INTERNATIONAL TELECOMMUNICATION UNION

CCITT Z.100 Annex D

THE INTERNATIONAL (11/1988)
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

ANNEX D TO RECOMMENDATION Z.100
SDL USER GUIDELINES

SDL USER GUIDELINES

Reedition of CCITT Recommendation Z.100 Annex D
published in the Blue Book, Fascicle X.2 (1988)

NOTES

1 CCITT Recommendation Z.100, Annex D was published in Fascicle X.2 of the Blue Book. This file is an
extract from the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book
version, the contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see
below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

D.1

D.2

D.3

D4

ANNEX D
(to Recommendation Z.100)
SDL User Guidelines

TABLE OF CONTENTS
PrE A oo b eae e beeeeehe e e he e be e be e teeaeesheesaeesreenreennas
g oo [FTex o) o USSP
D.21 GeNeral OVEIVIEW OF SDIL ..ottt e e b sb e
D.2.2 SYNEAX FOMMS OF SDIL ...ttt b ettt se et e b e
D.2.3 APPLICEADITTEY OF SDL ...ttt bbb s
BaSiC CONCAPLS OF SDILcuieiiiieiieieteriee ettt et b e et b e et b e e bt b et b e s b et eb e s b e e ebeebeseenesbe e
D.31 Y2 o 0
D.3.2 2] o0 TSRS
D.33 CRBNNEIS ...ttt ettt e s s ae e she e e aeeresaeeeaeasbe e beeabeeseesaeesaeesres
D.34 SIGNEIS ..ttt bbb et bR bbbttt b e b ne e s
D.35 SIGNEI TOULEScuectieeeetet ettt bbbt bbbt bbbt bt sb et et ebe e
D.3.6 System and blOCK diagramsSooo i e e e
D.3.7 Comments aNd tEXE EXTENSIONocueiuiiuirieieie ettt b e e e e b e b eaas
D.38 PIOCESSES. ...ttt ettt ettt h e e s bt e b e e b e e b e st e sRe e she e Rt e et eaneeneeebeebeenbenanenane
D.3.8.1 PrOCESS CIOBLION ...ceeieiieiiuieieeieiteste st ettt et et e e et s ee st aeeae s e e e e beseeebesaeebesae e e e e e seenbesbesbesneenean
DR IS - (=< TSRS
(DTG TG R 1 01 o U | TSR PO SRR
D.3.8i4 SAVES ...t R Rt e Rt Rt et Re e Re e R e e Eennrenneenreenreennis
D.3.85 Enabling conditions and CONtiNUOS SIGNAIS........ccccvierieieiieie e see e s re e eneas
DG R S X I O 11 1 011 | 3 PSSR
DR R T A = =SSOSR
D.3.8.8 DECISIONS ...ecueitiieiestereetes ettt sttt st e sttt se et ese bt bese st e bese e bt e bese e bt e ke se e Rt b e ne e Rt et e neebe b e neenenbenean
D.3.8.9 JOINSANA CONNECLOIS.cuertieeiestereetesteseeteste sttt s te st steseebesbese et sbe e ebesbe e ebe st e e ebesee e ebeseesesbenean
D.3.9 PrOCEOUIES ...ttt st sttt st st et s e et st seesesbeseebenbeseenenbe
D.3.10 D = g = a0 | 1T oo [TSSO
D.3.10.1 Variable deClarationsccooeieiiiiiieieeereere ettt et et be et e eneas
D.3.10.2 Revealed/Viewed VariablEs...... ..ot e
D.3.10.3 Exported/Imported VariablES............ooiriiiiie e e
D.3.10.4 EXPIESSIONS ...ecviiteiuieteruieueetestesteseestesseeseaseeseaesseessessesaeaseaneaneessessesbesaesbesaeessensansansessessessessens
D.3.11 EXPressing tiME 1N SDIL ..ottt e e e e e sae b e
D.3.12 QUATIEISUSAOE .o.ecuiieiieiiriiieie sttt sttt bbbt bbbt b e nn e nennan
D.3.13 SYNtaxX Of NBIMEScveiveiieeeceeriese sttt st e e e st e tesrestesseeseeneeneaneesaenresennrens
Structuring and refining SDL SYSLEIMSoovciiiiieiieriee ettt st st s st se et ene s
D41 (€15 01 =) TSR
D.4.2 Criteriafor PartitioNiNgcooeoerere et e s r e re e e
D.4.3 =] FoTetag o= g 11 o] 0 1 oo [OOSR
D.4.4 2] [oTw = =0 =o =10 VOSSP
D.45 (010710 10c I 7= 0] 11 T S
D.4.6 System representation in case of PartitioNiNgccccceveveiecierie e
D.47 REFINEMENT ..ttt et et se et seene st

Fascicle X.2 —Rec. Z2.100 Annex D

D.5

D.6

D.7

D.8

2

AddItIONE] CONCEPLSo.veiiteieeiiete ettt ettt b bbbt b e b et bt s e et eb e s b e e ebesbesaeneebeseene b
D.5.1 Y = o 0 L PRSP
D.5.2 GENENIC SYSLEMS ...eeeeeeeseiie st etee et s et tese et e e s b e se e e e seese e tesaeeresaeeneeneeneenseseenrennen
D.5.3 ST Y=
(BRI K €= 2 - |
D.5.3.2 PriOMtY SIQNAIS ..occeeiiieieiici st sttt e e naenrennenneas
[RS TRCC TN I =0 o 0= £ o |
D.5.4 Guidelines for state-oriented representation and pictoria elementsccccceceveeveeevecnenne.
D.54.1 General commentson state-oriented representationcocceeeveierenene e sesesee e
D.5.4.2 State picture and pictorial BlEMENLSccooeriririeierieee e e
D.55 AUXITANY diBOIAMS ...ttt e b et sb et e e e b e e e naas
D.55.1 State OVErVIEW QIB0IAIMcoeiiieiiiiieirieeese ettt st
D.55.2 State/SIgNal MELIX ..c.coveueiiirieiriiieiriere st b e
D.55.3 SEQUENCE CRAITcueiiieiiiieeiee ettt e
DEFINITION OF SDL TAA ...eeicveiiiiieiiee ittt e s s s e e sbe s s sbeesbesssbessabessabessabessabessnresssessnresans
D.6.1 (e o (ST als Yo e r= =N S D IR
(D23 W R €150 1< = I 1 01 {00 [0 (o1 o] o N RE R
(DK T o |1 £ TS
D.6.1.3 Operators, HIteralS and teIMScccecieieriiie st e e sre e eneas
D.6.1.4 EQUaiONS AN @XiOMIScccereeieeiieriesiesrestestessesseeseessessessessestessesseesessssssessessessessessesansens
D.6.1.5 Moreon equationsand @XiOMSccccuerererererereeeseeseeseeseesieseeseesresseesesseeseeseensensessens
D.6.2 Generators and INNEMTTANCEccevieveeiieie et sa e e s bb e e s e e s sbee s sreeenre s
(DI R €T o 1< = (o) £ T
D.B.2.2 INNEITANCE ...ttt e e st e e s st e e s s eaae e e s st e e e s asbeessbenesssabeeeas
D.6.3 VIBWS ON EUUBLIONSeeviieieeeiesieete et ee ettt s s et eee e saesbesaesbesneeseeneeneeneeseesbeseesrenns
D.6.3.1 GeNEral rEQUITEMENTSveiviieiieieeeeeeeeeeeseeste e ste st eseeeeaeseesrestesaesresseeseeaensansesaesressennens
D.6.3.2 Function application 0N CONSLIUCLONScccvieiiereeeeresese e ste s eee e see e e sre e ereeeenees
D.6.3.3 Test-Sat SPECITICALION ...oveuereieeiitiieierieee st
D.6.4 (== 1| (=S
(Dt R 1T (o (= a0 0= =) £ TSP
(D A © o = oo SRS
D.6.4.3 SOMSWILN fIEIAS ...ocitii et sae e sba e s sare s sareas
(DS N R 1 410 [= o [o £
D.6.4.5 Default ValUE Of VAITADIESceooivieiiee ittt st st snee s
(D N I AN o 1AV =Y o] 0= -] £ SRS
Additional guidelinesfor drawing and WItINGcccccceverieriresiene e
D.7.1 SDL/GR QUIAEIINES ..ottt ettt ettt st s e re e e e e st e besnesrenns
[A 0 R 1< 0 1< - R
[I A g 1= £z 010 o 10 11 < £
D.7.1.3 SYMDOIS ...ttt bttt b e e bt bt e e e b saenre b eaeas
D.7.0.4 TEMPIALE ..o bbb bbb sae bttt e e e e et e e nbenneas
D.7.2 SDL/PR QUIAEIINESeceeviieceieiesieese ettt ettt sb e b s ese st nsenensenes
(B0 lei0]001< 1= o) o FHUE TR
D.8.1 [0o (U T (o) 1
D.8.2 Types of SyStem rePreSENtatioNccoveereriere et e e e e srenresresreens
D.8.3 DOCUMENT SETUCLUIE ...ttt ettt eete e e e e e s et e e s esae e s s sabeeesenbaesssnsneessasbeeseenreeessnnees
D.84 REfErenCing MEChaNISMcouiiiie e b
D.85 ClassifiCation Of OCUMENESccoiiviieieeeie s ie e et e e s e e e s st e e s e srt e e s sesaeeessabeeessssseeesassneessbeeess

D.8.6 Mixing of SDL/GR and SDL/PR

Fascicle X.2 —Rec. Z.100 Annex D

83

83
85
86

86
90
93

97

98
98

103

103
104
105

106
106

106
107
107
109
111

113

113
115

117

117
118
119

119

120
120
121
122
122
122

123
123

123
123
124
124

126
126

126
126
131
132
132
134

D.9

D.10

D.11

Page

IMBDPINGS oottt ettt e bt et b e e b e e et b e s e e h e bt s e e h e e b e s EeRe R e sEeRe Rt sEeRe bt ne bt eh e e ene b e bt b e 136
D.9.1 Mapping between SDL and CHILLcovcoeiirece e 136
D.9.2 Mapping between SDL/GR and SDL/PRccocviiieceeeeeeeerese s sie st seee s 139
APPIICATION BXAMPIES ...ceviiiieie e st s b e b e aeeae et e e e beseesbesaeeneeseeneenseseentesresrens 139
D.10.1 100 (0o (o] o LU TSRS 139
D.10.2 The SEIVICE CONCEPL . .eiieieieitiitertieteeteeieeiee st eeeseestesbesaesbe s e et e seess e besaesbesaeeaesseeneanseseesbeseesaens 140
BLIe Lo £ {0 g] USSP 155
D.11.1 100 1o (o) o ST 155
D.11.2 L0 =55 =S o) (o) ST 155
D.11.3 DOCUMENT INPUL ..ottt ettt st s b et b e b e b e 155
D.114 DocUMENt VENTICAHIONoeiieiiciecese e ettt s re e 156
D.11.5 DOCUMENE FEPIOAUCTIONceiiviiteriietirieeiceie e eie sttt sae e e s e e e e beseesbesaeese s e e e anseseesbeseesreas 156
D.11.6 DOCUMENTE GENEIGLIONc.eiviieiiieieeeeie ettt sttt e e et sb s b bt e e e e e e e se e besaesbesaeeae 156
D.11.7 System modelling and @n@lYSISc.ceeriiiieriiie e 157
D200 ST @0 To (=Y 0 1= 0 1= - (o o PSSP 157
9 200 1 T I - oo SRS 157

Fascicle X.2 —Rec. Z.100 Annex D 3

D.1 Preface

The CCITT Specification and Description Language, known as SDL, was first defined by Recommendations Z.101 to
Z.103in 1976 (the Orange Book, Volume VI1.4), later extended in Recommendations Z.101 to Z.104 in 1980 (the Y ellow
Book), further extended and reorganized into Recommendations Z.100 to Z.104 in 1984 (the Red Book). In the study
period 1985-1988 the language has been further extended and harmonized, the existing Recommendations have been
merged into a single one and the mathematical definition has been provided.

User guidelines are needed to facilitate the use of the SDL in application to awide range of telecommunications systems.
The aim of the user guidelines is to assist users in the understanding of the SDL Recommendation and in their
application to various areas.

SDL is being widely used by the CCITT and its member organizations, and the range of applications of SDL continues
to increase. These user guidelines are intended to assist people who are considering or starting to use SDL, by
supplementing SDL Recommendations with useful advice and helpful examples. It is realized that there will be some
overlap between the user guidelines and the Recommendations; this is believed to be desirable, to make the user
guidelines self-sufficient and readable. Nevertheless, it is the Recommendation which is the leading document.

4 Fascicle X.2 —Rec. Z.100 Annex D

D.2 Introduction

D.2.1 General overview of SDL

SDL can be used both to specify the required behaviour of a system and to describe the actual behaviour of a system.
SDL has been designed having in mind the specification of behaviour of telecommunications switching systems, but can
also be used to model other applications. As a matter of fact, SDL is well-suited to all systems whose behaviour can be
effectively modelled by extended finite-state machines (§ D.2.1.1) and where the focus is to be placed especialy on
interaction aspects.

SDL also can be the base for a methodology of documentation to represent completely a system specification or
description. In this context the meaning of specification and description is related to their use in a system life cycle. Both
define the functional properties of a system in an abstract way. The description will usually include some design
dependent aspects (e.g. error handling) and will be more complete with respect to functional details. Both should be
related to the concrete system design in a consistent manner and serve as documentation afterwards.

SDL may be used to represent, at various levels of detail, the functional properties of a system, or a function or facility.
The functional properties consist of some structural properties (block interaction diagrams) as well as behaviour. By
"behaviour" is meant the way of reacting upon received signals (inputs), i.e. doing actions, e.g. sending signals (outputs),
asking questions (decisions) and doing tasks.

Specifications may be very broad and general when an Administration wishes to explore the possibilities of updating a
system with new features, new services, new technology, etc., while allowing the supplier to offer awide range of design
solutions. This type of specification is often not very detailed. The other extreme is a specification in which an
Administration is requesting a replacement or addition to an existing exchange. This specification would probably have a
greater level of detail, because of the very detailed specification of interfaces necessary.

A specification and a description might be identical. In any case it is preferable in new development that the design is
derived from the specification so that compliance is ensured.

In general, descriptions are written by suppliers in response to a specification (although they can be written to describe
systems that the supplier wishes to sell). A description will usually have more levels of detail than the specification
because of the need to describe the detailed behaviour of the system. For simplicity sake the SDL representation will be
referred to just as specification in the following sections.

It isto be noted also that SDL provides means of describing a system with various degrees of formality.

First, it is possible to describe a system using the SDL constructs with associated natural language. The resulting
specification conveys information only to a reader with knowledge of the context but not to a machine. Only very
limited checks can be performed automatically.

Second, it is possible to associate with the SDL constructs formal statements consisting of elements of defined types and
operators on these elements. The properties of these elements are not specified: an example is "Connect A-B" where A
and B are of type subscriber and connect is an operation alowed for that type. The resulting specification conveys
information to readers who know the meaning of the operators used. A machine can understand the specification to a
certain level and can perform checks on it, but it cannot perform complete checks nor "implement” the system because
the properties of the operators are not fully specified.

Third, it is possible to also provide all the properties of all the operators. In thislatter case the specification is completely
formal and a machine can perform all the checks and conceptually implement the systems described.

Depending on the goal, the specifications can be tailored to the user needs using these different levels of formalism. Of
course, the more formal the specification the more difficult it isto read by a human being.

In the following the term specification will be used both for the required and for the actual behaviour representation.

D.2.1.1 SDL is based on an Extended Finite-State Machine model

In the application of SDL, the system to be specified is represented by a number of interconnected abstract machines. A
complete specification requires:

1) the specification of the structure of the system in terms of the machines and their interconnections;

2 the dynamic behaviour of each machine in terms of its interactions with the other machines and the
environment; and

3) the operations on the data associated with the interactions.

Fascicle X.2 —Rec. Z.100 Annex D 5

The dynamic behaviour is described with the aid of models which define the mechanisms for the operation of the abstract
machines and the communication between machines. The abstract machine used in SDL is an extension of the
deterministic Finite-State Machine (FSM). The FSM has a finite internal state memory and operates with a discrete and
finite set of inputs and outputs. For each combination of input and state, the memory defines an output and the next state.
Transitions from one state to another are usually regarded as taking zero time.

A limitation of the FSM isthat all information which needs to be stored must be represented as explicit states. Although
it is possible to represent most systems in this way, it will not always be practical. There may be many values to store
which are significant for the future behaviour but do not contribute greatly to the overall understanding of the system.
This information should not be a part of the explicit state space as it will clutter the presentation. For such applications,
the FSM may be extended with auxiliary storage and auxiliary operations on that storage. Address information and
sequence numbers are examples of information suitable for storage in auxiliary memory.

The SDL Recommendations define two auxiliary operations which may be included in transitions of the Extended
Finite-State Machine (EFSM), i.e., decisions and tasks. "Decisions' inspect parameters associated with inputs and
information in auxiliary memory when such information is important for the sequencing of the main machine. "Tasks'
perform functions such as counting, operating on auxiliary memory, and manipulating input and output parameters.

In SDL, the interactions between the machines are represented by signals, i.e., the EFSM's receive signals as input and
generate signals as output. The signals are composed of a unique signal identifier and optionally a set of parameters. SDL
alows for the possibility of non-zero transition time, and defines a first-in first-out conceptual queueing mechanism for
signals which arrive at a machine while it is executing a transition. Signals are considered one at atime in order of their
arrival.

D.22 Syntax formsof SDL

SDL is alanguage which has two different forms, both based on the same semantic model. One is called SDL/GR (SDL
Graphical Representation) and is based on a set of standardized graphical symbols. The other is called SDL/PR (SDL
textual Phrase Representation) and is based on program-like statements. Both represent the same SDL concepts.

A graphical language has the advantage that it clearly shows the structure of a system and allows the control flow to be
easily visualized for human beings. The textual phrase representation is best suited for machine use.

As a design tool SDL should be in a form which allows the user to clearly and concisely express his ideas. SDL/GR
allowsthis and is morein line with the traditional representation of extended finite state machines.

SDL/GR is the original form of SDL. It was devised during 1973 to 1976 and first appeared in the 1976 version of the
Z.100-series of Recommendations.

SDL/GR was derived from the graphical languages developed by different organizations for their own use.

The textual phrase representation of SDL, SDL/PR, was devised during the 1977-1980 study period but some
refinement was needed before it should be recommended. This refinement was accomplished in the following study
period and from 1984 SDL/PR has been one of the recommended concrete syntaxes of SDL.

At first, SDL/PR was intended to be used as an easy way to input SDL documents into a machine, since the GR is more
difficult to input. (Graphical peripherals are needed to handle it.) For this reason, emphasis was on a one-to-one
mapping between PR and GR. The evolution in graphics terminals (increase of capabilities and decrease of cost) has
since led to the acceptability of the GR as suitable for input into a machine. This does not diminish the importance and
the use of the PR because some users find it more to their liking, especially those working with programming
languages.

This evolution led to alooser correlation between GR and PR, however we can still (easily) map one onto the other, but
each form has its own peculiarities. At first glance, the PR strongly resembles a programming language (see
Figure D-2.2.1).

6 Fascicle X.2 —Rec. Z.100 Annex D

STATE aw_off_hook;
INPUT off_hook;

TASK ‘activate charging";
TASK ‘connect’;
OUTPUT reset_timer;
NEXTSTATE conversation;

FIGURE D-2.2.1

Example of SDL/PR

Infact, it all depends on what characterizes a text as a programming language.

If we assume a program is defined as "information interpretable by a machine”, then not only PR but also GR are
"programs”.

There are however some differences between an SDL specification and a real program. First it is not essential that an
SDL specification should be executable by a machine (though it is not forbidden); what is essentia is its capability of
conveying precise information from one human being to another human being.

If we look at an SDL specification as a program, what may be considered as "wrong SDL specification" (because of
incomplete informa text), might be perfectly valid SDL if considered as a representation of the functional requirements of
asystem.

A further differenceisin the "style" of a SDL specification, compared with the usual representation of a program.

Since SDL isintended to aid communication between human beings, care has been taken to alow different layouts so that
the SDL layout can be used to guide the reader to focus on certain aspects which are considered more important than
others. Thisis, of course, unimportant to a program which is supposed to be interpreted by a machine. The machine does
not focus on any particular aspect, but has to consider the whole equally, nor is the machine trying to "understand” the
program.

For its similarity to a program, the PR is preferred by some programmers who will probably use CHILL to implement the
requirements. There is therefore a strong temptation to find a one-to-one mapping from PR to CHILL, so that the
requirements expressed in PR can be automatically transformed into CHILL code. The reverseis also of interest because it
would allow the derivation of a PR specification from a CHILL program.

In § D.9, possible ways of mapping SDL to CHILL areillustrated.

D.23 Applicability of SDL

Figure D-2.3.1. shows arange of possible uses of SDL, in the context of the purchase and supply of telecommunications
switching systems.

In this figure, the rectangles illustrate typical functional groups, whose precise names may vary from organization to
organization, but whose activities would be typical of many Administrations and manufacturers. Each of the directed
lines (flow lines) represents a set of documents passing from one functional group to another; SDL can be used as part of
each of these sets of documents. The figure isintended to be merely illustrative and is neither definitive nor exhaustive.

The areas of applications are the ones effectively modelled by communicating Extended Finite-State Machines, e.g.
functions for telephone, telex, data switching, signalling systems (e.g. Signalling System No. 7), interworking of
signalling systems and data protocols, user interfaces (MML).

When particularly considering SPC switching systems, examples of functions which can be documented using SDL are:
cal processing (e.g. cal handling, routing, signalling, metering, etc.), maintenance and fault treatment (e.g. aarms,
automatic fault clearing, system configuration, routine tests, etc.), system control (e.g. overload control) and man-machine
interfaces.

Application examples of SDL can befound in § D.10.

Specification of protocols using SDL is dealt with in CCITT X-series Recommendations.

Fascicle X.2 —Rec. Z.100 Annex D 7

8

Other Administration Manufacturer

bodies (Customer) (Supplier)

e "~ P e T T e s ~.

' ‘ o) \ ," \

: \ l' Produce \ .l \
1 ' N facility \ 1 :
: 3 : requirement : : X
! ! i] \ ¢
\ \ N
: ' \ Al . L A2 p| System design :
[carr p—0 A3 gl Tt | | A6 enginéering .
N ! i AS sysiem e) specifications |
: N T > specifi- | 1 :
N K N A4 | cation ' N ¢A7 \
\ ! N Network [™) : : :
| Externat |3 N Adminis- ! : Produce \
| body ! \ tration AL3 N i detailed \
y ! t 1 \ ificati \
1| eg ISO : i X X specifications \
! 1 \) \
: : \ Traffic) ' iAg :
! ' N engineering \ \ A9 \
l \ ' g — L System \
' N } Accepiance \ VALZ yst :
u vy testing ' X design |
! [1 \

| 1) t !
! K \ Installation [' Al0 All :
i i ' : N \
! : | \ \ \
: | R Maintenance [: : System System :
t : 1 \ \ simulation testing \
! \ ' \ '
: : \ Training < K \ ’:'
. ¥ o ’;
\ _____ s \ . e e ——— - N e e e
Al An implementation-independent and network-independent specification of a facility or feature
A2

A3
Ad
A5
A6
A7
A8
A9

An implementation-independent but network-dependent system specification, including a description of the
system environment

CCITT Recommendation and guidelines .

Contributions to the system specification, showing the network administration and operational requirements
Other Recommendations that are relevant

Description of an implementation proposal

A project specification

A detailed design specification

A complete system description

Al0 Appropriate system and environment description documentation for system simulation

All Appropriate system and environment description documentation for system testing

A12 Installation and operation manuals

Al3 Contributions to the system specification from specialized functional groups within the Administration
Note 1 - Iteration is possible at all levels.

Note 2 - In some circumstances, SDL documentation that is here shown as being internal to one organization,

e.g. A1,A7,A8, could be supplied 10 another organization.

FIGURE D-2.3.1

General scenario for the use of SDL

Fascicle X.2 —Rec. Z.100 Annex D

D.3 Basic concepts of SDL

D.31 System

As has been stated earlier, SDL models systems. Thus the system is what an SDL specification is defining. As such, an
SDL system may model a part of atelephone system (or exchange) or a complete network of telephone systems or parts
of amultiplicity of telephone exchanges (e.g. the trunk controllers at both ends of atrunk). The key thing is that from an
SDL point of view, the SDL system contains everything the specification is trying to define. Implementation features
such as duplicated systems or multiple equivalent nodes cannot be explicitly modelled by SDL. The environment is outside
the specification and is not defined in SDL.

The system interfaces with the environment through channels. In theory, only asingle bidirectional channdl is required to
interface with the environment. In practise, channels are usually defined for each logical interface to the environment.

Each system is composed of a number of blocks connected together by channels. Each block in the system is
independent from every other block. Each block may contain one or more processes which describe the behaviour of the
block. The only means of communication between processes in two different blocks is by sending signals that are
transported by the channels. The criteria leading to a certain division of the system into blocks may be to define parts of a
manageable size, to create a correspondance with actua software/hardware division, to follow natura functiona
subdivisions, to minimize interactions, and others.

For large SDL systems there are some SDL constructs that allow the specification of substructures of the parts of a system,
so that starting from a broad overview of the system, more and more details can be provided. In this case we say that the
system is represented at different levels of details. Those constructs are explained in § D.4.

At the first level of detail the SDL specification of a system describes the structure of the system and includes the
following items that will be explained in the following paragraphs:
- System name.

- Signal definitions: the specification of the types of signals interchanged between the blocks of the system or
between the blocks and the environment. It includes the specification of the types of values conveyed by the
signals (sort list).

- Signal list definitions: the specification of identifiers grouping several signals and/or other signal lists together.
Such identifiers can be used to save space and to allow aclearer specification.

- Channel definitions: the specification of the channels connecting the blocks of the system to one another and to
the environment. A channel definition includes the specification of the identifiers of signals transported by that
channel.

- Data definitions: the specification of user defined newtypes, syntypes and generators visible in all the blocks.
- Block definitions: the specification of the blocks into which the system is divided.

- Macro definitions: guidelines on the use of macros are givenin 8§ D.S.I.
According to the SDL Reccomendation, there exist predefined data types that are available to every system. They do not
need a definition and can be used by means of their predefined names, i.e.: INTEGER, REAL, CHARACTER, STRING,

CHARSTRING, BOOLEAN, PID, TIME, DURATION. The predefined data types are visible at any level in the system
definition; they can be considered implicitly defined in a system library accessible at any point in the specification.

Sort names used in signal definitions at system level, must be introduced by partial type definitions visible at system level,
i.e., predefined data types or user defined newtypes or syntypes defined at thislevel.

Further explanations on the use of data types can befoundin § D.3.10 and § D.6.

The SDL/PR for a system definition consists of a set of statements, each terminated by a";" (semicolon). The definition
of asystem structure begins with the statement "SY STEM name;" and ends with the statement "ENDSY STEM name;". The
name in the closing statement is optional but, if given, it must be the same name given after the keyword SY STEM. It is
suggested to put the namein the closing statement always, as it increases the readability of the document.

The schema of the SDL/PR of a system structure definition is shown in Figure D-3.1.1.

Fascicle X.2 —Rec. Z.100 Annex D 9

SYSTEM...;
.. . signal definitions . . .
.. signal list definitions . . .
. channel definitions . . .
. data definitions . ..
. block definitions . . .

.. . macro definitions . . .
ENDSYSTEM....;

FIGURE D-3.1.1

Schema of the SDL/PR of the system structure definition

In order to have a clearer and simpler representation of the system structure or also to alow a top-down system
specification, a general referencing mechanism is provided in SDL. At this leve the referencing mechanism can be applied
to block definitions. This feature of the language allows the user to specify just the block name within the system structure
definition; the actual block definition can be given separately. (See Figure D-3.1.2).

SYSTEM s;

BLOCK bl REFERENCED:;
BLOCK b2 REFERENCED:

ENDSYSTEM s;

FIGURE D-3.1.2

Example of block definition referencing

The referencing mechanism is especially used in SDL/GR as most of the diagrams have to be contained in a single page
and often there is not room enough for nested graphical specifications.

Examples of the SDL/GR for a system definition can befoundin § D.3.6. D.3.2 Blocks

D.3.2 Blocks

Within a block, processes can communicate with one another either by signals or shared values. Thus the block provides
not only a convenient mechanism for grouping processes, but also, a boundary for the visibility of data. For this reason,
care should be taken when defining blocks to ensure that the grouping of processes within a block is a reasonable
functional grouping. In most casesit is useful to break the system (or block) into functional units first and then define the
processes that go into the block.

Within ablock it is possible (optionally) to define communication paths between the processes or between the processes
and the environment of the block (i.e. the block boundary). Such communication paths are called signal routes.

For large SDL system it is possible to describe the substructure of a block in terms of other blocks and channels as if the
block were a system itself. Such a mechanismis explained in D.4.

The definition of the structure of ablock may include the following items:
- Block name
- The definition of the structure of ablock may include the following items: Block name.

- Signal definitions: the specification of the types of signals interchanged internally to the block. It includes the
specification of the types of values conveyed by the signals (sort list).

- Signal list definitions: the specifications of identifiers corresponding to lists of signals and/or other identifiers
of signal lists. Such identifiers, grouping several signals together, can be used to save space and to allow a
clearer specification.

10 Fascicle X.2 —Rec. Z.100 Annex D

- Signal route definitions: the specifications of the communication paths connecting the processes of the block to
one another and to the environment of the block. A signal route definition includes the specification of the
identifiers of signals transported by that signal route.

- Channel to route connections. the specifications of the connections between the channels external to the block
and the signal routesinternal to the block.

- Process definitions. the specification of the process types which describe the behaviour of the block. If the
block is not described in terms of its substructure there must be at least one process type definition within the
block. For the process definition a referencing mechanism is provided similarly to the case of blocks stated in
8§D.3.1L

- Data definitions. the specification of user defined newtypes, syntypes and generators visible in all defined
processes of the block and/or in the block substructure.

- Macro definitions. guidelines on the use of macros are givenin § D.5.1.

If there is a substructure of the block some of the items above are optional. (Refer to § D.4 for explanations on
structuring).

In ablock the following types are visible:

- predefined data types,

- user defined data types defined in the block itself.

- user defined data types visible in the parent block (in case of block partitioning),

In SDLIPR the keywords BLOCK and ENDBLOCK are used to circumscribe a block definition. Examples of the
SDL/GR for ablock definition can be found in 8 D.3.6.

D.3.3 Channels

Channels are the means of communication between different blocks of the system or between blocks and the
environment. A channel may connect one block to another block or one block to the environment in one direction
(unidirectional channel) or in both directions (bidirectional channel). Normally, a channel is afunctional entity that may
be used to denote specific communication paths. In fact, through the partitioning of channels (described in § D.4.5), it
is possible to formally specify the behaviour of each channel.

For each denoted direction, or communication path, the channel specification contains alist of all the signals identifiers
that can be carried by the channel in that direction. This signal list is provided as a means of ensuring that every signal
sent by a process at one end of the channel can be received by the process in the block at the other end of the channel.
Thus the channel specification becomes part of the interface specification for each block. In large multi-person
projects, early agreement on the signals in a channel and on the specification of those signals reduces the probability
that two processes will not be able to communicate as intended with one another.

The definition of a channel includes the following items:
- Channel name.

- One or two communication paths. a communication path specifies the origin and the destination of a list of
signals. Blocks identifiers or the keyword "ENV" (for the environment) can be used in this context.

- One or two lists of signals: for each communication path a list of signal. transported in that direction must be
specified. Thelist can include signal identifiers or also identifiers of other lists.

- An optional channel substructure definition (or the reference to it): refer to § D.4.5.

In SDLIPR a channel definition is enclosed between the keywords CHANNEL and ENDCHANNEL. The keywords
FROM and TO are used to express the communication paths and the keyword WITH to express signal lists. In
Figure D-3.3.1 there is an example of channel definitionsin SDLIPR.

