| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.667

TELECOMMUNICATION (09/2004)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI networking and system aspects — Naming,
Addressing and Registration

Information technology — Open Systems
Interconnection — Procedures for the
operation of OSI Registration Authorities:
Generation and registration of Universally
Unique Identifiers (UUIDs) and their use as
ASN.1 object identifier components

ITU-T Recommendation X.667

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
IP-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSINETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING
TELECOMMUNICATION SECURITY

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999
X.1000—

For further details, please refer to the list of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 9834-8
ITU-T RECOMMENDATION X.667

Information technology — Open Systems Interconnection — Procedures for the
operation of OSI Registration Authorities: Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as
ASN.1 object identifier components

Summary

This Recommendation | International Standard specifies procedures for the generation and registration of UUIDs and
their use as ASN.1 object identifier (OID) components under the arc {joint-iso-itu-t uuid(25)}.

Source

ITU-T Recommendation X.667 was approved on 13 September 2004 by ITU-T Study Group 17 (2001-2004) under the
ITU-T Recommendation A.8 procedure. An identical text is also published as ISO/IEC 9834-8.

ITU-T Rec. X.667 (09/2004) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2005

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il ITU-T Rec. X.667 (09/2004)

CONTENTS

Page

1 N Tee] o TSP P ST SRPST 1
2 NOTMALIVE RETETEICES ...ttt eb ettt st be et enees 1
2.1 Identical Recommendations | International Standardsc..cocceceevierininininieieniecceee, 1

2.2 Other NOIMAIVE TETETEIICESc..erueeuieuiitiieriiiteeteeicet ettt ettt st b e s ebe ettt see b b eaeeneeneen 1

3 Terms and DETINILIONScouiviriiririiiiet ettt ettt ettt ettt et be bt et et et et e s b saeebeeseennenaens 2
70 N U o 5 To 3 s USRS 2

3.2 RegiStration QULHOTITIEScoouieiiiieriierie ettt ettt st et este et et e e st e bt e beenteemeesseesneenseeneeeneeenes 2

TR T [07§ 155 0 101U 2

34 Additional defINItIONS.co.eiuieeieieieiee ettt ettt ettt e et e st e s bttt ebe e st e st e s et e besaeebeeneenneeens 2

4 AADDTEVIALIONS ...ttt ettt ettt ettt ettt e st et et e ebe et e e b e es e eseemeen s e beeeeebeeaeeseentensensens e beabeeeeebeeneeneeneenean 3
INOTALIOM ...ttt ettt et b bbbt e bt e st et e st e b e eb e eh e eaeea e em s e e e b e ebeeh e eb e e bt eb b ent et e beneeebeeaeene et enten 3

6 UUID structure and rePreSENTATION.cveiveruieriieteeteeeesteeteeteetesteesseessesaessaesseesseessesssesseessessseessesssessaessees 3
6.1 UUID fIeld SIIUCTUTIEccveeueeiieniiiieientieierieett ettt ettt ettt st eb et ebt ettt st sb s bbbt eseenneaens 3

6.2 BINAry rEPIESENLALION ...c.vievieieeeieeiiertieieeteeteettessteteeseestesseesseesseesseenseessesseesseenseensesssesssesseensesnsesnsesnes 4

6.3 Representation as a Single MNtEZET VAIUE..........ceeriieiiieeiieiecierieeie ettt eeae e ese e sneeees 4

6.4 Hexadecimal TePIeSENLATIONecueereieiieiieteeiteeteenteeieetesteseesseeseesseessesseenseenseensesnsessaesseenseensesnsennes 4

6.5 Formal syntax of the hexadecimal representationceeceveeerierieniesiieeeeee e 4

7 Use of @ UUID t0 fOrm an OIDc.ooiiiuiiiiieiieieeiesie ettt ettt ettt et be e e s eesneesneesseeneeenneens 5
Use of @ UUID t0 form @ URNooiiiiiiiieiee ettt ettt e ettt ae e aeeaeesaeesseeneeenneens 5

Rules for comparison and ordering of UUIDS.........ccciieieiiriineie ettt 5

10 VAlIAALION ...ttt et ettt b e bt bt e a e st e e e e bbbt e bt e aeeb s et et e bttt ebeeaeent et enten 6
11 TRE VATTANTE DIES ..c.vetiitiiieeiieititet ettt ettt b ettt b e bt b e bt et e st et e s b saeebeeseeaneneens 6
12 Use of UUID fields and tranSmission DYLE OTAET..........c.eecuieiirieriieiieieeiesiiesieeieeie e sneseeeneeenseens 6
|00 B € 1<) 1 T | USSP 6

L < 13 10 s SRR 7

000 g 1 V' o OSSR 7

| S O a1 QN 1< e 13153 1 T TSR 8

L2.5 NOAE ittt ettt et e h e e b e s bt e bt ettt eae e e h e e nh e et et ee b e e hee e bt e bt e be e b e eaeenaee 8

13 Setting the fields of a time-based UUID............ccoiiiiiiiieee ettt 8
14 Setting the fields of a name-based UUIDcccocouiiiiiiiniieiiieiieeeceese ettt sre e esseessessaesnees 9
15 Setting the fields of a random-number-based UUIDcccceoiiiiiiininininiiieeeee e 9
16 Registration of UUIDs and their use as OID COMPONENLS..........ccueeveeiereieriieriieieeiesaeseeseeesseeseesesseesseenseens 10
16.1 The ASN.L OID trE ...ocueeeuieiieitieite ettt ettt et et e et e es e s et e steete e et saeeeaeeseeenteenteenteeneeeseeeseeseenseeneeenes 10

16.2 Appointment of registration aUtROTILIESc.eeouiriiiieiieie et 10

L T TSR 11

16.4 RegiStration PrOCEAUIES.cooveiuieitieitiete et ette et et et eteeeteseeeste e bt eeeeaeeeseestee st enteeneeeneeeseeseenseenseeneeenes 11

16.4.1 Application for registration of @ UUIDcccooiiiiiiiiiiieiieeeeee et 11

16.4.2 CONTIIMALION PIOCESS ...veeuveemteeureritertienttenteete et steesteesteeteenteeete st tesbeenbeenbesatesatesaeesbeeneeenseenteans 11

16.4.3 Content Of aPPlICATIONccviiriieiiieeiee ettt rte et e et eesteeesbeeebeesbeeeseessbeeesseesnseesnseens 11

16.5 Maintenance of @ Web-based reZISEToieiiriiriii ittt 11
Annex A — Algorithms for the efficient generation of time-based UUIDS...........ccceovveviieiiiienienieiecie e 12
Y N 27 1 (o1 (o 4 11 113 o TSRS 12

A2 Reading StADIE STOTAZE......ecuiiiieieeiieiietiete e ste st et esteete st e ereesseebeesseessesssesseessaeseesseessesseesseenseesseens 12

A3 System ClOCK TESOIULIONc..ieuiieiiieiieciieciieieeie ettt et e e e tessaesseesseeseensesnnesseenseenseens 12

YN ANV 4 1314 Te ey P21 o) (I) V(USSP 13

A5 Sharing State ACIOSS PIOCESSES.....ueeurerrrerrirrrerresresseerseesseasessresseasseesseassesssesseesseessesssesssesssesseesseessesnsenns 13
Annex B — Properties 0f n1ame-based UUIDSc.cccierieiiieieeiesieieeie ettt see st eseentessaessaesseenseensesnsenens 14
Annex C — Generation of random NUMDETS 1N @ SYSTEIMeeueeruieitieriieieeiestieeteerte e eee et et es e eteeeeeeseesneeseeneeeneeenes 15

ITU-T Rec. X.667 (09/2004) il

Annex D — Sample IMPIeMENTATION.........ccuiiruiiiiiieiiecte et ettt e eteeseeteeteeaeeteesteebeesseessesssesssesseessesssesseesseessessnenees
DLl FilesS PrOVIAEU....c.uieiiiiieiieieeit ettt ettt ettt ettt st e s teebeesbeeseeesaesseessaensaessesssesseenseensennsensns
DR N i (Sl eTo]) Vo ol o 1 1 (<SPPSR
D3 The BUIA T fIlE ittt sttt ettt et ebe et nae e
D4 The BULA . C Il ittt ettt ettt et be et est et et e beseeebesaeeneeneeneas
D.5 The sy SAEP . fIl@ i ettt e te e et e e be e e b e e e beeeabeesabeenarae s
D6 The SYSAEP . CHIlE ittt ettt et e e te e beesbeesaesreesaeesseenbeernens
D.7 The ULeST . C 10 oottt et ettt e be st ebe et enaes
D.8 Sample OUIPUL OF UL ESE wiouiiiiiiiiiiiciecteeeeetece ettt et s e te e teesbeesaeeraesreesreeseenneans
D.9 SOmeE NAME SPACE IDISeviiiiiiieiiiiiiieeiee ettt ettt e sat et e st e et e e bt e e ate e baeeareebaeenaneenns

BIBLIOGRAPHY ..ottt sttt h e e h e eh et e e stk e bt e bt ebt e st ea b e s et e b e sbeebeeseententenees

v ITU-T Rec. X.667 (09/2004)

Introduction

This Recommendation | International Standard standardizes the generation, and optional registration, of Universally
Unique Identifiers (UUIDs).

