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Summary 

Recommendation ITU-T Y.4475 addresses the concept of the lightweight intelligent software 

framework (LISF) that supports Internet of things (IoT) applications requiring intelligent processing, 
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FOREWORD 
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telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 
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operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
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Recommendation ITU-T Y.4475 

Lightweight intelligent software framework for Internet of things devices 

1 Scope 

This Recommendation specifies general requirements and functionalities of the lightweight 

intelligent software framework (LISF) working on resource-limited Internet of things (IoT) devices. 

In particular, for the LISF, the scope of this Recommendation covers: 

– the concept of the intelligent software framework (ISF) and necessity for a lightweight 

version; 

– features and general requirements; 

– functional architecture. 

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the currently 

valid ITU-T Recommendations is regularly published. The reference to a document within this 

Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Y.4453] Recommendation ITU-T Y.4453 (2016), Adaptive software framework for 

Internet of things devices. 

3 Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 

3.1.1 application [b-ITU-T Y.2091]: A structured set of capabilities, which provide value-added 

functionality supported by one or more services, which may be supported by an API interface. 

3.1.2 Internet of things [b-ITU-T Y.4000]: A global infrastructure for the information society, 

enabling advanced services by interconnecting (physical and virtual) things based on existing and 

evolving interoperable information and communication technologies. 

NOTE 1 – Through the exploitation of identification, data capture, processing and communication capabilities, 

the IoT makes full use of things to offer services to all kinds of applications, whilst ensuring that security and 

privacy requirements are fulfilled. 

NOTE 2 – From a broad perspective, the IoT can be perceived as a vision with technological and societal 

implications. 

3.1.3 capability [b-ITU-R M.1224-1]: The ability of an item to meet a service demand of given 

quantitative characteristics under given internal conditions. 

3.1.4 service [b-ITU-T Y.2091]: A set of functions and facilities offered to a user by a provider. 

3.1.5 functional entity [b-ITU-T Y.2012]: An entity that comprises an indivisible set of specific 

functions. Functional entities are logical concepts, while groupings of functional entities are used to 

describe practical, physical implementations. 
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3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms 

3.2.1 lightweight intelligent software framework (LISF): Middleware used to enable intelligent 

capabilities for each Internet of things (IoT) application by using online partial learning and 

inferencing processing with the system resources of IoT devices. 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

API Application Programming Interface 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

FE Functional Entity 

FPS Frames Per Second 

GEMM General Matrix Multiply 

GPGPU General Purpose Computing Graphics-Processing Unit 

GPU Graphics-Processing Unit 

HW Hardware 

ICT Information and Communication Technology 

ID Identifier 

IoT Internet of Things 

ISF Intelligent Software Framework 

KPI Key Performance Indicator 

LISF Lightweight Intelligent Software Framework 

LMDB Lightning Memory-Mapped Database 

OpenCL Open Computing Language 

RAM Random Access Memory 

SW Software 

5 Conventions 

The following conventions are used in this Recommendation: 

– The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted, if conformance to this Recommendation is to be 

claimed. 

– The keywords "is prohibited from" indicate a requirement which must be strictly followed 

and from which no deviation is permitted, if conformance to this Recommendation is to be 

claimed. 

– The keywords "is recommended" indicate a requirement which is recommended but which 

is not absolutely required. Thus, this requirement need not be present to claim conformance. 
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– The keywords "is not recommended" indicate a requirement which is not recommended but 

which is not specifically prohibited. Thus, conformance with this Recommendation can still 

be claimed even if this requirement is present. 

– The keywords "can optionally" indicate an optional requirement which is permissible, 

without implying any sense of being recommended. This term is not intended to imply that 

the vendor's implementation must provide the option and the feature can be optionally 

enabled by the network operator/service provider. Rather, it means the vendor may optionally 

provide the feature and still claim conformance with this Recommendation. 

– The keyword "functions" is defined as a collection of functionalities. 

– The keyword "functional block" is defined as a group of functionalities that have not been 

further subdivided at the level of detail described in this Recommendation. 

6 Introduction 

With the development of IoT technologies, intelligent technologies are rapidly developing and 

launching in various information and communication technology (ICT) service domains. In order to 

support intelligent capability on resource-limited IoT devices, an IoT software (SW) framework plays 

an important role. A relevant IoT SW framework is also published as [ITU-T Y.4453] to support 

adaptive application capability for IoT devices. 

Generally, an ISF primarily performs in server-side cloud computing and requires high-performance 

computing environments with rich resources. A framework conceptually consists of pre-processing 

entity, learning entity, and inferencing entity for intelligence processing. Additionally, training data 

and real-data are needed. An ISF demands high-quality training data through a pre-processing entity, 

generates a learning model by using a learning entity and predicts inferencing for new real-data by 

an inferencing entity. 