In SDL/GR a channel definition is represented by means of a line connecting the two parts involved in the
communication. The channel name must be closer to the line than any other symbol. The paths are represented by
means of arrows and the lists of signals must be enclosed in sguare brackets as illustrated in the examples in
Figure D-3.3.2. The arrows must not be placed at any of the two endpoints of the line, in order not to confuse channels
with signal routes (see § D.3.5).

In abidirectional channel each of the two lists of signals must be closest to the corresponding arrow.

Fascicle X.2 —Rec. Z.100 Annex D 11

12

SYSTEM so__and_so;
SIGNALLIST s_list id_1 = sig b, sig_c, sig_d;
CHANNEL cl
FROM block_a TO block_b WITH signal_1,signal_2,signal_3;
ENDCHANNEL cl;

CHANNEL chan 2
FROM ENV TO block_c WITH ext_sig l.ext_sig 2;
FROM block_¢ TO ENV WITH int_sig 1;
ENDCHANNEL chan_2;

CHANNEL chan.name.3
FROM bx TO by WITH sig_a,(s_list id_1),sig_e;
ENDCHANNEL chan.name.3;

ENDSYSTEM so_and_so;

FIGURE D-3.3.1

Example of channel definitions in SDL/PR

signal_1,

signal_2,

signal__3
a) >

[ext_sig_1,ext_sig-2] .phan_o [int_sig—1]
b) ¢ >

chan.name.3
c)

i

[sig_a,(s_list_id_1), sig_e]

FIGURE D-3.3.2

Example of channel definitions in SDL/GR

Fascicle X.2 —Rec. Z.100 Annex D

D.34 dgnals

Signals can be defined at system level, block level, or in the internal part of process definition. Signals defined at a
certain level can be used at that level or also at the lower levels, however , in order to simplify each level, it is suggested
to define the signals as local as possible. Signals defined within a process definition can be interchanged between instances
of the same processtype (ref. § D.3.8) or between servicesin the process (§ D.5.3).

The definition of asignal includes the following items:

- Signal name

- Sort list (optional): represents the list of the value types conveyed by that signal.
- Signal refinement (optional): explained in § D.4.7.

In SDL/PR asignal definition is specified by the keyword SIGNAL. Severa signals (not refined) may be defined inside
the construct, providing the signal name and the sort list. Examples of signa definitions in SDL/PR are given in
Figure D-3.4.1.

SIGNAL s1,52,83;

SIGNAL sig_a (sortl,sort2),
sig_b (sort3,sort4);

FIGURE D-3.4.1

Examples of signal definitions in SDL/PR

In SDL/GR asignal definition is specified by enclosing linear statements in atext symbol as shown in Figure D-3.4.2.

SIGNAL s1,82,83;
SIGNAL sig_a (sortl,sort2),
sig—b (sort3,sort4);

FIGURE D-34.2

Examples of signal definitions in SDL/GR

D.35 dgnal routes

Signal routes are used to express communication paths similarly to the channels. They can be used at block level and also
at process level. Like channels signal routes can be unidirectional or bidirectional but they cannot be partitioned.

At block level they represent a means of communication between the processes of a block or between the processes and
the environment of the block, that is a channel leading to or from that block.

At process level signal routes can be used when the process is substructured into services (Ref. 8 D.5.3). In this case they
connect services one to another or to the signal routes of the process.

When a signa is delivered to a signal route leading to the block boundary, the signal is given to the channel connected to
the signal route. When a signal arrives at the block from a channel and the channel is connected to one or more signal
routes, the signal is delivered to the signal route that is able to convey that signal.

In SDL/GR the definition of a signal route begins with the keyword SIGNALROUTE. The syntax of communication
paths and signal list isthe same asin the case of channels.

Fascicle X.2 —Rec. Z.100 Annex D 13

In SDL/GR the only difference between a signal route and a channdl is that for the signal routes the arrows must be at
endpoints of the lines; close to each arrow there must be the proper signal list. Examples on signal routes can be found in
Figures D-3.6.3 and D-3.6.5 in the following paragraphs.

D.36 Systemand block diagrams

In SDL/GR a system definition is represented by means of a set of diagrams. The structure of a system in terms of
channels and blocks is represented by means of the system diagram.

The system diagram is composed of ;

- The frame symbol: a rectangular shaped symbol enclosing all the other symbols. It represents the system
boundary: outside this frame there is the system environment.

- The system heading: the keyword SYSTEM followed by the system name (put in the upper left corner of the
frame).

- An optional page numbering (put in the upper right corner of the frame).

- Text symbols: such a symbol can enclose linear statements. It is generally used to show in the diagram the
definitions of signals, signal lists and data.

- The block interaction area: this includes the specification of the blocks of the system, the channels and the lists
of signalstransported by the channels.

- Macro diagrams: guidelines on the use of macros are given in D.5.1.

In the system diagram the specification of a block can be one of the two following items:
- A block reference: A block symbol containing only the block name.

- A block diagram: A frame containing the specification of the block structure in terms of its processes and
their interactions. If a block is sub-structrured in sub-blocks, the specification of the substructure or the
reference to it must be provided inside the block frame (§ D.4.3).

The shape of the symbols used in system and block diagrams can be found in the SDLIGR summary. For symbol
dimensionsrefer to § D.7.1.4.

In Figure D-3.6.1 there is an example of a system diagram for the system "s". In this example the system sis divided into
two blocks B 1 and B2 connected to one another and to the environment by the channels Cl, C2, C3 and C4. For the
blocks B1 and B2 just areference is given in this example. Further explanations on channels and signal lists symbols
are given in the following paragraphs.

The same example in SDL/PR is shown in Figure D-3.6.2.

14 Fascicle X.2 —Rec. Z.100 Annex D

SYSTEM s s.1(1)

SIGNAL $1,52,S3, lﬁ

S4,85
C1[s1,82] [g4 c2 [$3]
C3 [54] B2 o} [s:s]
FIGURE D-3.6.1

Example of system diagram

SYSTEM s;
SIGNAL S§1,52,53,54,S5;
CHANNEL C1 FROM ENV TO B1 WITH S1,52;
ENDCHANNEL C1;
CHANNEL C2 FROM B1 TO B2 WITH S3;
ENDCHANNEL C2;
CHANNEL C3 FROM B2 TO B1 WITH S4;
ENDCHANNEL C3;
CHANNEL C4 FROM B2 TO ENV WITH S5;
ENDCHANNEL C4;
BLOCK Bl REFERENCED;
BLOCK B2 REFERENCED;

ENDSYSTEM s;

FIGURE D-3.6.2

Example of a system structare definition in SDL/PR

The structure of a block in terms of processes and signal routes is represented in SDLIGR by means of the block

diagram.

The block diagram is composed of:

The frame symbol: a rectangular shaped symbol enclosing al the other symbols. It represents the block
boundary: outside this frame there is the block environment.

The block heading: the keyword BLOCK followed by the block name (put in the upper left corner of the
frame).

An optional page numbering (put in the upper right corner of the frame).

Text symbols. such a symbol can enclose linear statements. It is generally used to show the definitions of
signals, signal lists and data.

The process interaction area: this includes the specification of the processes of the block and possibly the
signal routes and the lists of signals transported by the signal routes. In this area it is also possible to show
processes that create other processes; thisfeature is described in § D.3.8.1.

Channel identifiers: if the diagram shows signal routes leading to or from the environment of the block, the
identifiers of the channels connected to such signal routes must be specified outside the frame, in
correspondence to the lines of signal routes.

Fascicle X.2 —Rec. Z.100 Annex D 15

- Macro diagrams: guidelines on the use of macros are given in D.5.1. In the block diagram the specification of a
process can be alternatively:

In the block diagram the specification of aprocess can be alternatively:

- A process reference: a process symbol containing the process name and, optionally, the specification of process
instances. Such a specification of process instances consists of a pair of integers separated by a comma and
enclosed within round brackets. (Refer to § D.3.8).

- A process diagram: aframe containing a graph of connected symbols describing the process behaviour in terms
of states, inputs, outputs, actions etc. (Refer to § D.3.8). If the process is substructured in services the process
diagram contains the service interaction area (8 D.5.3).

If there is a substructure of the block some of the items above are optional. (Refer to § D.4 for explanations on
structuring).

In Figure D-3.6.3 there is an example of a block diagram for the block "B 1" introduced in the example of
Figure D-3.6.1. The Block B1 is described in terms of the two processes P1 and P2, connected by the signal routes
R1, R2, R3, R4 and R5. For the processes P1 and P2 just the references are given in this example. Outside the frame the
identifiers of channels C1, C2 and C3 are specified as well.

The same example in SDL/PR is shown in Figure D-3.6.4.

Asit has been stated before, block diagrams can be included within the system diagram instead of having references. For
example in Figure D-3.6.5 the diagrams of Figure D-3.6.1 and D-3.6.3 are merged into a single system diagram.

A general criteria for drawing such diagrams is that the diagrams should not be too complex in order to be readable and
should be contained in one page.

BLOCK B1

[SIGNAL Sx,5y; B

R3 [$3]

w

C2

ISxI Rs

-

[(Syl

P2 (0,5)

C3

h 4

FIGURE D-3.6.3

Example of block diagram

16 Fascicle X.2 —Rec. Z.100 Annex D

BLOCK B1;
SIGNAL Sx,Sy;

SIGNALROUTE R1 FROM ENV TO P1 WITH S1;
SIGNALROUTE R2 FROM ENV TO P2 WITH S2;
SIGNALROUTE R3 FROM P1 TO ENV WITH S3;
SIGNALROUTE R4 FROM ENV TO P2 WITH S$4;
SIGNALROUTE R5 FROM P1 TO P2 WITH Sy;
FROM P2 TO P1 WITH Sx;

CONNECT C1 AND R1,R2;
CONNECT C2 AND R3;
CONNECT C3 AND R4,

PROCESS P1 REFERENCED;
PROCESS P2 REFERENCED;

ENDBLOCK BI;

FIGURE D-3.6.4

Example of a block structure definition in SDL/PR

SYSTEM s s. 1(1)
SIGNAL S1,52,S3, Iﬁ
S5;
BLOCK B1 [STONAL 5,59, 1 $4,55;
R3 [$3] c2 [s3]
01[31’32] R1[S1]‘CP1][Sx] RS
[Syl
R2 [s2] P2) R4ls4] C3 [S‘4] B2 c4 [slsl
0,5 ¢ >
FIGURE D-3.6.5

Example of a system diagram including a block diagram

D.3.7 Comments and text extension

D.3.7.1 Comments

Comments may be added to an SDL specification to help the reader and to clarify some parts. In SDL there are two
types of comments that have been introduced to suit the SDL/PR and the SDL/GR.

Thefirst typeis called "note" and is especially used in SDL/PR. It is delimited by "/*" at the beginning and "*/" at the
end.

Fascicle X.2 —Rec. Z.100 Annex D 17

In SDL/PR such a comment can be inserted wherever a space may occur. The comment must not contain the special
sequence "*/".

In SDL/GR such a comment may take place wherever a space may occur within linear statements.

In Figure D-3.7.1 and D-3.7.2 some examples of thisform of comment are shown both in SDL/PR and SDL/GR.
SYSTEM NSS;

/* Definition of the National
Switching System.

System name: NSS */

/******************************/

.S].TC'}NAL sl; /* Explanations about the use of signal s1 */
BLOCK MAI REFERENCED: /* Maintenance */
ENDSYSTEM NSS;

FIGURE D-3.7.1

Examples of the first form of comment in SDL/PR

SYSTEM NSS

/¥ Definition of the National
Switching System.

System name: NSS */

/******************************/

SIGNAL s1; /*Explanations about the use of signal s1 %/ Iﬁ

MAl

/* Maintenance */

FIGURE D-3.7.2

Examples of the first form of comments in SDL/GR

The second form of comment allows a one to one mapping between SDL/PR and SDL/GR and is more suitable for
applications in which automatic transl ations are made.

In SDL/PR such a comment consists of the keyword COMMENT followed by a character string; it may be inserted, as a
statement (i.e. followed by a ";"),wherever a task statement can be inserted. In addition it can be inserted before the
symbol “;" (semicolon) at the end of any statement.

18 Fascicle X.2 —Rec. Z.100 Annex D

In SDL/GR this form of comment is represented by means of a comment symbol containing the comment text. The
comment symbol is a rectangular shaped symbol with the left or right side missing. The symbol must be stretched
both horizontally and vertically to contain all the text. It may be connected to any SDL/GR symbol or flow line. A
dashed line must be used for the connection. If the association between the comment text and the comment symbol is
not ambiguos, the comment symbol can be drawn simply as a square bracket.

In Figure D-3.7.3 and D-3.7.4 some examples of thisform of comment are shown both in SDL/GR and SDL/GR.

SYSTEM s COMMENT ‘comment about the system’;

CHANNEL C2
FROM Bl TO B2

WITH s3 COMMENT 'comment on the channel’;

ENDCHANNEL C2;
BLOCK Bl

COMMENT ‘comment about the block';

PROCESS pl;
TASK 't1;
TASK "2

ENDPROCESS pl;

ENDBLOCK BI;
ENDSYSTEM s;

FIGURE D-3.7.3

Examples of the second form of comment in SDL/PR

SYSTEM s
_| comment on the
f channel
c1lsi,82]1 [gy C2[s3] | comment
> > ~——-aboul the
system
1
{ c3 [s4] B2 C4 1ss]
comment | < v
about the [
block |
FIGURE D-3.74

Example of the second form of comment in SDL/GR

D.3.7.2 Text extension

Normally the text associated with a graphic symbol should be placed inside that symbol. However, thisis often not possible
or practical. An aternative is to place the text in a text extension symbol connected to the associated symbol. The text
extension symbol is similar to the comment symbol; the only difference is that the connecting line is solid instead of

dashed. See Figure D-3.7.5.

Fascicle X.2 —Rec. Z.100 Annex D

19

SYSTEM A

Sig1,8ig2,8ig3,
Sig4,5igd,sigb BL.OCK _NAME
AS LONG
AS POSSI|.
Lokl , [BLE

VERY LONG OUTPUT_SIGNAL
(PAR1, PARZ, PAR3, PAR4, PARS >

FIGURE D-3.7.5

Examples of the use of text extension symbol

spaces on the same line are not considered as part of the text. More detailed guidelines on the syntax of names can be
foundin § D.3.13.

An underline character ("_") can be used at the end of atext line as a continuation character. In this case the remaining

D.3.8 Processes

A process is an extended finite state machine which defines the dynamic behaviour of a system. Processes basically are
in a state awaiting signals. When a signal is received, the process responds by performing the specific actions that are
specified for each type of signal that the process can receive. Processes contain many different states to allow the process
to perform different actions when a signal is received. These states provide the memory of the actions that have occurred
previoudy. After al the actions associated with the receipt of a particular signal have occurred, the next state is entered and
the process waits for another signal.

Processes can either exist at the time the system is created or they can be created as the result of a create request from
another process. In addition, processes can live forever or they can stop by performing a stop action.

A process definition represents the specification of a type of process; several instances of the same process type may be
created and exists at the same time; they can execute independently and concurrently. A process definition consists of the
following items (some of which are optional):

- Process name.

- A pair of integers: the first integer specifies the number of process instances created when the system is
created, if it is omitted it has a default value of 1; the second integer specifies the maximum number of
simultaneous process instances, if omitted the default maximum value is unbounded.

- Formal parameters: alist of variable identifiers associated with their sorts that is used for passing information
to the process at creation time. In the process creation request a list of actual parameters can be provided for
this purpose. Values of formal parameters of processes created at system creation time are undefined.

- Valid input signdl set: alist of signal identifiers defining the signals that can be received by the process.

- Signal definitions: the specification of the signals that can be interchanged between instances of the same
process or between services in the process (8§ D.5.3).

- Procedure definitions: the specification of the procedures that can be called by the process. A procedure
reference can be used in this context. (Procedures are explained in D.3.9).

- Data definition: the specifications of user defined newtypes, syntypes and generators local to the process.

20 Fascicle X.2 —Rec. Z.100 Annex D

Variable definition: the declaration of the variables of the process. Optionally a variable can be declared to be
shared among other processes of the same block (REVEALED variable) or exported to other processes also in
other blocks (EXPORTED variable). For each variable declared the identifier of its sort must be specified. An
initial value can optionally be specified.

View definitions: the declaration of variable identifiers that can be used to obtain the values of variables owned
by other processinstances. For each variable identifer, the variable sort must be specified.

Import definitions: the specification of identifiers of variables owned by other processes that the process wants to
import. For each identifier, the variable sort must be specified.

Timer definition: explained in § D.3.11.
Macro definitions: guidelines on the use of macros are givenin § D.5.1.

Process body: the specification of the actual behaviour of the process in terms of states, input, output, task,
etc. If the process is structured in sub-parts (services), the process definition includes a section of service
decomposition instead of the process body. Guidelines on this feature are givenin 8 D.5.3.

Examples and explanations about data, variables, view definitions and import definitions are given in § D.3.10

A partia example of process definition in SDL/PR is given in Figure D-3.8.1 (The keywords of the language are in
upper-case |etters).

PROCESS p1 (2,100);

FPAR vari,var2 sorti,

var3 sort2, vard sort3; J ormal parameters
SIGNALSET s1,s2,83;

SIGNAL s4,s5;
SIGNAL $6 (sort6,sort7);

Valid input signal set

Signal definitions

PROCEDURE . .. Procedure definitions
... datatype definitions . .. Datatype definitions
DCL Variable definitions

e et et et e e N Y

... process body . .. Process body

ENDPROCESS p1;

FIGURE D-3.8.1

Partial example of process definition in SDL/PR

The process body represent the actual graph of the finite state machine. It consists of a sequence of ordered statementsin
SDL/PR and, in SDL/GR, it is a sequence of symbols that are connected by directed arcs (similarly to a flow-chart). The
specification of the process body must always begin with a START followed by a set of actions (transition). The
interpretation of a process instance begins when the process instance is created.

The possible actions performed in atransition are:

Task: variable assignment (or informal text).
Export: variable export.

Set: request of atimer activation.

Reset: reset of atimer.

Output: sending of asignal to another process.

Fascicle X.2 —Rec. Z.100 Annex D 21

- Create request: creation of an instance of the specified process type.
- Decision: selection of a set of actions depending on a question.

- Procedure call: request of interpretation of a separate, self contained set of actions (intended as in programming
languages).

- Join: specification of a"jump" to another set of actions.

A transition may end with one of the following actions:

- Nextstate: specification of the state the process instance will assume.

- Stop: immediate halt of the process instance.

After the specification of the start action and of the optiona starting transition, the process body includes the definitions

of dl the possible states of the process. Each state definition begins with the specification of possible stimuli awaited by
the processin that state. The possible stimuli are:

- Inputs: signals that can be received.

- Saves. signals that need to be saved for future processing.
- Enabling conditions: explained in § D.3.8.5.

- Continuous signals: explained in § D.3.8.5.

Corresponding to each stimulus except saves, a transition must be specified. Such a transition represents the sequence of
actions the process will perform if that stimulus occurs.

If aprocess performs a stop action and there are pending signals that were sent to it but not yet received, such signals are
discarted.

In SDL/GR a process definition is represented by means of the process diagram. A process diagram consists of the
following items:

- A frame symbol: a rectangular shaped symbol which contains al the other symbols. If there are no signal
routes connected to the frame symbol it can be omitted.

- The process heading: the keyword PROCESS followed by the process identifier, then by the possible
specification of process instances and by the specification of formal parameters. The process heading is put in
the upper left corner of the frame.

- An optional page numbering (put in the upper right corner).

- Text symbols: in the case of a process diagram, a text symbol can be used to contain signal, variable, view,
import , data and timer definitions.

- Procedure references: a procedure symbol containing a procedure name representing a procedure of the process
that is separately defined.

- Procedure diagrams: one for each local procedure of the process which ,,is not referenced.

- The process graph area the specification of the process behaviour in terms of start, states,
inputs, outputs, tasks, ... and directed arcs. If the process is structured in services the process graph area
contains the specification of the services or their references (see 8 D.5.3). The GR symbols used for the
process body can be found in the SDL/GR summary.

- Macro diagrams: guidelines on the use of macros are givenin § D.5.1.

In Figure D-3.8.2 there is an example of process definition in SDL/GR; more explanations and examples on process
graphs can be found in the following paragraphs.

22 Fascicle X.2 —Rec. Z.100 Annex D

PROCESS flip_flop (1,1) 1(1)

/* linear
statements
*x/

initial_
state

> >
state_ O

I

lstate_1 l

j;;_l__—— :E{:;:::: I
s r ::> r ::> s
nok > l state 0) nok m

FIGURE D-3.8.2

Example of process diagram

If there is not enough room in a single page for a process graph, the diagram can be drawn in several pages noting
that:

- A page numbering with the number of the page and the total number of the pages should be provided,
i.e:1(9).

- The join symbol or the nextstate symbol can be used to represent connections between different parts of the
process graph.

A good criteria to divide a process graph in parts is to represent a state definition in each page. If there is no room
enough in a page for a single state definition the join symbol can be used to express connections to a piece of graph in
another page.

D.3.8.1 Process creation

Asit has been stated in the previous paragraph, processes (i.e. process instances) can be created as a result of an explicit
reguest or at the system creation.

The explicit create request may be issued only by another process in the same block of the process being created and
allows the specification of actual parameters for transferring information to the new instance created. See
Figure D-3.8.3 for example of creation in PR and GR form.

Fascicle X.2 —Rec. Z.100 Annex D 23

No cen
SON1 ———actual CREATE SONt1 COMMENT
parameters ‘No actual
T — parameters";
i
SON2C(P 1>

CREATE SON2<{P1);

i SON3
(PAR1, ..
PARZ, CREATE SON3 <PARI,
PAR3, PARZ,
g PAR4) _ PAR3,
— PAR4>;
a)> GR form b> PR form

FIGURE D-3.8.3

Examples of create requests in SDL/GR and SDL/PR

If one or more process instances of a given process type are created at system creation time, the definition of that
process must not access formal parameters because they will be undefined. Consequently each process definition with
formal parameters must either ensure its formal parameters are not accessed before they are given values or explicitly
include the specification of zero process instances at system creation time. (see Figure D-3.8.4).

PROCESS explicitly_created_proc_1 (0,...);
FPAR ...

ENDPROCESS explicitly_created_proc_1;
FIGURE D-3.84

Definition of a process with specification of formal parameters

When aprocessis created, process instance values can be determined by means of the following predefined expressions:
OFFSPRING : returns the PId value of the last created instance.
SELF : returnsthe Pld value of the process instance itself.
PARENT : returns the Pld value of the creating instance.

SENDER : returns the PId value of the process sending the last signal consumed.

When a process is created as a result of the system creation only the SELF expression returns a Pld value, the
expressions OFFSPRING and PARENT givethe NULL value.

Such values are very important when there are more process instances of the same process type because they are the only
way to address signals unequivocally to the instances. In fact, as better explained in § D.3.&6, when a process sends a
signal it must specify the destination instance, unless the destination instance is unequivocally determinable.

The user has to be carefull in ensuring that created process instances will be able to communicate to one another if needed.
To achieve this, often some kind of initialization processes must be provided. Such processes, created at system creation
time, will have to create the other processes and possibly to communicate appropriate Pld values to all processes needing
to know them.

24 Fascicle X.2 —Rec. Z.100 Annex D

Other important notes about process creation are:

1) After the system is created, processes can only be created by another process in the same block. One means of
allowing creation of processes in other blocks, is to have a specia process in every block that will cause the
creation of aprocess when it receives asigna from a process in another block.

2 Once created processes have a lifetime of their own. Processes die only when they perform a stop action during
a transition. One way to model systems where external kill operations are allowed, is to have a special kill
signal. When the kill signal is received, the process performs a stop action.

The relationship between creating and created processes can be shown in a block diagram by means of create line symbols
as shown in Figure D-3.8.5.

BLOCK B1

R3I[s0}
............... C2

C1 FATHER

v

[Sal w
R4 [54]
R2 [Sb] , SON2 C3

FIGURE D-3.8.5

Example of block diagram with create line symbols

D.38.2 Sates

A state is a point in the process where no actions are being performed but where the input queue is monitoring for the
arrival of incoming signals. Based on the signal identifier given in the input signal, the arrival of the signal will cause
the process to leave the state and perform a specific sequence of actions. A signal which has arrived and caused a
transition has been "consumed" and ceases to exist.

In SDL/PR a state is represented by the keyword STATE followed by the state name. The specification of the state
ends either at the following state statement or at the process end or by means of the explicit keyword ENDS TATE. An
asterisk can be used in the state statement instead of the state name; this is a shorthand notation to indicate that the
following inputs or saves and correspondent transitions should be interpreted at every state.

The keyword NEXTSTATE followed by the state name is used to indicate the following state. A dash can be used in the
nextstate statement instead of the state name, to represent that the following state is the same state the current transition
originated from.

In figure D-3.8.6 thereis a partial examplein SDL/PR.

Fascicle X.2 —Rec. Z.100 Annex D 25

SYSTEM s;
BLOCK b
f’RbCESS p;

é’f‘ART;

STATE stl;

STA:I:E st2;

NEXTSTATE stl;

ENDSTATE st2;
STATE st3;

ENDPROCESS p;
ENDBLOCK b
ENDSYSTEM s;

FIGURE D-3.8.6

Partial example of SDL/PR for state definitions

In SDL/GR astate is represented by means of a state symbol containing the state name and is connected to input symbols
or save symbols. The same state symbol with an incoming arrow is used to represent a nextstate statement.

For convenience, to simplify drawing or as an aid to better understanding, the same state may appear a number of times
in an SDL diagram. Where this is done, the diagram is considered to be completely equivaent to the diagram which
would result from merging al multiple appearances of the same state. Figures D-3.8.7 and D-3.8.8 give examples of this.
In Figure D-3.8.7 b) a state symbol is used as a connector to the main state having the same name, when referred toin a
nextstate symbol. In Figure D-3.8.8 a state is represented by multiple symbols each with only a subset of the inputs (or
saves).

In Figure D-3.8.7 diagrams &) and b) are logically equivalent. Diagram &) contains only a single appearance of each state
whilst diagram b) uses multiple appearances. In diagram b) the state has one main appearance where al of its related
input (and save) symbols are shown. Where this state can be reached from other points in the diagram (as the terminating
point of atransition) it is shown as a state without any associated inputs or saves. A comment referring to the state symbol
from the nextstate symbol will improve clarity, particularly when the appearances are on different pages.

Figure D-3.8.8 uses multiple appearances of a state to build up the total set of inputs (and saves). Each occurrence of the
state is shown with only a subset of these.

26 Fascicle X.2 —Rec. Z.100 Annex D

S

Sc] S

B
o S—
D

FIGURE D-3.8.7a

Single appearance of a state

FIGURE D-3.8.7b

Diagram a) with main states and subsequent states
used as connectors to the states

Fascicle X.2 —Rec. Z.100 Annex D

27

(State 1)__ More inputs in state_1
_ are shown below

| l
1
1 I
- More inputs in state_1
are shown above

]
>k
L
[

I
FIGURE D-3.8.8

/]
N e

Multiple appearance of a state for when all the inputs can not clearly
be drawn from the same symbol

This approach has been successfully used where states have a relatively large number of input or saves but may have the
danger that readers misinterpret the diagram if they are unaware that there are multiple appearances. To avoid this
misunderstanding, the states showing only a subset of the inputs/saves should be annotated with a comment giving
reference to the other states with their associated inputs and saves as shown in Figure D-3.8.8.

Multiple appearance may conveniently be used to focus the attention of the reader on certain aspects (e.g. the normal
seguence of signals processed) deferring other aspects to other pages (e.g. alarm situation handling).

During atransition, a process does not know explicitly which input signal caused the transition. This can only be inferred
from context (i.e. this transition can only occur if a particular signal had been received). In Figure D-3.8.9, task Ti is
performed only if 11 is received. However, task T2 will be performed if either 12 or 13 are received. If it isimportant for
T2 to know which input was received, then it is better to design the process as shown in Figure D-3.8.10.

=

>un | Sn D
L_.r__l

[#5]

'T1 T2
FIGURE D-3.8.9

Performing a task dependent of two out
of three received signals but independant of which one

28 Fascicle X.2 —Rec. Z.100 Annex D

=
IEPIEPE

rTl T :rrzl "Ilzl

Y ¥ Y
(2) (3)(s)

FIGURE D-3.8.10

Performing a task dependant on the received signal

D.3.8.21 Determination of the required states

Usually the author of an SDL diagram has some flexibility available in the approach when defining the states of a
process. He may require a strategy enabling him to identify the states of the process and this strategy can be informal or
formal. Good judgement (obtained through practice) is required in order to produce SDL diagrams which are neither
unnecessarily complicated through the identification of too many distinct states or which fail to exploit the inherent
advantages of SDL through having an artificially reduced number of states. Before the author starts to draw the
diagram, necessary preliminaries (discussed in § D.3.2) must have been completed, for example:

- the structuring of the system in functional blocks;

- the representation of the functional blocks by means of one or more SDL processes per block;
- the choice of input and output signals;

- the use of datain the process.

All the above factors have a crucial effect in-determining the states of each process. The effect of the "choice" of input
signals upon the number of statesin an SDL diagram is shown by the two examplesin Figure D-3.8.11.

Fascicle X.2 —Rec. Z.100 Annex D 29

b)

The signal has D as data
D contains 1 digit

has ata
Sl

Continue

Await_next_
_digit

=i+,
N:=N*1(4+D

{=8)
Await_next_ Continue
_digit

Note - Examples @) and b) represent the same function with different levels of detail. As a consequence the number of
states is different.

FIGURE D-3.8.11

Reception of an 8-digit telephone number

D.3.8.2.2 Reduction in the number of states

Having used a strategy for identifying the states of a process, the author of an SDL diagram may feel that "too many
states' have been used. The number of states is important because the size and complexity of an SDL diagram is often
closely related to the number of states. There may be some means available for reducing the number of states, but the
fact that an SDL diagram is complex is not, by itself, a reason for changing it, as the complexity of the diagram may
simply be a reflection of the inherent complexity of the process which it defines. In general the set of states should be
chosen to give maximum clarity to the sequential interaction between the process and its environment. Such clarity isin
general not achieved by minimizing the number of states. The number of independent sequences handled by a process has
a multiplicative effect on the number of states. It is therefore desirable to treat independent sequences in separate
processes as this will reduce the number of states and increase clarity.

The number of states can be reduced by separation of common functionalities, by merging states, by using the procedure
concept or by using the service concept. Particular data structures can also lead to a reduced number of states. Alternative
representation can benefit from the use of macros.

D.3.8.2.3 Separation of common functions

It may become clear when planning an SDL diagram, that to define a particular and repetitive aspect of a process will
require the representation of repetitive states. In Figure D-3.8.12 part of aline-signalling process SDL diagram is shown
which illustrates the requirement that a line signalling tone must be present for a particular length of time before the line
signal is considered to have been detected.

30 Fascicle X.2 —Rec. Z.100 Annex D

To specify this an intermediate state is required between the state No_line_signal_detected and the state Conversation.
Let us assume that in a complete diagram, such a common function would have to be repeated at every point where the
signal is detected. An alternative way is to define a separate process which is responsible for monitoring the line
signalling tone and detecting signals on the basis of the specified recognition time. The existence of this new process
would enable the diagram shown in Figure D-3.8.12 to be drawn as shown in Figure D-3.8.13. (In a given context, the
figures can be made equivalent, at the expense of introducing a new signal Valid_line signal.)

S on S_on =ling¢ signalling tone on
- ™ = 7| S_off =line signalling tone off

SET (NOW-
80*ms,T1)

Valid_sig

\nal_checkin
I
S_off T1 <
I I
RESET(T1) Start_
meterin

Conversation

FIGURE D-3.8.12

Example of an SDL diagram for a composite call-handling
and line signal detection

Fascicle X.2 —Rec. Z.100 Annex D 31

SET NOW+ |
80*ms,T1)

o_line_sig
nal_detected

From line signal

detection process
S_off
To call
RESET(T1) — —] handling
process i
|
a) Line signal detection process b) Call handling process

FIGURE D-3.8.13

Example of the segregation of a common function (line signal detection) to avoid repetitive
states such asValid_signal_checking

The dlight difference between the process shown in Figure D-3.8.12 and the two shown in Figure D-3.8.13 should be
noted.