UUIDs are an octet string of 16 octets (128 bits). The 16 octets can be interpreted as an unsigned integer encoding, and
the resulting integer value can be used as an arc of the OID tree under the arc {joint-iso-itu-t uuid(25)}. This
enables users to generate OIDs without any registration procedure.

UUIDs are also known as Globally Unique Identifiers (GUIDs), but this term is not used in this Recommendation |
International Standard. UUIDs were originally used in the Network Computing System (NCS) [1] and later in the Open
Software Foundation's Distributed Computing Environment (DCE) [2]. ISO/IEC 11578 [3] contains a short definition
of some (but not all) of the UUID formats specified in this Recommendation | International Standard. The specification
in this Recommendation | International Standard is consistent with all these earlier specifications.

UUIDs forming a component of an OID are represented in ASN.1 value notation as the decimal representation of their
integer value, but for all other display purposes it is more usual to represent them with hexadecimal digits with a hyphen
separating the different fields within the 16-octet UUID. This representation is defined in this Recommendation |
International Standard.

If generated according to one of the mechanisms defined in this Recommendation | International Standard, a UUID is
either guaranteed to be different from all other UUIDs generated before 3603 A.D., or is extremely likely to be different
(depending on the mechanism chosen).

No centralized authority is required to administer UUIDs but central registration of self-generated UUIDs, and
automatic generation (using the algorithm defined in this Recommendation | International Standard) and registration of
UUIDs, is provided. Centrally generated UUIDs are guaranteed to be different from all other UUIDs centrally
generated. Registered UUIDs are guaranteed to be different from all other registered UUIDs.

A UUID can be used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably
identifying very persistent objects across a network, particularly (but not necessarily) as part of an ASN.1 object
identifier (OID) value, or in a Uniform Resource Name (URN).

The UUID generation algorithm specified in this Recommendation | International Standard supports very high
allocation rates: 10 million per second per machine if necessary, so UUIDs can also be used as transaction IDs. An
informative annex provides a program in the C language that will generate UUIDs in accordance with this
Recommendation | International Standard.

Three algorithms are specified for the generation of unique UUIDs, using different mechanisms to ensure uniqueness.
These produce different versions of a UUID.

The first (and most common) mechanism produces the so-called time-based version. These UUIDs can be generated at
the rate of 10 million per second. For UUIDs generated within a single computer system, a 60-bit time-stamp (used as a
Clock value) with a granularity of 100 nanoseconds, based on Coordinated Universal Time (UTC) is used to guarantee
uniqueness over a period of approximately 1600 years. For UUIDs generated with the same time-stamp by different
systems, uniqueness is obtained by use of 48-bit Media Access Control (MAC) addresses, specified in ISO/IEC 8802-3
(this is used as a Node value). (These addresses are usually already available on most networked systems, but are
otherwise obtainable from the IEEE Registration Authority for MAC addresses — see [4].) Alternative ways of
generating Clock and Node values are specified for the time-based version if UTC time is not available on a system, or
if there is no MAC address available.

The second mechanism produces a single UUID that is a name-based version, where cryptographic hashing is used to
produce the 128-bit UUID value from a globally unambiguous (text) name.

The third mechanism uses pseudo-random or truly random number generation to produce most of the bits in the 128-bit
value.

Clause 5 specifies the notation used for octet-order and bit-order naming, and for specification of transmission order.

Clause 6 specifies the structure of a UUID and the representation of it in binary, hexadecimal, or as a single integer
value.

Clauses 7 and 8 specify the use of a UUID in an OID or a URN respectively.

Clause 9 specifies rules for comparing UUIDs to test for equality or to provide an ordering relation between two
UUIDs.

Clause 10 discusses the possibility of checking the validity of a UUID. In general, UUIDs have little redundancy, and
there is little scope for checking their validity. However, if a UUID is accepted for registration, then it is guaranteed to
be different from all other registered UUIDs.

ITU-T Rec. X.667 (09/2004) v

Clause 11 describes the historical use of some bits in the UUID to define different variants of the UUID format, and
specifies the value of these bits for UUIDs defined in accordance with this Recommendation | International Standard.

Clause 12 specifies the use of the fields of a UUID in the different versions that are defined (time-based, name-based,
and random-number based versions). It also defines the transmission byte order.

Clause 13 specifies the setting of the fields of a time-based UUID.
Clause 14 specifies the setting of the fields of a name-based UUID.
Clause 15 specifies the setting of the fields of a random-number-based UUID.

Clause 16 is concerned with the operation of a Registration Authority for UUIDs, enabling their central registration and
providing uniqueness guarantees.

All annexes are informative.
Annex A describes various algorithms for the efficient generation of time-based UUIDs.

Annex B discusses the properties that a name-based UUID should have, affecting the selection of name spaces for use
in generating such UUIDs.

Annex C provides guidance on mechanisms that can be used to generate random numbers in a computer system.

Annex D contains a complete program in the C programming language that can be used to generate UUIDs.

vi ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology — Open Systems Interconnection — Procedures for the
operation of OSI Registration Authorities: Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as
ASN.1 object identifier components

1 Scope

This Recommendation | International Standard specifies the format and generation rules that enable users to produce
128-bit identifiers that are either guaranteed to be globally unique, or are globally unique with a high probability.

The UUIDs generated in conformance with this Recommendation | International Standard are suitable either for
transient use, with generation of a new UUID every 100 nanoseconds, or as persistent identifiers.

This Recommendation | International Standard is derived from earlier non-standard specifications of UUIDs and their
generation, and is technically identical to those earlier specifications.

This Recommendation | International Standard specifies the procedures for the operation of a Web-based Registration
Authority for UUIDs.

This Recommendation | International Standard also specifies and allows the use of UUIDs (registered or not registered)
as OID components under the arc {joint-iso-itu-t uuid(25) }. This enables users to generate OIDs without any
registration procedures.

This Recommendation | International Standard also specifies and allows the use of UUIDs (registered or not registered)
to form a URN.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

— ITU-T Recommendation X.660 (2004) | ISO/IEC 9834-1:2005, Information technology — Open Systems
Interconnection — Procedures for the operation of OSI Registration Authorities: General procedures and
top arcs of the ASN.1 Object Identifier tree.

— ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

2.2 Other normative references

— ISO/IEC 8802-3:2000, Information technology — Telecommunications and information exchange
between systems — Local and metropolitan area networks — Specific requirements — Part 3. Carrier
sense multiple access with collision detection (CSMA/CD) access method and physical layer
specifications.

— ISO/IEC 10118-3:2004, Information technology — Security techniques — Hash functions — Part 3:
Dedicated hash-functions.

— ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).

ITU-T Rec. X.667 (09/2004) 1

http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31002&ICS1=35&ICS2=110&ICS3=

ISO/IEC 9834-8:2005 (E)
— FIPS PUB 180-2:2002, Federal Information Processing Standards Publication, Secure Hash Standard
(SHS).
— IETF RFC 1321 (1992), The MD5 Message-Digest Algorithm.
— IETF RFC 2141 (1997), URN Syntax.

3 Terms and definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 ASN.1 notation

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1:

a) Coordinated Universal Time (UTC);
b) (ASN.I) object identifier.

3.2 Registration authorities

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.660 |
ISO/IEC 9834-1:

a) object identifier tree (or OID tree);
b) registration;
c) registration authority;

d) registration procedures.

3.3 Network terms

This Recommendation | International Standard uses the following term defined in ISO/IEC 8802-3:
— MAC address.

34 Additional definitions

3441 cryptographic-quality random-number: A random number or pseudo-random number generated by a
mechanism, which ensures sufficient spread of repeatedly-generated values to be acceptable for use in cryptographic
work (and is used in such work).

3.4.2 name-based version: A UUID that is generated using cryptographic hashing of a name space name and a
name in that name space.

343 name space: A system for generating names of objects that ensures unambiguous identification within that
name space.

NOTE — Examples of name spaces are the network domain name system, URNs, OIDs, Directory distinguished names (see [5]),
and reserved words in a programming language.

3.4.4 random-number-based version: A UUID that is generated using a random or pseudo-random number.

3.4.5 standard UUID variant: The variant of the possible UUID formats that is specified by this Recommendation
| International Standard.
NOTE - Historically, there have been other specifications of UUID formats that differ from the variant specified in this
Recommendation | International Standard. UUIDs generated according to all these variant formats are all distinct.

3.4.6 time-based version: A UUID in which uniqueness is obtained by the use of a MAC address to identify a
system, and a Clock value based on the current UTC time.

3.4.7 Universally Unique Identifier (UUID): A 128-bit value generated in accordance with this Recommendation
| International Standard, or in accordance with some historical specifications, and providing unique values between
systems and over time (see also 3.4.5).

2 ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
GUID Globally Unique Identifier
IEEE Institute of Electrical and Electronics Engineers, Inc.
MAC Media Access Control
MDS5 Message Digest algorithm 5
OID ASN.1 Object Identifier
RA Registration Authority
SHA-1 Secure Hash Algorithm 1
URL Uniform Resource Locator
URN Uniform Resource Name
UTC Coordinated Universal Time
UUID Universally Unique Identifier

5 Notation

51 This Recommendation | International Standard specifies a sequence of octets for a UUID using the terms first
and last. The first octet is also called "octet 15" and the last octet "octet 0".

5.2 The bits within a UUID are also numbered as "bit 127" to "bit 0", with bit 127 as the most significant bit of
octet 15 and bit 0 as the least significant bit of octet 0.

