TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

G.774.1

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – Operations, administration and maintenance features of transmission equipment

Synchronous digital hierarchy (SDH) – Bidirectional performance monitoring for the network element view

ITU-T Recommendation G.774.1

(Formerly CCITT Recommendation)

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TESTING EQUIPMENTS	G.500-G.599
TRANSMISSION MEDIA CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
General	G.700-G.709
Coding of analogue signals by pulse code modulation	G.710-G.719
Coding of analogue signals by methods other than PCM	G.720-G.729
Principal characteristics of primary multiplex equipment	G.730-G.739
Principal characteristics of second order multiplex equipment	G.740-G.749
Principal characteristics of higher order multiplex equipment	G.750-G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760-G.769
Operations, administration and maintenance features of transmission equipment	G.770-G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780-G.789
Other terminal equipment	G.790-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation G.774.1

Synchronous digital hierarchy (SDH) – Bidirectional performance monitoring for the network element view

Summary

This Recommendation provides an information model for the Performance Monitoring of Synchronous Digital hierarchy (SDH) Network. This model describes the managed object classes and their properties for the performance monitoring function, as defined in ITU-T G.784 and as related to SDH Network Elements. These objects are useful to describe information exchanged across interfaces defined in ITU-T M.3010 Telecommunications Management Network (TMN) architecture for the management of the performance monitoring function.

Document history		
Issue	Notes	
2001	First revision incorporated the changes documented in the G.774.1 Corrigendum 1 (1996). The rsCurrentData, rsCurrentDataTR, rsHistoryData, msAdaptationCurrentData, and msAdaptationHistoryData were moved to ITU-T G.774.6 for unidirectional performance monitoring. The current data and history data object classes for electrical SPI, optical SPI, ms, protection, and path termination TR were removed from the normative part of this Recommendation as the functionality were no longer required.	
11/1994	Initial version of the Recommendation.	

Source

ITU-T Recommendation G.774.1 was revised by ITU-T Study Group 15 (2001-2004) and approved under the WTSA Resolution 1 procedure on 9 February 2001.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

CONTENTS

1	Scope
2	References
3	Terms and definitions
4	Abbreviations
5	Performance management model
5.1	Overview
5.2	Requirements
6	Managed Object Classes Definitions
6.1	SDH Current Data
6.2	Regenerator Section Current Data
6.3	Regenerator Section Current Data Threshold Reset
6.4	Path Termination Current Data
6.5	Multiplex Section Adaptation Current Data
6.6	Regenerator Section History Data
6.7	Path Termination History Data
6.8	Multiplex Section Adaptation History Data
7	Package definitions
7.1	Consecutive Severely Errored Second Current Data Package
7.2	Far End Consecutive Severely Errored Second Current Data Package
7.3	Far End Current Data Package
7.4	Far End History Data Package
7.5	History Package
7.6	Threshold Reset Package
7.7	Unavailable Second Current Data Package
7.8	Unavailable Second History Data Package
7.9	Unavailable Time Alarm Package
8	Attributes definitions
8.1	Consecutive Severely Errored Second Event
8.2	Errored Second
8.3	Far End Errored Second
8.4	Far End Background Block Error
8.5	Far End Consecutive Severely Errored Second Event
8.6	Number of Consecutive Severely Errored Second

3.7	Background Block Error			
8.8	Severely Errored Seconds			
3.9	Far End Severely Errored Seconds			
8.10	Unavailable Seconds			
)	Actions			
0	Notifications			
1	Parameters			
12	Name binding definitions			
12.1	History Data – SDH Current Data			
2.2	Path Termination Current Data – VC4 TTP SinkR1			
12.3	Path Termination Current Data – VC3 TTP SinkR1			
2.4	Path Termination Current Data – VC2 TTP SinkR1			
2.5	Path Termination Current Data – VC12 TTP SinkR1			
2.6	Path Termination Current Data – VC11 TTP SinkR1			
3	Subordination rules			
4	Pointer constraints.			
5	Supporting ASN.1 productions			
Appen	dix I – Inheritance and naming diagram			
Appen	dix II – Threshold Reset (TR) Behaviour			
Appen	dix III – Managed object classes moved to ITU-T G.774.6			
II.1	rsCurrentData			
II.2	rsCurrentDataTR			
II.3	rsHistoryData			
II.4	msAdaptationCurrentData			
II.5	msAdaptationHistoryData			
Appen	idix IV – Functionality that is no longer required			
V.1	Managed object class definitions			
	IV.1.1 Electrical Source Synchronous Physical Interface Current Data			
	IV.1.2 Optical Source Synchronous Physical Interface Current Data			
	IV.1.3 Multiplex Section Current Data			
	IV.1.4 Multiplex Section Current Data Threshold Reset			
	IV.1.5 Protection Current Data			
	IV.1.6 Path Termination Current Data Threshold Reset			
	IV.1.7 Electrical Synchronous Physical Interface History Data			

	IV.1.8	Optical Synchronous Physical Interface History Data
	IV.1.9	Multiplex Section History Data
	IV.1.10	Protection History Data
IV.2	Package	e definitions
	IV.2.1	Laser Bias Current Data Package
	IV.2.2	Laser Bias Tide Mark Package
	IV.2.3	Laser Temperature Current Data Package
	IV.2.4	Laser Temperature Tide Mark Package
	IV.2.5	Transmit Power Level Current Data Package
	IV.2.6	Transmit Power Level Tide Mark Package
IV.3	Attribu	tes definitions
	IV.3.1	Laser Bias
	IV.3.2	Laser Bias Tide Mark Maximum
	IV.3.3	Laser Bias Tide Mark Minimum
	IV.3.4	Laser Temperature
	IV.3.5	Laser Temperature Tide Mark Maximum
	IV.3.6	Laser Temperature Tide Mark Minimum
	IV.3.7	Protection Switch Count
	IV.3.8	Protection Switch Duration
	IV.3.9	Transmit Power Level
	IV.3.10	Transmit Power Level Tide Mark Maximum
	IV.3.11	Transmit Power Level Tide Mark Minimum
IV.4	Name b	pinding definitions
		MS Current Data – MS TTP Sink
	IV.4.2	MS Current Data Threshold Reset – MS TTP Sink
	IV.4.3	MS Current Data – Protected TTP Sink
	IV.4.4	MS Current Data Threshold Reset – Protected TTP Sink
	IV.4.5	Protection Current Data – Protection Unit
	IV.4.6	Path Termination Current Data Threshold Reset – VC4 TTP SinkR1
	IV.4.7	Path Termination Current Data Threshold Reset – VC3 TTP SinkR1
	IV.4.8	Path Termination Current Data Threshold Reset – VC2 TTP SinkR1
	IV.4.9	Path Termination Current Data Threshold Reset – VC12 TTP SinkR1
	IV.4.10	Path Termination Current Data Threshold Reset – VC11 TTP SinkR1
	IV.4.11	Electrical Source SPI Current Data – Electrical SPITTP Source
	IV.4.12	Optical Source SPI Current Data – Optical SPITTP Source

ITU-T Recommendation G.774.1

Synchronous digital hierarchy (SDH) – Bidirectional performance monitoring for the network element view

1 Scope

SDH Performance Monitoring Functions are used to monitor specified performance events of specified Termination Points managed objects and to report these performance data, as well as Quality of Service Alarms to its managing system according to a given schedule.

This Recommendation is for bidirectional performance management of SDH path only.

ITU-T M.2120 defines maintenance of transport network, ITU-T G.784 defines the management of SDH based network element. This Recommendation defines the object model based on ITU-T Q.822 according to the requirements described in ITU-T G.784 and ITU-T M.2120. This model uses generic mechanisms defined in ITU-T Q.822.

Structure of this Recommendation

Clause 5.1 provides an overview of the SDH performance monitoring information model. Clauses 6 to 15 describe the information model using the notation mechanisms defined in ITU-T X.722: Guidelines for the Definition of Managed Objects. Clause 15 contains the syntax definitions of the information carried in the protocol using Abstract Syntax Notation One (ASN.1) defined in ITU-T X.680-X.683. Naming and Inheritance are illustrated in informative Appendix I. Diagrams illustrating the Threshold Reset behaviour are provided in informative Appendix II.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision: users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

- ITU-T G.707/Y.1322 (2000), Network node interface for the synchronous digital hierarchy (SDH).
- ITU-T G.773 (1993), Protocol suites for Q-interfaces for management of transmission systems.
- ITU-T G.774 (2001), Synchronous digital hierarchy (SDH) Management information model for the network element view.
- ITU-T G.783 (2000), Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks.
- ITU-T G.784 (1999), Synchronous digital hierarchy (SDH) management.
- ITU-T G.803 (2000), Architecture of transport networks based on the synchronous digital hierarchy (SDH).
- ITU-T G.831 (2000), Management capabilities of transport networks based on the synchronous digital hierarchy (SDH).

