

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T H.248.1 v2
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Corrigendum 1
(03/2004)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS
Infrastructure of audiovisual services – Communication
procedures

 Gateway control protocol: Version 2
Corrigendum 1

 ITU-T Recommendation H.248.1 v2 (2002) –
Corrigendum 1

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100–H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES

General H.200–H.219
Transmission multiplexing and synchronization H.220–H.229
Systems aspects H.230–H.239
Communication procedures H.240–H.259
Coding of moving video H.260–H.279
Related systems aspects H.280–H.299
Systems and terminal equipment for audiovisual services H.300–H.349
Directory services architecture for audiovisual and multimedia services H.350–H.359
Quality of service architecture for audiovisual and multimedia services H.360–H.369
Supplementary services for multimedia H.450–H.499

MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500–H.509
Mobility for H-Series multimedia systems and services H.510–H.519
Mobile multimedia collaboration applications and services H.520–H.529
Security for mobile multimedia systems and services H.530–H.539
Security for mobile multimedia collaboration applications and services H.540–H.549
Mobility interworking procedures H.550–H.559
Mobile multimedia collaboration inter-working procedures H.560–H.569

BROADBAND AND TRIPLE-PLAY MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610–H.619

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) i

ITU-T Recommendation H.248.1 v2

Gateway control protocol: Version 2

Corrigendum 1

Summary
To achieve greater scalability, this Recommendation decomposes the H.323 Gateway function
defined in ITU-T Rec. H.246 into functional subcomponents and specifies the protocols these
components use to communicate. This allows implementations of H.323 gateways to be highly
scalable and encourages leverage of widely deployed Switched Circuit Network (SCN) capabilities
such as SS7 switches. This also enables H.323 gateways to be composed of components from
multiple vendors distributed across multiple physical platforms. The purpose of this
Recommendation is to add capabilities currently defined for H.323 systems and is intended to
provide new ways of performing operations already supported in H.323.

This Recommendation includes several enhancements to ITU-T Rec. H.248.1 Version 1:
− individual property, signal, event and statistic auditing;
− improved multiplex handling;
− topology for streams;
− improved description of profiles;
− serviceChange capability change.

Corrigendum 1 corrects several defects found in the Recommendation, in particular:
• Specification of types for rtp/jit and rtp/delay in E.12.4;
• Definition of the '#' symbol in the "unequal" construct in text encoding;
• Definition of the symbol for the NULL context in text encoding;
• Corrections: to Appendix I example statistics, package guidelines for statistics in 12.1.5;

ambiguous audit and individual audit return; Context Audit Return; Typographical error in
7.1.2;

• Specification of the meaning of "automatic" in E.13 "TDM Package";
• Additional codepoint and of binary value for packetization time in Annex C;
• Clarification of wildcarding principles and of wildcarding in the Topology Descriptor;
• Clarification of: statistics and the Move command; modification of terminations by MGCs;

optional commands in an action; ordering of transactions; precedence of LocalControl mode
property versus SDP mode; Digit processing; usage of digitmap timer symbols with range
notation; use of StreamID = 0; AuditCapabilities return for string values; protocol version
negotiation;

• Clarification that the network package can apply to TDM.
NOTE – This Recommendation comprises the renumbering of ITU-T Rec. H.248, its Annexes A through E,
and its Appendix I.

Source
Corrigendum 1 to ITU-T Recommendation H.248.1 v2 (2002) was approved on 15 March 2004 by
ITU-T Study Group 16 (2001-2004) under the ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) iii

CONTENTS
 Page
1) Clause 2.1 ... 1

2) Clause 6.2 ... 1

3) Clause 6.3 ... 3

4) Clause 7, Commands .. 5

5) Clause 8 .. 11

6) Clause 11.3 ... 12

7) Clause 12 .. 12

8) Annex B Text encoding of the protocol ... 13

9) Annex C Tags for media stream properties .. 25

10) Annex E Basic packages... 26

11) Appendix I Example call flows .. 27

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 1

ITU-T Recommendation H.248.1 v2

Gateway control protocol: Version 2

Corrigendum 1

1) Clause 2.1

Modify 2.1 as follows:

2.1 Normative references

− ITU-T Recommendation H.225.0 (2000), Call signalling protocols and media stream
packetization for packet-based multimedia communication systems.

− ITU-T Recommendation H.235 (2000), Security and encryption for H-Series (H.323 and
other H.245-based) multimedia terminals.

− ITU-T Recommendation H.245 (2001), Control protocol for multimedia communication.

− ITU-T Recommendation H.246 (1998), Interworking of H-series multimedia terminals with
H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN.

− ITU-T Recommendation H.248.4 (2000), Gateway control protocol: Transport over Stream
Control Transmission Protocol (SCTP), plus Cor.1 (2004).

− ITU-T Recommendation H.248.5 (2000), Gateway control protocol: Transport over ATM.

− ITU-T Recommendation H.248.8 (2002), Gateway control protocol: Error code and
service change reason description, plus Amendment 1 (2004).

•••••

2) Clause 6.2

Modify 6.2 as follows:

6.2 Terminations
•••••

Terminations may have signals applied to them (see 7.1.11). Terminations may be programmed to
detect Events, the occurrence of which can trigger notification messages to the MGC, or action by
the MG. Statistics may be accumulated on a Termination. Statistics are reported to the MGC upon
request (by means of the AuditValue command, see 7.2.5) and when the Termination is subtracted
from a contextceases to exist or is returned to the NULL context due to a Subtract command.

•••••

6.2.1 Termination dynamics
The protocol can be used to create new Terminations and to modify property values of existing
Terminations. These modifications include the possibility of adding or removing events and/or
signals. The Termination properties, and events and signals are described in the ensuing subclauses.
An MGC can only release/modify Terminations and the resources that the Termination represents,
which are in the NULL context or which it hashave been previously seized via e.g., the Add
command.

2 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

6.2.2 TerminationIDs
Terminations are referenced by a TerminationID, which is an arbitrary schema chosen by the MG.

TerminationIDs of physical Terminations are provisioned in the Media Gateway. The
TerminationIDs may be chosen to have structure. For instance, a TerminationID may consist of
trunk group and a trunk within the group.

A wildcarding mechanism using two types of wildcards can be used with TerminationIDs. The two
wildcards are ALL and CHOOSE. The former is used to address multiple Terminations at once,
while the latter is used to indicate to a media gateway that it must select a Termination satisfying
the partially specified TerminationID. This allows, for instance, that a MGC instructs a MG to
choose a circuit within a trunk group.

When ALL is used in the TerminationID of a command, the effect is identical to repeating the
command with each of the matching TerminationIDs. The use of ALL does not address the ROOT
termination. Since each of these commands may generate a response, the size of the entire response
may be large. If individual responses are not required, a wildcard response may be requested. In
such a case, a single response is generated, which contains the UNION of all of the individual
responses which otherwise would have been generated, with duplicate values suppressed. For
instance, given a Termination Ta with properties p1 = a, p2 = b and Termination Tb with properties
p2 = c, p3 = d, a UNION response would consist of a wildcarded TerminationId and the sequence
of properties p1 = a, p2 = b,c and p3 = d. Wildcard response may be particularly useful in the Audit
commands.

The encoding of the wildcarding mechanism is detailed in Annexes A and B.

6.2.3 Packages
Different types of gateways may implement Terminations that have widely differing characteristics.
Variations in Terminations are accommodated in the protocol by allowing Terminations to have
optional Properties, Events, Signals and Statistics implemented by MGs.

•••••

6.2.4 Termination properties and descriptors
•••••

The following table lists all of the possible descriptors and their use. Not all descriptors are legal as
input or output parameters to every command.

Descriptor name Description

Modem Identifies modem type and properties when applicable. (Note)

•••••
Error Contains an error code and optionally error text; it may occur in command replies

and in Notify requests.
NOTE – ModemDescriptor has been deprecated in ITU-T Rec. H.248.1 version 12 (035/2002).

6.2.5 Root termination
•••••

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 3

3) Clause 6.3

Add 6.3 as follows:

6.3 Wildcarding principles
This clause specifies the behaviour for wildcarding Context and Termination Identities that shall be
applied to all commands. In processing these commands, two forms of wildcarding must be
considered:
1) Context Wildcarding;
2) Termination Wildcarding.

When executing a transaction that contains wildcarded contexts and optionally wildcarded
terminations, all commands in the transaction are executed in order for a particular instance of
ContextID before moving to a subsequent ContextID instance. In the case that there are multiple
commands in a transaction, only when the TerminationID (wildcarded or specific) specified in the
first command matches a specific instance of a ContextID are subsequent commands in the
transaction executed. If a TerminationID (wildcarded or specific) of the subsequent command(s) in
that transaction does not match the specific ContextID instance, then an error code 431 is returned
and processing of subsequent instances of the wildcard ContextID is stopped unless the command
that generated the error is marked optional.

The execution of particular wildcard combinations is discussed below.

6.3.1 ContextID specific with TerminationID wildcarded
In the case where the ContextID is specific, when ALL is used in the TerminationID of a command,
the effect is identical to repeating the command with each of the matching TerminationIDs. The use
of ALL does not address the ROOT termination. Since each of these commands may generate a
response, the size of the entire response may be large. Thus if the wildcard matches more than one
TerminationID in the context, all possible matches are attempted, with results reported for each one.
If none of the Terminations referenced by the wildcarded TerminationID are in the specific context,
then error code 431 is returned. No errors are returned for individual terminations specified by the
wildcarded TerminationID that are not in the specified context.