– The pre-processing entity filters data or transforms data into a different format. 

– The learning entity searches for regularity and patterns in data. 

– The inferencing entity classifies and estimates new real data. 

Many kinds of current IoT devices have been embedded by a general-purpose computing graphics-

processing unit (GPGPU) and multicore central processing unit (CPU) with limited processing 

capability. Nevertheless, with these IoT devices, new requirements for intelligent IoT services are 

demanded to provide near-real-time IoT data processing, privacy handling, and low latency. In order 

to provide intelligence capability in embedded systems with limited system resources, there are 

several issues when considering their hardware (HW) and SW. 

– HW: Take into account clock speed, number of cores and efficient power management, 

regrading CPU and GPGPU in order to support one specified task or set of tasks. 

– SW: Take into account acceleration technology using CPU- and GPGPU-based parallelism 

and lightweight technology through optimization. 

Generally, embedded systems are dedicated to one specific task or set of tasks so that it is not easy 

for them to work complex programs with heavy workloads such as intelligent services, called 

CPU-intensive programs. When these heavy programs work on embedded systems, different types of 

overhead (e.g., high CPU or GPGPU utilization, CPU or GPGPU thermal and memory leak) can shut 

down or crash the entire system. Nevertheless, embedded systems tend to execute complex programs 

with heavy workloads in order to provide intelligent services, such as face recognition, vacuum 

cleaning and autonomous car or drone driving. Therefore, the LISF needs to consider a method for 

supporting intelligence on resource-limited IoT devices. With the LISF, IoT devices can run 

intelligent IoT applications handling in a resource-constrained environment and can support 

intelligent capability in a standardized way. The combination of IoT devices with the LISF enables 

intelligent services for users. 
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An intelligent job such as machine learning and deep learning require a lot of computation. Therefore, 

it is essential to support the best utilization of CPU and GPGPU capacities. The approach can be 

provided with accelerating technology based on SW such as Open Computing Language (OpenCL) 

and Compute Unified Device Architecture (CUDA). Also, a variety of intelligent applications 

working on embedded systems requires a high-performance computing environment, so that 

embedded systems need application of accelerating technology. Therefore, the LISF provides a 

method for operating an embedded system by accelerating processing capability. This method 

initializes, configures and processes in parallel. First, initializing and configuring entities perform 

mathematical operations using a parallel managing function entity. The parallel managing function 

entity allocates a device memory, copies data from a host to a device, sets a kernel and again copies 

results of an operation. Therefore, the instances of the kernel are executed in parallel; each of them 

processes a single work item and all are executed together as multiple work items as a part of a work 

group. Second, processing in parallel involves mathematical operations performed by an acceleration-

managing function entity using the configured entities. In this situation, most entities have a trade-off 

between accuracy (e.g., object recognition rate) and real time (e.g., frames per second (FPS)). For 

example, if accuracy for object recognition rate is high, detection or inferencing time for objects can 

be slow. As an embedded system has overheads due to a lot of computation, applications and services 

may not work properly. 

Figure 1 is a schematic diagram showing machine or deep learning from the system resources 

perspective. Figure 1 illustrates high-level features of LISF compared to ISF. ISF is designed to work 

on systems with rich resources (e.g., server computer, cloud computer), and has basically three 

entities, such as pre-processing, full learning and inferencing, and two data sources, such as a learning 

model and training data. An ISF focuses on providing faster intelligent services with high resource 

capability systems. So, an ISF can support full learning with big data for training. On the other hand, 

a LISF is designed to work on systems with limited resources, so that each entity and data must be 

optimized for these systems. Therefore, an LISF has three optimized functional entities (FEs), such 

as accelerated pre-processing, online partial learning and approximate inferencing, and two sources 

of input data, such as an optimal learning model and one-shot data for processing in resource-limited 

devices. These FEs constitute the core engine of an LISF. 

An accelerated pre-processing entity accelerates data refinement, integration, reduction and 

transformation by making the best use of a GPGPU in order to maintain data consistency for learning. 

An online partial learning entity updates a part of the learning model without the assistance of a high-

performance computer through real-time learning using one-shot training data, not batch learning. An 

initial learning model can be generated by a high-performance computer and the model is sent to 

embedded devices. An approximate inferencing entity predicts correspondence to new data when 

considering inference speed and accuracy. Additionally, an LISF is composed of two input data 

sources. 
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Figure 1 – Overview diagram of ISF and LISF in the aspect of system resources 

7 LISF features and requirements 

This clause describes LISF features and requirements. LISF features are explained by using a client 

and server mechanism. 

