

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.891
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/2005)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY
OSI applications – Generic applications of ASN.1

 Information technology – Generic applications of
ASN.1: Fast infoset

ITU-T Recommendation X.891

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.369
IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.889
Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999
TELECOMMUNICATION SECURITY X.1000–

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. X.891 (05/2005) i

INTERNATIONAL STANDARD ISO/IEC 24824-1
ITU-T RECOMMENDATION X.891

Information technology – Generic applications of ASN.1: Fast infoset

Summary
This Recommendation | International Standard specifies a representation of an instance of the W3C XML Information
Set using binary encodings. These binary encodings are specified using the ASN.1 notation and the ASN.1 Encoding
Control Notation (ECN).

The technology specified in this Recommendation | International Standard is named Fast Infoset. It provides an
alternative to W3C XML syntax as a means of representing instances of the W3C XML Information Set. This
representation generally provides smaller encoding sizes and faster processing than a W3C XML representation.

This Recommendation | International Standard specifies the use of several techniques that minimize the size of the
encodings (called fast infoset documents) and that maximize the speed of creating and processing fast infoset documents.
These techniques include the use of dynamic tables (for both character strings and qualified names), initial vocabularies,
and external vocabularies.

This Recommendation | International Standard also specifies a Multipurpose Internet Mail Extensions (MIME) media
type that identifies a fast infoset document.

Source
ITU-T Recommendation X.891 was approved on 14 May 2005 by ITU-T Study Group 17 (2005-2008) under the ITU-T
Recommendation A.8 procedure. It includes the corrections introduced by Technical Corrigendum 1, approved on
13 June 2006 by ITU-T Study Group 17 (2005-2008) under the ITU-T Recommendation A.8 procedure. An identical text
is also published as ISO/IEC 24824-1.

ii ITU-T Rec. X.891 (05/2005)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2007

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. X.891 (05/2005) iii

CONTENTS

 Page
1 Scope ... 1
2 Normative references .. 1

2.1 Identical Recommendations | International Standards ... 2
2.2 Additional references ... 2

3 Definitions .. 3
3.1 ASN.1 terms .. 3
3.2 ECN terms... 3
3.3 ISO/IEC 10646 terms... 3
3.4 Additional definitions .. 3

4 Abbreviations .. 4
5 Notation ... 4
6 Principles of vocabulary table construction and use ... 5
7 ASN.1 type definitions .. 6

7.1 General ... 6
7.2 The Document type ... 6
7.3 The Element type ... 11
7.4 The Attribute type ... 12
7.5 The ProcessingInstruction type.. 12
7.6 The UnexpandedEntityReference type .. 13
7.7 The CharacterChunk type.. 13
7.8 The Comment type ... 14
7.9 The DocumentTypeDeclaration type .. 14
7.10 The UnparsedEntity type.. 15
7.11 The Notation type ... 15
7.12 The NamespaceAttribute type.. 16
7.13 The IdentifyingStringOrIndex type .. 16
7.14 The NonIdentifyingStringOrIndex type .. 17
7.15 The NameSurrogate type.. 18
7.16 The QualifiedNameOrIndex type.. 19
7.17 The EncodedCharacterString type.. 20

8 Construction and processing of a fast infoset document.. 21
8.1 Conceptual ordering of components of an abstract value of the Document type 22
8.2 The restricted alphabet table.. 22
8.3 The encoding algorithm table .. 22
8.4 The dynamic string tables ... 23
8.5 The dynamic name tables and name surrogates ... 23

9 Built-in restricted alphabets .. 24
9.1 The "numeric" restricted alphabet... 24
9.2 The "date and time" restricted alphabet.. 24

10 Built-in encoding algorithms... 24
10.1 General ... 24
10.2 The "hexadecimal" encoding algorithm ... 25
10.3 The "base64" encoding algorithm... 25
10.4 The "short" encoding algorithm ... 25
10.5 The "int" encoding algorithm... 26
10.6 The "long" encoding algorithm .. 26
10.7 The "boolean" encoding algorithm.. 26
10.8 The "float" encoding algorithm .. 27
10.9 The "double" encoding algorithm ... 27
10.10 The "uuid" encoding algorithm .. 27

iv ITU-T Rec. X.891 (05/2005)

 Page
10.11 The "cdata" encoding algorithm ... 28

11 Restrictions on the supported XML infosets and other simplifications... 28
12 Bit-level encoding of the Document type... 29
Annex A – ASN.1 module and ECN modules for fast infoset documents .. 31

A.1 ASN.1 module definition.. 31
A.2 ECN module definitions ... 33

Annex B – The MIME media type for fast infoset documents ... 53
Annex C – Description of the encoding of a fast infoset document... 55

C.1 Fast infoset document .. 55
C.2 Encoding of the Document type ... 55
C.3 Encoding of the Element type ... 57
C.4 Encoding of the Attribute type ... 58
C.5 Encoding of the ProcessingInstruction type.. 58
C.6 Encoding of the UnexpandedEntityReference type.. 59
C.7 Encoding of the CharacterChunk type ... 59
C.8 Encoding of the Comment type ... 59
C.9 Encoding of the DocumentTypeDeclaration type.. 59
C.10 Encoding of the UnparsedEntity type ... 60
C.11 Encoding of the Notation type ... 60
C.12 Encoding of the NamespaceAttribute type.. 61
C.13 Encoding of the IdentifyingStringOrIndex type.. 61
C.14 Encoding of the NonIdentifyingStringOrIndex type starting on the first bit of an

octet ... 61
C.15 Encoding of the NonIdentifyingStringOrIndex type starting on the third bit of an

octet ... 62
C.16 Encoding of the NameSurrogate type ... 62
C.17 Encoding of the QualifiedNameOrIndex type starting on the second bit of an octet 62
C.18 Encoding of the QualifiedNameOrIndex type starting on the third bit of an octet 63
C.19 Encoding of the EncodedCharacterString type starting on the third bit of an octet 63
C.20 Encoding of the EncodedCharacterString type starting on the fifth bit of an octet 64
C.21 Encoding of the length of a sequence-of type.. 64
C.22 Encoding of the NonEmptyOctetString type starting on the second bit of an octet 64
C.23 Encoding of the NonEmptyOctetString starting on the fifth bit of an octet 65
C.24 Encoding of the NonEmptyOctetString type starting on the seventh bit of an octet 65
C.25 Encoding of integers in the range 1 to 220 starting on the second bit of an octet............................ 65
C.26 Encoding of integers in the range 0 to 220 starting on the second bit of an octet............................ 66
C.27 Encoding of integers in the range 1 to 220 starting on the third bit of an octet 66
C.28 Encoding of integers in the range 1 to 220 starting on the fourth bit of an octet............................. 66
C.29 Encoding of integers in the range 1 to 256.. 67

Annex D – Examples of encoding XML infosets as fast infoset documents ... 68
D.1 Introduction of examples .. 68
D.2 Size of example documents (including redundancy-based compression)..................................... 68
D.3 UBL order example ... 69
D.4 UBL Order fast infoset document with an external vocabulary ... 71
D.5 UBL order fast infoset document without an initial vocabulary .. 79

Annex E – Assignment of object identifier values... 90
BIBLIOGRAPHY.. 91

 ITU-T Rec. X.891 (05/2005) v

Introduction
This Recommendation | International Standard specifies a representation of an instance of the W3C XML Information
Set using binary encodings (specified using the ASN.1 notation and the ASN.1 Encoding Control Notation). The
encoding specified in this edition of this Recommendation | International Standard is identified by the version number 1
(see 12.9).

The technology specified in this Recommendation | International Standard is named Fast Infoset. It provides an
alternative to W3C XML syntax as a means of representing instances of the W3C XML Information Set. This
representation generally provides smaller encoding sizes and faster processing than a W3C XML representation.

The representation of an instance of the W3C XML Information Set specified in this Recommendation | International
Standard is called a fast infoset document. Each fast infoset document is an encoding of an abstract value of an ASN.1
data type (the Document type – see 7.2) representing an instance of the W3C XML Information Set.

This Recommendation | International Standard specifies the use of several techniques that minimize the size of a fast
infoset document and that maximize the speed of creating and processing such documents.

These techniques are based on the use of vocabulary tables, which allow typically-small integer values (vocabulary
table indexes) to be used instead of character strings that form (for example) the names of elements or attributes in an
XML 1.0 serialization of an instance of the W3C XML Information Set.

There are a number of vocabulary tables (see clause 8), of which the most basic (the eight character string tables) map
typically-small integers to strings of characters. There are, however, also vocabulary tables (the element name table and
the attribute name table) that provide a further level of indirection, with a vocabulary table index mapping to a set of
three vocabulary table indexes, identifying a prefix, a namespace name, and a local name.

Another important technique is the use of a restricted alphabet vocabulary table. This contains entries that list a subset
of ISO/IEC 10646 characters. If a character string needs to be encoded for which there is an entry in this table, then it
can be encoded by identifying that this vocabulary table is being used, giving the vocabulary table index, and then
encoding each character in the minimum number of bits needed for that particular subset of ISO/IEC 10646 characters.
There are a number of built-in restricted alphabets that always form the first few entries of this table, covering such
commonly occurring strings as dates and times, and numeric values.

