

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.121
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(02/2003)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Message
Sequence Chart (MSC)

 Specification and Description Language (SDL)
data binding to Message Sequence Charts
(MSC)

ITU-T Recommendation Z.121

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Tree and Tabular Combined Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-computer interfaces for the management of telecommunications networks Z.360–Z.369

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.121 (02/2003) i

ITU-T Recommendation Z.121

Specification and Description Language (SDL) data binding to
Message Sequence Charts (MSC)

Summary
This Recommendation provides a Specification and Description Language (Z.100) instantiation of
both the syntactic and semantic elements of the Message Sequence Chart (Z.120) data interface,
defines the default types, and also the syntax for allowable SDL data definitions that may be used in
an MSC Document.

Source
ITU-T Recommendation Z.121 was prepared by ITU-T Study Group 17 (2001-2004) and approved
under the WTSA Resolution 1 procedure on 13 February 2003.

ii ITU-T Rec. Z.121 (02/2003)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2003

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.121 (02/2003) iii

CONTENTS
 Page

1 Scope .. 1

2 References... 1

3 Syntactic Interface .. 1
3.1 Language declaration.. 1
3.2 Parenthesis and escape declarations ... 2
3.3 Data declaration and use... 2
3.4 Default data types and wildcards.. 2

4 Semantic interface .. 3
4.1 Well-formedness definitions .. 3
4.2 Static semantics interface functions ... 4
4.2.1 Tc1, Data definition strings .. 4
4.2.2 Tc2, Type reference strings .. 4
4.2.3 Tc3, Expression Strings.. 5
4.2.4 Tc4, Typed expression strings.. 6
4.2.5 EqVar, Equal variable strings... 6
4.3 Dynamic semantics interface functions.. 6
4.3.1 Vars, Extract variables.. 7
4.3.2 Replace, Variable replacement ... 7
4.3.3 NewVar, New variable ... 7
4.3.4 Eval, Evaluation of expressions ... 8

5 Example .. 9
5.1 Use of default SDL interface.. 9

iv ITU-T Rec. Z.121 (02/2003)

Introduction
The data binding of SDL to MSC is provided in two parts. The first describes the syntactic part of
the interface, which defines MSC document statements relating to the use of SDL as the data
language, and the second describes the semantic part of the interface. The latter consists of the
definition of a number of functions that are used to perform the syntactic, static semantic, and
dynamic semantic evaluation of SDL data used in MSC.

 ITU-T Rec. Z.121 (02/2003) 1

ITU-T Recommendation Z.121

Specification and Description Language (SDL) data binding to
Message Sequence Charts (MSC)

1 Scope
This Recommendation provides a Specification and Description Language (Z.100) instantiation of
the data interface for Message Sequence Chart (Z.120) that is defined to be the default for Z.120.

The MSC Z.120 Recommendation has an open data interface that permits different users of the
language to adopt different data languages for use within MSC diagrams and documents.
ITU-T Rec. Z.121 defines a binding of the open interface to a fragment of SDL's data language,
which is to be used as the default data language. That is, in the absence of an explicit instantiation
of the data interface in an MSC document, the binding defined by this Recommendation is to be
assumed, as is the language of allowable data definition strings.

This is the first version of ITU-T Rec. Z.121, based on the data interface definition that first
appeared in the current ITU-T Rec. Z.120, published in 1999.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

– ITU-T Recommendation Z.100 (2002), Specification and Description Language (SDL).
– ITU-T Recommendation Z.120 (1999), Message Sequence Chart (MSC).

3 Syntactic interface
The MSC document provides a statement to declare the name of the data language used, so that
tools supporting more than one language may distinguish them. It also provides statements to
declare the parenthesis sequences used by the data language so that tools may correctly identify the
extent of any data string embedded in an MSC. In this clause the default statements for the SDL
data binding are given.

The language declaration is done within a data definition, which also contains the wanted data
declarations: data types (with methods and operators), syntypes and synonyms.

3.1 Language declaration
The language declaration may be the given in the MSC document, and it identifies which data
language is used throughout the MSCs in the scope of the enclosing MSC document. The following
language declaration is defined for SDL, although being the default its use is optional:

 language SDL;
If this language declaration is given, the parenthesis and escape declarations are implicitly declared
and thus not needed to be explicitly given in each MSC document, as are the default types together
with their corresponding wildcards.