For example: Assume that a gateway has 4 terminations: t1/1, t1/2, t2/1 and t2/2. Assume that
Context 1 has t1/1 and t2/1 in it and that Context 2 has t1/2 and t2/2 in it.
The command:
 Context=1{Command=t1/*{Descriptor/s}}
Returns:
 Context=1{Command=t1/1{Descriptor/s}}

6.3.2 ContextID wildcarded (ALL) with TerminationID specific
In the case where the ContextID is wildcarded (i.e., ContextID = ALL) and the TerminationID is
fully specified, the effect is identical to a command specifying the non-NULL context that contains
the specified termination. Thus a search must be made to find the context and only one instance of
the command is executed. No errors are reported for Contexts that do not contain the specified
termination. If the termination is not contained in any (non-NULL) context, then error 431 is
returned. Use of this form of action rather than one specifying the ContextID is discouraged but
may be useful, for example in correcting conflicting state between MG and MGC.

4 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

For example: Taking the above gateway configuration.
The command:
 Context=*{Command=t1/1{Descriptor/s}}
Returns:
 Context=1{Command=t1/1{Descriptor/s}}

6.3.3 ContextID wildcarded (ALL) with TerminationID wildcarded
In the case where the ContextID is wildcarded (i.e., ContextID = ALL) and the TerminationID is
wildcarded, the effect is identical to repeating the command with each of the TerminationIDs
matching the wildcard for each non-NULL context that contains one or more of those matching
TerminationIDs. Thus if the wildcard matches more than one TerminationID in the specific instance
of the wildcarded ContextID, all possible matches are attempted, with results reported for each one.
No errors are reported for Contexts that do not contain a termination matching the wildcarded
TerminationID. No errors are returned for individual terminations specified in the wildcarded
TerminationID that are not in a specific instance of the wildcarded ContextID. If there are no
matches to the wildcarded ContextID and TerminationID, then error 431 is returned.

For example: Taking the above gateway configuration.
The command:
 Context=*{Command=t1/*{Descriptor/s}}
Returns:
 Context=1{Command=t1/1{Descriptor/s}}
 Context=2{Command=t1/2{Descriptor/s}}
In the case that multiple commands are contained in a wildcarded TerminationID and/or wildcarded
ContextID request, then if the first command does not match the first ContextID and TerminationID
instance, then the subsequent command in the request will not be executed for that instance.

6.3.4 Wildcarded responses
If individual responses are not required, a wildcard response may be requested. In such a case, a
single response is generated, which contains the UNION of all of the individual responses which
otherwise would have been generated, with duplicate values suppressed. For instance, given a
Termination Ta with properties p1 = a, p2 = b and Termination Tb with properties p2 = c, p3 = d, a
UNION response would consist of a wildcarded TerminationID and the sequence of properties
p1 = a, p2 = b, c and p3 = d. Wildcard response may be particularly useful in the Audit commands.
If a wildcard UNION response is used in conjunction with a wildcarded Context, then a single
response is sent with the UNION of all the individual termination/s referenced by the
TerminationID. The response would contain Context = ALL, a wildcarded TerminationID and the
sequence of properties.

If an error occurs during the execution of a wildcarded request that specifies a wildcarded response,
special handling is required to provide useful information about the error(s) while still maintaining a
modest sized response. When a wildcarded response is requested, all instances (as specified above)
of the command shall be executed even if one or more result in errors, but later commands in the
transaction will not be executed (unless optional was specified). Multiple command responses shall
be returned for the command that encountered the error. The first command response shall be the
normal wildcard response containing the UNION of responses for those commands that succeeded.
If none of them succeeded the UNION shall be empty. Additional command responses for each
transactionID that failed shall be returned with the appropriate Error Descriptor.

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 5

For example
 The command:
 Context=*{Command=t1/*{Descriptor/s}}
 Response to an error:
 Context=*{Command=t1/*{Union response descriptors},
 Command=t1/3{Error=errorcode}}

The encoding of the wildcarding mechanism is detailed in Annexes A and B.

•••••

4) Clause 7, Commands

a) Modify 7.1 as follows:

7.1.2 Modem descriptor
The Modem descriptor specifies the modem type and parameters, if any, required for use in
e.g., H.324 and text conversation. The descriptor includes the following modem types: V.18, V.22,
V.22 bis, V.32, V.32 bis, V.34, V.90, V.91, Synchronous ISDN, and allows for extensions. By
default, no Modem descriptor is present in a Termination.

Use of the ModemDescriptor is deprecated in ITU-T Rec. H.248.1 version 1 (032 (05/2002) and
subsequent versions. This means that the ModemDescriptor shall not be included as part of
transmitted content and, if received, shall either be ignored or processed at the option of the
implementation. Modem type is to be specified as an attribute of data streams in LocalDescriptor
and RemoteDescriptor.

•••••

7.1.4 Media descriptor
The Media descriptor specifies the parameters for all the media streams. These parameters are
structured into two descriptors: a TerminationState descriptor, which specifies the properties of a
Termination that are not stream dependent, and one or more Stream descriptors each of which
describes a single media stream.

A stream is identified by a StreamID. The StreamID shall be in the range of 1 to 65535. The
StreamID is used to link the streams in a Context that belong together. Multiple streams exiting a
Termination shall be synchronized with each other. Within the Stream descriptor, there are up to
three subsidiary descriptors: LocalControl, Local, and Remote. The relationship between these
descriptors is thus:

•••••

7.1.7 LocalControl descriptor
The LocalControl descriptor contains the Mode property, the ReserveGroup and ReserveValue
properties and properties of a Termination (defined in Packages) that are stream specific, and are of
interest between the MG and the MGC. Values of properties may be specified as in 7.1.1.

The allowed values for the mode property are send-only, receive-only, send/receive, inactive and
loop-back. "Send" and "receive" are with respect to the exterior of the Context, so that, for example,
a stream set to mode = sendOnly does not pass received media into the Context. The default value
for the mode property is "Inactive". Signals and Events are not affected by mode. The LocalControl
Mode property takes precedence over any mode specified in the Local and Remote descriptors.

•••••

6 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

7.1.14.2 DigitMap timers
The collection of digits according to a DigitMap may be protected by three timers, viz. a start
timer (T), short timer (S), and long timer (L).
1) The start timer (T) is used prior to any digits being available for processing against the digit

maphaving been dialed. If the start timer is overridden with the value set to zero (T = 0),
then the start timer shall be disabled. This implies that the MG will wait indefinitely for
digits.

•••••

7.1.14.3 DigitMap syntax
•••••

In addition to these event symbols, the string may contain "S" and "L" inter-event timing specifiers
and the "Z" duration modifier. "S" and "L" respectively indicate that the MG should use the short
(S) timer or the long (L) timer for subsequent events, overriding the timing rules described above. If
an explicit timing specifier is in effect in one alternative event sequence, but none is given in any
other candidate alternative, the timer value set by the explicit timing specifier must be used. If all
sequences with explicit timing controls are dropped from the candidate set, timing reverts to the
default rules given above. If used inside a range notation, the S and L specifiers shall be ignored.
Finally, if conflicting timing specifiers are in effect in different alternative sequences, the long timer
shall be used.

A "Z" designates a long duration event: placed in front of the symbol(s) designating the event(s)
which satisfy a given digit position, it indicates that that position is satisfied only if the duration of
the event exceeds the long-duration threshold. The value of this threshold is assumed to be
provisioned in the MG, but, like the T, L, and S timers, can be overridden by specification within
the DigitMap. If the Z specifier is not followed by a digit (0-9 or A-K), then the MG shall reject the
DigitMap as invalid procedure. When used in a range notation, the Z specifier applies solely to the
immediately following digit. When used immediately prior to a range, the Z modifier applies to all
digits in the range (thereby requiring a match in the range to be long duration).

7.1.14.4 DigitMap completion event
•••••

7.1.15 Statistics descriptor
The Statistics Descriptor provides information describing the status and usage of a Termination
during its existence (ephemeral) or while it is outside the NULL context (physical)within a specific
Context. There is a set of standard statistics kept for each Termination where appropriate (number
of octets sent and received for example). The particular statistical properties that are reported for a
given Termination are determined by the Packages realized by the Termination. By default,
statistics are reported when the Termination ceases to exist or is returned to the NULL context due
to a Subtract commandis Subtracted from the Context. This behaviour can be overridden by
including an empty AuditDescriptor in the Subtract command. Statistics may also be returned from
the AuditValue command, or any Add/Move/Modify command using the Audit descriptor.

Statistics are cumulative; reporting Statistics does not reset them. Statistics are reset when a
Termination ceases to exist or is returned to the NULL context due to a Subtract commandis
Subtracted from a Context.

7.1.16 Packages descriptor
•••••

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 7

7.1.18 Topology descriptor
•••••

• (T1, T2, isolate) means that the Terminations matching T2 do not receive media from the
Terminations matching T1, nor vice versa.

• (T1, T2, oneway) means that the Terminations that match T2 receive media from the
Terminations matching T1, but not vice versa. In this case, use of the ALL wildcard such
that there are Terminations that match both either T1 and or T2 but not both is not allowed.

• (T1, T2, bothway) means that the Terminations matching T2 receive media from the
Terminations matching T1, and vice versa. In this case it is allowed to use wildcards such
that there are Terminations that match both T1 and T2. However, if there is a Termination
that matches both, no loopback is introduced.