A further important optimization uses the encoding algorithm vocabulary table. This table identifies specialized
encodings that can be employed for commonly occurring strings, again with a number of built-in algorithms. For
example, if there is a string which looks like the decimal representation of an integer in the range –32768 to 32767, then
that string can be encoded by identifying that this vocabulary table is being used, giving the vocabulary table index, and
then encoding the integer as a two-octet signed integer. Floating-point numbers and arrays of such numbers are
supported in the same way.

In order to ensure fast processing without sacrificing compactness, many components of a fast infoset document (such
as character strings and components representing information items of the XML infoset) are octet-aligned, while other
components (such as lengths and vocabulary table indexes) are not necessarily octet-aligned but always end on the last
bit of an octet. To provide a formal specification of these optimized encodings, the ASN.1 Encoding Control Notation
(defined in ITU-T Rec. X.692 | ISO/IEC 8825-3) is used (see A.2), but use of ECN tools for implementation is not
necessary and a complete description of the encoding is provided (see Annex C).

The vocabulary tables for a particular fast infoset document can be initialized by information at the head of the
document, and are normally added to dynamically, providing flexibility for an encoder. The initial vocabulary tables
can be provided by a reference to the set of final vocabulary tables of some other identified fast infoset document (or by
other means). This vocabulary reference can then be supplemented by further table additions to provide the initial
vocabulary tables for this document. Further dynamic additions are normally made to the tables during the creation or
the processing of the document.

Finally, a mechanism is provided for the generator of a fast infoset document to include data (called additional
processing data) related to optional additional processing of the fast infoset document, together with a URI that
identifies a complete specification of the form and semantics of that additional processing data. The optional additional
processing data is ignored by any subsequent processor of the fast infoset document if the URI is not known, or the
processing that it specifies is not supported or not required.

NOTE – An example of such additional processing data would be data that provides indexes that enable immediate access to
parts of the fast infoset document, so that the whole document need not be processed if the only interest is in those parts of the
fast infoset document that correspond to a specific XML tag.

Annex A forms an integral part of this Recommendation | International Standard, and contains an ASN.1 module (see
ITU-T Rec. X.680 | ISO/IEC 8824-1) and two ECN modules (EDM and ELM – see ITU-T Rec. X.692 |
ISO/IEC 8825-3) which together specify the abstract content and the bit-level encoding of a value of the Document
type, which conveys the value of an instance of the W3C XML Information Set.

vi ITU-T Rec. X.891 (05/2005)

Annex B forms an integral part of this Recommendation | International Standard, and contains the specification of a
MIME media type identifying a fast infoset document.

Annex C does not form an integral part of this Recommendation | International Standard, and provides a complete
description of the encodings formally specified in clause 12 and A.2.

Annex D does not form an integral part of this Recommendation | International Standard, and provides examples of fast
infoset documents generated from some XML documents. Annex D also gives the size of the XML representation and
the Fast Infoset representation of these examples.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 1

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology – Generic applications of ASN.1: Fast infoset

1 Scope
This Recommendation | International Standard specifies an ASN.1 type (see ITU-T Rec. X.680 | ISO/IEC 8824-1)
whose abstract values represent instances of the W3C XML Information Set. It also specifies binary encodings for those
values, using ASN.1 Encoding Control Notation (see ITU-T Rec. X.692 | ISO/IEC 8825-3).

NOTE – These encodings are called fast infoset documents.

This Recommendation | International Standard also specifies techniques that:
– minimize the size of fast infoset documents;
– maximize the speed of creating and processing fast infoset documents;
 – allow the specification (by the generator of a fast infoset document) of additional processing data.

The first two techniques involve the use of conceptual vocabulary tables. The set of vocabulary tables and the nature of
their entries is fully defined in this Recommendation | International Standard, but their representation in computer
memory is outside the scope of this Recommendation | International Standard. Provision for transfer or storage of, or a
formal notation for displaying or specifying, vocabulary tables to be used as an external vocabulary is also outside the
scope of this Recommendation | International Standard.

The third technique involves the provision of additional processing data and a URI that identifies the form and
semantics of that data. The specification of specific forms of additional processing data and their use is outside the
scope of this Recommendation | International Standard.

URIs can be used to identify final vocabularies that can be used as either part or all of some new initial vocabulary, but
the assignment of specific URIs to specific final vocabularies is outside the scope of this Recommendation |
International Standard.

This Recommendation | International Standard specifies built-in restricted alphabets, the addition to vocabulary tables
of further restricted alphabets by enumeration, and the use of these vocabulary tables for efficient encoding of character
strings.

This Recommendation | International Standard further specifies built-in encoding algorithms for the optimum encoding
of certain character strings, and the addition to vocabulary tables of further encoding algorithms identified by URIs, but
the definition of these further encoding algorithms and their associated URIs is outside the scope of this
Recommendation | International Standard.

In addition, this Recommendation | International Standard specifies a Multipurpose Internet Mail Extensions (MIME)
media type that identifies a fast infoset document.

2 Normative references
The following Recommendations, International Standards and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication,
the editions indicated were valid. All Recommendations, International Standards and other references are subject to
revision, and parties to agreements based on this Recommendation | International Standard are encouraged to
investigate the possibility of applying the most recent edition of the Recommendations, International Standards and
other references listed below. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations. Members of IEC and ISO maintain registers of currently valid International Standards.
The IETF maintains a list of RFCs, together with those that have been obsoleted by later RFCs. The W3C maintains a
list of currently valid W3C Recommendations. The reference to a document within this Recommendation | International
Standard does not give it, as a stand-alone document, the status of a Recommendation or International Standard.

ISO/IEC 24824-1:2005 (E)

2 ITU-T Rec. X.891 (05/2005)

2.1 Identical Recommendations | International Standards
– ITU-T Recommendation X.667 (2004) | ISO/IEC 9834-8:2005, Information technology – Open Systems

Interconnection – Procedures for the operation of OSI Registration Authorities: Generation and
registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier
components.

– ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Information object specification. †

– ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Constraint specification. †

– ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications. †

– ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology – ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER). †

– ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information technology – ASN.1
encoding rules: Specification of Packed Encoding Rules (PER). †

– ITU-T Recommendation X.692 (2002) | ISO/IEC 8825-3:2002, Information technology – ASN.1
encoding rules: Specification of Encoding Control Notation (ECN).

– ITU-T Recommendation X.693 (2001) | ISO/IEC 8825-4:2002, Information technology – ASN.1
encoding rules: XML Encoding Rules (XER). †

NOTE – The complete set of ASN.1 Recommendations | International Standards are listed above, as they can all be
applicable in particular uses of this Recommendation | International Standard. Where these are not directly referenced
in the body of this Recommendation | International Standard, a † symbol is added to the reference.

2.2 Additional references
– ISO 8601:2004, Data elements and interchange formats – Information interchange – Representation of

dates and times.
– ISO/IEC 10646:2003, Information technology – Universal Multiple-Octet Coded Character Set (UCS).
– The Unicode Standard, Version 4.0, The Unicode Consortium (Reading, MA, Addison-Wesley).

NOTE 1 – The graphics characters (and their encodings) defined by Unicode are identical to those defined by
ISO/IEC 10646-1, but Unicode is included as a reference because it also specifies the names of control
characters and defines the abbreviation UTF-16BE.

– W3C XML 1.0:2004, Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation,
Copyright © [4 February 2004] World Wide Web Consortium (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/2000/REC-xml-20040204/.

– W3C XML 1.1:2004, Extensible Markup Language (XML) 1.1, W3C Recommendation, Copyright © [4
February 2004] World Wide Web Consortium (Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/2000/REC-
xml11-20040204/.

NOTE 2 – References to both W3C XML 1.0 and W3C XML 1.1 are included as neither is a subset of the other.
These references are used solely in 3.4.10.

– W3C XML Information Set:2004, XML Information Set (Second Edition), W3C Recommendation,
Copyright © [04 February 2004] World Wide Web Consortium (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

– W3C XML Namespaces 1.0:1999, Namespaces in XML, W3C Recommendation, Copyright © [14
January 1999] World Wide Web Consortium (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/1999/REC-xm-
lnames-19990114/.

– W3C XML Namespaces 1.1:2004, Namespaces in XML 1.1, W3C Recommendation, Copyright © [4
February 2004] World Wide Web Consortium (Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/2004/REC-
xm-l-names11-20040204/.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 3

NOTE 3 – References to both W3C XML Namespaces 1.0 and W3C XML Namespaces 1.1 are included as
neither is a subset of the other. These references are used solely in 3.4.10.

– IETF RFC 2045 (1996), Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies.

– IETF RFC 2396 (1998), Uniform Resource Identifiers (URI): Generic Syntax.
– IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 ASN.1 terms

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1:

a) choice type;
b) sequence type;
c) sequence-of type.

3.2 ECN terms

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.692 |
ISO/IEC 8825-3:

a) Encoding Definition Modules (EDM);
b) Encoding Link Module (ELM).

3.3 ISO/IEC 10646 terms

This Recommendation | International Standard uses the following term defined in ISO/IEC 10646:
a) Basic Multilingual Plane.