The process in Figure D-3.8.12 starts metering immediately upon reception of the T1 whilst the call handling process
(process b) in Figure D-3.8.13) starts metering upon the reception of the valid line_signal and this is generated and sent
upon reception of the Ti by the process a) of Figure D-3.8.13. Thisimpliesthat in this second case the metering starts after
Ti + signal generation, sending and reception time. In addition there may be other signals that have been queued in the time
it takes to generate and send the valid line_signal.

A second aspect to be noted is that this separation of a subfunction would not be possible, if the signa to be received by
the subfunction has to be received by the main function as well, because a signal is always directed to one process only. If
in the example the same signal S _off has to be received in another state, where it is not required to validate it for time tl
it would not have been possible to separate the validation subfunction into another process.

In general, the solutions with separate processes are useful in cases where signals are to be processed in a manner which
is independent of the states in the main process. In this case pre- and post-processes can handle the detailed sequences and
relieve a main process of the details. This will often provide a useful modularity too because particularities of e.g.
signalling systems can be isolated from the more service oriented main process.

Another way to approach the problem is to use the service concept, explained in D.5.3.

A different solution to this problem would be to use the MACRO notation as explained in D.3.3.1. In this case we obtain
the desired compactness in the diagram without altering in the dlightest the semantics of the original one. Furthermore
the MACRO can be called from several states, if the logic of the process should require it.

32 Fascicle X.2 —Rec. Z.100 Annex D

D.38.24 Merging of states

If in an SDL diagram the future of two states is the same, then, irrespective of their history, they can be merged into one
without affecting the logic of the diagram.

Figure D-3.8.14 shows part of an SDL diagram with two states which differ in their history but whose futures are
"identical". In Figure D-3.8.15 the two states have been combined to form one state. This is a fairly trivia example
where the reduction in complexity is small but the technique can be used to obtain significant simplification. The SDL
semantics do not allow a decision following a state to determine the history of the process before the state (i.e. for this
example, was A6 or 134 sent ?) unless this information had been explicitly stored prior to entry into the state. Note that
naming of datain an input causes the value to be stored.

A state should have a clear relation with the possible logical situations of the process, and therefore it is not advisable to
merge different logical situationsin one state.

Care should be taken when a merged diagram is changed later on. The user should investigate whether the intended
change effects the origina two (or more) branches of flow in the same way or not.

Awaitend -
of forw sig

Await forw
sigAorB

FIGURE D-3.8.14 FIGURE D-3.8.15
Example of part of an sdl diagram Example of an sdl diagram
before merging states with merged states

D.3.8.3 Inputs

Paragraph D.3.8.3 has been written to explain the input concept and the use of inputs in SDL diagrams without the save
concept. The save concept and the use of inputs and saves together in an SDL diagram is covered in § D.3.8.4.

D.3.8.3.1 General

An input symbol attached to a state means that if the signal named within the input symbol arrives while the process is
waiting in this state the transition which follows the input symbol should be interpreted. When a signal has triggered the
interpretation of atransition, the signal no longer exists and is said to have been consumed.

A signal may have associated values. For example, a signal named "digit" serves not only to trigger the execution of a
transition by the receiving process, but also to carry with it the vaue of the digit (0-9), which can be used by the
receiving process.

Fascicle X.2 —Rec. Z.100 Annex D 33

In SDL/PR the INPUT statement contains a list of signa identifiers. Values contained in signals are named using
variable identifiers. The variable identifiers have to be of the sort indicated in the signal definition, so their position is
very important. These variable identifiers are contained within round brackets, and they are separated by commas (see
Figure D-3.8.16). If one or more signal values are discarded, the corresponding variables are missing, and this is
represented by two or more consecutive commas (Figure D-3.8.17).

SIGNAL sigl (INTEGER,BOOLEAN,INTEGERY):
PROCESS . . .
DCL a INTEGER, b BOOLEAN, ¢ INTEGER: /* declarations */

STATE stl;
INPUT sigl(a,b,c); /* a correct input */

STATE st2;
INPUT sigl(a,c,b); /* anincorrect input */

ENDPROCESS . . .
FIGURE D-3.8.16

INPUT statements

INPUT a(varl,var2,,vard);
Note - In this statement the third value of the signal is discarded
" FIGURED-38.17 -

Input of signal a with only 3 of its 4 values defined

In SDL/GR an input is represented by means of an input symbol containing the list of signa identifiers and the
corresponding variable identifiers for the transported values. To make these values available to the process, they must be
named in the input symbols within parentheses.

Examples of the values reception from inputs are shown in Figures D-3.8.18, D-3.8.19 and D-3.8.20.
Named values becomes available to the receiving process when the input is interpreted.

Figure D-3.8.18 shows reception of the signal "Off hook". The signal "Off hook" has associated the value 9269
(Subscriber number). This signal may be received in three ways as shown in a-c of the figure.

Figure D-3.8.19 shows how to send and receive several values in one signal. Each item must be separated from the next
by acomma. In Figure D-3.8.20 c) we show how to ignore unwanted values by leaving agap in the sort list.

Note that in the output signal we could write expressions for El, E2 or E3, but in the input signal we must use variables
to receive the values sent.

In SDL it is unnecessary to draw input symbols to represent signals whose arrival would initiate a null transition (i.e.
transition containing no actions and which leads back to the same state). The convention is that for any signal not shown
in an explicit input symbol at a particular state, there exists at that state an implicit input symbol and null transition. By
this convention, the two diagrams shown in Figure D-3.8.21 are logically equivalent and either can be used.

34 Fascicle X.2 —Rec. Z.100 Annex D

]

Off hook
a) Subscriber
‘ number}
|
Note - The value 9269 is stored in a variable called "Subscriber number"

b >Off hook(A)

|
Note - The value 9269 is stored in a variable called A.

9 > Off hook()

Notel - There is no data name and the vatue 9269 is lost and is not
-available i the receiving process.

Note2 - The signal name (Off hook) must correspond to the output
signal name but data names do not have to correspond.

FIGURE D-3.8.18

Example of valuesreception in a process

Fascicle X.2 —Rec. Z.100 Annex D 35

Await_first_

Await_first_
digit

_digit

vaia] I ELSE_ Invalid digit
F (i.e. outside the range 0 to 9)

[Await _next_
_digit

In this input symbol the
associated data is not named
. and is lost
ELSE ELSE
0:9) I ©9)
I ; I |
: I ;
| |
a) Incorrect version b) Correct version

Note 1 - In &) the second decision will use the value of D obtained from the first signal.

Note 2 - In b) the value of D will be that of the current digit. Vaues of previous digits will be overwritten.

FIGURE D-3.8.19

Part of a digit-receiving process

36 Fascicle X.2 —Rec. Z.100 Annex D

El=10
2) E2=20 F ——
E3=30

S(E1,E2,E3

Note - The output signal S has three variables called E1,E2 and E3. These items have
three values, say currently 10,20 and 30.

b) S(ACB)

A=10
-—1B=30
C=20

Note - The corresponding input signal S in the receiving process, names these items A,
C and B respectively.

9 S(A.B)

- JA=10
T T 7B =30

Note - This input signal only names two variables. The middle value is lost.

FIGURE D-3.8.20

A signal with several associated values

Fascicle X.2 —Rec. Z.100 Annex D 37

a) Explicit "null" transition

I

Explicit null
>Signa1_B - — transition for
signal_B

b) Implicit "null” transition As above but
- — < with implicit

null transition

Note - If datais associated with Signal_B, it islost in both cases. If however a data name is shown (e.g. Signa_B(x)), in
case a) the data valueis kept. In this case the two examples are no longer identical.

FIGURE D-3.8.21

Explicit and implicit representation of a" null" transition

Where a: number of inputs lead to the same transition, all the relevant signal identifiers may be placed within one input
symbol. A shorthand notation is provided in SDL to represent an input of all the signals (valid for that process) not
explicitly mentioned in that state. Figure D-3.8.22 illustrates this point and the diagrams in the figure are logically
equivalent. If al the signal identifiers are mentioned they must be separated by commas.

38 Fascicle X.2 —Rec. Z.100 Annex D

D.3.8.3.2

‘ State_ 1 ’ ‘ State 1 ’

>SignaI_A >Signal_B >Signa1_C

L

T |

a) Example of multiple inputs b} Example of multiple inputs
using individual input symbols using one input symbol

The * stands for all inputs

* . — — not explicitly mentioned in
other inputs or saves associated

: with that state

¢) Example of multiple inputs using asterisk notation

FIGURE D-3.8.22

Alternative representation of multipleinputs

Implicit queuing mechanism

One or more signals may be waiting for consumption when a process reaches a new state. This means that signals must
be queued in some way. When a signal arrives at the destination process it is given to its input queue. The SDL
semantics define a first-in first-out conceptual queuing mechanism for each process where signals are considered for
consumption by a process in the order of their arrival at that process. When the process reaches a state, it is given one
and only one signal from the queue. This means that if the queue is not empty, the process consumes the first signal from
the queue. If the queue is empty, the process waits in the state until a signal arrives at the queue, whereafter it is
consumed by the process.

Figure D-3.8.23 uses the conceptual queue to explain the operation of the depicted SDL process where transition times
are non-zero. It should be noted that:

The save concept is not used and therefore the signals are consumed in the order in which they arrive.

The sequence of signal arrival isimportant. Had "C" arrived before "B" in the transition between State 1 and
State 2, the state sequence would have been 1, 2, 3instead of 1, 2, 4.

Because the queue is hot empty when the process arrives at both State 2 and State 4, the process does not wait
at either of the states.

It is not possible to assign any priority to a signal. For inter-services communications a special mechanism is
provided so that the signals interchanged between services are handled before other signals (Ref. § D.5.3).

If transition times are zero, then every signal will be consumed at the time it arrives at a process, unless the save
operation isused (§ D.3.8.4).

Fascicle X.2 —Rec. Z.100 Annex D

39

SDL Process Events Queueing

Order of arrival
_—
‘ State_1 ’ A -
A arrives while process §
| _ _|isatState 1. _ B
A is immediately consumed,. g
Trangsition to State 2 begins. a2
a
. B g
— — — —] B arrives R
— — — —] Carrives _.___....C

Se] S }o-
Y y
Star.e_3_ 'State_4 ’

. C is consumed and
B C ~ — —{ the transition tonext =0 o= =
i 1 Lstate is triggered
I | ‘

FIGURE D-3.8.23

Example of the operation of theimplicit queueing mechanism

D.3.8.3.3 Reception of signals not normally occurring

In each state al possible signals must be shown implicitly or explicitly. Exceptions (unexpected but theoretically possible
signals) can occur in amost all states. Normally the author does not show such possibilities, with the effect that such a
signal will be discarded if it arrives. If the author however wants to include exceptions in his diagram al states must be
expanded with an extrainput.

Another possibility is to make use of multiple appearances of a state together with the "dl" symbol (*). For example if the
signal A_ON_HOOK can be received in al states and if the subsequent actions are identical, the method shown in
Figure D-3.8.24 might be used.

D.3.8.34 Smultaneous arrival of signals

In § 2 of the SDL Recommendation it is stated that signals can arrive simultaneously at a process and that they will be
ordered arbitrarily.

If auser designs a process which may get simultaneous signals, he should take care that the order of arrival cannot upset
the desired operation of the process.

40 Fascicle X.2 —Rec. Z.100 Annex D

SDL does not define priority of signals, i.e. that simultaneous arrival of signals means that one is chosen arbitrarily. It
must be noted, however, that signals for inter-services communications are always handled first (Ref. § D.5.3).

If severa signals are available when the process enters a state, only one signa is presented to the process and thus
recognized as an input. The SDL semantics implies that the other signals are in fact retained.

All states of
71 the process

FIGURE D-3.8.24

Example of handling of signalsto appear in several states

D.3.8.35 Sender identification

Each signal carries with it the process instance value (PId) of the sending process. When a signa is -consumed, the PId
value of the sending process can be obtained by means of the expression SENDER. Figure D-3.8.25 shows an example
of how this may be used.

A is a variable
of sort PID

FIGURE D-3.8.25

Use of SENDER expression

D.384 Saves

The save concept alows the consumption of a signal to be delayed until one or more other signals, which arrive
subsequently, have been consumed. As discussed in § D.3.8.3 unless the save concept is used, signals are consumed in
the order in which they arrive.

The concept of save can be used to simplify processes in cases where the relative arrival order of some signals are not
important and the actual arrival order isindeterminate.

Fascicle X.2 —Rec. Z.100 Annex D 41

At every state, every signal istreated in one of the following ways:

- it is shown as an input;

- it isshown as a save;

- it is covered by an implicit input leading to an implicit null transition.

The operation of the implicit queuing mechanism, introduced in § D.3.8.3, aso applies to the save concept. On arrival,
signals enter the queue and when the process reaches a state, the signals in the queue are reviewed one at atime and in
the order in which they arrived. A signal covered by an explicit, or implicit, input is consumed and the related transition
executed. A signal shown in a save is not consumed and remains in the queue in the same sequential position and the
next signal in the queue is considered. No transition follows a save.

In SDL/PR the save construct is expressed by means of the keyword SAVE followed by a list of signal identifiers. A
simple example of SAVE statement is given in Figure D-3.8.26.

STATE State 31,
SAVESs;
INPUT r;
NEXTSTATE State 32;
STATE State 32,
INPUT s;

FIGURE D-3.8.26

Example of the use of save

In SDL/GR the save concept is represented by means of a save symbol containing the signal identifiers.

Similarly to the case of inputs, an "asterisk notation" can be used to represent a save of all the signals (valid for that
process) not explicitly mentioned in that state.

Figure D-3.8.27 shows an example of an SDL process which incorporates a save symbol. It should be noted that signals
Sand R are consumed in the order R, S - the reverse order to that in which they were received. A single save symbol can
save a signal only while the process is at the state where the symbol appears, and saves it for the duration of the
transition to the next state. At the next state, the signal will be consumed via an explicit or implicit input (as shown in
Figure D-3.8.27, unless either the save symbol with the signal name is repeated, or there happens to be another saved
signal available for consumption ahead of it in the implicit queue (as shown in Figure D-3.8.28).

42 Fascicle X.2 —Rec. Z.100 Annex D

SDL Process Event Queueing

Order of arrival
State_31 , —_—

=
8
S arrives, enters the S g
} R -1 S/~ — 4 queue and remains in - - =
1 & the quene %
I R arrives and is immediately R ¥
e e e - — - consumed. Transition to - -I

State 32 is triggered

On arrival at State_32 § is
_________ immediately consumed and
S transition to next state is
triggered

FIGURE D-3.8.27

Example of an SDL diagram with save symbol
showing operation on implicit queueing mechanism

SDL Process Event Queueing
Onrder of arrival
State_55 I

-] C arrives, enters the quenc
and remains in the queue

> a

T
w

- _R
Y
|
I
L 0

anonb ot ur owny,

|
]
L I B arrives, enters the queue _L _B Y
: and remains in the quene
! A arrives and is consumed; A
State_56 b —] transition to State_56 is 11
riggered

On arrival at State_56 C is
consumed and transition to
State_60 is triggered.

B remains in the queue.

On arrival at State_60, B is
consumed and the following -
transition is triggered.

FIGURE D-3.8.28

Second example of the use of the save symbol

Fascicle X.2 —Rec. Z.100 Annex D 43

A saved signal becomes available to a process only through a corresponding input symbol (explicit or implicit). In
particular no questions about a saved signal may be asked in a decision prior to its consumption in an input; nor are its
associated values available.

At a state where more than one signal is to be saved, either a save symbol may be given for each signal, or they may all
be shown within one save symbol. If severa signals are to be saved, the semantics of the save symbol implies that the
order of their arrival is preserved.

A third example of the use of the save is given in Figure D-3.8.29 with a description of the operation of the conceptual
queuing mechanism in Figure D-3.8.30.

The save can be used to simplify diagrams. For example by saving asignal it is possible to avoid receiving it and having
to storeits associated values until the next state.

Although the save can be used at every level of specification, at lower levels it may be necessary to describe the actual
mechanism which implements the save concept.

If the save is not used with care, the queue of saved signals may grow very big or may hold signals for too long so that an
old signal is consumed where a fresh one was needed.

SDL provides no bound on the lenght of the queue, which may lead to problems on implementation

: VAV X

'
State_5

£/>: >+G So]S

=) G | =) @)
[~7 [T > 5

s |

FIGURE D-3.8.29

Example of amore complex SDL diagram

44 Fascicle X.2 —Rec. Z.100 Annex D

Curr. state] Event Queueing

Order of arrival
—
State 1 | (Process arrives at State_1 with signals A,B,C,D,E in queue) ABC DEF
The first signal in queue, A, is consumed and transition to State_2 triggered. _l ~
- » 5.
State_2 | The first signal in quene, B, appears in a save symbol and remains in quene. g.
State_2 '_The- second signal, C, is consumed (explicit input) and transition to State_3 | _ | =
is riggered. =
State_3 | The first signal in queue, B, is consumed (implicit input). - %
\ /

Signal F arrives and enters queue,

State 3 (On reaching State_3 again) the first signal in queue, D, appears in a save
- symbol and remains in queue,

State_3 | The second signal, E, appears in a save symbol and remains in queue.

State_3 The third signal, F, is consumed (explicit input) and transition to State_ 4 | _ — — _{ |
1s triggered.

State_4 | The first signal in queue, D, appears in a save symbol and remains in queue.

State_4 '_l"he second signal, E, is consumed (explicit input) and transition to State_5
1s riggered.

State_5 | The first {and only) signal in queue, D, is consumed (explicit input) and
transition to State_l is triggered.

FIGURE D-3.8.30

Operation of queueing mechanism

D.3.85 Enabling condition and continuous signals

Enabling conditions allow conditional reception of signals based on the specified enabling condition. If the condition is
true, the signal is consumed and the transition is interpreted. If the condition is false, the signal is saved and the process
remains in the state until either another signal arrives or until the condition changes from being false to being true. This
can be illustrated by the example in Figure D-3.8.31. When P1 enters state S| the condition (i.e. whether IMPORT (X,P2)
equals 10) is evaluated. If the condition istrue, signal B may be received. Otherwise, signal B is saved. In this example,
A arrives and causes a transition to S2. During the transition, X changed to 11 and P2 exports its new value; now the
condition attached to signal B, in state S2, is true. Since B is the first signal in the queue, the transition following it is
performed and the process ends in state S3.

Some important attributes of enabling conditions are:

1) The enabling condition is tested when the process arrives at a state and then it is continuously monitored
while the process remainsin the state. Thusif the exported value of X had changed from 9 to 11 and then to 12
while executing the transition following the reception of A, the process would have remained in S2.

2) Enabling conditions can be based on local variables and/or any language construct that may be included in an
expression (e.g. IMPORT, VIEW, NOW).
3) While it is possible to use more than one enabling condition per state, it is not allowed to use more than one

enabling condition for the same signal. Thus the condition shown in Figure D-3.8.32 is not allowed. If multiple
conditions are required for a given signal, they can be combined in one Boolean expression as shown in
Figure D-3.8.33.

The enabling conditions can be evaluated several times and in any order, so the user must be careful if the expressions
have mutual side-effects (e.g. combining IMPORT and SENDER).

Fascicle X.2 —Rec. Z.100 Annex D 45

It must be noted also that the signal specified in the enabling condition cannot influence the boolean value of the
condition because its transported values are not assigned before signal consumption. For example the statements:

INPUT Xx(A) PROVIDED A=5);
INPUT y PROVIDED(SENDER=pidl);

are miseading as the values of A and of SENDER in the conditions correspond to the situation before the signa
consumption.

Continuous signals have the same basic properties as the enabling condition except that no signal is attached to it. Thus

when entering the state with no signalsin the queue which can cause a transition, the continuous signals are checked and
if oneistrue, the transition following it is performed. This can beillustrated by the example in Figure D-3.8.34. Initialy,
the processisin state S 1, and the exported value of X is 9. When signal A arrives, it causes the transition to S2. During
the transition, X changed to 11 and its new value is exported. Since there were no other signals in the queue, the
transition to S3 is performed.

Some important attributes of continuous signals are:

1) as with enabling conditions, the value of the condition is checked only when the process arrives at the state or
isin the state;
2) multiple continuous signals are allowed for each state. When more than one continuous signal is attached to

a state, the continuous signal with the higher priority (lowest priority humber) will be tested first. No two
continuous signals may have the same priority humber. In al cases, the priority of the continuous signa is
lower than that of any other signal. Once again, thisis caused by the underlying system of SDL; however, the
way that continuous signals are modelled in SDL by using the signals sent when exporting variables, alows
priorities for continuous signals and in fact makes it necessary to prevent ambiguity, when more than one
continuous signal is present. Thisisillustrated in Figure D-3.8.35. Initially, the processisin state S 1, and its
import expressions give the values of 10 for X and 11 for Y. Since both continuous signals are true, the one
with the higher priority (lower priority number) is chosen and the transition to S2 is performed. In S2, the
condition on Y is no longer true and so even though the priority of the continuous signal for X is lower than
the one for Y, the transition following it is performed and the process arrives at state S3.

3) When the transition from a continuous signal is followed, the expression SENDER returns the same value of
SELF.

46 Fascicle X.2 —Rec. Z.100 Annex D

Part of process P1

Exported
value of X
in process P2

S1
9

>

52

11

<IMPORT(X,P2)=10>

I
|

> s

>

<IMPORT(X ,P2)=11>

FIGURE D-3.8.31

Enabling condition

A A

<IMPORT(X P2)=10>

I
l [

FIGURE D-3.8.32

Illegal enabling condition

Fascicle X.2 —Rec. Z.100 Annex D

Queueing
Order of arrival
—_

B

<IMPORT(Y P3)=11>

A

-t

onanb 2y ur sury

47

48

A

<IMPORT(X,P2)=10 OR IMPORT(Y P3)=11>

FIGURE D-3.8.33

Correct solution for Figure D-3.8.32

Exported
alue of X
Part of process P1 :n ;rocess P2
9
9
I
IMPORT(X,P2)=10; A
PRIORITY 1 ;
11
| S2
B IMPORT(X,P2)=11;
| PRIORITY 1
| 9

FIGURE D-3.8.34

Continuous signals

Fascicle X.2 —Rec. Z.100 Annex D

Queucing
Order of arrival
" —

A

-

ononb 21 ur gun,

Exported Exported
value of X value of Y

IMPORT(X,PZ) 10; IMPORT(Y,P3)-11
PRIORITY 2 PRIORITY 1

I : 10
:

IMPORT(Y,P3)=11; IMPORT(X,P2)=10;
PRIORITY 1 PRIORITY 2

|

I

FIGURE D-3.8.35

Continuous signals with priority

D.3.8.6 Outputs

An output is the sending of a signal from one process to another (or to itself). Because control over the consumption of the
signal is associated with the receiving process (see § D.3.8.3) the semantics directly relating to the output is relatively
simple. From the point of view of the sending process an output can often be regarded as an instantaneous action which,
once completed, has no further direct effect on the sending process, which will not be directly aware of the fate of the
signal.

An output action represents the sending of a signal and the association of values if any. Vaues may be associated with an
output signal by placing values in parentheses, or by placing expressions having values in parentheses (see
Figure D-3.8.37).

In SDL/PR an output action is represented by means of the keyword OUTPUT followed by alist of signal identifiers. A list
of actual parameters within round brackets can be associated to each signal identifier. If there is no actual parameter in the
output corresponding to a certain sort in the signal definition, the corresponding variable in the receiving input will have
the value "undefined".

The destination process instance must be expressed in the output statement by the keyword TO followed by a process
instance expression. If the destination process instance can be uniquely determined by the context the TO clause can be
omitted. An additional addressing condition can be provided in the output statement by means of the keyword VIA followed
by alist of signal route or channel identifiers.

Fascicle X.2 —Rec. Z.100 Annex D 49

Figure D-3.8.36 shows some valid examples of output statements.

OUTPUT sig 1(2,true,10);

OUTPUT sig2, sig3(parl,par2) TO process a;

OUTPUT sig4 TO process b VIA channel_x,channel_y;
OUTPUT sig5 VIA signal_route z;

FIGURE D-3.8.36

Examples of output statements

In SDL/GR an output is represented by means of an output symbol containing the specification of signals, actual
parameters and optionally destination and/or VIA construct.

Each output must be directed to a specific process instance. Since it is usually impossible to know the process instance
for any process at the time a specification is produced, the normal method of addressing signals is to use a variable or
expression in the TO keyword. Figures D-3.8.38, D-3.8.39 and D-3.8.40 show some examples. In Figure D-3.8.38 the
process parameter out_to is given the value of a process instance at the time the process is created. Out_to is then used
within the process as the link between this process and its connected process. In designing the system, care should be
taken to ensure that the type of the process indicated by out_to is able to receive the signals being sent. In Figure D-3.8.39
the built-in expression SENDER is used to send a signal back to the process which sent the signal. In Figure D-3.8.40,
the signal is addressed to the process's most recently created offspring process.

2 $(10,20,30)

Note - Signal S has three values, 10,20 and 30 associated with it.

x=7
y=10 |-
b) z=31

Note - On interpreting the output, x,y and z have (in this example) the values
7,10,31 respectively. The output sends the values 10, 20, 30.

ol - |

c)
S (v,30) >

Note - On interpreting the output, y has (in this example) value 10. The ountput
sends the values 10, an undefined value and 30,

FIGURE D-3.8.37

Output with associated values

50 Fascicle X.2 —Rec. Z.100 Annex D

PROCESS X (0,5);
FPAR (out_to PD);

OUTPUT sig TO out_to;

FIGURE D-3.8.38

Addressing signals using formal parameters

< 'S TO SENDER

FIGURE D-3.8.39

Addressing signal back to SENDER

4 S TO OFFSPRING

FIGURE D-3.8.40

Addressing a signal to an offspring process

D.3.8.7 Task

A task is used in atransition to represent operations on variables or to represent special operation by means of informal
text.

In SDL/PR a task is represented by means of the keyword TASK followed by a list of statements or informal texts
separated by commas and terminated by a semicolon. A statement in atask can be just an assignment. An informal text
consists of aphrase delimited by apostrophes. In Figure D-3.8.41 there are some examples of valid tasksin SDL/PR.

TASK a=b;

TASK ‘connect the subscriber’;

TASK c:=d+e;

TASK varl:=var2*var3,
vard:=var5 MOD var6;

FIGURE D-3.8.41

Examples of tasks

Fascicle X.2 —Rec. Z.100 Annex D 51

In SDL/GR atask consists of atask symbol containing the list of statements or informal texts.

SDL users may occasionaly have difficulty in deciding whether some aspects of the system being defined should be
represented by atask or a separate process. Consider the process shown in Figure D-3.8.42; should "connect_switchpath"
be represented as atask or as a separate process? If a separate switch path control process has not been identified, then
the task symbol would be appropriate (see Figure D-3.8.42 a)). If a separate switch path control process is identified,
then signals communicating with the control process must be used (see Figure D-3.8.42 b)).

b

>CON_SW
'Connect_ :
_switch_path CorEnect_
_switch_path
ACKN ‘[TO SENDER
a} Solution, using one process b) Solution, using two processes

FIGURE D-3.8.42

Two possible solutions for 'connect switch_path'

D.3.8.8 Decisions

A decision is an action within a transition which asks a question regarding the value of an expression at the instant of
executing the action. The process proceeds to one of the two or more paths following the decision according to the
answer. SDL diagram authors should ensure that processes are defined so that they cannot attempt to execute decisions
for which the answer is not available; such decisions would make the diagram invalid and could cause considerable
confusion.

The question of a decision can be an expression or an informal text. The answers of a decision are represented by one or
more possible values obtained by the evaluation of the expression in the question or by one or more informal texts. If the
question or one of the answers is informal, then the whole decision is informal. Different answers are separated by
commas. The values are represented by constant expressions, by constant expressions with an operator as a prefix, or by
ranges whose upper and lower bounds are constant expressions.

The answer values have to be of the same sort as the expression contained in the question.

It is possible to indicate some answers explicitly and to group al the other possible answers using the keyword EL SE.

52 Fascicle X.2 —Rec. Z.100 Annex D

In SDL/PR the decision is represented by the keyword DECISION followed by the specification of the question and by
the list of possible answers, each associated with the correspondent transition. The answers are indicated within round
brackets. The set of outgoing transitionsis delimited by the ENDDECISION keyword at the end (see Figure D-3.8.43).

DECISION question ;
(answer_a): . ..
(answer_b): ..
(answer_c): ..
ELSE: ...

ENDDECISION;

FIGURE D-3.8.43

Skeleton of a decision

Some examples of decisions are shown in Figure D-3.8.44.

DCL x INTEGER,aBOOLEAN; DECISION x;
2:...
(2+5):...;
(6+8,10+9): .. .;
=3):..
(20:30): .. .;
(>=100): ...;
ELSE:...;
ENDDECISION;

DECISION &
(TRUE) : NEXTSTATE sl
(FALSE) : NEXTSTATE s2;
ENDDECISION,;

DECISION 'Subscriber category';
(‘'International’,'National'): . . .
(‘Loca": ...

ENDDECISION;

FIGURE D-3.8.44

Examples of decisionsin SDLIPR

All transitions terminate at the ENDDECISION keyword. Those transitions which are not terminated with a terminator
statement (i.e. join, nextstate, stop) continue at the statement following the ENDDECISION, as shown in the two
equivalent branching of Figure D-3.8.45.

Fascicle X.2 —Rec. Z.100 Annex D 53

DECISION X : | DECISION X :

(1): TASK "t 17; (1) TASK "t1;
(2): TASK 't2'; TASK 'in common’;
(3): OUTPUT sigl; : NEXTSTATE next;
|jENDDECISION; — (2): TASK 't2';
TASK 'in common’; (3): QUTPUT sigt;
NEXTSTATE next; TASK ‘in common’;
JOIN A;
ENDDECISION;

» TASK "in common’;
A: NEXTSTATE next;

FIGURE D-3.8.45

Equivalent branching from a decision

The decision statement can also be used to model the IF-THEN structure, the DO-WHILE and the LOOP-UNTIL
structure asin structured programming.

In SDL/GR adecision is represented by means of adecision symbol containing the text of the question. The symbol must
have two or more branches associated with the corresponding answers. Each answer must be placed to the right or on the
top of the corresponding branch or also over the branch interrupting the flow line. In SDL/GR the parenthesis to delimit
answers are optional but it is suggested to use them in order to avoid misunderstandings.

Some examples of decisionsin SDL/GR are shown in Figure D-3.8.46.

W <1 (FALSE>
(TRUED 0> (=0 <02
(1:10> '(20,30) ELSE ('A'> JELSE <('B'> ¢'ERR’D
| I I

FIGURE D-3.8.46

Examples of decisionsin SDL/GR

54 Fascicle X.2 —Rec. Z.100 Annex D

If an answer is leading back to the decision in the same transition some actions must be performed which influence the
question in the decision. However, even with this rule infinite loops might be created as shown in Figure D-3.8.47. Care
should therefore always be taken when having answers leading back to a decision in the same transition.

1 A=A+1

I

FIGURE D-3.8.47

Example of alegal use of a decision which createsan infinite loop

Decisions can be made using any values currently available to the process, including: values received by an input;
- values passed as actual parameter at process creation time;

- shared values.
- The expression in the question can include constants and any of the above kinds of values.

D.3.8.9 Joins and connectors

The joins allow control to be transferred from one point to another of a process body (as well as inside of a procedure
body or inside of a service body).

In SDL/PR they are equivalent to "GO TO" statements. Labels are used as entry points associated to statements as shown
in figure D-3.8.48. Inside a process body (or procedure body) it is not possible to transfer control (and therefore associate
labels) to the type of statements shown in figure D-3.8.49. Labels are aways local to a process therefore it is not possible
to transfer control from a process to another by means of ajoin.