53 When figures and tables are used in this Recommendation | International Standard, the most significant octet
(and the most significant bit) are displayed on the left of the page. This corresponds with a transmission order of octets
in which the left-most octets are transmitted first.

5.4 A number of values used in this Specification are expressed as the value of an unsigned integer of a given bit-
length (N say). The bits of the N-bit unsigned integer value are numbered "bit N-1" to "bit 0", with bit N-1 as the most
significant bit and bit 0 as the least significant bit.

55 These notations are used solely for the purposes of this Specification. Representations in computer memory
are not standardized, and depend on the system architecture.

6 UUID structure and representation

6.1 UUID field structure

6.1.1 A UUID is specified as an ordered sequence of six fields. A UUID is specified in terms of the concatenation
of these UUID fields. The UUID fields are named:

a) the "TimeLow" field,;
b) the "TimeMid" field;
c) the "VersionAndTimeHigh" field;
d) the "VariantAndClockSeqHigh" field,
e) the "ClockSeqLow" field;
f) the "Node" field.
6.1.2 The UUID fields are defined to have a significance in the order listed above, with "TimeLow" as the most

significant field (bit 31 of "TimeLow" is bit 127 of the UUID), and "Node" as the least significant field (bit 0 of "Node"
is bit 0 of the UUID).

6.1.3 The contents of these UUID fields are specified in terms of a Version, Variant, Time, Clock Sequence, and
Node unsigned integer value (each with a fixed bit-size). The setting of these values is specified in clause 12 and their
mapping to the above UUID fields is specified in 12.1.

ITU-T Rec. X.667 (09/2004) 3

ISO/TIEC 9834-8:2005 (E)

NOTE — As part of the names of some of the UUID fields (for example, TimeLow, TimeMid, and TimeHigh) imply, the
sequential order of the bits in a UUID (bit 127 to bit 0) that derive from a particular unsigned integer value (for example, from
bits 59 to 0 of the Time value) is not the same as the sequential order of the bits in that unsigned integer value. This is for
historical reasons.

6.2 Binary representation
6.2.1 A UUID shall be represented in binary as 16 octets formed by the concatenation of the unsigned integer fixed-
length encoding of each of its fields into one or more octets. The number of octets to be used for each field shall be:

a) the "TimeLow" field: four octets;

b) the "TimeMid" field: two octets;

c) the "VersionAndTimeHigh" field: two octets;

d) the "VariantAndClockSeqHigh" field: one octet;

e) the "ClockSeqLow" field: one octet;

f) the "Node" field: six octets.

NOTE — This order of UUID fields is the usual representation within a computer system, and in the hexadecimal text
representation (see 6.4).

6.2.2 The most significant bit of the unsigned integer encoding of each UUID field shall be the most significant bit
of its first octet (octet N, the most significant octet), and the least significant bit of the unsigned integer encoding shall
be the least significant bit of its last octet (octet 0, the least significant bit).

6.2.3 The UUID fields shall be concatenated in the order of their significance (see 6.1.2) with the most significant
field first and the least significant field last.

6.3 Representation as a single integer value

A UUID can be represented as a single integer value. To obtain the single integer value of the UUID, the 16 octets of
the binary representation shall be treated as an unsigned integer encoding with the most significant bit of the integer
encoding as the most significant bit (bit 7) of the first of the sixteen octets (octet 15) and the least significant bit as the
least significant bit (bit 0) of the last of the sixteen octets (octet 0).

NOTE - The single integer value is used when the UUID forms part of an OID as specified in clause 7.

6.4 Hexadecimal representation

For the hexadecimal format, the octets of the binary format shall be represented by a string of hexadecimal digits, using
two hexadecimal digits for each octet of the binary format, the first being the value of the four high-order bits of
octet 15, the second being the value of the four low-order bits of octet 15, and so on, with the last being the value of the
low-order bits of octet 0 (see 6.5). A HYPHEN-MINUS (45) character (see ISO/IEC 10646) shall be inserted between
the hexadecimal representations of each pair of adjacent fields, except between the "VariantAndClockSeqHigh" field
and the "ClockSeqLow" field (see the example in clause 8).

6.5 Formal syntax of the hexadecimal representation

6.5.1 The formal definition of the UUID hexadecimal representation syntax is specified using the extended BNF
notation defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 5, except that there shall be no white-space between the
lexical items.

6.5.2 The "hexdigit" lexical item is used in the BNF specification and is defined as follows:
Name of lexical item — hexdigit

A "hexdigit" shall consist of exactly one of the characters:
ABCDEFabcde£f 012345617829

6.5.3 The hexadecimal representation of a UUID shall be the production "UUID":

UUID ::=
TimeLow
"-" TimeMid
"-" VersionAndTimeHigh
"-" VariantAndClockSeqHigh ClockSeqLow
"n_mn Node

4 ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

TimeLow ::=
HexOctet HexOctet HexOctet HexOctet

TimeMid ::=
HexOctet HexOctet

VersionAndTimeHigh ::=
HexOctet HexOctet

VariantAndClockSeqHigh ::=
HexOctet

ClockSeqLow ::=
HexOctet

Node ::=
HexOctet HexOctet HexOctet HexOctet HexOctet HexOctet

HexOctet ::=
hexdigit hexdigit
6.5.4 Software generating the hexadecimal representation of a UUID shall not use upper case letters.

NOTE - It is recommended that the hexadecimal representation used in all human-readable formats be restricted to lower-case
letters. Software processing this representation is, however, required to accept both upper and lower case letters as specified
in 6.5.2.

7 Use of a UUID to form an OID
An OID formed using a UUID shall be:
{joint-iso-itu-t uuid(25) <uuid-single-integer-value>}

where <uuid-single-integer-value> is the single integer value of the UUID specified in 6.3.

NOTE - Clause 16 provides further details about the use of a UUID to form an OID, and 16.1.3 provides important guidance on
the uniqueness of OIDs generated in this way.

8 Use of a UUID to form a URN

A URN (see IETF RFC 2141) formed using a UUID shall be the string "urn:uuid:" followed by the hexadecimal
representation of a UUID defined in 6.4.

EXAMPLE — The following is an example of the string representation of a UUID as a URN:

urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

NOTE — An alternative URN format (see [6]) is available, but is not recommended for URNs generated using UUIDs. This
alternative format uses the single integer value of the UUID specified in 6.3, and represents the above example as
"urn:0id:2.25.329800735698586629295641978511506172918".

9 Rules for comparison and ordering of UUIDs

9.1 To compare a pair of UUIDs, the values of the corresponding fields (see 6.1) of each UUID are compared, in
order of significance (see 6.1.2). Two UUIDs are equal if and only if all the corresponding fields are equal.

NOTE 1 — This algorithm for comparing two UUIDs is equivalent to the comparison of the values of the single integer
representations specified in 6.3.

NOTE 2 — This comparison uses the physical fields specified in 6.1.1 not the values listed in 6.1.3 and specified in clause 12
(Time, Clock Sequence, Variant, Version, and Node).

9.2 A UUID is considered greater than another UUID if it has a larger value for the most significant field in
which they differ.

9.3 In a lexicographical ordering of the hexadecimal representation of UUIDs (see 6.4), a larger UUID shall
follow a smaller UUID.

ITU-T Rec. X.667 (09/2004) 5

ISO/TIEC 9834-8:2005 (E)

10 Validation

Apart from determining if the variant bits are set correctly, and that the Time value used in a time-based UUID is in the
future (and therefore not yet assignable), there is no mechanism for determining if a UUID is valid in any real sense, as
all possible values can otherwise occur.

11 The variant bits

11.1 The variant bits are the most significant three bits (bits 7, 6, and 5) of octet 7, which is the most significant
octet of the "VariantAndClockSeqHigh" field.

11.2 All UUIDs conforming to this Recommendation | International Standard shall have variant bits with bit 7 of
octet 7 set to 1 and bit 6 of octet 7 set to 0. Bit 5 of octet 7 is the most significant bit of the Clock Sequence and shall be
set in accordance with 12.4.

NOTE - Bit 5 is listed here as a variant bit because its value distinguishes historical formats. Strictly speaking, it is not part of the
variant value for this Recommendation | International Standard, which uses only two bits for the variant.

11.3 Table 1 lists, for information, the use of other values of the variant bits.

Table 1 — Use of the variant bits

Bit7 Bit 6 Bit 5 Description
0 - - Reserved to provide NCS backward compatibility
1 0 - The variant specified in this Recommendation | International Standard
1 1 0 Reserved to provide Microsoft Corporation backward compatibility
1 1 Reserved for future use by this Recommendation | International Standard

12 Use of UUID fields and transmission byte order

12.1 General

12.1.1 Table 2 gives the position and summarizes the use of the various UUID fields in the binary representation.

Table 2 — Position and use of UUID fields

Field Octet # in UUID Description

"TimeLow" 15-12 The low-order bits of the Time value (32 bits)

"TimeMid" 11-10 The middle bits of the Time value (16 bits)

"VersionAndTimeHigh" 9-8 The Version (4 bits) followed by the high-order bits of the Time
value (12 bits)

"VariantAndClockSeqHigh" 7 The Variant bits (2 bits) followed by the high-order bits of the
Clock Sequence (6 bits)

"ClockSeqLow" 6 The low-order bits of the Clock Sequence (8 bits)

"Node" 5-0 The Node (see 12.5) (48 bits)

12.1.2 The position of the UUID fields in the binary representation is illustrated in Figure 1.

Octets 15,11, 7,3 Octets 14, 10, 6, 2 Octets 13,9, 5, 1 Octets 12, 8, 4,0
7 o | 7 o | 7 o | 7 0
First octet "TimeLow"
(Octet 15)
"TimeMid" "VersionAndTimeHigh"
"VariantAndClockSequgh"| "ClockSeqLow" "Node" (first two octets)
Last octet
"Node" (last four octets) < (Octet 0)

Figure 1 — Position of UUID fields in the binary representation

6 ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

12.1.3 It is recommended that the binary representation be used for transmission over a communication mechanism,
with the sixteen octets of the binary representation transmitted as a contiguous set of sixteen bits with the first octet
(octet 15) preceding the last octet (octet 0) in the transmission.

