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Summary 

Supplement 52 to ITU-T L-series Recommendations proposes a set of good practices to improve the 

energy efficiency of cyber-physical applications – making use of Internet of things (IoT), artificial 

intelligence (AI), and digital twins. First, the Supplement introduces the cyber-physical paradigm, 

engineering reference framework, and a couple of system deployments models. Secondly, it defines 

three end-to-end use case typologies to be addressed (i.e., monitoring applications using smart IoT 

systems and AI software; smart applications using Edge computing and cloud data centre; and 

simulation applications using digital twin pattern). Energy efficiency practices are discussed adopting 

a circular value-chain model that consists of three main steps: data storage; data transfer/move; and 

data processing/analytics. Finally, this Supplement offers a set of recommended practices relating to 

each component of the three end-to-end use case typologies. 
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operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 
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Supplement 52 to ITU-T L-series Recommendations 

Computer processing, data management and energy perspective 

1 Scope 

This Supplement presents a set of well-adopted energy efficiency practices for cyber-physical system 

classes and applications – enabled by artificial intelligence (AI), big data, Internet of things (IoT), 

and other innovative technologies.  

To do so, a set of relevant and significant use cases are first introduced; Secondly, system classes are 

identified. Finally, according to a circular value-chain model, the system efficiency practices are 

specified and mapped to the components of the cyber-physical systems.  

2 References 

None. 

3 Definitions 

3.1 Terms defined elsewhere 

This Supplement uses the following terms defined elsewhere: 

3.1.1 artificial intelligence [b-ISO/IEC 2289]: Set of methods or automated entities that together 

build, optimize, and apply a model so that the system can, for a given set of predefined tasks, compute 

predictions, recommendations, or decisions. AI systems are designed to operate with varying levels 

of automation. 

3.1.2 big data [b-ITU-T Y.3600]: A paradigm for enabling the collection, storage, management, 

analysis, and visualization, potentially under real-time constraints, of extensive datasets with 

heterogeneous characteristics. 

3.1.3 cloud computing [b-NIST]: A model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal management 

effort or service provider interaction. 

3.1.4 cyber-physical systems [b-NIST]: Smart systems that include engineered interacting 

networks of physical and computational components. 

3.1.5 data centre [b-ITU-T L.1300]: A repository for the storage, management, and 

disseminations of data. 

3.1.6 deep learning [b-ISO/IEC TR 24030]: Approach to creating rich hierarchical representations 

through the training of neural networks. 

3.1.7 digital twin [b-W3C]: A type of virtual thing that resides on a cloud or edge node. Digital 

Twins may be used to represent and provide a network interface for real-world devices which may 

not be continuously online, may be able to run simulations of new applications and services before 

they get deployed to the real devices, may be able to maintain a history of past state or behaviour, and 

may be able to predict future state or behaviour. 

3.1.8 edge computing [b-ISO/IEC TR 30164]: Distributed computing in which processing and 

storage takes place at or near the edge, where the nearness is defined by the system's requirements. 
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3.1.9 energy efficiency [b-ITU-T L.1310]: The relationship between the specific functional unit 

for a piece of equipment (i.e., the useful work of telecommunications) and the energy consumption 

of that equipment. 

3.1.10 infrastructure-as-a-Service (IaaS) [b-IEEE SDN]: A platform supporting the resources 

needed by other layers. IaaS can be "programmed" by utilizing provisioning tools. Because of this 

programming interface, even if IaaS is often (but not only) made of "physical" resources, IaaS can be 

considered as a component. 

3.1.11 Internet of Things [b-ISO/IEC 30141]: An infrastructure of interconnected physical entities, 

systems, and information resources together with the intelligent services which can process and react 

with information of both the physical world and the virtual world and can influence activities in the 

physical world. 

3.1.12 machine learning [b-ISO/IEC DIS 19944-1]: Process using computational techniques to 

enable systems to learn from data or experience. 

3.2.13 platform-as-a-Service (PaaS) [b-IEEE SDN]: Systems offering rich environments where to 

build, deploy, and run applications. PaaS provides infrastructure, storage, database, information, and 

process as a service, along with well-defined APIs, and services for the management of the running 

applications, such as dashboards for monitoring and service composition. 

3.1.13 sensor [b-ITU-T Y.2221]: An electronic device that senses a physical condition or chemical 

compound and delivers an electronic signal proportional to the observed characteristic. 

3.2 Terms defined in this Supplement 

This Supplement defines the following term: 

3.2.1 big data analytics platform: An ecosystem of services and technologies that needs to 

perform analysis on voluminous, heterogeneous, and dynamic data. 

4 Abbreviations and acronyms 

This Supplement uses the following abbreviations and acronyms: 

5G 5th Generation of Wireless Networks 

AI Artificial Intelligence 

API Application Programming Interface 

BRR Best Resource Ratio 

BD Big data 

CO2 Carbon Dioxide 

CPE Customer Premises Equipment 

CPU Central Processing Unit 

DCIE Data Centre Infrastructure Efficiency 

DL Deep Learning 

GPU Graphical Processing Units 

IaaS Infrastructure-as-a-Service 

ICT Information and Communications Technology 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 
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IoT Internet of Things 

ISO International Organization for Standardization 

ISP Internet Service Provider 

IT Informational Technology 

KPI Key Performance Indicator 

ML Machine Learning 

NLP Natural Language Processing 

OLT Optical Line Termination 

ONU Optical Network Unit 

PaaS Platform-as-a-Service 

PON Passive Optical Networks 

PoP Points of Presence 

PSU Power Supply Unit 

PUE Power usage effectiveness 

RAM Random-Access Memory 

UPS Uninterruptible Power Supply 

VLAN Virtual Local Area Network 

5 Conventions 

None. 

6 Computer processing, data management and energy perspective  

6.1 Introduction 

By 2023, 5.3 billion people will have access to the Internet, up from 3.9 billion in 2015 [b-Cisco2020]. 

Data centres support the information technology (IT) equipment required to provide the services 

accessed by these billions of Internet users. Ranging from small cabinets to large warehouses 

hundreds of thousands of square metres in size [b-Shehabi1], data centres are designed to provide 

reliable access to power, cooling, and Internet connectivity for the IT equipment located within 

servers, networking, and storage [b-Mytton].  

By 2021, there will be 7.2 million data centres around the world, down from 8.5 million in 2015 [b-

Thibodeau]. This fall is due to the ongoing migration of computing resources to the cloud. In the past, 

customers bought and owned physical equipment which they were responsible for deploying into 

space leased from data centre operators. Most of the growth in usage is now in the cloud where 

customers buy units of computing, storage, and networking, paying based on usage by the second, 

hour, or per user request. The top three cloud providers by usage – Amazon Web Services, Microsoft 

Azure, Google Cloud Platform [b-Flexera] – make up the majority of the $236 billion cloud market 

[b-Adams], and are responsible for some of the largest data centre operations. These "hyperscale" 

cloud providers now operate 541 data centres as of 2020, with another 176 under construction [b-

Synergy]. 