2 ITU-T Rec. Z.121 (02/2003)

3.2 Parenthesis and escape declarations
When SDL data is used in MSC according to the language declaration above, the following
parenthesis and escape declarations are assumed:

 parenthesis
 nestable '(')', '[']', '(')', '{'}';

 nonnestable '/*'*/', '/#'#/', '<<'>>';

 equalpar /'/;

 escape '?';

 ;
This declaration means that:
• the native Z.100 <comment>s and <note>s (/# a comment #/ and /* a note */) are accepted

in data strings;
• Z.100 qualifiers (for example, <<package BasicTypes>>) may be used to resolve name

conflicts;
• Z.100 character strings ('hello world!') are allowed in expression strings, using the

native Z.100 form of a repeated apostrophe ('') to allow a single apostrophe in a string;
• '?' is used as a general escape to allow the MSC stop tokens in the data strings.

If an MSC token that can denote the end of a data string, such as a semi-colon, is to be used openly
within the data string, then it must be escaped with the '?' character. By used openly we mean that it
is not 'hidden' within a pair of the SDL declared parenthesis. For example, a semi-colon does not
need to be escaped when it occurs within an SDL string because it is hidden by the string delimiter
characters.

The only SDL token that needs to escaped in an SDL context is a single quote within a string
expression. SDL strings do not require any special treatment when used within an MSC data string.

An MSC parser looks for the longest match of parenthesis. An example: both '(.' and '(' are nestable
parenthesis, so the parser would detect incorrect nesting of these parentheses.

3.3 Data declaration and use
The actual data type declarations in the native data language are done within the open string <data
definition string> in an MSC document. The next clause describes the allowed SDL syntax within
this string.

Since SDL <expression>s in general allow constructs that may introduce side-effects, the
expression permitted in MSC will be constrained, in particular they shall not contain:
• <create expression>;
• <value returning procedure call>;
• <imperative expression>.

SDL comments (<note> and <comment body>) can be embedded in any of the MSC terminal
strings. The static semantic functions defined in clause 4, define which SDL <expression>s are
allowable in an MSC.

3.4 Default data types and wildcards
When MSC is used with SDL data according to the language declaration in 3.1, the SDL package
Predefined is assumed, so the predefined data types can be referenced from <data definition string>
or <type ref string> and predefined operators may be referenced inside an <expression string>.

 ITU-T Rec. Z.121 (02/2003) 3

MSC requires the data types Boolean, natural and time (see 5.11/Z.120). The corresponding data
types in ITU-T Rec. Z.100 to be used as defaults are:

 <<package Predefined>> value type Boolean;

 <<package Predefined>> syntype Natural;

 <<package Predefined>> value type Time.

For each of these default types, a default wildcard is implicitly declared as follows:

 wildcards
 anyB: Boolean;

 anyN: Natural;

 anyT: Time.

4 Semantic interface
The semantic interface is defined in three parts:
• well formedness, describing the grammar of allowable SDL data strings to be used in MSC;
• static semantics, identifying the type correctness requirements of well-formed SDL data

strings;
• dynamic semantics, defining how to evaluate well-formed and type correct SDL expression

strings used in MSC.

4.1 Well-formedness definitions
The data interface specifies four functions, Wf1, … , Wf4 that are required to define the
syntactically valid data strings. Table 4-1 identifies the SDL grammar that corresponds to the valid
data strings. For example, Wf1(v) is true if and only if v is a string that can be produced by the SDL
grammar rule for <variable name>. The strings can contain SDL comments in the normal way so
that the definitions apply to any string following the filtering of any comments as defined by <note>
or <comment body>.