3.4 Additional definitions

3.4.1 Base64: An encoding mechanism that represents an octet string value as a character string using a restricted
alphabet of 65 characters (see 10.3 and IETF RFC 2045).

3.4.2 character string: A string of ISO/IEC 10646 abstract characters, without any implication on the way they are
encoded.

3.4.3 encoding algorithm: A precise specification of how to efficiently encode a character string with specified
characteristics into octets.

NOTE – An example is the encoding of a string such as "-32176" into a two's complement binary integer in two octets. The
two-octet encoding would be accompanied by a vocabulary table index identifying this encoding algorithm.

3.4.4 external vocabulary: A set of vocabulary tables referenced by a URI (see 7.2.14).

3.4.5 fast infoset document: An XML infoset represented as specified in this Recommendation | International
Standard.

3.4.6 final vocabulary: The content of the vocabulary tables at the end of the creation or of the processing of a fast
infoset document.

3.4.7 information item: Each of the kinds of items that constitute an XML infoset.

3.4.8 initial vocabulary: The set of vocabulary tables established by information at the head of a fast infoset
document that optionally references an external vocabulary and optionally provides additional table entries.

3.4.9 name surrogate: A set of three vocabulary table indexes (the first two optional) that are used to represent a
qualified name (see 3.4.11).

ISO/IEC 24824-1:2005 (E)

4 ITU-T Rec. X.891 (05/2005)

3.4.10 namespace-well-formed XML document: Either a W3C XML 1.0 document that is well-formed according
to W3C XML Namespaces 1.0, or a W3C XML 1.1 document that is well-formed according to W3C XML
Namespaces 1.1.

3.4.11 qualified name: The set consisting of the [prefix], [namespace name], and [local name] properties of an element
information item or attribute information item.

3.4.12 restricted alphabet: An ordered set of distinct ISO/IEC 10646 characters, which permits a compact encoding
of any character string that consists entirely of characters from that set.

3.4.13 vocabulary table index: A positive integer value identifying an entry in a vocabulary table.

3.4.14 vocabulary tables: A set of conceptual tables (typically, but not necessarily, dynamically constructed)
associated with a fast infoset document, which contain character strings or other information, and support the use of
typically-small positive integer values (vocabulary table indexes) identifying their entries.

NOTE – Examples of vocabulary tables are those containing character strings that are the [local name] property of attribute or
element information items, or character strings corresponding to sequences of character information items that are members of the
[children] property of element information items.

3.4.15 XML declaration: The UTF-8 encoding of a specified character string (see also 12.3) that may be included at
the beginning of a fast infoset document to identify the encoding as a fast infoset document and to distinguish it from a
W3C XML 1.0 or W3C XML 1.1 document.

3.4.16 XML infoset: An abstract data set describing the information in a namespace-well-formed XML document,
as specified in W3C XML Information Set.

3.4.17 XML whitespace: One or more of the characters HORIZONTAL TABULATION (9), LINE FEED (10),
CARRIAGE RETURN (13), or SPACE (32) of Unicode.

NOTE – These characters are those that match the production "S" in both W3C XML 1.0 and W3C XML 1.1 (see W3C
XML 1.0, 2.3 and W3C XML 1.1, 2.3). The characters NEXT LINE (133) and LINE SEPARATOR (8232), which may occur in
a namespace-well-formed W3C XML 1.1 document (see W3C XML 1.1, 2.11), are converted to LINE FEED characters by end-
of-line handling (see W3C XML 1.1, 2.11). If those characters occur in an XML infoset generated from a namespace-well-
formed W3C XML 1.1 document, they are not XML whitespace.

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One
BMP Basic Multilingual Plane
ECN Encoding Control Notation
MIME Multipurpose Internet Mail Extensions
UBL Universal Business Language
URI Uniform Resource Identifier
UTF-8 Universal Transformation Function 8-bit (see ISO/IEC 10646, Annex D)
UTF-16BE Universal Transformation Function 16-bit Big Endian (see Unicode, 2.6)
UUID Universally Unique Identifier
XML eXtensible Markup Language

5 Notation
5.1 This Recommendation | International Standard uses the ASN.1 notation defined by ITU-T Rec. X.680 |
ISO/IEC 8824-1 for the formal definition of data types whose encodings are fast infoset documents.

NOTE – Clause 12 specifies the application of ITU-T Rec. X.692 | ISO/IEC 8825-3 to the ASN.1 type definitions, providing the
bit-level encoding of a fast infoset document.

5.2 In this Recommendation | International Standard, bold Courier is used for ASN.1 notation and bold Arial is
used for W3C XML syntax and for the names of information items of the XML Information Set.

5.3 The names of information items' properties are in bold Arial and enclosed between square brackets (for
example, [children]).

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 5

5.4 The names of categories of character strings (see 8.4.2) and the names of categories of qualified names
(see 8.5.4) are in UPPERCASE.

5.5 In this Recommendation | International Standard, bit positions within an octet are specified using the
terminology first bit, second bit, etc., to eighth bit, where the first bit is the most significant bit of the octet, and the
eighth bit is least significant bit of the octet.

6 Principles of vocabulary table construction and use
6.1 Vocabulary tables are conceptual tables mapping a vocabulary table index into a vocabulary table entry.

NOTE – The representation of vocabulary tables in computer memory is not defined, nor is the means by which an
implementation maps a vocabulary table index into a vocabulary table entry for that table.

6.2 The creator of a fast infoset document from an XML infoset determines the contents of the vocabulary tables.

6.3 In the most general case, the head of a fast infoset document can reference a set of vocabulary tables (an
external vocabulary), followed by the specification of additions to those vocabulary tables to form the initial vocabulary
for this fast infoset document. Further additions to the vocabulary tables occur during the creation and during the
processing of a fast infoset document, so that they incrementally grow to form the final vocabulary tables for that
document.

6.4 Some vocabulary tables incrementally grow from an initial vocabulary to a final vocabulary during the
creation and during the processing of a fast infoset document, and therefore have the word "dynamic" in the name of the
vocabulary table. There are no mechanisms for entries to be removed from any table.

6.5 Vocabulary table indexes are implicitly assigned. The first entry to any vocabulary table has a vocabulary
table index of one, and each subsequent entry to that table has the next higher integer value for the vocabulary table
index. Where this Recommendation | International Standard specifies that something is to be added to a vocabulary
table, this implies that the next available vocabulary table index shall be assigned.

NOTE – Vocabulary table indexes start at one and not zero because the value zero (when permitted) has the special meaning of
"empty character string" in a field that might otherwise hold a vocabulary table index.

6.6 In order to support this implicit assignment of vocabulary table indexes, the conceptual order of processing
the components (at any depth) of a fast infoset document is fully-defined (see 8.1).

NOTE – This order is the same as the order of the encodings of the components in a fast infoset document. It does not necessarily
imply that the semantics carried by the document is processed in this order. The order is defined solely for the purposes of
ensuring that the same vocabulary table index is assigned for any given vocabulary table entry by both the creator and the
processor of a fast infoset document.

6.7 Vocabulary tables are used for many purposes (see clause 8), but their primary function is to enable the use of
a vocabulary table index instead of a vocabulary table entry, where such indexes are smaller (and may be faster to
process) than the table entry. A number of built-in entries for some vocabulary tables are specified in clause 9. These
entries are always implicitly present in these vocabulary tables, with the vocabulary table indexes specified in clause 9.

6.8 For some categories of character string, the creator of a fast infoset document has the option of adding or not
adding a string to a vocabulary table, depending on the expected (or known) number of occurrences of that character
string in the XML infoset.

6.9 The precise form and meaning of vocabulary table entries is specified in clause 8, but they are in most cases
variable length character strings, often short, but potentially as large as 232 octets.

6.10 A conforming creator of a fast infoset document is required to do all the additions to the vocabulary tables as
specified in 7.13.7, 7.14.6, 7.14.7, and 7.16.7. This ensures that the number of vocabulary table entries in each
vocabulary table never exceeds 220.

NOTE – A vocabulary table entry may equal one or more other vocabulary table entries. This is in order to allow efficient
creation of fast infoset documents. However, duplicate entries will decrease the efficiency of transfer. A processor is not affected
by duplicate entries.

6.11 A conforming processor of a fast infoset document is required to do all the additions to the vocabulary tables
as specified in 7.13.8, 7.14.11, and 7.16.8. This ensures that the restriction of 6.10 a has not been violated.

ISO/IEC 24824-1:2005 (E)

6 ITU-T Rec. X.891 (05/2005)

7 ASN.1 type definitions

7.1 General

7.1.1 This Recommendation | International Standard specifies a set of ASN.1 types supporting a representation of
the XML Information Set. The root type of this set of types is the Document type.

7.1.2 Some restrictions are imposed on the content of the XML infosets and some simplifications are made in the
representation (see clause 11) in order to improve the usability of the specification and the efficiency of the encodings
produced with it.

NOTE – An XML infoset that does not meet those restrictions cannot be represented as a fast infoset document, nor can it
normally be represented as a namespace-well-formed XML document.

7.1.3 For each kind of information item specified in W3C XML Information Set, a corresponding ASN.1 type
definition is provided in this Recommendation | International Standard. This type definition is always a sequence type,
with components corresponding to the properties of the information item.