- ITU-T G.958 (1994), Digital line systems based on the synchronous digital hierarchy for use on optical fibre cables.
- ITU-T M.60 (1993), Maintenance terminology and definitions.
- ITU-T M.2120 (2000), PDH path, section and transmission system and SDH path and multiplex section fault detection and localization procedures.
- ITU-T M.3010 (2000), Principles for a telecommunication management network.
- ITU-T M.3013 (2000), Considerations for a telecommunications management network.
- ITU-T M.3100 (1995), Generic network information model.
- ITU-T Q.811 (1997), Lower layer protocol profiles for the Q3 and X interfaces.
- ITU-T Q.812 (1997), Upper layer protocol profiles for the Q3 and X interfaces.
- ITU-T Q.822 (1994), Stage 1, Stage 2 and Stage 3 description for the Q3 interface Performance management.
- ITU-T X.680 to X.683 (1997), Information technology Abstract Syntax Notation One (ASN.1).
- ITU-T X.701 (1997), Information technology Open Systems Interconnection Systems management overview.
- ITU-T X.710 (1997), Information technology Open Systems Interconnection Common management information service.
- ITU-T X.711 (1997), Information technology Open Systems Interconnection Common management information protocol: Specification.
- ITU-T X.720 (1992), Information technology Open Systems Interconnection Structure of Management Information: Management information model, plus Amd.1 (1995) and Cor.1 (1994).
- ITU-T X.721 (1992), Information technology Open Systems Interconnection Structure of management information: Definition of management information, plus Cor.1 (1994), Cor.2 (1996), Cor.3 (1998) and Cor.4 (2000).
- ITU-T X.722 (1992), Information technology Open Systems Interconnection Structure of management information: Guidelines for the definition of managed objects, plus Amd.1 (1995), Amd.2 (1997), and Cor.1 (1996).
- ITU-T X.730 (1992), Information technology Open Systems Interconnection Systems management: Object management function, plus Amd.1 (1995) and Amd.1/Cor.1 (1996).
- ITU-T X.731 (1992), Information technology Open Systems Interconnection Systems management: State management function, plus Amd.1 (1995), Cor.1 (1995) and Amd/Cor.1 (1996).
- ITU-T X.733 (1992), Information technology Open Systems Interconnection Systems management: Alarm reporting function, plus Cor.1 (1994), Amd.1 (1995), Amd.1/Cor.1 (1996) and Cor.2 (1999).
- ITU-T X.734 (1992), Information technology Open Systems Interconnection Systems management: Event report management function, plus Cor.1(1994), Amd.1 (1995), Amd.1/Cor.1 (1996) and Cor.2 (1999).
- ITU-T X.735 (1992), Information technology Open Systems Interconnection Systems management: Log control function, plus Amd.1 (1995) and Amd.1/Cor.1 (1996).

– ITU-T X.739 (1993), Information technology – Open Systems Interconnection – Systems Management: Metric objects and attributes.

3 Terms and definitions

This Recommendation uses the terms and definitions defined in ITU-T G.774, ITU-T G.784 and ITUT-T M.3100.

4 Abbreviations

This Recommendation uses the following abbreviations:

AIS Alarm Indication Signal
BBE Background Block Error

CSES Consecutive Severely Errored Second

CTP Connection Termination Point

EBER Excessive Bit Error Ratio

ES Errored Second

FEBBE Far End Background Block Error

FEEB Far End Errored Block
FEES Far End Errored Second
FERF Far End Receive Failure

FESES Far End Severely Errored Second

ISO International Organization for Standardization

ITU International Telecommunications Union

LB Laser Bias
LOF Loss of Frame

LOS Loss of Signal

LT Laser Temperature
MS Multiplex Section

NCSES Number of Consecutive Severely Errored Second

NE Network Element

OFS Out of Frame Second

OOF Out of Frame

OS Operations System

OSI Open Systems Interconnection

OSL Optical Signal Level

PJC Pointer Justification Count
PJE Pointer Justification Event

Pkg Package

PPI Plesiochronous Physical Interface

PSC Protection Switch Count
PSD Protection Switch Duration

QS Quality of Service

RAI Remote Alarm Indication
RDN Relative Distinguished Name

RS Regenerator section

SDH Synchronous Digital Hierarchy

SES Severely Errored Second

SPI Synchronous Physical Interface STM-N Synchronous Transport Module N

TMN Telecommunications Management Network

TP Termination Point
TR Threshold Reset

TTP Trail Termination Point
UAS Unavailable Second

5 Performance management model

5.1 Overview

This clause provides Managed Objects required to support management of performance monitoring in SDH Network Elements.

This model defines subclasses of the generic currentData and historyData object classes from ITU-T Q.822, for each kind of monitoring point. For each type of monitoring point two subclasses of currentData are defined. One is defined for either a 15-minute count or 1-day count period, and provides implicit clearing of threshold crossing alarms at the end of each granularity period. The other subclass is only relevant to 15-minute counting and performs explicit clearing of threshold alarms (Threshold Reset) at the end of a clear 15-minute period (refer to 2.3.4.2/M.2120).

Starting and ending of unavailability period is reported by the instances of these subclasses that hold the 24-hour counts.

History information could either be collected as part of historyData instances or one of its subclasses or as an eventRecord or one of its subclasses contained in a log. Utilization of a LOG is not mandatory in this Recommendation.

The threshold reset (TR) mechanism used in this Recommendation corresponds to the reset threshold report (RTR) of ITU-T G.784.

5.2 Requirements

The SDH Performance Monitoring functions shall provide for:

- the ability for a managing system to request the collection of the various Performance events relating to a given monitored entity for a given collection period;
- the ability for a managing system to suspend/resume the performance data collection for a given monitored entity (or set of entities);
- the ability for a managing system to instruct the NE to reset the performance monitoring counters for a given monitored entity (or set of entities);
- the scheduling of performance collection activity within specified time periods, for a given monitored entity (or set of entities);
- the ability for a managing system to request the performance monitoring counters for a given monitored entity (or set of entities);
- the ability for a managed system to send event reports to a managing system to notify the results of the performance data collection, at the end of the collection period;
- the ability for a managing system to instruct the NE to maintain Performance historical data for a specified duration, under specified conditions;
- the ability for a managing system to instruct the NE to remove specific Performance historical data;
- the ability for a managing system to instruct the NE to establish thresholding criteria for a given monitored entity (or set of entities);
- the ability for a managed system to send Quality of Service Alarms upon threshold violation of a performance counter of a monitored entity.

6 Managed Object Classes Definitions

NOTE 1 – See Appendix III for a list of the managed object classes that have been moved to ITU-T G.774.6 for unidirectional performance monitoring.

NOTE 2 – See Appendix IV for the managed object classes that are no longer required.

6.1 SDH Current Data

```
sdhCurrentData MANAGED OBJECT CLASS
DERIVED FROM "Recommendation Q.822" : currentData;
CHARACTERIZED BY
"Recommendation Q.822": zeroSuppressionPkg,
"Recommendation Q.822": thresholdPkg,
sdhCurrentDataPackage PACKAGE
    BEHAVIOUR sdhCurrentDataBehaviour;
    ATTRIBUTES
    "Recommendation M.3100": currentProblemListGET;;;
CONDITIONAL PACKAGES
historyPackagePRESENT IF
    "an instance does not support flexible assignment of the history length",
unavailableTimeAlarmPackage PRESENT IF
    "starting and ending of unavailable period has to be reported and the
granularity period is 24 hours";
REGISTERED AS {g774-01MObjectClass 1};
```

sdhCurrentDataBehaviour BEHAVIOUR DEFINED AS

"The sdhCurrentData class is used to define generic characteristic for SDH performance monitoring from which subclasses are defined in order to hold performance event counts for a specific monitoring point. Subclasses of this class are used in order to support performance monitoring of SDH paths at various layers as described in Recommendation G.803. The performance monitoring events ES, SES and BBE which are monitored by some of the subclasses of this subclass are defined in 4.1.1/G.826. The granularityPeriod attribute can only be assigned a value at creation time.

This class can only contain one reference to an instance of the thresholdData object class in the thresholdDataInstance attribute.

The 15' and 24 hours granularity period must be supported fully. If a threshold is reached or crossed then the currentProblemList attribute shall indicate it with the probable cause 'Threshold crossed'. Subclass of this class is used to monitor the near end of the path in case of bidirectional path the far end of the path shall be supported additionaly. In case of monitoring of a bidirectional path and Far End unavailability is monitored, an unavailable period starts if either the near end or the far end is in an unavailable condition. In case of monitoring of a unidirectional path only the near end is considered. An unavailable condition starts when 10 consecutive severely errored seconds have been detected; these 10 seconds belong to the unavailable time. An unavailable condition ends when 10 consecutive seconds with no severely errored second are detected. These 10 seconds belong to the available time. The unavailable period

For threshold reset subclasses of this object class the following rules apply:

entry/exit criteria are described in Annex A/G.826.