Estimates of global data centre energy consumption for 2020 range from 196 terawatt hours (TWh) 

[b-Masanet] to 287 (TWh) [b-Hinterman], and there is considerable variance in how this is expected 

to grow over the coming years. Some projections suggest that global data centre energy has plateaued 
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and will grow by only 5% to 209 TWh in 2023 [b-Masanet]. Other projections suggest that data 

centres in China alone will use 266 TWh of electricity by 2023 [Greenpeace] and 96.2 TWh in the 

EU28 by 2025, 60% from cloud data centres [b-Montevecchi]. 

Although some of the uncertainty in these figures is due to rapid technological change, such as the 

introduction of new processors e.g., graphical processing units (GPUs) for machine learning; the 

growing numbers of Internet of things (IoT) devices [b-Shehabi2]; central processing unit (CPU) 

performance improvements and the impact of the end of Moore's Law [b-Leiserson], the range in 

figures also highlights another challenge: transparency. Moving to the cloud means customers no 

longer have any visibility into the resource consumption of their IT infrastructure [b-Mytton]. 

Whereas when customers purchased and ran their own IT equipment, they could directly calculate 

energy usage and embodied emissions, the data needed to make environmental assessments is not 

provided by the cloud vendors. This makes it difficult to begin to address data centre energy because 

the numbers needed to pinpoint areas of focus in the area with most growth are not available. 

6.2 Cyber-physical paradigm (IoT, AI analytics, and digital twin innovative technologies) 

Cyber-physical systems are smart systems that include engineered interacting networks of physical 

and computational components. Cyber-physical frameworks make use of much of the existing 

technologies (communication network technologies, information technologies, sensing/control 

technologies, software technologies, hardware/device technologies) and combine them to improve 

operations, lower costs, create new products and business models, enhance engagement and customer 

experience. Often, these frameworks are also referred to as Internet of things (IoT) or digital twin 

systems and applications.  

Figure 1 depicts the archetype of cyber-physical frameworks. 

Cyber-physical frameworks enable a very wide spectrum of applications and implement the 

integration of systems from different vertical sectors (enterprise, consumer, government, industries, 

etc.) [b-Bradford]. Cyber-physical application domains embrace: smart city, smart grid, smart 

home/building, digital agriculture, smart manufacturing, intelligent transport system, smart energy, 

and digital health, etc. 
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Figure 1 – The archetype of cyber-physical paradigm 

6.3 Digital twin pattern 

The digital twin communication pattern implements the cyber-physical paradigm; it has been around 

for several years in the manufacturing sector. Nowadays, due to the digital revolution of our society, 

it is getting more and more popular in the other sectors of our economy and society. The pattern is 

shown in Figure 2. 

 

Figure 2 – Digital twin communication pattern 

6.4 Cyber-physical reference framework 

Mobile technology (e.g., 5G and the next 6G), cloud computing (e.g., cloud-based data centres and 

edge computing), big data and deep analytics (e.g., predictive, cognitive, real-time, and contextual) 

play important roles for cyber-physical systems and applications, by gathering and processing data to 

achieve the final result of controlling physical entities and impacting virtual entities [b-Bradford] [b-

EuroCom1].  

In a general setting, the cyber-physical platform reference framework considers the following five 

main digital components belonging to four different technology tiers [b-EuroCom1], which are 

depicted in Figure 3: 

1) assets/sensors; 

2) networks; 



 

6 L series – Supplement 52 (10/2022) 

3) computing systems; 

4) (big) data analytics platforms; 

5) software applications. 

The archetypal engineering architecture (or reference framework) of a cyber-physical (e.g., digital 

twin or IoT) platform is shown in Figure 3 [b-ITU-T Y.3502] [b-ISO/IEC 30141] [b-2020 SFR] 

[b-Lean ICT] [b-EuroCom3]. 

 

Figure 3 – Cyber-physical architecture reference framework 

The field (or local device) tier consists of smart assets (e.g., sensors), while the gateway (or edge) 

and platform (or cloud) tiers contain smart gateways and systems, respectively. Finally, the 

application (or enterprise/service) tier manages smart services [b-EuroCom3] [b-energystar] 

[b-EuroCom4]. 

6.4.1 Smart assets (or things) 

The local device (or Field) tier comprises different types of devices, ranging from a smart machine to 

a sensor or an actuator and representing the networked edge node. They are also called smart assets 

(or things) because they use information and communications technology (ICT) capabilities (such as 

network, computing, and storage) to implement autonomy and collaboration.  

6.4.2 Smart gateways 

The gateway (or edge) tier contains the edge gateways. These are computing devices (i.e., a functional 

unit that can perform substantial computations) that operate as connectors (e.g., by implementing 

network connection and protocol conversion) between the smart assets (i.e., the physical world local 

devices) and the digital world. Real-time data analytics is performed by these components. Wherever 

necessary, for security and transparency reasons, a digital ledger (for example by using block-chain 

technology) may be included. 

6.4.3 Smart systems 

The platform (or cloud) tier consists of computing servers (and software) that enable non-real-time 

analytics and manage the cyber-physical system as a whole, by orchestrating the diverse components 

and the required ICT capabilities, in order to enable the final application/service business logic. These 

smart systems are commonly constructed based on the collaboration of multiple distributed smart 

gateways and servers to support elastic expansion of network, computing, and storage resources, see 

virtual infrastructures and platforms. Cloud computing and edge computing servers are typical 

examples of smart systems. 
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6.4.3.1 Cloud data centres and edge/fog computing systems 

While cloud data centres are large facilities deployed in a limited number of locations (due to special 

infrastructure and management needs), in a digitally transformed society, cloud users are spread 

everywhere, IoT and 5G enabled applications are significant examples. Commonly, clients and users 

are far from the cloud data centres which are managed by their preferred providers. Edge and/or fog 

computing infrastructure are likely to be closer to those devices and applications to bring computing 

capacity with lower response time [b-EuroCom2]. Therefore, in the edge computing model an 

important part of computing and sometimes storage happens in the edge of the network and not in the 

cloud data centre.  

In principle, this allows reduction of the data quantity to be moved around the network and distributes 

the computing load. Edge computing infrastructures connect the physical and the digital worlds 

enabling the development of smart systems and applications. While cloud computing effectively 

supports non-real-time and long-period data driven scenarios, edge computing is effective for real-

time and short-period data driven scenarios, such as local decision-making. Commonly, edge 

computing does not replace cloud services but complements them, reducing storage requirements, 

decreasing latency, and providing real-time responses to users' and application requests. 