7.1.4 Certain properties of information items are not included in the ASN.1 type definitions (see 11.4).

7.1.5 In some cases, the value of a property that is not included in the ASN.1 type definitions can be determined
from the value of other properties of the same or other information items that are included. In these cases, the omission
of that property simplifies the representation with no loss of information. There are, however, a few cases in which the
value of a property that is not included cannot be determined from other properties. In all such cases, the omission of
that property is a simplification that does not limit the utility of the specification for most practical use cases.

7.1.6 Clause 12 specifies the encoding of the Document type.

7.2 The Document type

7.2.1 The Document type is:

Document ::= SEQUENCE {
additional-data SEQUENCE (SIZE(1..one-meg)) OF
 additional-datum SEQUENCE {
 id URI,
 data NonEmptyOctetString } OPTIONAL,
initial-vocabulary SEQUENCE {
 external-vocabulary URI OPTIONAL,
 restricted-alphabets SEQUENCE (SIZE(1..256)) OF
 NonEmptyOctetString OPTIONAL,
 encoding-algorithms SEQUENCE (SIZE(1..256)) OF
 NonEmptyOctetString OPTIONAL,
 prefixes SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 namespace-names SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 local-names SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 other-ncnames SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 other-uris SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 attribute-values SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 content-character-chunks SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 other-strings SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 element-name-surrogates SEQUENCE (SIZE(1..one-meg)) OF
 NameSurrogate OPTIONAL,
 attribute-name-surrogates SEQUENCE (SIZE(1..one-meg)) OF
 NameSurrogate OPTIONAL }
 (CONSTRAINED BY {
 -- If the initial-vocabulary component is present, at least
 -- one of its components shall be present -- }) OPTIONAL,
notations SEQUENCE (SIZE(1..MAX)) OF
 Notation OPTIONAL,
unparsed-entities SEQUENCE (SIZE(1..MAX)) OF
 UnparsedEntity OPTIONAL,

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 7

character-encoding-scheme NonEmptyOctetString OPTIONAL,
standalone BOOLEAN OPTIONAL,
version NonIdentifyingStringOrIndex OPTIONAL
 -- OTHER STRING category --,
children SEQUENCE (SIZE(0..MAX)) OF
 CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 comment Comment,
 document-type-declaration DocumentTypeDeclaration }}

where the value one-meg is:

one-meg INTEGER ::= 1048576 -- Two to the power 20

The NonEmptyOctetString type is:

NonEmptyOctetString ::= OCTET STRING (SIZE(1..four-gig))

where the value four-gig is:

four-gig INTEGER ::= 4294967296 -- Two to the power 32

The URI type is:

URI ::= NonEmptyOctetString

7.2.2 The EncodedCharacterString, NameSurrogate, Notation, UnparsedEntity,
NonIdentifyingStringOrIndex, Element, ProcessingInstruction, Comment, and
DocumentTypeDeclaration types are defined in 7.17, 7.15, 7.11, 7.10, 7.14, 7.3, 7.5, 7.8, and 7.9 respectively.

7.2.3 The URI type shall be a URI as specified in IETF RFC 2396.

7.2.4 The component restricted-alphabets of initial-vocabulary (if present) shall carry one or more
character strings, each holding the characters of a restricted alphabet. Each character string shall contain at least two
characters, and all characters in the character string shall be distinct.

NOTE – The use of a restricted alphabet to optimize encodings of character strings is specified in 7.17.6.

7.2.5 The component encoding-algorithms of initial-vocabulary (if present) shall carry one or more URIs
each identifying an encoding algorithm.

NOTE – There are built-in encoding algorithms defined in this Recommendation | International Standard (see clause 10), with
specified vocabulary table indexes, but it is out of the scope of this Recommendation | International Standard to define further
encoding algorithms and their associated URIs, nor is the means of defining such algorithms determined here. The information
needed to define an encoding algorithm is specified in 8.3.3.

7.2.6 The Document type represents the document information item of an XML infoset. Since all other information
items in an XML infoset are either properties of this information item or properties of an item that is a child or
descendant of this item (at any depth), each Document represents a complete XML infoset.

NOTE – Each Document without a reference to an external vocabulary (see 7.2.13) also defines a final vocabulary that can be
used as the external vocabulary of some other fast infoset document.

7.2.7 The additional-data component (if present) shall carry one or more additional-datum components to
permit additional mechanisms for the processing of a fast infoset document.

NOTE 1 – An example would be data that enables a processor to access parts of a fast infoset document without requiring the
processing of the whole document. The form of such data is not standardized.
NOTE 2 – The number of additional-datum components is restricted to 220 components (see 7.2.1).

7.2.8 Each additional-datum shall consist of:
a) the id component (a value of the URI type); the URI shall reference a specification that defines the form

and semantics of the data component; and
NOTE – The form of the additional-datum may be specified as an abstract type in conjunction with an encoding
rule, or by any other suitable means.

b) the data component, which is an octet string that holds the additional processing data.

7.2.9 The use of an additional-data component is subject to the following:
a) an additional-datum component can be ignored by a processor unless the URI is recognized and the

additional processing is considered relevant for the activity of that processor;
b) a processor that ignores all additional-datum components is nonetheless capable of generating an

XML infoset that is equivalent to the XML infoset used to generate the fast infoset document.

ISO/IEC 24824-1:2005 (E)

8 ITU-T Rec. X.891 (05/2005)

7.2.10 Multiple additional-datum components with the same URI may be present, and will be processed in
accordance with the specification associated with the URI.

7.2.11 The initial-vocabulary component provides data that (together with some built-in table entries)
completely determines the initial content of the restricted alphabet table (see 8.2), the encoding algorithm table
(see 8.3), the dynamic string tables (see 8.4), and the dynamic name tables (see 8.5) of this fast infoset document (the
initial vocabulary of the fast infoset document). An initial vocabulary consists of the following data:

a) an ordered set of restricted alphabets (see 8.2.2), containing at least the built-in restricted alphabets (see
clause 9);

b) an ordered set of encoding algorithms (see 8.3.2), containing at least the built-in encoding algorithms
(see clause 10);

c) eight independent ordered sets of character strings, corresponding to the eight categories of character
strings specified in this Recommendation | International Standard (see 8.4.2), with each set containing
zero or more character strings of a single category; and

d) two independent ordered sets of name surrogates (see 8.5.2), corresponding to the two categories of
qualified names specified in this Recommendation | International Standard (see 8.5.4), with each set
containing zero or more name surrogates of a single category.

NOTE – An initial vocabulary cannot be totally empty, because it always contains (at least) the built-in restricted alphabets and
the built-in encoding algorithms. However, it would not be unusual for a fast infoset document to have an initial vocabulary that
contains only that data, as the decision (by the creator of a fast infoset document) on how to use the initial-vocabulary
component is implementation-dependent, and some implementations may choose to add all vocabulary table entries dynamically
(within the body of the fast infoset document).

7.2.12 The initial vocabulary of the fast infoset document shall be determined as follows:
a) If the initial-vocabulary component is absent, then the initial vocabulary shall consist solely of the

built-in table entries specified in 7.2.21, 7.2.22, and clauses 9 and 10.
b) If the initial-vocabulary component is present, and the external-vocabulary component is

absent, then the initial vocabulary shall consist of the built-in table entries specified in 7.2.21, 7.2.22, and
clauses 9 and 10, with the added table entries (if any) determined by 7.2.16.

c) If the initial-vocabulary component is present, and the external-vocabulary component is
present, then the initial vocabulary shall consist of the final vocabulary identified by the
external-vocabulary component as specified in 7.2.13 and 7.2.14, with the added vocabulary table
entries (if any) determined by 7.2.16.

7.2.13 The external-vocabulary component identifies a final vocabulary using one of the mechanisms specified
in 7.2.14. The URI type (see 7.2.1) determines the final vocabulary to be used as the external vocabulary in one of three
ways (see 7.2.14).

NOTE – This Recommendation | International Standard does not specify any external vocabularies and any URIs that reference
external vocabularies. Such external vocabularies and URIs can be defined by any authority able to allocate those URIs, and may
be privately agreed or may be the subject of standardization.

7.2.14 An external vocabulary can be specified in one of three ways:
a) as the final vocabulary of a fast infoset document, which shall not itself reference an external

vocabulary; or
NOTE 1 – It is an implementation matter whether the final vocabulary is stored locally or whether only the fast
infoset document is stored and the final vocabulary is generated by processing it.
NOTE 2 – The restriction that the final vocabulary of a fast infoset document with a reference to an external
vocabulary cannot itself be used as an external vocabulary is imposed in order to simplify implementation and
avoid circularity of references.

b) as a namespace-well-formed XML document, which is conceptually processed as follows:
1) the XML infoset of the namespace-well-formed XML document shall be determined; and
2) the fast infoset document for this XML infoset shall be created as specified in this

Recommendation | International Standard, but it shall have no initial-vocabulary, the
add-to-table component of the NonIdentifyingStringOrIndex (see 7.14) shall always be set
to TRUE and multiple identical character strings shall not be present in any string table; and

3) the final vocabulary of this fast infoset document becomes the external vocabulary; or
NOTE 3 – It is an implementation matter whether the final vocabulary is stored locally or whether only the XML
document is stored and the final vocabulary generated by processing it.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 9

c) as a set of vocabulary tables specified using any other sufficiently precise mechanism or text, which shall
include the built-in table entries of clauses 9 and 10 (with the vocabulary table indexes specified by those
clauses).