7.1 LISF features 

Performance, power and memory on embedded systems are aspects of an LISF when running. 

LISF-based artificial intelligence services support their real-time execution. However, the following 

three conditions should be avoided for providing the execution: 

– slowing of service response time; 

– stopping suddenly during execution; 

– service termination due to abnormal execution. 

These three conditions arise due to lack of resources in embedded systems. In order to resolve the 

issue, the LISF needs to support the following features: 

– efficient use of embedded system resources, in which there are lightweight and accelerated 

techniques for CPU, GPGPU and memory; 

– support for online partial learning due to resource-limited embedded systems – full learning 

generally works on server systems; 

– generation of a personalized learning model that adapts to a system environment through 

online partial learning; 

– collaboration with a client-server model, where the client is a poor-resource and the server a 

rich-resource system. 

Figure 2 shows a client and server mechanism for the LISF. The server system and IoT device each 

have an intelligence framework. The system comprises of the device, platform, context, command 

queue and kernel. The device comprises actual processors for performing mathematical operations. 

The platform uses at least one CPU and one graphics-processing unit (GPU). The context comprises 

an entity for managing the resources in a device set. The command queue comprises an entity for 

executing a kernel and performing memory mapping or unmapping and synchronization. The kernel 

comprises a code running on the device. The artificial intelligence framework in the server system 

pre-processes and learns fully. Full learning can utilize a pruning method in order to generate an 

optimized learning model. The pruning method steadily changes superfluous weight values to zero 
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during learning training data. Pre-processing and full learning require a lot of computation, since they 

create an initial learning model using training data, so that the server system has a high-performance 

computing environment. The initial learning model transmits to the artificial intelligence framework 

of the IoT device. 

 

Figure 2 – Client and server mechanism of the LISF 

The LISF consists of accelerated pre-processing, approximate inferencing, and online partial learning. 

Since the IoT device is a kind of embedded system, the LISF should be able to use system resources, 

such as CPU and GPGPU, as well as memory efficiently. Accelerated pre-processing, approximate 

inferencing and online partial learning should utilize accelerated techniques based on a GPGPU 

because embedded CPUs have complex computation process limitations. If real-world data input to 

an IoT device, the LISF uses the initial learning model to infer. 

7.1.1 Accelerated pre-processing 

Accelerated pre-processing takes real-world raw input data and converts it into a different form to 

generate optimized data for inferencing. Real-world input data may be somewhat inappropriate to use 

immediately for inference and learning. Since the LISF requires additional learning, called partial 

learning, for input data, it includes a function that generates a consistent learning database, such as 

the lightning memory-mapped database (LMDB) and LevelDB (key value-based storage library) in 

a pre-processing category. In order to support acceleration for methods of data conversion and 

database generation in LISF, LISF has three recipes: kernel-based data processing, internal memory 

management and data tiling. 

There are many data conversion methods; LISF pre-processing supports four of them: normalization, 

transformation, reduction and discretization. 
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7.1.2 Online partial learning 

Online partial learning processes one data source and updates the processed results in a learning 

model, which requires low computing power. In contrast, full learning initially uses a learning model 

transmitted from a server computer, which requires large amounts of training data for processing, 

called batch learning. The online partial learning mechanism is suitable for use in embedded systems 

such as IoT devices. 

There are two types of online partial learning as follows. 

– Fine-tuning based partial learning: When inferencing input data use a learning model, if an 

inference result for input data has low probability, fine-tuning based partial learning is used. 

Fine-tuning based partial learning upgrades an existing learning model through re-training 

regarding input data. It is possible to infer input data using an updated learning model. 

– Scalable-tuning based partial learning: When inferencing input data use a learning model, if 

there is no inference result for input data, scalable-tuning based partial learning is used. 

Scalable-tuning based partial learning not only upgrades an existing learning model, but also 

adds a new class into the classification list (e.g., label.txt). 

7.1.3 Approximate inferencing 

Approximate inferencing predicts with pre-processed data. The predicted results can be used in a 

classification or estimation service, for example. For prediction, an approximate computing method 

is applied. Processing finds anr approximate rather than an exact answer. Approximate computing 

can achieve quicker response results than accurate ones. 

7.1.4 Optimized learning model 

The optimized learning model consists of a model architecture and model weighting. The model 

architecture determines a model configuration of stack layers from the perspective of machine 

learning or deep learning model. Model weights are initialized to arbitrary values, and are updated as 

learning proceeds with training data. Saving the learning model stores the model architecture and 

model weights. Three methods are used to generate an optimized learning model: sparse coding 

mechanism; learning-model compression mechanism; and data type lightweight mechanism. 