"The edge" can be defined in several different ways. Some providers define their edge as a points of 

presence (PoP) in major cities. These PoPs may operate a complete copy of the system to offer all 

functionality, located closer to the user for lower latency and reduced data transfer. PoPs may be 

located in in major Internet exchanges (IXs) such as in LINX (London), AMS-IX (Amsterdam), DE-

CIX (Frankfurt), JPNAP (Tokyo). Other providers operate a subset of their platform functionality, 

such as popular content caching, in a large number of PoPs. These may be deployed in Internet service 

provider (ISP) networks much closer to the user, such as in the telephone exchange in the closest 

town, or near to radio cell towers. For example, Google has three layers to its network and the most 

granular edge caching nodes are deployed close to major population centres with multiple nodes 

within countries, not just in the main IXs [b-Google2020] . 

6.4.4 Smart services 

The application (or service) tier contains the business logic software that generates and exposes 

actionable intelligence to the cyber-physical system users and clients. The business logic software 

makes use of smart systems functionalities. Cyber-physical smart services range from observation 

and monitoring to decision-making and simulation. 

6.5 Cyber-physical system deployment models 

According to the end-to-end application considered, the cyber-physical computing architecture, 

depicted in Figure 3, can be deployed using either a three-layer or a four-layer model [b-EuroCom4]. 

6.5.1 Cyber-physical architecture three-layers deployment 

A three-layers model is common for application scenarios where smart services are distributed, i.e., 

deployed in one or more scattered areas, each of them characterized by a low traffic volume. Most of 

data processing is done at run-time by the smart gateways and the cloud-enabled service environment 

is used to enable services distribution and reach user devices. Smart systems are not deployed in a 

dedicated layer (not much data exchange and secondary processing are needed) but are part of either 

the gateway or the service layers [b-Bradford] [b-EuroCom1] [b-EuroCom4]. 

Smart assets are processed locally by the smart gateways, which provide real-time streaming data 

analysis. In addition, the smart gateways aggregate multiple and heterogeneous data streams sending 

non-real-time data to the cloud for storing and possible additional processing. Finally, each smart 

gateway implements network services (notably, access to and local management of smart assets), 

security services, and small-scale local data storage. 
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Typical examples of these application scenarios are: smart devices monitoring and control, and smart 

environmental protection. The three-layer deployment model is shown in Figure 4. 

 

Figure 4 – Three-layers deployment schema of cyber-physical architectures 

6.5.2 Cyber-physical architecture four-layers deployment 

A four-layers model is common for application scenarios where smart services are deployed centrally, 

and the traffic volume is high [b-EuroCom4]. A large amount of data and many local application 

systems are deployed at the edge of the network. Therefore, it is necessary to provide a large amount 

of computing and storage resources near the edge, i.e., distributed smart systems. This is achieved by 

deploying a layer consisting of a set of locally distributed smart systems. They are in charge of 

aggregating data for secondary processing; the primary processing, the real-time one, was already 

done by the smart gateways and the smart assets. The locally distributed smart systems are 

interconnected to exchange data and knowledge. These (commonly cloud-based) systems support 

horizontal elastic expansion of computing and storage resources and implement real-time decision-

making and optimization operations locally [b-Bradford] [b-EuroCom1] [b-EuroCom4]. The service 

environment (cloud-enabled) is then used to connect with users, see ubiquitous Internet connection.  

Typical examples of these application scenarios are video analysis, distributed grid, and smart 

manufacturing. The four-layers deployment model is shown in Figure 5. 
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Figure 5 – Four-layers deployment schema of cyber-physical architectures 

6.5.2.1 Cloud environment deployment 

Cloud platforms can be public, private, and hybrid. In particular, a cloud can be seen as an extension 

of an enterprise data centre (i.e., a private facility operated for the sole use of supporting a single 

organization), see Figure 6. 

 

Figure 6 – Cloud as an extended enterprise data centre 
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Cloud platform performances depend on various cloud-services operation factors including [b-

ISO/IEC 30141]: 

• availability of the service; 

• response time to complete service requests; 

• transaction rate at which service requests are executed; 

• latency for service requests; 

• data throughput rate (input and output); 

• number of concurrent service requests (scalability); 

• capacity of data storage; 

• (for IaaS and PaaS) the number of concurrent execution threads available to an application; 

• (for IaaS and PaaS) the amount of random-access memory (RAM) available to the running 

program; 

• data centre network IP address pool and/or virtual local area network (VLAN) range capacity. 

Cloud energy consumption is influenced by its performances and, hence, its implemented services 

and operations. 

7 End-to-end use cases addressed 

For the scope of this Supplement, we distinguish three different types of cyber-physical use cases, 

building on a combination of innovative technologies: 

1) monitoring applications using smart IoT systems and AI software; 

2) smart applications using edge computing and cloud data centre; 

3) simulation applications using the digital twin pattern. 

For these use case typologies, we analyse the energy perspectives related to their computer processing 

and data management aspects. 

7.1 Monitoring application using smart IoT systems and AI software 

These applications commonly implement a three-layers deployment schema, see Figure 4. 

7.2 Smart application using edge computing and cloud data centre 

Smart applications and systems build on the collaboration of multiple distributed smart servers that 

connect the physical and the digital world providing real-time data analysis and actionable 

intelligence, see the cyber-physical systems and the digital twin pattern. 

These applications commonly implement a four-layers deployment schema, see Figure 5.  

7.3 Simulation applications using digital twin pattern 

These applications commonly implement a four-layers deployment schema, see Figure 5. 

8 Energy efficiency criteria 

This clause aims to give an overview of the energy efficiency criteria applicable to the use cases 

studied in this Supplement. The purpose of this analysis is to give objective and quantitative energy 

efficiency criteria for the ICT goods, networks and services used in the use cases. In the case of goods, 

networks and services without available quantitative energy efficiency standards, the best available 

technologies present in the market, that can potentiate the energy efficiency in the AI and emerging 

technologies studied, will be outlined. 
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The Energy Efficiency Directive 2012/27/EU of the European Parliament and of the Council of 25 

October 2012 [b-Nativi] outlines the definition of energy efficiency as the "ratio of output of 

performance, service, goods or energy, to input of energy." in line with the energy efficiency general 

definition used in ITU-T documents, such as Recommendation [b-ITU-T L.1330]. 

8.1 Adopted methodology 

The methodology chosen to accommodate the different measures within a certain use of an ICT good, 

network or service, was to consider a circular value-chain process consisting of three main steps: 

a) Data storage 

b) Data transfer/movement 

c) Data processing/analytics 

The concept is that each of these stages of data management and use have different energy efficiency 

criteria and needs and will be analysed individually.  