NOTE 4 – It is outside the scope of this Recommendation | International Standard to specify a notation for the
definition of vocabulary tables.
NOTE 5 – The requirement to include the built-in table entries when this mechanism is used ensures that all
vocabulary tables include the built-in table entries.

7.2.15 For an external vocabulary specified according to 7.2.14 c, all string and name table entries, except those in
the PREFIX table and NAMESPACE NAME table, shall be assigned consecutive indexes starting from 1. The PREFIX
table and NAMESPACE NAME table entries shall be assigned consecutive indexes starting from 2. All restricted
alphabets other than those that are built-in shall be assigned consecutive indexes starting from 16. All encoding
algorithms other than those that are built-in shall be assigned consecutive indexes starting from 32.

7.2.16 Each NonEmptyOctetString, EncodedCharacterString, and NameSurrogate (if any) that is present in
any of the remaining components of the initial-vocabulary shall be added in order (see 8.1) to a vocabulary table,
as specified in Table 1.

Table 1 – Mapping of component identifiers to vocabulary tables

Component identifier ASN.1 type of the entry Vocabulary table (see clause 8)

restricted-alphabets NonEmptyOctetString The restricted alphabet table (see 8.2)
encoding-algorithms NonEmptyOctetString The encoding algorithm table (see 8.3)

prefixes NonEmptyOctetString The PREFIX table (see 8.4)
namespace-names NonEmptyOctetString The NAMESPACE NAME table (see 8.4)
local-names NonEmptyOctetString The LOCAL NAME table (see 8.4)
other-ncnames NonEmptyOctetString The OTHER NCNAME table (see 8.4)
other-uris NonEmptyOctetString The OTHER URI table (see 8.4)

attribute-values EncodedCharacterString The ATTRIBUTE VALUE table (see 8.4)
content-character-chunks EncodedCharacterString The CONTENT CHARACTER CHUNK

table (see 8.4)
other-strings EncodedCharacterString The OTHER STRING table (see 8.4)

element-name-surrogates NameSurrogate The ELEMENT NAME table (see 8.5)
Attribute-name-surrogates NameSurrogate The ATTRIBUTE NAME table (see 8.5)

7.2.17 A value of the NonEmptyOctetString type shall carry the UTF-8 encoding (see ISO/IEC 10646, Annex D)
of a character string.

7.2.18 The restricted alphabet table and the encoding algorithm table in an initial vocabulary shall have at most
256 entries. All the other tables shall have at most 220 entries.

NOTE – The restriction on the number of entries is to ensure common upper bounds for table indexes. The restriction also
applies if table entries are added dynamically (see 7.13.7, 7.14.6, 7.14.7 and 7.16.7). These restrictions do not prevent the
encoding of any XML infoset as a fast infoset document.

7.2.19 The built-in restricted alphabets have vocabulary table indexes between 1 and 2 (see clause 9). The
vocabulary table indexes of the restricted alphabets in the restricted-alphabets component of
initial-vocabulary (if present) shall be assigned as follows:

a) if there is no external vocabulary, or the external vocabulary contains only built-in restricted alphabets,
then the indexes shall be assigned starting from 16;

b) otherwise, the indexes shall be assigned starting from one plus the highest restricted alphabet index in the
external vocabulary.

NOTE – This means that vocabulary table indexes of 3 to 15 are not used. These values are reserved for future versions of this
Recommendation | International Standard.

7.2.20 The built-in encoding algorithms have vocabulary table indexes between 1 and 10 (see clause 10). The
vocabulary table indexes of the encoding algorithms in the encoding-algorithms component of
initial-vocabulary (if present) shall be assigned as follows:

a) if there is no external vocabulary, or the external vocabulary contains only built-in encoding algorithms,
then the indexes shall be assigned starting from 32;

ISO/IEC 24824-1:2005 (E)

10 ITU-T Rec. X.891 (05/2005)

b) otherwise, the indexes shall be assigned starting from one plus the highest encoding algorithm index in
the external vocabulary.

NOTE – This means that vocabulary table indexes of 11 to 31 are not used. These values are reserved for future versions of this
Recommendation | International Standard.

7.2.21 The PREFIX table shall have a built-in prefix entry of "xml", assigned an index of 1. The vocabulary table
indexes of the prefixes in the prefixes component of initial-vocabulary (if present) shall be assigned as follows:

a) if there is no external vocabulary, or the external vocabulary contains only the built-in prefix entry, then
the indexes shall be assigned starting from 2;

b) otherwise, the indexes shall be assigned starting from one plus the highest prefix index in the external
vocabulary.

7.2.22 The NAMESPACE NAME table shall have a built-in namespace name entry of:
http://www.w3.org/XML/1998/namespace

This shall be assigned an index of 1.

7.2.23 The vocabulary table indexes of the namespace names in the namespace-names component of
initial-vocabulary (if present) shall be assigned as follows:

a) if there is no external vocabulary, or the external vocabulary contains only the built-in namespace name
entry, then the indexes shall be assigned starting from 2;

b) otherwise, the indexes shall be assigned starting from one plus the highest namespace name index in the
external vocabulary.

7.2.24 The component notations represents the [notations] property of the document information item. The type of
this component is a sequence-of type, even though the [notations] property is specified in W3C XML Information Set as
an unordered set (of notation information items).

NOTE – Here and elsewhere, a sequence-of type is used rather than a set-of type because the latter does not satisfy the need for a
strict ordering of all the components of a fast infoset document (see 8.1).

7.2.25 The component unparsed-entities represents the [unparsed entities] property of the document information
item. The type of this component is a sequence-of type, even though the [unparsed entities] property is specified
in W3C XML Information Set as an unordered set (of unparsed entity information items).

7.2.26 The component character-encoding-scheme represents the [character encoding scheme] property of the
document information item. The type of this component is NonEmptyOctetString and a value of this component shall
carry the UTF-8 encoding (see ISO/IEC 10646, Annex D) of the [character encoding scheme] property. The absence of
this component in an abstract value of the Document type indicates that the [character encoding scheme] property has a
value of "UTF-8".

NOTE – The support of the [character encoding scheme] property enables round-tripping of XML documents to and from fast
infoset documents with no change of character encoding scheme. A creator of a fast infoset document from an XML document
may encode the [character encoding scheme] property obtained from the encoding declaration of the XML document
(see W3C XML 1.0, 4.3.1 and W3C XML 1.1, 4.3.1). A processor of a fast infoset document can use the component
character-encoding-scheme (if present) if it wishes to produce the original encoding.

7.2.27 The component standalone represents the [standalone] property of the document information item. The
abstract value TRUE represents the value yes of this property and the abstract value FALSE represents the value no. The
absence of this component in an abstract value of the Document type indicates that the [standalone] property has no
value.

7.2.28 The component version represents the [version] property of the document information item. The type of this
component is NonIdentifyingStringOrIndex (see 7.14), representing here a character string of the OTHER
STRING category. The absence of this component in an abstract value of the Document type indicates that the [version]
property has no value.

7.2.29 The component children represents the [children] property of the document information item. Exactly one of
the items of the sequence-of (at any position) shall use the alternative element of the choice type, and at most one of
the items (at any position) shall use the alternative document-type-declaration. Each of the other items (if any)
shall use either the alternative processing-instruction or the alternative comment.

7.2.30 The [document element] property of the document information item is not included in the Document type. The
value of this property is always the one and only element information item that is a member of the [children] property of
the document information item.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 11

7.2.31 The [base URI] property of the document information item is not included in the Document type and is not
supported in this Recommendation | International Standard.

7.2.32 The [all declarations processed] property of the document information item is not included in the Document
type, and is assumed to have the value true (see 11.3).

7.3 The Element type

7.3.1 The Element type is:

Element ::= SEQUENCE {
namespace-attributes SEQUENCE (SIZE(1..MAX)) OF
 NamespaceAttribute OPTIONAL,
qualified-name QualifiedNameOrIndex
 -- ELEMENT NAME category --,
attributes SEQUENCE (SIZE(1..MAX)) OF
 Attribute OPTIONAL,
children SEQUENCE (SIZE(0..MAX)) OF
 CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 unexpanded-entity-reference UnexpandedEntityReference,
 character-chunk CharacterChunk,
 comment Comment }}

7.3.2 The NameSpaceAttribute, QualifiedNameOrIndex, Attribute, ProcessingInstruction,
UnexpandedEntityReference, CharacterChunk, and Comment types are defined in 7.12, 7.16, 7.4, 7.5, 7.6, 7.7,
and 7.8 respectively.

7.3.3 The Element type represents the element information item of the XML Information Set.

7.3.4 The component namespace-attributes represents the [namespace attributes] property of the element
information item. The type of this component is a sequence-of type, even though the [namespace attributes] property is
specified in W3C XML Information Set as an unordered set (of attribute information items).