NOTE 1 — The order of the bits within an octet is determined by the communication mechanism specification.

NOTE 2 — The use of sixteen consecutive octets for transmission of a UUID, in the order specified above, is recommended, but
protocol specifications may choose alternative means of transferring a UUID, including fragmentation or transmission of only
portions of the UUID (such as the parts that contribute to the Time value).

12.2 Version

12.2.1 The three alternative means of generating a UUID (time-based, name-based, and random-number-based) are
identified and distinguished by the most significant four bits of the "VersionAndTimeHigh" field (bits 7 to 4 of octet 9
of the UUID). UUIDs generated using these different mechanisms are called "different UUID versions".
NOTE — Describing this as a "different UUID version" is slightly misleading, but the name is used for historical reasons. There is
no concept of a traditional "version number" for UUID formats, where new versions may be defined as a revision of this

Recommendation | International Standard. Any new UUID format needed in the future would be identified by a different value of
the variant bits.

12.2.2 Table 3 lists currently defined "UUID versions", using the first four bits of the "VersionAndTimeHigh" field
(bits 7 to 4 of octet 9 of the UUID). It also assigns an integer "Version" value to each combination of bits.

NOTE — A version value of 2 is not used, for compatibility with historical definitions of the UUID. Version values of 0 and 6 to
15 are reserved for future use.

Table 3 — Currently defined UUID versions

Bit 7 Bit 6 Bit 5 Bit 4 Version Description
value
0 0 0 1 1 The time-based version specified in this Recommendation | International
Standard (see clause 13)
1 0 2 Reserved for DCE Security version, with embedded POSIX UUIDs
1 1 3 The name-based version specified in this Recommendation | International
Standard with MD5 hash (see clause 14)
0 1 0 0 4 The random-number-based version specified in this
Recommendation | International Standard (see clause 15)
0 1 0 1 5 The name-based version specified in this Recommendation | International
Standard with SHA-1 hash (see clause 14)

12.3 Time
12.3.1 Time shall be a 60-bit value.

NOTE — The name "Time" is appropriate for the time-based version of a UUID (version 1), but is also used for the contents of
the corresponding value in the other versions of a UUID (versions 3 and 4).

12.3.2 For the time-based version of a UUID, Time shall be a count of the 100 nanosecond intervals of Coordinated
Universal Time (UTC) since the midnight at the start of the 15 October 1582 (the date of the Gregorian reform to the
Christian calendar).

NOTE 1 — Before the establishment of the Bureau International de I'Heure (International Time Bureau), every minute contained

precisely sixty seconds. Since then, leap seconds have occurred when necessary, increasing (or potentially reducing) the number
of seconds per year.

NOTE 2 — Portable systems may have problems determining UTC time, as they are often locked into the local time of their home
base. Provided that they continue using the local time of their home base, or change the Clock Sequence value (see 12.4), the
UUIDs that they generate will still be unique.

NOTE 3 — For systems that do not have access to broadcast time signals, a system clock recording local time can be used with a
time differential added, provided that no UUIDs are generated in the period when a change from daylight saving time occurs, or a
change in the Clock Sequence value (see 12.4) is made.

12.3.3 For the name-based version of a UUID, this shall be a 60-bit value constructed from a globally unique name
as specified in clause 14.

NOTE - Examples of a globally unique name are OIDs, URNSs, and Directory distinguished names (see [5]).

12.3.4 For the random-number-based version of a UUID, this shall be a randomly or pseudo-randomly generated
60-bit value as specified in clause 15.

ITU-T Rec. X.667 (09/2004) 7

ISO/TIEC 9834-8:2005 (E)

124 Clock sequence

12.4.1 For the time-based version of the UUID, the Clock Sequence is used to help avoid duplicates that could arise
when the value of Time is set backwards or if the Node value is changed.
NOTE — The name "Clock Sequence" is appropriate for the time-based version of a UUID, but is also used for the contents of the
corresponding value in the name-based and random-number-based versions of a UUID.

12.4.2 If the Time value is set backwards, or might have been set backwards (for example, while the system was

powered off), then the UUID generator cannot know whether a UUID has already been generated with Time values

larger than the value to which the Time is now set. In such situations, the Clock Sequence value shall be changed.
NOTE - If the previous value of the Clock Sequence is known, it can be just incremented; otherwise it should be set to a
cryptographic-quality random or pseudo-random value.

12.4.3 Similarly, if the Node value changes (for example, because a network card has been moved between
machines), the Clock Sequence value shall be changed.

12.4.4 The Clock Sequence shall be originally (that is, once in the lifetime of a system producing UUIDs) initialized
to a random number that is not derived from the Node value.
NOTE — This is in order to minimize the correlation across systems, providing maximum protection against MAC addresses that
may move or switch from system to system rapidly.

12.4.5 For the name-based version of the UUID, the Clock Sequence shall be a 14-bit value constructed from a name
as specified in clause 14.

12.4.6 For the random-number-based version of the UUID, the Clock Sequence shall be a randomly or pseudo-
randomly generated 14-bit value as specified in clause 15.

12.5 Node

12.5.1 For the time-based version of a UUID, the Node value shall consist of a MAC address (see ISO/IEC 8802-3),
usually the host address of some network interface.

12.5.2 For systems with multiple MAC addresses, any available address can be used except a multicast address.
Octet 5 of the UUID (the first octet of the "Node") shall be set to the first octet of the MAC address that is transmitted
by an ISO/IEC 8802-3-conformant system.

NOTE 1 — This octet contains the global/local bit and the unicast/multicast bit. It is required that the unicast/multicast bit be set to
unicast in order to avoid clashes with addresses generated in accordance with 12.5.3.

NOTE 2 — It is possible to obtain a block of MAC addresses from the MAC address registration authority (see [4]).

12.5.3 For systems with no MAC address, a cryptographic-quality random or pseudo-random number may be used
(see Annex C). The multicast bit shall be set in such addresses.

NOTE - This is to ensure that the generated addresses never conflict with addresses obtained from network cards as specified in
12.5.2.

12.5.4 For a name-based UUID, the Node value shall be a 48-bit value constructed by canonicalization and hashing
from a globally unique name as specified in clause 14.

12.5.5 For a random-number-based UUID, the Node value shall be a randomly or pseudo-randomly generated 48-bit
value as specified in clause 15.

13 Setting the fields of a time-based UUID

The fields of a time-based UUID shall be set as follows:

— Determine the values for the UTC-based Time and the Clock Sequence to be used in the UUID, as
specified in 12.3 and 12.4.

— For the purposes of this algorithm, consider Time to be a 60-bit unsigned integer and the Clock Sequence
to be a 14-bit unsigned integer. Sequentially number the bits in each value, with zero for the least
significant bit.

— Set the "TimeLow" field equal to the least significant 32 bits (bits 31 through 0) of Time in the same
order of significance.

— Set the "TimeMid" field equal to bits 47 through 32 from the Time in the same order of significance.

— Set the 12 least significant bits (bits 11 through 0) of the "VersionAndTimeHigh" field equal to bits 59
through 48 from Time in the same order of significance.

8 ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

— Set the four most significant bits (bits 15 through 12) of the "VersionAndTimeHigh" field to the four-bit
version number specified in 12.2.

— Set the "ClockSeqLow" field to the eight least significant bits (bits 7 through 0) of the Clock Sequence in
the same order of significance.

— Set the six least significant bits (bits 5 through 0) of the "VariantAndClockSeqHigh" field to the six most
significant bits (bits 13 through 8) of the Clock Sequence in the same order of significance.

— Set the two most significant bits (bits 7 and 6) of the "VariantAndClockSeqHigh" clock to one and zero,
respectively.

— Set the node field to the 48-bit MAC address in the same order of significance as the address.

14 Setting the fields of a name-based UUID

This clause specifies the procedures for the production of a name-based UUID. Subclause 14.1 specifies the general
procedures for any hash function (see also ISO/IEC 10118-3). Subclause 14.2 specifies the use of MDS5, and 14.3
specifies the use of SHA-1.

NOTE — The use of MDS5 is restricted to cases requiring backward compatibility with existing UUIDs, as SHA-1 provides a
hashing algorithm with a smaller probability that the same hash value will arise from different hashed material (see C.4).

14.1 The fields of a name-based UUID shall be set as follows:

— Allocate a UUID to use as a "name space identifier" for all UUIDs generated from names in that name
space.

NOTE - D.9 recommends UUIDs to use for four commonly used name spaces.

— Convert the name to a canonical sequence of octets (as defined by the standards or conventions of its
name space).