•••••

b) Modify 7.2 as follows:

7.2.1 Add
The Add Command adds a Termination to a Context.
TerminationID
[,MediaDescriptor]
[,ModemDescriptor] (*)
[,MuxDescriptor]
[,EventsDescriptor]
[,SignalsDescriptor]
[,DigitMapDescriptor]
[,ObservedEventsDescriptor]
[,EventBufferDescriptor]
[,StatisticsDescriptor]
[,PackagesDescriptor]

Add(TerminationID
[, MediaDescriptor]
[, ModemDescriptor] (*)
[, MuxDescriptor]
[, EventsDescriptor]
[, EventBufferDescriptor]
[, SignalsDescriptor]
[, DigitMapDescriptor]
[, AuditDescriptor]

)

(*) ModemDescriptor has been deprecated in H.248.1 version 1 2 (053/2002).

•••••

8 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

7.2.2 Modify
The Modify Command modifies the properties of a Termination.
TerminationID
[,MediaDescriptor]
[,ModemDescriptor] (*)
[,MuxDescriptor]
[,EventsDescriptor]
[,SignalsDescriptor]
[,DigitMapDescriptor]
[,ObservedEventsDescriptor]
[,EventBufferDescriptor]
[,StatisticsDescriptor]
[,PackagesDescriptor]

Modify(TerminationID
[, MediaDescriptor]
[, ModemDescriptor] (*)
[, MuxDescriptor]
[, EventsDescriptor]
[, EventBufferDescriptor]
[, SignalsDescriptor]
[, DigitMapDescriptor]
[, AuditDescriptor]

)

(*) ModemDescriptor has been deprecated in H.248.1 version 12 (035/2002).

•••••

7.2.3 Subtract
The Subtract Command disconnects a Termination from its Context and returns statistics on the
Termination's participation in the Context.
TerminationID
[,MediaDescriptor]
[,ModemDescriptor] (*)
[,MuxDescriptor]
[,EventsDescriptor]
[,SignalsDescriptor]
[,DigitMapDescriptor]
[,ObservedEventsDescriptor]
[,EventBufferDescriptor]
[,StatisticsDescriptor]

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 9

[,PackagesDescriptor]
Subtract(TerminationID

[, AuditDescriptor]
)

(*) ModemDescriptor has been deprecated in H.248.1 version 12 (035/2002).

•••••

7.2.4 Move
The Move Command moves a Termination to another Context from its current Context in one
atomic operation. The Move command is the only command that refers to a Termination in a
Context different from that to which the command is applied. The Move command shall not be used
to move Terminations to or from the null Context.
TerminationID
[,MediaDescriptor]
[,ModemDescriptor] (*)
[,MuxDescriptor]
[,EventsDescriptor]
[,SignalsDescriptor]
[,DigitMapDescriptor]
[,ObservedEventsDescriptor]
[,EventBufferDescriptor]
[,StatisticsDescriptor]
[,PackagesDescriptor]

Move(TerminationID
[, MediaDescriptor]
[, ModemDescriptor] (*)
[, MuxDescriptor]
[, EventsDescriptor]
[, EventBufferDescriptor]
[, SignalsDescriptor]
[, DigitMapDescriptor]
[, AuditDescriptor]

)

(*) ModemDescriptor has been deprecated in H.248.1 version 21 (053/2002).

•••••

10 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

7.2.5 AuditValue
The AuditValue Command returns the current values of properties, events, signals and statistics
associated with Terminations. An AuditValue may request the contents of a descriptor or of a single
property, event, signal or statistics.
TerminationID
[,MediaDescriptor]
[,ModemDescriptor] (*)
[,MuxDescriptor]
[,EventsDescriptor]
[,SignalsDescriptor]
[,DigitMapDescriptor]
[,ObservedEventsDescriptor]
[,EventBufferDescriptor]
[,StatisticsDescriptor]
[,PackagesDescriptor]

AuditValue(TerminationID,
AuditDescriptor

)

(*) ModemDescriptor has been deprecated in H.248.1 version 21 (053/2002).

•••••

7.2.6 AuditCapabilities
The AuditCapabilities Command returns the possible values of properties, events, signals and
statistics associated with Terminations. An AuditCapabilities may be requested for the contents of a
descriptor or for a single property, event, signal or statistics.
TerminationID
[,MediaDescriptor]
[,ModemDescriptor](*)
[,MuxDescriptor]
[,EventsDescriptor]
[,SignalsDescriptor]
[,ObservedEventsDescriptor]
[,EventBufferDescriptor]
[,StatisticsDescriptor]

AuditCapabilities(TerminationID,
AuditDescriptor)

(*) ModemDescriptor has been deprecated in H.248.1 version 21 (053/2002).

•••••

If a wildcarded response is requested, only one command return is generated, with the contents
containing the union of the values of all Terminations matching the wildcard. This convention may
reduce the volume of data required to audit a group of Terminations.

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 11

If a property, signal, event or statistic is audited, the appropriate properties, signals, events, and
statistics with the capabilities of the Termination, are returned from AuditCapabilities.

Interpretation of what capabilities are requested for various values of ContextID and TerminationID
is the same as in AuditValue.

For property and parameter values of type string, character or octet string, the MG shall return an
empty value. For the text encoding, strings and characters return an empty quotedString construct,
while octet strings return NULL (0x00). This behaviour may be overridden by the package
definition.

The EventsDescriptor returns the list of possible events on the Termination together with the list of
all possible values for the EventsDescriptor Parameters. EventBufferDescriptor returns the same
information as EventsDescriptor. The SignalsDescriptor returns the list of possible signals that
could be applied to the Termination, together with the list of all possible values for the Signals
Parameters. StatisticsDescriptor returns the names of the statistics being kept on the termination.
ObservedEventsDescriptor returns the names of active events on the Termination. DigitMap and
Packages are not legal in AuditCapability.

•••••

5) Clause 8

Modify clause 8 as follows:

8 Transactions
•••••

Transactions are presented as TransactionRequests. Corresponding responses to a
TransactionRequest are received in a single reply, possibly preceded by a number of
TransactionPending messages (see 8.2.3).

Transactions guarantee ordered Command processing. That is, Commands within a Transaction are
executed sequentially. Ordering of Transactions is NOT guaranteed; transactions may be executed
in any order, or simultaneously; however, transaction replies should be executed before transaction
requests when both are contained in a message.

At the first failing Command in a Transaction, processing of the remaining Commands in that
Transaction stops. If a command contains a wildcarded TerminationID, the command is attempted
with each of the actual TerminationIDs matching the wildcard. A response within the
TransactionReply is included for each matching TerminationID, even if one or more instances
generated an error. If any TerminationID matching a wildcard results in an error when executed,
any commands following the wildcarded command are not attempted.

•••••

8.2.1 TransactionRequest
The TransactionRequest is invoked by the sender. There is one Transaction per request invocation.
A request contains one or more Actions, each of which specifies its target Context and one or more
Commands per Context.
TransactionRequest(TransactionId {

ContextID {Command … Command},
. . .
ContextID {Command … Command } })

12 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

The TransactionID parameter must specify a value for later correlation with the TransactionReply
or TransactionPending response from the receiver.

•••••

6) Clause 11.3

Modify 11.3 as follows:

11.3 Negotiation of protocol version
A ServiceChange command from a MG that registers with an MGC shall contain the version
number of the protocol supported by the MG in the ServiceChangeVersion parameter. Regardless of
the version placed in the ServiceChangeVersion parameter, the message containing the command
shall be encoded as a version 1 message. Upon receiving such a message, if the MGC supports only
a lower version, then the MGC shall send a ServiceChangeReply with the lower version and,
thereafter, all the messages between MG and MGC shall conform to the lower version of the
protocol. If the MG is unable to comply, and it has established a transport connection to the MGC,
it should close that connection. In any event, it should reject all subsequent requests from the MGC
with Error 406 (Version Not Supported).

If the MGC only supports higher version(s) than the MG, it shall reject the association with Error
406 (Version Not Supported).

If the MGC supports the version indicated by the MG, it shall conform to that version in all
subsequent messages. In this case, it is optional for the MGC to return a version in the
ServiceChangeReply.If the MGC supports a higher version than the MG but is able to support the
lower version proposed by the MG, it shall send a ServiceChangeReply with the lower version and
thereafter all the messages between MG and MGC shall conform to the lower version of the
protocol. If the MGC is unable to comply, it shall reject the association, with Error 406 (Version
Not Supported).

Protocol version negotiation may also occur at "handoff" and "failover" ServiceChanges.

•••••

7) Clause 12

Modify clause 12 as follows:

12.1.5 Statistics
Statistics defined by the package, specifying:

Statistic name: only descriptive
StatisticID: is an identifier
StatisticID is used in a StatisticsDescriptor

Description:

 Type: One of:

 Boolean

 String: UTF-8 string

 Octet String: A number of octets. See Annex A and B.3 for encoding

 Integer: 4 byte signed integer

 Double: 8 byte signed integer

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 13

 Character: Unicode UTF-8 encoding of a single letter. Could be more than one octet.

 Enumeration: One of a list of possible unique values (see 12.3)

 Sub-list: A list of several values from a list. The type of sub-list SHALL also be
specified. The type shall be chosen from the types specified in this clause (with the
exception of sub-list). For example, Type: sub-list of enumeration. The encoding of
sub-lists is specified in Annex A and B.3.

Possible Values:

A package must indicate the unit of measure, e.g., milliseconds, packets, either here or
along with the type above, as well as indicating any restriction on the range.

Units: unit of measure, e.g. milliseconds, packets

12.1.6 Procedures
•••••

12.5 Package registration
A package can be registered with IANA for interoperability reasons. See clause 13 14 for IANA
considerations.