NOTE – The type of the component of the sequence-of is NamespaceAttribute (rather than Attribute), even though the
[namespace attributes] property of the element information item is specified in W3C XML Information Set as a set of attribute
information items. In a restricted XML infoset (see 11.3), the properties of a namespace information item can be determined from
the properties of an attribute information item representing a namespace attribute. The reverse is only partially true, but this
limitation is considered acceptable for the expected uses of this Recommendation | International Standard. (See also the note
in 7.2.24.)

7.3.5 The component qualified-name represents the qualified name (see 3.4.11) of the element information item
(that is, the set consisting of the [prefix], [namespace name], and [local name] properties of this information item). The
type of this component is QualifiedNameOrIndex (see 7.16), representing here a qualified name of the ELEMENT
NAME category.

7.3.6 The component attributes represents the [attributes] property of the element information item. The type of
this component is a sequence-of type, even though the [attributes] property is specified in W3C XML Information Set as
an unordered set (of attribute information items).

7.3.7 The component children represents the [children] property of the element information item. When two or
more adjacent children are character information items, a single CharacterChunk item may be used to represent those
adjacent character information items.

NOTE – If there is a sequence of N adjacent characters among the children of an element information item, then any grouping of
those N characters into a series of consecutive character chunks is allowed. However, it is expected that the creator of a fast
infoset document will make each character chunk as large as possible in order to produce efficient encodings.

7.3.8 The [in-scope namespaces] property of the element information item is not included in the Element type.
NOTE – In a restricted XML infoset (see 11.3), the [in-scope namespaces] property of an element information item can be
determined from the [namespace attributes] property of the element information item, together with the [namespace attributes]
property of all the element information items (if any) that contain (directly or indirectly) that element information item.

7.3.9 The [base URI] property of the element information item is not included in the Element type and is not
supported in this Recommendation | International Standard.

7.3.10 The [parent] property of the element information item is not included in the Element type. The value of this
property, for any given element information item, is the document or element information item that contains that
information item as a member of its [children] property.

ISO/IEC 24824-1:2005 (E)

12 ITU-T Rec. X.891 (05/2005)

7.4 The Attribute type

7.4.1 The Attribute type is:

Attribute ::= SEQUENCE {
qualified-name QualifiedNameOrIndex
 -- ATTRIBUTE NAME category --,
normalized-value NonIdentifyingStringOrIndex
 -- ATTRIBUTE VALUE category -- }

7.4.2 The QualifiedNameOrIndex and NonIdentifyingStringOrIndex types are defined in 7.16 and 7.14
respectively.

7.4.3 The Attribute type represents the attribute information item of the XML Information Set.

7.4.4 The component qualified-name represents the qualified name (see 3.4.11) of the attribute information item
(that is, the set consisting of the [prefix], [namespace name], and [local name] properties of this information item). The
type of this component is QualifiedNameOrIndex (see 7.16), representing here a qualified name of the ATTRIBUTE
NAME category.

7.4.5 The component normalized-value represents the [normalized value] property of the attribute information
item. The type of this component is NonIdentifyingStringOrIndex (see 7.14), representing here a character string
of the ATTRIBUTE VALUE category.

7.4.6 The length of the character string assigned to normalized-value cannot be greater than 232.
NOTE – This restriction is implied by the ASN.1 definition, which is designed for optimization of the encodings and for
simplicity of implementation (see also 11.3 j).

7.4.7 The [specified] property of the attribute information item is not included in the Attribute type.

7.4.8 The [attribute type] property of the attribute information item is not included in the Attribute type.

7.4.9 The [references] property of the attribute information item is not included in the Attribute type.
NOTE – In a restricted XML infoset (see 11.3), the [references] property of an attribute information item can be determined from
the [normalized value] property of the attribute information item, together with the properties of other information items in the XML
infoset.

7.4.10 The [owner element] property of the attribute information item is not included in the Attribute type. The
value of this property, for any given attribute information item, is the element information item that contains that
information item as a member of its [attributes] property.

7.5 The ProcessingInstruction type

7.5.1 The ProcessingInstruction type is:

ProcessingInstruction ::= SEQUENCE {
target IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
content NonIdentifyingStringOrIndex
 -- OTHER STRING category -- }

7.5.2 The IdentifyingStringOrIndex and NonIdentifyingStringOrIndex types are defined in 7.13
and 7.14 respectively.

7.5.3 The ProcessingInstruction type represents the processing instruction information item of the XML
Information Set.

7.5.4 The component target represents the [target] property of the processing instruction information item. The type
of this component is IdentifyingStringOrIndex (see 7.13), representing here a character string of the OTHER
NCNAME category.

7.5.5 The component content represents the [content] property of the processing instruction information item. The
type of this component is NonIdentifyingStringOrIndex (see 7.14), representing here a character string of the
OTHER STRING category.

7.5.6 The length of the character string assigned to content cannot be greater than 232.
NOTE – This restriction is implied by the ASN.1 definition, which is designed for optimization of the encodings and for
simplicity of implementation (see also 11.3 j).

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 13

7.5.7 The [notation] property of the processing instruction information item is not included in the
ProcessingInstruction type.

NOTE – In a restricted XML infoset (see 11.3), the [notation] property of a processing instruction information item can be
determined from the [target] property of the processing instruction information item together with the [notations] property of the
document information item.

7.5.8 The [parent] property of the processing instruction information item is not included in the
ProcessingInstruction type. The value of this property, for any given processing instruction information item, is the
document, element, or document type definition information item that contains that information item as a member of its
[children] property.

7.6 The UnexpandedEntityReference type

7.6.1 The UnexpandedEntityReference type is:

UnexpandedEntityReference ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category -- }

7.6.2 The IdentifyingStringOrIndex type is defined in 7.13.

7.6.3 The UnexpandedEntityReference type represents the unexpanded entity reference information item of the
XML Information Set.

7.6.4 The component name represents the [name] property of the unexpanded entity reference information item. The
type of this component is IdentifyingStringOrIndex (see 7.13), representing here a character string of the OTHER
NCNAME category.

7.6.5 The component system-identifier represents the [system identifier] property of the unexpanded entity
reference information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the OTHER URI category. The absence of this component in an abstract value of the
UnexpandedEntityReference type indicates that the [system identifier] property has no value.

7.6.6 The component public-identifier represents the [public identifier] property of the unexpanded entity
reference information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the OTHER URI category. The absence of this component in an abstract value of the
UnexpandedEntityReference type indicates that the [public identifier] property has no value.

7.6.7 The [declaration base URI] property of the unexpanded entity reference information item is not included in the
UnexpandedEntityReference type and is not supported in this Recommendation | International Standard.

7.6.8 The [parent] property of the unexpanded entity reference information item is not included in the
UnexpandedEntityReference type. The value of this property, for any given unexpanded entity reference information
item, is the element information item that contains that information item as a member of its [children] property.

7.7 The CharacterChunk type

7.7.1 The CharacterChunk type is:

CharacterChunk ::= SEQUENCE {
character-codes NonIdentifyingStringOrIndex
 -- CONTENT CHARACTER CHUNK category -- }

7.7.2 The NonIdentifyingStringOrIndex type is defined in 7.14.

7.7.3 The CharacterChunk type corresponds to the character information item, but represents a series of adjacent
character information items (members of the [children] of the parent element information item) rather than a single
character information item.

7.7.4 The number of character information items represented by a value of the CharacterChunk type shall not be
zero.

7.7.5 The component character-codes represents the [character code] property of the (multiple) character
information item(s) in the chunk. The type of this component is NonIdentifyingStringOrIndex (see 7.14),
representing here a character string of the CONTENT CHARACTER CHUNK category.

ISO/IEC 24824-1:2005 (E)

14 ITU-T Rec. X.891 (05/2005)

7.7.6 The length of the character string assigned to character-codes cannot be greater than 232.
NOTE – This restriction is implied by the ASN.1 definition, which is designed for optimization of the encodings and for
simplicity of implementation. This restriction does not prevent the encoding of an element information item containing more than
232 character information items, because multiple chunks can be used.

7.7.7 The [element content whitespace] property of the character information item(s) is not included in the
CharacterChunk type.

7.7.8 The [parent] property of the character information item(s) is not included in the CharacterChunk type. The
value of this property, for any given character information item, is the element information item that contains that
information item as a member of its [children] property.

7.8 The Comment type

7.8.1 The Comment type is:

Comment ::= SEQUENCE {
content NonIdentifyingStringOrIndex -- OTHER STRING category --}

7.8.2 The NonIdentifyingStringOrIndex type is defined in 7.14.

7.8.3 The Comment type represents the comment information item of the XML Information Set.

7.8.4 The component content represents the [content] property of the comment information item. The type of this
component is NonIdentifyingStringOrIndex type (see 7.14), representing here a character string of the OTHER
STRING category.

7.8.5 The length of the character string assigned to content cannot be greater than 232.
NOTE – This restriction is implied by the ASN.1 definition, which is designed for optimization of the encodings and for
simplicity of implementation (see also 11.3 j).

7.8.6 The [parent] property of the comment information item is not included in the Comment type. The value of this
property, for any given comment information item, is the document or element information item that contains that
information item as a member of its [children] property.