— Compute the 16-octet hash value of the name space identifier concatenated with the name, using the hash
function specified in 14.2 or 14.3. The numbering of the octets in the hash value is from 0 to 15, as
specified in [IETF RFC 1321 (for MD5) and as specified in FIPS PUB 180-2 for SHA-1.

— Set octets 3 through 0 of the "TimeLow" field to octets 3 through 0 of the hash value.
— Setoctets 1 and 0 of the "TimeMid" field to octets 5 and 4 of the hash value.
— Setoctets 1 and 0 of the "VersionAndTimeHigh" field to octets 7 and 6 of the hash value.

— Overwrite the four most significant bits (bits 15 through 12) of the "VersionAndTimeHigh" field with the
four-bit version number from Table 3 of 12.2 for the hash function that was used.

— Set the "VariantAndClockSeqHigh" field to octet 8 of the hash value.
— Overwrite the two most significant bits (bits 7 and 6) of the "VariantAndClockSeqHigh" field with 1 and
0, respectively.
— Set the "ClockSeqLow" field to octet 9 of the hash value.
— Set octets 5 through 0 of the "Node" field to octets 15 through 10 of the hash value.
14.2 This subclause specifies a name-based UUID using MDS5 as a hash function, but MDS5 shall not be used for

newly generated UUIDs (see C.4). For an MDS5 hash function, the "hash value" referenced in 14.1 is the 16-octet value
specified by IETF RFC 1321 as octets zero to 15.

NOTE - This specification of MDS5, with the associated version number, is included only for backward compatibility with earlier
specifications.

14.3 This subclause specifies a name-based UUID using SHA-1 as a hash function. For a SHA-1 hash function, the
"hash value" referenced in 14.1 shall be octets zero to 15 of the 20-octet value obtained from the 160-bit Message
Digest value specified by FIPS PUB 180-2. Octets 16 to 19 of the 20-octet value shall be discarded. The 20-octet value
shall be obtained from the 160-bit Message Digest value of FIPS PUB 180-2 by placing the most significant bit of the
160-bit value in the most significant bit of the first octet (octet zero) of the 20-octet value, and the least significant bit in
the last octet (octet 19) of the 20-octet value.

15 Setting the fields of a random-number-based UUID

15.1 The fields of a random-number-based UUID shall be set as follows:

— Set the two most significant bits (bits 7 and 6) of the "VariantAndClockSeqHigh" field to 1 and 0,
respectively.

ITU-T Rec. X.667 (09/2004) 9

ISO/TIEC 9834-8:2005 (E)

— Set the four most significant bits (bits 15 through 12) of the "VersionAndTimeHigh" field to the four-bit
version number specified in 12.2.

— Set all the other bits of the UUID to randomly (or pseudo-randomly) generated values.

NOTE - Pseudo-random numbers may produce the same value multiple times. The use of cryptographic-quality
random numbers is strongly recommended in order to reduce the probability of repeated values.

15.2 Annex C provides guidance on how to generate random numbers in a system.

16 Registration of UUIDs and their use as OID components

16.1 The ASN.1 OID tree
NOTE - This subclause summarizes the main provisions of ITU-T Rec. X.660 | ISO/IEC 9834-1.

16.1.1 This Recommendation | International Standard defines procedures for the operation of a Registration
Authority that registers UUIDs. This registration also enables the use of those UUIDs as arcs of the OID tree under the
{joint-iso-itu-t uuid(25) } arc (see also clause 7).

NOTE — UUIDs can also be used to identify arcs under this arc uuid (25) without being registered, but the identification of such
arcs is then not guaranteed to be worldwide unambiguous.

16.1.2 OIDs are a form of worldwide unambiguous identification based on a hierarchical tree structure, and
independent hierarchical registration authorities. The OID tree has a root node, arcs beneath that root node, arcs beneath
each of those arcs, and so on, to any depth. Arcs are identified by non-negative integer values (see 16.1.5) that provide
unambiguous identification of an arc within the superior node. Arcs can also be given names (consisting of one or more
lowercase letters, uppercase letters, digits, and hyphens, with an initial lowercase letter, no two adjacent hyphens, and
no terminating hyphen), but these are subsidiary to the numerical values and are not required. An object is identified by
the sequence of arc values (numerical, or also, for early arcs, arc names) from the root node to the object.

NOTE —For a fuller description of the OID tree, see ITU-T Rec. X.660 | ISO/IEC 9834-1 and ITU-T Rec. X.680 |
ISO/IEC 8824-1.

16.1.3 (TUTORIAL) It is important to note that an unregistered UUID can be used under the same arc as that of a
registered UUID (see 16.1.1). Thus identical values for a registered UUID and an unregistered UUID (or for two
unregistered UUIDs) might be used, although the probability of this occurring is very small. The probability is
increased if UUIDs are generated from MDS5 hash values or pseudo-random numbers, rather than from SHA-1 hash
values and cryptographic-quality random numbers. This may cause confusion for the users of the OID, and could be the
trigger of malicious use such as spoofing. The Registration Authority for UUIDs is responsible for a collision between
registered UUIDs, but it is not responsible for a collision between a registered UUID and an unregistered UUID because
it does not manage unregistered UUIDs. If such a collision occurs, the semantics associated with the registered UUID
should have precedence; the semantics associated with the unregistered UUID value should not be used. Thus, the
registration of an OID with a UUID does not ensure that the OID has more uniqueness than its UUID's uniqueness. The
objective of the registration should be seen mainly as a means of publishing the UUID and its semantics.

16.1.4 It is possible in machine representations of an OID to imply (by the context of that machine representation)
identification of part of the path from the root to an object in the OID tree. Thus, if an OID is known to be formed as
specified in clause 7, a machine representation could consist solely of the UUID value.

16.1.5 Components of OIDs are non-negative integers of unlimited magnitude.

16.2 Appointment of registration authorities

16.2.1 It is within the mandate of ITU-T | ISO/IEC to organize registration as specified in this Recommendation |
International Standard. In order to do this, ITU-T | ISO/IEC appoints, according to their internal requirements and rules,
an organization to act as the RA for this Recommendation | International Standard.

NOTE - For registration, use the URL http://www.itu.int/ITU-T/asn1/uuid.html (the ITU-T ASN.1 Project site).

16.2.2 The Registration Authority shall not be liable for any failure to operate under these procedures, or for any
actions related to its duties in relation to this Recommendation | International Standard, except that it may be discharged
of its duties by the relevant ITU-T Study Group | ISO/IEC JTC 1 Subcommittee, without penalty. The Registration
Authority shall not be held liable for any use of an unregistered OID value that is the same as a registered OID value, as
it has no control over the use of such values (see 16.1.3).
NOTE - Should the relevant ITU-T Study Group | ISO/IEC JTC 1 Subcommittee determine that the Registration Authority be
discharged of its duties, for this or for any other reasons, it is expected that registration information held by the RA will be made
available to any subsequently appointed RA.

10 ITU-T Rec. X.667 (09/2004)

http://www.itu.int/ITU-T/asn1/uuid.html

ISO/IEC 9834-8:2005 (E)

16.3 Fees

16.3.1 The organization providing this RA shall do so on a cost-recovery basis. The fee structure shall be designed to
recover the expenses of operating the RA, to cover Web publication of registrations, to support enquiry requests, and to
discourage frivolous and multiple requests.

16.3.2 The fee values shall be determined by the RA, subject to the approval of the relevant ITU-T Study Group |
ISO/IEC JTC 1 Subcommittee. Fees can apply to:

a) registration;

b) enquiry request;
c) Web publication;
d) request for update.

16.3.3 Fees shall be independent, subject to exchange rate fluctuations, of the country that the application is made
from.

16.4 Registration procedures

This subclause specifies the procedures to be followed in the registration of UUIDs. The procedures are designed to
assure openness and due process in the operation of the RA.

16.4.1 Application for registration of a UUID

16.4.1.1 An organization submits an application for registration of a UUID directly to the RA, by completing the form
on its website. The content of the application is specified in 16.4.3.

16.4.1.2 Upon successful completion of the registration procedures, the 128-bit UUID value shall be registered as
having been assigned to (or by) the submitting organization, and shall be published.

16.4.2 Confirmation process

Successful registration is confirmed by the website response and Web publication.

16.4.3 Content of application

16.4.3.1 This subclause specifies the information required by the RA to conduct the registration process.

NOTE — At the time of publication of this Recommendation | International standard, this information can be submitted by e-mail,
telephone, or hard copy or by website registration.

16.4.3.2 Registration includes the following information:
a) Country in which the registering organization has its main headquarters;

b) Name of organization, with country registration information if a registered company, charity, etc. or
affiliation to a known international organization;

¢) Name and title, postal address, e-mail address, telephone and fax number for the contact point within the
registering organization;

d) Free-form information establishing the bona fides of the registering organization as a means to audit and
remove spurious registrations;

e) (Optionally) a URL that can be accessed to provide more information about the use of the UUID.
16.4.3.3 The content of a general application for an OID is specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, clause 8.

16.5 Maintenance of a Web-based register
16.5.1 The RA shall maintain on a website of its choosing a register of all registrations.

16.5.2 Information about organizations involved in a registration shall be updated by the RA free of charge if the RA
is given details of changes of company name, or similar information, with appropriate authorization for the change. The
mechanism for doing this shall be determined by the RA, and shall be announced on its website.