•••••

8) Annex B Text encoding of the protocol

Modify Annex B as follows:
•••••

B.2 ABNF specification
The protocol syntax is presented in ABNF according to RFC 2234.
NOTE 1 – This syntax specification does not enforce all restrictions on element inclusions and values. Some
additional restrictions are stated in comments and other restrictions appear in the text of this
Recommendation. These additional restrictions are part of the protocol even though not enforced by this
Recommendation.
NOTE 2 – The syntax is context-dependent. For example, "Add" can be the AddToken or a NAME
depending on the context in which it occurs.

Everything in the ABNF and text encoding is case insensitive. This includes TerminationIDs,
digitmap Ids etc. SDP is case sensitive as per RFC 2327.

; NOTE - The ABNF in this section uses the VALUE construct (or lists of
; VALUE constructs) to encode various package element values (properties,
; signal parameters, etc.). The types of these values vary and are
; specified in the relevant package definition. Several such types are
; described in 12.2.
;
; The ABNF specification for VALUE allows a quotedString form or a
; collection of SafeChars. The encoding of package element values into
; ABNF VALUES is specified below. If a type's encoding allows characters
; other than SafeChars, the quotedString form MUST be used for all values
; of that type, even for specific values that consist only of SafeChars.
;
; String: A string MUST use the quotedString form of VALUE and can
; contain anything allowable in the quotedString form.
;
; Integer, Double, and Unsigned Integer: Decimal values can be encoded
; using characters 0-9. Hexadecimal values must be prefixed with '0x'

14 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

; and can use characters 0-9,a-f,A-F. An octal format is not supported.
; Negative integers start with '-' and MUST be Decimal. The SafeChar
; form of VALUE MUST be used.
;
; Character: A UTF-8 encoding of a single letter surrounded by double
; quotes.
;
; Enumeration: An enumeration MUST use the SafeChar form of VALUE
; and can contain anything allowable in the SafeChar form.
;
; Boolean: Boolean values are encoded as "on" and "off" and are
; case insensitive. The SafeChar form of VALUE MUST be used.
;
; Future types: Any defined types MUST fit within
; the ABNF specification of VALUE. Specifically, if a type's encoding
; allows characters other than SafeChars, the quotedString form MUST
; be used for all values of that type, even for specific values that
; consist only of SafeChars.
;
; Note that there is no way to use the double quote character within
; a value.
;
; Note that SDP disallows whitespace at the beginning of a line, Megaco
; ABNF allows whitespace before the beginning of the SDP in the
; Local/Remote descriptor. Parsers should accept whitespace between the
; LBRKT following the Local/Remote token and the beginning of the SDP.

megacoMessage = LWSP [authenticationHeader SEP] message

authenticationHeader = AuthToken EQUAL SecurityParmIndex COLON
 SequenceNum COLON AuthData

SecurityParmIndex = "0x" 8(HEXDIG)
SequenceNum = "0x" 8(HEXDIG)
AuthData = "0x" 24*64(HEXDIG)

message = MegacopToken SLASH Version SEP mId SEP messageBody
; The version of the protocol defined here is equal to 2.

messageBody = (errorDescriptor / transactionList)

transactionList = 1*(transactionRequest / transactionReply /
 transactionPending / transactionResponseAck)
;Use of response acks is dependent on underlying transport

transactionPending = PendingToken EQUAL TransactionID LBRKT RBRKT

transactionResponseAck = ResponseAckToken LBRKT transactionAck
 *(COMMA transactionAck) RBRKT
transactionAck = TransactionID / (TransactionID "-" TransactionID)

transactionRequest = TransToken EQUAL TransactionID LBRKT
 actionRequest *(COMMA actionRequest) RBRKT

actionRequest = CtxToken EQUAL ContextID LBRKT ((
 contextRequest [COMMA commandRequestList])
 / commandRequestList) RBRKT

contextRequest = ((contextProperties [COMMA contextAudit])
 / contextAudit)

contextProperties = contextProperty *(COMMA contextProperty)

; at-most-once

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 15

; EmergencyOff to be used in MG to MGC direction only in H.248.1 V1 and V2
; EmergencyToken or EmergencyOffToken, but not both
contextProperty = (topologyDescriptor / priority / EmergencyToken /
 EmergencyOffToken)

contextAudit = ContextAuditToken LBRKT
 contextAuditProperties *(COMMA
 contextAuditProperties) RBRKT

; at-most-once
contextAuditProperties = (TopologyToken / EmergencyToken /
 PriorityToken)

; "O-" indicates an optional command
; "W-" indicates a wildcarded response to a command
commandRequestList= ["O-"] ["W-"] commandRequest *
(COMMA ["O-"] ["W-"]commandRequest)

commandRequest = (ammRequest / subtractRequest / auditRequest /
 notifyRequest / serviceChangeRequest)

transactionReply = ReplyToken EQUAL TransactionID LBRKT
 [ImmAckRequiredToken COMMA]
 (errorDescriptor / actionReplyList) RBRKT

actionReplyList = actionReply *(COMMA actionReply)

actionReply = CtxToken EQUAL ContextID LBRKT
 (errorDescriptor / commandReply /
 (commandReply COMMA errorDescriptor)) RBRKT

commandReply = ((contextProperties [COMMA commandReplyList]) /
 commandReplyList)

commandReplyList = commandReplys *(COMMA commandReplys)

commandReplys = (serviceChangeReply / auditReply / ammsReply /
 notifyReply)

;Add Move and Modify have the same request parameters
ammRequest = (AddToken / MoveToken / ModifyToken) EQUAL
 TerminationID [LBRKT ammParameter *(COMMA
 ammParameter) RBRKT]

;at-most-once
ammParameter = (mediaDescriptor / modemDescriptor /
 muxDescriptor / eventsDescriptor /
 signalsDescriptor / digitMapDescriptor /
 eventBufferDescriptor / auditDescriptor)

ammsReply = (AddToken / MoveToken / ModifyToken /
 SubtractToken) EQUAL TerminationID [LBRKT
 terminationAudit RBRKT]

subtractRequest = SubtractToken EQUAL TerminationID
 [LBRKT auditDescriptor RBRKT]

auditRequest = (AuditValueToken / AuditCapToken) EQUAL
 TerminationID LBRKT auditDescriptor RBRKT

auditReply = (AuditValueToken / AuditCapToken)

16 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

 (contextTerminationAudit / auditOther)

auditOther = EQUAL TerminationID [LBRKT
 terminationAudit RBRKT]

terminationAudit = auditReturnParameter *(COMMA auditReturnParameter)

contextTerminationAudit = EQUAL CtxToken (terminationIDList /
 LBRKT errorDescriptor RBRKT)

auditReturnParameter = (mediaDescriptor / modemDescriptor /
 muxDescriptor / eventsDescriptor /
 signalsDescriptor / digitMapDescriptor /
 observedEventsDescriptor / eventBufferDescriptor /
 statisticsDescriptor / packagesDescriptor /
 errorDescriptor / auditReturnItem)

auditReturnItem = (MuxToken / ModemToken / MediaToken /
 DigitMapToken / StatsToken /
 ObservedEventsToken / PackagesToken)

auditDescriptor = AuditToken LBRKT [auditItem
 *(COMMA auditItem)] RBRKT

notifyRequest = NotifyToken EQUAL TerminationID
 LBRKT (observedEventsDescriptor
 [COMMA errorDescriptor]) RBRKT

notifyReply = NotifyToken EQUAL TerminationID
 [LBRKT errorDescriptor RBRKT]

serviceChangeRequest = ServiceChangeToken EQUAL TerminationID
 LBRKT serviceChangeDescriptor RBRKT

serviceChangeReply = ServiceChangeToken EQUAL TerminationID
 [LBRKT (errorDescriptor /
 serviceChangeReplyDescriptor) RBRKT]

errorDescriptor = ErrorToken EQUAL ErrorCode
 LBRKT [quotedString] RBRKT

ErrorCode = 1*4(DIGIT) ; could be extended

TransactionID = UINT32

mId = ((domainAddress / domainName)
 [":" portNumber]) / mtpAddress / deviceName

; ABNF allows two or more consecutive "." although it is meaningless
; in a domain name.
domainName = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" /
 ".") ">"
deviceName = pathNAME

;The values 0x0, 0xFFFFFFFE and 0xFFFFFFFF are reserved.
;'-' is used for NULL context.
ContextID = (UINT32 / "*" / "-" / "$")

domainAddress = "[" (IPv4address / IPv6address) "]"
;RFC 2373 contains the definition of IP6Addresses.
IPv6address = hexpart [":" IPv4address]
IPv4address = V4hex DOT V4hex DOT V4hex DOT V4hex
V4hex = 1*3(DIGIT) ; "0".."255"
; this production, while occurring in RFC 2373, is not referenced

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 17

; IPv6prefix = hexpart SLASH 1*2DIGIT
hexpart = hexseq "::" [hexseq] / "::" [hexseq] / hexseq
hexseq = hex4 *(":" hex4)
hex4 = 1*4HEXDIG

portNumber = UINT16

; Addressing structure of mtpAddress:
; 25 - 15 0
; | PC | NI |
; 24 - 14 bits 2 bits
; Note: 14 bits are defined for international use.
; Two national options exist where the point code is 16 or 24 bits.
; To octet align the mtpAddress the MSBs shall be encoded as 0s.
; An octet shall be represented by 2 hex digits.
mtpAddress = MTPToken LBRKT 4*8 (HEXDIG) RBRKT

terminationIDList = LBRKT TerminationID *(COMMA TerminationID) RBRKT

; Total length of pathNAME must not exceed 64 chars.
pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$")
 ["@" pathDomainName]

; ABNF allows two or more consecutive "." although it is meaningless
; in a path domain name.
pathDomainName = (ALPHA / DIGIT / "*")
 63(ALPHA / DIGIT / "-" / "" / ".")

