the initial learning model. The online partial learning function supports its

capabilities for intelligent IoT applications to allow them to train their learning models on it.

The online partial learning function consists of three FEs for learning set-up; model training; and

training control.

Figure 4 – Online partial leaning function in the LISF

8.1.1 Learning set-up FE

The learning set-up FE prepares initial model parameters using a trained and training dataset. It

downloads training models from the server system through the network and imports a training dataset

from the intelligent IoT application to update the initial learning model. The learning set-up FE

operates the initial learning model for further modelling optimization. Model optimization can be

 Rec. ITU-T Y.4475 (08/2020) 11

achieved by compression methods, such as parameter pruning and sharing, low-rank factorization,

transferred and compact convolutional filters and knowledge distillation.

The learning set-up FE usually chooses a default model based on a specific learning model at the

request of an intelligent service type or intelligent IoT application. The training dataset supports

training data for the online partial learning function and the raw data or record format of the database

containing the labels. The information listed in Table 8-1 is necessary for the learning set-up FE.

Table 8-1 –Information for the learning set-up FE

Set-up information Description Remarks

Identifier (ID) of intelligent

service
ID for distinguishing intelligent service

Face recognition, character

recognition, etc.

ID of learning model
The learning model to be used in

training

Internal ID to distinguish learning

model

Number of instances
The number of data instances in the

training dataset
1 024, 2 048, or 4 096, etc.

Width
Width of each data contained in in the

training dataset
64

Height
Height of each data contained in the

training dataset
64

Number of channels
Number of channel of each data

contained in the training dataset
3

Learning rate
Learning rate that controls the updating

of gradient in backward pass
0.1, 0.01, etc.

8.1.2 Model training FE

The model training FE performs two major steps of the process for the learning model, namely the

forward and backward passes. During a forward pass, training data is delivered through the neural

network of the learning model; during a backward pass it returns through the neural network. The

two passes are repeated until the cost of the loss and the loss in the iteration is less than or equal to a

given threshold, to update the parameters (e.g., node weights and biases).

The model training FE has the same essential information as the learning set-up FE. The model

training FE must generate the following information from all iterations:

– iteration number: the current iteration count in training;

– current cost: the cost calculated at current iteration n training.

The model training FE uses the generated information as input to the training control FE.

During the training process, the model training FE can request CPU/GPU and memory resources with

accelerated processing function for rapid training. The following information is essential for the

accelerated processing function:

– layer information: the types and quantities of constituent layers in the learning model.

8.1.3 Training control FE

The training control FE should be stopped if the cost is below a given level or the number of iterations

exceeds a given threshold to prevent useless or unlimited training. The training control FE stops after

monitoring the current cost of the learning model and the number of iterations of the model training

FE. The following information is essential for training control:

– iteration threshold: the maximum number of iterations allowed for model training.

12 Rec. ITU-T Y.4475 (08/2020)

8.1.4 Operational procedure

The operation of the online partial learning function consists of three steps, as shown in Figure 5.

Step 1 is the model set-up phase for partial learning, which is executed in the learning set-up FE. An

intelligent IoT application requests PartialLearnSetup() from the online partial learning function for

initializing system resources, loading a model and converting the training data formatting with model,

data and key performance indicator (KPI) information. Furthermore, the KPI received from the

intelligent IoT application includes the minimum accuracy, maximum cost and maximum iteration,

which are then used to set KPIs for the training control FE. After completing the work,

PartialLearnSetupResult() notifies the set-up completion results to the intelligent IoT application.

Step 2 is the process for partial learning in the model training FE. The model training FE repeats the

training iteration with the training model and dataset. The training control FE compares the initial

target KPI with the measured KPI for each training iteration, and decides whether to perform

additional training iterations based on the comparison result. If no additional training is required, the

model training FE updates the training model. In addition, it notifies the result to the intelligent IoT

application with the function PartialLearnResult().