For the most part, the functionalities that make up the technologies in the study, such as AI or other 

emerging technologies, depend on current ICT goods and networks, albeit with different 

configurations originating from the innovative aspect of these technologies. For this, the ICT goods 

and networks outlined in the following paragraphs represent the best available practices and 

technologies in the field, so that this technical report may endure the test of time.  

8.2 Data storage 

Regarding data storage, data centres were considered as these structures are computer warehouses 

that store a large amount of data for different organizations to meet their daily transaction processing 

needs. They contain servers for the collection of data and network infrastructure for the utilization 

and storage of the data.  

8.2.1 Metrics and criteria 

8.2.1.1 Power usage effectiveness (PUE) and data centre infrastructure efficiency (DCIE) 

The metric commonly used by the ICT industry to identify the energy efficiency of a data centre is 

the PUE, which is the ratio of total data centre input power to IT load power. A higher PUE means 

that more energy is used by the supporting infrastructure such as lighting, cooling, and power 

distribution rather than energy going to IT equipment. PUE has been criticized as a measure of 

efficiency because it only considers energy usage and was intended only as a site-specific metric 

rather than one used for comparison between facilities. PUE may decrease when IT load increases 

because the IT equipment is drawing more energy, even though the efficiency of the data centre has 

not actually improved [b-Brady]. 

The ideal value of PUE is 1.0 which indicates all energy goes to the IT equipment. However, this is 

generally not attainable at present due to the consumption of electricity by uninterruptible power 

supply (UPS), fans, pumps, transformers, lighting, and other auxiliary equipment in addition to the 

consuming IT load.  

The most efficient data centres are approaching low values, such as EcoDataCenter in Falun, Sweden, 

which has a PUE of 1.15 [b-EcoDataCenter], and Google's fleet of data centres which achieved a Q2 

2020 trailing twelve-month global average of 1.10. However, there are indications that PUE 

improvements are plateauing [b-Lawrence].  

PUE has been shown to correlate poorly with carbon emissions [b-Lei], so should not be the only 

metric tracked [b-Whitehead]. Another metric used to measure the data centres' efficiency is the 

DCIE, which is expressed as a percentage and is calculated by dividing IT equipment power by total 

facility power (DCIE = IT equipment power/total facility power x 100%).  
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The EU Code of Conduct for Data Centres [b-Leiserson], a voluntary programme, has been created 

in response to the increasing energy consumption in data centres and the need to reduce the related 

environmental, economic and energy supply impacts and with the aim to inform and stimulate 

operators and owners to reduce energy consumption in a cost-effective manner and without 

hampering the critical function of data centres. In a 2017 report by the JRC on the trends in data 

centre energy consumption under the Code of Conduct, an overview is given of a decrease of the 

average PUE of data centres through the years for the entire 289 data centres sample. Some best 

practices on ways to improve the overall PUE of data centres are given [b-Acton1] [b-ITU-T L.1300], 

such as free cooling technologies (direct and indirect air, direct and indirect water) or project 

management procedures that can be implemented and have a positive impact in the overall efficiency 

of the structures. 

8.2.1.2 Energy efficiency in PSU 

An example of an energy efficiency criterium applicable to the data storage stage may concern the 

power supply unit (PSU). Regarding the PSU, the EU regulation on eco-design requirements for 

servers and data servers and data storage products, outlines that from 1 January 2023, for servers and 

online data storage products, with the exception of direct current servers and of direct current data 

storage products, the PSU efficiency at 10%, 20%, 50% and 100% of the rated load level and the 

power factor at 50% of the rated load level shall not be less than the values reported in the table shown 

in Figure 7. 

 

Figure 7 – Minimum PSU efficiency and power factor requirements from January 20231 

8.2.2 Energy efficiency best practices on data storage 

Data storage with a 'data storage product' means a fully functional storage system that supplies data 

storage services to clients and devices attached directly or through a network. [b-ISO/IEC 30141] 

Both Energy Star [b-Nativi] and the EU Code of Conduct for Energy Efficiency in Data Centres 

[b-Acton1] present a set of energy efficiency measures that can be implemented in data storage 

facilities. The concepts included concern making better use of existing storage hardware, reducing 

the volume of data to be stored and using storage equipment that consumes less energy. 

Concerning making better use of existing storage hardware, storage tiers are outlined as the 

assignment of different categories of data to various types of storage media, with the ultimate goal of 

reducing the storage cost. These tiers are determined by performance needs, the cost of the storage 

media, and how often this data is accessed. There is a defined grading system on the tier storage 

policies where the most frequently accessed data are placed on the highest performing storage, 

whereas the rarely accessed data go on low-performance, cheaper storage. 

Storage virtualization is another measure to improve energy efficiency in the storage stage. Storage 

virtualization is the pooling of physical storage from multiple network storage devices into what 

appears to be a single storage device that is managed from a central console. Storage virtualization 

enhances storage performance, enables the use of storage tiers, and makes it easier to expand storage 

capacity. 

 
1 Source: Regulation on eco-design requirements for servers and data storage products EU 2019/424. 
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Thin provisioning presents an application with a virtual volume of just about any size but allocates 

physical storage space on a just-enough, just-in-time basis by centrally controlling capacity and 

allocating space to an application as data is actually written. 

Another big part of energy efficiency in data storage measures relies on the reduction of the volume 

of data to be stored. Data compression is performed by software that uses a formula or algorithm to 

determine how to shrink the size of the data. Compression functionality is built into a wide range of 

technologies, including storage systems, databases, operating systems, and software applications used 

by enterprise organizations.  

Deduplication software works by retaining one unique instance of a file or data block and replacing 

all duplicates with a pointer to the original.  

Snapshot technology is another measure that can be applied in order to save energy in the storage 

stage. Snapshot technology works so as to avoid downtime, instead of making a full backup of the 

data, high-availability systems may instead perform the backup on a snapshot, a read-only copy of 

the data set frozen at a point in time, and allow applications to continue writing to their data. Snapshots 

create temporary virtual "copies" of data that only include data changes.  

Not specifically related to data centre storage but very important are other strategies such as the 

decommissioning of unused servers and the consolidation of lightly utilized servers, can also be 

measures to be implemented since often, data centres, possess aged and unused servers that are still 

running. The management of airflow is an important aspect of data centre energy optimization. 

Some of the best practices include the redefinition of the server racks into a hot aisle/cold aisle 

layout, where the rows of server racks are oriented so that the fronts of the servers face each other 

instead of being in the same air flow direction. 