Fascicle X.2 —Rec. Z.100 Annex D 55

— A:

FIGURE D-3.8.48

L abel

STATE,
ENDSTATE,
INPUT,

SAVE,
ENDDECISION

FIGURE D-3.8.49

Non-allowable label points

In SDL/GR the joins correspond to connectors (out-connectors and in-connectors). They may be used to split the
diagrams, due to the lack of space, or also to avoid the crossing of flowlines which would make diagrams somewhat
unclear. Besides, it is normally preferable to draw an SDL diagram with the flow from the top to the bottom of the page.

In GR any flowline may be broken by a pair of associated connectors, with the flow assumed to be from the
out-connector to the in-connector. Each connector symbol contains a name, associated connectors have the same name.
For each name only one in-connector exists but there may be one or more out-connectors.

It is desirable in GR that the page reference for the appropriate in-connector should be specified for the out-connector,
and that the page reference(s) for the appropriate out-connector(s) should be given for the in-connector. (See example in
Figure D-3.8.50)

56 Fascicle X.2 —Rec. Z.100 Annex D

D.39

page x page y page z

_|Go to _|Go to _| From page
page Z page z x, Y

FIGURE D-3.8.50

Page references for connectors

Procedures

Proceduresin SDL are similar to proceduresin CHILL and other programming languages. Procedures are intended to:

a)
b)

c)

permit the structuring of a process into several levels of detail;

maintain the compactness of specifications by allowing a complex assembly of items which may be regarded in
isolation, to be represented by asingle item;

allow commonly used assemblies of items to be defined and used repeatedly.

A procedure definition may only be contained in a process definition, in a service definition, or in a procedure definition
and therefore a procedure is visible only to the process or procedure in which it is defined.

A procedure definition consists of the following items (some of which are optional):

Procedure name.

Procedure formal parameters: a list of variable names associated to their sorts. They are used to transfer
information to/from the procedure at calling time. Procedure parameters can be passed by value (IN parameter)
or by reference (IN/OUT parameter). If a parameter is passed by value the specification of the formal
parameter defines a variable local to the procedure; if it is passed by reference the specification defines a
synonym for the variable.

Procedure definitions: procedures that can be called just by the procedure itself.
Data definitions. the specification of datatypeslocal to the procedure.
Variable definitions: local variables within the procedure.

Procedure body: the specification of the actua behaviour of the procedure in terms of states and actions
(similarly to the process body).

A partial example of procedure definition in SDL/PR is given in Figure D-3.9.1 (the keywords of the language are in
upper-case letters). Note that the formal parameters with no explicit attributes have an implicit IN attribute (var5 in the

Figure).

Fascicle X.2 —Rec. Z.100 Annex D 57

PROCEDURE predi;

FPAR IN/OUT vart,var2 sorti,
IN var3 sort2,
IN/OUT var4 sort3, var5 sort4;

Procedure
formatl parameters

PROCEDURE . . .
PROCEDURE . . .

Procedure definitions

... data definitions ... Data definitions

DCL Variable definitions

... procedure body . .. Procedure body

ENDPROCEDURE prcdf1;

FIGURE D-3.9.1

Partial example of procedure definition in SDL/PR

D.39.1 Procedure body

The procedure body is very similar to the process body with the following differences:

- The procedure terminates its interpretation with a "return” instead of a "stop". In SDL/GR the return statement
is represented by the keyword RETURN.

- In SDL/GR the procedure start symbol is slightly different from the process start symbol.
- The procedure start and return symbols can be found in the SDL/GR Summary.

A procedure may use the join construct, but only to refer alabel within itself. Join may neither be used either to enter a
procedure from the outside nor to leaveit.

In SDL/GR a procedure definition is represented by means of a procedure diagram that is very similar to the process
diagram. A procedure diagram consists of the following items:

- An optional frame symbol: arectangular shaped symbol which contains all the other symboals.

- The procedure heading: the keyword PROCEDURE followed by the procedure name and by the specification
of procedure formal parameters. Usually the procedure heading is put in the upper left corner of the frame or, if
thereis not aframe, in the upper left corner of the media upon which the diagram is drawn.

- An optional page numbering. (Put in the upper right corner)

- Text symbols: in the case of a procedure diagram a text symbol can be used to contain the specification of
formal parameters, data and variable definitions.

- Procedure references. procedure symbols, each containing a procedure name representing a local procedure
separately defined.

- Procedure diagrams: to directly define local procedures.

- The procedure graph area: the specification of the procedure behaviour in terms of start, states, inputs, outputs,
tasks, ... and directed arcs.

In Figure D-3.9.2 there is an example of procedure definition in SDL/GR. The referenced procedure "TERM_P' in the
exampleislocal to the calling procedure.

As noted in the case of process diagrams (8 D.3.8), if thereis not enough room in a single page for a procedure diagram the
diagram can be represented in several pages repeating the frame symbol with the heading and page numbering.

58 Fascicle X.2 —Rec. Z.100 Annex D

PROCEDURE CONN_A_B FPAR IN

A,B PID,

IN/JOUT OK BOOL;

DCL. NO INTEGER,
AOK, BOK, STAT BOOLEAN ;

TERM_P

NO:=0

[rckN
¢STAT)

NO :=NO+1

11

(TRUE) (FALSE)
AOK : = BOK:=
STAT STAT
I . |
OK :=A0K AWAIT_
AND BOK RESULT
TERM_P || __Terminating
(0K > procedurea
FIGURE D-3.9.2

Example of procedure diagram

Fascicle X.2 —Rec. Z.100 Annex D

59

D.3.9.2 Procedure call

Procedure calls may occur wherever atask is allowed in either a process or procedure graph. In some sense, a procedure
can be interpreted as a task with the following exceptions:

1) A procedure may contain states and, if so, will receive signals.
2) A procedure can send signals. The originating process instance is the one which called the procedure.

When a procedure is called, the procedure environment is created and the procedure begins to be interpreted.
Interpretation of the procedure continues until the RETURN is reached. While the procedure is being interpreted all
signals addressed to the process are either implicitly saved or explicitly handled by the procedure. The procedure does
not have its own input queue, but uses the input queue of the process that called it.

In SDL/PR a procedure call is represented by the keyword CALL followed by the procedure identifier and the list of
actual parameters within round brackets. If a parameter is not given, it must be indicated by two consecutive commas. In
this case the corresponding formal parameter has the value "undefined". Note a so that the declaration of IN, or IN/OUT
is made in the procedure definition, so that it must not be repeated by the calling statement. Some examples of call in
SDLIPR are shown in Figure D-3.9.3.

CALL procedl;

CALL proced2(varl,var2),
CALL proced3 (5,a+b,Pid1);
CALL proced4 (W,X,.Z);

FIGURE D-3.9.3
Examples of call statements in SDL/PR

In SDLIGR a procedure call is represented by means of a procedure call symbol containing the procedure name and the
list of actual parameters within round brackets. An example of call in SDL/GR is provided in Figure D-3.9.2.

D.3.10 Data handling

D.3.10.1 Variable declarations

Variables are local to a process instance, which means that all variables have one and only one owning process instance.
Only the owner process instance can change the value of the variables.

The variables declared in Figure D-3.10.1, are local to each instance of process P, and therefore they can only be
accessed and modified by each instance of the process P (each process instance can access or modify its own copy of
variables).

SYSTEM §;
BLOCK B;
" PROCESS P(3,10):
DCL

A Integer,
D Integer;

ENDPROCESS P:
ENDBLOCK B:
ENDSYSTEM §;

FIGURE D-3.10.1

Example of variable declaration

60 Fascicle X.2 —Rec. Z.100 Annex D

A variable can be initialized directly after declaration as shown in Figure D-3.10.2.

DCL A Integer:=1;

FIGURE D-3.10.2

Variable initialization

SDL allows two ways of initializing variables. It is possible to declare an initial value for all the variables of a certain
sort using the DEFAULT statement in the data type definition (see § D.6.4.5). In this case the initidlization is valid, for
all the variables of that sort.

On the other hand, it is possible to initialize each variable of a certain sort by a value as shown in Figure D-3.10.2. If
there is both a DEFAULT statement and an initialization on declaration then the latter prevails. If a variable is not
initialized, itsinitial value is considered "undefined" in the system.

Of course the shorthand notation of variables initialization shown in Figure D-3.10.2 is only usable for simple variables, or
for datatypesthat allow a compact concrete notation for variables (another example is shown in Figure D-3.10.3).

PROCESS P1;
NEWTYPE S Struct

1 Integer;

B Boolean;
ENDNEWTYPE;
DCL
A S:=(1,True);

ENDPROCESS P1;

FIGURE D-3.10.3

Another example of variable initialization

Figure D-3.10.3 shows that the Struct sort has a shorthand concrete notation to indicate a structure value. In the case of an
array generator it is suggested to explicitly initialize the variables smulating a "while construct" in the initia transition
string of the process (see Figure D-3.10.4).

Fascicle X.2 —Rec. Z.100 Annex D 61

PROCESS P;
NEWTYPE Arrl Arsray (Natl,Integer)
ENDNEWTYPE Arrl;
SYNTYPE Natl Natural CONSTANTS 1:3
ENDSYNTYPE Natl;
DCL
A Arrl,
I Natural;
START;
TASK I:=1;
Labl: DECISION I<=3;
(True): TASK A(D:=I;
TASK L=I+1;
JOIN Labl;
(False): ;
ENDDECISION;

ENDPROCESS P;

FIGURE D-3.104

A more complex example of variable initialization

D.3.10.2 Revealed/viewed variables

Two processes can exchange information by other means than by signals. A process can access the value of a variable
owned by another process by means of the VIEW operation. There are, however several rules to note:

- Both processes must belong to the same block.

- The process performing the VIEW operation must specify the identifier of the viewed variable in the view
definition.

- The process revealing the variable must declare it with the REVEALED attribute.

- The sort identifier (or syntype identifier) in the variable declaration and in the view definition must be the
same.

The value the viewing process obtains via the VIEW operation is the same as the revealing process obtains via ordinary
access.

As the viewing process does not own the viewed variable, it can not modify its value. Of course the viewed value can be
assigned to a variable the viewing process owns itself.

The SDL user may find that the definition of revealed/viewed variables permits an easy way of specifying
communication between two processes. However, a number of problems arise in implementing systems so specified,
and this section is intended to guide users in avoiding and overcoming such problems. Describing systems in SDL
which have implemented revealed/viewed value is less difficult, because the problems will have been overcome in the
implementation and it should be possible to map the solution chosen onto SDL.

In the remainder of this section it is supposed that the process R (Revealer) owns and reveals variables, and process V
(Viewer) refersto them in its view definition.

An attempt to view variables in the process V before the process R is created resultsin an SDL error. The user may avoid
this problem in two ways. Either:

- ensure that the revealing process instance R is created and has initialized the relevant variables before the
viewing processinstance V, or

- ensure that V does not enter transitions which use revealed/viewed variables until R has been created and has
initialized the relevant variables.

A simple way to achieve the former case is to make R the parent (or an ancestor) of V (as in the example of
Figure D-3.10.5), or to let R be created at the same time as the system (implied creation). In the latter case it may be
arranged that the relevant transition in VV can only be triggered by asignal from R.

62 Fascicle X.2 —Rec. Z.100 Annex D

Variables of R cannot be viewed after R has stopped. Any attempt to view data would then be an SDL error. The user
may avoid this problem in two ways. Either:

- donotuseastopinR at al, or
- ensurethat V isaware that R is about to stop and does not make any further attempts to view the relevant data.
The first solution has the disadvantage for the implementor that R has not released the data storage it was using.

An example of of revealed/viewed variables can be found in Figure D.3.10.5.

D.3.10.3 Exported/Imported values

A process can declare one or more of its variables as "exportable" which has the effect that all other processes (no matter
the block they belong to) can import a copy of the value of the variable upon request. The importing process must
declare the variable in itsimport definition.

When the exporting process executes an export the value of the variable is copied in an implicit variable. An importing
process obtains, by means of the import expression, the value of this copy. So the value obtained by the import
expression can differ from the value obtained by ordinary access by the owner, even if they are executed at the same
moment.

An exampleis shown in Figure D-3.10.5.

Fascicle X.2 —Rec. Z.100 Annex D 63

PROCESS P1 PROCESS P2 . PROCESS P3
DCL d } et “e
REUEALED VIEKED d sortd; IMPORTED d sortd;
EXPORTED o .
sortd;
|
CREATE P2
|
CRERTE P3
l
d:=
|
EXPORT
(d> . .
a . .
g : l
- a:=UIEW(a:=[MPORT
d,PARENDF—— a= (d,PARENT){~~— a=9
' + 1 +1
| | |
d:=15 '
i |
a:=U1EN(a:=|MPORT
d,PARENT)-——] a=16 (dPARENT)[-—= a=9
+1 +1
| |
EXPORT ' :
(d>
v !
FIGURE D-3.10.5

Example of differences between nse of
revealed/viewed and exportable variables

In Figure D-3.10.5 process P1 is supposed to be the parent of processes P2 and P3, therefore the process instance
identifier in the IMPORT and in the VIEW expressionsisindicated by the attribute PARENT.

D.3.10.4 Expressions

Expressions in an SDL process can be used as formal text in decisions, alternatives, selects, tasks, continuous signals,
enabling conditions, and set constructs. Expressions are also used as actual parameters of the output, of the procedure
call, of the creation construct. Pid expressions are used in the TO part of the output construct. The expressions in the
alternative and select constructs (statically evaluated) should be of predefined data sorts. In an expression there can be
ground terms(i.e. terms containing only representations of constant values), and terms with variables.

64 Fascicle X.2 —Rec. Z.100 Annex D

SDL has a predefined set of infix operators. These operators can be used for any data type, and they are the only allowed
infix operators. For these operators the precedence rules are predefined too and cannot be changed. The predefined infix
operators are:

=> OR, XOR, AND, IN, /=, =, >, <, <=,>=, +,-,// *,/, MOD, REM
SDL provides also the predefined operators:

-, NOT

which are unary prefix operators.

Using the predefined operators, care should be taken as far as the precedence rules are concerned because these
operators, being predefined independently from the domain of application, may mislead.

For example consider the newtype and the expression in Figure D-3.10.6. Thinking of the precedence rules of
multiplication and addition one evaluates the expression as A=>((B*C)+D). But this is different from the precedence of
AND and OR and such a change may lead to confusion. Furthermore this kind of change may lead to inconsistent axioms
and invalidate the SDL specification.

NEWTYPE Newbool

INHERITS Boolean

OPERATORS (I|'+|I=IIANDII’ "*"="OR", |l:>ll)
ENDNEWTYPE Newbool;

A=>B*C+D

FIGURE D-3.10.6
Example of misleading notation in an expression

All the other operators defined by the user are functions and must be used in the prefix notation.

The two operators VIEW and IMPORT have a particular semantics explained in the previous paragraphs. Anyway, they
give back avalue of acertain sort that can be another operand in an expression,

D.3.11 Expressingtimein SDL

The need to measure time and request timeouts in a system is met by timers and a set of operations performed upon
them.

In the SDL model "Timers' are meta-processes that are able to send signals to the process upon request. The use of
timers must be declared in the timer definition within process definitions. The operations SET" and "RESET" are used
to activate timers. The SET operation requests a timeout to occur at a specified time, and the RESET operaration cancels
the specified timeout. (Note that a SET operation includes implicitly a RESET operation of any not expired timings from
that timer).

The set construct contains the time expression of the requested delay, the name of the involved timer and, optionally, a
list of expressions. The list of expression specifies values that will be contained in the timer signal in the same order.

The list of expressions may be specified in the reset construct to reset a particular instance of the timer instance having
the same values.

The timer definition must include the list of the corresponding sort-reference identifiers for the sorts used in the expressions
in set/reset.

An example of Set statement is shown in Figure D-3.11.1.

In the set construct an absolute time must be specified. Relative time is transformed to an absolute time value by adding
the primitive function "NOW" that represents the current time. The expression of the requested delay should be a Time
expression. Timeis a predefined sort, inherited from the Real sort.

The possibility of receiving atimeout is specified by means of the timer namein an input as shown in Figure D-3.11.1.

Fascicle X.2 —Rec. Z.100 Annex D 65

SET (NOW+

20*ms,T1)
I
I T1
]
RESET(T1)
I
FIGURE D-3.11.1

- Example of the use of timers

It is possible to define Synonyms to indicate the desired Durations. Once chosen the Time and the Duration units, the
user can define the Synonyms needed to represent the Durations as shown in Figure D-3.11.2.

PROCESS p;
TIMER. T1 subscriber_id;

DCL Sa subscriber_id;
SYNONYM
Sec Duration = 1000.0,
_Min Duration = 60000.0,
.S"I’ART;
SET (NOW 420*Min +30*Sec , T1 (Sa));
RESET (T1 (Sa));

ENDPROCESS p:

FIGURE D-3.11.2

Synonyms for representing durations

In the Recommendation it is stated that the setting of atimer to an already 'passed’ timeis allowed. This decision was taken
to ease the simulation of systems, however, since such a setting might result in an unclear specification this usage should
be avoided.

D.3.12 Qualifiersusage

In SDL qualifiers are used for referring items in a specification, when the name does not determine the item uniquely. Of
course when defining the item only the name must be specified, but when referring to it outside its defining occurrence
an identifier composed by a qualifier and the name may be needed.

This also applies when remote definitions are used: the defining occurrence uses the name when referencing the
definition; the remote definition uses a qualified name to specify its context.

66 Fascicle X.2 —Rec. Z.100 Annex D

In Figure D-3.12.1 there is an example of qualifiers usage for a process that can receive two different signals having the
same name but different identifiers! The first input refers to a signal type defined at block level; the second input refersto
a signa type defined in the process definition. In the second input the qualification might be omitted because when

identifiers are not qualified the innermost definition is referred to.

SYSTEM s;

BLOCK b;
SIGNAL x;

PROCESS p;
SIGNAL x;
STATE wait;
INPUT SYSTEM s/BLOCK b
INPUT PROCESSp x:
ENDSTATE wait;
ENDPROCESS p;
ENDBLOCK b;
ENDSYSTEM s:
FIGURE D-3.12.1

Example of qualifiers usage

D.3.13 Syntax of names

X;

Names in SDL may either consist of a single word or may consist of a list of words separated by delimiters (spaces or
control characters). The second possibility allows a more readable specification when long names are used, especialy
when using SDL/GR as graphical symbols have a limited size. Some examples of names consisting of several words are

shown in Figure D.3.13.1.

Fascicle X.2 —Rec. Z.100 Annex D 67

STATE A IDLE;
INPUT A OFF HOOK;
OUTPUT BUSY_SUB;
OUTPUT CONNECT

DIGIT
RECEIVER;

SDL/PR

FIGURE D-3,13.1

BUSY_SUB

| cONNECT
DIGIT
RECEIVE

SDL/GR

Examples of names consisting of several words

Whenever the usage of several words in a name is ambiguous (see examples in Figure D.3.13.2), the delimiters between
two words must be substituted by an underline character (

delimiters in underlines still denotes the same name; so, for example, BUSY SUB denotes the same name as

).The string of characters obtained by transforming the

BUSY_SUB. In Figure D.3.13.3 there are some examples of unambiguous usage of names.

a) A := BLOCK B1 B/ PROCESS P1 P C;
b) DCL A B CD;
c) NEWTYPE X Y Z (PAR) ENDNEWTYPE;

FIGURE D-3.13.2

Examples of ambiguous usage of names

68 Fascicle X.2 —Rec. Z.100 Annex D

b)

c)
d)

e)

g)

A = BLOCK B1_B/PROCESS P1_P C.

A = (BLOCK Bl B)/(PROCESS P1_P C); ,
DCL A B_CD;

DCL A_B C.D:

DCL A_B_C D;

NEWTYPE X Y_Z(PAR) ENDNEWTYPE;

NEWTYPE X_Y Z(PAR) ENDNEWTYPE;

FIGURE D-3.13.3

Examples of unambigucus usage of names

It is important to note that the underline character can also be used in names as a continuation character, to alow the
splitting of names over more than one line. In this case, a name containing an underline character followed by one or more
delimiters can also be denoted by eliminating both the underline and delimiters.

Examples of different denotations for the same name are given in Figure D.3.13.4

a)
b)
c)
d)

CONNECT DIGIT RECEIVER
CONNECT_DIGIT_RECEIVER
CONNECT DIGIT_RECEIVER
CONNECT

DIGIT

RECEIVER

CONNECT DI_
GIT RECEIVER

CONNECT DI_ GIT RECEIVER
CONNECT_

DIGIT
_RECEIVER

FIGURE D-3.13.4

Examples of different denotations for the same name

Fascicle X.2 —Rec. Z.100 Annex D

69

D4 Sructuring and refining SDL systems
D41 General

This chapter will discuss some techniques and SDL constructs that allow a top-down specification of large systems.
Usually the terms "partitioning” and "refinement” are used for these techniques with the following meanings:

- Partitioning: subdivision of a part of a system into smaller parts whose global behaviour is equivalent to the
unpartitioned part. It can be applied to blocks (structuring them in new subblocks, channels and subchannels),
to channels (structuring them in blocks, new channels and subchannels) and to processes (structuring them in
services).

- Refinement: addition of new details to the system functionalities. Seen from the environment the refinement of
a system causes an enrichment in its behaviour as more kinds of signals and information can be handled.

Note that the internal structure of a system part provides more details about the structure, not necessarily more details
about the behaviour of the system. Conceptually it is possible to distinguish the aspect of a more detailed representation
of the behaviour (e.g. the handling of a new signal) from the aspect of a more detailed structure but in practice the two
aspects are usually merged together, so that with new details about the system structure we also provide new details on
the system behaviour.

The minimum structure of a system in SDL is what is described in Chapter 2 of the Recommendation, i.e. a system
consists of aset of blocks connected with channels - and the blocks contain processes.

Concepts for partitioning in severa levels of detail and signal refinement are covered by Chapter 3 in the
Recommendation. For systems not needing further partitioning such concepts are not necessary.

D.4.2 Criteria for partitioning

The technique of starting with a high level view of a system representation and breaking it down into manageable pieces
is called partitioning. This process of partitioning adds structure to a system.

The criteria leading to the partition of the system representation are several, including:

a) to define blocks or processes of intellectually manageable size;

b) to create a correspondance with actual software and/or hardware divisions;
c) to follow natural functional subdivisions;

d) to minimize interaction between blocks;

e to reuse already existing specifications (e.g. asignalling system);

The actual criteria adopted may depend on a number of factors including the degree of detail required.

Since the relationship between levels will depend on the chosen partitioning criteria, it isimportant to state clearly which
criteria have been chosen in order to allow easy comprehension of the representation. The partitioning criteria depend
upon the user but some limitations exist to ensure a correct representation in SDL. These will be discussed in the
following paragraphs.

D.4.3 Block partitioning

A block can be partitioned into a set of blocks and channels in aimost the same way that a system is partitioned into
blocks and channels. In SDL/GR this is represented by means of a block substructure diagram. An example of block
substructure diagram is shown in Figure D-4.3.1. In the first diagram of the Figure there is the block diagram of block B1
containing a reference to its substructure. In the second diagram there is the substructure diagram for the block B |. The
block symbol attached to the channel C2 by a dashed line in the first diagram represents a reference to the substructure
of the channel C2 (See § D.4.5).

70 Fascicle X.2 —Rec. Z.100 Annex D

SYSTEM S

SIGNAL S1,$2,83,54,S5,56,S7,
$8,59,510;

SIGNALLIST L1=81,S2,53,54;
SIGNALLIST L2=S5,S6;
SIGNALLIST L3=S7,58:
SIGNALLIST L4=$9,510;

BLOCK B
c1 KLDI [L2>] ¢y 11351 [B2 c3 [(L4)]
] hl) ¥ “'
Bt 1
1
c2
SUBSTRUCTURE B
SIGNAL SX,SY,SZ; N

SIGNALLIST L1.1=S1,S2,83;
SIGNALLIST L1.2=52,53,54;

[CL11)]
ct.
C1 ' < B1.2 cz.1 [SS]

Ciz2
[<L123]
CXISX]
B1.1
CYIsvyl
CZIS8Z1

'
L4

c2

{(L3>1]

B1.3

FIGURE D-4.3,1
Block partitioning
In SDL/PR the partitioning of a block is represented by a set of definitions between the keywords SUBSTRUCTURE
and ENDSUBSTRUCTURE inside the block definition. The definitions in a block substructure are the same we have

in the system definition; besides the specification of the connections between channels and sub channels must be
provided as shown in Figure D-4.3.2.

Fascicle X.2 —Rec. Z.100 Annex D 71

SUBSTRUCTURE B1;

SIGNALLIST L1.1 =S1,82,83;
SIGNALLIST L1.2 =52,83,54;

SIGNAL SX,SY,SZ;

CHANNEL Cl1.1

FROM Bl.2 TO ENV WITH (L1.1);
ENDCHANNEL C1.1;
CHANNEL Cl1.2

FROM B1.1 TO ENV WITH (I.1.2);
ENDCHANNEL C1.2; :
CHANNEL C2.1

FROM ENV TO Bl.2 WITH S5;
ENDCHANNEL C2.1;
CHANNEL C2.2

FROM ENV TO B1.3 WITH S6;

FROM B1.3 TO ENV WITH (L3),
ENDCHANNEL C2.2;
CHANNEL CX

FROM Bl.2 TO Bl.1 WITH SX;
ENDCHANNEL CX;
CHANNEL CY

FROM B1.3 TO Bl.1 WITH SY;
ENDCHANNEL CY;
CHANNEL CZ

FROM Bl.1 TO B1.3 WITH SZ;
ENDCHANNEL CZ;

CONNECT C1 AND C(C1.1,C1.2;
CONNECT C2 AND C2.1,C2.2;

BLOCK Bl.1 REFERENCED;
BLOCK B1.2 REFERENCED;
BLOCK B1.3 REFERENCED;

ENDSUBSTRUCTURE BI;
FIGURE D-4.3.2

SDL/PR for the example of Figure D-4.3.1

Inside a block definition the specification of processes and of a block substructure may coexist. In this case the processes
of the block represent the behaviour of the block at a certain level of detail, other processes inside the definitions of
sub-blocks will represent the same behaviour in a more detailed way. An example of blocks described both in terms of
processes and substructures can be found in D.4.7 (Figure D-4.7.1).

If in a block there are no processes but only the block substructure, and if the block substructure is not referenced, a
shorthand notation is provided in SDLIGR to simplify the diagram. Such a notation allows the nesting of blocks by
considering the external block frame as implying the substructure frame. By means of this notation the example of
Figure D-4.3.1 can be drawn asin Figure D-4.3.3.

72 Fascicle X.2 —Rec. Z.100 Annex D

SYSTEM $

SIGNAL S1,52,53,54,55,56,57,
$8,59,510;

SIGNALLIST L1=S1,82,53,84;
SIGNALLIST L2=S5,$6;
SIGNALLIST L3=$7,58;
SIGNALL [ST L4=S9,510;

cy LD B1 [(L2)1 ¢ L3 | B2 c3 [(L4)]
bl hl 1 L4 {-
|
1
c2
BLOCK B

SIGNAL SX,sY,SZ;

SIGNALLIST L.1.1=81,52,83;
SIGNALLIST L1.2=52,83,54;

c1q TEL11]

Cl < B1.2 c2.1 851
c12 v ¢

[<L1.2)] /////‘,///’
CXISX1
B1.1
cYIsY]
74 €74

'
Ld

c2

[(L3>]

B1.3

FIGURE D-4.3.3
SDL/GR shorthand notation for block partitioning

Each block deriving from the partitioning of a block can be partitioned itself resulting in a hierarchical tree structure of
blocks and their subblocks. An auxiliary diagram called "block tree diagram" showing such a general structure is
explained in 8§ D.4.4.

Unless signal refinement isinvolved, the partitioning must obey the following rules:

1) The subchannels connected to an incoming channel must contain no new signals in their signal lists and their
signal lists must contain all the signalsin the original channel list (For bidirectional channels the incoming path
list must be considered). Thus for the example shown in Figure D-4.3.1, C2.1 and C2.2 transport on the

incoming paths all the signalsin L2. In addition, no signal transported by C2.1 can appear in the incoming path
of C2.2.

2) The subchannels (e.g. Cl.l and C1.2) connected to an outgoing channel (e.g. Cl) must contain no new signal
names in their signal lists and their signal lists must contain all the signal names in the original channel. Thus
L1.1 and L1.2 contain all the signal names in L1. The lists L1.1 and L1.2 may contain the same signal
identifiers.

Fascicle X.2 —Rec. Z.100 Annex D 73

3)

4)

5)

D44

If the original block contains processes, two options are available. Firstly, a copy of each process can be
redefined in one or other of the new subblocks. Secondly new processes can be defined in the subblocks in
such away that the interface remains unchanged.

Data definitions in the parent block are available to its subblocks, so that each of them can use a data type
defined in the parent block without having to redefine it.

If a datatype defined in the parent block is redefined with the same name in a subblock, the new definition
applies to the defining subblock while the old one holds for the other subblocks. A redefinition made just for
the sake of characterizing a subblock should be discouraged, because it may be overlooked by a reader who
will assume the old definition as valid. In some cases such a redefinition should be made, particularly when a
refinement in the behaviour is involved. Care should be taken to emphasize this redefinition by appropriate
annotation.

Block tree diagram

A block tree diagram represents the structure of a system in terms of blocks and sub-blocks. The intention with the
diagram is to give the reader an overview of the total structure of a system.

The diagram is a hierarchical tree of block symbols and "partitioned into" lines as shown in Figure D-4.4.1.

Switching_
_System
Subscriber_ Central Test_and_
i —Switching_ _maintenance,_
_interface I
_module _equipment
Command_ Switching_
_module _matrix
FIGURE D4 4.1

Example of block t{ree diagram

The diagram should preferably be drawn with all the block symbols having a uniform size. This allows the blocks at
the same level of partitioning to appear as a uniform level in the diagram. If the diagram is so large that it requires more
than one page it should be partitioned into "partial" block tree diagrams as shown in Figure D-4.4.2.

It is often useful to partition a block tree diagram into partial diagrams.

The splitting into several partial diagrams is done so that the first diagram, having the system as root, is chopped off
so that a set of further partitioned blocks appear as not partitioned. The blocks, where the original diagram was
chopped off, appear as roots in diagrams showing the further partitioning.

74

Fascicle X.2 —Rec. Z.100 Annex D

System_A

Block B - Block_C
' [
I]
Block D Block_E
a) Non partitioned diagram
see diagram
System_A Block C |- '[on the left
| , [
| I | |
Block B | See diagl'am
OCK_ Block_C I;n the right Block D Block E

b) Partitioned diagram

FIGURE D442

Example of partial block tree diagrams

If partial diagrams are used, and it is not obvious that a block is further partitioned and/or where to find the continuation
diagrams, references should be inserted using the comment symbol.

D.45 Channel partitioning

A channel can be partitioned independently of the blocks it connects. This allows for the representation of the
behaviour of the channel. To get an exact representation of the way in which a signal is conveyed, it may be in some
cases necessary to represent the channel behaviour. This is made by considering the channel as an item of its own
having as environment the two blocks it connects. Looking at the channel in this way, we can show its structure in
terms of blocks, channels and processes.

In SDL/GR the channel partitioning is represented by means of a channel substructure diagram as shown in
Figure D-4.5.1. (The example represents the substructure of the channel C2 of Figure D-4.3.1).

A channel substructure diagram describes how a channel is partitioned into sub-components. The diagram resembles the
system diagram (except for the connections to blocks). All the guidelines given in § D.4.3 are also valid for the channel
substructure diagram.

In the block interaction diagram where the partitioned channel appears there should be a reference to the channel
sub-structure diagram describing the partitioning.

Fascicle X.2 —Rec. Z.100 Annex D 75

CHANNEL C2

L SIGNAL sa,sb,sc; |ﬁ
[(L2),sal
L2251
[$7,sb]
L-E
[<L2)>1 [(L3
B1 4 [s87,scl M < N - B
+ 14 2
E_N M_E
N_L
[CL3>] [s81
N N_M
FIGURE D-4.5.1

Example of channel substructure diagram

In SDL/PR the form is similar to the form of the block substructure definition, the only difference is that in the
CONNECT statement the endpoint subchannels are connected to the external blocks. (B1 and B2 in Figure D-4.5.2) and
not to external channels.