Step 3 is executed in the learning set-up FE by PartialLearnComplete(), which is sent from the model

training FE after completion of partial learning and training model update. Finally, this step releases

system resources used for partial learning.

Figure 5 – Online partial learning procedure in the LISF

 Rec. ITU-T Y.4475 (08/2020) 13

8.2 Approximate inference function

The approximate inference function, shown in Figure 6, manages and performs inference processes

for intelligent IoT applications.

The approximate inference function consists of two FEs for: inference set-up and inference driving.

Figure 6 – Approximate inference function in the LISF

NOTE – The word approximate is used in this Recommendation to emphasize the inevitable loss of accuracy

of the learning model due to the resource limitations of the IoT device, although the inference itself implies

some approximation.

8.2.1 Inference set-up FE

The inference set-up FE prepares its learning model with a given test dataset. This FE installs the

learning model from the server system via interprocess communication or network protocols, collects

the test dataset from the intelligent IoT application, and verifies compliance with the learning model

used in inference. The following information is necessary for inference set-up:

– ID for distinguishing intelligent service;

– ID of the learning model to be used in inference;

– the number of data instances in the test dataset;

– the width of each data item contained in the test dataset;

– the height of each data item contained in the test dataset;

– the number of channels of each data item contained in the test dataset.

8.2.2 Inference driving FE

The inference driving FE starts the inference process with information prepared by the inference set-

up FE. This FE can request CPU/GPU and memory resources through the accelerated processing

function for fast reasoning during inference. The following information should be assembled for use

by the accelerated processing function:

14 Rec. ITU-T Y.4475 (08/2020)

– the ID of the learning model to be used in inference;

– learning model architectural information that describes how layers are interconnected;

– types and quantities of constituent layers in the learning model.

8.2.3 Operational procedure

The operation of the online approximate inference function consists of three steps as shown in

Figure 7.

Step 1 is the model set-up phase performed in the inference set-up FE. It includes initializing the

system resources necessary for the inference model and modelling process according to the model

information by the intelligent IoT application.

Step 2 is the process to infer in the inference driving FE. The inference data requested from the

intelligent IoT application is converted into a suitable format by the inference set-up FE, which

requests inference from the inference driving FE. The inference driving FE sends the result to the

inference set-up FE. The inference result also passes to the intelligent IoT application through the

inference set-up FE to clean up the inference data. Step 2 repeats until completion for all inference

data.

Step 3 is the process to release the resources used in the inference model. The inference set-up FE

releases system resources to clean up the model.

Figure 7 – Approximate inference procedure in the LISF

8.3 Performance-monitoring function

The performance-monitoring function, shown in Figure 8, gathers performance statistics about the

CPU/GPU, memory and other system resource usage in the resource layer when the online partial

learning function or approximate inference function operates. This function handles the accelerated

processing function with collected statistics to investigate the possibility of accelerating the online

 Rec. ITU-T Y.4475 (08/2020) 15

partial learning or approximate inference. The performance-monitoring function consist of two FEs

for: learning monitoring and inference monitoring.

Figure 8 – Performance-monitoring function in the LISF

8.3.1 Learning-monitoring FE

The learning-monitoring FE keeps track of system resources, such as CPU/GPU usage and frequency,

or the amount of random-access memory (RAM) available while the online partial learning function

is running. When accelerated processing functions also use standard parallel computing application

programming interfaces (APIs), the learning-monitoring FE collects context, queue and kernel usage

information in real time, as well as information about the API trace and resource statistics.

8.3.2 Inference-monitoring FE

The inference-monitoring FE keeps tracks of system resources such as CPU/GPU usage and

frequency, or the amount of RAM available, while the approximate inference function is running.

The inference-monitoring FE also collects information about API traces and resource statistics in real

time, as well as context, queue, and kernel usage when accelerated processing functions use the APIs

specified in the standard parallel computing framework for accelerating performance.

8.3.3 Operational procedure

The operation of the performance-monitoring procedure is shown in Figure 9. The performance-

monitoring function provides two sources of reporting resource usage statistics data on: the learning

model; and the inference model.