TerminationID = "ROOT" / pathNAME / "$" / "*"

mediaDescriptor = MediaToken LBRKT mediaParm *(COMMA mediaParm) RBRKT

; at-most one terminationStateDescriptor
; and either streamParm(s) or streamDescriptor(s) but not both
mediaParm = (streamParm / streamDescriptor /
 terminationStateDescriptor)

; at-most-once per item
streamParm = (localDescriptor / remoteDescriptor /
 localControlDescriptor)

streamDescriptor = StreamToken EQUAL StreamID LBRKT streamParm
 *(COMMA streamParm) RBRKT

localControlDescriptor = LocalControlToken LBRKT localParm
 *(COMMA localParm) RBRKT

; at-most-once per item except for propertyParm
localParm = (streamMode / propertyParm / reservedValueMode
 / reservedGroupMode)

reservedValueMode = ReservedValueToken EQUAL ("ON" / "OFF")
reservedGroupMode = ReservedGroupToken EQUAL ("ON" / "OFF")

streamMode = ModeToken EQUAL streamModes

streamModes = (SendonlyToken / RecvonlyToken / SendrecvToken /
 InactiveToken / LoopbackToken)

propertyParm = pkgdName parmValue
parmValue = (EQUAL alternativeValue/ INEQUAL VALUE)
alternativeValue = (VALUE
 / LSBRKT VALUE *(COMMA VALUE) RSBRKT
 ; sublist (i.e. A AND B AND ...)

18 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

 / LBRKT VALUE *(COMMA VALUE) RBRKT
 ; alternatives (i.e. A OR B OR ...)

 / LSBRKT VALUE COLON VALUE RSBRKT)
 ; range

INEQUAL = LWSP (">" / "<" / "#") LWSP ; '#' means "not equal"
LSBRKT = LWSP "[" LWSP
RSBRKT = LWSP "]" LWSP

; Note – The octet zero is not among the permitted characters in octet
; string. As the current definition is limited to SDP, and a zero octet
; would not be a legal character in SDP, this is not a concern.
localDescriptor = LocalToken LBRKT octetString RBRKT

remoteDescriptor = RemoteToken LBRKT octetString RBRKT

eventBufferDescriptor= EventBufferToken [LBRKT eventSpec
 *(COMMA eventSpec) RBRKT]

eventSpec = pkgdName [LBRKT eventSpecParameter
 *(COMMA eventSpecParameter) RBRKT]
eventSpecParameter = (eventStream / eventOther)

eventBufferControl = BufferToken EQUAL ("OFF" / LockStepToken)

terminationStateDescriptor = TerminationStateToken LBRKT
 terminationStateParm *(COMMA terminationStateParm) RBRKT

; at-most-once per item except for propertyParm
terminationStateParm =(propertyParm / serviceStates / eventBufferControl)

serviceStates = ServiceStatesToken EQUAL (TestToken /
 OutOfSvcToken / InSvcToken)

muxDescriptor = MuxToken EQUAL MuxType terminationIDList

MuxType = (H221Token / H223Token / H226Token / V76Token
 / extensionParameter / Nx64kToken)

StreamID = UINT16
pkgdName = (PackageName SLASH ItemID) ;specific item
 / (PackageName SLASH "*") ;all items in package
 / ("*" SLASH "*") ; all items supported by the MG
PackageName = NAME
ItemID = NAME

eventsDescriptor = EventsToken [EQUAL RequestID LBRKT
 requestedEvent *(COMMA requestedEvent) RBRKT]

requestedEvent = pkgdName [LBRKT eventParameter
 *(COMMA eventParameter) RBRKT]

; at-most-once each of KeepActiveToken , eventDM and eventStream
; at most one of either embedWithSig or embedNoSig but not both
; KeepActiveToken and embedWithSig must not both be present
eventParameter = (embedWithSig / embedNoSig / KeepActiveToken
 /eventDM / eventStream / eventOther)

embedWithSig = EmbedToken LBRKT signalsDescriptor
 [COMMA embedFirst] RBRKT
embedNoSig = EmbedToken LBRKT embedFirst RBRKT

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 19

; at-most-once of each
embedFirst = EventsToken [EQUAL RequestID LBRKT
 secondRequestedEvent *(COMMA secondRequestedEvent) RBRKT]

secondRequestedEvent = pkgdName [LBRKT secondEventParameter
 *(COMMA secondEventParameter) RBRKT]

; at-most-once each of embedSig , KeepActiveToken, eventDM or
; eventStream
; KeepActiveToken and embedSig must not both be present
secondEventParameter = (embedSig / KeepActiveToken / eventDM /
 eventStream / eventOther)

embedSig = EmbedToken LBRKT signalsDescriptor RBRKT

eventStream = StreamToken EQUAL StreamID

eventOther = eventParameterName parmValue

eventParameterName = NAME

eventDM = DigitMapToken EQUAL((digitMapName) /
 (LBRKT digitMapValue RBRKT))

signalsDescriptor = SignalsToken [LBRKT [signalParm
 *(COMMA signalParm)] RBRKT]

signalParm = signalList / signalRequest

signalRequest = signalName [LBRKT sigParameter
 *(COMMA sigParameter) RBRKT]

signalList = SignalListToken EQUAL signalListId LBRKT
 signalListParm *(COMMA signalListParm) RBRKT

signalListId = UINT16

;exactly once signalType, at most once duration and every signal
;parameter
signalListParm = signalRequest

signalName = pkgdName
;at-most-once sigStream, at-most-once sigSignalType,
;at-most-once sigDuration, every signalParameterName at most once
sigParameter = sigStream / sigSignalType / sigDuration / sigOther
 / notifyCompletion / KeepActiveToken
sigStream = StreamToken EQUAL StreamID
sigOther = sigParameterName parmValue
sigParameterName = NAME
sigSignalType = SignalTypeToken EQUAL signalType
signalType = (OnOffToken / TimeOutToken / BriefToken)
sigDuration = DurationToken EQUAL UINT16
notifyCompletion = NotifyCompletionToken EQUAL (LBRKT
 notificationReason *(COMMA notificationReason) RBRKT)

notificationReason = (TimeOutToken / InterruptByEventToken
 / InterruptByNewSignalsDescrToken
 / OtherReasonToken)
observedEventsDescriptor = ObservedEventsToken EQUAL RequestID
 LBRKT observedEvent *(COMMA observedEvent) RBRKT

; time per event, because it might be buffered
observedEvent = [TimeStamp LWSP COLON] LWSP
 pkgdName [LBRKT observedEventParameter

20 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

 *(COMMA observedEventParameter) RBRKT]

; at-most-once eventStream, every eventParameterName at most once
observedEventParameter = eventStream / eventOther

; For an AuditCapReply with all events, the RequestID should be ALL.
RequestID = (UINT32 / "*")

modemDescriptor = ModemToken ((EQUAL modemType) /
 (LSBRKT modemType *(COMMA modemType) RSBRKT))
 [LBRKT propertyParm
 *(COMMA propertyParm) RBRKT]

; at-most-once except for extensionParameter
modemType = (V32bisToken / V22bisToken / V18Token /
 V22Token / V32Token / V34Token / V90Token /
 V91Token / SynchISDNToken / extensionParameter)

digitMapDescriptor = DigitMapToken EQUAL
 ((LBRKT digitMapValue RBRKT)
 / (digitMapName [LBRKT digitMapValue RBRKT]))
digitMapName = NAME
digitMapValue = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA]
 ["L" COLON Timer COMMA] ["Z" COLON Timer COMMA]
 digitMap
Timer = 1*2DIGIT
; Units are seconds for T, S, and L timers, and hundreds of
; milliseconds for Z timer. Thus T, S, and L range from 1 to 99
; seconds and Z from 100 ms to 9.9 s
digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)
digitStringList = digitString *(LWSP "|" LWSP digitString)
digitString = 1*(digitStringElement)
digitStringElement = digitPosition [DOT]
digitPosition = digitMapLetter / digitMapRange
digitMapRange = ("x" / (LWSP "[" LWSP digitLetter LWSP "]" LWSP))
digitLetter = *((DIGIT "-" DIGIT) / digitMapLetter)
digitMapLetter = DIGIT ;Basic event symbols
 / %x41-4B / %x61-6B ; a-k, A-K
 / "L" / "S" / "T" ;Inter-event timers
 ; (long, short, start)
 / "Z" ;Long duration modifier

; at-most-once, and DigitMapToken and PackagesToken are not allowed
; in AuditCapabilities command
auditItem = (MuxToken / ModemToken / MediaToken / auditReturnItem /
 SignalsToken /
 EventBufferToken /
 DigitMapToken / StatsToken / EventsToken /
 ObservedEventsToken / PackagesToken) /
 indAudterminationAudit)

indAudterminationAudit = indAudauditReturnParameter
 *(COMMA indAudauditReturnParameter)

indAudauditReturnParameter = (indAudmediaDescriptor / /
 indAudeventsDescriptor /
 indAudsignalsDescriptor /
 indAuddigitMapDescriptor /
 indAudeventBufferDescriptor /
 indAudstatisticsDescriptor /
 indAudpackagesDescriptor)

indAudmediaDescriptor = MediaToken LBRKT indAudmediaParm RBRKT

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 21

; at-most-once per item
; and either streamParm or streamDescriptor but not both
indAudmediaParm = (indAudstreamParm / indAudstreamDescriptor /
 indAudterminationStateDescriptor)