- No more than one QOS alarm shall be generated until there has been a 15-minute rectangular fixed window with less error count than the low error count threshold and no unavailable period exists.
- To provision the high and low threshold value, the counterThresholdAttributList attribute of the Q.822-ThresholdDataInstance is used.

In this attribute all the thresholds (high and low) for each necessary counter are stored in a list. This means for example, that the high threshold for ES and the low threshold for ES are individually stored in the same list. It is up to the network element to recognize which is the high and which is the low one. If the unavailableTimeAlarmPackage is present and if an unavailable period starts, then a communication alarm shall be sent with a probable cause of 'Unavailable' and the presence of this unavailable condition is indicated by the currentProblemList attribute. If an unavailable period is ending, then a communication alarm shall be sent with a probable cause of 'Unavailable' and a severity of 'Cleared'. An available condition is indicated by the absence of the unavailable condition in the current problem list. The unavailable condition has no effect on the operationalState. Each subclass of this class shall define the performance attributes required to hold the mandatory or optional performance events. These performance event counts are inhibited during unavailable time. Attributes which are defined in a subclass of this class shall be included in history information using the historyData, or one of its subclass, unless it is explicitly specified in the subclass of this class that a particular attribute be not included. Each subclass of this class shall indicate which subclass of the history data is used for history retention. The following conditional packages are not used in this class: filterSuppressionPkg, observedManagedObjectPkg.

Concerning the subclasses of this class the following rule applies: If a subclass of this class has a granularity period of 15 minutes, it should be either an instance with the threshold reset functionality or an instance without this functionality instantiated (per termination point), but not both. ";

6.2 Regenerator Section Current Data

This managed object class was moved to ITU-T G.774.6.

6.3 Regenerator Section Current Data Threshold Reset

This managed object class was moved to ITU-T G.774.6.

6.4 Path Termination Current Data

```
pathTerminationCurrentData MANAGED OBJECT CLASS
DERIVED FROM sdhCurrentData;
CHARACTERIZED BY
pathTerminationCurrentDataPackage PACKAGE
    BEHAVIOUR pathTerminationCurrentDataBehaviour;
    ATTRIBUTES
     "Recommendation X.739": granularityPeriod REQUIRED VALUES
    SDHPMASN1.SDHGranularityPeriod,
-- According to ITU-G.784 (1999), only the 24 h (one day) granularity period has
to be supported.
    bbe REPLACE-WITH-DEFAULT
                                 GET,
         REPLACE-WITH-DEFAULT
                                 GET,
    ses replace-with-default
                                 GET;;;
CONDITIONAL PACKAGES
cSESCurrentDataPackage PRESENT IF
    "an instance supports it",
farEndCSESCurrentDataPackage PRESENT IF
    "an instance supports it" ,
uASCurrentDataPackage PRESENT IF
    "an instance supports it",
farEndCurrentDataPackage PRESENT IF
    "monitoring of the far end is supported and the monitored point is
Bidirectional";
REGISTERED AS {g774-01MObjectClass 9};
pathTerminationCurrentDataBehaviour BEHAVIOUR
DEFINED AS
"Instances of the pathTerminationCurrentData managed object Class are used to
hold the current register counts for a High Order Path and or Low Order Path
during a collection period. An instance of this object class, for a monitored
managed object instance, holds the current register counts of each performance
events (BBE, ES, SES, FEBBE, FEES, FESES, UAS).
This managed object class uses the pathTerminationHistoryData managed object
class for history retention.
A QOS alarm shall be sent as soon as a threshold is reached or crossed. At the
end of the granularity period the QOS alarm is implictly cleared and, provided
there are no other outstanding threshold crossing QOS alarms, 'Threshold
crossing' removed from the currentProblemList (i.e. No Notification is Sent) and
a new QOS alarm shall be sent if the threshold is reached or crossed again during
the next granularity period. Only one threshold value per performance counter
will be supported. ";
```

6.5 Multiplex Section Adaptation Current Data

This managed object class was moved to ITU-T G.774.6.

6.6 Regenerator Section History Data

This managed object class was moved to ITU-T G.774.6.

6.7 Path Termination History Data

```
pathTerminationHistoryData MANAGED OBJECT CLASS
             "Recommendation Q.822": historyData;
DERIVED FROM
CHARACTERIZED BY
pathTerminationHistoryDataPackage PACKAGE
    BEHAVIOUR pathTerminationHistoryDataBehaviour;
    ATTRIBUTES
    bbe GET,
    eS
         GET,
    ses get ;;;
CONDITIONAL PACKAGES
uASHistoryDataPackage PRESENT IF
     "the containing pathTerminationCurrentData or contains the
uASCurrentDataPackage",
farEndHistoryDataPackage PRESENT IF
     "the containing pathTerminationCurrentData or pathTerminationCurrentDataTR
instance contains the farEndCurrentDataPackage";
REGISTERED AS {g774-01MObjectClass 17};
pathTerminationHistoryDataBehaviour BEHAVIOUR
DEFINED AS
"Instances of this class are used to store the observed events of a
pathTerminationCurrentData or pathTerminationCurrentDataTR object at the end of
an observation interval. An instance of this managed object is contained by a
pathTerminationCurrentData or pathTerminationCurrentDataTR managed object
instance.";
```

6.8 Multiplex Section Adaptation History Data

This managed object class was moved to ITU-T G.774.6.

7 Package definitions

7.1 Consecutive Severely Errored Second Current Data Package

```
cSESCurrentDataPackage PACKAGE
BEHAVIOUR
    cSESCurrentDataPackageBehaviour;
ATTRIBUTES
    cSESEvent GET,
    nCSES PERMITTED VALUES SDHPMASN1.NCSESRange GET-REPLACE;
REGISTERED AS {g774-01Package 1};

cSESCurrentDataPackageBehaviour BEHAVIOUR
DEFINED AS
```

"This package is used to hold Consecutive Severely Errored Second (CSES) events. A CSES is detected each time x consecutive SES appear. The number of consecutive SES that generate a CSES is given by the nCSES attribute, in the range of 2 to 9. The cSES events are not detected during unavailable time. The CSES events are recorded in the cSESEvent attribute, this attribute contains the time at which the consecutive severely errored seconds started and the value of the nCSES attribute at the time the event has occured. The cSESEvent attribute shall at least support recording of 6 CSES events. When the cSESEvent attribute is full, a wrapping mechanism is used to discard the oldest CSES event. These attributes are not reset and are not stored in history data objects at the end of the granularity period. The cSESEvent attribute is initialized as an empty set when the corresponding object that holds this attribute is created. The CSES event is described in Recommendation G.784.";

7.2 Far End Consecutive Severely Errored Second Current Data Package

```
farEndCSESCurrentDataPackage PACKAGE
    BEHAVIOUR
         farEndCSESCurrentDataPackageBehaviour;
    ATTRIBUTES
         fECSESEvent
                        GET.
                        PERMITTED VALUES SDHPMASN1.NCSESRange
         nCSES
                                                                   GET-REPLACE :
REGISTERED AS {g774-01Package 2};
farEndCSESCurrentDataPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used to hold Far End Consecutive Severely Errored Second
(FECSES) events. A fECSES is detected each time x consecutive fESES appear. The
number of consecutive fESES that generate a fECSES is given by the nCSES
attribute, in the range of 2 to 9. The fECSES events are not detected during
unavailable time. The fECSES events are recorded in the fECSESEvent attribute,
this attribute contains the time at which the far end consecutive severely
errored seconds started and the value of the nCSES attribute at the time the
event has occured. The fECSESEvent attribute shall at least support recording of
6 fECSES events. When the fECSESEvent attribute is full, a wrapping mechanism is
used to discard the oldest fECSES event . These attributes are not reset and are
not stored in history data objects at the end of the granularity period. The
fECSESEvent attribute is initialized as an empty set when the corresponding
object that holds this attribute is created.";
7.3
      Far End Current Data Package
farEndCurrentDataPackage PACKAGE
    BEHAVIOUR
         farEndCurrentDataPackageBehaviour;
    ATTRIBUTES
         febbe
                   REPLACE-WITH-DEFAULT
                                           GET,
         FEES
                   REPLACE-WITH-DEFAULT
                                           GET,
         feses
                        REPLACE-WITH-DEFAULT
                                                GET;
REGISTERED AS {g774-01Package 3};
farEndCurrentDataPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used to record the far end performance event counts.";
7.4
      Far End History Data Package
farEndHistoryDataPackage PACKAGE
    BEHAVIOUR
         farEndHistoryDataPackageBehaviour;
    ATTRIBUTES
         febbe
                   GET,
         fees
         feses
                        GET;
REGISTERED AS {g774-01Package 4};
farEndHistoryDataPackageBehaviour BEHAVIOUR
DEFINED AS
```

"This package is used to record the corresponding current data attribute values

at the end of the granularity period.";