Table 4-1/Z.121 – Mapping of MSC data interface strings

Well-formedness
function name MSC terminal string SDL grammar

Wf1 <variable string> <variable name>
Wf2 <data definition string> <left curly bracket>

<data definition>*
<right curly bracket>

Wf3 <type ref string> <basic sort>
Wf4 <expression string> <expression>

In the case of data definition strings, Wf2, the legal strings have to be defined by an auxiliary
grammar rule in terms of the SDL production <data definition>, since there does not exist an SDL
production that corresponds to the requirement. The rule permits any sequence of <data definitions>
enclosed by a pair of braces (defined as <left curly bracket> and <right curly bracket>). The braces
save having to escape any semicolon characters appearing in the data definitions, since a semicolon
acts as the delimiting character for the data definition string itself. Thus, a valid <data definition
string> forms a valid SDL package body – being a subset of the allowable items in a package.

4 ITU-T Rec. Z.121 (02/2003)

4.2 Static semantics interface functions
The data interface specifies four predicates, Tc1, … , Tc4, one per data string class, that are
required to assert that the static semantics of valid data strings are upheld. That is, the predicates
will only be applied to strings that satisfy their corresponding well-formedness function. The static
semantic rules that will determine the four predicates are described in 6.3/Z.100 and clause
12/Z.100. There is also EqVar, an auxiliary relation, required by the data interface used to identify
equivalence between variable strings.

4.2.1 Tc1, Data definition strings
Tc1(d) is true of a syntactically valid data string d – i.e., Wf2(d) is true – if it satisfies the static
semantics of SDL as defined in 6.3/Z.100. In particular, if a package body consisting of the string d,
minus its enclosing braces, satisfies the syntax and static semantics of SDL packages, then Tc1(d) is
true, and vice versa. This is illustrated in Figure 4-1 where the data string "{ D }" satisfies Tc1 only
when the SDL package is statically correct.

mscdocument M
.
.
.

data { D };
.
.
.

package M

D

mscdocument M
.
.
.

data { D };
.
.
.

mscdocument M
.
.
.

data { D };
.
.
.

package M

D

package M

DD

Figure 4-1/Z.121 – Equivalent SDL static requirements for data string

4.2.2 Tc2, Type reference strings
Tc2(d)(t) is true of a syntactically valid data string d and type reference string t – i.e., Wf2(d) and
Wf3(t) are true – if and only if:
• Tc1(d), i.e., d conforms to the static semantics for SDL data;
• t is statically correct in the context of data string d according to the static rules of SDL.

The latter requirement is equivalent to saying that a declaration of a variable of having type t in the
context of a package containing d (minus enclosing braces) is statically correct. This is illustrated in
Figure 4-2 where the example type reference string t of an MSC variable declaration satisfies
Tc2(d) only when the SDL process is statically correct. The package referenced by the SDL process
is constructed as per Figure 4-1.

 ITU-T Rec. Z.121 (02/2003) 5

mscdocument M
.
.

inst I variables x: t;
.
.

data d;
.
.

use M;

process I

dcl x t;

mscdocument M
.
.

inst I variables x: t;
.
.

data d;
.
.

mscdocument M
.
.

inst I variables x: t;
.
.

data d;
.
.

use M;

process I

dcl x t;

use M;use M;

process I

dcl x t;

process I

dcl x t;dcl x t;

Figure 4-2/Z.121 – Equivalent SDL static requirements for type reference string

4.2.3 Tc3, Expression Strings
Tc3(d)(S)(e) is true of a syntactically valid data string d and expression string e, and set of typed
variable assignments S, if and only if:
• Tc1(d), i.e., d is a statically valid data definition string;
• for each valid variable string type string pair (v, t) in the set S:

– Tc2(d)(t), i.e., t is a statically valid type reference in context of data string d;
• e is a statically correct SDL expression:

– in the context of data string d;
– given the assignment of types to variables defined by S.

The definition is equivalent to an SDL expression e satisfying the static type rules of SDL in the
context of a package containing the data definition string (minus enclosing braces) d, and for each
paring of variable v with type string t in S, there exists an SDL variable declaration of v having
type t. This is illustrated in Figure 4-3 where the expression string e of an MSC message parameter
satisfies Tc3(d)(S), in which S is the set of typed variables { (x1, t1), (x2, t2), … , (xn, tn) }, only
when the SDL process shown is statically correct. The package referenced by the SDL process is
constructed as per Figure 4-1.