; at-most-once
indAudstreamParm = (indAudlocalControlDescriptor)
; SDP too complex to pull out individual pieces for audit,
; hence no individual audit for Local and Remote

indAudstreamDescriptor = StreamToken EQUAL StreamID
 LBRKT indAudstreamParm RBRKT

indAudlocalControlDescriptor = LocalControlToken LBRKT indAudlocalParm RBRKT

; at-most-once per item
indAudlocalParm = (ModeToken / pkgdName /
 ReservedValueToken /
 ReservedGroupToken)

indAudterminationStateDescriptor = TerminationStateToken LBRKT
 indAudterminationStateParm RBRKT

; at-most-once per item
indAudterminationStateParm =(pkgdName / ServiceStatesToken / BufferToken)

indAudeventBufferDescriptor = EventBufferToken LBRKT indAudeventSpec RBRKT

indAudeventSpec = pkgdName [LBRKT indAudeventSpecParameter RBRKT]
indAudeventSpecParameter = (eventStream / eventParameterName)

indAudeventsDescriptor = EventsToken EQUAL RequestID LBRKT
 indAudrequestedEvent RBRKT

indAudrequestedEvent = pkgdName

indAudsignalsDescriptor = SignalsToken LBRKT [indAudsignalParm] RBRKT

indAudsignalParm = indAudsignalList / indAudsignalRequest

indAudsignalRequest = signalName
indAudsignalList = SignalListToken EQUAL signalListId LBRKT
 indAudsignalListParm RBRKT

indAudsignalListParm = indAudsignalRequest

indAuddigitMapDescriptor = DigitMapToken EQUAL (digitMapName)

indAudstatisticsDescriptor = StatsToken LBRKT pkgdName RBRKT

indAudpackagesDescriptor = PackagesToken LBRKT packagesItem RBRKT

serviceChangeDescriptor = ServicesToken LBRKT serviceChangeParm
 *(COMMA serviceChangeParm) RBRKT

; each parameter at-most-once, except auditItem
; at most one of either serviceChangeAddress or serviceChangeMgcId but
; not both
; serviceChangeMethod and serviceChangeReason are REQUIRED
serviceChangeParm = (serviceChangeMethod / serviceChangeReason /
 serviceChangeDelay / serviceChangeAddress /

22 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

 serviceChangeProfile / extension / TimeStamp /
 serviceChangeMgcId / serviceChangeVersion /
 auditItem)

serviceChangeReplyDescriptor = ServicesToken LBRKT
 servChgReplyParm *(COMMA servChgReplyParm) RBRKT

; at-most-once. Version is REQUIRED on first ServiceChange response
; at most one of either serviceChangeAddress or serviceChangeMgcId but
; not both
servChgReplyParm = (serviceChangeAddress / serviceChangeMgcId /
 serviceChangeProfile / serviceChangeVersion /
 TimeStamp)
serviceChangeMethod = MethodToken EQUAL (FailoverToken /
 ForcedToken / GracefulToken / RestartToken /
 DisconnectedToken / HandOffToken /
 extensionParameter)
; A serviceChangeReason consists of a numeric reason code
; and an optional text description.
; A serviceChangeReason MUST be encoded using the quotedString
; form of VALUE.
; The quotedString SHALL contain a decimal reason code,
; optionally followed by a single space character and a
; textual description string.

serviceChangeReason = ReasonToken EQUAL VALUE
serviceChangeDelay = DelayToken EQUAL UINT32
serviceChangeAddress = ServiceChangeAddressToken EQUAL (mId /
 portNumber)
serviceChangeMgcId = MgcIdToken EQUAL mId
serviceChangeProfile = ProfileToken EQUAL NAME SLASH Version
serviceChangeVersion = VersionToken EQUAL Version
extension = extensionParameter parmValue

packagesDescriptor = PackagesToken LBRKT packagesItem
 *(COMMA packagesItem) RBRKT

Version = 1*2(DIGIT)
packagesItem = NAME "-" UINT16

TimeStamp = Date "T" Time ; per ISO 8601:1988
; Date = yyyymmdd
Date = 8(DIGIT)
; Time = hhmmssss
Time = 8(DIGIT)
statisticsDescriptor = StatsToken LBRKT statisticsParameter
 *(COMMA statisticsParameter) RBRKT

;at-most-once per item
statisticsParameter = pkgdName [EQUAL VALUE]

topologyDescriptor = TopologyToken LBRKT topologyTriple
 *(COMMA topologyTriple) RBRKT
topologyTriple = terminationA COMMA
 terminationB COMMA topologyDirection
 [COMMA eventStream]
terminationA = TerminationID
terminationB = TerminationID
topologyDirection = BothwayToken / IsolateToken / OnewayToken

priority = PriorityToken EQUAL UINT16

extensionParameter = "X" ("-" / "+") 1*6(ALPHA / DIGIT)

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 23

; octetString is used to describe SDP defined in RFC 2327.
; Caution should be taken if CRLF in RFC 2327 is used.
; To be safe, use EOL in this ABNF.
; Whenever "}" appears in SDP, it is escaped by "\", e.g. "\}"
octetString = *(nonEscapeChar)
nonEscapeChar = ("\}" / %x01-7C / %x7E-FF)
; Note – The double-quote character is not allowed in quotedString.
quotedString = DQUOTE *(SafeChar / RestChar/ WSP) DQUOTE

UINT16 = 1*5(DIGIT) ; %x0-FFFF
UINT32 = 1*10(DIGIT) ; %x0-FFFFFFFF

NAME = ALPHA *63(ALPHA / DIGIT / "_")
VALUE = quotedString / 1*(SafeChar)
SafeChar = DIGIT / ALPHA / "+" / "-" / "&" /
 "!" / "_" / "/" / "'" / "?" / "@" /
 "^" / "`" / "~" / "*" / "$" / "\" /
 "(" / ")" / "%" / "|" / "."

EQUAL = LWSP %x3D LWSP ; "="
COLON = %x3A ; ":"
LBRKT = LWSP %x7B LWSP ; "{"
RBRKT = LWSP %x7D LWSP ; "}"
COMMA = LWSP %x2C LWSP ; ","
DOT = %x2E ; "."
SLASH = %x2F ; "/"
ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
DQUOTE = %x22 ; " (Double Quote)
HEXDIG = (DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
SP = %x20 ; space
HTAB = %x09 ; horizontal tab
CR = %x0D ; Carriage return
LF = %x0A ; linefeed
LWSP = *(WSP / COMMENT / EOL)
EOL = (CR [LF] / LF)
WSP = SP / HTAB ; white space
SEP = (WSP / EOL / COMMENT) LWSP
COMMENT = ";" *(SafeChar/ RestChar / WSP / %x22) EOL
RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" /
 "<" / ">" / "="

; New Tokens added to sigParameter must take the format of SPA*
; * may be of any form i.e. SPAM
; New Tokens added to eventParameter must take the form of EPA*
; * may be of any form i.e. EPAD

AddToken = ("Add" / "A")
AuditToken = ("Audit" / "AT")
AuditCapToken = ("AuditCapability" / "AC")
AuditValueToken = ("AuditValue" / "AV")
AuthToken = ("Authentication" / "AU")
BothwayToken = ("Bothway" / "BW")
BriefToken = ("Brief" / "BR")
BufferToken = ("Buffer" / "BF")
CtxToken = ("Context" / "C")
ContextAuditToken = ("ContextAudit" / "CA")
DigitMapToken = ("DigitMap" / "DM")
DisconnectedToken = ("Disconnected" / "DC")
DelayToken = ("Delay" / "DL")
DurationToken = ("Duration" / "DR")
EmbedToken = ("Embed" / "EM")
EmergencyToken = ("Emergency" / "EG")

24 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

EmergencyOffToken = ("EmergencyOffToken" / "EGO")
ErrorToken = ("Error" / "ER")
EventBufferToken = ("EventBuffer" / "EB")
EventsToken = ("Events" / "E")
FailoverToken = ("Failover" / "FL")
ForcedToken = ("Forced" / "FO")
GracefulToken = ("Graceful" / "GR")
H221Token = ("H221")
H223Token = ("H223")
H226Token = ("H226")
HandOffToken = ("HandOff" / "HO")
ImmAckRequiredToken = ("ImmAckRequired" / "IA")
InactiveToken = ("Inactive" / "IN")
IsolateToken = ("Isolate" / "IS")
InSvcToken = ("InService" / "IV")
InterruptByEventToken = ("IntByEvent" / "IBE")
InterruptByNewSignalsDescrToken
 = ("IntBySigDescr" / "IBS")
KeepActiveToken = ("KeepActive" / "KA")
LocalToken = ("Local" / "L")
LocalControlToken = ("LocalControl" / "O")
LockStepToken = ("LockStep" / "SP")
LoopbackToken = ("Loopback" / "LB")
MediaToken = ("Media" / "M")
MegacopToken = ("MEGACO" / "!")
MethodToken = ("Method" / "MT")
MgcIdToken = ("MgcIdToTry" / "MG")
ModeToken = ("Mode" / "MO")
ModifyToken = ("Modify" / "MF")
ModemToken = ("Modem" / "MD")
MoveToken = ("Move" / "MV")
MTPToken = ("MTP")
MuxToken = ("Mux" / "MX")
NotifyToken = ("Notify" / "N")
NotifyCompletionToken = ("NotifyCompletion" / "NC")
Nx64kToken = ("Nx64Kservice" / "N64")
ObservedEventsToken = ("ObservedEvents" / "OE")
OnewayToken = ("Oneway" / "OW")
OnOffToken = ("OnOff" / "OO")
OtherReasonToken = ("OtherReason" / "OR")
OutOfSvcToken = ("OutOfService" / "OS")
PackagesToken = ("Packages" / "PG")
PendingToken = ("Pending" / "PN")
PriorityToken = ("Priority" / "PR")
ProfileToken = ("Profile" / "PF")
ReasonToken = ("Reason" / "RE")
RecvonlyToken = ("ReceiveOnly" / "RC")
ReplyToken = ("Reply" / "P")
RestartToken = ("Restart" / "RS")
RemoteToken = ("Remote" / "R")
ReservedGroupToken = ("ReservedGroup" / "RG")
ReservedValueToken = ("ReservedValue" / "RV")
SendonlyToken = ("SendOnly" / "SO")
SendrecvToken = ("SendReceive" / "SR")
ServicesToken = ("Services" / "SV")
ServiceStatesToken = ("ServiceStates" / "SI")
ServiceChangeToken = ("ServiceChange" / "SC")
ServiceChangeAddressToken = ("ServiceChangeAddress" / "AD")
SignalListToken = ("SignalList" / "SL")
SignalsToken = ("Signals" / "SG")
SignalTypeToken = ("SignalType" / "SY")
StatsToken = ("Statistics" / "SA")
StreamToken = ("Stream" / "ST")
SubtractToken = ("Subtract" / "S")