7.5 History Package

historyPackage PACKAGE BEHAVIOUR

historyPackageBehaviour;
REGISTERED AS {g774-01Package 5};

historyPackageBehaviour BEHAVIOUR DEFINED AS

"At the end of each performance interval an instance of historyData or one of its subclass shall be created if history retention was not suppressed by other means such as zero suppression. The values of the historyData object or one of its subclass is the copy of the values of the corresponding attributes of the currentData or one of its subclass at the end of each performance interval. Once the new historyData instance is created or one of its subclass this instance shall be retained in the Network Element at least for 16 periods of 15 minutes for 15' performance interval and 1 period of 1 day for 1 day performance interval. The storing of history data is described in 5.3.2/G.784.";

7.6 Threshold Reset Package

thresholdResetPackage PACKAGE

BEHAVIOUR

thresholdResetPackageBehaviour;
REGISTERED AS {g774-01Package 14};

thresholdResetPackageBehaviour BEHAVIOUR

DEFINED AS

"The following rules apply to the thresholds mechanism:

ES thresholds:

Two thresholds are defined: The upper ES threshold and the low ES threshold - No more than one QOS alarm shall be generated until there has been a 15-minute rectangular fixed window with less ES than the low ES threshold and no unavailable period. At the end of the first 15-minute rectangular period with less ES than the low ES threshold and no unavailable period, if a threshold crossing has been previously generated, then a QOS alarm shall be sent which indicates the clearing of the low ES threshold, and the 'Threshold crossing' removed from the currentProblemList. If the upper ES threshold is reached or crossed, after a 15-minute rectangular fixed window with less ES than the low ES threshold, then a QOS alarm shall be sent.

- SES threshold:

One threshold is defined - No more than one QOS alarm shall be generated until there has been a 15-minute rectangular fixed window with zero SES. At the end of the first 15-minute rectangular period with zero SES, a QOS alarm shall be sent which indicates the clearing of a zero threshold. If after a 15-minute rectangular fixed window with zero SES the SES threshold is reached or crossed then a QOS alarm shall be sent.

BBE threshold: refer to the ES threshold.

For any of the above thresholds, A QOS clear will not be sent if the Performance Monitoring Data is suspect, as defined by the suspectIntervalFlag attribute. ";

7.7 Unavailable Second Current Data Package

uASCurrentDataPackage PACKAGE

BEHAVIOUR

uASCurrentDataPackageBehaviour;

ATTRIBUTES

uas replace-with-default get;

REGISTERED AS {g774-01Package 15};

 ${\tt uASCurrentDataPackageBehaviour\ BEHAVIOUR}$

DEFINED AS

"This package is used to store the counter of one second intervals pertaining to an Unavailable Time.";

7.8 Unavailable Second History Data Package

in 3.1.1/G.826."

REGISTERED AS {g774-01Attribute 2};

;;

```
uASHistoryDataPackage PACKAGE
    BEHAVIOUR
         uASHistoryDataPackageBehaviour;
    ATTRIBUTES
         uAS GET;
REGISTERED AS {g774-01Package 16};
uASHistoryDataPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used to record the corresponding current data attribute values
at the end of the granularity period.";
7.9
      Unavailable Time Alarm Package
unavailableTimeAlarmPackage PACKAGE
    BEHAVIOUR
         unavailableTimeAlarmPackageBehaviour;
    NOTIFICATIONS
         "Recommendation X.721 ": communicationsAlarm;
REGISTERED AS {g774-01Package 17};
unavailableTimeAlarmPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used when a Communication Alarm Notification with the probable
cause. Unavailable is to be emitted to indicate the beginning of an unavailable
time period. The end of an unavailable time period shall be indicated by the
clearing of this alarm.";
8
      Attributes definitions
      Consecutive Severely Errored Second Event
csesevent ATTRIBUTE
    WITH ATTRIBUTE SYNTAX SDHPMASN1.CSES;
    BEHAVIOUR
         cseseventBehaviour BEHAVIOUR
DEFINED AS
"The value of the cSESEvent attribute represents the recording of at least 6 cSES
events. A cSES event is generated each time x consecutive SES appear during the
available time of the monitored resource."
REGISTERED AS {g774-01Attribute 1};
8.2
      Errored Second
eS ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter;
    BEHAVIOUR
         eSBeh BEHAVIOUR
DEFINED AS
"The value of the eS attribute represents the count of seconds with one or more
errored blocks during the available time of the monitored resource during the
corresponding granularity period. The ES performance event is described
```

8.3 Far End Errored Second

```
fees Attribute
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter;
    BEHAVIOUR
         ffEESBeh BEHAVIOUR
DEFINED AS
"The value of the fEES attribute represents the count of seconds with one or
more far end errored blocks detected at the remote terminal during the available
time of the monitored resource during the corresponding granularity period."
REGISTERED AS {g774-01Attribute 3};
8.4
      Far End Background Block Error
febbe Attribute
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter;
    BEHAVIOUR
         fEBBEBeh BEHAVIOUR
DEFINED AS
"The value of the fEBBE attribute represents the count of errored blocks
(Estimate Errored Block on Bip-n violation) not occuring as part of an fESES."
REGISTERED AS {g774-01Attribute 4};
      Far End Consecutive Severely Errored Second Event
fECSESEvent ATTRIBUTE
    WITH ATTRIBUTE SYNTAX SDHPMASN1.CSES;
    BEHAVIOUR
         fECSESEventBehaviour BEHAVIOUR
DEFINED AS
"The value of the fECSESEvent attribute represents the recording of at least 6
fECSES events. A fECSES event is generated each time x consecutive fESES appear
during the available time of the monitored resource during the corresponding
granularity period."
REGISTERED AS {g774-01Attribute 5};
      Number of Consecutive Severely Errored Second
8.6
nCSES ATTRIBUTE
    WITH ATTRIBUTE SYNTAX SDHPMASN1.NCSESRange;
    BEHAVIOUR
         nCSESBeh BEHAVIOUR
DEFINED AS
"The value of the nCSES attribute represents the number of consecutive (near or
far end) SES which will lead to the generation of a (near or far end) cSES event.
The nCSES is in the range 2 to 9."
REGISTERED AS {g774-01Attribute 12};
8.7
      Background Block Error
bbe ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter;
    BEHAVIOUR
         bbebeh behaviour
DEFINED AS
"The value of the BBE attribute represents the count of errored blocks (Estimate
Errored Block on Bip-n violation) not occuring as part of an SES. The BBE
performance event is described in 3.1.1/G.826."
;;
REGISTERED AS {g774-01Attribute 13};
```

12

8.8 Severely Errored Seconds

```
ses attribute
```

DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter;

sESBeh BEHAVIOUR

DEFINED AS

"The value of the sES attribute represents the count of one second periods containing greater than or equal to 30% of errored blocks, or at least one Severely Disturbed Period (SDP) that is one second containing one or more defects during the available time of the monitored resource during the corresponding granularity period. An SES is also counted as an ES. The SES performance event is described in Recommendation G.826."

;;

REGISTERED AS {g774-01Attribute 17};

8.9 Far End Severely Errored Seconds

FESES ATTRIBUTE

DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter; BEHAVIOUR

fESESBeh BEHAVIOUR

DEFINED AS

"The value of the fESES attribute represents the count of one second periods containing greater than or equal to 30% of far end errored blocks as detected at the remote terminal (fEBC), or at least one Far End Severely Disturbed Period (SDP) that is one second containing one or more far end defects as detected at the remote terminal (FERF) during the available time of the monitored resource during the corresponding granularity period. An fESES is also counted as an fEES."

;;

REGISTERED AS {g774-01Attribute 18};

8.10 Unavailable Seconds

```
uAS ATTRIBUTE
```

DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter; BEHAVIOUR

uASBeh BEHAVIOUR

DEFINED AS

"The value of the uAS attribute represents the count of one second intervals pertaining to an UnavailableTime. A period of unavailable time begins when the SES continues for a period of ten consecutive seconds. These seconds are considered to be unavailable time. A new period of available time begins with the first second of ten consecutive non-SES. The unavailable time entry/exit criteria is described in Annex A/G.826."

;;

REGISTERED AS {g774-01Attribute 22};

9 Actions

None

10 Notifications

None.

11 Parameters

None.