The containment/enclosures arrangements when used in combination with the hot aisle/cold aisle 

layout can also improve the efficiency of data centre server rooms. This containment refers to the 

various physical barriers that eliminate the mixing of cold air with hot air coming out of the server 

racks. This configuration allows for higher temperatures in the server rooms, which saves energy due 

to the slowing down of the fan speeds and increase of chilled water temperatures and the increase of 

the use of free cooling techniques. 

Another measure that can be implemented within the design of data centres is the introduction of 

variable speed fan drives of computer rooms' air conditioning and can be adjusted on the demand of 

the data centre which is constantly changing. 

Finally, Energy Star indicates properly deployed airflow management devices such as the 

positioning of diffusers, blanking panels, structured cabling systems, the elimination of sub-floor 

obstructions, floor grommets and the correct placing of vented tiles as measures to improve the overall 

efficiency of the data centre under the management of airflow measures. 

8.3 Data transfer – 5G, wireless, and copper networks 

This clause aims to evaluate the best available technologies regarding data transfer and networks. The 

scope of this clause is to evaluate the network technologies and data transfer protocols aiming for a 

better energy efficiency in the use cases studied. 

Regarding mobile networks, the 5th generation, or 5G, will greatly contribute to the accomplishment 

of the expectations of the IoT ecosystem and all its interdepending stakeholders in terms of 

accessibility and network speeds.  

5G has been studied to be up to 90 percent more energy efficiency per traffic unit than legacy 4G 

networks, with several hardware and software solutions that help to save energy. However, experts 

expect, similarly to what happened with other technologies before, that the deployment of 5G network 

will lead to an increase of energy consumption. With companies expecting to be increasing their 

energy consumption due to an increase of traffic, the technology needs to be rolled-out in a way that 
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the higher energy consumption of this technology is met with beneficial measures that minimize this 

increase. Some of the measures outlined in a recent position paper [b-Ericsson] that may contribute 

to a smoother and more efficient technology transition are:  

• Prepare the network: Which includes the replacement of existing networks instead of 

adding new ones;  

• Activate energy-saving software: Which refers to energy saving features in the 5G network 

components, such as micro-sleep functions; 

• Build 5G with precision: Which concerns the avoidance of over-dimensioning hardware by 

considering the needs of the area of installation, to save on energy and costs; 

• Operate site infrastructure intelligently: Including the use of artificial intelligence to 

operate site infrastructure.  

On another aspect, currently, the impact of wireless networks on the energy footprint of the ICT 

sector, could be said to be quite small due to the protocols that are used. Nevertheless, as more and 

more traffic being transferred towards wireless networks, and with the IoT being heavily dependent 

on wireless technologies, traffic is also increasing, thus making the energy efficiency of such 

communications non-negligible.  

For example, in an evaluation with four of the most popular IoT protocols (Zigbee, LoRa, Bluetooth 

and WIFI) that constituted a wireless sensor network, in a smart campus experience [b-Del-Valle], 

an assessment of the energy efficiency of these protocols was performed. With a network of sensors 

being composed of sensors, radio transmitters and receivers, CPU and memory and the power source 

(battery), the authors identified some issues that can affect the node battery consumption. The term 

unbalanced energy depletion is presented and describes a situation where the nodes that are closer to 

the coordinator node carry more traffic, and so they consume more energy than those nodes further 

away from the root node. This imbalance causes the overall energy to be distributed non-uniformly 

in the network, making some nodes run out of power faster than others. Looking at the energy side 

of the networks, the authors have identified that this is an important issue in the warranty of stable 

networks, due to the life of batteries. The IoT protocol found by the authors, in this network, to be 

the most efficient protocol was Zigbee, both in a cooperative and collaborative configuration of the 

network. 

8.3.1 Energy efficiency of 5G 

The introduction of 5G into the networks with 2G, 3G and 4G will most probably bring more power 

consumption [b-ITU FG-AI4EE D.WG3-2]. Moreover, though 5G can provide faster and more 

numerous services, its energy efficiency is not always optimal, especially at the initial stage of 

deployment or with low traffic. On the other hand, it is possible to re-use the 4G energy saving 

practices and technologies (e.g., carrier shutdown, channel shutdown, symbol shutdown, etc.) [b-ITU 

FG-AI4EE D.WG3-2], while enhanced technologies have been developed in the 5G era (e.g., deep 

sleep, symbol aggregation shutdown, etc.). Finally, big data and AI must be further utilized to 

implement intelligent and self-adaptive energy saving solutions and strategies, based on specific site 

traffic and other site-related conditions. According to [b-ITU FG-AI4EE D.WG3-2] an AI-driven 

smart procedure for energy saving includes the following steps:  

1) Data acquisition: The network performance data and MR/ CDT data of the base station are 

obtained through network management or data acquisition system. 

2) Data processing: The collected data are pre-processed as being cleaned, constructed, 

aggregated and screened as training data for scene recognition, load forecasting and other 

models. 

3) Scenario identification: The machine learning algorithm is used to identify the application 

scenario and determine the energy-saving shutdown scheme and function. 
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4) Threshold determination: According to the energy-saving target to be achieved, the 

appropriate energy-saving threshold is determined. 

5) Time-span determination: Based on the historical traffic data, the machine learning 

algorithm is used to predict the traffic load in a certain period of time in the future to 

determine the energy saving time and activate the time window. 

6) Execution strategy: The integrated energy-saving strategy is sent to the network 

management system to perform the energy-saving operations on 5G base station, such as 

deep sleep, carrier shutdown, symbol shutdown and corresponding activation time window. 

7) Feedback and optimization: The performance data of the base station are collected to 

evaluate whether the expected target is achieved or not, and the closed-loop iterative 

optimization threshold strategy is adopted. 

Naturally, in addition to network traffic monitoring, there are also AI techniques for traffic 

forecasting. 

8.3.2 Energy efficiency best practices with passive optical networks 

Communication networks are responsible for a great amount of energy consumption in the ICT 

ecosystem. Passive optical networks (PON) are important to take into consideration when addressing 

energy efficiency practices. One of the most promising methods to save energy in fibre access 

networks is to put network devices, such as an optical network unit (ONU) or optical line 

termination (OLT) or parts of them, into sleep mode when there is no traffic to be transmitted. 

However, putting these devices into sleep mode may incur packet delays. Ultimately, to save energy 

in passive optical networks, using efficient energy management with scheduling for the sleep and 

wake up periods is a challenging though rewarding task.  

Energy saving of optical networks in four different levels are addressed in [b-Zhang]; components, 

transmission, network and applications.  

• Component level, integrating all-optical processing components such as optical buffers, 

switching fabrics, and wavelength converters, may significantly reduce energy consumption. 

• Transmission level, low-attenuation and low-dispersion fibres, energy-efficient optical 

transmitters, and receivers (which improve the energy efficiency of transmission) are also 

being introduced.  