ITU-T Rec. X.667 (09/2004) 11

ISO/TIEC 9834-8:2005 (E)

Annex A
Algorithms for the efficient generation of time-based UUIDs

(This annex does not form an integral part of this Recommendation | International Standard)

This annex describes an algorithm that can be used to repeatedly generate time-based UUIDs in a computer system.

Al Basic algorithm

Al The following algorithm is simple, correct, but inefficient:
— Obtain a system-wide global lock.

— From a system-wide shared stable store (e.g., a file), read the UUID generator state: the values of the
Time, Clock Sequence, and Node used to generate the last UUID.

— Get the current time as a 60-bit count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582
into Time.

— Get the current Node value.

— If the state was unavailable (e.g., non-existent or corrupted), or the saved Node value is different than the
current Node value, generate a random Clock Sequence value.

— If the state was available, but the saved Time value is later than the current Time value, increment the
Clock Sequence value.

— Save the state (current Time, Clock Sequence, and Node values) back to the stable store.
— Release the global lock.

— Format a UUID from the current Time, Clock Sequence, and Node values according to the steps in
clause 13.

A.1.2 If UUIDs do not need to be frequently generated, the above algorithm may be perfectly adequate. For higher
performance requirements, however, issues with the basic algorithm include:

— Reading the state from stable storage each time is inefficient;
— The resolution of the system clock may not be 100-nanoseconds;
— Writing the state to stable storage each time is inefficient;

— Sharing the state across process boundaries may be inefficient.

A.1.3 Each of these issues can be addressed in a modular fashion by local improvements in the functions that read
and write the state and read the clock. These are addressed in turn in the following subclauses.

A2 Reading stable storage

A.2.1 The state only needs to be read from stable storage once at boot time, if it is read into a system-wide shared
volatile store (and updated whenever the stable store is updated).

A.2.2 If an implementation does not have any stable store available, then it can always say that the values were
unavailable. This is the least desirable implementation, because it will increase the frequency of creation of new Clock
Sequence numbers, which increases the probability of duplicates.

A.2.3 If the Node value can never change (e.g., the net card is inseparable from the system), or if any change also
reinitializes the Clock Sequence to a random value, then instead of keeping it in stable store, the current Node value
may be returned.

A3 System clock resolution

A3.1 The Time value is generated from the system time, whose resolution may be less than the resolution required
for Time.

A.3.2 If UUIDs do not need to be frequently generated, Time can simply be the system time multiplied by the
number of 100-nanosecond intervals per system time interval.

A.3.3 If a system overruns the generator by requesting too many UUIDs within a single system time interval, the
UUID service should either return an error, or stall the UUID generator until the system clock catches up.

12 ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

A.3.4 A high resolution Time value can be simulated by keeping a count of how many UUIDs have been generated
with the same value of the system time, and using it to construct the low-order bits of the Time value. The count will
range between zero and the number of 100-nanosecond intervals per system time interval.

NOTE - If the processors overrun the UUID generation frequently, additional MAC addresses can be allocated to the system,
which will permit higher speed allocation by making multiple UUIDs potentially available for each Time value.

A4 Writing stable storage

The state does not always need to be written to stable store every time a UUID is generated. The Time value in the
stable store can be periodically set to a value larger than any yet used in a UUID. As long as the generated UUIDs have
Time values less than that value, and the Clock Sequence and Node value remain unchanged, only the shared volatile
copy of the state needs to be updated. Furthermore, if the Time value in stable store is in the future by less than the
typical time it takes the system to reboot, a crash will not cause a reinitialization of the Clock Sequence.

A5 Sharing state across processes

If it is too expensive to access shared state each time a UUID is generated, then the system-wide generator can be
implemented to allocate a block of Time values each time it is called, and a per-process generator can allocate from that
block until it is exhausted.

ITU-T Rec. X.667 (09/2004) 13

ISO/TIEC 9834-8:2005 (E)

Annex B
Properties of name-based UUIDs

(This annex does not form an integral part of this Recommendation | International Standard)

B.1 The name-based UUID is meant for generating a UUID from a name that is drawn from, and unique within,
some name space. The concept of name and name space should be broadly construed, and not limited to textual names.
The mechanisms or conventions for allocating names from, and ensuring their uniqueness within, their name spaces are
beyond the scope of this Specification.

NOTE — In order to avoid recursion problems, name-based UUIDs should not be generated from an OID that ends with a UUID
which is name-based.

B.2 The properties of name-based UUIDs generated in accordance with clause 14 and with a suitably chosen
namespace will be as follows:

— The UUIDs generated at different times from the same name in the same namespace will be equal;

— The UUIDs generated from two different names in the same namespace will be different with very high
probability;

— The UUIDs generated from the same name in two different namespaces will be different with very high
probability;

— If two name-based UUIDs are equal, then they were generated from the same name in the same
namespace with very high probability.

14 ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

Annex C
Generation of random numbers in a system

(This annex does not form an integral part of this Recommendation | International Standard)

C1 If a system does not have the capability to generate cryptographic-quality random-numbers, then in most
systems there are usually a fairly large number of sources of randomness available from which one can be generated.
Such sources are system specific, but often include:

— the percent of memory in use;

— the size of main memory in bytes;

— the amount of free main memory in bytes;

— the size of the paging or swap file in bytes;

— free bytes of paging or swap file;

— the total size of user virtual address space in bytes;

— the total available user address space bytes;

— the size of boot disk drive in bytes;

— the free disk space on boot drive in bytes;

— the current time;

— the amount of time since the system booted;

— the individual sizes of files in various system directories;

— the creation, last read, and modification times of files in various system directories;
— the utilization factors of various system resources (heap, etc.);
— current mouse cursor position;

— current caret position;

— current number of running processes, threads;

— handles or IDs of the desktop window and the active window;
— the value of stack pointer of the caller;

— the process and thread identifier of caller;

— various processor architecture specific performance counters (instructions executed, cache misses,
Translation Lookaside Buffer or TLB misses).

C.2 In addition, items such as the computer's name and the name of the operating system, while not strictly
speaking random, will help differentiate the results from those obtained by other systems.

C3 The exact algorithm to generate a Node value using these data is system specific, because both the data
available and the functions to obtain them are often very system specific. A generic approach, however, is to
accumulate as many sources as possible into a buffer, and use a message digest such as SHA-1, take an arbitrary six
octets from the hash value, and set the multicast bit as described above.

C4 Other hash functions, such as MD5 and hash functions specified in ISO/IEC 10118, can also be used. The
only requirement is that the result be suitably random in the sense that the outputs from a set of uniformly distributed
inputs are themselves uniformly distributed, and that a single bit change in the input can be expected to cause half of the
output bits to change. (The use of MDS5, however, is not recommended for new UUIDs because recent research has
shown that its output values are not uniformly distributed.)

ITU-T Rec. X.667 (09/2004) 15

ISO/TIEC 9834-8:2005 (E)

Annex D
Sample implementation

(This annex does not form an integral part of this Recommendation | International Standard)

D.1 Files provided

This implementation consists of 6 files: copyrt.h, uuid.h, uuid.c, sysdep.h, sysdep.c and utest.c. The
uuid. * files are the system independent implementation of the UUID generation algorithms described in clauses 13, 14
and 15, with all the optimizations described in Annex A (except efficient state sharing across processes) included. The
code assumes 64-bit integer support, which makes it a lot clearer.

NOTE — The code has been tested on Linux (Red Hat 4.0) with GCC (2.7.2), and Windows NT 4.0 with VC++ 5.0.

D.2 The copyrt.h file
All the following source files should be considered to have the following copyright notice included:

/*

** Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.

** Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. &
** Digital Equipment Corporation, Maynard, Mass.

** Copyright (c) 1998 Microsoft.

** To anyone who acknowledges that this file is provided "AS IS"

** without any express or implied warranty: permission to use, copy,
** modify, and distribute this file for any purpose is hereby

** granted without fee, provided that the above copyright notices and
** this notice appears in all source code copies, and that none of
** the names of Open Software Foundation, Inc., Hewlett-Packard

** Company, or Digital Equipment Corporation be used in advertising
** or publicity pertaining to distribution of the software without
** gpecific, written prior permission. Neither Open Software

** Foundation, Inc., Hewlett-Packard Company, Microsoft, nor Digital
** Equipment Corporation makes any representations about the

** guitability

** of this software for any purpose.

*/

D.3 The uuid.h file

#include "copyrt.h"

#undef uuid t

typedef struct {
unsigned32 time low;
unsignedl6é time mid;
unsignedlé time hi and version;
unsigneds8 clock seq hi and reserved;
unsigneds8 clock seq low;

byte node [6] ;
} uuid t;
/* uuid create -- generate a UUID */

int uuid create(uuid t * uuid);

/* uuid create from name -- create a UUID using a "name"
from a "name space" */
void uuid create from name (

uuid t *uuid, /* resulting UUID */
uuid t nsid, /* UUID of the namespace */
void *name, /* the name from which to generate a UUID */
int namelen /* the length of the name */
)i
/* uuid compare -- Compare two UUID's "lexically" and return

-1 ul is lexically before u2
0 ul is equal to u2
1 ul is lexically after u2

Note that lexical ordering is not temporal ordering!