12 Name binding definitions

12.1 History Data – SDH Current Data

```
historyData-sdhCurrentData NAME BINDING
    SUBORDINATE OBJECT CLASS "Recommendation Q.822": historyData AND
SUBCLASSES:
    NAMED BY
         SUPERIOR OBJECT CLASS sdhCurrentData AND SUBCLASSES;
         WITH ATTRIBUTE "Recommendation Q.822": historyDataId;
    BEHAVIOUR
         historyData-sdhCurrentDataBehaviour BEHAVIOUR
DEFINED AS
"Instance of the historyData object class or one of its subclass is created at
the end of the granularity period of an instance of the sdhCurrentData object or
one of its subclass and is directly contained by that instance."
;;
    DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 1};
```

12.2 Path Termination Current Data – VC4 TTP SinkR1

```
pathTerminationCurrentData-vc4TTPSinkR1 NAME BINDING
    SUBORDINATE OBJECT CLASS pathTerminationCurrentData AND SUBCLASSES;
    NAMED BY
        SUPERIOR OBJECT CLASS "Recommendation G.774": vc4TTPSinkR1 AND
SUBCLASSES;
        WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
        WITH-REFERENCE-OBJECT,
        WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
        DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 23};
```

12.3 Path Termination Current Data – VC3 TTP SinkR1

```
pathTerminationCurrentData-vc3TTPSinkR1 NAME BINDING
    SUBORDINATE OBJECT CLASS pathTerminationCurrentData AND SUBCLASSES;
    NAMED BY
        SUPERIOR OBJECT CLASS "Recommendation G.774": vc3TTPSinkR1 AND
SUBCLASSES;
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
CREATE
    WITH-REFERENCE-OBJECT,
    WITH-AUTOMATIC-INSTANCE-NAMING;
DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 24};
```

12.4 Path Termination Current Data – VC2 TTP SinkR1

```
pathTerminationCurrentData-vc2TTPSinkR1 NAME BINDING
    SUBORDINATE OBJECT CLASS pathTerminationCurrentData AND SUBCLASSES;
    NAMED BY
        SUPERIOR OBJECT CLASS "Recommendation G.774": vc2TTPSinkR1 AND
SUBCLASSES;
        WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
        WITH-REFERENCE-OBJECT,
        WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
        DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 25};
```

12.5 Path Termination Current Data – VC12 TTP SinkR1

```
pathTerminationCurrentData-vc12TTPSinkR1 NAME BINDING
    SUBORDINATE OBJECT CLASS pathTerminationCurrentData AND SUBCLASSES;
    NAMED BY
        SUPERIOR OBJECT CLASS "Recommendation G.774": vc12TTPSinkR1 AND
SUBCLASSES;
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
        WITH-REFERENCE-OBJECT,
        WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
        DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 26};
```

12.6 Path Termination Current Data – VC11 TTP SinkR1

```
pathTerminationCurrentData-vc11TTPSinkR1 NAME BINDING
    SUBORDINATE OBJECT CLASS pathTerminationCurrentData AND SUBCLASSES;
    NAMED BY
        SUPERIOR OBJECT CLASS "Recommendation G.774": vc11TTPSinkR1 AND
SUBCLASSES;
        WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
        WITH-REFERENCE-OBJECT,
        WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
        DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 27};
```

13 Subordination rules

None.

14 Pointer constraints

None.

15 Supporting ASN.1 productions

```
SDHPMASN1 { itu-t(0) recommendation(0) g(7) g774(774) hyphen(127) pm(01)
informationModel(0)
asn1Module(2) sdhpm (0) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS everything
IMPORTS
ProbableCause FROM Attribute-ASN1Module { joint-iso-itu-t ms(9) smi(3) part2(2)
asn1Module(2) 1}
TimePeriod FROM MetricModule {joint-iso-itu-t ms(9) function(2) part11(11)
asn1Module(2) 0};
sdhPM OBJECT IDENTIFIER ::= {itu-t(0) recommendation(0) g(7) g774(774)
hyphen(127) pm(01) informationModel(0) }
g774-01MObjectClass OBJECT IDENTIFIER ::= {sdhPM managedObjectClass(3)}
g774-01Attribute OBJECT IDENTIFIER ::= {sdhPM attribute(7)}
g774-01NameBinding OBJECT IDENTIFIER ::= {sdhPM nameBinding(6)}
g774-01Package OBJECT IDENTIFIER ::= {sdhPM package(4)}
Integer ::= INTEGER
CSES ::= SET OF SEQUENCE {
    eventTime GeneralizedTime,
            NCSESRange
NCSESRange ::= Integer(2 .. 9)
SDHGranularityPeriod ::= TimePeriod (WITH COMPONENTS {minutes (15), days(1)})
SDHPVGranularityPeriod ::= TimePeriod (WITH COMPONENTS {minutes (15)})
END -- end of SDHPMASN1
```

APPENDIX I

Inheritance and naming diagram

See Figures I.1 and I.2.

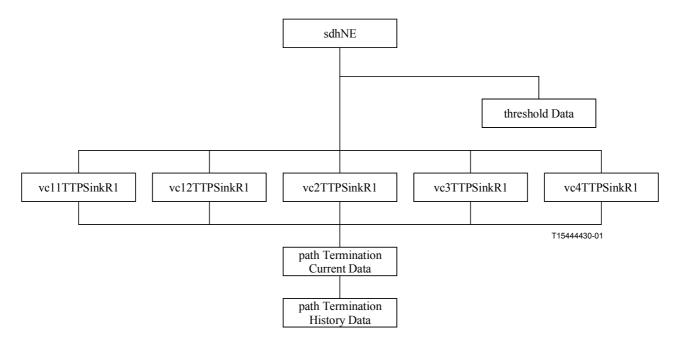


Figure I.1/G.774.1 – Object name binding for bidirectional performance management fragment

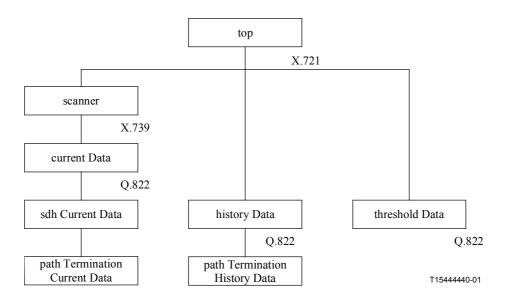


Figure I.2/G.774.1 – Inheritance tree for bidirectional performance management fragment

APPENDIX II

Threshold Reset (TR) Behaviour

Figure II.1 illustrates the Threshold Reset (TR) behaviour for three possible scenarios.

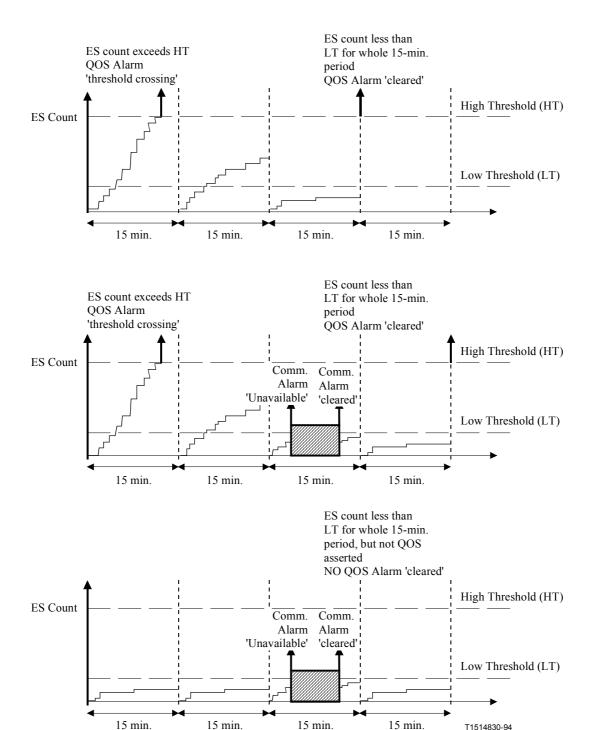


Figure II.1/G.774.1 - Threshold Reset (TR) behaviour

T1514830-94

APPENDIX III

Managed object classes moved to ITU-T G.774.6

The following managed object classes have been moved to ITU-T G.774.6 for unidirectional performance monitoring.

- III.1 rsCurrentData
- III.2 rsCurrentDataTR
- III.3 rsHistoryData
- III.4 msAdaptationCurrentData
- III.5 msAdaptationHistoryData

APPENDIX IV

Functionality that is no longer required

IV.1 Managed object class definitions

IV.1.1 Electrical Source Synchronous Physical Interface Current Data

```
electricalSourceSPICurrentData MANAGED OBJECT CLASS

DERIVED FROM sdhCurrentData;

CHARACTERIZED BY

transmitPowerLevelCurrentDataPackage,
electricalSourceSPICurrentDataPackage PACKAGE

BEHAVIOUR electricalSourceSPICurrentDataBehaviour;;

CONDITIONAL PACKAGES
transmitPowerLevelTideMarkPackage PRESENT IF

"an instance supports it";

REGISTERED AS {g774-01MObjectClass 4};
```

electricalSourceSPICurrentDataBehaviour BEHAVIOUR DEFINED AS

"Instances of the electricalSPICurrentData managed object Class are used to hold the monitoring of the physical characteristics of the output of an electrical source (electricalSPITTP). These characteristics are handled by gauge attributes. The following performance event is defined: transmit Power Level.