7.9 The DocumentTypeDeclaration type

7.9.1 The DocumentTypeDeclaration type is:

DocumentTypeDeclaration ::= SEQUENCE {
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
children SEQUENCE (SIZE(0..MAX)) OF
 ProcessingInstruction }

7.9.2 The IdentifyingStringOrIndex type is defined in 7.13.

7.9.3 The DocumentTypeDeclaration type represents the document type declaration information item of the XML
Information Set.

7.9.4 The component system-identifier represents the [system identifier] property of the document type
declaration information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here
a character string of the OTHER URI category. The absence of this component in an abstract value of the
DocumentTypeDeclaration type indicates that the [system identifier] property has no value.

7.9.5 The component public-identifier represents the [public identifier] property of the document type declaration
information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the OTHER URI category. The absence of this component in an abstract value of the
DocumentTypeDeclaration type indicates that the [public identifier] property has no value.

7.9.6 The component children represents the [children] property of the document type declaration information item.

7.9.7 The [parent] property of the document type declaration information item is not included in the
DocumentTypeDeclaration type. The value of this property, for any given document type declaration information
item, is the document information item that contains that information item as a member of its [children] property.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 15

7.10 The UnparsedEntity type

7.10.1 The UnparsedEntity type is:

UnparsedEntity ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
notation-name IdentifyingStringOrIndex
 -- OTHER NCNAME category -- }

7.10.2 The IdentifyingStringOrIndex type is defined in 7.13.

7.10.3 The UnparsedEntity type represents the unparsed entity information item of the XML Information Set.

7.10.4 The component name represents the [name] property of the unparsed entity information item. The type of this
component is IdentifyingStringOrIndex (see 7.13), representing here a character string of the OTHER NCNAME
category.

7.10.5 The component system-identifier represents the [system identifier] property of the unparsed entity
information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the OTHER URI category.

7.10.6 The component public-identifier represents the [public identifier] property of the unparsed entity
information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the OTHER URI category. The absence of this component in an abstract value of the
UnparsedEntity type indicates that the [public identifier] property has no value.

7.10.7 The component notation-name represents the [notation name] property of the unparsed entity information
item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a character string of
the OTHER NCNAME category.

7.10.8 The [declaration base URI] property of the unparsed entity information item is not included in the
UnparsedEntity type and is not supported in this Recommendation | International Standard.

7.10.9 The [notation] property of the unparsed entity information item is not included in the UnparsedEntity type.
NOTE – In a restricted XML infoset (see 11.3), the [notation] property of an unparsed entity information item can be determined
from the [notation name] property of the unparsed entity information item together with the [notations] property of the document
information item.

7.11 The Notation type

7.11.1 The Notation type is:

Notation ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category -- }

7.11.2 The IdentifyingStringOrIndex type is defined in 7.13.

7.11.3 The Notation type represents the notation information item of the XML Information Set.

7.11.4 The component name represents the [name] property of the notation information item. The type of this
component is IdentifyingStringOrIndex (see 7.13), representing here a character string of the OTHER NCNAME
category.

7.11.5 The component system-identifier represents the [system identifier] property of the notation information
item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a character string of
the OTHER URI category. The absence of this component in an abstract value of the Notation type indicates that the
[system identifier] property has no value.

ISO/IEC 24824-1:2005 (E)

16 ITU-T Rec. X.891 (05/2005)

7.11.6 The component public-identifier represents the [public identifier] property of the notation information
item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a character string of
the OTHER URI category. The absence of this component in an abstract value of the Notation type indicates that the
[public identifier] property has no value.

7.11.7 The [declaration base URI] property of the notation information item is not included in the Notation type and
not supported in this Recommendation | International Standard.

7.12 The NamespaceAttribute type

7.12.1 The NamespaceAttribute type is:

NamespaceAttribute ::= SEQUENCE {
prefix IdentifyingStringOrIndex OPTIONAL
 -- PREFIX category --,
namespace-name IdentifyingStringOrIndex OPTIONAL
 -- NAMESPACE NAME category -- }

7.12.2 The IdentifyingStringOrIndex type is defined in 7.13.

7.12.3 The NamespaceAttribute type represents an attribute information item that is a member of the [namespace
attributes] property of an element information item of the XML Information Set.

NOTE – In the XML Information Set, both attributes and namespace attributes are attribute information items. In this
Recommendation | International Standard, different types are used for optimization.

7.12.4 There are two types of namespace attributes in the XML Information Set:
a) default namespace declarations: the [prefix] property of the attribute information item has no value, and

the [local name] property is "xmlns";
b) non-default namespace declarations: the [prefix] property of the attribute information item is "xmlns", and

the [local name] property provides the prefix of the namespace declaration.

In both cases, the [normalized value] property of the attribute information item provides the namespace name of the
namespace declaration.

7.12.5 If the namespace attribute is a default namespace declaration (case a of 7.12.4), then the component prefix
shall be absent, otherwise (case b of 7.12.4) it shall be present, representing the [local name] property of the attribute
information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the PREFIX category.

7.12.6 If the [normalized value] property of the attribute information item is an empty string, then the component
namespace-name shall be absent; otherwise, it shall be present, representing the [normalized value] property of the
attribute information item. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the NAMESPACE NAME category.

7.12.7 The [namespace name] property of the attribute information item is always "http://www.w3.org/2000/xmlns/"
(see W3C XML Infoset) and is not included in the NamespaceAttribute type.

7.13 The IdentifyingStringOrIndex type

7.13.1 The IdentifyingStringOrIndex type is:

IdentifyingStringOrIndex ::= CHOICE {
literal-character-string NonEmptyOctetString,
string-index INTEGER (1..one-meg) }

7.13.2 The NonEmptyOctetString type and the one-meg value are defined in 7.2.1.

7.13.3 The IdentifyingStringOrIndex type represents a character string that carries identification information.
NOTE – Examples of such character strings are prefixes, namespace names, and local names of elements and attributes.

7.13.4 An abstract value of this ASN.1 type holds either a character string (of a given category) as a value of the
NonEmptyOctetString type, or the vocabulary table index of a character string (of a given category) in the
vocabulary table for that category of string (see 8.4.2), called the applicable string table.

NOTE 1 – The category of string is always specified in the associated text of earlier subclauses (see 7.5 to 7.12) whenever this
type is used.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 17

NOTE 2 – "Identifying" character strings are treated differently from "non-identifying" character strings (see 7.14). While a
non-identifying character string may be encoded in one of many encoding formats, all identifying character strings are encoded in
UTF-8. Also, while a non-identifying character string may or may not (as a creator's option) be added to the dynamic string table
(see 7.14.6), identifying character strings are always added to the dynamic string table (see 7.13.7).

7.13.5 The literal-character-string, if present, shall carry the UTF-8 encoding (see ISO/IEC 10646,
Annex D) of the character string (see 7.13.4).

7.13.6 The string-index, if present, shall contain the vocabulary table index of any of the entries of the applicable
string table that are identical to the character string.

7.13.7 When creating an abstract value of this ASN.1 type (representing a given character string of a given
category), then if an identical character string exists in the current content of the applicable string table, the creator shall
perform either action a) or action b) below as an implementation option (but the first option should be selected, if
possible, as it produces the least number of indexes pointing to the same character string), otherwise (there is no
existing identical character string) the creator shall perform action b) below. Actions a) and b) are:

a) select the string-index alternative, and assign to string-index the vocabulary table index of any of
the existing entries that are identical to the character string;

b) select the literal-character-string alternative, assign the given character string to
literal-character-string, and add to the applicable string table an identical character string unless
that table already contains 220 entries.

NOTE – The choice of performing action b) will result in more than one identical character string in the string table (if it does not
already contain 220 entries). This does not affect the later processing of character strings (see 7.13.8).

7.13.8 When processing an abstract value of this ASN.1 type representing a character string (of a given category),
the processor shall determine the character string represented by the abstract value as follows:

a) If the string-index alternative is present, then the character string represented by the abstract value
shall be the character string in the current content of the applicable string table whose vocabulary table
index is the value of string-index.

b) If the literal-character-string alternative is present, then the character string represented by the
abstract value shall be the value of literal-character-string, and an identical character string shall
be added to the applicable string table (but see 7.13.9), unless that table already contains 220 entries.

NOTE – The choice of performing action b) will result in more than one identical character string in the string table (if it does not
already contain 220 entries). This does not affect the later processing of character strings (see 7.13.8).

7.13.9 If a processor is unable (for any reason including implementation-specific limits) to add a string to a
vocabulary table containing less than 220 entries when such an addition is required by 7.13.8 b, it shall stop processing
the fast infoset document and shall issue an error.

7.14 The NonIdentifyingStringOrIndex type

7.14.1 The NonIdentifyingStringOrIndex type is:

NonIdentifyingStringOrIndex ::= CHOICE {
literal-character-string SEQUENCE {
 add-to-table BOOLEAN,
 character-string EncodedCharacterString },
string-index INTEGER (0..one-meg) }

7.14.2 The EncodedCharacterString type and the one-meg value are defined in 7.17 and 7.2.1 respectively.

7.14.3 The NonIdentifyingStringOrIndex type represents a character string that does not carry identification
information.