7.1.5 Full learning 

Full learning is a process of constructing a neural network from neural network nodes and then 

calculating a weighting of data input to each neural network node through a learning algorithm. Full 

learning can be achieved through various neural network-processing engines with learning 

algorithms. The neural network models can modify information directly described by the user or 

change the structure through editing tools to produce an optimized learning model. 

7.2 LISF requirements 

This clause describes the requirements for a LISF in accordance with the conceptual diagram in 

Figure 3. The LISF exists between the intelligent IoT application and the resource. The LISF supports 

online partial learning, approximate inference, performance and acceleration processing. 



 

8 Rec. ITU-T Y.4475 (08/2020) 

 

Figure 3 – A conceptual diagram of a LISF 

7.2.1 Applications 

Intelligent IoT applications utilize the capabilities exposed by the LISF and run on embedded devices. 

Intelligent IoT applications work with low latency and efficient energy power on embedded devices. 

For development of intelligent IoT applications, based on the exposed capabilities of the LISF: 

– it is required to perform intelligent computing (e.g., such as machine learning and deep 

learning) on a standalone IoT device; 

– it is required to support an efficient, scalable intelligent computing mechanism in a 

resource-limited environment; 

– it is recommended to support enhanced capabilities for handling low latency and accelerators; 

– it is recommended to monitor the information about the resource usage status. 

7.2.2 LISF 

The LISF has capabilities for learning, inference, performance monitoring and accelerating 

processing. The LISF provides artificial intelligence optimized for embedded systems and handles 

processing in resource-constrained embedded systems that maximize low-power performance for 

real-time operation. 

The LISF performs and exposes the capabilities as follows. 

– Online partial learning capability performs online partial learning for intelligent IoT 

applications. 

– Approximate inference capability performs real-time inferencing for intelligent IoT 

applications. 

– Performance-monitoring capability performs monitoring for resource utilization. 

– Accelerating processing capability supports accelerating technology for intelligent IoT 

applications. 

For online partial learning capability: 

– it is required to provide a mechanism for partial learning processing in a resource-limited 

environment; 

– it is recommended to provide a lightweight learning model for an on-device environment; 
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– it is recommended to support high-density compression model and processing performance 

for quick learning; 

– it is recommended to use parallel computing handling framework for accelerating the matrix 

operations of machine learning. 

For approximate inference capability: 

– it is recommended to support real-time processing for reasoning; 

– it is recommended to support optimized graph network flow for inferencing; 

– it is recommended to provide operation without network connection and simple configuration 

for artificial intelligence application. 

For performance-monitoring capability: 

– it is recommended to monitor performance for profiling function and data parsing analysis; 

– it is recommended to provide information for GPGPU acceleration performance data 

collection; 

– it is recommended to provide status information for resource execution. 

For accelerating processing capability: 

– it is recommended to provide GPU-based adaptively accelerating operations for embedded 

system performance on a number of IoT devices; 

– it is recommended to provide operation in a binary format for parallel and acceleration 

processing; 

– it is recommended to consider performance of IoT device processing to maximize parallelism 

regarding matrices with weights and bias values; 

– it is recommended to share a memory between a server and IoT device to minimize the cost 

of the mathematical matrix multiply operation; 

– it is recommended to provide an accelerator analysis unit with relevant IoT device 

information. 

7.2.3 Resources 

The resources utilize appropriate system-related capabilities, such as CPU/GPU, memory or network. 

For the resource layer: 

– it is required to collect and manage CPU/GPU to handle real-time processing of intelligent 

IoT application and LISF; 

– it is recommended to support low-latency response and bandwidth efficiency for the network; 

– it is recommended to provide a storage policy to handle private data. 

8 Functional architecture of the LISF 

The LISF provides intelligence to IoT applications that operate on resource-constrained IoT 

embedded devices. 

The LISF is composed of four functions for: 

1) online partial learning; 

2) approximate inference; 

3) performance monitoring; 

4) accelerated processing. 
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The LISF starts operations through a service request to the intelligent IoT application, and executes 

the online partial learning function or the approximate inference function. It works in conjunction 

with accelerated processing capabilities to generate optimized learning models and reasoning output. 

The LISF provides the intelligent functionality for intelligent IoT applications consisting of generic 

application logic and intelligent processing logic. 

The accelerated processing functions have the ability to configure computational resources and 

memory based on the processing requirements of the initial optimized learning model. This feature 

also enables fast and optimized work with online partial learning and approximate reasoning. 