The learning-monitoring FE collects performance metrics measured and reported by the training

control FE in the online partial learning function in relation to the learning model during partial

learning.

The inference-monitoring FE collects performance indicators measured and reported by the inference

driving FE in the online approximate inference function.

16 Rec. ITU-T Y.4475 (08/2020)

The performance statistics data can be used for the parallelization-managing FE in the accelerated

processing function, which optimizes the memory allocation, device allocation, and kernel

configuration required for learning or inference models.

Figure 9 – Performance-monitoring procedure in the LISF

8.4 Accelerated processing function

The accelerated processing function, shown in Figure 10, provides optimized utilization of resources

for a given learning model. Each layer of the learning model requires a variety of mathematical

operations for learning and inference. The accelerated processing function is optimized for underlying

HW resources and provides parallel mathematical operations, as well as examining the statistics

provided by performance-monitoring function to identify bottlenecks. According to the results, the

configuration of HW resource usage is updated to accelerate the online partial learning function and

approximate inference function. The accelerated processing function is necessary for accelerating

mathematical operations used in the constituent layers of the learning model. Mathematical operations

are general linear algebra operations such as vector addition, scalar multiplication, linear

combinations and matrix multiplication.

The accelerated processing function consist of two FEs for: parallelization management and

acceleration management.

 Rec. ITU-T Y.4475 (08/2020) 17

Figure 10 – Accelerating processing function in the LISF

8.4.1 Parallelization-managing FE

The parallelization-managing FE initializes and configures the following entities within the resource

to run mathematical operations in parallel to speed up layer execution. Moreover, the parallelization-

managing FE manages a parallel-processing queue for performing parallel processing depending on

a number of devices in the embedded system, such as those with OpenCL. Furthermore, the

parallelization-managing FE divides a matrix with weights and bias values taking the parallel

processing performance of the device into consideration to maximize parallelism in multiple device

environments. The parallel processing capability of the device is determined by the number of kernel

instances that are executed at a time, a maximum work group size of the device or a maximum work

item size:

– platform: specific targeted heterogeneous platform consisting of CPUs, GPUs, and other

processors or HW accelerators;

– device: processors performing the calculation;

– context: an entity that manages the resources on a device set;

– command queue: an entity that executes the kernel and performs memory mapping or

unmapping and synchronization;

– kernel: codes running on a device.

The parallelization-managing FE allocates device memory, copies data from the host to the device,

sets up the kernel and copies the result again. It is necessary to design for parallel applications. The

basic assumption is that many instances of the kernel run in parallel, each processing a single work

item. Multiple work items run together as part of a work group. An instance of each kernel in the

work group communicates with an additional instance.

18 Rec. ITU-T Y.4475 (08/2020)

8.4.2 Acceleration-managing FE

The acceleration-managing FE manages the framework for the kernel, which supports the set of

mathematical operations. The set of mathematical operations includes those in neural networks, such

as a convolutional neural network (CNN). The acceleration-managing FE supports mathematical

routines that provide standard building blocks for performing basic vector and matrix operations.

The acceleration-managing FE controls resources so that a device, such as a OpenCL device,

performs a general matrix multiply (GEMM) operation on the divided matrix and input data

depending on the divided matrix. In addition, the acceleration-managing FE groups the matrix into

vectors to maximize a workload for each kernel, and determines on a size of a work group to allow

each device to perform parallel processing. Furthermore, the acceleration-managing FE shares a

memory between a host and devices to minimize the cost of the GEMM operation, each device

performs mathematical routines without copying data between the host and the device by accessing

the host's vector and a matrix using a memory address for operations:

– with scalar and vector or vector and vector;

– with matrix and vector; and

– between matrices.

8.4.3 Operational procedure

The operation of the accelerating processing procedure is shown in Figure 11. The accelerated

processing function consists of a parallelization-managing FE and an accelerating managing FE.