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 25

SynchISDNToken = ("SynchISDN" / "SN")
TerminationStateToken = ("TerminationState" / "TS")
TestToken = ("Test" / "TE")
TimeOutToken = ("TimeOut" / "TO")
TopologyToken = ("Topology" / "TP")
TransToken = ("Transaction" / "T")
ResponseAckToken = ("TransactionResponseAck"/ "K")
V18Token = ("V18")
V22Token = ("V22")
V22bisToken = ("V22b")
V32Token = ("V32")
V32bisToken = ("V32b")
V34Token = ("V34")
V76Token = ("V76")
V90Token = ("V90")
V91Token = ("V91")
VersionToken = ("Version" / "V")

•••••

9) Annex C Tags for media stream properties
•••••

Modify Annex C as follows:

C.1 General media attributes

PropertyID Property tag Type Value

•••••
Gain 100C Unsigned

integer
Not Used. See E.13 for an available gain
property.Gain in dB: 0..65535

•••••
Ptime 1010 Integer Packetization Time

This gives the length of time in milliseconds
represented by the media in a packet.
Ref.: IETF RFC 2327

C.2 Mux properties
•••••

C.12 H.245

PropertyID Property tag Type Value

•••••
CLCack C006 Octet string The value of H.245 CloseLogicalChannelAck structure.

Ref.: ITU-T Rec. H.245
LCN C007 Integer The value of H.245 Local Channel Number 0-65535.

Ref.: ITU-T Rec. H.245

26 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

Annex D

Transport over IP
•••••

10) Annex E Basic packages
•••••

Modify Annex E as follows:

E.11 Network Package
PackageID: nt (0x000b)
Version: 1
Extends: None

This package defines properties of network terminations independent of network type. This
includes, but is not limited to, TDM, IP and ATM.

•••••

E.11.4 Statistics
Duration

StatisticsID: dur (0x0001)
Description: provides duration of time the termination has existed or been out of the null

contextbeen in the Context.
Type: double, in milliseconds

•••••

E.12.4 Statistics
•••••

Jitter
StatisticID: jit (0x0007)
Requests the current value of the interarrival jitter on an RTP stream as defined in
RFC 1889. Jitter measures the variation in interarrival time for RTP data packets.

 Type: double

 Possible values: any 64-bit integer
Delay

StatisticID:delay (0x0008)
Requests the current value of packet propagation delay expressed in timestamp units. Same
as average latency.

 Type: double

 Possible values: any 64-bit integer

•••••

E.13.1 Properties
•••••

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 27

Gain Control
PropertyID: gain (0x000a)
Gain control, or usage of signal level adaptation and noise level reduction is used to adapt
the level of the outbound signal. However, it is necessary, for example for modem calls, to
turn off this function. When the value is set to "automatic", the termination serves as an
automatic level control (ALC) with a target level provisioned on the MG and the direction
being outward.
Type: integer
Possible values:
The gain control specifies the gain in decibels (positive or negative), with the maximum
positive integer, 214748647 (0x7fffffff), reserved to represent "automatic" parameter may
either be specified as "automatic" (0xffffffff), or as an explicit number of decibels of gain
(any other integer value). The default value is provisioned in the MG.
Defined in: LocalControlDescriptor
Characteristics: read/write

•••••

11) Appendix I Example call flows
•••••

Change Appendix I as follows:

I.1.1 Programming residential GW analog line terminations for idle behaviour
The following illustrates the API invocations from the Media Gateway Controller and Media
Gateways to get the Terminations in this scenario programmed for idle behaviour. Both the
originating and terminating Media Gateways have idle AnalogLine Terminations programmed to
look for call initiation events (i.e. offhook) by using the Modify Command with the appropriate
parameters. The null Context is used to indicate that the Terminations are not yet involved in a
Context. The ROOT termination is used to indicate the entire MG instead of a termination within
the MG.

In this example, MG1 has the IP address 124.124.124.222, MG2 is 125.125.125.111, and the MGC
is 123.123.123.4. The default Megaco port is 55555 for all three.
1) An MG registers with an MGC using the ServiceChange command:

MG1 to MGC:

MEGACO/1 [124.124.124.222]
Transaction = 9998 {
 Context = - {
 ServiceChange = ROOT {Services {
 Method=Restart, Version=2,
 ServiceChangeAddress=55555, Profile=ResGW/1}
 }
 }
}

2) The MGC sends a reply:

MGC to MG1:
MEGACO/1 [123.123.123.4]:55555
Reply = 9998 {
 Context = - {ServiceChange = ROOT {

28 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

 Services {ServiceChangeAddress=55555, Profile=ResGW/1} } }
}

3) The MGC programs a Termination in the NULL context. The terminationId is A4444, the
streamId is 1, the requestId in the Events descriptor is 2222. The mId is the identifier of the
sender of this message, in this case, it is the IP address and port [123.123.123.4]:55555.
Mode for this stream is set to SendReceive. "al" is the analog line supervision package.
Local and Remote are assumed to be provisioned.

MGC to MG1:
MEGACO/1 2 [123.123.123.4]:55555
Transaction = 9999 {
 Context = - {
 Modify = A4444 {
 Media { Stream = 1 {
 LocalControl {
 Mode = SendReceive,
 tdmc/gain=2, ; in dB,
 tdmc/ec=on
 },
 }
 },
 Events = 2222 {al/of ({strict=state})}
 }
 }
}

The dialplan script could have been loaded into the MG previously. Its function would be to wait
for the OffHook, turn on dialtone and start collecting DTMF digits. However, in this example, we
use the digit map, which is put into place after the offhook is detected (step 5) below).

Note that the embedded EventsDescriptor could have been used to combine steps 3) and 4) with
steps 8) and 9), eliminating steps 6) and 7).
4) The MG1 accepts the Modify with this reply:

MG1 to MGC:
MEGACO/1 2 [124.124.124.222]:55555
Reply = 9999 {
 Context = - {Modify = A4444}
}

5) A similar exchange happens between MG2 and the MGC, resulting in an idle Termination
called A5555.

I.1.2 Collecting originator digits and initiating termination
The following builds upon the previously shown conditions. It illustrates the transactions from the
Media Gateway Controller and originating Media Gateway (MG1) to get the originating
Termination (A4444) through the stages of digit collection required to initiate a connection to the
terminating Media Gateway (MG2).
6) MG1 detects an offhook event from User 1 and reports it to the Media Gateway Controller

via the Notify Command.

MG1 to MGC:
MEGACO/1 2 [124.124.124.222]:55555
Transaction = 10000 {
 Context = - {
 Notify = A4444 {ObservedEvents =2222 {
 19990729T22000000:al/of(init=false)}}
 }
}

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 29

7) And the Notify is acknowledged.

MGC to MG1:
MEGACO/1 2 [123.123.123.4]:55555
Reply = 10000 {
 Context = - {Notify = A4444}
}

8) The MGC Modifies the Termination to play dial tone, to look for digits according to
Dialplan0 and to look for the on-hook event now.

MGC to MG1:
MEGACO/1 2 [123.123.123.4]:55555
Transaction = 10001 {
 Context = - {
 Modify = A4444 {
 Events = 2223 {
 al/on(strict=state), dd/ce {DigitMap=Dialplan0}
 },
 Signals {cg/dt},
 DigitMap= Dialplan0{
(0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)}
 }
 }
}

9) And the Modify is acknowledged.

MG1 to MGC:
MEGACO/1 2 [124.124.124.222]:55555
Reply = 10001 {
 Context = - {Modify = A4444}
}

10) Next, digits are accumulated by MG1 as they are dialed by User 1. Dialtone is stopped
upon detection of the first digit. When an appropriate match is made of collected digits
against the currently programmed Dialplan for A4444, another Notify is sent to the Media
Gateway Controller.

MG1 to MGC:
MEGACO/1 2 [124.124.124.222]:55555
Transaction = 10002 {
 Context = - {
 Notify = A4444 {ObservedEvents =2223 {
 19990729T22010001:dd/ce{ds="916135551212",Meth=UM}}}
 }
}

11) And the Notify is acknowledged.

MGC to MG1:
MEGACO/1 2 [123.123.123.4]:55555
Reply = 10002 {
 Context = - {Notify = A4444}
}

12) The controller then analyses the digits and determines that a connection needs to be made
from MG1 to MG2. Both the TDM termination A4444, and an RTP termination are added
to a new Context in MG1. Mode is ReceiveOnly since Remote descriptor values are not yet
specified. Preferred codecs are in the MGC's preferred order of choice.