• Network level, energy-efficient resource allocation mechanisms, green routing, long-reach 

optical access networks, etc. are trying to reduce energy consumption of optical networks. 

• Application level, mechanisms for energy efficient network connectivity such as "proxying" 

and green approaches for cloud computing are being proposed to reduce energy consumption. 

As referred to in [b-Valcarenghi], several solutions to reduce energy consumption in ONUs have been 

proposed by many researchers so far. The article refers to that for time-division multiplexed (TDM) 

PONs with sleep mode, an ONUs' energy consumption can be reduced by switching it to low power 

mode when idle. However, huge savings can only be achieved if ONUs are capable of quickly 

regaining synchronization upon wake up, and the power consumed while sleeping is much less than 

when the ONU is on. Moreover, data link layer solutions alone (e.g., sleep mode) may be effective 

when network utilization is low, but when network utilization increases, physical layer support (e.g., 

quick resynchronization) is necessary. If solutions and ONU architectures with such characteristics 

are developed, huge energy savings and limited delay increases can be achieved. 

8.3.3 Energy efficiency best practices with copper networks 

The ecological footprint of broadband access technology has substantially increased during the last 

decades due to the rapid acceptance and availability of fast and reliable Internet connections. With 

this an increase of energy consumption in these networks has also been detected. Despite the fact that 



 

16 L series – Supplement 52 (10/2022) 

there is a clear trend to more fibre-based access solutions in the future, DSL-based access will remain 

relevant. 

There are several initiatives, such as the EU Code of Conduct Energy Consumption of Broadband 

Equipment [b-Acton2] and others that have been addressing the issue of energy consumption and 

urging the ICT industry to act on its environmental impact. 

DSL is a cost-effective solution to bring broadband access to its customers by using the existing 

copper infrastructure, originally installed for simple voice communication. 

The article on improving the energy efficiency of broadband copper access networks [b-Guenach] 

outlines some conclusions on best practices to be implemented in broadband networks: At the 

architecture level, by moving to smaller nodes, and at the component level, by selecting energy-

efficient technology and/or by introducing design techniques (for instance, clock and power 

gating), which benefit from the typical Internet usage (burstiness of traffic, video streaming, 

day/night cycles), power savings can be obtained, which, in the best case, can reduce by more than 

half the energy consumption of the access network. Moving to a more distributed access network of 

small nodes is currently necessary with the introduction of G.vector and the planned introduction of 

G.fast, how these nodes can be cooled (fresh air cooling, passive cooling) and powered (reverse 

powering) can be reconsidered because of the different scales of these nodes. Some of these solutions 

not only provide energy saving but also assist in enabling the operator to easily deploy these increased 

numbers of small-sized active components in this network. For instance, by removing the need of 

active cooling (requiring additional power) in the small nodes, the power budget to feed these small 

nodes comes within reach of new power schemes such as reverse powering (which do introduce 

some inefficiency compared with classical powering schemes such as local ac/dc conversion). 

The EU Code of Conduct outlines also that "the volume of deployed broadband equipment is 

increasing dramatically and so is its combined power consumption. Due to low customer aggregation 

ratios (typically, one customer premises equipment (CPE) per customer), such equipment is typically 

idle most of the time, most of the time exchanging data only to maintain its network status. It is 

therefore evident that such equipment can be optimized in terms of its power consumption and activity 

profiles. Examples of such techniques include dynamic adaptation (e.g., performance scaling), 

smart standby (e.g., through proxying network presence and virtualization of functions) and energy 

aware management." 

8.4 Data processing 

On data processing, there are several groups of ICT goods that can be evaluated. At first, computers 

and small servers are the ones that may present as the more obvious as these will be responsible for 

a great part of data processing with the roll-out of the emerging technologies, with the data being 

processed in cloud or edge computing. 

The European Commission's regulation on Ecodesign requirements for computers and servers from 

2014 outlines some guidelines for desktop computers, integrated desktop computers, notebook 

computers (including tablet computers, slate computers, and mobile thin clients), desktop thin clients, 

workstations, mobile workstations, small-scale servers, and computer servers. These types of 

hardware are ultimately expected to be responsible for a big part of the processing of data within the 

IoT environment. The Ecodesign requirements are presented in Annex II of the Guidelines [b-

Craglia]. 

8.4.1 Energy efficiency best practices on data processing 

There are several cases of energy efficiency in the different parts of the life of a byte of data that have 

been studied, especially in terms of the hardware or the infrastructures being used. An area that is still 

less investigated is the role that coding, and software can have in the energy performance in the data 

processing stages.  
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A study on the empirical evaluation of two best practices for energy-efficient software development 

[b-Procaccianti]Error! Reference source not found. evaluated the impact of two best practices for 

energy-efficient software and applied these practices in two widely used software applications, 

MySQL Server and Apache Webserver and each practice successfully reduced the energy 

consumption of our test environment and concluded that software design and implementation choices 

significantly affect energy efficiency. This study is based in previous studies that have been 

evaluating the connection between software development and energy efficiency, like the work of [b-

Capra], which analyses the impact of application development environments over the energy 

efficiency of software applications, concluding for example that a high framework entropy is 

beneficial for the energy efficiency of small and medium applications. The work of [b-Sahin] 

which investigates the energy impact of using software design patterns and concluded that the impact 

of applying a design pattern varies greatly, from less than 1% to more than 700%. The work of [b-

Noureddine] analyses the energy impact of programming languages and algorithmic choices that 

finds that the algorithm choice has a significant impact on energy consumption. (The recursive 

algorithm is more energy-efficient than the iterative one) and that the chosen programming language 

has a significant impact on energy consumption as well. [b-Manotas] investigated the energy impact 

of web servers in web applications and found that the energy consumption of a web application greatly 

varies depending on the chosen web server and that the variation depends on the specific feature of 

the web server. The same web server might be more energy efficient in a specific scenario (e.g., 

search) and very inefficient in others. 

Another article analysing energy efficiency optimization in big data processing platforms by 

improving resources utilization [b-Song] outlines a proposal for the resources utilization in big data 

processing by allocating different resources according to a task-related best resource ratio (BRR), 

such as "CPU, disk, network in the ratio of 1:2:4", rather than the resource's quantity, such as 

"CPU = 1 GHz, network = 20MB/s". The study deduces the BRR of data processing tasks, and 

designs a resource ratio based approach (R2), which includes a task scheduling algorithm and resource 

allocation algorithm, for energy efficiency optimization. Experiments show that the R2 approach can 

improve energy efficiency by 10%. 

In 2011, Intel produced a white paper on energy-efficient software guidelines, which can be help 

developers aiming to reduce the energy consumption of their pieces of software [b-Intel]. 