The parallelization-managing FE performs tasks such as memory allocation, kernel configuration,

and memory copy from host to device for partial learning model initialization and inference

initialization requests. In the case of initial inference and partial learning, performance data allocates

default memory and the kernel configuration. If there is performance data from the learning-

monitoring FE or inference-monitoring FE, memory is allocated and the kernel configured using this

information.

The accelerating managing FE provides the mathematical operations necessary for deep learning. It

provides acceleration functions for mathematical operations between scalar, vector, and matrix

quantities required for forward or backward pass in the learning or inference models.

Figure 11 – Accelerating processing procedure in the LISF

 Rec. ITU-T Y.4475 (08/2020) 19

Appendix I

Use case – Personal customization service with drone devices

(This appendix does not form an integral part of this Recommendation.)

This appendix gives an example of service for personal customization with drone devices for an LISF

on embedded IoT devices. The LISF concept is gaining in importance in the current IoT service

environment, because it enables resource-limited IoT devices to achieve intelligence over typical IoT

platforms.

Figure I.1 shows an example of service for personal customization with drone devices. The service

has four entities: control centre; drone stations; drones; and users.

– The control centre manages all drone stations with a data server and the collected data are

used as training data to generate a new learning model.

– Drone stations have several drones waiting for user services from the control centre, and

continuously communicate and forward collected data and a learning model from the drones

to the control centre.

– Drones have embedded an initial inference engine and some functions: autonomous flight,

real-time photographing, object (or face) detection, etc. A drone that receives user service

from a drone station flies to the area where the user is located.

– Users request a service from the control centre using a smart phone and communicate with

the drone.

Figure I.1 – Service scenario for personal customization with drone devices

This procedure consists of three phases. The first is a configuration phase that transmits a user's

request to an embedded IoT device, such as a drone. The second is an execution phase where an

20 Rec. ITU-T Y.4475 (08/2020)

embedded IoT device fulfils the user's request. The third is a learning phase that creates a new learning

model.

The detailed procedure of the service is as follows.

1) Users request delivery service from a control centre with a batch learning server. When

requesting the service, the following information is sent: user location; user identification;

service type; etc. (sequence 1).

2) On receipt of the request, the control centre searches the nearest drone station to the user and

sends delivery service to the one selected, e.g., drone station #3 (sequence 2).

3) The drone station, which manages embedded IoT devices, selects a drone that can be serviced

and forwards information associated with delivery service to the selected drone (sequence 3).

4) The drone flies to the user to start the service. During the flight, the drone collects

environmental image data using an embedded CAM device. When arriving at the destination

from where the user has requested the service, the drone first identifies the user by using face

detection and then provides the service corresponding to the user request. After finishing the

service, the drone flies back to the drone station (sequence 4).

5) Drone stations send all data collected by drones to the control centre, which performs batch

learning and generates a new inference engine for all drones (sequences 5 and 6).

The drone conducts intelligence processing, e.g., online partial learning, during the flight or at the

drone station, so that the drone is updated with the new inference engine. Embedded IoT device such

as drones can be applied to heterogeneous service domains or various data environments.

 Rec. ITU-T Y.4475 (08/2020) 21

Figure I.2 – A procedural example of LISF service

22 Rec. ITU-T Y.4475 (08/2020)

Appendix II

Use case – Personal vision aids service

(This appendix does not form an integral part of this Recommendation)

This appendix gives an example of service for personal vision aids with an LISF on embedded IoT

devices. The vision aids service is helpful for visually impaired people and can support personalized

service in each individual's environment.

Figure II.1 shows an example of personal vision aids service with the LISF. The service has four

entities: users; wearable device; LISF gateway; and service centre.

– Users use a personal and customized vision aids service.

– The wearable device detects the objects and transfers the image data to the LISF gateway. In

addition, the wearable device can send object information to the user through sounds.

– The LISF gateway performs online partial learning on the IoT device with newly acquired

data from the individual's environment. In addition, it transmits the acquired data to a service

centre to perform batch learning. The data transferred are used as training data for

regenerating the learning model.