8.1 Online partial learning function 

The online partial learning function, shown in Figure 4, is the foundation of the LISF. This function 

should run to update the initial learning model if some test dataset or reasoning capabilities of a new 

set of learning data are available. The function collects a training dataset from an intelligent IoT 

application and then performs machine learning to update the existing learning model. The training 

dataset consists of training data with labels in supervised modelling mode and delivers an online 

partial learning input. The format of training data with labels is required to comply with the 

specifications of the initial learning model. The online partial learning function supports its 

capabilities for intelligent IoT applications to allow them to train their learning models on it. 

The online partial learning function consists of three FEs for learning set-up; model training; and 

training control. 

 

Figure 4 – Online partial leaning function in the LISF 

8.1.1 Learning set-up FE 

The learning set-up FE prepares initial model parameters using a trained and training dataset. It 

downloads training models from the server system through the network and imports a training dataset 

from the intelligent IoT application to update the initial learning model. The learning set-up FE 

operates the initial learning model for further modelling optimization. Model optimization can be 
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achieved by compression methods, such as parameter pruning and sharing, low-rank factorization, 

transferred and compact convolutional filters and knowledge distillation. 

The learning set-up FE usually chooses a default model based on a specific learning model at the 

request of an intelligent service type or intelligent IoT application. The training dataset supports 

training data for the online partial learning function and the raw data or record format of the database 

containing the labels. The information listed in Table 8-1 is necessary for the learning set-up FE. 

Table 8-1 –Information for the learning set-up FE 

Set-up information Description Remarks 

Identifier (ID) of intelligent 

service 
ID for distinguishing intelligent service 

Face recognition, character 

recognition, etc. 

ID of learning model 
The learning model to be used in 

training 

Internal ID to distinguish learning 

model 

Number of instances 
The number of data instances in the 

training dataset 
1 024, 2 048, or 4 096, etc. 

Width 
Width of each data contained in in the 

training dataset 
64 

Height 
Height of each data contained in the 

training dataset 
64 

Number of channels 
Number of channel of each data 

contained in the training dataset 
3 

Learning rate 
Learning rate that controls the updating 

of gradient in backward pass 
0.1, 0.01, etc. 

8.1.2 Model training FE 

The model training FE performs two major steps of the process for the learning model, namely the 

forward and backward passes. During a forward pass, training data is delivered through the neural 

network of the learning model; during a backward pass it returns through the neural network. The 

two passes are repeated until the cost of the loss and the loss in the iteration is less than or equal to a 

given threshold, to update the parameters (e.g., node weights and biases). 

The model training FE has the same essential information as the learning set-up FE. The model 

training FE must generate the following information from all iterations: 

– iteration number: the current iteration count in training; 

– current cost: the cost calculated at current iteration n training. 

The model training FE uses the generated information as input to the training control FE. 

During the training process, the model training FE can request CPU/GPU and memory resources with 

accelerated processing function for rapid training. The following information is essential for the 

accelerated processing function: 

– layer information: the types and quantities of constituent layers in the learning model. 

8.1.3 Training control FE 

The training control FE should be stopped if the cost is below a given level or the number of iterations 

exceeds a given threshold to prevent useless or unlimited training. The training control FE stops after 

monitoring the current cost of the learning model and the number of iterations of the model training 

FE. The following information is essential for training control: 

– iteration threshold: the maximum number of iterations allowed for model training. 
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8.1.4 Operational procedure 

The operation of the online partial learning function consists of three steps, as shown in Figure 5. 

Step 1 is the model set-up phase for partial learning, which is executed in the learning set-up FE. An 

intelligent IoT application requests PartialLearnSetup() from the online partial learning function for 

initializing system resources, loading a model and converting the training data formatting with model, 

data and key performance indicator (KPI) information. Furthermore, the KPI received from the 

intelligent IoT application includes the minimum accuracy, maximum cost and maximum iteration, 

which are then used to set KPIs for the training control FE. After completing the work, 

PartialLearnSetupResult() notifies the set-up completion results to the intelligent IoT application. 

Step 2 is the process for partial learning in the model training FE. The model training FE repeats the 

training iteration with the training model and dataset. The training control FE compares the initial 

target KPI with the measured KPI for each training iteration, and decides whether to perform 

additional training iterations based on the comparison result. If no additional training is required, the 

model training FE updates the training model. In addition, it notifies the result to the intelligent IoT 

application with the function PartialLearnResult(). 

Step 3 is executed in the learning set-up FE by PartialLearnComplete(), which is sent from the model 

training FE after completion of partial learning and training model update. Finally, this step releases 

system resources used for partial learning. 