*/

int uuid compare(uuid_t *ul, uuid t *u2);

16 ITU-T Rec. X.667 (09/2004)

D4

ISO/IEC 9834-8:2005 (E)

The uwuid. c file

#include "copyrt.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "sysdep.h"
#ifndef WINDOWS
#include <arpa/inet.h>

#endif

#include "uuid.h"

/* various forward declarations */

static int read state(unsignedl6é *clockseq, uuid time t *timestamp,
uuid node t *node) ;

static void write state(unsignedl6é clockseq, uuid time t timestamp,
uuid node t node) ;

static void format uuid vl (uuid t *uuid, unsignedl6é clockseq,
uuid time t timestamp, uuid node t node);

static void format uuid v3 (uuid t *uuid, unsigned char hash[16]);

static void get_current_time(uuid time t *timestamp);

static unsignedl6é true random(void);

/* uuid create -- generator a UUID */
int uuid create(uuid t *uuid)
{
uuid time t timestamp, last time;
unsignedl6 clockseq;
uuid node t node;
uuid node t last_node;
int £;

/* acquire system-wide lock so we're alone */
LOCK;

/* get time, node identifier, saved state from non-volatile storage */
get current time(×tamp) ;

get ieee node identifier (&node) ;

f = read state(&clockseq, &last_ time, &last_node);

/* if no NV state, or if clock went backwards, or node identifier
changed (e.g., new network card) change clockseq */

if (!f || memcmp(&node, &last node, sizeof node))
clockseq = true random() ;

else if (timestamp < last_time)
clockseq++;

/* save the state for next time */
write state(clockseq, timestamp, node);

UNLOCK;

/* stuff fields into the UUID */
format uuid vl (uuid, clockseq, timestamp, node);
return 1;

}

/* format uuid vl -- make a UUID from the timestamp, clockseq,
and node identifier */
void format_uuid v1(uuid t* uuid, unsignedlé clock_ seq,
uuid time t timestamp, uuid node t node)
{

/* Construct a version 1 uuid with the information we've gathered

plus a few constants. */
uuid->time low = (unsigned long) (timestamp & OXFFFFFFFF) ;
uuid->time mid = (unsigned short) ((timestamp >> 32) & OxFFFF);
uuid->time_hi_ and version =

(unsigned short) ((timestamp >> 48) & OxOFFF);

uuid->time hi and version |= (1 << 12);
uuid->clock seq low = clock seq & OxFF;
uuid->clock _seq hi and reserved = (clock seqg & 0x3F00) >> 8;
uuid->clock seq hi and reserved |= 0x80;
memcpy (&uuid->node, &node, sizeof uuid->node);

ITU-T Rec. X.667 (09/2004)

17

ISO/TIEC 9834-8:2005 (E)

/* data type for UUID generator persistent state */
typedef struct {

uuid time t ts; /* saved timestamp */
uuid node t node; /* saved node identifier */
unsignedlé6 cs; /* saved Clock Sequence */

} uuid state;
static uuid state st;

/* read state -- read UUID generator state from non-volatile store */
int read state(unsignedlé *clockseq, uuid time t *timestamp,
uuid node t *node)

static int inited = 0;
FILE *fp;

/* only need to read state once per boot */
if (!inited) {
fp = fopen("state", "rb");
if (fp == NULL)
return 0;
fread(&st, sizeof st, 1, £fp):;
fclose (£fp) ;
inited = 1;
}
*clockseq = st.cs;
*timestamp = st.ts;
*node = st.node;
return 1;

}

/* write state -- save UUID generator state back to non-volatile
storage */
void write state(unsignedlé clockseq, uuid time t timestamp,
uuid node_t node)
{

static int inited = 0;
static uuid time t next save;
FILE* fp;

if (!inited) {
next save = timestamp;
inited = 1;

}

/* always save state to volatile shared state */
st.cs = clockseq;
st.ts = timestamp;
st.node = node;
if (timestamp >= next save) {
fp = fopen("state", "wb");
fwrite (&st, sizeof st, 1, fp);
fclose (£fp) ;
/* schedule next save for 10 seconds from now */
next save = timestamp + (10 * 10 * 1000 * 1000);

}

/* get-current time -- get time as 60-bit 100ns ticks since UUID epoch.
Compensate for the fact that real clock resolution is
less than 100ns. */
void get current time(uuid time t *timestamp)
{
static int inited = 0;
static uuid time t time last;
static unsignedlé uuids_this tick;
uuid time t time now;

if (!inited) (
get_system time (&time now) ;
uuids this tick = UUIDS PER TICK;
inited = 1;

for (; ;) {
get system time(&time now) ;

/* if clock reading changed since last UUID generated, */
if (time last != time now) {

18 ITU-T Rec. X.667 (09/2004)

ISO/IEC 9834-8:2005 (E)

/* reset count of uuids gen'd with this clock reading */
uuids this tick = 0;

time last = time_now;

break;

if (uuids this tick < UUIDS PER TICK) {
uuids this tick++;
break;

}

/* going too fast for our clock; spin */

/* add the count of uuids to low order bits of the clock reading */
*timestamp = time now + uuids this tick;

}

/* true random -- generate a crypto-quality random number.
This sample doesn't do that. */

static unsignedl6é true random(void)
static int inited = 0;
uuid time t time now;

if (!inited) {
get_system time (&time_now) ;
time now = time now / UUIDS_PER_TICK;
srand ((unsigned int) (((time now >> 32) ” time now) & Oxffffffff));
inited = 1;

}

return rand() ;

}

/* uuid create from name -- create a UUID using a "name" from a "name
space" */
void uuid create from name(uuid t *uuid, uuid t nsid, void *name,
int namelen)
{

MD5 CTX c;

unsigned char hash[16];
uuid t net nsid;

/* put name space identifier in network byte order so it hashes the
same no matter what endian machine we're on */

net nsid = nsid;

htonl (net_nsid.time low);

htons (net_nsid.time mid);

htons (net _nsid.time hi and version);

MD5Init (&c) ;

MD5Update (&c, &net nsid, sizeof net nsid);
MD5Update (&c, name, namelen) ;

MD5Final (hash, &c);

/* the hash is in network byte order at this point */
format uuid v3 (uuid, hash);

}

/* format uuid v3 -- make a UUID from a (pseudo)random 128-bit number */
void format uuid v3(uuid t *uuid, unsigned char hash[16])
{

/* convert UUID to local byte order */

memcpy (uuid, hash, sizeof *uuid);

ntohl (uuid->time low);

ntohs (uuid->time mid);

ntohs (uuid->time hi and version);

/* put in the variant and version bits */
uuid->time hi and version &= OxOFFF;

uuid->time hi_and version |= (3 << 12);
uuid->clock _seq hi and reserved &= 0x3F;
uuid->clock seq hi and reserved |= 0x80;

}

/* uuid compare -- Compare two UUID's "lexically" and return */
#define CHECK(fl, f£f2) if (f1 != f2) return fl1l < f2 ? -1 : 1;
int uuid compare(uuid t *ul, uuid t *u2)

{

int i;

ITU-T Rec. X.667 (09/2004) 19

ISO/TIEC 9834-8:2005 (E)

CHECK (ul->time low, u2->time low);
CHECK (ul->time mid, u2->time mid);
CHECK (ul->time hi and version, u2->time hi and version);
CHECK (ul->clock seq hi and reserved, u2->clock seq hi and reserved);
CHECK (ul->clock seq low, u2->clock seq low)
for (i = 0; i < 6; i++) {
if (ul->nodel[i] < u2->nodelil])
return -1;
if (ul->node[i]l > u2->nodelil)
return 1;

}

return 0;

}

#undef CHECK

D.5 The sysdep.h file

#include "copyrt.h"
/* remove the following define if you aren't running Windows 32 */
#define WININC 0

#ifdef WININC

#include <windows.h>
#telse

#include <time.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/time.h>
#endif

#include "global.h"

/* change to point to where MD5 .h's live; IETF RFC 1321 has a sample
implementation */

#include "md5.h"

/* set the following to the number of 100ns ticks of the actual
resolution of your system's clock */
#define UUIDS PER TICK 1024

/* set the following to a call to get and release a global lock */
#define LOCK
#define UNLOCK

typedef unsigned long unsigned32;
typedef unsigned short unsignedls6;
typedef unsigned char unsigned8;
typedef unsigned char byte;

/* set this to what your compiler uses for 64-bit data type */
#ifdef WININC

#define unsigned64_t unsigned _ inté64

#define I64(C) C

#else

#define unsigned64_t unsigned long long

#define 164 (C) CH##LL

#endif

typedef unsigned64 t uuid time t;
typedef struct {

char nodeID[6];
} uuid node t;

void get ieee node identifier (uuid node_t *node);
void get system time (uuid time t *uuid time);
void get random info(unsigned char seed[16]);

D.6 The sysdep.c file

#include "copyrt.h"
#include <stdio.h>
#include <string.h>
#include "sysdep.h"

/* system dependent call to get MAC node identifier.
This sample implementation generates a random node identifier. */
void get ieee node identifier (uuid node t *node)

{

20 ITU-T Rec. X.667 (09/2004)

}

static int inited = 0;

static uuid node t saved node;
unsigned char seed[16];

FILE *fp;

if (!inited) {
fp = fopen("nodeid", "rb");
if (£p) {
fread(&saved node, sizeof saved node, 1, £fp);
fclose (fp) ;

else {
get random info(seed);
seed[0] |= 0x80;

memcpy (&saved node, seed, sizeof saved node);
fp = fopen("nodeid", "wb");
if (fp) {
fwrite (&saved node, sizeof saved node, 1, fp);
fclose(£fp);
}
}
inited = 1;