76 Fascicle X.2 —Rec. Z.100 Annex D

SUBSTRUCTURE C2;
SIGNAL sa,sb,sc;

CHANNEL L_E
FROM L TO ENV WITH (L2);
ENDCHANNEL L_E;

CHANNEL E_N
FROM ENV TO N WITH (L3);
ENDCHANNEL E_N;

CHANNEL M_E
FROM M TO ENV WITH (L3);
FROM ENV TO M WITH (L2);
ENDCHANNEL M_E;

CHANNEL LM
FROM L TO M WITH S§7,sb;
FROM M TO L WITH (L2),sa;
ENDCHANNEL LM

>

CHANNEL N_M
FROM N TO M WITH S8;
ENDCHANNEL N_M:

CHANNEL N_L
FROM N TO L WITH S§7,sc;
ENDCHANNEL N_L;

CONNECT Bl AND L _EE_N;
CONNECT B2 AND M_E;

BLOCK L REFERENCED;
BLOCK M REFERENCED;
BLOCK N REFERENCED;

ENDSUBSTRUCTURE C2;

FIGURE D-4.5.2

SDL/PR for the example of Figure D-4.5.1

Import/export of values is alowed between a block and a channel substructure. This alows a straightforward
representation of the OSI model, where peer layer communication is modelled through signal interchange and contiguous
layer communication through shared values.

D.46 Systemrepresentation in case of partitioning

In the cases where a system is represented as a set of blocks interconnected by channels, and where the behaviour of each
block is expressed by one or more processes, we have a single level representation. This means that we can see al the
representation elements at the same level. When we introduce partitioning, we insert a hierarchial relation between the
various documents. We will have a document containing the representation of the structure of the system where the
system is composed of "n" blocks.

A different document may present the system as composed by a different set of blocks some being derived from the blocks
contained in the previous document (some blocks in the previous document have been substituted by the subblocks
obtained by the partition of the blocks). This latter document must be related to the previous one.

Fascicle X.2 —Rec. Z.100 Annex D 77

Itisnot just a matter of relating the documents to each other to obtain a complete representation of the system, but also they
should be organized in such away that it is possible to access the system representation by levels, starting with a general
overview and moving to more and more detailed representations. This implies the grouping of the various documents so
that they form various levels of system representation.

Not all the levels should contain the same elements. At a first level the system representation may consist of the block
and channel representations without including the processes describing the behaviour of each block. At alower level we
may wish to include the representation of the behaviour of some blocks but not the one of others. The lowest level of
representation (the most detailed one) should include the compl ete representation of the behaviours of all the blocks, i.e. the
complete set of processes expressing this behaviour.

Looking at the block tree we can make several considerations.

First of all the tree always has one and only one root, the system. This is so, even in the cases where a system is
represented from the beginning as composed of several blocks. In the block tree these blocks will be represented at, for
instance, level 1. The root may consist of the system name only. The channel definitions may be given for the blocks at
level 1 even though thisis not required unless the blocks contain processes.

A second point comes up looking at the leaves of the tree: not al of them have to be at the same level. This may be the
result of a different number of partitioning on the blocks of the tree. The number of partitionings depends on severa
aspects, most of which are the subjective judgement of the specifier/designer.

SDL requires that a leaf block does not need further partitioning only if its behaviour is completely specified (i.e. the
processes definitions associated are sufficient to represent its behaviour). Consequently aleaf block must contain at least
one process.

When a system representation is given on several abstraction levels, we can select any of these levels to represent the
system. The selection of a certain level implies the consideration of the blocks at that level, of their associated processes
and of all the blocks which are leaf blocks at upper levels together with their associated processes (see Figure D-4.6.1).

It is often convenient to select different levels for different purposes, e.g. an overview level for presentation and a more
detailed level for implementation.

Level 0

-~ DAL Uk %/'///f
was VN ////)

Level 4

Note - The representation level 3 is shown by means of striped boxes.
FIGURE D-4.6.1

Representation level 3

A system representation at a certain level may be incomplete in the sense that some of the blocks at that level do not have
associated processes.

The reasons for talking about representation levels and of selecting a certain level of representation are:

- We may have reached in our design a certain "level" of detail, which is represented by that level of
representation (in this case the blocks at that level are leaf blocks and they axe not complete because further
work is needed!).

78 Fascicle X.2 —Rec. Z.100 Annex D

- We want to look at the system representation at a certain level of detail; and therefore we select that level of
representation which corresponds in the best way to the abstractions we are looking for. Note that in some
cases a certain representation level may consist of documents having different levels of abstraction. A part of
the system may be represented in a very detailed way at level two, whilst another part may be still abstract at
level four. This means that when we select a representation at level three we can have very detailed parts
together with partsthat can only be considered as overview.

- The representation/design methodology can be such that each level has a precise meaning, e.g. level one
corresponds to the specification, level two provides the overall system structure, level three provides the
module structure (racks, software functions), level four provides the detailed structure (printed boards,
procedures, software modules). In this case the selection of a certain level corresponds to a certain reader's
need; in this case it should be noted that the methodology will avoid the situation of discrepancies in the level
of details of parts composing a certain representation level.

D.4.6.1 Consistent partitioning subset

In addition to the total system specification and to the one given by levels, SDL has the concept of "consistent system
subset". It can be considered as asingle level specification where all the blocks can be taken from any level of the system
structure given that:

- A block can be chosen to be part of the consistent system representation if it can be considered as aleaf block
(either it isaleaf block or it has associated al the processes required to represent its behaviour).

- If ablock is chosen all the blocks obtained from the partitioning of its parent block should be included either
directly or by including their sons.

- All the documents defining the signals flowing in the channel connecting a block in the representation should
be provided. This may imply, depending on the partitioning strategy chosen, that once a block has been taken,
its parent should also be taken at least for the parts defining the data and the signals.

In cases where some channels have been partitioned, considering them as systems the specification of each of these
"systems' has to be provided. Their specification consists of the same kind of documents as the usual system
representation. Notation should be added to relate these systems to the main system specification they belong to. Thus, in
a sense, we may consider these partitioned channels as inner systems. Each of these systems can have several levels of
representation and may also have inner systemsif some of the channels contained in them are further partitioned.

D.47 Refinement

The refinement mechanism has been introduced in SDL to "hide" low level signds for higher levels of abstraction and to
allow atop-down specification of the behaviour of the system.

The refinement allows the user to partition signals into subsignals resulting in a hierarchical structure as in the case of
blocks and sub-blocks. That is, inside a signal definition it is possible to define a set of new signals which are said to be
refined signals or sub-signals of the signal being defined. Like the block tree for a block definition, a signal tree can, for
explanatory purposes, be drawn for asignal definition.

The refinement is tightly related to the block partitioning because only those signals transported by a channel connected to a
partitioned block can berefined. That is, asignal contained in the list of achannel may be replaced by its sub-signals when
the connected block is partitioned. The correspondent subchannels generated in the partitioning of the block will specify
the sub-signalsin their signal lists.

When a signal is defined to be carried by a channdl, the channdl automatically will be carrier for al the subsignals of the
signal, even if some of the subsignals are flowing in the opposite direction (in that case the channel is regarded as
implicitly bidirectional).

An example of refinement is given in Figure D-4.7.1. This example represents a system in which a process in one block is
sending text files to a process in ancther block. At the highest refinement level it is achieved by sending signals each
representing a text file (signal sf). On the next refinement level we want to specify that such a text file consists of a
number of records which are sent one by one (signa sr) and that the receiver has to answer back (signal nr) after
consumption of each record. The sender will send an end-of-file signal at the end. In this example at the highest
refinement level processes in Bl and B2 are communicating using the signa sf; on the next lower level processesin B11
and B21 are communicating using the signals sr,nr and eof.

Fascicle X.2 —Rec. Z.100 Annex D 79

SYSTEM S

SIGNAL sf (INT,file)
REFINEMENT
SIGNAL sr(rec),eof;
REVERSE SIGNAL nr;
ENDREFINEMENT;
* L

BLOCK B1 BLOCK B2

Bl B2

Ry _
R1
[-] [sf] - R2[sf] [- :

SUBSTRUCTURE B1 SUBSTRUCTURE B2
C1 C2
BI11 (—t—p—] C C —<—>4 B21
[nr] [sr.eof] [nr] [sr.eof]
FIGURE D-4.7.1
Example of refinement

Some real casesin which the refinement concept can be applied are the following:

- Name transformation: a signa is refined into another signal with a different name. This is a one to one
transformation where just the signal name changes. This possibility is usually applied when we want to have
each level completely understable on its own (it may be convenient to adapt the name of a signa to its
context).

- Splitting transformation: It is a one to many transformation where one signa is split into severa signals as a
result of a characterization. For example a generic "Alarm" signa is split into Register Alarm",
"Central_Processor_Aiarm" and "Subscriber_Alann".

- Algorithm transformation: The original signal is transformed into a set of signals that activate an algorithm in
order to provide the original information.

80 Fascicle X.2 —Rec. Z.100 Annex D

D.4.7.1 Consistent refinement subset

When refinement is applied in a system specification, the concept of consistent partitioning subset is restricted to avoid
communications with different signals between different levels of refinement. In this case the system definition is said
to contain several consistent refinement subsets. If a consistent refinement subset contains a process communicating
with sub-signals, then the process may not communicate with the parent signal and the other end of the communication
link must communicate with the same sub-signals.

D.4.7.2 Transformation between signals and sub-signals

The user may need to describe the transformation between different level of refinement for simulation purposes or to
check the system behaviour at different levels of detail. This can be done in an informal way by means of additional SDL
processes describing the dynamic transformation from a signal and its sub-signals or viceversa.

In Figure D-4.7.2, two processes are introduced to describe the transformation applied in Figure D-4.7.1. A refine
process defines how the high level signal is refined into a set of signals on the next lower level. A retrieve process
describes the reverse transformation.

Fascicle X.2 —Rec. Z.100 Annex D 81

82

PROCESS Refine_sf

DCL len,c:=0 |INTEGER;
DCL F file;
DCL rec record;

s1

sfllen,
E>

sr‘(F(c>

q

52

(FALSE)

(TRUE)>

wof
X

PROCESS Retrieve_sf

DCL len,c:=0 [NTEGER;
DCL F file;
DCL rec record;

53

>r~(rec)

¢:=ct]

Fle):=

rec
< nir
3
I |

>sr‘(r~ec) > eof

sf(c,F>
X

FIGURE D-4.7.2

Example of specification of a signal transformation

Fascicle X.2 —Rec. Z.100 Annex D

D.5 Additional concepts

D.5. Macros

The macro construct is a means to handle repetition and/or to structure a description. It consists of a macro definition,
containing a part of an SDL specification, that can be referenced (macro call) elsewhere in a system specification.

The macro definition can be given at all places where data definitions are allowed. However, the macro name has no
scope. Thus, amacro defined within a block may be referenced outside that block.

In SDL/PR it is possible to have a macro definition replace any sequence of lexical units. This differs from SDL/GR
macro definitions which may replace only collections of syntactical units.

To map SDL documents containing macros between SDL/GR and SDL/PR, the following restrictions on the use of
SDL/PR macros must be applied.

1 A macro can only replace one or more of the following syntactic constructs: (These correspond to SDL/GR
symboals.)

start

state

input

enabling condition
continuous signal
save

action statement
terminator statement

2. Macro formal parameters may not be used in places that determine the type of the SDL/PR construct. That is, it
must not be used where the SDL/PR keywords would be used. Similarly actual parameters should not contain
keywords which correspond to SDL/GR symbols: START, STATE, PROCEDURE, INPUT, TASK,
OUTPUT, DECISION, CREATE, STOP, PROVIDED, CALL, COMMENT, JOIN, RETURN, SAVE or
OPTION.

3. Every statement in the macro definition must be reachable from at least one macro inlet.
In SDL/PR, the macro always has at most one inlet and one outlet, so that it is necessary to use labels and joins to

represent in SDL/PR a SDL/GR macro with more than one inlet or outlet respectively. If the macro is to be invoked in
more than one place, the labels will have to be passed as parameters.

In SDL/GR there are two different ways to represent inlets and outlets of a macro definition. Either the user can draw a
frame for the macro and connect the inlets/outlets to the frame or also can use explicitly inlets and outlets symbols (the
macro frame is optional).

The example in Figure D-5.1.1 illustrates SDL/GR and SDL/PR for a macro with two inlets and two outlets. (In this
example the inlets and outlets are connected to the macro frame).

Fascicle X.2 —Rec. Z.100 Annex D 83

MACRODEF INITION m b

FPAR e ; MACRODEF INITION m
FPAR e,a,b,ec,d;
a a: DECISION e>1 ;

(TRUE>: JOIN b;
(FALSE>: JOIN ¢;

(TRUE>

ENDDECIS | ON;
b: TASK x:=y;
(FALSE g JOIN d;
= ENDMACRC m;
=y
c
SDL/GR SDL /PR

FIGURE D-5.1.1

Example of a macro definition

This means that in the main SDL/PR specification (Figure D-5.1.2) there are corresponding joins and labels. Note that
the label will probably be different for each different macro call.

s1 ¢
~/ .
STATE s1;
INPUT it;
i1 DECISION x>1 ;
¢(FALSEY: JOIN BB;
- (TRUE>: TASK x:=0;
JOIN AR;
(TRUE) (FALSE) ENDDECIS10N;
x> 1 MACRO m {(x+y,RA,BB,CC,DD);
b CC: NEXTSTATE s2;
DD: NEXTSTATE —_;

+50

mix+yd d

[

b

s2

SDL /GR SDL /PR

FIGURE D-5.1.2

Example of a macro call

Figure D-5.1.3 shows two macro definitions which define a syncronization mechanism. Note the use of the
pseudo-formal parameter MACROID to make unique state names. The same exampleis replied in Figure D-5.1.4 making
use of inlets and outlets symbols.

84 Fascicle X.2 —Rec. Z.100 Annex D

MACRODEF INITION |a MARCRODEF INITION a
synsend synrcv >
FPAR msg,prec; FPAR msg,prc; {Haitmsg®

MACROID

{msgd—{TO pre syn(
syn ms?— p neg>

Haitrevs

MACRO!D

rcv < rov — TO prec

b b

FIGURE D-5.1.3

Example of two macros using MACROID

MACRODEFINITION synsend MACRODEFINITION synrev
FPAR msg,pre; FPAR msq,prec;

(

Waitmsg &
MACROID

Haitrcvi
MACRO1D syn(
msg)
rcv rev ——{}0 prec

FIGURE D-5.1.4

Example of the use of inlet and outlet symbols

In the case of nested macros, i.e. when there is one or more macro calls inside a macro definition, it should be noted that
the expansion of the outermost macros does not affect the expansion of the innermost ones. More precisely the
expansion of nested macros is to be considered as if the expansion of a macro should be completed before starting the
expansion of possible macro callsinside.

D52 Generic systems

In SDL it is possible to define different systemsin a single specification, by means of the system parameters. The system
parameters have an undefined value that can be provided externally to obtain a specific system definition according to
the customer need.

Fascicle X.2 —Rec. Z.100 Annex D 85

System parameters are actually external synonyms and can be used in every place a synonym can be used. Of course
before interpreting a system all the external synonyms must be assigned a value. Figure D-5.2.1 shows some valid
examples of the use of external synonyms.

SYSTEM s;

SYN inst.numb INTEGER = EXTERNAL;
SYN rate.incr REAL = EXTERNAL;

BLOCK b;
PROCESS p (inst.numb); /* parametric instance number */

val ;= val + rate.incr ; /* parametric increment */

ENDPROCESS p; - .
ENDBLOCK b;
ENDSYSTEM s;

FIGURE D-5.2.1

Example of use of system parameters

SDL provides also two additional constructs to allow more powerful selections conditioned by external synonyms:

- SELECT construct: conditional selection of a piece of specification. The condition is specified by a boolean
expression which must be evaluable statically, before system interpretation. The piece of specification is
selected when the expression is TRUE.

- ALTERNATIVE construct: allows the conditional selection of one piece of specification, between two or more
alternative pieces. It can be used only to select different transitions in the body of processes, procedures or
services.

D.5.3 Services

D.5.3.1 General

The intention of the service concept is to offer the possibility of partitioning a process definition without introducing
paralelism. Each service can be seen asa"function" offered by the process. It isa partial process definition representing
a 'sub-behaviour' of the process. Such a 'sub-behaviour' is one part of the total process behaviour. Consequently using
the service concept is away of structuring a process.

There are many reasons for structuring a process e.g. to manage complexibility and increase readability. But partitioning
isalso away to isolate certain parts of a process and describe them separately. Such parts can be 'sub-parts of a function
offered by the system. So by the service concept a system function can be isolated by describing a set of subordinate
Servicesin one or more processes.

86 Fascicle X.2 —Rec. Z.100 Annex D

Alarm
function

PROCESS Sub/sonﬁr_iine PROCESS|Trunk PRO
N\ S OO AN
- O OO B

Alarm_printout

FIGURE D-5.3.1

Informal example showing how services in different processes
can compose a superiour function in the system

Note that the language SDL does not have any facilities to compose a system function by picking services from a number
of processes. Such a composition is up to the user and entirely outside the language.

Since a service is isolated from other services and described as a finite state machine with its own state space it may be
developed and changed without affecting the other services. However it should be noticed that the services in a process
often have common data which means that they may affect each other by data manipulation.

Since the behaviour of the process is not changed when it is partitioned into services, services are just an aternative
description of the same behaviour. Of course one could at design time decide to model the behaviour in several
processes instead of one process. However, this would give a different behaviour because several processes run in
parallell and can not share (read and write) data without complicated signal interchange.

Note that structuring a process in services does not mean that the process will entirely disappear. It only means that the
process body, describing the behaviour of the process, has been completely replaced by a number of service bodies.
Formal parameters, declarations and definitions at process level will remain. In addition to these a number of local
definitions and declarations may be included in the service definitions.

Fascicle X.2 —Rec. Z.100 Annex D 87

A service definition consists of the following items, some of which are optional:

Service name
Valid input signal set: alist of signal identifiers defining the signals that can be received by the service.

Procedure definitions: the specification of the procedures which are local to the service. A procedure reference
may also be used.

Data definitions: the specification of user defined newtypes, syntypes, and generators local to the service.

Variable definitions: the declarations of the variables, which are local to the service. These variables can not be
revealed or exported to other processes (the keywords REVEALED and EXPORTED are not alowed). For each
variable declared, the identifier of its sort must be specified. Aninitial value can be specified optionally.

View definitions; the declaration of the variable identifiers that can be used to obtain the values of the variables
owned by other processes. For each variable identifier the variable sort must be specified.

Import definitions: the specification of variable identifiers, owned by other processes, which the service wants
to import. For each identifier, the variable sort must be specified.

Timer definitions: explained in § D.3.11.
Macro definitions explained in § D.5.1.

Service body: the specification of the actual behaviour of the service in terms of states, inputs, outputs, tasks
etc. Compared to a process body, a service body can also contain sending and receiving of priority signals
(8§ D.5.3.2).

In SDL/GR a service definition is represented by means of a service diagram. A service diagram consists of the
following items:

An optional frame symbol: arectangular shaped symbol which contains all the other symbols.

The service heading: the keyword SERVICE followed by the service identifier. The service heading is placed
in the upper left corner of the frame.

An optional page numbering (put in the upper right corner).

Text symbols: a text symbol is used to contain data, variable, view, import and timer definitions which are
local to the service.

Procedure references. a procedure symbol containing a procedure name representing a procedure, local to the
service and separately defined.

Macro diagram: see guidelinesin § D.5.1

Service graph: the specification of the actual behaviour of the service in terms of states, inputs, outputs, tasks
etc. Compared to a process graph, a service graph can also contain sending and receiving of priority signals
(§D.5.3.2).

An example of the service concept is given in Figure D-5.3.2 for the simple process ‘Timer'. The process is structured in
two services which are referenced and defined in two service diagrams (Fig. D-5.3.3).

88

Fascicle X.2 —Rec. Z.100 Annex D

PROCESS Timer

SIGNAL strt AINTEGER);
DCL proc PID,
n INTEGER;

Ra Rb

IR2 [timeout] IRS5 [tick]

FIGURE D-5.3.2

Process diagram with referenced services

There is an internal interface between the two services by means of the signal route 'IR6' conveying a "priority"
signal (§ D.5.3.2).

Fascicle X.2 —Rec. Z.100 Annex D 89

SERVICE set_reset SERVICE count

alive TO clock

proc:=
SENDER

n:=n-1

FIGURE D-5.3.3

Service diagrams
It should be noticed that, since actions (output) are included in the start transition in the first service, no actions are
allowed in the start transition in the second service.

Another example of the service concept isgivenin § D.10.

D.53.2 Priority signals

A priority signal is used for communication between two transitions in different services in a process when no
external signals (from other processes) are allowed to be consumed in the time gap between the transitions. In this
way the transitions are concatenated'.

The following figure (D-5.3.4) isan illustration of concatenation of transitions when priority signals are used.

90 Fascicle X.2 —Rec. Z.100 Annex D

SERYICE K SERVICEL SERVICEM | SERVICE N
Transition 1 Transition 1 Transition 1 Transition 1

L

E
E

A N/
-
\/
we]
—

@
E
E

L2

SERVICE K
Transition 2

Note: The sequence is started with the reception of

K the signal S. The ordinary signal T is consumed after
1 the priority signals B and C.

K.1 L.1 M.1 K.2 N.1
Transitions: TN I B R I

Time; -

FIGURE D-5.3.4

Concatenation of transitions in different services in a process (informal SDL)

The construct to obtain priority signals using the ordinary input queue is explained in the recommendation. By sending
the priority signalsto a preliminary state, they can be dealt with as ordinary signals, causing transitions to a main state.
(Seedls0 D.5.3.3.1).

The following example is an illustration of the consequences of using priority signals. The example is explained without
using the "preliminary/main state" model.

The sequence chart (fig. D-5.3.5) is fetched from the interaction between the services in the process
SUBSCRIBER_LINE' described in § D.10.2.

Fascicle X.2 —Rec. Z.100 Annex D 91

A_subscr._ Connection._

ENV. _actions Disconnection
CONGESTION
CONG_TONE
A_ON_HOOK
CONG[CALL
N\
SEND_ALARM
-)

RESERVE_FOR_
_MEASUREMENT

CONG_TONE_OFF™

IDLE_SUB
A_OFF HOOK
{next call)

{next cal

)

of the line)

I (disconnection

FIGURE D-5.3.5

Congestion_
_supervision

awl]

COMMENTS
'CONGESTION' is consumed

'‘A_ON_HOOK' arrives but is
not consumed

'CONG_CALL' is consumed

'RESERVE_FOR _
MEASUREMENT" is consumed

'‘A_ON_HOOK' is consumed

'A_OFF_HOOK' arrives
'IDLE_SUB' is consumed

'A_OFF HOOK'is consumed

Sequence chart showing how prierity signals can change
the order of the transitions. Each thick vertical line indicates

The chart contains both signals to/from the environment of the process and priority signals between the services. The
priority signal arrows are thicker. The order of the signal arrows (top-down) indicates how the signals are placed in the

execution of one transition

queue. The vertical thick linesindicate how execution of the transitions are ordered in time.

The sequence starts with the signal 'CONGESTION' from the register meaning that the call must be rejected. It also

means an immediate rejection of the next call.

The figure shows that a transition, activated by a priority signal e.g. RESERVE_FOR_MEASUREMENT, starts
before a transition activated by an ordinary signal eg. A_ON_HOOK', in spite of opposite queueing order. The
transition activated by the signal 'RESERVE _ FOR_ MEASUREMENT" disconnects the subscriber line which means
that the next call (signal A_OFF_HOOK") will be immediately rejected.

In the next sequence chart we have the same situation but the diagram does not use priority signals. The services

interwork with ordinary signals.

92 Fascicle X.2 —Rec. Z.100 Annex D

ENV. A_subscr._ Connection._ Congestion_

_actions Disconnection _supervision
'CONGESTION' is
CONGESTION g consumed
o
,#CONG TONE
A_ON_HOOK.]
K CONG_CALL > "A_ON_HOOK" arrives
'A_ON_HOOK' is
@NG_TONE_O consumed
IDLE_SUB
A_OFF_HOOK
(next call)

consurned
‘RESERVE_FOR_
- MEASUREME

AE& 'CONG_CALL'1s
. SEND_AL M\

'IDLE_SUB' is consumed

'A_OFF_HOOK' is

consumed
(next call)

'RESERVE_FOR _

(disconnection _MEASUREMENT is
of the line)
consumed
FIGURE D-5.3.6

Sequence chart with ordinary signals and normal
order of the transitions

Compared with fig. D-5.3.5 we can see that the order of the transitions has been changed. The next call arrives before the
subscriber line is disconnected which means that the call will not be immediately rejected.

D.5.3.3 Transformation

The service and the priority signal are additional concepts because they are composed (modelled) from more basic SDL
concepts like process and signal. To be able to interpret the service and the priority signal semantically they must be
transformed back to these basic concepts. Normally such a transformation need not be performed by the user , at least not
manually, but the user must of course be aware of the transformation. In atool for semantic checking of the service the
transformation could be automatically performed.

After the transformation the services have disappeared and they are replaced by a extended process definition which can be
semantically interpreted. The transformation has defined the behaviour.

D.53.3.1 Transformation of states

In the recommendation specific rules for the state transformation are given.
The result of these rulesisthat the number of statesin the processis the product of the number of statesin the services.

In addition to this using of priority signals will double this product because every transformed state is split in a preliminary
state and a main state. This doubling of the number of states due to priority signals are not dealt with in the following
example of state transformation.

In many cases a lot of states in the "transformed” process are not relevant and the state space can be reduced. This is
discussed in the following example from § D.10.2.

In the process 'SUBSCRIBER LINE' we have 4 services, 'A_subscriber actions, 'B_subscriber_actions,
'‘Connection.Disconnection’ and 'Congestion supervision'. The number of statesis 10, 5, 3and 2ii.e. in total 20.

Fascicle X.2 —Rec. Z.100 Annex D 93

Applying the rules for state transformation on these services we will have 300 states (10*5*3*2) in the process which
means 300 name-tuples. The dimension of the tupleis 4 (4 services). The positionsin the tuple are arranged according to
the following figure (D-5.3.7).

<' pos 1, pos 2, pos 3, pos 4>

A_subscriber_ Congestion_
_actions _Supervision
B_subscriber_ Connection.
_actions Disconnection
FIGURE D-5.3.7

Arrangement of positions in a name tuple
All possible state names in the different positions give 300 combinations.

Ex. <A IDLE, B_IDLE, CONNECTED, NO_ALARM>
<AWAIT_CONN, B_IDLE, CONNECTED, NO_ALARM>
<AWAIT_FIRST DIGIT, B_IDLE, CONNECTED, NO_ALARM>
<AWAILT A_ON_HOOK 2., B_IDLE, CONNECTED, NO_ALARM>
<A_IDLE, BRINGING, CONNECTED, NO_ALARM>

<A_IDLE, B_CONVERSATION, CONNECTED, NO_ALARM>

<AWAIT A_ON HOOK 2., AWAIT_B__ON HOCK, SEIZED, ALARM>

Many of these combinations are not relevant because a subscriber line can never be used as both A-subscriber party and
B-subscriber party in the same call. It means that the 10 statesin 'A_subscriber_actions' can only be combined with one
state in 'B_subscriber_actions which is 'B_IDLE'. It also means that the 5 states in 'B_subscriber actions' can only be
combined with one state in 'A_subscriber_actions' (A_IDLE). The number of relevant states is then (10*1*3*2) +
(1*5*3*2) =90

A reduction of the state space, as examplified above, is dependent on the current example and can not be formalized in
general rules applicable for automatic transformation. However, if the transformation is manually performed the state
space can probably be reduced. Thus, when comparing the complexity of a process designed without services with the
complexity of the same process partitioned into services the process with the reduced state space should be used to get a
fair comparison. In most cases using of services will greatly reduce the number of states.

D.5.3.3.2 Transformation of transitions

In the recommendation specific rules for transformation of transitions are given. The following example is an
illustration of transformation. The process in the example is a specification of a simple protocol. The process is
partitioned into two services, Send and Receive.

94 Fascicle X.2 —Rec. Z.100 Annex D

PROCESS Simple_protocol
SERVICE Send SERVICE Receive

IDLE_S IDLE R

M)

DATA r TOR
WAIT_S}— — |FORACK

G, G

EX X |

I
‘ WAIT_S)— ‘I FOR ACK

=] o] oo

R2 R3

R1 [oaT4 L [DELVER]

R4

FIGURE D-5.3.8

Process diagram incluoding two service diagrams

The following figure (D-5.3.9) is a state overview diagram for the two services. The transitions are numbered 1-7.

Fascicle X.2 —Rec. Z.100 Annex D 95

Send Beceive

. FIGURE D-5.3.9

State overview diagrams with numbered transitions

Applying the formal rules for transformation of states and transitions the result is the following state overview diagram
for the process. No priority signals are used, so the extra splitting of states into preliminary and main is not required and is
not shown.

IDLE_S,WAIT_R

FIGURE D-5.3.10

State overview diagram for the transformed services

The number of states can not be reduced and the process graph is shown in fig. D-5.3.11. 'The state names in the process
graph correspond to the name tuplesin the figure D-5.3.10. Example: IS.IR correspondsto IDLE S| IDLE R.

96 Fascicle X.2 —Rec. Z.100 Annex D

(NOK'~~_('OK)

7]
7]
(W)
=
=
>
—
D3

FIGURE D-5.3.11

Process graph transformed from two service graphs

D.5.4 Guidelines for state-oriented representation and pictorial elements
This chapter explains the state-oriented representation of SDL/GR and pictorial elements.

The first section (paragraph D.5.4.1) contains general comments on the state-oriented representation ; on its feature, its
suitable applications, and its variations.

The second section (paragraph D.5.4.2) explains state description by pictoria elements.

Fascicle X.2 —Rec. Z.100 Annex D 97

D.54.1 General comments on state-oriented representation

The SDL/GR gives a choice of three different versions to describe a process diagram.
Thefirst oneis called the transition-oriented version of SDL/GR, in which transitions are described exclusively by explicit
action symbols.

The second one is called the state-oriented version of SDL/GR or state-oriented pictorial extension of SDL, in which states
of a process are described using state picture, and transitions are only implied by the difference between originating and
terminating states.

Thelast oneis caled the combined version which is a combination of both versions.
Examples of these three versions are given in Annex E of this Fascicle.

The transition-oriented version is suitable when the sequence of actions is important and detailed state descriptions are
not important.

The state-oriented version describes the state declaratively and in detail, therefore it is suitable when a process state is more
important than the sequence of actions within each transition, when intuitive pictoria explanation is desirable, and when
resources and their relations associated to the state are of interest.

The state pictures are usually described by using pictorial elements which indicate relevant resources of the current state
of the process. It is available for applications for which suitable pictorial elements are defined, therefore user can apply
this representation to any applications by defining appropriate pictorial elementsif needed.

The combined version is suitable when both the sequence of actions within each transition and detailed state descriptions
are under consideration.

D.54.2 State picture and pictorial element

D.5.4.21 Pictorial element and qualifying text

If the state picture option is chosen , a state picture consists of pictorial elements and qualifying text shown in
Figure D-5.4.1 a) to d).

This combination makes state pictures understandable. For example, Figure D-5.4.1 a) gives the meaning of a dia
receiver manipulated by the process, example b) gives the meaning of adial tone sender that is sending a permanent signal
to the environment.

Note that output signals (non-permanent signals) and the relevant resources are not described in state pictures, output
signals may be described in transition diagram.

Example c) shows a timer whose expiration is always represented by an input. Note that the recommended pictorial
element for timer incorporates the relevant input signal tl.

The last example d) means that a voice message recorder is now recording.