When a Tide Mark Package is used (in conjunction with its associated gauge), the corresponding Tide Mark attribute shall be reported in the history data at the end of the granularity period and the values of the tide marks shall be reset to the current values of the associated gauge at the end of the granularity period. The unavailableTimeAlarmPackage is not used in this class. This managed object class uses the electricalSPIHistoryData managed object class for history retention.";

IV.1.2 Optical Source Synchronous Physical Interface Current Data

```
CONDITIONAL PACKAGES
transmitPowerLevelCurrentDataPackage PRESENT IF
     "an instance supports it",
transmitPowerLevelTideMarkPackage PRESENT IF
     "an instance supports it and transmitPowerLevelCurrentDataPackage is
present",
laserBiasCurrentDataPackage PRESENT IF
    "an instance supports it",
laserBiasTideMarkPackage PRESENT IF
    "an instance supports it and laserBiasCurrentDataPackage is present",
laserTemperatureCurrentDataPackage PRESENT IF
    "an instance supports it",
laserTemperatureTideMarkPackage PRESENT IF
     "an instance supports it and laserTemperatureCurrentDataPackage is present";
REGISTERED AS {g774-01MObjectClass 5};
opticalSourceSPICurrentDataBehaviour BEHAVIOUR
DEFINED AS
"Instances of the opticalSPICurrentData managed object Class are used to hold the
monitoring of the physical characteristics of the output of an optical source
(optical SPITTP). These characteristics are handled by gauge attributes. The
following performance primitives are observed:
    OSL Optical Signal Level
For the OSL performance primitive, the following performance events are defined:
    transmit Power Level
   Laser Bias
_{
m LB}
For the LB performance primitive, the following performance events are defined:
    laser Bias
   Laser Temperature
For the LT performance primitive, the following performance events are defined:
    laserTemperature
These performance event counts are inhibited under certain failure or unavailable
conditions as specified in the following list:
    Laser Shutdown
When a Tide Mark Package is used (in conjunction with its associated gauge), the
corresponding Tide Mark attribute shall be reported in the history data at the
end of the granularity period and the tide marks shall be reset to the current
values of the associated gauge at the end of the granularity period. The
unavailableTimeAlarmPackage is not used in this class. This managed object class
uses the opticalSPIHistoryData managed object class for history retention.";
IV.1.3 Multiplex Section Current Data
msCurrentData MANAGED OBJECT CLASS
DERIVED FROM sdhCurrentData;
CHARACTERIZED BY
msCurrentDataPackage PACKAGE
    BEHAVIOUR msCurrentDataBehaviour;
    ATTRIBUTES
    "Recommendation X.739": granularityPeriod REQUIRED VALUES
    SDHPMASN1.SDHGranularityPeriod,
    bbe REPLACE-WITH-DEFAULT
    eS
         REPLACE-WITH-DEFAULT
                                 GET,
    ses replace-with-default
                                GET;;;
CONDITIONAL PACKAGES
csescurrentDataPackage PRESENT IF
     "an instance supports it",
farEndCSESCurrentDataPackage PRESENT IF
    "an instance supports it",
uASCurrentDataPackage PRESENT IF
     "an instance supports it",
farEndCurrentDataPackage PRESENT IF
     "monitoring of the far end is supported and the monitored point is
bidirectional.";
REGISTERED AS {g774-01MObjectClass 6};
```

msCurrentDataBehaviour BEHAVIOUR

DEFINED AS

*Instances of the msCurrentData managed object Class are used to hold the current register counts for a multiplex section trail termination point during a collection period. The following performance primitives are observed:

EB Errored Block

For the EB performance primitive, the following performance events are defined:
BBE Background Block Error

For the EB performance primitive and the following defect: MS-AIS, Excessive-Error, the following performance events are defined:

ES Errored Second

SES Severely Errored Second

This managed object class uses the msHistoryData managed object class for history retention.

A QOS alarm shall be sent as soon as a threshold is reached or crossed. At the end of the granularity period the QOS alarm is implictly cleared, providing there are no other outstanding threshold crossing QOS alarms, "Threshold crossing" removed from the currentProblemList (i.e. No Notification is Sent) and a new QOS alarm shall be sent if the threshold is reached or crossed again during the next granularity period. Only one threshold value per performance counter will be supported.*;

IV.1.4 Multiplex Section Current Data Threshold Reset

The following performance primitives are observed:

EB Errored Block

BBE Background Block Error

msCurrentDataTR MANAGED OBJECT CLASS DERIVED FROM sdhCurrentData; CHARACTERIZED BY thresholdReset Package, msCurrentDataTRPackage PACKAGE **BEHAVIOUR** msCurrentDataTRBehaviour; **ATTRIBUTES** "Recommendation X.739": granularityPeriod PERMITTED VALUES SDHPMASN1.SDHPVGranularityPeriod, bbe replace-with-default REPLACE-WITH-DEFAULT GET, ses replace-with-default GET;;; CONDITIONAL PACKAGES csescurrentDataPackage PRESENT IF "an instance supports it", farEndCSESCurrentDataPackage PRESENT IF "an instance supports it", uASCurrentDataPackage PRESENT IF "an instance supports it", farEndCurrentDataPackage PRESENT IF "monitoring of the far end is supported and the monitored point is bidirectional."; REGISTERED AS {g774-01MObjectClass 7}; msCurrentDataTRBehaviour BEHAVIOUR DEFINED AS "Instances of the msCurrentDataTR managed object Class are used to hold the current register counts for a multiplex section trail termination point during a collection period.

For the EB performance primitive, the following performance events are defined:

```
For the EB performance primitive and the following defect: MS-AIS, Excessive-
Error, the following performance events are defined:

ES Errored Second

SES Severely Errored Second

This managed object class uses the msHistoryData managed object class for history retention.";
```

IV.1.5 Protection Current Data

NOTE – The use of this class is not meaningful for 1 + 1 non-revertive protection.

```
protectionCurrentData MANAGED OBJECT CLASS
DERIVED FROM sdhCurrentData;
CHARACTERIZED BY
protectionCurrentDataPackage PACKAGE
    BEHAVIOUR
    protectionCurrentDataBehaviour;
    "Recommendation X.739": granularityPeriod REQUIRED VALUES
    SDHPMASN1.SDHGranularityPeriod,
    pSC REPLACE-WITH-DEFAULT
    pSD REPLACE-WITH-DEFAULT
                                 GET;;;
REGISTERED AS {g774-01MObjectClass 8};
protectionCurrentDataBehaviour BEHAVIOUR
DEFINED AS
"Instances of the protectionCurrentData managed object Class are used to hold the
current register counts for a protection during a collection period. The
following performance primitives are observed:
    PSC Protection Switch Count.
    PSD Protection Switch Duration.
This managed object class uses the protectionHistoryData managed object class for
history retention.";
```

IV.1.6 Path Termination Current Data Threshold Reset

```
pathTerminationCurrentDataTR MANAGED OBJECT CLASS
DERIVED FROM sdhCurrentData;
CHARACTERIZED BY
thresholdResetPackage,
pathTerminationCurrentDataTRPackage PACKAGE
    BEHAVIOUR pathTerminationCurrentDataTRBehaviour;
    ATTRIBUTES
    "Recommendation X.739": granularityPeriod PERMITTED VALUES
    SDHPMASN1.SDHPVGranularityPeriod,
    bbe replace-with-default
         REPLACE-WITH-DEFAULT
    es
                                 GET.
    ses replace-with-default
                                 GET;;;
CONDITIONAL PACKAGES
csescurrentDataPackage PRESENT IF
     "an instance supports it",
farEndCSESCurrentDataPackage PRESENT IF
    "an instance supports it",
uASCurrentDataPackage PRESENT IF
    "an instance supports it",
farEndCurrentDataPackage PRESENT IF
    "if monitoring of the far end is supported and the monitored point is
Bidirectional";
REGISTERED AS {g774-01MObjectClass 10};
```

pathTerminationCurrentDataTRBehaviour BEHAVIOUR DEFINED AS

"Instances of the pathTerminationCurrentDataTR managed object Class are used to hold the current register counts for a High Order Path and or Low Order Path during a collection period. An instance of this object class, for a monitored managed object instance, holds the current register counts of each performance events (BBE, ES, SES, FEBBE, FEES, FESES, UAS).