6 ITU-T Rec. Z.121 (02/2003)

mscdocument M
.
.

msg s:(t);
.
.

data d;

N

msc N

I

s
(e)

J

use M;

process I

x1 t1,
x2 t2,

.

.

.
xn tn;

dcl

signalset s;

r(t1, t2, … tn),
s(t);

signal

-

r(x1, x2, … , xn)

s(e)

x

mscdocument M
.
.

msg s:(t);
.
.

data d;

N

mscdocument M
.
.

msg s:(t);
.
.

data d;

N

msc N

I

s
(e)

J

msc N

II

s
(e)
s

(e)

JJ

use M;

process I

x1 t1,
x2 t2,

.

.

.
xn tn;

dcl

signalset s;

r(t1, t2, … tn),
s(t);

signal

-

r(x1, x2, … , xn)

s(e)

x

use M;use M;

process I

x1 t1,
x2 t2,

.

.

.
xn tn;

dcl

signalset s;

r(t1, t2, … tn),
s(t);

signal

-

r(x1, x2, … , xn)

s(e)

x

process I

x1 t1,
x2 t2,

.

.

.
xn tn;

dcl
x1 t1,
x2 t2,

.

.

.
xn tn;

x1 t1,
x2 t2,

.

.

.
xn tn;

dcl

signalset s;signalset s;

r(t1, t2, … tn),
s(t);

signal
r(t1, t2, … tn),
s(t);
r(t1, t2, … tn),
s(t);

signal

-

r(x1, x2, … , xn)

s(e)

x

-

r(x1, x2, … , xn)r(x1, x2, … , xn)

s(e)

x

Figure 4-3/Z.121 – Equivalent SDL static requirements for expression string

For example, if an expression contains a variable undeclared in the set S, then it will fail the SDL
static rules, and hence the Tc3 predicate will also be untrue.

The variable strings appearing in argument set S must denote unique variables, and therefore we
define a canonical form to be the variable string is stripped of any surrounding white space or
comments.

4.2.4 Tc4, Typed expression strings
Tc4(d)(S)(t, e) is true of a syntactically valid data string d and expression string e, and set of typed
variable assignments S, if and only if:
• Tc2(d)(t), i.e. t is a statically valid type reference string in context of data string d;
• Tc3(d)(S)(e), i.e. e is syntactically and statically valid expression string in context of d and

variable type assignment S;
• e can have the type t according to the static rules of SDL.

The last clause is the equivalent to saying that in addition to the rules given for a statically valid
expression e as defined by predicate Tc3, the expression legally can appear as argument to an SDL
output signal having the declared parameter type t. This is also illustrated by Figure 4-3.

4.2.5 EqVar, Equal variable strings
EqVar(v1, v2) is true of two syntactically valid variable strings v1 and v2 if and only if:
• the strings v1' and v2' remaining after removal of comments and white space from v1 and

v2 respectively are identical.

This definition reflects the naming rules for SDL, in which variables differing in any character,
including differences in case, represent different variables. The strings v1' and v2' are said to be in
canonical form, as defined in 4.2.3.

4.3 Dynamic semantics interface functions
The data interface requires four functions to be defined – three are auxiliary, and the final Eval
function is used here to compute the value of SDL expression identified with the Wf2 predicate.
The auxiliary functions are straightforward to understand and not necessarily unique – that is,
different interpretations may be made without affecting the Eval function. The relevant clauses of

 ITU-T Rec. Z.121 (02/2003) 7

the SDL Recommendations are given as part of each function's description where required. The
functions refer to the static checking predicates defined above, which in turn rely on the well-
formedness predicates initially defined.

4.3.1 Vars, Extract variables
Vars is a subsidiary function that is required in the computation of the dynamic traces of an MSC.
Given a context, the result of applying Vars to an expression e is the set of variables the expression
contains. Each variable is paired with the number of occurrences of the variable in expression e.
The full definition of Vars can be given by structural induction on the SDL grammar of expressions,
but only an informal definition is given here; first the domain of Vars is defined.

Vars(d)(S)(e) is defined if:
• d is a syntactically valid data string, e is a syntactically valid expression string, and S is a

set of variable strings each paired to a syntactically valid type string;
• Tc3(d)(S)(e) is true, i.e., expression string e conforms to the static requirements of SDL.