The resource identity may be heavily abbreviated, and where possible should be placed inside appropriate pictorial
element. It is then quite obvious which pictorial elements are being qualified

98 Fascicle X.2 —Rec. Z.100 Annex D

é DR § | ; pictorial element of
signal receiver .
DR ;Qualifying text (resource identifier)

of dial receiver
a) Signal receiver

(DT (; pictorial element of

permanent signal sender

DT ; Resource identity of
dial-tone sender

b) permanent signal sender

@ t1 ; time out signal name

¢) Timer

MSG | recording

d) Control element

FIGURE D-54.1

Examples of pictorial element with qualifying text

D.54.2.2 Compl eteness of state picture

Sufficient pictorial elements and qualifying text should be assigned to each state picture in order to show:

a)

b)
c)

d)
€)

f)
0)

what objects or resources are being considered by this process during the current state. Examples of resources
are; switching paths, signalling receivers, senders of permanent signal's, and switching modules;

whether one or more timers are currently supervising this process;

in case that this process concerns call-handling ,whether call charging is currently in progress or not ,and which
subscribers are being charged during this state of the call;

what objects owned by another process (environment) are being considered to have relations to resources of the
process during the current state;

the output permanent signals which are output during this state;
the relationship between signals and resources in the state;

the state of resources relevant to the process current state.

D.54.23 Example

An example of the application of the principle expressed above isillustrated by the state picture in Figure D-5.4.2. It will be
seen that during this state:

a)

b)

c)
d)

the resources considered by the process consist of a dialed digit receiver ,a dial-tone sender ,a subscriber's
handset owned by environment, and switching paths connecting these items;

atimer tO is currently supervising this process;
no charging of the call isin progress;

the subscriber has been identified as A-party ,but no other category information is taken into account;

Fascicle X.2 —Rec. Z.100 Annex D 99

€) the following input signals are awaited; A_on_hook (i.e. the handset on-hook signal), digit (i.e. the dialled
digit) and t0 (i.e. the supervising timer t0 is running);

f) the output permanent signal DT (i.e. the dial-tone) has been output prior to and during this state.

/A Await_first_digit "\

DT

/N 3 o

>A,_on_hook > digit > to

I I [
I I I

FIGURE D-5.4.2

Example of a state in a call-handling process

D.54.24 Consistency checking feature of SDL diagrams with pictorial element

It is clear that the state picture is more compact and in a certain sense puts more information under the eyes of readers;
but at the same time one has to look very closely to the resource to work out the exact set of actions performed in the
transition.

In addition it is not possible to tell, looking at the state picture alone, the order of actionsin the transition.

Pictorial elements shown outside the block boundary symbol imply elements that are not directly controlled by the given
process, and pictorial elements shown within the block boundary symbol imply elements that are directly controlled by
the given process. For example, the call process that is partially specified in Figure D-5.4.3 can alocate or deallocate
ring-tone sender, ringing sender and speech paths, and start or stop timer t4, but it cannot control directly subscriber's
handset condition.

In designing logic from an SDL specification with pictorial elements, only those pictorial elements shown inside the
block boundary will affect the processing actions performed during transition sequences. The pictorial elements shown
outside the block boundary are normally included in a state picture:

a) because they indicate resources and state of environment which have concern in input signal of the process
during the given state;
b) to improve the intelligibility of the diagram.

100 Fascicle X.2 —Rec. Z.100 Annex D

/ i Ringing \

~
AN 2o,

0T
‘N

A

<

FIGURE D-54.3 ‘

Example of a transition between two states,where
all processing actions are implied by
the difference in the state pictures

D.54.25 Use of the timer symbol
Whether or not pictorial elements are used , atimer expiration is always represented by an input.
The presence of atimer symbol in a state picture implies that atimer is running during that state

Following the general principle stated in the Recommendations, the starting, stopping restarting and expiration of timers
is shown using pictorial elementsin the following manner:

a) To show that a timer is started during a given transition ,the timer symbol should appear in the state picture
corresponding to the end of that transition but not in the state picture corresponding to the start of that
transition.

b) To show that a timer has been stopped during a transition, the timer symbol should appear in the state picture
corresponding to the start of that transition but not in the state picture corresponding to the end of that
transition.

C) To show that a timer has been restarted during a transition, an explicit task symbol should be shown in that
transition.(Two examples are shown in Figure D-5.4.4)

d) The expiration of a particular timer is shown by an input symbol associated with a state in which the state

picture includes the corresponding timer symbol. Of cource more than one timer may concurrently supervise
the same process if required, as shown in Figure D-5.4.5.

Fascicle X.2 —Rec. Z.100 Annex D 101

/1 Before \ /3 Await_new_digit N

® @

> t1 —|:20 ms

SET(NOW-+
20*ms, t1)

v
/2 After \

Digit_
_analysis'

I i
(...) (lnsufficient digit’)

|
(-) ‘
]
é é SET(NOW+
20*ms,t1)

©

a) Restart of a timer following b) Restart of a timer when the timer
the timer expiration has not yet expired

Note - Each timer t1 has two mutually exclusive conditions: active and inactive,

FIGURE D-5.4.4

Restart of a timer

102 Fascicle X.2 —Rec. Z.100 Annex D

/17 | Await_first_digit "\

DT

®

| 1

Yo v) i > o
& &

ﬂa Await_next_digit \

@ 2 PR

NG

Note: Timer t0 supervises the arrival of the first digit,whereupon dial-tone is removed from the call
and timer t0 is stopped. Timer t1 continues supervising the arrival of sufficient digits to permit
routing of the call.

FIGURE D-5.4.5

Example of the use of two supervising
timers in the same state
D.55 Auxiliary diagrams

To aid the reading and understanding of large and/or complex process diagrams, the author may provide informal
auxiliary diagrams. The purpose of such documents is to give an overview or simplified description of the process
behaviour (or part of it). Auxiliary documents do not replace but give an introduction to SDL documents.

In this section examples of some commonly used auxiliary diagrams are given, i.e. state overview diagram, state/signal
matrix, sequence chart. (The block tree diagram described in 8 D.4.4 is an auxiliary diagram as well).

D.55.1 Sate overview diagram

The intention with the state overview diagram is to give an overview of the states of a process and what transitions
between them are possible. Astheintention isto give an overview, "unimportant” states or transitions may be omitted.

The diagrams are composed of state symbols, directed arcs representing transitions, and optionally start and stop symbols.

The state symbol should contain the name of the referred state. The symbol may contain several state names and an
asterisk (*) may be used as notation for all states.

To each of the directed arcs the name of the signal, or set of signals, causing the transition can be associated as well as
possible outputs sent during the transition.

An example of a state overview diagram is given in Figure D-5.5.1.

Fascicle X.2 —Rec. Z.100 Annex D 103

STATE OVERVIEW A

sA
12/~ 11/0ut2, 0ut3
L1/~ li2/0ut4
\ I 14/-
B { sc
13/0ut 1
FIGURE D-5.5.1

Example of a state overview diagram

A state overview diagram for a process may be separated into several diagrams each covering different aspects, e.g.

"normal case", "fault_handling", etc.

IDLE
SEIZE FREE D1SCARD
BUSY

FIGURE D-5.5.2

Example of a separated state overview diagram

D.55.2 Sate/signal matrix

The state/signal matrix is an aternative to the state overview diagram containing exactly the same information.

The diagram consists of a two-dimensional matrix indexed on one axis by all the states of the process, and on the other
by al valid input signals for the process. In each of the matrix elements the next state is given together with possible
outputs during the transition. A reference may be given to where to find the combination given by theindices, if it exists.

The element corresponding to the dummy state "START" and the dummy signal "CREATE" is used to show which isthe

initial state of the process.

104 Fascicle X.2 —Rec. Z.100 Annex D

STATE/SIGNAL A
STATE "START " SA SB sC
&
"CREATE" SA/- - - -
11 - SB/- - SA/0ut2,0ut3
12 - SC/0ut4 | SA/- -
13 - - SC/0uti -
14 - - - “STOP" /-
FIGURE D-5.5.3

Example of state/signal matrix

The matrix may be separated in sub-parts contained on different pages. The references are the normal references used by

the user in the documentation.

Preferably signals and states should be grouped together, so that each part of the matrix covers one aspect of the process

behaviour.

D.55.3 Sequence chart

The sequence chart may be provided to show allowed sequences of signals interchanged between services, processes,

blocks and their environment.

The chart is intended to give an overview appreciation of the signa interchange between parts of the system. The complete
signal interchange or only parts of it may be shown depending on the aspects that are to be highlighted.

The columns in the chart indicate the communicating entities (services, processes, blocks or the environment).

Their interactions are represented by a set of directed lines, each one representing asignal or a set of signals.

Fascicle X.2 —Rec. Z.100 Annex D

105

SIGNAL SEQUENCE A_EXCHANGE

PROCESS PROCESS

ENVIRONMENT A_EXCHANGE B_EXCHANGE

OFF_HOOK

mAL‘_,_,_—:IQI-\]—E—"”/
e

IDLE

SET_UP

W

4-—*—8;1"'1’5””_
RING_TONE

— | ewewm

«SET_UP ,

1ICONV.a

== ON_HOOK
CLEAR

AN —

IDLE
%

IDLE 131 SUPERVISION

FIGURE D-5.54
Example of sequence chart

Each sequence may be annotated so that it is clear what set of information is interchanged. Each line is annotated with
the information involved (signal names or procedures).

A decision symbol can be placed on the columns to indicate that the following sequence is valid if the indicated
condition is true. Usualy in this case the decision symbol appears several times indicating the different sequences
resulting from the different values of the condition.

This diagram can show completely all the sequences of signals interchanged or only a meaningfull subset.

A usefull application of this diagram is the representation of the mutua interaction of services resulting from the
partitioning of a process.

Sequence charts will usually not cover al possible sequences; they are often preliminary to the full definition.

D.6 Definition of SDL data

D.6.1 Guidelines on data in SDL

This section gives more information on the concepts defined in § 5 of the SDL Recommendation. The main difference
between this section and the former Z.104 isthat it is refined for clarification and for harmonisation with 1SO. Some of
the keywords have been changed and there are some extensions, but the semantics are consistent with the intended
meaning of the red book. The use of datain 8§ 2, § 3 and § 4 of the new recommendation (previously Z.101 - Z.103) is
unchanged!

D.6.1.1 General introduction

The approach the data types of SDL are based on is the 'abstract data type. This is an approach where one does not
describe HOW atype must be implemented, but only tells WHAT will be the result of operators when applied to values.

106 Fascicle X.2 —Rec. Z.100 Annex D

When abstract data is defined, each segment of the definition, called a "partia type definition" is introduced by the
keyword NEWTY PE. Each partial type definition affects the others so that all the partial type definitions at system level
congtitute a unique data type definition. If more partial type definitions are introduced at a lower level (e.g. at block level)
they constitute together with the higher level definitions one data type definition. That is at any point in the specification
thereisjust one data type definition.

Essentially the data type definition consists of three parts:

a) Sort definitions,
b) Operator definitions,
c) Equations.

Each of these parts is explained below. The data type definition is structured in partial data type definitions, each
introducing one sort. The operator definitions and equations are spread over the partial data type definitions.

D.6.1.2 Sorts

A sort isaset of values. This set can have afinite or infinite number of elements, but cannot be empty.

Examples:

a) The set of values of sort Boolean is{ True, False}.

b) The set of values of sort Natural is the infinite set of natural numbers{ 0, 1,2, ... } .
c) The set of values of sort Primary_colour is{Green, Red, Blue}.

Every element of a sort need not directly be provided by the user (it would take an infinite amount of time in case of the
natural numbers) but the name of the sort must be given. In the concrete syntax the keyword NEWTY PE is directly
followed by the name of the sort (some other possibilities will be seen later). This name is mainly used in operator
definitions, asexplained in 8 D.6.1.3 and in variable declarations.

D.6.1.3 Operators, literals and terms

Vaues of asort can be defined in three ways:

a) by enumeration; the values are defined in the literals-section,
b) by operators; values are produced as results of ‘applications of operators,
C) by a combination of enumeration and operators.

The combination of literals and operators gives terms. Relations between terms are expressed using eguations. The
following sections deal with literals, operators and terms; § D.6.1.4 deals with the equations.

D.6.131 Literals

Literals are enumerated values of a sort. A partia type definition does not need to contain literals; all elements of the sort
could be defined via operators. Literals may be regarded as operators without arguments. A relation between literals may
be expressed in equations. In the concrete syntax the literals are introduced after the keyword LITERALS.

Examples:
a) The definition of sort Boolean contains two literals, namely True and False. So the definition of the boolean
type looks like:
NEWTY PE Boolean
LITERALS True, Fase
ENDNEWTY PE Boolean;
b) The sort Natural may be defined using one literal, the zero. The other values can be generated using this literal
and operators.
c) The values of sort Primary_colour can be defined similarly to the boolean literals:
NEWTY PE Primary_colour
LITERALS Red, Green, Blue
ENDNEWTY PE Primary.colour,
d) In § D.6.1.3.2 the third example (c) shows a partia type definition without literals.

Fascicle X.2 —Rec. Z.100 Annex D 107

D.6.1.3.2 Operators

An operator is a mathematical function mapping one or more values (possibly from different sorts) to a result value.
Operators are introduced after the keyword OPERATORS, the sort(s) of their argument(s) and the sort of the result are
denoted too (thisis called the signature of the operators).

Examples:
a) In the type boolean an operator called "not" can be defined, having one argument of sort Boolean and aresult of
sort Boolean too. In the definition of the boolean type it appears as follows:
NEWTY PE Boolean
LITERALS True, Fase
OPERATORS "Not": Boolean -> Boolean ;
ENDNEWTY PE Boolean;
b) The operator referred to in the previous section needed to construct all natural numbers is Next. This operator
takes an argument of sort natural and gives a natural value (the next higher) as a result.
c) A new type for colours can be defined which has no literals but uses literals of sort Primary_colour and some
operators:
NEWTY PE Colour
OPERATORS

Take: Primary_colour -> Colour ;
Mix : Primary_colour, Colour -> Colour ;

ENDNEWTY PE Colour;

The intention is to take a primary and regard it as a colour, and then start mixing more primariesinto it to get
more colours.

D.6.1.3.3 Terms

Using literals and operators the set of terms can be constructed for each sort as follows.
1 Collect al literalsin a set of the sort they are defined in - each literal isaterm.

2. For each operator a new set of terms is created where the operator is applied to all possible combinations of
terms of the previousdly created sets of the correct sort.

a) For sort Boolean the set of literals is { True, False}. The result of this step is { Not(True), Not(False))
because we only have operator Not.

b) For sort Natural the result of thisstepis{ Next(O) } .

c¢) For sort Colour the set of literals is empty, but the result of this step is { Take(Red), Take(Qreen),
Take(Blue) } .

3. The terms of the sets created in the previous step are all of the sort of the result of the operator applied. e.g., all
results of the operator Not are of the boolean sort. Now the union is taken of all sets of the same sort, both the
original and the newly created sets.

a) For sort Boolean this union gives the set { True, False, Not(True), Not(False)).
b) For the natural numbers this step gives the set {0, Next(O)}
4. The last two steps are repeated over and over, in general defining an infinite set of terms.

a) The set of boolean terms generated by the literals True and False and the operator Not is {True, False,
Not(True), Not(False), Not(Not(True)), Not(Not(False)), Not(Not(Not(True))), ...)

b) The set of natura terms generated by literal O and operator Next is {0, Next(0), Next(Next(0)),
Next(Next(Next(0))), }

¢) The set of colour terms generated by the literals Red, Green and Blue of sort Primary_colour and the
operators Take and Mix is (Take(Red), Take(Green), Take(Blue), Mix(Red, Take(Red)), Mix(Red,
Take(Green)), Mix(Red, Take(Blue)), Mix(Green, Take(Red)), Mix(Green, Take(Green)), Mix(Green,
Take(Blue)), Mix(Blue, Take(Red)), Mix(Blue, Take(Green)), Mix(Blue, Take(Blug)), ... }.

108 Fascicle X.2 —Rec. Z.100 Annex D

D.6.14 Equations and axioms

In general the number of terms generated as in the previous section is greater than the number of values in the sort. E.g.,
there are two boolean values, but the set of boolean terms has an infinite number of elements. There exists, however, a
possihility to give rules that state what terms are regarded as denoting the same value. These rules are called equations,
and they are explained in the next subsection. Two specia kinds of equations, axioms and conditional equations, are
treatedin § D.6.1.4.2 and § D.6.1.4.3.

Equations, axioms and conditional equations are all given, in the concrete syntax, after the keyword AXIOMS. This
keyword is kept for historical reasons.

D.6.14.1 Equations

An equation states which terms are regarded as denoting the same value. An equation relates two terms which are
separated by the equivalence-symbol ==.

For instance, "Not(True) == False" states that the terms Not(True) and False are equivalent; wherever Not(True) is
found, False can be substituted without changing the meaning and vice versa.

By giving some eguations the set of terms is divided in disjoint subsets of terms which denote the same value. These
subsets are called equivalence classes. In daily speaking, equivalence classes are identified with the values.

Examples:
a) The set of terms of sort boolean is divided in two equivalence classes of terms by the following two axioms:
Not(True) == False;
Not(False) == True;
The resulting equivalence classes are:

{True, Not(False), Not(Not(True)), Not(Not(Not(False))), Not(Not(Not(Not(True)))),
Not(Not(Not(Not(Not(False))))), ...}
and

{False, Not(True), Not(Not(False)), Not(Not(Not(True))), Not(Not(Not(Not(False)))),
Not(Not(Not(Not(Not(True))))),}.

These two equivalence classes are identified with the values True and False.

b) In the case of colours one wants to specify that mixing a primary with a colour that contains the primary makes
no difference. Furthermore, the order in which primaries are mixed isirrelevant. This can be stated in equations
asfollows:

Mix(Red, Take(Red)) == Take(Red) ;

Mix(Red, Mix(Red, Take(Green))) == Mix(Red, Take(Green)) ;

Mix(Red, Mix(Red, Take(Blug))) == Mix(Red, Take(Blue)) ;

Mix(Red, Mix(Green, Take(Red))) == Mix(Green, Take(Red)) ;

Mix(Red, Mix(Blue, Take(Red))) == Mix(Blue, Take(Red)) ; etcetera.

Thisis alot of work, because for all permutations of Red, Green and Blue similar equations appear. Therefore
SDL has the FOR-ALL-construct, which introduces value names which stand for an arbitrary equivalence class
(or the value associated with this equivalence class). In the situation above this can be very helpful; all
equations stated above and those indicated by etcetera can be written in afew lines as follows:

FORALL pl, p2 IN Primary_colour
F1* (Mix(pl, Take(pl)) ==Take(pl);

[* 2% Mix(pl, Mix(pl, Take(p2))) == Mix(pl, Take(p2)) ;
[* 3%/ Mix(pl, Mix(p2, Take(pl))) _=Mix(p2, Take(pl)) ;
[* 4% Mix(pl, Take(p2)) == Mix(p2, Take(pl));
FOR ALL cIN Colour
[*5*/ (Mix(pL,Mix(p2,c))== Mix(p2, Mix(pl.c));
[*6*/ Mix(pl, Mix(p2,c)) ==Mix(Mix (pl, Take(p2)),c))
)
In the equations above there is overlap but this is not a problem as long as the equations do not contraddict

each other.

Fascicle X.2 —Rec. Z.100 Annex D 109

The equations above create 7 equivalence classes in the set of terms of sort Colour, so with these equations
there are 7 colour-values. The following terms are in different equivalence classes:

Take(Red), Take(Green), Take(Blue), Mix(Red, Take(Green)),
Mix(Green, Take(Blue)),

Mix(Blue, Take(Red)),

Mix(Blue, Mix(Green, Take(Red))).

All other terms of sort Colour are equivalent to one of the terms above.

In the examples of equations with the FOR-ALL-construct, so called explicitly quantified equations, the
information that p | and p2 are value identifiers of sort Primary_colour is redundant; the argument of operator
Take and the first argument of operator Mix can only be of sort Primary_colour. In general it makes the
equations more readable when they are quantified explicitly, but it is allowed to omit the quantification if the
sort of the value identifiers can be deduced from the context. In that case the equation is said to be implicitly
quantified.

Example:
The equations 4 and 5 above are the same as

Mix(pl, Take(p2)) == Mix(p2, Take(pl)) ;
Mix(p |, Mix(p2,c)) == Mix(p2, Mix(p1,c));

D.6.1.4.2 Axioms

Axioms are just a specia kind of equations, introduced because a lot of equations in practical situations relate to
booleans. In that case equations tend to be of the form ... == True ; i.e. they state that some term is equivalent to True.

Example:

Suppose that for type colour an operator is defined: Contains: Colour, Primary_colour -> Boolean ; which is intended to
give True if the primary is contained in the colour and False otherwise. Some of the involved equations are:

FOR ALL pIN Primary_colour

(Containg(Take(p), p) ==True;
FOR ALL cIN Colour
(Containg(Mix(p,c),p) ==True)
)

The '== True-part of these equations may be omitted, and the results are called axioms. Axioms can be recognised by the
absence of the equivalence-symbol ==, and they denote terms that are equivalent to the value True of sort Boolean.

The construction of the second equation may look a little forced. A better way to write these equations is shown after the
introduction of some helpful constructs.

D.6.1.4.3 Conditional equations

Conditional equations are a means to write equations which only hold if some conditions hold. The conditions are denoted
with the same syntax as unconditional equations and separated by a ==> symbol from the equation that holds if the
condition holds.

Example:
The standard example of aconditional equation is the definition of division in the type real where

FOR ALL x, zIN Real
(z/=0==True ==> (X/z)*z::x)

states that if the condition "z not equals 0" holds then division by z followed by multiplication by z gives the original value.
This conditional equation states nothing about what should happen if a value of sort Real is divided by zero. If one wants
to specify what happensin case of division by zero a conditional equation of the form

FOR ALL x, zIN Real

(z=0==True ==> (x/z)*z==...)

110 Fascicle X.2 —Rec. Z.100 Annex D

must be given. In these cases, however, a so called ‘conditional term' on the right hand side is recommended for
readability reasons. In the case above the equation would be:

FOR ALL x, zIN Real

((x/z)*z == IFz/=0
THEN x
ELSE...
Fl

D.6.1.5 More on equations and axioms

The following two sections explain some difficulties one may encounter when operators have results of an already
defined sort. § D.6.1.5.3 explains the concept of error asterm in an equation.

D.6.15.1 Hierarchy consistency

At any point in an SDL specification there is one and only one data type definition. This data type definition contains the
predefined sorts, operators and equations and all . sorts, operators and equations defined by the user in the partial type
definitions visible at that point. (Thisiswhy atext NEWTYPE...ENDNEWTY PE is called a partial type definition.)

This has some consequences for type definitions on lower levels. They might influence the type in an undesired way.
E.g., one could erroneously specify that two terms are equivalent, thereby making them equivalent while they are not
equivalent in a surrounding scope.

Itisnot allowed to give equations in such a way that:
a) values of a sort which are different in a scope at a higher level are made equivalent;
b) new values are added to a sort defined in a scope at a higher level.

Thismeans e.g. that in ablock at system level, partial type definitions specified by the user containing an operator with a
predefined result sort must relate all terms produced by this operator to values of this result sort.

Examples:
a) If, for some reason, one gives the axiom;
FOR ALL n, mIN Integer
((Fact(n)=Fact(m)) => (n=m))

with the intention to specify that if the results of operator Fact are the same, then the arguments are the same.
(Note that => is the boolean implication; this has little to do with the conditional equation sign ==>.) Then by
accident values are unified. From the equations in the previous example it can be derived that
Fact(0) =Fact(1), and this last equation states that 0 and 1 are different denotations of the same value. From
this last equation it can be proved that the number of elementsin the Integer sort is reduced to one.

With the help of a conditional equation it can be stated that, provided n and m are not equal to zero, the same
result of operator Fact on n and m impliesn=m. In SDL:

FOR ALL n, m IN Integer
(n/=0,m/=0 =>(Fact(n)=Fact(m))=>(n=m))

Note that this last equation doesn't add anything to the semantics of Integers; it is a theorem that can be derived
from the other equations. On the other hand, the addition of a provable equation does not harm.

a) Suppose one discovers the need of an operator for factorials when specifying some type. In the partial type
definition of this type the operator Fact is introduced:

Fact: Integer -> Integer ;
and the following equations are given to define this operator:

Fact(0) == 1,
FOR ALL nIN Integer
(n>0==>Fact(n)==n* Fact(n-1))

These equations do not define Fact(- 1) and so thisis aterm of sort Integer which has no relation with other
terms of this sort. Therefore Fact(-1) is a new value of sort integer (and the same holds for Fact(-2),
Fact(-3), etc.). Thisisnot allowed. The example b) of § D.6.1.5.3 shows a correct definition of fact.

Fascicle X.2 —Rec. Z.100 Annex D 111

D.6.1.5.2 Equality and inequality

In each type the operators for equality and inequality are implied. So, if a partia type definition introduces sort S, then
there are implicit operator definitions:

"=":S,S->Boolean;
"/ 'S, S->Boolean;

(Note: The quotes specify that = and 1= are used as infix operators).
The equality operator has the properties one would expect;

a=a,
a=b=>b=a,
a=bANDb=c=>a=c,
a=b=>a==b,
a=b=>o0p(a)=op(b) for all operators op.
The above properties are not written in SDL syntax and must not be stated in axioms or equations because they are
implied. The boolean value obtained when this operator is applied is True when the terms on the left hand side and the

right hand side are in the same equivalence class, otherwise the value obtained is False. If it is not explicitly specified
that the value is either True or False, the specification isincomplete.

For the inequality operator the semantics are best explained by an SDL -equation:

FORALL a, bINS
(a/l=b==Not(a=b))

There is no difference between equality and equivalence. Two terms which are equivalent denote the same value and the
equality operator between them gives the result True.

D.6.1.5.3 Error

In previous examples the need was felt to specify that application of operators to some values is regarded an error. SDL
has a means to specify thisformally: the Error. Error should be used to express:

“application of this operator to this value is not allowed and when encountered the future behaviour is
undefined."

In the concrete syntax this is denoted by the term Error!, which cannot be used as argument of an operator.

When Error is the result of an operator application, and this application is an argument of another operator, the outer
operator application has Error as its result too (error-propagation). In a conditiona term the THEN-part or the
EL SE-part is evaluated, so one of them can be Error without Error being evaluated (as the other aternative is
evaluated).

Examples:
a) In the example of division of values of sort Real the dots can be filled in:
FORALL x, zIN Real
((x/z)*z == 1Fz/=0
THEN x
ELSE Error! .
Fl
)

For clarity one could add:

FORALL x IN Red
(x [/ 0==Error!)
b) In the example with operator Fact one could specify that application of this operator on negative integers is

regarded as an Error. This avoids that Fact(-1), Fact(-2), ... become new values of the Integer sort. A good
definition of operator Fact would be;

n<o0 ==> Fact(n) == Error! ;
Fact(0)==1;
n>0 ==> Fact(n) == Fact(n-1) * n;

112 Fascicle X.2 —Rec. Z.100 Annex D

These three lines are much clearer than the programming style equation below. In general the conditional term
should be used if there are two complementary cases; nesting of conditional terms ruins the readahility, as can
be seen from:

Fact(n)==1Fn>0
THEN Fact(n-1)* n

ELSE IFn=0
THEN 1
ELSE Error!
FI

D.6.2 Generators and inheritance

This section deals with two constructs which can be used to specify types which have common parts. The generator
specifies not a type but a schema which becomes a type when the forma sorts, operators, literals and constants are
replaced by actual ones.

Inheritance offers the possibility to make a new type starting from an already existing type. Literal and operator names
can be renamed and additional literals, operators and equations can be specified.

D.6.2.1 Generators

A generator definition defines a schema parameterised by formal names of sorts, literals, constants and operators.
Generators are intended for types which are “variations on a theme, such as sets of items, strings of items, files of
records, look-up tables, arrays.

This will be explained using an example for which variations can be envisaged. Suppose there is a need for a type that
resembles the mathematical notion of a set of integers. The following text is part of the type definition of this integer-set.

NEWTYPE Int_set
LITERALS empty_int_set
OPERATORS
Add : Int_set, Integer -> Int_set ;
Delete : Int_set, Integer -> Int_set ;
Is_in : Int_set, Integer -> Boolean
AXIOMS
/1% Delete(empty_int_set, int)
== empty_int_set;
[*2* Is_in(set,intl) = false ==
Delete(Add(set, intl), int2)
== JIFint]l =int2
THEN set
ELSE Add(Delete(set, int2), intl)
: FI;
3% TIs_in(empty_int_set, int)
== False;
/4% TIs_in(Add(set, intl), int2)
== intl =int2 OR Is_in(set, int2) ;
/5% Add(Add(set, intl), int2)
== [Fintl =int2 _
THEN Add(set, intl)
ELSE Add(Add(set, int2),intl)
FI
ENDNEWTYPE Int_set; '

FIGURE D-6.2.1

Newtype Int_set

Fascicle X.2 —Rec. Z.100 Annex D 113

All equations have implied quantification.The first equation states that deletion of an element from the empty set gives
the empty set as result. The second equation tells that deletion after insertion of the same element gives as result the set
before the insertion (provided the set does not contain the element), otherwise the order of insertion and deletion can be
interchanged. The third equation states that the empty set contains no elements. The fourth equation tells that an element
isinaset if it isthe last added element or if it was in the set before the last element was added. The last equation states
that the order of addition of elements to the set does not make any difference.

In the example of Figure D-6.2.1 Int_set is just an example of a set, and if one needs a Pld_set, a Subscriber set and an
Exchange name_set in the same specification as well, no one will be surprised that they all contain the operators Add,
Delete and Is_in and "a literal for the empty set. The equations given for these operators easyly generalise to the other
sets.

This is the place where the generator-concept proves its usefulness, the common text can be given once and can be used
several times. Figure D-6.2.2 shows the generator. (Note that formal sort names are introduced by the keyword TY PE.
Thisisfor historical reasonsonly.)

GENERATOR Set (TYPE Item, LITERAL empty_set)

LITERALS empty_set
OPERATORS

Add : Set, Ttem -> Set ;

Delete : Set, Item -> Set ;

Is_in : Set, Item -> Boolean
AXIOMS
1% Delete(empty_set, itm)

== empty_set;
/2% Is_in(st,itml) = false ==
Delete(Add(st, itml), itm2)

== [Fitml =itm2
THEN" st
ELSE Add(Delete(st, itm2), itm1)
H
/*3* Is_in(empty_set, itm)
== False;

/¥4* TIs_in(Add(st, itm1), itm2)
== itml =itm2 OR Is_in(st, itm2);
/5% Add(Add(st, itm1), itm2)
== JFitml =itm?2
THEN Add(st, itm1)
ELSE Add(Add(st, itm2), itm1)
FI
ENDGENERATOR Set;

FIGURE D-6.2.2

Generator Set

Instead of using Integer the formal type Item is used, and to be able to give different names to the empty integer-set and
the empty setsin other typesthisliteral is made aformal parameter too.

With this generator the type Int set can be constructed as follows:

NEWTY PE Int set Set(Integer, empty_mt_set)
ENDNEWTYPE Int_set ;

Comparing Figure D-6.2.1 and Figure D-6.2.2 we can see that:

a) GENERATOR and ENDGENERATOR are replaced by NEWTY PE and ENDNEWTY PE respectively,

b) the generator formal parameters (i.e., the text between parentheses after the generator name) are del eted,

C) Set, Item, and empty_set are replaced throughout the generator by Int set, Integer, and empty mt set
respectively.

114 Fascicle X.2 —Rec. Z.100 Annex D

So there is absolutely no difference between thisInt_set and the onein Figure D-6.2.1, but ...
- if one needs a set of Pld-values the type can be created by

NEWTY PE Plid set Set(Pld, empty_pid_set)
ENDNEWTYPE Pid_set;

- if one needs a set of subscribers, where subscribers are represented by atype that introduces sort Subscr, the set
of subscribers can be created by

NEWTY PE Subscr_set Set(Subscr, empty_subscr_set)
ENDNEWTY PE Subscr_set ;

This does not only save paper, but life becomes easier too because one only has to think once about sets or this work can
be delegated to skilled abstract data type specidists.

Example:

This example shows a generator using a formal sort, operator, literal and constant. It describes a row of items with a
maximum length max_length. The sort has one literal to denote the empty row and operators for insertion and deletion of
items in/from a row, concatenation of rows, selection of a subrow, and determination of the length of a row. This last
operator is made formal to be able to renameit.