 

Figure 5 – Online partial learning procedure in the LISF 
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8.2 Approximate inference function 

The approximate inference function, shown in Figure 6, manages and performs inference processes 

for intelligent IoT applications. 

The approximate inference function consists of two FEs for: inference set-up and inference driving. 

 

Figure 6 – Approximate inference function in the LISF 

NOTE – The word approximate is used in this Recommendation to emphasize the inevitable loss of accuracy 

of the learning model due to the resource limitations of the IoT device, although the inference itself implies 

some approximation. 

8.2.1 Inference set-up FE 

The inference set-up FE prepares its learning model with a given test dataset. This FE installs the 

learning model from the server system via interprocess communication or network protocols, collects 

the test dataset from the intelligent IoT application, and verifies compliance with the learning model 

used in inference. The following information is necessary for inference set-up: 

– ID for distinguishing intelligent service; 

– ID of the learning model to be used in inference; 

– the number of data instances in the test dataset; 

– the width of each data item contained in the test dataset; 

– the height of each data item contained in the test dataset; 

– the number of channels of each data item contained in the test dataset. 

8.2.2 Inference driving FE 

The inference driving FE starts the inference process with information prepared by the inference set-

up FE. This FE can request CPU/GPU and memory resources through the accelerated processing 

function for fast reasoning during inference. The following information should be assembled for use 

by the accelerated processing function: 
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– the ID of the learning model to be used in inference; 

– learning model architectural information that describes how layers are interconnected; 

– types and quantities of constituent layers in the learning model. 

8.2.3 Operational procedure 

The operation of the online approximate inference function consists of three steps as shown in 

Figure 7. 

Step 1 is the model set-up phase performed in the inference set-up FE. It includes initializing the 

system resources necessary for the inference model and modelling process according to the model 

information by the intelligent IoT application. 

Step 2 is the process to infer in the inference driving FE. The inference data requested from the 

intelligent IoT application is converted into a suitable format by the inference set-up FE, which 

requests inference from the inference driving FE. The inference driving FE sends the result to the 

inference set-up FE. The inference result also passes to the intelligent IoT application through the 

inference set-up FE to clean up the inference data. Step 2 repeats until completion for all inference 

data. 

Step 3 is the process to release the resources used in the inference model. The inference set-up FE 

releases system resources to clean up the model. 

 

Figure 7 – Approximate inference procedure in the LISF 

8.3 Performance-monitoring function 

The performance-monitoring function, shown in Figure 8, gathers performance statistics about the 

CPU/GPU, memory and other system resource usage in the resource layer when the online partial 

learning function or approximate inference function operates. This function handles the accelerated 

processing function with collected statistics to investigate the possibility of accelerating the online 
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partial learning or approximate inference. The performance-monitoring function consist of two FEs 

for: learning monitoring and inference monitoring. 

 

Figure 8 – Performance-monitoring function in the LISF 

8.3.1 Learning-monitoring FE 

The learning-monitoring FE keeps track of system resources, such as CPU/GPU usage and frequency, 

or the amount of random-access memory (RAM) available while the online partial learning function 

is running. When accelerated processing functions also use standard parallel computing application 

programming interfaces (APIs), the learning-monitoring FE collects context, queue and kernel usage 

information in real time, as well as information about the API trace and resource statistics. 

8.3.2 Inference-monitoring FE 

The inference-monitoring FE keeps tracks of system resources such as CPU/GPU usage and 

frequency, or the amount of RAM available, while the approximate inference function is running. 

The inference-monitoring FE also collects information about API traces and resource statistics in real 

time, as well as context, queue, and kernel usage when accelerated processing functions use the APIs 

specified in the standard parallel computing framework for accelerating performance. 

8.3.3 Operational procedure 

The operation of the performance-monitoring procedure is shown in Figure 9. The performance-

monitoring function provides two sources of reporting resource usage statistics data on: the learning 

model; and the inference model. 

The learning-monitoring FE collects performance metrics measured and reported by the training 

control FE in the online partial learning function in relation to the learning model during partial 

learning. 

The inference-monitoring FE collects performance indicators measured and reported by the inference 

driving FE in the online approximate inference function. 
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The performance statistics data can be used for the parallelization-managing FE in the accelerated 

processing function, which optimizes the memory allocation, device allocation, and kernel 

configuration required for learning or inference models. 