Notice that the static checking requirements defined by Tc3 ensure that Vars can only be defined if
all the variables contained in the expression are 'declared' in set S.

Provided Vars(d)(S)(e) is defined, its value is given by:
• if e is a constant, then Vars(d)(S)(e) is the empty set.
• if e is a variable string, then Vars(d)(S)(e) = { (v, 1) }, wherein v is the canonical form of

the variable string defined in 4.2.3; n.b. v must appear in S.
• if e is a compound expression, then Vars(d)(S)(e) is calculated by summing the number of

occurrences of a variable across its constituent expressions.

4.3.2 Replace, Variable replacement
Replace is a subsidiary function that is required to compute the dynamic traces of an MSC that
employs wildcards. As such, its definition does not need to be uniquely defined for the SDL
language, since its effect would be internal to any tool supporting MSC with SDL data. Therefore,
this Recommendation does not need to fix it definition completely.

Replace(d)(v1, n, v2)(e) is defined if:
• d is a syntactically valid data string, v1 and v2 are syntactically valid variable strings, and e

is a syntactically valid expression string;
• Tc3(d)(S)(e) is true, i.e., expression string e conforms to the static requirements of SDL.

The result of Replace(d)(v1, n, v2)(e) is an expression string e' in which the nth occurrence of the
variable v1 has been replaced by variable v2. There are a number of ways to define 'the nth
occurrence', and this is left open in this Recommendation.

4.3.3 NewVar, New variable
Like Replace, NewVar is a subsidiary function that is required to compute the dynamic traces of an
MSC that employs wildcards. As such, its definition does not need to be uniquely defined for the
SDL language, since its effect would be internal to any tool supporting MSC with SDL data.
Therefore this Recommendation does not require any particular way to be used.

NewVar(d)(S) is defined if:
• d is a syntactically valid data string, and S is a set of variable strings each paired to a

syntactically valid type string;
• Tc1(d) is true, i.e., data string d minus its enclosing braces conforms to the static

requirements of an SDL package body.

8 ITU-T Rec. Z.121 (02/2003)

The result of NewVar(d)(S) is a syntactically valid SDL variable string that is different to any
contained in the set S, as defined by the EqVar function. There are many ways of defining how the
new variable string is determined and this Recommendation does not require any particular way to
be used.

4.3.4 Eval, Evaluation of expressions
Eval is a function that is required in the computation of the dynamic traces of an MSC. Given a data
context and an assignment of values to variables – the current state – the result of applying eval to
an expression e is its value. Its definition is formally linked to:
a) the compute function as defined in 2.1.3.1/Z.100 Annex F3;
b) the evaluation of a function on its operands as defined in 2.1.3.1/Z.100 Annex F3, and
c) the Eval function in 3.5/Z.100 Annex F3. The semantics of expressions in SDL is described

in 12.2/Z.100.

Eval(d)(e)(A) is defined only if:
• d is a syntactically valid data string, e is a syntactically valid expression string, and A is a

set of variable strings each paired to a data value;
• Tc3(d)(S)(e) is true, i.e., expression string e conforms to the static requirements of SDL in

the context of d where its variables have type assignments defined by set S.

Note that the above conditions may be satisfied, but the Eval function not be defined if the
expression is computed outside of its domain; for example, if e contains a division by zero. The
second clause contains a type tagged set of variables S that must correspond to the domain value
tagged set of variables A; it is assumed that the types can be inferred from the domain values to
form the required set S from A.

The value of Eval(d)(e)(A) is the value that the SDL expression e takes in the context of a package
having a body corresponding to data string d, whenever its variables have the values defined by the
state A. More formally, the function Eval(d)(e) is defined to be the same as the function defined by
a simple SDL system in which:
• there is an input signal that takes a list of variables as parameters, each variable matching a

variable in the state A;
• there is an output signal whose sole parameter is defined by expression e;
• there is a package whose body consists of the data string d minus its enclosing braces.