GENERATOR Row (TY PE Item, OPERATOR Length, LITERAL Empty,
CONSTANT max_length)
LITERALS Empty

OPERATORS
Length: Row -> |nteger ;
Insert: Row, Item, Integer -> Row ;
Delete: Row, Integer, Integer -> Row ;
“II" . Row, Row -> Row ;
Select: Row, Integer, Integer -> Row
[* and other operators relevant for rows of items*/
AXIOMS
[* The equations for the operators above, among *
* which the following two (or equivalents) */

Length(r) = max_length = = > Insert(r, itm, int) == Error! ;
Length(rl') + Length(r2) > max length ==>rl // r2 == Error!
ENDGENERATOR Row ;

Note that the formal operator Length and the literal Empty are given once more in the body of the generator because they
are renamed when instanciated. In case of the operator, the arguments and the result sort are given in the body only. The
generator Row can be used to make lines, pages and books as follows:

NEWTY PE Line Row(Character, Width, Empty_line, 80)
ENDNEWTYPE Line;

NEWTY PE Page Row(Line, Length, Empty_page, 66)
ENDNEWTY PE Page ;

NEWTY PE Book Row(Page, Nr_of pages, Empty_book, 10000)
ENDNEWTY PE Book ;

D.6.2.2 Inheritance

Inheritance is a way to get al values of the so called parent sort, some or al operators of the parent type and all the
equations of the parent type. For both literals and operators there is a possibility to rename them. In general thisis good
practice because in that case the reader can deduce from the context that, even if the literals are the same, another typeis
involved.

If an operator is not inherited, it is systematically renamed to a name unaccessible to the user . The fact the operators are
still present means that all equations of the parent type are still present (with renamed operators). This ensures that the
parent values are inherited.

Together with the possibility of preventing the use of an operator (by not inheriting it), the possibility of adding new
operators is provided. After the keyword ADDING, literals, operators and equations can be given as in an ordinary type.
However, one has to be very careful with new literals and the interference between inherited and added operators.

When literals are added, the result of inherited operators when applied to these new literals must be defined (by equations).
When operators are added one should remember the invisibly renamed operators and their associated equations.

Fascicle X.2 —Rec. Z.100 Annex D 115

Equations for definition of the added operators should be consistent with both the equations involving inherited and not
inherited operators.

After thislist of warnings, let'slook at some examples.

a)

b)

116

Suppose the newtype colour is completed and available. Thistypeis based on taking and mixing beams of light
of primary colours. It would be a lot of thinking and writing and/or copying to define something similar for
taking and mixing paint.

A nice solution to this problem is to make the newtype colour into a generator by just two replacements:

1) thefirstline
NEWTY PE Colour

becomes
GENERATOR Colour(TYPE Primary_colour)

2) thekeyword ENDNEWTY PE becomes ENDGENERATOR.

The generator can now be renamed when instantiated. Suppose the former sort Primary.colour is called
Light_Primary, and the sort Paint primary is defined as:

NEWTY PE Paint_primary
LITERALSRed, Yellow, Blue
ENDNEWTY PE Paint_primary ;

Now its very easy to define two similar types, one for light and one for paint:

NEWTY PE Light_colours Colour(Light primary) ENDNEWTY PE ;
NEWTY PE Paint colours Colour(Paint_primary) ENDNEWTYPE ;

So far no problem, but how can one see the difference between the light colour Take(Red) and the
paint_colour with the same syntax? If the need to distinguish between the two is felt inheritance can help.
Instead of Light colours and Paint colours the types Light and Palette are defined via inheritance, renaming
operator Take:

NEWTY PE Light
INHERITS Light_colours
OPERATORS (Beam = Take, Mix, Contains)
ADDING

LITERALS White

AXIOMS

White == Mix(Red, Mix(Yellow, Beam(Bluge)))

ENDNEWTYPE Light ;

Now newtype Light has the literals from Light_colours plus the literal White. Light_colours has no literals of
its own (because it uses the literals of Light primary), so White is the only literal of Light. The operators and
equations of Light are the same as those of Light colours, except that the operator name Take is replaced by
Beam, and the given equation for White is added. The added axiom states that this added literal becomes an
element of the set of terms where all three primaries are mixed.

The newtype Palette has the literals from Paint_colours and the Take operator is replaced by Paint:

NEWTY PE Palette

INHERITS Paint_colours

OPERATORS (Paint = Take, Mix, Contains)
ENDNEWTY PE Palette ;

Suppose one wants to extend the set of integers type (sort Int_set), introduced in the previous section, by an
operator that finds the smallest integer in the set. First of all one should ask oneself whether this operator can
be introduced in the generator definition to make it available for sets of other things as well. While it could be
done, it would restrict Item to have > and < defined. This does not suit all items (e.g. Pld) and it may be better
to make a newtype with sort New_int_set providing an operator Min.

NEWTYPE New_int_set
INHERITS Int_set
OPERATORSALL
ADDING
OPERATORS
Min: New_int_set -> Integer

Fascicle X.2 —Rec. Z.100 Annex D

AXIOMS

Min(Empty_int set) = Error! ;

Min(Add(Empty_int_set,x)) ==x;

Min(Add(Add(nis, x),y)) ==
IFy <Min(Add(nis, X))
THEN y
ELSE Min(Add(nis, x))
Fl

ENDNEWTYPE New_int_set ;

Because addition after a generator instantiation is rather common, the text starting with ADDING and ending
just before the ENDNEWTYPE can be given inside the generator instantiation. An example is given in
§5.4.1.12 of the Recommendation.

D.6.3 Viewson equations

When introducing a new data type it is essential to introduce enough equations. In the sequel three views on equations
are given which help in constructing equations.

D.6.3.1 General requirements

No matter how one constructs the equations, the following facts must hold:

a) Each operator appears at least once in the set of equations (except for pathological cases).

b) All true statements can be derived from the equations. Either they are stated as axioms or they can be derived
by substituting equivaent terms in the equations.

c) No inconsistency can be detected; i.e., it cannot be derived from the equations that True=False.

A procedure to find equations can be expressed in informal SDL asin figure D-6.3.1.

Fascicle X.2 —Rec. Z.100 Annex D 117

‘Enough_
_equations'

"Think_of a_
_statement’

Ts_
_it_always_

_it_be _pr:)ved_
_from_other_
eq. L}

'Add to Replace_
equations' _equations_or_
— _modify_them'
I |
FIGURE D-6.3.1

Procedure to find equations in informal SDL

D.6.3.2 Function application on constructors

In general the set of operators has a subset of operators known as ‘constructors and functions.The constructors can be
used to generate al the values (equivalence classes) of the sort. In this approach literals are regarded as operators
without arguments.

Examples:

a) The boolean type hasiits literals as constructors.

b) The natura type has the literals 0 and the operator Next as its constructors; every natural can be constructed
with 0 and Next only.

c) The generator for sets has the literal empty _set and the add-operator as its constructors; every set can be
constructed using empty_set and add only.

d) The integer type can be constructed by the literals 0 and 1, the operators + and unary minus.

It should be noted that sometimes there are several, possible choices for the set of constructors. Any choice will do in the
remainder of this section, but mall sets arein general the best.

Now all functions are treated one by one. For each argument of a function all possible terms consisting of constructors
only are listed. To avoid problems with infinite numbers of terms quantification should be used.

Examples:
a) For the natural numbers thislist can be reduced to

0
Next (n) where nis any natural number.

118 Fascicle X.2 —Rec. Z.100 Annex D

b) For the setsapossiblelistis
empty_set
Add(s, i) wheresisany set andi isany item.

If in the right hand side term of an equation having (s,i) in the left side, there is a difference between s being
empty or not empty, the list can be rewritten as follows:

empty_set
Add(empty_set, i) wherei isany item,
Add(Add(s,i),j)wheresisany setandi, j any item.

After creation of thislist the left hand sides of the equations are obtained by applying each function to any combination
of arguments from the list. Value identifiers in different arguments are given different names. The same procedure as
given above for functions can be followed for constructors; in that case it gives relationships between terms where
constructors are used in different orders.

Examples:
a) For the multiplication operator for natural numbers with signature
"*": Natural, Natural -> Natural
this procedure gives the left hand side of the following (incomplete) equations. The user should provide the

right hand side.
0*0 ==..
O*Next(n) ==..,
Next(n) *0 ==...
Next(n) *Next(m) ==...;
b) For the operators Is_in and Delete, in generator Set (8§ D.6.2.1), this approach is aready used.
c) For sort Colour the constructors are Take and Mix. An operator similar to Contains in § D.6.1.4.2 must be

defined for the arguments

Take(p) where p isany primary,
Mix(p, c) where pisany primary and c isany colour

Becauseit is promised in 8 D.6.1.4.2 to give neat equations for this operator they are given in full:

Contains(Teke(p), q) ==p=q;
Containg(Mix(p, ¢),q) ==(p=0) OR Contains(c,q) ;

This procedure for construction of equations may produce more equations than necessary, but it is very safe. E.g., in the
example of the multiplication of natural numbers above it is likely that the commutative property of multiplication will
be stated and therefore only the last (or the second) equation of the first three will be needed.

The procedure described in this section can be used in combination with the procedure described in the previous section
whereit ishelpful in thetask "Think_of a_statement".

D.6.3.3 Test-set specification

Another way of looking to the equations is from the implementation point of view. If the operators are implemented as
functions in a programming language, the equations, describe how these functions have to be tested.

Evaduate the expression corresponding to the left hand side of an eguation, do the same for the right hand side of that
equation and look whether they are equivalent. What might cause problems is the FOR ALL construct. Often a very
pragmatic approach solves the problem:

Instead of FORALL i IN Integer
thetester canuse FORALL i IN (-10,-1,0,1,10}
and thiswill do in most cases.

Thinking of equations as requirements for the implementation can be helpful in the task “Think.ofa_statement" in the
procedure of § D.6.3.1.

D.6.4 Features

This section describes some of the whistles and bells of SDL, i.e. features that are rarely needed or one can mostly do
without, but sometimes they make life much easier.

Fascicle X.2 —Rec. Z.100 Annex D 119

D.64.1 Hidden operators

Sometimes the set of equations can be simplified or made more readable if an extra operator was introduced, but this
operator should not be used in the processes. This means that the operator is visible inside, but hidden outside the type
definition.

This result can be reached by defining a 'hidden type, i.e., atype that the user should not use. From this hidden type the
user can inherit al operators he is allowed to access; it is the inherited type that should be used. Checking the correct use
can be done by inspection of al variable declarations (no variables of the sort introduced by the hidden type should

appear).

The feature of hidden operators means that the same can be reached by restriction of the visibility of these operators to the
equations only. Thisis done by putting an exclamation mark after the operator.

Example:

The proper way of making aone element set in the generator Set is
Add(empty_set, x)

and thisis the way each user should do it. In the equations the specifier can use a special operator, e.g.
Mk_set! : Item -> Set ;

defined by the equation:
Mk_setl (itm) == Add(empty_set, itm)

which can be used in partial type definitions, but not in SDL process body.

D.6.4.2 Ordering

When ordering of elements of a sort has to be specified this means in general that four operators must be defined
(<, <=,>, >=), and the standard mathematical properties (transitivity, etcetera). If there are a lot of literals, a lot of
equations must be given as well. For instance, the predefined data type Character is defined this way.

SDL provides a feature that overcomes these lengthy, unreadable and boring type definitions. the shorthand
ORDERING.

ORDERING is given in the list of operators, preferably at the beginning or at the end of this list. This introduces the
ordering operators and the standard equations. When ORDERING is specified the literas, if any, have to be given in
ascending order.

Example:
NEWTY PE Even_decima_digit
LITERALSO, 2,4,6,8
OPERATORS
ORDERING
ENDNEWTY PE Even_decimal_digit ;
Now theordering0<2<4<6<8isimplied.

In § D.6.2.2 (Inheritance) awarning is given to be careful if literals are added to an inherited sort. Thisis an excellent place
to show why.

120 Fascicle X.2 —Rec. Z.100 Annex D

Suppose an extension of sort Even_decimal_digit is wanted as follows:

NEWTY PE Decimal_digit
INHERITS Even_decimal_digit

OPERATORSALL
ADDING
LITERALSY, 3,5,7,9
AXIOMS
0<1; 1<2;
2<3; 3<4;
4<5; 5<6;
6<7; 7<8;
8<9

ENDNEWTY PE Decimal_digit ;
The axioms given here cannot be omitted. Without these axioms there only is a so called partial ordering:

0<2<4<6<8
and 1<3<5<7<9.

With the axioms above there is a complete ordering:
0<1<2<3<4<5<6<7<8<9
but with the axiom "9 < 0" instead of the set of axioms above, the complete ordering would be :

1<3<5<7<9<0<2<4<6<8.

D.6.4.3 Sorts with fields

Asshown in § 5.4.1.10 of the Recommendation one can define a structured sort without special constructs, but structured
sorts are both common and useful, which justifies some extra constructs in the language.

A structured sort should be used when an object value is formed by the association of values of a number of sorts. Each
value of this association is characterised by a name, called the field name. The sort of afield isfixed.

Examples:

NEWTY PE Subscriber
STRUCT numbers Number_key ;
name Name key ;
admin Administrative ;
ENDNEWTY PE Subscriber ;

NEWTY PE Name_key
STRUCT name,
street Charstring ;
number Integer ;
city Charstring;
ENDNEWTY PE Name key ;

With the structured sort some operators are implicitly defined:
a) the constructor operator, "(." before, and ".)" after the field values,

b) the field selection operators, the variable of the structured sort followed by an ! and the field name, or followed
by the field name in parentheses. The variable followed by an ! should not be confused with the hidden
operator (8§ D.6.4.1)

An exampleisgiven in Figure D-6.4.1

Fascicle X.2 —Rec. Z.100 Annex D 121

PROCESS Some_process;
DCL na, st, where Charstring
nu Integer)
nk Name_key
/¥ ... Textwhere values are assigned to the variables na and st */
TASK nk := (. na, st, 5, London'.) ;
/* ... Textwhere no assignments to nk take place */
TASK where := nklcity ;
/* Now where=London' holds */
ENDPROCESS Some_process;

FIGURE D-6.4.1
Example of use of implicit structured sort operators

D.6.4.4 Indexed sorts

An indexed sort is a sort for which the type has Extract! as an operator name. In the predefined data types the generator
Array issuch atype. The array is one of the most common examples of an indexed type.

For the hidden operator Extract! thereis a special concrete syntax that should be used outside the type definitions.

It may be thought that type Index in the predefined generator Array should be a 'ssimple' type, like Integer, Natural or
Character. Thereis, however, no reason why a structure like Name_key cannot be used as Index.

Example:

NEWTY PE Subsc_data base
Array(Name key, Subscriber)
ENDNEWTY PE Subsc_data base;

The sorts Name_key and Subscriber are those defined in the previous section. Suppose there is a procedure Bill with one
parameter of sort Subscriber, and this procedure is defined in a process that also has a variable Sub _db of sort
Subsc_data base. In this process the following call could appear.

CALL Bill (Sub_db ((. 'P.M.", 'Downingstreet’, 10, ‘London .))) ;

D.6.45 Default value of variables

As explained in the section on declaration of variables (8 D.3.10.1) it is possible to assign values to a variable directly after
the declaration. Some types, however, have a value that (almost) always will be the initial value of avariable. Thereisa
feature that avoids having to write down the initial value at every declaration: the DEFAULT-clause.

As an example one can consider the set. It is very likely that almost all variables, of whatever set one can think of, will
beinitialized to the empty _set.

The notation:
DEFAULT empty_set

after the list of equations ensures that every variable of every instantiation of the generator will be initialised to the
empty_set of that instantiation, except if there is an explicit initialisation. (See § D.3.10.1).

If it is not trivia that the initial value of all variables of a sort should be the same, then don't use the DEFAULT clause.
Otherwiseit is hard to avoid surprises.

D.6.4.6 Active operators

Users familiar with the SDL'84 Z.104 might wonder what happened to the so called active operators. Well, this feature
was deleted because

a) it is not needed because ordinary operators together with procedures and/or macros provide the same
expressive power,

b) it destroyed the readability of the equations,

c) alot of users had problemsin using it correctly,

d) it does not really fit in with the abstract data type model based on initial algebras which is the model chosen as

the mathematical foundation of this part of SDL.

122 Fascicle X.2 —Rec. Z.100 Annex D

D.7 Additional guidelines for drawing and writing

For each concept of SDL the Recommendation specifies the main way to represent the concept. For example the task
concept isrepresented in SDLIGR by means of arectangle and by means of the keyword TASK in SDL/PR.

The User Guiddines supplement the Recommendation in specifying rules for thawing and writing, applicable to all
concepts, in order to emphasize what may be considered appropriate, wrong or bad-looking drawing/writing.

D.71 SDL/GRguidelines
D.71.1 General

General guidelines for drafting diagrams are:
- The sequence of reading should be top-down and left-right.

- Diagrams should not contain too many information at the same level. It is often suitable to partition large
diagrams into sub-diagrams covering different parts or aspects;, for instance by using the referencing
mechanism.

D.7.1.2 Inlets and outlets

Inlets and outlets to/from any symbol should be drawn vertically (corresponding to the top-down reading), and only
where thisisnot practical, horizontal inlets and outlets should be used.

Exceptionsto this general rule are:

- Decision with two or three outlets are usually drawn with two horizontal outlets (plus a vertical one).
- Macro calls use horizontal and vertical connections.

- Both in and out connectors have usually horizontal inlets and outlets.

Diagonal lines should only occur in exceptional cases (e.g. for channels and signal routes).

Vertical inlets and outlets should divide the symbol into two parts having the same horizontal lenght.

FIGURE D-7.1.1

Properly drawn inlets and outlets

FIGURE D-7.12

Inproperly drawn inlets and outlets

Fascicle X.2 —Rec. Z.100 Annex D 123

D.7.1.3 Symbols

a) Symbols should be drawn so that the vertical and horizontal axis coincide with the two axis of the paper.
b) Vertical mirroring of symbols is just allowed for input, output, text extension and comment symbols. (See
Figure D-7.1.3).
c) The general ratio between height versus lenght for all symbols in graphs and also for referencing symbols
isl:2.
>0 > o
' T < | | > | L
a’ Input : B> Qutput ‘e Comment and

text extension

FIGURE D-7.1.3

The four allowed mirrored symbols

D.714 Template

A template for the symbols of SDL/GR has been provided in the inside back cover of this Fascicle. A schematic draft for
the templateis givenin Figure D-7.1.4.

In the figure the symbols for Input, Output, Decision, Alternative, Process, Start, Task, State, Save, Service reference,

Connectors and Stop are shown direcly, in three sizes, i.e. 20 x 40 mm, 20 /42 x 40 /+/2 mm and 10 x 20 mm. The
internal ratio is only shown for the largest size.

The symbols for Procedure Call, Macro Call and Create can be constructed from the task symbol by drawing the extra
horizontal or vertical ling(s) indicated in the Figure.

The Procedure Start symbol can be constructed from the Process Start symbol by drawing the indicated extra vertical
lines.

The Return symbol is the combination of the Connector and the Stop symbol.
The Comment, the Text Extension and the Signal List symbols are drawn using the Task symbol.

The Priority Input and Priority Output symbols can be constructed from the Input and Output symbols by drawing the
indicated extraline.

The Procedure Reference symbol can be constructed from the Process Reference symbol by drawing the two extra
vertical lines asindicated.

The Enabling Condition and the Continuous Signal symbols can be drawn using the Stop symbol.

Channels, Signal Routes and the line to the Text Extension symbol are solid lines. The line to a comment symbol is a
dashed line with theratio 1:1.

The text symbol is drawn using the Task symbol and folding the rightmost upper corner asindicated.

All the recommended symbols are defined in the Recommendation. An overview of the recommended symbols can be
found in Annex C - Graphical Syntax Summary.

The three shown sizes are the preferred ones. If other sizes are used the ratio should till be same (i.e. 1:2). The sizes
shown, i.e. lenght 40 mm, 28 mm and 20 mm permits photo reduction from A3 to A4 paper with compatible symbol

sizes (as40 mm/+/2 = 28 mmand 28 mm/+/2 = 20 mm).

124 Fascicle X.2 —Rec. Z.100 Annex D

\ N\

/]
s

e gl

— e W ad

x * l

[
298 S079wrS + 5)0pwAhs 7G9S .« 1S 59709 wAs

FIGURE D-7.14

Schematic draft of the template

Fascicle X.2 —Rec. Z.100 Annex D

125

D.72 SDL/PRguidelines

General guidelines for drafting textual SDL are:

- The sequence of reading should be top-down and left-fight.

- The text should be divided into parts covering different aspects.

- Comments on the statements level should begin at the same column.

- The lines should be indentated. Indentation can follow the usual hierarchy of SDL concepts as shown in the
example of Figure D-7.1.5.

SYSTEM A;
SIGNAL §1,82;
BLOCK B;
PROCESS P;
START;
NEXSTATE ST,
STATEF,
INPUT G: ...
INPUTE: ...
ENDSTATEF;
ENDPROCESS P;
ENDBLOCK B;
ENDSYSTEM A;

FIGURE D-7.1.5

Example of textual indentation in SDL

D.8 Documentation

D.8.1 Introduction

A document is defined by 1SO as "a limited and coherent amount of information stored on a medium in aretrievable
form". It should therefore be considered as alogical unit which is strictly delimited. Documents are used for conveying
al information related to a system which is specified using SDL.

When paper is used as the physical medium for storing a document, the term document is often incorrectly applied to
the sheets of paper rather than their logical contents. With the growing use of magnetic storage media, the term is
returned to its original meaning.

This chapter is concerned with the logical organization of documents rather than their physical organization. Thisis
left to the users discretion. The similarity in requirements of both the logical and physical organization of documents
means that some useful hints may be offered in the following text to aid a user in setting up a physical organization
for documents.

By splitting the information into a suitable number of documents, the system can be made more readable and
manageable.

The language does not recommend certain documents or document structures. However, some proposals are given to
aid the user in handling the documents.

D.8.2 Types of system representation
When specifying a system using SDL the result is a set of definitionsin SDL/GR and/or SDL/PR.

These definitions may be nested or sequential depending on type of system representation, being either hierachical or
flat. In fig. D-8.2.1 and D-8.2.2 a system is described with the two aternative representations in SDL/GR. The two
figures are not complete system specifications as, for simplicity, only inputs and outputs are shown and possible signal
and data definitions are missing.

Of courseit is allowed to use a mixture of the representations when a system is specified.

126 Fascicle X.2 —Rec. Z.100 Annex D

When the definitions are sequential asin fig. D-8.2.1 they are 'referenced’, a mechanism which is possible for definitions
both in SDL/PR and SDL/GR.

Looking at a system specification as a set of definitions a document can be seen as a container for these definitions.

If the system is small and hierarchical asin fig. D-8.2.2 one single document is enough. If aflat representation is used
asin fig. D-8.2.1 more documents can be used e.g. one document per definition.

2B
SYSTEM A +C [B] SIGNAL AB.F,GH: B|
C1[A]
— > yl
* CA[F]
[G] C3 [H]
————p— y2
c2
BLOCK y1

RI[A]

C1

SIGNAL CE; I%

C4

c4 R2 R4

BLOCK y2 PROCESS z1
Ré6[F]

IR4[E]

R1 R5

FIGURE-D-8.2.1a

Example of sequential (referenced) diagrams used for a flat system representation

Fascicle X.2 —Rec. Z.100 Annex D 127

128

PROCESS z2 PROCESS z3

A U O

FIGURE-D-8.2.1b

F H
<> 8
’ L J y
C) C)
SERVICE 2 SERVICE k1

C
sS D
D > *:" SS

Example of sequential (referenced) diagrams used for a flat system representation

Fascicle X.2 —Rec. Z.100 Annex D

SYSTEMA +C2[B]
BLOCK y1 ‘ ‘R’/[B]
PROCESS z1 PROCESS z2
SERVICE ki
[c
C1[A] |ria] | R1[A] R2[C]| R2(C}
e o D i
A SS
IR3[D]
SERVICE k2
% _,;)ZE IRA[E] | R4[E] ; C
. gl T
= -
v RS
¢ R5[F]
Yy C4IF]
BLOCK y2 v ROIF]
| PROCESS z3
3 RS
g
[G] (HI[[G] [H] 51: H
£ G
ol anNan

FIGURE D-8.2.2
Example of nested definitions used for a hierarchical system representation

When choosing the type of system representation it is necessary to consider the type of documents desired. In order to
have one document per definition, a flat representation is necessary. If one single document for the whole system
specification is desired, a hierarchical representation is necessary.

The normal case is probably a mixture of these representations.When deciding this mixture the following rules are
applicable:

1) adefinition should not be divided between several documents.
2) if adefinition iswanted in a separate document it must be referenced, not nested.

Fascicle X.2 —Rec. Z.100 Annex D 129

BLOCKT

PROCESS PR1
PR1 PR2

FIGURE D-8.2.3

A referenced definition can be placed in a separate document

3) when using the logical page concept to split a diagram in several diagram pages, the diagram pages should
coincide with the phisical pages of the document (seefig. D-8.2.4).

4) if adiagram is more than one page it must be referenced, not nested.

130 Fascicle X.2 —Rec. Z.100 Annex D

PROCESS PR2

<

SERVICE S 3 (3)

SERVICE S1 2 (3)

SERVICE S1 1(3)

N~

FIGURE D-8.2.4

A referenced service diagram partitioned into 3 pages

D.8.3 Document structure

The set of documents covering the whole system definition can be structured.
A document structure , where documents refer to sub-documents, can be attached to any entity in the system such as

system, block and processes. See Figure D-8.3.1.

Fascicle X.2 —Rec. Z.100 Annex D 131

Subdocuments

Block Document

/

FIGURE D-8.3.1

A document structure

D.84 Referencing mechanism

The reference mechanism-in the language, where concept names are used for references between concepts, can also be
used for references between documents. Thisis anatural approach when a document coincides with a definition.

D.85 Classification of documents
Documents can be classified in accordance with the types of definitions they contain.

In this classification at least the process or service definitions, describing the dynamic behaviour of the system, should be
placed in separate documents. These documents can also include variable definitions.

A possible document structure for a systemis given in Figure D-8.5.1.

In this example the channel and signal route definitions are included in the documents for system, block and process
definitions. The signal definitions, the data definitions and the signal list definitions are placed in separate documents and
it has been assumed that all data definitions are at system level.

The procedure definitions, the macro definitions and the service definitions form sub-documents to the process document.

132 Fascicle X.2 —Rec. Z.100 Annex D

Signal def. Macro def.

System def, Block def.

Process def. Service def.

—>

7 N\L

Signal list Procedure
def. def.

¥
|

Data def.

FIGURE D-8.5.1

A possible document structure for a system

If different services together form a system function, the services can be described in a common document.

The different service definitions can be placed after each other in a service document but it is also possible to have them
side by side on the same document page. The latter document layout gives a good understanding of the interaction
between the services. Figure D-8.5.2 is an example of a document page in a service document.

For large system specifications "tables of content" for the system should be provided to indicate where to find the
states, the inputs, the outputs etc. In addition the tables of content should also contain all the concepts i.e. where to
find the definitions and where they are used. Examples are system, blocks, channels, signals, processes, services,
macros, procedures.

Such tables of content for the system may be formed as separate documents

Fascicle X.2 —Rec. Z.100 Annex D 133

SERVICE K SERVICE L SERVICEM

1 S1

S2 S3 S3

34 <s4

_——

FIGURE D-8.5.2

A page in a service document

D.86 Mixing of SDL/GRand SDL/PR
When specifying a system SDL/GR and SDL/PR can be used together.

The concepts of system, block, process, service, procedure, macro, channel etc can either be specified in SDL/GR or
SDL/PR.

Change from SDL/PR to SDL/GR or from SDL/GR to SDLIPR is performed using the reference mechanism in the
language. A concept which is referenced in SDL/PR can be specified in SDL/GR and a concept, referenced in SDL/GR ,
can be specified in SDL/PR.

Figure D-8.6.1 is a "complete" system specification using a mixture of SDL/PR and SDL/GR. It is the same system as in
fig. D-8.2.1 and D-8.2.2. Each definition in the example can be located in a separate document.

134 Fascicle X.2 —Rec. Z.100 Annex D

SYSTEM A +CZ[B] SIGNAL A,B,F,G,H; lﬁ
Cl[A]
> yl
_ + CA[F]
[G] C3 [H]
> y2

BLOCK y1
R1[A]

C1

SIGNAL CE; ‘}

C4

BLOCK y2; I PROCESS z1;

SIGNALROUTE R8FROM ENV TO z3 WITH H; | SIGNALROUTE IR1 FROM ENV TO k1 WITH A;
FROM z3 TO ENV WITHG; | SIGNALROUTE IR2 FROM k1 TO ENV WITH C;

SIGNALRQUTE R6FROM ENV TO z3 WITHF; | SIGNALROUTE IR3 FROM k1 TO k2 WITH D;
CONNECT C3 AND RE; | SIGNALROUTE IR4 FROM ENV TO k2 WITHE;
CONNECT C4 AND R6; I SIGNALRQUTE IR5 FROM k2 TO ENV WITHF;
PROCESS z3 REFERENCED; ! CONNECT R1 AND IR1;

ENDBI.OCK y2; | CONNECT R2 AND IR2;

I CONNECT R4 AND IR4;

I CONNECT RS AND IRS;

[SERVICE kI;

| START;

I STATE SS;

I INPUT A;

I OUTPUT C;

l PRIORITY OUTPUT D;

I NEXSTATE §S;

! ENDSERVICE k1;

I SERVICE k2 REFERENCED;

| ENDPROCESS z1:

FIGURE D-8.6.1a

A system specification with a possible mixture of SDL/GR and SDL/PR

Fascicle X.2 —Rec. Z.100 Annex D 135

PROCESS z2 PROCESS z3

F ' H

<
an s

SERVICE k2

= &
Rale

FIGURE D-8.6.1b

=
g’

A system specification with a possible mixture of SDL/GR and SDL/PR

D.9 Mappings
This describes some aspects of the mapping between SDL and CHILL (8 D.9.1), and the mapping between SDL/GR and
SDL/PR (§ D.9.2).

D.9.1 Mapping between SDL and CHILL

In the following some possible ways of mapping SDL to CHILL are illustrated. This is done briefly and is not intended
to be either exhaustive or to suggest that any of these ways should be used in practice.

The discussion on the mapping should not only consider the available CHILL compiler and the target machine but be
more general. The mapping is a very complex intellectual activity and it is only through experience that
designers/programmers can decide on a particular CHILL program structure to be used to implement a particular SDL
representation. This also applies to the representation of the functions implemented by a CHILL program. A one-to-one
mapping (if achievable) is not necessarily the best way of using SDL to represent the functions implemented in CHILL.

Using this approach, the overall structure of a CHILL program derived from an SDL diagram appears as shown in
Figure D.9.1.1.

Some examples of a mapping between constructs of the two languages are given in Figures D-9.1.2 to D-9.1.5. They
cover the following SDL constructs:

- state and reception/save of signals; selection of a nextstate;
- output;

- join;

- decision.

136 Fascicle X.2 —Rec. Z.100 Annex D

The declaring module contains both the definition and the declaration of al the signals used in the transformed SDL
diagram and all of the variables associated with these signals. All these variables are granted to the module representing
the functional block of the SDL diagram.

Declaring: MODULE
/* CHILL module containing the signals and associated variables, used in the SDL

diagram */
GRANT
/* granting of signals and variables */
SIGNALS
/% signals definition _ *f
SYNMODE (OR NEWMODE)
/* type definition */
END Declaring;
Functional_Block: MODULE
* module containing the procedural part of the SDL diagram *f
SEIZE

/* seizing of all the signals and variables that can be received and sent from (to) thlS
functional block

/* data dlcfmmon and declaration; such data is global to all the processes belonging to th1s
module

Process name:PROCESS ();

/¥ local data definition and declaration ¥/
nextstate:=...;
joln:=none;
DO FOR EVER,;
state_loop: CASE nextstate OF
/* loop on the variable nextstate indicating the SDL state *f

{(state_labell): RECEIVE CASE
(signal namel):

(signal namen):
ESAC state_loop;
DO WHILE join/=none;
CASE join OF
(join - labl): join: = none;

(join -labm); join: = none;
ESAC,
OD;
OD;
END process - name;
END Functional - Block;

FIGURE D-9.1.1
Overall structure of a CHILL program derived from an SDL diagram

The functional block module represents the behaviour (procedural part) of the SDL processes.