 

Figure 9 – Performance-monitoring procedure in the LISF 

8.4 Accelerated processing function 

The accelerated processing function, shown in Figure 10, provides optimized utilization of resources 

for a given learning model. Each layer of the learning model requires a variety of mathematical 

operations for learning and inference. The accelerated processing function is optimized for underlying 

HW resources and provides parallel mathematical operations, as well as examining the statistics 

provided by performance-monitoring function to identify bottlenecks. According to the results, the 

configuration of HW resource usage is updated to accelerate the online partial learning function and 

approximate inference function. The accelerated processing function is necessary for accelerating 

mathematical operations used in the constituent layers of the learning model. Mathematical operations 

are general linear algebra operations such as vector addition, scalar multiplication, linear 

combinations and matrix multiplication. 

The accelerated processing function consist of two FEs for: parallelization management and 

acceleration management. 
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Figure 10 – Accelerating processing function in the LISF 

8.4.1 Parallelization-managing FE 

The parallelization-managing FE initializes and configures the following entities within the resource 

to run mathematical operations in parallel to speed up layer execution. Moreover, the parallelization-

managing FE manages a parallel-processing queue for performing parallel processing depending on 

a number of devices in the embedded system, such as those with OpenCL. Furthermore, the 

parallelization-managing FE divides a matrix with weights and bias values taking the parallel 

processing performance of the device into consideration to maximize parallelism in multiple device 

environments. The parallel processing capability of the device is determined by the number of kernel 

instances that are executed at a time, a maximum work group size of the device or a maximum work 

item size: 

– platform: specific targeted heterogeneous platform consisting of CPUs, GPUs, and other 

processors or HW accelerators; 

– device: processors performing the calculation; 

– context: an entity that manages the resources on a device set; 

– command queue: an entity that executes the kernel and performs memory mapping or 

unmapping and synchronization; 

– kernel: codes running on a device. 

The parallelization-managing FE allocates device memory, copies data from the host to the device, 

sets up the kernel and copies the result again. It is necessary to design for parallel applications. The 

basic assumption is that many instances of the kernel run in parallel, each processing a single work 

item. Multiple work items run together as part of a work group. An instance of each kernel in the 

work group communicates with an additional instance. 
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8.4.2 Acceleration-managing FE 

The acceleration-managing FE manages the framework for the kernel, which supports the set of 

mathematical operations. The set of mathematical operations includes those in neural networks, such 

as a convolutional neural network (CNN). The acceleration-managing FE supports mathematical 

routines that provide standard building blocks for performing basic vector and matrix operations. 

The acceleration-managing FE controls resources so that a device, such as a OpenCL device, 

performs a general matrix multiply (GEMM) operation on the divided matrix and input data 

depending on the divided matrix. In addition, the acceleration-managing FE groups the matrix into 

vectors to maximize a workload for each kernel, and determines on a size of a work group to allow 

each device to perform parallel processing. Furthermore, the acceleration-managing FE shares a 

memory between a host and devices to minimize the cost of the GEMM operation, each device 

performs mathematical routines without copying data between the host and the device by accessing 

the host's vector and a matrix using a memory address for operations: 

– with scalar and vector or vector and vector; 

– with matrix and vector; and 

– between matrices. 

8.4.3 Operational procedure 

The operation of the accelerating processing procedure is shown in Figure 11. The accelerated 

processing function consists of a parallelization-managing FE and an accelerating managing FE. 

The parallelization-managing FE performs tasks such as memory allocation, kernel configuration, 

and memory copy from host to device for partial learning model initialization and inference 

initialization requests. In the case of initial inference and partial learning, performance data allocates 

default memory and the kernel configuration. If there is performance data from the learning-

monitoring FE or inference-monitoring FE, memory is allocated and the kernel configured using this 

information. 

The accelerating managing FE provides the mathematical operations necessary for deep learning. It 

provides acceleration functions for mathematical operations between scalar, vector, and matrix 

quantities required for forward or backward pass in the learning or inference models. 

 

Figure 11 – Accelerating processing procedure in the LISF 
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Appendix I 

 

Use case – Personal customization service with drone devices 

(This appendix does not form an integral part of this Recommendation.) 

This appendix gives an example of service for personal customization with drone devices for an LISF 

on embedded IoT devices. The LISF concept is gaining in importance in the current IoT service 

environment, because it enables resource-limited IoT devices to achieve intelligence over typical IoT 

platforms. 

Figure I.1 shows an example of service for personal customization with drone devices. The service 

has four entities: control centre; drone stations; drones; and users. 

– The control centre manages all drone stations with a data server and the collected data are 

used as training data to generate a new learning model. 

– Drone stations have several drones waiting for user services from the control centre, and 

continuously communicate and forward collected data and a learning model from the drones 

to the control centre. 