MGC to MG1:
MEGACO/1 2 [123.123.123.4]:55555
Transaction = 10003 {

30 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

 Context = $ {
 Add = A4444,
 Add = $ {
 Media {
 Stream = 1 {
 LocalControl {
 Mode = ReceiveOnly,

 nt/jit=40 ; in ms
 },
 Local {
v=0
c=IN IP4 $
m=audio $ RTP/AVP 4
a=ptime:30
v=0
c=IN IP4 $
m=audio $ RTP/AVP 0
 }
 }
 }
 }
 }
}

NOTE − The MGC states its preferred parameter values as a series of SDP blocks in Local. The MG fills in
the Local descriptor in the Reply.
13) MG1 acknowledges the new Termination and fills in the Local IP address and UDP port. It

also makes a choice for the codec based on the MGC preferences in Local. MG1 sets the
RTP port to 2222.

MEGACO/1 2 [124.124.124.222]:55555
Reply = 10003 {
 Context = 2000 {
 Add = A4444,
 Add=A4445{
 Media {
 Stream = 1 {
 Local {
v=0
o=- 2890844526 2890842807 IN IP4 124.124.124.222
s=-
t= 0 0
c=IN IP4 124.124.124.222
m=audio 2222 RTP/AVP 4
a=ptime:30
a=recvonly
 } ; RTP profile for G.723.1 is 4
 }
 }
 }
 }
}

14) The MGC will now associate A5555 with a new Context on MG2, and establish an RTP
Stream (i.e. A5556 will be assigned), SendReceive connection through to the originating
user, User 1. The MGC also sets ring on A5555.

MGC to MG2:
MEGACO/1 2 [123.123.123.4]:55555
Transaction = 50003 {
 Context = $ {
 Add = A5555 { Media {

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 31

 Stream = 1 {
 LocalControl {Mode = SendReceive} }},
 Events=1234{al/of(strict=state)},
 Signals {al/ri}
 },
 Add = $ {Media {
 Stream = 1 {
 LocalControl {
 Mode = SendReceive,
 nt/jit=40 ; in ms
 },
 Local {
v=0
c=IN IP4 $
m=audio $ RTP/AVP 4
a=ptime:30
 },
 Remote {
v=0
c=IN IP4 124.124.124.222
m=audio 2222 RTP/AVP 4
a=ptime:30
 } ; RTP profile for G.723.1 is 4
 }
 }
 }
 }
}

15) This is acknowledged. The stream port number is different from the control port number. In
this case it is 1111 (in SDP).

MG2 to MGC:
MEGACO/1 2 [125.125.125.111]:55555
Reply = 50003 {
 Context = 5000 {
 Add = A5555,
 Add = A5556{
 Media {
 Stream = 1 {
 Local {
v=0

o=- 7736844526 7736842807 IN IP4 125.125.125.111
s=-
t= 0 0
c=IN IP4 125.125.125.111
m=audio 1111 RTP/AVP 4
}
 } ; RTP profile for G.723.1 is 4
 }
 }
 }
}

16) The above IPAddr and UDPport need to be given to MG1 now.

MGC to MG1:
MEGACO/1 2 [123.123.123.4]:55555
Transaction = 10005 {
 Context = 2000 {
 Modify = A4444 {
 Signals {cg/rt}
 },

32 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

 Modify = A4445 {
 Media {
 Stream = 1 {
 Remote {
v=0

o=- 7736844526 7736842807 IN IP4 125.125.125.111
s=-
t= 0 0
c=IN IP4 125.125.125.111
m=audio 1111 RTP/AVP 4
 }
 } ; RTP profile for G.723.1 is 4
 }
 }
 }
}

MG1 to MGC:
MEGACO/1 2 [124.124.124.222]:55555
Reply = 10005 {
 Context = 2000 {Modify = A4444, Modify = A4445}
}

17) The two gateways are now connected and User 1 hears the RingBack. The MG2 now waits
until User2 picks up the receiver and then the two-way call is established.

From MG2 to MGC:

MEGACO/1 2 [125.125.125.111]:55555
Transaction = 50005 {
 Context = 5000 {
 Notify = A5555 {ObservedEvents =1234 {
 19990729T22020002:al/of(init=false)}}
 }
}

From MGC to MG2:

MEGACO/1 2 [123.123.123.4]:55555
Reply = 50005 {
 Context = - {Notify = A5555}
}

From MGC to MG2:

MEGACO/1 2 [123.123.123.4]:55555
Transaction = 50006 {
 Context = 5000 {
 Modify = A5555 {
 Events = 1235 {al/on(strict=state)},
 Signals { } ; to turn off ringing
 }
 }
}

From MG2 to MGC:

MEGACO/1 2 [125.125.125.111]:55555
Reply = 50006 {
 Context = 5000 {Modify = A4445}
}

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 33

18) Change mode on MG1 to SendReceive, and stop the ringback.

MGC to MG1:
MEGACO/1 2 [123.123.123.4]:55555
Transaction = 10006 {
 Context = 2000 {
 Modify = A4445 {
 Media {
 Stream = 1 {
 LocalControl {
 Mode=SendReceive
 }
 }
 }
 },
 Modify = A4444 {
 Signals { }
 }
 }
}

from MG1 to MGC:
MEGACO/1 2 [124.124.124.222]:55555
Reply = 10006 {
 Context = 2000 {Modify = A4445, Modify = A4444}}

19) The MGC decides to Audit the RTP termination on MG2.

MEGACO/1 2 [123.123.123.4]:55555
Transaction = 50007 {
 Context = - {AuditValue = A5556{
 Audit{Media, DigitMap, Events, Signals, Packages, Statistics }}
 }
}

20) The MG2 replies.

MEGACO/1 2 [125.125.125.111]:55555
Reply = 50007 {
 Context = - {
AuditValue = A5556 {
 Media {
 TerminationState { ServiceStates = InService,
 Buffer = OFF },
 Stream = 1 {
 LocalControl { Mode = SendReceive,
 nt/jit=40 },
 Local {
v=0

o=- 7736844526 7736842807 IN IP4 125.125.125.111
s=-
t= 0 0
c=IN IP4 125.125.125.111
m=audio 1111 RTP/AVP 4
a=ptime:30
 },
 Remote {
v=0

o=- 2890844526 2890842807 IN IP4 124.124.124.222
s=-
t= 0 0

34 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004)

c=IN IP4 124.124.124.222
m=audio 2222 RTP/AVP 4
a=ptime:30
 } } },
 Events,
 Signals,
 DigitMap,
 Packages {nt-1, rtp-1},
 Statistics { rtp/ps=1200, ; packets sent
 nt/os=62300, ; octets sent
 rtp/pr=700, ; packets received
 nt/or=45100, ; octets received
 rtp/pl=0.2, ; % packet loss
 rtp/jit=20,
 rtp/delay=40 } ; avg latency
 }
 }
}

21) When the MGC receives an onhook signal from one of the MGs, it brings down the call. In
this example, the user at MG2 hangs up first.

From MG2 to MGC:

MEGACO/1 2 [125.125.125.111]:55555
Transaction = 50008 {
 Context = 5000 {
 Notify = A5555 {ObservedEvents =1235 {
 19990729T24020002:al/on(init=false)}
 }
 }
}

From MGC to MG2:

MEGACO/1 2 [123.123.123.4]:55555
Reply = 50008 {
 Context = - {Notify = A5555}
}

22) The MGC now sends both MGs a Subtract to take down the call. Only the subtracts to MG2
are shown here. Each termination has its own set of statistics that it gathers. An MGC may
not need to request both to be returned. A5555 is a physical termination, and A5556 is an
RTP termination.

From MGC to MG2:

MEGACO/1 2 [123.123.123.4]:55555
Transaction = 50009 {
 Context = 5000 {
 Subtract = A5555 {Audit{Statistics}},
 Subtract = A5556 {Audit{Statistics}}
 }
}

 ITU-T Rec. H.248.1 v2 (2002)/Cor.1 (03/2004) 35

From MG2 to MGC:

MEGACO/1 2 [125.125.125.111]:55555
Reply = 50009 {
 Context = 5000 {
 Subtract = A5555 {
 Statistics {
 nt/os=45123, ; Octets Sent

 nt/or=45123, ; Octets Received
 nt/dur=40000 ; in milliseconds
 }
 },
 Subtract = A5556 {
 Statistics {
 rtp/ps=1245, ; packets sent
 nt/os=62345, ; octets sent
 rtp/pr=780, ; packets received
 nt/or=45123, ; octets received
 rtp/pl=10, ; % packets lost
 rtp/jit=27,
 rtp/delay=48, ; average latency

 nt/dur=38000 ; in millisec
 }
 }
 }
}

23) The MGC now sets up both MG1 and MG2 to be ready to detect the next off-hook event.
See step 1). Note that this could be the default state of a termination in the null context, and
if this were the case, no message need be sent from the MGC to the MG. Once a
termination returns to the null context, it goes back to the default termination values for that
termination.

Printed in Switzerland
Geneva, 2004

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure, Internet protocol aspects and Next Generation Networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. H.248.1 v2 Corrigendum 1 (03/2004) Gateway control protocol: Version 2 Corrigendum 1
	Summary
	Source
	FOREWORD
	CONTENTS
	1) Clause 2.1
	2) Clause 6.2
	3) Clause 6.3
	4) Clause 7, Commands
	5) Clause 8
	6) Clause 11.3
	7) Clause 12
	8) Annex B Text encoding of the protocol
	9) Annex C Tags for media stream properties
	10) Annex E Basic packages
	11) Appendix I Example call flows