8.4.2 ML energy consumption and efficiency 

Power models are built to design better hardware, design better algorithms or design better software 

to map these algorithms onto hardware. 

In the case of ML applications, at the system-level, it is possible to distinguish between two power 

estimation models [b-García-Martín]: 

• Software level: The focus is on the energy consumption of the application or software 

implementation and explore optimization techniques, working at the level of: application (for 

example, kernel sizes in a neural network); instructions (for example by using performance 

counter profiling, understand the cost for each instruction and try to reduce the most 

expensive part of the code);  

• Hardware level: The focus is on the energy consumption of specific hardware components 

(for example, processor, memory and IO peripherals). 

A general survey of the utilized techniques for both software and hardware levels is provided in 

[b-García-Martín] 

In machine learning we can further distinguish two main phases: training and inference (or 

operational). Research settings typically focus on model training and accuracy performance. In 

industrial settings, the cost of inference might exceed the training costs in the long term. In this 

context, it might be more beneficial to use more expensive models to train even if they are more 

efficient in the inference phase, when in operation.  
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Motivation: In the context of deep neural networks regarding the training of some machine 

learning algorithms, the process generally involves a certain number of passes through the dataset, 

often called epochs. It has been realized in a recent study that there is a threshold of epochs at which 

the accuracy of machine learning models reached a plateau, but energy consumption continues to 

increase. The same for larger training data sets that demand more energy to train but do not lead 

necessarily to a proportional benefit in accuracy. The study suggests that there may be a path for 

models not reaching full accuracy and still complying with the needs of the user. Another suggestion 

was to use transfer learning where an existing model could be repurposed for a different task in order 

to save energy and time.  

Advances in techniques and hardware for training deep neural networks have recently enabled 

impressive accuracy improvements in image processing and across many fundamental natural 

language processing (NLP) tasks as referred to in [b-Strubell], with also a great dependence of large 

computational resources that need similarly substantial energy consumption. In this clause we are 

mainly focusing on deep learning algorithms, as it is the set of techniques creating the most power 

consuming models today. However it is worth noting that this is just a subset of machine learning 

algorithms, and practitioners should also be encouraged to resort to more traditional and power-

efficient options (such as random forest or XGBoost) when appropriate.  

Some of the actionable recommendations to reduce costs in NLP that could be adapted in other 

applications, mentioned by the paper include:  

• The reporting of training time and sensitivity to hyper parameters where it would be 

beneficial to directly compare different models to perform a cost-benefit (accuracy) analysis  

• Prioritize computationally efficient hardware and algorithms  

Most recently, some research developed within Google has also raised awareness of the high 

computational needs and other ethical risks of the latest NLP models [b-Bender], which has put some 

pressure on Google researchers to emphasize the importance of the topic and justify how the benefits 

of the model outweigh the energy costs. This other study [b-Patterson] shows how depending on the 

choices made for training a large NLP model, like the type of ML model, data centre and processor; 

the carbon footprint can be reduced up to ~100-1000X. 

How to estimate emissions  

The research community is increasingly asking for a systematic way of reporting the energy and 

carbon footprints of machine learning models [b-Henderson], and is also calling to direct research 

towards more efficient models focusing on what is called green AI, to decrease its carbon footprint 

and increase its inclusivity [b-Schwartz]. On the other side of the balance we have, what is defined 

here as red AI, which is AI that targets accuracy using massive computational power.  

There are already some efforts to reduce the size of these models through techniques such as 

distillation or quantization [b-Hinton] [b-Zafrir]. They still however rely on a significant amount of 

processing to produce these reductions. Sparsely activated models have claimed to provide significant 

savings both for training and inference [b-Fedus]. 

In the recent years, some tools, such as the green algorithms tool [b-Fedus] or the machine learning 

emissions calculator [b-Lacoste], have been created that help machine learning researchers and 

practitioners get an understanding of the approximate environmental impact of their experiments. 

They based their estimations on the location of the server used, the length of the procedure, and the 

make and model of the hardware. In [b-Bender] the authors present the state-of-the-art approaches 

and software tools used to estimate energy consumption from machine learning algorithms up to mid-

2019.  

However, being able to approximately measure while running the experiments is generally more 

accurate than indirect estimations a posteriori. At the end of 2019, [b-Lottick] presented a python 

package that calculates the energy and C02 emissions of any (python) function and provides an 
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energy usage report to add context to these results, see Figure 8. Another attempt presented a month 

later is the experiment-impact-tracker framework [A11], which provides a systematic way for the 

community to consistently account and report energy, computing, and carbon metrics. This tool can 

make it easier to understand the full training lifecycle, including training attempts performed before 

the set up used as the final one. Most recently CodeCarbon2 is also being developed to approximately 

measure carbon emissions in a more automatic way. 

 

Figure 8 – Energy usage report for a simple exponential function.  

(Image taken directly fromError! Reference source not found. [b-Peter]) 

ML on edge devices 

More and more computation is gradually taking place on edge devices (i.e., IoT), thanks to the 

explosive growth of Internet-connected devices. Edge devices are power or resource-constrained, and 

typically a trade-off between accuracy and efficiency must be found. An article on energy-efficient 

machine learning on the edges [b-Kumar] also considers new hardware architecture for machine 

learning on edge and hardware-based full stack optimization for machine learning on edge 

computing as two categories that can be exploited in order to meet the growing demand for resources 

in machine learning algorithms.  

The same applies at the software level and packages where now many projects focus on developing 

and optimizing software platforms and machine learning packages to meet the low-power 

requirements of the edge. Algorithms, again, are seen as a key path to reducing the energy 

consumption of machine learning models, being by reducing the computational requirements, by the 

reduction of the accuracy of operations and operands.  

In order to address the issue of the large environmental impact of such AI training processes, some 

solutions have been outlined [b-Cai] such as a once-for-all network, which trains a large model that 

has many pre-trained sub-models of different sizes that can be tailored to a range of platforms 

without retraining.  

 
2 https://github.com/mlco2/codecarbon  

https://github.com/mlco2/codecarbon
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Each of these sub-models can operate independently at inference time without retraining, and the 

system identifies the best sub-model based on the accuracy and latency trade-offs that correlate to the 

target hardware's power and speed limits.  

 

Figure 9 – Neural network with sub-models. Source: MIT [b-MIT] 

A "progressive shrinking" algorithm trains the large model to support the sub-models at the same 

time. First, the large model is trained and then the smaller sub-models are trained with the aid of the 

large model so that they learn simultaneously. Finally, all of the sub-models are supported, allowing 

for a speedy specialization based on the target platform's specifications.  