Near End Monitoring

The following performance primitives are observed:

EB Errored Block

For the EB performance primitive, the following performance events are defined:
BBE Background Block Error

For the EB performance primitive and the following defect: AU-AIS/TU-AIS, Path Trace Mismatch, Signal Label Mismatch, and Loss of TU Multiframe the following performance events are defined:

ES Errored Second

SES Severely Errored Second

Far End Monitoring

The following performance primitive are observed:

FEEB Far End Errored Block

For the FEEB performance primitive, the following performance events are defined: FEBBE Far End Background Block Error

For the FEEB performance primitive and the following defect: Far End Remote Failure the following performance events are defined:

FEES Far End Errored Second

FESES Far End Severely Errored Second

This managed object class uses the pathTerminationHistoryData managed object class for history retention.";

IV.1.7 Electrical Synchronous Physical Interface History Data

electricalSPIHistoryData MANAGED OBJECT CLASS

DERIVED FROM "Recommendation Q.822": historyData;

CHARACTERIZED BY

transmitPowerLevelCurrentDataPackage,

electricalSPIHistoryDataPackage PACKAGE

BEHAVIOUR optical SPIHistory DataBehaviour;;;

CONDITIONAL PACKAGES

transmitPowerLevelTideMarkPackage PRESENT IF

"the containing electrical SPICurrentData instance contains this package"; REGISTERED AS $\{g774-01MObjectClass\ 13;$

electricalSPIHistoryDataBehaviour BEHAVIOUR

DEFINED AS

"Instances of this class are used to store the observed events of an electricalSourceSPICurrentData object at the end of an observation interval. An instance of this managed object is contained by an electricalSourceSPICurrentData managed object instance.";

IV.1.8 Optical Synchronous Physical Interface History Data

opticalSPIHistoryData MANAGED OBJECT CLASS

DERIVED FROM "Recommendation Q.822": historyData;

CHARACTERIZED BY

opticalSPIHistoryDataPackage PACKAGE

BEHAVIOUR optical SPIHistory DataBehaviour;;;

CONDITIONAL PACKAGES

transmitPowerLevelCurrentDataPackage PRESENT IF

"the containing opticalSourceSPICurrentData instance contains this package", transmitPowerLevelTideMarkPackage PRESENT IF

"the containing opticalSourceSPICurrentData instance contains this package", laserBiasCurrentDataPackage PRESENT IF

"the containing opticalSourceSPICurrentData instance contains this package",

```
laserBiasTideMarkPackage PRESENT IF
```

"the containing opticalSourceSPICurrentData instance contains this package", laserTemperatureCurrentDataPackage PRESENT IF

"the containing opticalSourceSPICurrentData instance contains this package", laserTemperatureTideMarkPackage PRESENT IF

"the containing opticalSourceSPICurrentData instance contains this package"; REGISTERED AS {g774-01MObjectClass 14};

opticalSPIHistoryDataBehaviour BEHAVIOUR

DEFINED AS
"Instances of this class are used to stor

"Instances of this class are used to store the observed events of an opticalSourceSPICurrentData object at the end of an observation interval. An instance of this managed object is contained by an opticalSourceSPICurrentData managed object instance.";

IV.1.9 Multiplex Section History Data

```
msHistoryData MANAGED OBJECT CLASS
DERIVED FROM "Recommendation Q.822": historyData;
CHARACTERIZED BY
msHistoryDataPackage PACKAGE
    BEHAVIOUR
    msHistoryDataBehaviour;
    ATTRIBUTES
    bbe GET,
    eS
         GET,
    sES GET;;;
CONDITIONAL PACKAGES
uASHistoryDataPackage PRESENT IF
     "the containing msCurrentData contains the uASCurrentDataPackage",
farEndHistoryDataPackage PRESENT IF
     "the containing msCurrentData or msCurrentDataTR instance contains the
farEndCurrentDataPackage";
REGISTERED AS {g774-01MObjectClass 15};
msHistoryDataBehaviour BEHAVIOUR
DEFINED AS
"Instances of this class are used to store the observed events of an
msCurrentData or msCurrentDataTR object at the end of an observation interval. An
instance of this managed object is contained by an msCurrentData or
msCurrentDataTR managed object instance.";
```

IV.1.10 Protection History Data

```
protectionHistoryData MANAGED OBJECT CLASS

DERIVED FROM "Recommendation Q.822": historyData;

CHARACTERIZED BY

protectionHistoryDataPackage PACKAGE

BEHAVIOUR protectionHistoryDataBehaviour;

ATTRIBUTES

pSC GET,

pSD GET;;

REGISTERED AS {g774-01MObjectClass 16};

protectionHistoryDataBehaviour BEHAVIOUR

DEFINED AS

"Instances of this class are used to store the observed events of a protectionCurrentData object at the end of an observation interval. An instance of this managed object is contained by a protectionCurrentData or subclass managed object instance.";
```

IV.2 Package definitions

IV.2.1 Laser Bias Current Data Package

```
laserBiasCurrentDataPackage PACKAGE
    BEHAVIOUR
    laserBiasCurrentDataPackageBehaviour;
    ATTRIBUTES
    laserBias GET;
REGISTERED AS {g774-01Package 6};
laserBiasCurrentDataPackageBehaviour BEHAVIOUR
"This package is used to store the gauge of percentage of laser bias of an SDH
optical source.";
IV.2.2 Laser Bias Tide Mark Package
laserBiasTideMarkPackage PACKAGE
    BEHAVIOUR
    laserBiasTideMarkPackageBehaviour;
    ATTRIBUTES
    laserBiasTideMarkMax
    laserBiasTideMarkMin
REGISTERED AS {g774-01Package 7};
laserBiasTideMarkPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used to store the minimum and maximum values reached by the
laser bias gauge during an observation period.";
IV.2.3 Laser Temperature Current Data Package
laserTemperatureCurrentDataPackage PACKAGE
    BEHAVIOUR
    laserTemperatureCurrentDataPackageBehaviour;
    ATTRIBUTES
    laserTemperature
                       GET;
REGISTERED AS {g774-01Package 8};
laserTemperatureCurrentDataPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used to store the gauge of laser temperature value of an SDH
optical source.";
IV.2.4 Laser Temperature Tide Mark Package
laserTemperatureTideMarkPackage PACKAGE
    BEHAVIOUR
    laserTemperatureTideMarkPackageBehaviour;
    ATTRIBUTES
    laserTemperatureTideMarkMax GET,
    laserTemperatureTideMarkMin GET;
REGISTERED AS {g774-01Package 9};
laserTemperatureTideMarkPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used to store the minimum and maximum values reached by the
```

laser temperature gauge during an observation period.";

IV.2.5 Transmit Power Level Current Data Package

```
transmitPowerLevelCurrentDataPackage PACKAGE
    BEHAVIOUR
    transmitPowerLevelCurrentDataPackageBehaviour;
    ATTRIBUTES
    transmitPowerLevel GET;
REGISTERED AS {g774-01Package 12};
{\tt transmitPowerLevelCurrentDataPackageBehaviour~BEHAVIOUR}
DEFINED AS
"This package is used to store the gauge of transmit power level value of a
physical source.";
IV.2.6 Transmit Power Level Tide Mark Package
transmitPowerLevelTideMarkPackage PACKAGE
    BEHAVIOUR
    transmitPowerLevelTideMarkPackageBehaviour;
    ATTRIBUTES
    transmitPowerLevelTideMarkMax
                                      GET.
    transmitPowerLevelTideMarkMin
                                      GET;
REGISTERED AS {g774-01Package 13};
transmitPowerLevelTideMarkPackageBehaviour BEHAVIOUR
DEFINED AS
"This package is used to store the minimum and maximum values reached by the
transmit power level gauge during an observation period.";
IV.3
      Attributes definitions
IV.3.1 Laser Bias
laserBias ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": gauge;
    BEHAVIOUR
    laserBiasBeh BEHAVIOUR
DEFINED AS
"The value of the laserBias attribute represents the percentage of the normalized
value of laser bias current at a SDH optical SPI source or a SDH optical SPI
bidirectional trail termination point."
REGISTERED AS {g774-01Attribute 6};
IV.3.2 Laser Bias Tide Mark Maximum
laserBiasTideMarkMax ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": tideMark;
    BEHAVIOUR
    laserBiasTideMarkMaxBeh BEHAVIOUR
DEFINED AS
"The laserBias TideMark Maximum attribute stores the maximum value reached by the
laser bias during a granularity period."
```

REGISTERED AS {g774-01Attribute 7};

IV.3.3 Laser Bias Tide Mark Minimum

```
laserBiasTideMarkMin ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": tideMark;
    BEHAVIOUR
    laserBiasTideMarkMinBeh BEHAVIOUR
DEFINED AS
"The laserBias TideMark Minimum attribute stores the minimum value reached by the
laser bias during a granularity period."
REGISTERED AS {g774-01Attribute 8};
IV.3.4 Laser Temperature
laserTemperature ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": gauge;
    BEHAVIOUR
    laserTemperatureBeh BEHAVIOUR
DEFINED AS
"The value of the laserTemperature attribute represents the laser temperature of
a physical optical source."
;;
REGISTERED AS {g774-01Attribute 9};
IV.3.5 Laser Temperature Tide Mark Maximum
laserTemperatureTideMarkMax ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": tideMark;
    BEHAVIOUR
    laserTemperatureTideMarkMaxBeh BEHAVIOUR
DEFINED AS
"The laserTemperature TideMark Maximum attribute stores the maximum value reached
by the laser temperature during a granularity period."
;;
REGISTERED AS {g774-01Attribute 10};
IV.3.6 Laser Temperature Tide Mark Minimum
laserTemperatureTideMarkMin ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": tideMark;
    BEHAVIOUR
    laserTemperatureTideMarkMinBeh BEHAVIOUR
DEFINED AS
"The laserTemperature TideMark Minimum attribute stores the minimum value reached
by the laser temperature during a granularity period."
;;
REGISTERED AS {g774-01Attribute 11};
IV.3.7 Protection Switch Count
pSC ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter;
    BEHAVIOUR
    pSCBeh BEHAVIOUR
DEFINED AS
"In the case of a protected unit, the value of the pSC attribute represents the
count of switches to the protecting unit. In the case of a protecting unit, this
attribute represents the count of switches from any protected unit to that
protecting unit. Editor Note: This behaviour needs clarification in accordance
with protection management."
REGISTERED AS {g774-01Attribute 15};
```