}

*node = saved_node;

ISO/IEC 9834-8:2005 (E)

/* system dependent call to get the current system time. Returned as
100ns ticks since UUID epoch, but resolution may be less than 100ns. */
#ifdef _WINDOWS_

void get system time(uuid time t *uuid time)

{
ULARGE_INTEGER time;
/* Windows NT keeps time in FILETIME format which is 100ns
Jan 1, 1601. UUIDs use time in 100ns ticks since Oct 15
The difference is 17 Days in Oct + 30 (Nov) + 31 (Dec)
+ 18 years and 5 leap days. */
GetSystemTimeAsFileTime ((FILETIME *)&time) ;
time.QuadPart +=
(unsigned _ int64) (1000*1000*10) // seconds
* (unsigned _ int64) (60 * 60 * 24) // days
* (unsigned _ inté64) (17+30+31+365*18+5); // # of days
*uyuid time = time.QuadPart;
}
void get random info(unsigned char seed[16])
{
MD5_CTX c;
struct {
MEMORYSTATUS m;
SYSTEM INFO s;
FILETIME t;
LARGE_INTEGER pc;
DWORD tc;
DWORD 1;
char hostname [MAX_COMPUTERNAME_LENGTH + 11;
}ors
MD5Init (&c) ;
GlobalMemoryStatus (&r.m) ;
GetSystemInfo (&r.s) ;
GetSystemTimeAsFileTime (&r.t) ;
QueryPerformanceCounter (&r.pc) ;
r.tc = GetTickCount() ;
r.l = MAX COMPUTERNAME LENGTH + 1;
GetComputerName (r.hostname, &r.l);
MD5Update (&c, &r, sizeof r);
MD5Final (seed, &c);
}
#else

void get system time(uuid time t *uuid time)

{

struct timeval tp;

gettimeofday (&tp, (struct timezone *)0);

ticks since

, 1582.

ITU-T Rec. X.667 (09/2004) 21

ISO/TIEC 9834-8:2005 (E)

/* Offset between UUID formatted times and Unix formatted times.
UUID UTC base time is October 15, 1582.
Unix base time is January 1, 1970. */

*uuid time = (tp.tv_sec * 10000000) + (tp.tv usec * 10)
+ I64(0x01B21DD213814000) ;

}
void get_random info(unsigned char seed[16])
{
MD5_CTX c;
struct {
struct timeval t;
char hostname [257];
}or
MD5Init (&c) ;
gettimeofday(&r.t, (struct timezone *)0);
gethostname (r.hostname, 256);
MD5Update (&c, &r, sizeof r);
MD5Final (seed, &c);
}
#endif

D.7 The utest.c file

#include "copyrt.h"
#include "sysdep.h"
#include <stdio.h>
#include "uuid.h"

uuid t NameSpace DNS = { /* 6ba7b810-9dad-11d1-80b4-00c04£d430c8 */
0x6ba7b810,
0x9dad,
0x11d1,
0x80, Oxb4, 0x00, OxcO, Ox4f, Oxd4, 0x30, Oxc8

}:

/* puid -- print a UUID */
void puid(uuid t u)

{
int i;
printf ("%8.8x-%4.4x-%4.4x-%2.2x%2.2x-", u.time low, u.time mid,
u.time hi and version, u.clock seq hi and reserved,
u.clock_seq low);
for (i = 0; 1 < 6; i++)
printf ("%2.2x", u.nodel[i]);
printf ("\n");
}

/* simple driver for UUID generator */
int main(int argc, char **argv)

uuid t u;

int £;

uuid create(&u);
printf ("uuid create(): "); puid(u);

f = uuid compare(&u, &u);

printf ("uuid compare(u,u): %d\n", f); /* should be 0 */

f = uuid compare(&u, &NameSpace DNS) ;

printf ("uuid compare(u, NameSpace DNS): %d\n", f); /* should be 1 */
f = uuid compare (&NameSpace DNS, &u);

printf ("uuid compare (NameSpace DNS, u): %d\n", £f); /* should be -1 */
uuid create_from name (&u, NameSpace DNS, "www.widgets.com", 15);
printf ("uuid create from name(): "); puid(u);

D.8 Sample output of utest

uuid create(): 7d444840-9dc0-11d1-b245-5ffdce74fad2

uuid compare(u,u): 0

uuid compare (u, NameSpace DNS): 1

uuid compare (NameSpace DNS, u): -1

uuid create_ from name(): e902893a-9d22-3c7e-a7b8-d6e313b71d9f

22 ITU-T Rec. X.667 (09/2004)

D.9 Some name space IDs

ISO/IEC 9834-8:2005 (E)

This subclause lists the name space IDs for some potentially interesting name spaces, as initialized structures in the C
language and in the string representation defined above.

/* Name string is a fully-qualified domain name */

uuid t NameSpace DNS = { /*
0x6ba7b810,
0x9dad,
0x11d1,
0x80, 0xb4, 0x00, 0xcoO,

}:

/* Name string is a URL */
uuid t NameSpace URL = { /*
0x6ba7b811l,
0x9dad,
0x11d1,
0x80, Oxb4, 0x00, O0xcO,

}:

/* Name string is an OID */
uuid t NameSpace OID = { /*
0x6ba7b812,
0x9dad,
0x11d1,
0x80, Oxb4, 0x00, 0xcO,

}:

6ba7b810-9dad-11d1-80b4-00c04£d430c8 */

0x4f, O0xd4, 0x30, Oxc8

6ba7b811-9dad-11d1-80b4-00c04£d430c8 */

0x4f, O0xd4, 0x30, Oxc8

6ba7b812-9dad-11d1-80b4-00c04£d430c8 */

0x4f, 0xd4, 0x30, Oxc8

/* Name string is a Directory distinguished name (in DER or a text output format) */
uuid_t NameSpace X500 = { /* 6ba7b814-9dad-11d1-80b4-00c04£d430c8 */

0x6ba7b814,

0x9dad,

0x11d1,

0x80, Oxb4, 0x00, 0xcO,

0x4f, O0xd4, 0x30, Oxc8

ITU-T Rec. X.667 (09/2004)

23

ISO/TIEC 9834-8:2005 (E)

24

BIBLIOGRAPHY

ZAHN (L., DINEEN (T.), LEACH (P.): Network Computing Architecture, ISBN 0-13-611674-4,
January 1990.

Open Group CAE: DCE: Remote Procedure Call, Specification C309, ISBN 1-85912-041-5, August 1994.

ISO/TEC 11578:1996, Information technology — Open Systems Interconnection — Remote Procedure Call
(RPC).

IEEE, Request Form for an Individual Address Block (also known as an Ethernet Address Block) of 4,096
MAC Addresses, http://standards.ieee.org/regauth/oui/pilot-ind.html

ITU-T Recommendation X.500 (2001) | ISO/IEC 9594-1:2001, Information technology — Open Systems
Interconnection — The Directory: Overview of concepts, models and services.

IETF RFC 3061 (2001), A URN Namespace of Object Identifiers.

Internet-Draft draft-mealling-uuid-urn-00, 4 UUID URN Namespace, M. Mealling, P. Leach, R. Salz, October
2002.

ITU-T Rec. X.667 (09/2004)

http://standards.ieee.org/regauth/oui/pilot-ind.html

Series A
Series D
Series E
Series F
Series G
Series H
Series 1

Series J

Series K
Series L

Series M

Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure, Internet protocol aspects and Next Generation Networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2005

	ITU-T Rec. X.667 (09/2004) Information technology - Open Systems Interconnection ...
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Other normative references

	3 Terms and definitions
	3.1 ASN.1 notation
	3.2 Registration authorities
	3.3 Network terms
	3.4 Additional definitions

	4 Abbreviations
	5 Notation
	6 UUID structure and representation
	6.1 UUID field structure
	6.2 Binary representation
	6.3 Representation as a single integer value
	6.4 Hexadecimal representation
	6.5 Formal syntax of the hexadecimal representation

	7 Use of a UUID to form an OID
	8 Use of a UUID to form a URN
	9 Rules for comparison and ordering of UUIDs
	10 Validation
	11 The variant bits
	12 Use of UUID fields and transmission byte order
	12.1 General
	12.2 Version
	12.3 Time
	12.4 Clock sequence
	12.5 Node

	13 Setting the fields of a time-based UUID
	14 Setting the fields of a name-based UUID
	15 Setting the fields of a random-number-based UUID
	16 Registration of UUIDs and their use as OID components
	16.1 The ASN.1 OID tree
	16.2 Appointment of registration authorities
	16.3 Fees
	16.4 Registration procedures
	16.4.1 Application for registration of a UUID
	16.4.2 Confirmation process
	16.4.3 Content of application
	16.5 Maintenance of a Web-based register

	Annex A – Algorithms for the efficient generation of time-based UUIDs
	A.1 Basic algorithm
	A.2 Reading stable storage
	A.3 System clock resolution
	A.4 Writing stable storage
	A.5 Sharing state across processes
	Annex B – Properties of name-based UUIDs
	Annex C – Generation of random numbers in a system
	Annex D – Sample implementation
	D.1 Files provided
	D.2 The copyrt.h file
	D.3 The uuid.h file
	D.4 The uuid.c file
	D.5 The sysdep.h file
	D.6 The sysdep.c file
	D.7 The utest.c file
	D.8 Sample output of utest
	D.9 Some name space IDs
	BIBLIOGRAPHY