• The LISF gateway infers objects using pre-trained learning models and image data from

wearable device (e.g., smart glasses or phone).

• The LISF gateway transfers inference results to the wearable device.

– The service centre initially performs full (batch) learning with rich system resources and

transfers a pre-trained learning model to the LISF gateway.

Figure II.1 – Service scenario for personal vision aids

This procedure consists of three phases. The first is a configuration phase in which users request the

service from the service centre. The second is an execution phase in which embedded IoT devices

detect and infer the objects when users move. The third is a learning phase in which an embedded

IoT device performs online partial learning and sets up a personalized learning model.

The detailed procedure of the service is as follows.

 Rec. ITU-T Y.4475 (08/2020) 23

1: Configuration phase (Sequence 1-4)

1) Users request vision aids service from a service centre via embedded IoT devices such as a

wearable device and LISF gateway. When the service centre receives the service request, it

transfers the pre-trained learning model (sequences 1, 2, and 3).

2) On receipt of the learning model, the LISF gateway sets up an initial inference and learning

engine and reports a status service set-up to users via the wearable device using sound

(sequence 4).

2: Inferencing phase (Sequence 5-8)

3) When users move, the wearable device detects the object and generates the image data for it.

When data generation is completed, the wearable device transfers the generated data to the

LISF gateway (sequences 5 and 6).

4) The LISF gateway infers the detected object using an inference engine. When finished, the

LISF gateway provides the user with an inference result based on the pre-trained model

(sequences 7 and 8).

3: Online partial and re-learning phase (Sequence 9)

5) Based on the data collected up to this point, the LISF gateway performs online partial learning

and sets up a personalized learning model. The LISF gateway transfers the collected data to

the service centre. The service centre performs batch learning and generates an updated

learning model (sequence 9).

The LISF provides a lightweight learner, e.g., for online partial learning and predictor, optimized in

embedded HW in a resource-limited environment.

24 Rec. ITU-T Y.4475 (08/2020)

Figure II.2 – A LISF procedure example of a personal vision aids service

 Rec. ITU-T Y.4475 (08/2020) 25

Bibliography

[b-ITU-T Y.2012] Recommendation ITU-T Y.2012 (2010), Functional requirements and

architecture of next generation networks.

[b-ITU-T Y.2091] Recommendation ITU-T Y.2091 (2011), Terms and definitions for next

generation networks.

[b-ITU-T Y.4000] Recommendation ITU-T Y.4000/Y.2060 (2012), Overview of the Internet of

things.

[b-ITU-R M.1224-1] Recommendation ITU-R M.1224-1 (2012), Vocabulary of terms for

international mobile telecommunications (IMT).

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T Y.4475 (08/2020) Lightweight intelligent software framework for Internet of things devices
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	7 LISF features and requirements
	7.1 LISF features
	7.1.1 Accelerated pre-processing
	7.1.2 Online partial learning
	7.1.3 Approximate inferencing
	7.1.4 Optimized learning model
	7.1.5 Full learning

	7.2 LISF requirements
	7.2.1 Applications
	7.2.2 LISF
	7.2.3 Resources

	8 Functional architecture of the LISF
	8.1 Online partial learning function
	8.1.1 Learning set-up FE
	8.1.2 Model training FE
	8.1.3 Training control FE
	8.1.4 Operational procedure

	8.2 Approximate inference function
	8.2.1 Inference set-up FE
	8.2.2 Inference driving FE
	8.2.3 Operational procedure

	8.3 Performance-monitoring function
	8.3.1 Learning-monitoring FE
	8.3.2 Inference-monitoring FE
	8.3.3 Operational procedure

	8.4 Accelerated processing function
	8.4.1 Parallelization-managing FE
	8.4.2 Acceleration-managing FE
	8.4.3 Operational procedure

	Appendix I Use case – Personal customization service with drone devices
	Appendix II Use case – Personal vision aids service
	Bibliography