Summary 

In summary, most of the latest research on the topic is recommending to:  

– use sparsely activated deep neural networks (see Figure 9) for energy savings,  

– pay attention to the geographic location of the servers where ML workload runs, 

– use of specialized infrastructure that includes accelerators appropriate for the task,  

– duly report the energy consumption and CO2 emissions on machine learning papers and 

research, especially when it involves large training of models,  

– use also efficiency as an evaluation metric (e.g., floating point operations), in combination 

with accuracy and other similar metrics,  

– include the full training lifecycle in the calculations, which consider previous attempts 

needed until everything is set up correctly,  

– take energy needs for inference into account, as these can often outweigh the training ones, 

and 

– release pre-trained models to save others the cost of retraining them. 

This list is non exhaustive but should serve as an indication of the state of play at the time of writing. 

There are also experts that are urging policy makers to stimulate transparency and the creation of 

standards, to facilitate the emission calculations in the area of artificial intelligence [b-Dhar].  

9 Appliance of energy criteria to the end-to-end considered by this report 

The energy efficiency good practices (introduced in clause 8) are applied to the three end-to-end 

application typologies introduced in clause 7, acknowledging the different components and the three 

main steps of the circular value-chain discussed. 
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9.1 Monitoring application using smart IoT systems and AI software 

In the case of developing and managing monitoring applications by using smart IoT systems and AI 

software, good practices for energy efficiency are summarized in Table 1. 

Table 1 – Energy efficiency good practices for implementing monitoring  

application using smart IoT systems and AI software 

Component Value-chain step to 

which it contributes 

Energy efficiency good practices Notes 

IoT systems  

Data storage 

 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage 

• snapshot technology 

See clause 

8.2 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Smart gateways 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated Deep Neural 

Networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on Machine Learning 

papers and research – specially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

See clause 

8.4.2 
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Table 1 – Energy efficiency good practices for implementing monitoring  

application using smart IoT systems and AI software 

Component Value-chain step to 

which it contributes 

Energy efficiency good practices Notes 

combination with accuracy and other 

similar metrics;  

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 

Smart 

services/Cloud 

Data storage 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage  

• snapshot technology 

See clause 

8.2 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated deep neural 

networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on machine learning 

papers and research – especially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

See clause 

8.4.2 
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Table 1 – Energy efficiency good practices for implementing monitoring  

application using smart IoT systems and AI software 

Component Value-chain step to 

which it contributes 

Energy efficiency good practices Notes 

combination with accuracy and other 

similar metrics;  

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 

9.2 Smart application using edge computing and Cloud data centre 

In the case of developing and managing smart applications building on edge computing and Cloud 

data centre, good practices for energy efficiency are summarized in Table 2. 

Table 2 – Energy efficiency good practices for implementing smart application using edge 

computing and Cloud data centre 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

IoT systems  

Data storage 

 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage 

• snapshot technology 

See clause 

8.2 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 
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Table 2 – Energy efficiency good practices for implementing smart application using edge 

computing and Cloud data centre 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

Smart gateways 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated Deep Neural 

Networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on Machine Learning 

papers and research – especially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

combination with accuracy and other 

similar metrics;  

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 

See clause 

8.4.2 

Smart systems 

(Edge/Fog 

computing 

nodes) 

Data storage 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage 

• snapshot technology 

See clause 

8.2 
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Table 2 – Energy efficiency good practices for implementing smart application using edge 

computing and Cloud data centre 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

Data Transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated Deep Neural 

Networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on Machine Learning 

papers and research – especially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

combination with accuracy and other 

similar metrics;  

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 

See clause 

8.4.2 

Smart 

services/Cloud 
Data storage 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage 

• snapshot technology 

See clause 

8.2 
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Table 2 – Energy efficiency good practices for implementing smart application using edge 

computing and Cloud data centre 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

Data Transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated Deep Neural 

Networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on Machine Learning 

papers and research – especially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

combination with accuracy and other 

similar metrics;  

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 

See clause 

8.4.2 

9.3 Simulation applications using digital twin pattern 

In the case of developing and managing simulation applications by applying the Digital Twin pattern, 

]good practices for energy efficiency are summarized in Table 3. 
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Table 3 – Energy efficiency good practices for implementing simulation applications 

applying the Digital Twin pattern 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

IoT systems  

Data storage 

 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage 

• snapshot technology 

See clause 

8.2 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Smart gateways 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated deep neural 

networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on Machine Learning 

papers and research – especially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

combination with accuracy and other 

similar metrics;  

 

See clause 

8.4.2 
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Table 3 – Energy efficiency good practices for implementing simulation applications 

applying the Digital Twin pattern 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 

Smart Systems 

(Edge/Fog 

Computing 

nodes) 

Data storage 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage 

• snapshot technology 

See clause 

8.2 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario identification 

• threshold determination 

• time-span determination 

• execution strategy 

• feedback and optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated Deep Neural 

Networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on Machine Learning 

papers and research – specially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

combination with accuracy and other 

similar metrics;  

See clause 

8.4.2 
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Table 3 – Energy efficiency good practices for implementing simulation applications 

applying the Digital Twin pattern 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 

Smart 

services/Cloud 

Data storage 

One or more of the following techniques: 

• storage tiers 

• storage virtualization 

• thin provisioning 

• data compression 

• deduplication 

• decommissioning of non-used storage 

• snapshot technology 

See clause 

8.2 

Data transfer (5G) 

Implement the AI-driven smart procedure 

consisting of the steps: 

• scenario Identification 

• threshold Determination 

• time-span Determination 

• execution Strategy 

• feedback and Optimization 

See clause 

8.3.1 

(for Optical 

and copper 

networks, see 

clauses 8.3.2 

and 8.3.3, 

respectively) 

Data processing (ML) 

One or more of the following 

techniques/strategies: 

• hardware-based full stack optimization  

• a "once-for-all" AI network (which trains 

a large model that has many pre-trained 

sub-models) – notably: 

• use sparsely activated deep neural 

networks for energy savings,  

• pay attention to the geographic location 

of the servers where ML workload runs, 

• use of specialized infrastructure that 

includes accelerators appropriate for the 

task, 

• duly report the energy consumption and 

CO2 emissions on Machine Learning 

papers and research –specially when it 

involves large training of models;  

• use also efficiency as an evaluation 

metric (e.g., floating point operations), in 

combination with accuracy and other 

similar metrics;  

See clause 

8.4.2 
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Table 3 – Energy efficiency good practices for implementing simulation applications 

applying the Digital Twin pattern 

Component Value-chain steps to 

which it contributes 

Energy efficiency good practices Notes 

• include the full training lifecycle in the 

calculations, which considers previous 

attempts needed until everything is set up 

correctly,  

• keep energy needs for inference into 

account, as these can often outweigh the 

training ones, and 

• release pre-trained models to save others 

the cost of retraining them. 
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