IV.3.8 Protection Switch Duration

```
pSD ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": counter;
    BEHAVIOUR
    pSDBeh BEHAVIOUR
DEFINED AS
"The value of the pSD attribute represents the count of seconds during which the
service was switched from working to protection."
REGISTERED AS {g774-01Attribute 16};
IV.3.9 Transmit Power Level
transmitPowerLevel ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": gauge;
    BEHAVIOUR
    transmitPowerLevelBeh BEHAVIOUR
DEFINED AS
"The value of the transmitPowerLevel gauge attribute represents the value of the
output signal level emitted by a physical (electrical or optical) source."
REGISTERED AS {g774-01Attribute 19};
IV.3.10 Transmit Power Level Tide Mark Maximum
transmitPowerLevelTideMarkMax ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": tideMark;
    BEHAVIOUR
    transmitPowerLevelTideMarkMaxBeh BEHAVIOUR
"The transmitPowerLevelTideMark Maximum attribute stores the maximum value
reached by the transmit power level during an observation period."
REGISTERED AS {g774-01Attribute 20};
IV.3.11 Transmit Power Level Tide Mark Minimum
transmitPowerLevelTideMarkMin ATTRIBUTE
    DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2": tideMark;
    BEHAVIOUR
    transmitPowerLevelTideMarkMinBeh BEHAVIOUR
DEFINED AS
"The transmitPowerLevelTideMark Minimum attribute stores the minimum value
reached by the transmit power level during an observation period."
REGISTERED AS {g774-01Attribute 21};
IV.4
      Name binding definitions
IV.4.1 MS Current Data – MS TTP Sink
msCurrentData-msTTPSink NAME BINDING
    SUBORDINATE OBJECT CLASS msCurrentData AND SUBCLASSES;
    NAMED BY
    SUPERIOR OBJECT CLASS "Recommendation G.774": msTTPSink AND SUBCLASSES;
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
    WITH-REFERENCE-OBJECT,
```

DELETE

WITH-AUTOMATIC-INSTANCE-NAMING;

DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 2};

IV.4.2 MS Current Data Threshold Reset – MS TTP Sink

```
msCurrentDataTR-msTTPSink NAME BINDING
    SUBORDINATE OBJECT CLASS msCurrentDataTR AND SUBCLASSES;
    NAMED BY
    SUPERIOR OBJECT CLASS "Recommendation G.774": msTTPSink AND SUBCLASSES;
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
    WITH-REFERENCE-OBJECT,
    WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 3};
IV.4.3 MS Current Data – Protected TTP Sink
msCurrentData-protectedTTPSink NAME BINDING
    SUBORDINATE OBJECT CLASS msCurrentData AND SUBCLASSES;
    NAMED BY
    SUPERIOR OBJECT CLASS "Recommendation G.774.03": protectedTTPSink AND
SUBCLASSES:
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
    WITH-REFERENCE-OBJECT,
    WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 4};
IV.4.4 MS Current Data Threshold Reset – Protected TTP Sink
msCurrentDataTR-protectedTTPSink NAME BINDING
    SUBORDINATE OBJECT CLASS msCurrentDataTR AND SUBCLASSES;
    NAMED BY
    SUPERIOR OBJECT CLASS "Recommendation G.774.03": protectedTTPSink AND
SUBCLASSES;
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
    WITH-REFERENCE-OBJECT,
    WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 5};
IV.4.5 Protection Current Data – Protection Unit
protectionCurrentData-protectionUnit NAME BINDING
    SUBORDINATE OBJECT CLASS protectionCurrentData AND SUBCLASSES;
    NAMED BY
    SUPERIOR OBJECT CLASS "Recommendation G.774.03": protectionUnit AND
SUBCLASSES:
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
    WITH-REFERENCE-OBJECT,
    WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 6};
```

IV.4.6 Path Termination Current Data Threshold Reset - VC4 TTP SinkR1

```
pathTerminationCurrentDataTR-vc4TTPSinkR1 NAME BINDING
    SUBORDINATE OBJECT CLASS pathTerminationCurrentDataTR AND SUBCLASSES;
    NAMED BY
    SUPERIOR OBJECT CLASS "Recommendation G.774": vc4TTPSinkR1 AND SUBCLASSES;
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
    WITH-REFERENCE-OBJECT,
    WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 28};
```

IV.4.7 Path Termination Current Data Threshold Reset – VC3 TTP SinkR1

```
pathTerminationCurrentDataTR-vc3TTPSinkR1 NAME BINDING
   SUBORDINATE OBJECT CLASS pathTerminationCurrentDataTR AND SUBCLASSES;
   NAMED BY
   SUPERIOR OBJECT CLASS "Recommendation G.774": vc3TTPSinkR1 AND SUBCLASSES;
   WITH ATTRIBUTE "Recommendation X.739": scannerId;
   CREATE
   WITH-REFERENCE-OBJECT,
   WITH-AUTOMATIC-INSTANCE-NAMING;
   DELETE
   DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 29};
```

IV.4.8 Path Termination Current Data Threshold Reset – VC2 TTP SinkR1

```
pathTerminationCurrentDataTR-vc2TTPSinkR1 NAME BINDING
   SUBORDINATE OBJECT CLASS pathTerminationCurrentDataTR AND SUBCLASSES;
   NAMED BY
   SUPERIOR OBJECT CLASS "Recommendation G.774": vc2TTPSinkR1 AND SUBCLASSES;
   WITH ATTRIBUTE "Recommendation X.739": scannerId;
   CREATE
   WITH-REFERENCE-OBJECT,
   WITH-AUTOMATIC-INSTANCE-NAMING;
   DELETE
   DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 30};
```

IV.4.9 Path Termination Current Data Threshold Reset – VC12 TTP SinkR1

```
pathTerminationCurrentDataTR-vc12TTPSinkR1 NAME BINDING
   SUBORDINATE OBJECT CLASS pathTerminationCurrentDataTR AND SUBCLASSES;
   NAMED BY
   SUPERIOR OBJECT CLASS "Recommendation G.774": vc12TTPSinkR1 AND SUBCLASSES;
   WITH ATTRIBUTE "Recommendation X.739": scannerId;
   CREATE
   WITH-REFERENCE-OBJECT,
   WITH-AUTOMATIC-INSTANCE-NAMING;
   DELETE
   DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 31};
```

IV.4.10 Path Termination Current Data Threshold Reset – VC11 TTP SinkR1

```
pathTerminationCurrentDataTR-vc11TTPSinkR1 NAME BINDING
SUBORDINATE OBJECT CLASS pathTerminationCurrentDataTR AND SUBCLASSES;
NAMED BY
SUPERIOR OBJECT CLASS "Recommendation G.774": vc11TTPSinkR1 AND SUBCLASSES;
WITH ATTRIBUTE "Recommendation X.739": scannerId;
```

```
CREATE
WITH-REFERENCE-OBJECT,
WITH-AUTOMATIC-INSTANCE-NAMING;
DELETE
DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 32};
```

IV.4.11 Electrical Source SPI Current Data – Electrical SPITTP Source

```
electricalSourceSPICurrentData-electricalSPITTPSource NAME BINDING
    SUBORDINATE OBJECT CLASS electricalSourceSPICurrentData AND SUBCLASSES;
    NAMED BY
    SUPERIOR OBJECT CLASS "Recommendation G.774": electricalSPITTPSource AND
SUBCLASSES;
    WITH ATTRIBUTE "Recommendation X.739": scannerId;
    CREATE
    WITH-REFERENCE-OBJECT,
    WITH-AUTOMATIC-INSTANCE-NAMING;
    DELETE
    DELETE
    DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 19};
```

IV.4.12 Optical Source SPI Current Data – Optical SPITTP Source

```
opticalSourceSPICurrentData-opticalSPITTPSource NAME BINDING
   SUBORDINATE OBJECT CLASS opticalSourceSPICurrentData AND SUBCLASSES;
   NAMED BY
   SUPERIOR OBJECT CLASS "Recommendation G.774": opticalSPITTPSource AND
SUBCLASSES;
   WITH ATTRIBUTE "Recommendation X.739": scannerId;
   CREATE
   WITH-REFERENCE-OBJECT,
   WITH-AUTOMATIC-INSTANCE-NAMING;
   DELETE
   DELETES-CONTAINED-OBJECTS;
REGISTERED AS {g774-01NameBinding 20};
```

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series B	Means of expression: definitions, symbols, classification
Series C	General telecommunication statistics
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks and open system communications
Series Y	Global information infrastructure and Internet protocol aspects
Series Z	Languages and general software aspects for telecommunication systems