– Drones have embedded an initial inference engine and some functions: autonomous flight, 

real-time photographing, object (or face) detection, etc. A drone that receives user service 

from a drone station flies to the area where the user is located. 

– Users request a service from the control centre using a smart phone and communicate with 

the drone. 

 

Figure I.1 – Service scenario for personal customization with drone devices 

This procedure consists of three phases. The first is a configuration phase that transmits a user's 

request to an embedded IoT device, such as a drone. The second is an execution phase where an 
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embedded IoT device fulfils the user's request. The third is a learning phase that creates a new learning 

model. 

The detailed procedure of the service is as follows. 

1) Users request delivery service from a control centre with a batch learning server. When 

requesting the service, the following information is sent: user location; user identification; 

service type; etc. (sequence 1). 

2) On receipt of the request, the control centre searches the nearest drone station to the user and 

sends delivery service to the one selected, e.g., drone station #3 (sequence 2). 

3) The drone station, which manages embedded IoT devices, selects a drone that can be serviced 

and forwards information associated with delivery service to the selected drone (sequence 3). 

4) The drone flies to the user to start the service. During the flight, the drone collects 

environmental image data using an embedded CAM device. When arriving at the destination 

from where the user has requested the service, the drone first identifies the user by using face 

detection and then provides the service corresponding to the user request. After finishing the 

service, the drone flies back to the drone station (sequence 4). 

5) Drone stations send all data collected by drones to the control centre, which performs batch 

learning and generates a new inference engine for all drones (sequences 5 and 6). 

The drone conducts intelligence processing, e.g., online partial learning, during the flight or at the 

drone station, so that the drone is updated with the new inference engine. Embedded IoT device such 

as drones can be applied to heterogeneous service domains or various data environments. 
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Figure I.2 – A procedural example of LISF service 
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Appendix II 

 

Use case – Personal vision aids service 

(This appendix does not form an integral part of this Recommendation) 

This appendix gives an example of service for personal vision aids with an LISF on embedded IoT 

devices. The vision aids service is helpful for visually impaired people and can support personalized 

service in each individual's environment. 

Figure II.1 shows an example of personal vision aids service with the LISF. The service has four 

entities: users; wearable device; LISF gateway; and service centre. 

– Users use a personal and customized vision aids service. 

– The wearable device detects the objects and transfers the image data to the LISF gateway. In 

addition, the wearable device can send object information to the user through sounds. 

– The LISF gateway performs online partial learning on the IoT device with newly acquired 

data from the individual's environment. In addition, it transmits the acquired data to a service 

centre to perform batch learning. The data transferred are used as training data for 

regenerating the learning model. 

• The LISF gateway infers objects using pre-trained learning models and image data from 

wearable device (e.g., smart glasses or phone). 

• The LISF gateway transfers inference results to the wearable device. 

– The service centre initially performs full (batch) learning with rich system resources and 

transfers a pre-trained learning model to the LISF gateway. 

 

Figure II.1 – Service scenario for personal vision aids 

This procedure consists of three phases. The first is a configuration phase in which users request the 

service from the service centre. The second is an execution phase in which embedded IoT devices 

detect and infer the objects when users move. The third is a learning phase in which an embedded 

IoT device performs online partial learning and sets up a personalized learning model. 

The detailed procedure of the service is as follows. 
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1: Configuration phase (Sequence 1-4) 

1) Users request vision aids service from a service centre via embedded IoT devices such as a 

wearable device and LISF gateway. When the service centre receives the service request, it 

transfers the pre-trained learning model (sequences 1, 2, and 3). 

2) On receipt of the learning model, the LISF gateway sets up an initial inference and learning 

engine and reports a status service set-up to users via the wearable device using sound 

(sequence 4). 

2: Inferencing phase (Sequence 5-8) 

3) When users move, the wearable device detects the object and generates the image data for it. 

When data generation is completed, the wearable device transfers the generated data to the 

LISF gateway (sequences 5 and 6). 

4) The LISF gateway infers the detected object using an inference engine. When finished, the 

LISF gateway provides the user with an inference result based on the pre-trained model 

(sequences 7 and 8). 

3: Online partial and re-learning phase (Sequence 9) 

5) Based on the data collected up to this point, the LISF gateway performs online partial learning 

and sets up a personalized learning model. The LISF gateway transfers the collected data to 

the service centre. The service centre performs batch learning and generates an updated 

learning model (sequence 9). 

The LISF provides a lightweight learner, e.g., for online partial learning and predictor, optimized in 

embedded HW in a resource-limited environment. 
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Figure II.2 – A LISF procedure example of a personal vision aids service 
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