In this translation schema, each SDL process is represented as an infinite loop; a variable named "nextstate” indicates the
state to be examined, and a variable named "join" indicates possible join points determining common sets of statements.

Fascicle X.2 —Rec. Z.100 Annex D 137

A selection, by means of the case construct of CHILL, is made upon the value of nextstate; each entry of the case
identifies an SDL state. In each entry a selection among the possible input signals is made. Each input signal determines
the set of actions to be performed (the "transition path”).

Each trandition path ends with an assignment either to the variable "nextstate”, directly determining the next state to be
examined, or to the variable "join". A subsequent selection loop on the current value of the variable "join" allows every
transition to terminate, in an SDL sense, and at the end assigns a value to the variable "nextstate”.

STATEI STATEL:
, , RECEIVE CASE
(SIGN1): ...
SIGN1 SIGN2 SIGN3
I |
¥ 1

(SIGN2): ...
1 1 NEXTSTATE := STATES3;
ELSE GETOUT (LIST1)
ESAC STATEL,
o
a) SDL b) CHILL

FIGURE D-9.1.2
Example of mapping STATE/AINPUT/SAVE/NEXTSTATE

One of the major problemsin relating SDL and CHILL isthe different semantics of signal reception; in fact while CHILL
doesn't consume (and therefore doesn't destroy) any signa but the expected ones (persistent signals), SDL process
consumes al the signals received and destroys the signals not expected for that state. The semantics mismatch has been
resolved by introducing the built-in-routine GETOUT, as an dternative (ELSE path) in the CHILL RECEIVE CASE
construct, as shown in Figure D-9.1.2. The CHILL built-in-routine GETOUT, which knows (by parameters) the list of input
and save signals, destroys the other signals available to the process when it is called.

After executing the GETOUT routine the state selector is set to repeat the loop for that state until a valid input signa is
selected (or arrives if not already present).

STATEL:
RECEIVE CASE
(SGA): pi := get_instance_value();
send SGB to pi;
nextstate := ... ;
ELSE nextstate := statel;
ESAC STATE1:

a) SDL b) CHILL
FIGURE D-9.1.3

Example of mapping OUTPUT

For example, once the input signa SGA, in Figure D-9.1.3 has been recognized, the appropriate destination process
instance for the signal SGB is selected and the signal SGB is sent.

Before sending the signal SGB it may be necessary to fill some information fields which are to be carried by the signal. This
can either be done immediately before, or well in advance of sending the signal.

138 Fascicle X.2 —Rec. Z.100 Annex D

When ajoin point is met in the diagram (see Figure D-9.1.4), the appropriate value is assigned to the variable "JOIN". As
explained in Figure D-9.1.1, a loop on the value of the variable "join" is performed to determine the next state to be
examined. A join point can be seen, from the programming language point of view, asa"goto" construct; collecting al the
join points together so that they can be examined which allows the entire skeleton program to be written without using
gotos, thus making it easier to read.

An SDL decision has a direct trand ation into the case construct of CHILL, as shown in Figure D-9.1.5.

STATE]:
RECEIVE CASE

i | : (S1 in m): case m.id of
(SGA): ...;
2 SGA > SGB SGC (SGB): ... ;
[(8GC): ... ; JOIN:=1;
ELSE nextstate ;= statel;

esac;
ESAC STATE]L;

a) SDL b) CHILL

FIGURE D-9.14

Example of mapping join

1: CASE C OF
I | T | (‘answl'): ... ;
(answl) (answ2) (answ3) (answd4) (answ2'): ... ;
: ' ' (‘answ3’): nextstate ;= statel;
1 ! i (answ4": ... ;
STATE1 ESAC 1L,

2) SDL b) CHILL

FIGURE D-9.1.5

Example of mapping DECISION

D.9.2 Mapping between GR and PR

Taking into account the restrictions mentioned about macros (8 D.5.1), the GR form can always be mapped to PR and
viceversa

Examples of equivalent specifications in both forms can be found troughout all of thistext.

D.10 Application examples

D.10.1 Introduction

Paragraph D.10 contains some examples of using SDL. The examples are taken from the telecommunications
application area, an attempt was made to take realistic examples and cover as many SDL concepts as possible.

Fascicle X.2 —Rec. Z.100 Annex D 139

The examples are intended to show the use of SDL, and are not international specifications.

D.10.2 The service concept

The following system is an illustration of the service concept. In the system three "system functions" are of special
interest for this example. It is a traffic handling function, a maintenance function and an alarm function. The following
figure, D-10.2.1, shows how the system functions are composed of subordinate services in five different processesin
five blocks.

The traffic handling function includes set-up and termination of atelephone call.

Traffic handling
function

2

Maintenance
function

Alarm
function

BLOCK SUBSCRIBER_INTERFACE BLOCK BLOCK
REGISTER CALL_HANDLER
PROCESS SUBSCRIBER.L [NE PROCESS R PROCESS C
GG == ==
BLOCK BLOCK
MA INTENANCE ALARM_HANDLER
Csupervisian; PROCESS M PROCESS A
it - : .@
O o O
FIGURE D-10.2.1

Function composition

This example is not a complete documentation of the functions on system level, just a descnption of the four services in
the' SUBSCRIBER_LINE' process.

The

following three figures are the system diagram (fig. D-10.2.2),

the block diagram for

the

'SUBSCRIBER_INTERFACE' (fig. D-10.2.3) and the process diagram for 'SUBSCRIBER_LINE' (fig. D-10.2.4). The

necessary channdls, signal routes and signals can be seen in these diagrams

140

Fascicle X.2 —Rec. Z.100 Annex D

SYSTEM Service_concept

/* This system is an example illustrating the service concept in SDL. The block
SUBSCRIBER_INTERFACE is selected for the illustration. The system diagram
shows the interworking blocks and the channels which are needed for the services

in SUBSCRIBER_INTERFACE */

SIGNAL A OFF_HOOK,A_ON_HOOK,DIALLED_DIGIT,B_ON_HOOK,B_OFF_HOOX,
DIAL_TONE,CONG_TONE,DIAL_TONE_OFF,CONG_TONE_OFF,RING_TONE_TO_A,
RING_TONE_A_OFFRING_SIG_TO_B,RING_SIG_B_OFF,CONNECT_DIG_REC,DIGIT,
DISCONN_DIG_REC,CONNECTION,CONGESTION,FETCH_NEXT_DIGIT,
CONNECT_CALL_HANDLER,A_OFF,A_ON,LINE_CONNECTED,LINE_DISCONNECTED,
SEND_RING_TONE,B_ANSWER,DISC_A RING_SIG,DISC_B,SEND_ALARM,
CEASE_ALARM,CONN_REQ_ACK1,CONN_REQ_ACK2,DISC_REQ_ACKI,
DISC_REQ_ACK2,CONN_REQ,DISC_REQ,B_ON,B_OFF;

SIGNALLIST L1A = A_OFF_HOOK,A_ON_HOOK,DIALLED_DIGIT;

SIGNALLIST L1B = B_ON_HOQOK ,B_OFF_HOOK;

SIGNALLIST L2A = DIAL_TONE,CONG_TONE,DIAL_TONE_OFF,CONG_TONE_OFF,

RING_TONE_TO_A RING_TONE_A_OFF;

SIGNALLIST L2B = RING_SIG_TO_B.RING_SIG_B_OFF;

SIGNALLIST LAL = SEND_ALARM,CEASE_ALARM;

SIGNALLIST L1IMAIN = CONN_REQ,DISC_REQ;

SIGNALLIST L2MAIN = CONN_REQ_ACK1,CONN_REQ ACK2.DISC_REQ ACKI,
DISC_REQ_ACK?2;

SIGNALLIST L1IREG = CONNECT_DIG_REC,DIGIT,DISCONN_DIG_REC;

SIGNALLIST L2REG = CONNECTION,CONGESTION, FETCH_NEXT_DIGIT;

SIGNALLIST L1CALL = SEND_RING_TONE,B_ANSWER DISC_A;

SIGNALLIST L2CALL = A_OFF,A_ON;

SIGNALLIST L3CALL = RING_SIG,DISC_B;

SIGNALLIST LACALL = LINE_CONNECTED,LINE_DISCONNECTED,B_ON,B_OFF;

ALARM_ MAINTENAN_,
_HANDLER CE
(L2 1
[(LAL)] & C8 , (L2MAIN)
{L24), (L1A), W]
@2B) | ¢1 | @1B) MAIN)
——¢————— p»— | SUBSCRIBER _
_INTERFACE
| |:(L1CALL)Z|
[(L2REG)] (L3CALL)
C6
° @L2CALL),
R (LACALL)
REGISTER (;5: CALL_
[CONNECT_CALL_HANDLER]| —HANDLER

FIGURE D-10.2.2

System diagram

Fascicle X.2 —Rec. Z.100 Annex D

141

BLOCK SUBSCRIBER_INTERFACE

[LAL})] | RS | RO | [L2MAIN)]
C8 |- ' = 1 9

[(LIMAIN)]

(L1CALL), (L2CALL),
(L3CALL) | R6 |@AacALL)

™ C6

(L2A), (L14),
(L2B) | R1 |({L1B)
C1 |-a— SUBSCRIBER _

_LINE

[(L2REG)]

R3

[(LIREG)]

C3

FIGURE D-10.2.3

Block diagram
As can be seen in the process diagram (fig. D-10.2.4) the services interwork with priority signals via the signa routes

IRO1,IR02, IR0O3 and IR04. But the services also interact and affect each other by means of the 'global’ variable
'‘Connected' declared in the process:

142 Fascicle X.2 —Rec. Z.100 Annex D

PROCESS SUBSCRIBER_LINE

/* The process is structured in 4 services, each representing a sub behaviour.
'Connection/disconnection’ is a maintenance service which is called when a subscriber line is
to be connected or disconnected. The boolean variable, indicating if the line is connected or not,
is set by the service.

"A_subscriber_actions’ and 'B_subscriber_actions' are traffic handling services in the subscriber
interface activated at call set up and call termination.

'Congestion_supervision' is an alarm service, which sends an alarm when the line is congested.
There are signal routes between some of the services carring the following signals: */

SIGNAL CALL,CONG_CALL,RESERVE_FOR_MEASUREMENT,BUSY_SUB,IDLE_SUB;

DCL Connected boolean;

Congestion_ IR8 [(LAL)]

,,supe_wisiy P RS

1 1RD2

CONG_CALL,
CALL

[RESERVE_FOR_MEASUREMENT

IR9

A_subscriber_ Connection._

R3
[(L2REG)] [(LIREG)\, _actions disconnection Jii vamy tozvami|
[L1A)] BUSY_SUE,
IDLE_SUB
[(L2CALL)]
Rl B_subscriber_ 26

_actions

[L1B)Y [(L3CALL)] [(LACALL)]

FIGURE D-10.24
Process diagram

To get a better understanding of the services and the interaction between the blocks a number of sequence charts are
included in the example.

The first two sequence charts show the normal case for interaction between the blocks during a call. The interaction at
register congestion is showed on the third chart. To simplify the charts no delay is assumed between sending and receiving
asignal.

Fascicle X.2 —Rec. Z.100 Annex D 143

SUBSCRIBER _ CALL

ENV. _INTERFACE REGISTER _HANDLER
A_OFF_HOOK >
CONNECT _DIG_REC
¢ CONNECTION
DIAL_TONE
-
DIALLED_DIGIT
DIAL_TONE_OFF .
< DIGIT
P
FETCH_NEXT_DIGIT
DIALLED DIGIT <
> DIGIT
>
CONNECT CALL_HANDLER
>
SEND_RING_TONE_TO A
RING_TONE.TO_ A |®
< DISCONN_DIG_REC
B_ANSWER
RING_TONE_A_OFF [
-
CONVERSATION
A_ON_HOOK
A_ON
>
DISC_B
<

FIGURE D-10.2.5

Sequence chart. Block interaction in the normal case. Necessary
signals for the A-subscriber party

144 Fascicle X.2 —Rec. Z.100 Annex D

_HANDLER

SUBSCRIBER_ CALL,_
ENV. _INTERFACE
RING_SIG
RING._SIG_TO_B
< LINE_CONNECTED
B_OFE_HOOK
¢ RING_SIG.B. OFF
B_OFFR
= P
CONVERSATION
DISC_B

B_ON_HOOK

Note: Sequence chart. Block interaction in the normal case.

>

Necessary signals for the B-subscriber party.

SUBSCRIBER _
_INTERFACE

A_OFF_HOOK

CONNECT_DIG_REC

REGISTER

>

CONG_TONE

SEND_ALARM

<

A_ON_HCOK

- CONG_TONE_OFF

NEXT

A_OFF_HOOCK

Sequence chart. Block interaction at register congestion

CONGESTICN

CALL

FIGURE D-10.2.6

The interaction between the services in the process 'SUBSCRIBER _LINE' is described in the following sequence

charts.

Fascicle X.2 —Rec. Z.100 Annex D

145

A_subscriber_ Connection._ Congestion_
ENV.1

_dactions Disconnection _Supervision ENV.2
A_OFF_HOOK »
BUSY_SUB
| canL
CONNECT_DIG_REC >
CONNECTION
DIAL_TONE
< <
DIALLED_DIGIT >
DIAL_TONE_OFF DIGIT
N >

FETCH_NEXT_DIGIT

-4
DIALLED_DIGIT
_ >

DIGIT

»
SEND_RING_TONE <]

> RING_TONE_TO_A |+
DISCONN_DIC_REC

B_ANSWER ‘

RIN <
@ RIG_TONE A OFF

CONVERSATION

A_ON_HOOK

—> A_ON

DISC_ A
IDLE_SUB

>

Note: The priority signals are indicated with thiker lines.
FIGURE D-10.2.7

Sequence chart, Service interaction in the normal case, Necessary
signals for the A-subscriber party

146 Fascicle X.2 —Rec. Z.100 Annex D

B_subscriber_ Connection._
ENV.1 _actions Disconnection ENV2
RING_SIG
RING_SIG_TO_E
BUSY_SUB
.
LINE_CONNECTED
B_OFF_HOOK
|
RING_SIG_B_OFF
ol
B_OFF
P
CONVYERSATION
DISC_B
B_ON_HOORK
IDLE_SUB
P

Note: The priority signals are indicated with thiker lines.

FIGURE D-10.2.8

Sequence chart. Service interaction in the normal ¢ase, Necessary
signals for the B-subscriber party

The behaviour of each service in the process 'SUBSCRIBER _LINE' is described in the four service diagrams

(fig. D-10.2.9:15).

Fascicle X.2 —Rec. Z.100 Annex D

147

148

SERVICE A_subscriber_actions

* The service takes care of the activities in a telephone call which
are related to the A_subscriber party in the subscriber interface. These
activities include 'A_off_hook’, 'A_on_hook' and reception of digits from the
subscriber.

The service also informs the 'Connection. Disconnection' service via the signals
‘BUSY_SUB' and 'IDLE_SUB' when a subscriber is busy or idle respectively.
The service also informs the *Congestion_supervision' service via the signal
'CALL' when a call attempt is made. If the call is rejected due to congestion,
the same service is also informed via the signal 'CONG_CALL',

A call attempt can also be rejected if the subscriber line is not connected.
Connection or not is indicated in the variable ‘Connected’ which is seg by

the ‘Connection.Disconnection’ service. */

‘

(False)
Connected

(true)

A_TDLE BUSY_SUB

CONNEC_
TION

CONG_TONE <)IAL_TONE

AWAIT

_FIRST _DIGIT

AWAIT A _
_ON_HOOK_2

1(3)

FIGURE D-10.2.9

‘Service diagram

Fascicle X.2 —Rec. Z.100 Annex D

SERVICE A_subscriber_actions

AWAIT
_FIRST DIGIT

¢

DIGIT

AWAIT_
_ANALYSIS,

DISCONN_
_DIG_REC

IDLE_SUB

v

A_IDLE

_ANALYSIS

DISCONN_
_DIG_REC

IDLE_SUB

2(3)

FIGURE D-10:2.10

Service diagram

Fascicle X.2 —Rec. Z.100 Annex D

149

150

SERVICE A_subscriber_actions

CONVER_
SATION

DISC_A

IDLE_SUB

A_IDLE

AWAIT_A_
ON_HOOK_2

33

Fascicle X.2 —Rec. Z.100 Annex D

FIGURE D-10.2.11

Service diagram

SERVICE B_subscriber_actions 1(2)

/* The service takes care of the activities in a telephone call which

are related 1o B_subscriber party in the subscriber interface. These
activities include "B_on_hook’, 'B_off_hook' and sending of ring signal.
The service also informs the 'Connection. Disconnection’ service via the
signals 'BUSY_SUB' and 'IDLE_SUB' when a subscriber is busy or idle
respectively. A call is rejected if the subscriber line is not connected. The
variable 'Connected', set by the service 'Connection, Disconngction’,
indicates if the line is connected or not. */

(False)

Connected _

RING_SIG_
_TO_B

BUSY_SUB

DISC_B <

FIGURE D-10.2.12

Service diagram

Fascicle X.2 —Rec. Z.100 Annex D 151

SERVICE B_subscriber_actions 2(2)

B_CONVER_
SATION

AWAIT_DISC

FIGURE D-10.2.13

Service diagram

152 Fascicle X.2 —Rec. Z.100 Annex D

SERVICE Connection.disconnection

/* The service handles the connection and disconnection of a subscriber
line. Information about the state of the line (connected or not) is given
to the other services by the variable 'connected'. The action to connect or
disconnect a subscriber line is taken when the signals 'CONN_REQ' or
DISC_REQ' are received from the maintenance block, The line is immediately
comnected or disconnected but, dependent on seizure state of the line (i.e. if the
line is seized or not), different signals are sent to the maintenance block.
Information about the seizure state is received from the services "A_subscriber_
actions' and ‘B_subscriber_actions' via the signals TDLE_SUB' and ‘BUSY_SUB',
The action o disconnect the subscriber line is also taken when the signal
'RESERVE_FOR_MEASUREMENT is received from the service
'Congestion_supervision', */)

: CONNECTED O

E DISC_REQ

Connected:=
False

DISC_REQ_
JACK1L

DIS_
CONNECTED

1(1)

DIS_

CONNECTED

Connected:=
True

CONNECTED

CONN_ SERV&E DISC_
_REQ FOR_ME_ _REQ
ASUREMENT
| | |

Connected:= Connected:= Connected:=
True False False
CONN_REQ_ DISC_REQ_
_ACK2 _ACK2

Connected

(False)

DIS_
CONNECTED

=) =)

FIGURE D-10.2.14

Service diagram

Fascicle X.2 —Rec. Z.100 Annex D

153

154

SERVICE Congestion_supervision

f* The service decides if a subscriber line can serve

its purpose. If not, an alarm is generated.

1(1)

The decision is based on the relation between the number
of successfull calls and the number of rejected calls due to
congestion. If the subscriber line cannot serve its purpose
the service ‘Connection.Disconnection’ is informed via the
signal RESERVE_FOR_MEASUREMENT".
Information about successfull and rejected calls is received
from the service 'A_subscriber_actions' via the signals
'CALL' and 'CONG_CALL!' respectively. */

DCL Cong_counter, Call_counter integer := 0;

NO_ALARM

CONG_,
_CALL

CALL

Call_counter:=
ALARM Call_counter+1

!

Cong_counter:=
Cong_counter+1
I
'‘Compare Call_
_counter and
Cong_counter’
‘Cong.level
acceptable’

‘Cong.level not
acceptable’

ew] | =) (=)[R

Cali_counter:= RESERVE_FOR_
Call_counter+1 ~MEASUREMENT
|
'Compare Call_
_counter and ALARM
Cong_counter

Result'

"‘Cong.level
'‘Cong.level not acceplable ' CEASE_ CONG_
’ _ALARM _CALL
acceptable’
RESERVE_FOR_ Call_counter:=0, Cong_counter:=
_MEASUREMENT Cong_counter:=0 Cong_counter+1

Y

(o) (=)

FIGURE D-10.2.15

Service diagram

Fascicle X.2 —Rec. Z.100 Annex D

D.11 Toolsfor SDL

D.11.1 Introduction

This paragraph outlines a set of tools which may support SDL. These tools may support the generation of documents,
SDL diagram (SDL/GR) or statements (SDL/PR), and/or the validation of SDL specifications.

An exhaustive list of possible tools is not listed in these guidelines. The tools required are dependant on the
methodology chosen by the user.

In principle SDL can be used without any tools. However, the inherent complexity of modem systems is such that the
SDL specifications are often complex. Therefore, automatic tools are needed to help manage the specification, design,
and documentation of many systems. For instance, the complexity and cost of manually drawing, and possibly
updating, the graphic documentation of a switching exchange would be significantly reduced by using suitable aids.

Due to the above considerations SDL has been designed so that tools can be effectively used to support its use.

D.11.2 Classesof tools

SDL tools may be classified by the activities carried out during the production of SDL documentation, for instance:

- Tools for input: According to the syntactic forms we have input aids for the SDL graphic, textual phrase, and
pictorial.

- Tools for syntactic checking: These include syntax analyzers for each of the two syntaxes.

- Tools for document generation: Once SDL documents are stored within a machine, tools can access and
reproduce them, possibly using several peripherals. These may use a syntactic form different from that used to
input the document. In addition tools may be able to generate new types of documents derived from those
originally entered.

- Tools for system modelling and analysis. The SDL documents representing a system can be used for
abstracting a model of the system. Checks can be performed on that model. They can search for deadlocks,
make a comparison between various models of the same system (e.g. between a specification and a
description), or run asimulation of the system behaviour etc.

- Tools supporting code generation: Very detailed SDL specifications may be used to help in the programming
of software. Tools may be developed in such a way that a guided, semi-automatic, code sequence may be
performed.

A specific, but useful, class of toolsis represented by:

- SDL training tools: These may either stand alone or be integrated with other tools. Integration allows users of
other functionsto be given aid when required.

As SDL is used in many of the various phases of a systems life cycle, one can easily see a use of all types of toolsin an
integrated project environment.

D.11.3 Document input

No special requirements are needed for entering the textual phrase form of SDL, as the SDL/PR is equivalent, from the
input viewpoint, to any character string input. Therefore it may benefit by the same tools (string editors). The other
syntax however assumes graphic handling capability.

It is obvious that whilst support for SDL/PR input can be beneficial, SDL/GR input support is essential, if we plan to
use these syntaxes as input.

A graphic editor is always required for functions such as the connection of two symbols, displacement of a set of
symbols to another area of the page or to other pages, and concatenate deletion (deletion of a symbol implies the
deletion of the connection to that symbol). As for the SDL/PR tools, the SDL/GR input tools should be modelled on
the SDL semantics/syntax. Therefore it should highlight invalid connections, and prompt the user to fill up all of the
uncompleted parts etc.

The tools are faced with several problems which derive from the physical constraints of graphics devices, such as
"resolution”. It is almost impossible to have a sufficient number of characters, which are readable, while also allowing
the display of areasonable number of symbols on the screen.

Solutions such as a zooming window, or scrolling, have to be considered, but they are not completely satisfactory.
High resolution may not be considered a"must" if diagrams are copied by the user but it is very desirable if diagrams are
produced directly by the user. For the same reason (requirement of an overview and of a certain amount of details) high
resolution is desirable in the display of diagrams.

Fascicle X.2 —Rec. Z.100 Annex D 155

Toolsfor aiding the SDL/PR input can be helpful: they may prompt the user with expected SDL/PR keywords.

They can immediately format the SDL/PR according to the keywords received, insert delimiters automatically, and
present to the user SDL/PR oriented function keys, provide a clear layout etc.

The implementation of such tools may be based on existing character string editors which can be extended to include the
features mentioned above.

D.11.4 Document verification

Once documents are stored in a machine the next step is to verify them. They should first be verified individually, and
then related diagrams should be combined and verified until the total system is verified.

If the input has been made through an SDL oriented tool a good amount of checking on each individual document
could have already been done.

Errors deriving from "not possible” operations (e.g. inputs or saves following anything but a state) should all be detected
and corrected during the input phase. The detection of some errors is however only possible at the completion of the
input phase, both on a single document and, of course, in case of inconsistencies between documents.

Several SDL rules can be automatically checked. For instance the requirement that all outputs should have a
corresponding input.

In the case of amulti-level specification, to a certain extent, consistency between levels can be checked.

Theformal SDL model may be used to derive a collection of verification procedures.

D.11.5 Document reproduction

SDL documents stored in a machine must be able to be retrieved, displayed, and reproduced. Tools for all these activities
are required. It may be useful to be able to retrieve only part, or subsets, of documents. The retrieval can be SDL
oriented, e.g. "find all the processes sending" agiven signal, or "in which states" is a certain action performed, and so on.
Tools for displaying information are of particular interest when the information is to be displayed using the graphic
syntax. The same observations as made for the input of documents in SDL/GR syntaxes apply. The reproduction of
documents is dependent on the type of document to be reproduced, on how this document has been stored and on the
characteristics of the output peripheral. It may also be dependent on how it was entered. Users may wish for an output in
adifferent syntax from the one used to enter the document.

The reproduction of documents is affected by the output peripheral constraints. For example a diagram can be too large
to fit in a given space of paper, and therefore has to be chopped into pieces. Connectors have to be added and cross
references should be inserted. It may be desirable to distinguish between an "addition” made by the tool and original input
characteristics. Tools allowing flexibility in output format are desirable: these features include different sizes of symboal,
different output formats, vertical or horizontal display etc.

A document should always be able to be reproduced in exactly the same way as it was entered.

D.11.6 Document generation

Starting from the SDL documents entered by the users and stored in the machine, several other documents can be
generated automatically, among these:

- the signal lists, organized per process, per block, or per system;

- the state overview diagrams, showing the process graph as a set of states connected by arcs representing the
transitions;

- the cross reference table, organized per process, per block, or per system;
- the block tree diagram, showing the structure of the blocks and levels;
- the system behaviour, as a response to sequences of environment actions;

- indexes: Once generated documents will have to be reproduced and the same considerations presented above
arevalid.

SDL documents entered in SDL/GR can automatically be trandlated to the equivalent SDLIPR and viceversa.
The following considerations apply:

- the SDL/GR contains visual information which cannot be trandated into the SDL/PR (it does not exist in
SDL/PR). For example, the coordinates of the symbols are meaninglessin SDL/PR;

- connectors linking flow lines on different pages can be eliminated.

156 Fascicle X.2 —Rec. Z.100 Annex D

The inverse trandation, from SDL/PR to SDL/GR, is however much more complex and is unlikely to completely satisfy all
the potential readers.

Due to the two dimensional representation of the SDL/GR some labels inserted to cope with the sequential structure of
the SDL/PR, can be deleted as a connection line is sufficient.

Usually the trandation generates a model of the SDL/GR diagrams. This model contains al the information necessary
for atool to format and reproduce the diagram on a graphic device.

Note that two different tools trandating some SDL/PR into SDL/GR may obtain two SDL/GR specifications with
different layouts. The SDL/GR specifications so obtained are both correct provided they preserve the semantics
expressed in the originating specification.

D.11.7 Systemmodelling and analysis
SDL documents, independent of whether they specify or describe a system, are basically amodel of that system.

This model, which is primarily intended to transfer information from one person to another, can also be interpreted by
tools, checked for consistency, for completeness (this aspect may not be satisfied in cases of specification aiming at
specifying only some parts of a system), and for correctness and compliance with the SDL rules (as described in the
paragraph on document verification).

In addition, tools may be developed to use the model to simulate the systems functional behaviour. The simulator can
interact with the environment and conclusions on the adherence of the model to the users expectations can be drawn.

If additional information is added to indicate the time consumed in executing each action, and to dimension the resources
available (queues, instances etc.) the simulation can aso study the capacity of the system.

Tools may be developed to create a model of the environment, starting from the system model, to create meaningful
sequences to check the real system. Path analysis may detect deadlocks in the model.

The system modd can aso be used as on-line documentation. If appropriate links exist between the actual system and the
documentation storage, atool may be devel oped to trace system real time events on the model.

To achieve this, correlation should be provided between the physical events, as seen by the system, and the logical events
dealt with by the SDL documentation. If the documentation is organized into severa levels of abstraction the user can
choose the level to be traced. This can be very useful asit allows users with different education and training to inspect the
system activities.

Tools interpreting the SDL model can also be used to single out differences in behaviour of different models of the same
system. It may also be used to compare different system descriptions (systems produced by different companies), or to
compare the system specification with the description. In thisway it is possible to see if a system description complies
with the original specification.

D.11.8 Code generation

The provisions of aformally defined syntax and of a formal mathematical definition of SDL, make it possible to realize
tools able to map the semantics of SDL specifications to the semantics of programming languages. Such tools are
possibly unable to provide complete implementation programs, but they may be very useful in providing at least a
frame-work for the actual program.

Paragraph D.9.1 of this U.G. outlines an example of how the mapping between SDL and CHILL may be achieved.

D.11.9 Training

A complete training course on SDL has been developed; it covers all the aspects of the language providing at the same
time examples and a few suggestions on the use of SDL.

The SDL Course is obtainable from the International Telecommunication Union, General _Secretariat - Sales Section,
Place des Nations, CH-1211 Geneve 20 (Switzerland)

Fascicle X.2 —Rec. Z.100 Annex D 157

SeriesA
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|
SeriesJ
SeriesK
SeriesL
SeriesM

SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

ITU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overal network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

L anguages and general softwar e aspects for telecommunication systems

Printed in Switzerland
Geneva, 2008

	ITU-T Rec. Z.100 Annex D (11/1988) – SDL USER GUIDELINES
	TABLE OF CONTENTS
	D.1 Preface
	D.2 Introduction
	D.2.1 General overview of SDL
	D.2.2 Syntax forms of SDL
	D.2.3 Applicability of SDL

	D.3 Basic concepts of SDL
	D.3.1 System
	D.3.2 Blocks
	D.3.3 Channels
	D.3.4 Signals
	D.3.5 Signal routes
	D.3.6 System and block diagrams
	D.3.7 Comments and text extension
	D.3.8 Processes
	D.3.9 Procedures
	D.3.10 Data handling
	D.3.11 Expressing time in SDL
	D.3.12 Qualifiers usage
	D.3.13 Syntax of names

	D.4 Structuring and refining SDL systems
	D.4.1 General
	D.4.2 Criteria for partitioning
	D.4.3 Block partitioning
	D.4.4 Block tree diagram
	D.4.5 Channel partitioning
	D.4.6 System representation in case of partitioning
	D.4.7 Refinement

	D.5 Additional concepts
	D.5.1 Macros
	D.5.2 Generic systems
	D.5.3 Services
	D.5.4 Guidelines for state-oriented representation and pictorial elements
	D.5.5 Auxiliary diagrams

	D.6 Definition of SDL data
	D.6.1 Guidelines on data in SDL
	D.6.2 Generators and inheritance
	D.6.3 Views on equations
	D.6.4 Features

	D.7 Additional guidelines for drawing and writing
	D.7.1 SDL/GR guidelines
	D.7.2 SDL/PR guidelines

	D.8 Documentation
	D.8.1 Introduction
	D.8.2 Types of system representation
	D.8.3 Document structure
	D.8.4 Referencing mechanism
	D.8.5 Classification of documents
	D.8.6 Mixing of SDL/GR and SDL/PR

	D.9 Mappings
	D.9.1 Mapping between SDL and CHILL
	D.9.2 Mapping between GR and PR

	D.10 Application examples
	D.10.1 Introduction
	D.10.2 The service concept

	D.11 Tools for SDL
	D.11.1 Introduction
	D.11.2 Classes of tools
	D.11.3 Document input
	D.11.4 Document verification
	D.11.5 Document reproduction
	D.11.6 Document generation
	D.11.7 System modelling and analysis
	D.11.8 Code generation
	D.11.9 Training