An execution of such an SDL system will compute and output the value of expression e, given an
input signal that contain values that are used to assign values to each of the expression's variables.
This is illustrated by Figure 4-3 where the value of Eval(d)(e)(A), in which A is the set of variable
assignments { (x1, a1), (x2, a2), … , (xn, an) }, is equal to the output value of signal s, whenever
the input signal r is given the value (a1, a2, … , an). Since A is a set but the input r takes a list of
parameters, a unique correspondence can be formed by lexicographically ordering the variable
strings, so that x1 will be the variable string that lexicographically comes first, and a1 will be the
first parameter value, etc.

 ITU-T Rec. Z.121 (02/2003) 9

5 Example

5.1 Use of default SDL interface

CallRequest

(CallingPartyInfo,
CalledPartyInfo,
anyCT =: Type)

ConfirmCollectCall

(CallingPartyInfo)

CallRequestAck

(CalledPartyInfo)

CallingParty Net CalledParty

OffHook

IncomingCall

Confirmed

when(Type =
CollectCall)

opt

msc M1mscdocument M
inst Net

variables Type: CallType;
inst CallingParty;
inst CalledParty;
msg CallRequest: (SubscriberInfoType,

SubscriberInfoType,
CallType);

msg ConfirmCollectCall,
CallRequestAck: (SubscriberInfoType);

language SDL;
wildcards anyCT: CallType;

data {
value type SubscriberInfoType {

literals CallingPartyInfo, CalledPartyInfo;
}
value type CallType {

literals CollectCall, OrdinaryCall;
}

};

M1

CallRequest

(CallingPartyInfo,
CalledPartyInfo,
anyCT =: Type)

ConfirmCollectCall

(CallingPartyInfo)

CallRequestAck

(CalledPartyInfo)

CallingParty Net CalledParty

OffHook

IncomingCall

Confirmed

when(Type =
CollectCall)

opt

msc M1

CallRequest

(CallingPartyInfo,
CalledPartyInfo,
anyCT =: Type)

ConfirmCollectCall

(CallingPartyInfo)

CallRequestAck

(CalledPartyInfo)

CallingPartyCallingParty NetNet CalledPartyCalledParty

OffHook

IncomingCall

Confirmed

when(Type =
CollectCall)
when(Type =
CollectCall)

optopt

msc M1mscdocument M
inst Net

variables Type: CallType;
inst CallingParty;
inst CalledParty;
msg CallRequest: (SubscriberInfoType,

SubscriberInfoType,
CallType);

msg ConfirmCollectCall,
CallRequestAck: (SubscriberInfoType);

language SDL;
wildcards anyCT: CallType;

data {
value type SubscriberInfoType {

literals CallingPartyInfo, CalledPartyInfo;
}
value type CallType {

literals CollectCall, OrdinaryCall;
}

};

M1

mscdocument M
inst Net

variables Type: CallType;
inst CallingParty;
inst CalledParty;
msg CallRequest: (SubscriberInfoType,

SubscriberInfoType,
CallType);

msg ConfirmCollectCall,
CallRequestAck: (SubscriberInfoType);

language SDL;
wildcards anyCT: CallType;

data {
value type SubscriberInfoType {

literals CallingPartyInfo, CalledPartyInfo;
}
value type CallType {

literals CollectCall, OrdinaryCall;
}

};

M1

Geneva, 2003

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.121 (02/2003) Specification and description language (SDL) data binding to message sequence charts (MSC)
	Summary
	Source
	CONTENTS
	Specification and Description Language (SDL) data binding to Message Sequence Charts (MSC)
	1 Scope
	2 References
	3 Syntactic interface
	3.1 Language declaration
	3.2 Parenthesis and escape declarations
	3.3 Data declaration and use
	3.4 Default data types and wildcards

	4 Semantic interface
	4.1 Well-formedness definitions
	4.2 Static semantics interface functions
	4.2.1 Tc1, Data definition strings
	4.2.2 Tc2, Type reference strings
	4.2.3 Tc3, Expression Strings
	4.2.4 Tc4, Typed expression strings
	4.2.5 EqVar, Equal variable strings
	4.3 Dynamic semantics interface functions
	4.3.1 Vars, Extract variables
	4.3.2 Replace, Variable replacement
	4.3.3 NewVar, New variable
	4.3.4 Eval, Evaluation of expressions

	5 Example
	5.1 Use of default SDL interface