NOTE – An example of such a character string is the value of an attribute.

7.14.4 An abstract value of the NonIdentifyingStringOrIndex type holds either a character string (of a given
category) as a value of the EncodedCharacterString type (see 7.17), or the vocabulary table index of a character
string of a given category in the vocabulary table for that category of string (see 8.4.2), called the applicable string
table.

NOTE – The category of string is always specified in the associated text of earlier clauses whenever this type is used.

7.14.5 The string-index, if present, shall either be zero (denoting a zero-length character string – see 7.14.6) or
shall contain the vocabulary table index of any of the entries in the applicable string table that are identical to the
character string.

ISO/IEC 24824-1:2005 (E)

18 ITU-T Rec. X.891 (05/2005)

7.14.6 For a zero-length character string, the creator shall always use the string-index alternative with the integer
value zero. A processor shall treat such a value as representing a zero-length character string.

7.14.7 When creating an abstract value of the NonIdentifyingStringOrIndex type (representing a given
character string of a given category) of non-zero length, then if an identical character string exists in the current content
of the applicable string table, the creator shall perform either action a) or action b) below as an implementation option
(but the first option should be selected, if possible, as it produces the least number of indexes pointing to the same
character string), otherwise (there is no existing identical character string) the creator shall perform action b) below.
Actions a) and b) are:

a) select the string-index alternative and assign to string-index the vocabulary table index of any of
the existing entries that are identical to the character string;

b) select the literal-character-string alternative, assign the given character string to the
character-string component, and either:
1) add an identical character string to the applicable string table and set the add-to-table component

to TRUE (this action b1 shall not be used if the applicable string table already contains 220 entries);
or

NOTE 1 – If the applicable string table already contains 220 entries, then only action a or b2 is available.

2) set the add-to-table component to FALSE.

NOTE 2 – The choice of performing action b1 will result in more than one identical character string in the current
content. This does not affect the later processing of character strings (see 7.14.8).

7.14.8 When processing an abstract value of this ASN.1 type representing a character string of a given category, the
processor shall determine the character string represented by the abstract value as follows:

a) If the string-index alternative is present, then the character string represented by the abstract value
shall be the character string in the applicable string table whose vocabulary table index is the value of
string-index.

NOTE 1 – If the string-index exceeds the current size of that vocabulary table, the fast infoset document is in
error.

b) If the literal-character-string alternative is present and the add-to-table component has the
value TRUE, then the character string represented by the abstract value shall be the value of the
character-string component. The processor shall add to the applicable string table an identical
character string (but see 7.14.12).

NOTE 2 – If the applicable string table already contains 220 strings, the fast infoset document is in error.

c) If the literal-character-string alternative is present and the add-to-table component has the
value FALSE, then the character string represented by the abstract value shall be the value of the
character-string component.

7.14.9 If a processor is unable (for any reason including implementation-specific limits) to add a string to a
vocabulary table when such an addition is required by 7.14.8 b), it shall stop processing the fast infoset document and
shall issue an error.

7.15 The NameSurrogate type

7.15.1 The NameSurrogate type is:

NameSurrogate ::= SEQUENCE {
prefix-string-index INTEGER(1..one-meg) OPTIONAL,
namespace-name-string-index INTEGER(1..one-meg) OPTIONAL,
local-name-string-index INTEGER(1..one-meg) }
(CONSTRAINED BY {-- prefix-string-index shall only be present if
 -- namespace-name-string-index is present --})

7.15.2 The one-meg value is defined in 7.2.1.

7.15.3 The NameSurrogate type holds three positive integers (the first two optional) forming a name surrogate
(see 8.5.2).

NOTE – This type occurs only in the initial-vocabulary component of the Document type.

7.15.4 The prefix-string-index (if present), namespace-name-string-index (if present), and local-name-
string-index shall be greater than zero and not greater than the number of entries in the PREFIX, NAMESPACE
NAME, and LOCAL-NAME tables of the initial vocabulary, respectively.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 19

NOTE – If the processor of a fast infoset document chooses not to check that this restriction is satisfied, security vulnerabilities
could result from further processing.

7.15.5 The prefix-string-index shall be absent unless the namespace-name-string-index is present.

7.16 The QualifiedNameOrIndex type

7.16.1 The QualifiedNameOrIndex type is:

QualifiedNameOrIndex ::= CHOICE {
literal-qualified-name SEQUENCE {
 prefix IdentifyingStringOrIndex OPTIONAL
 -- PREFIX category --,
 namespace-name IdentifyingStringOrIndex OPTIONAL
 -- NAMESPACE NAME category --,
 local-name IdentifyingStringOrIndex
 -- LOCAL NAME category -- },
name-surrogate-index INTEGER (1..one-meg) }

7.16.2 The IdentifyingStringOrIndex type and the one-meg value are defined in 7.13 and 7.2.1 respectively.

7.16.3 The QualifiedNameOrIndex type represents a qualified name (see 3.4.11).

7.16.4 An abstract value of this ASN.1 type holds either three components corresponding to the prefix, namespace
name, and local name of a qualified name (of a given category), or the vocabulary table index of a name surrogate of a
given category in the vocabulary table for that category of qualified name (see 8.5.2), called the applicable name table.

NOTE – The category is always specified in the associated text of earlier clauses whenever this type is used.

7.16.5 The name-surrogate-index, if present, shall contain the vocabulary table index of a name surrogate in the
applicable name table.

7.16.6 If the namespace-name is absent, then the prefix shall also be absent.

7.16.7 When creating an abstract value of this ASN.1 type representing a given qualified name (of a given category),
a creator shall perform the actions specified in the following subclauses.

7.16.7.1 The following conditions shall be evaluated in order:
a) either the qualified name has no prefix or the prefix of the qualified name exists in the current content of

the PREFIX table;
b) either the qualified name has no namespace name or the namespace name of the qualified name exists in

the current content of the NAMESPACE NAME table;
c) the local name of the qualified name exists in the current content of the LOCAL NAME table;
d) the first three conditions are all satisfied and a name surrogate (see 8.5), consisting of the vocabulary

table index(es) of the prefix (if any), namespace name (if any), and local name, exists in the current
content of the applicable name table.

7.16.7.2 If all the conditions above are satisfied, then the name-surrogate-index alternative shall be selected, and
shall be set to the vocabulary table index of the name surrogate determined in 7.16.7.1 d in the applicable name table,
completing the procedures of 7.16.7.

7.16.7.3 Otherwise, the literal-qualified-name alternative shall be selected, and its components shall be
assigned as follows:

a) if the qualified name has no prefix, then the prefix component shall be absent, otherwise the prefix
shall be assigned to the prefix component by applying 7.13.7 with the restriction that action 7.13.7 b)
shall not be performed if an identical character string exists in the current content of the applicable string
table. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here a
character string of the PREFIX category;

b) if the qualified name has no namespace name, then the namespace-name component shall be absent,
otherwise the namespace name shall be assigned to the namespace-name component by applying 7.13.7
with the restriction that action 7.13.7 b) shall not be performed if an identical character string exists in
the current content of the applicable string table. The type of this component is
IdentifyingStringOrIndex (see 7.13), representing here a character string of the NAMESPACE
NAME category (see 8.4.2);

ISO/IEC 24824-1:2005 (E)

20 ITU-T Rec. X.891 (05/2005)

c) the local name of the qualified name shall be assigned (by applying 7.13.7) to the local-name
component. The type of this component is IdentifyingStringOrIndex (see 7.13), representing here
a character string of the LOCAL NAME category.

NOTE – The application of 7.13.7 in this subclause may cause the addition of the local name to the LOCAL
NAME table.

7.16.7.4 If the application of 7.13.7 in subclause 7.16.7.3 to one or more of the three above character strings has not
added the string to a vocabulary table because that table already contained 220 entries (see 7.13.7 b), then a name
surrogate for this qualified name cannot be created.

7.16.7.5 Otherwise, a name surrogate (see 8.5), consisting of the vocabulary table index(es) of the prefix (if any),
namespace name (if any), and local name, shall be created. If this name surrogate does not exist in the current content
of the applicable name table, then it shall be added to that table, unless the table already contains 220 entries.

7.16.8 When processing an abstract value of the QualifiedNameOrIndex type representing a qualified name of a
given category, the processor shall determine the qualified name represented by the abstract value according to the
following subclauses.

7.16.8.1 If the name-surrogate-index alternative is present, then the qualified name represented by the abstract
value shall be the one represented by the name surrogate of the given category (see 8.5.2) in the applicable name table
whose vocabulary table index is the value of name-surrogate-index.

7.16.8.2 If the literal-qualified-name alternative is present, then:
a) The qualified name represented by the abstract value shall be determined as follows:

1) the prefix of the qualified name shall be determined (by applying 7.13.8) from the prefix
component (if this is present); the type of this component is IdentifyingStringOrIndex
(see 7.13), representing here a character string of the PREFIX category;

2) the namespace name of the qualified name shall be determined (by applying 7.13.8) from the
namespace-name component (if this is present); the type of this component is
IdentifyingStringOrIndex (see 7.13), representing here a character string of the
NAMESPACE NAME category (see 8.4.2);

3) the local name of the qualified name shall be determined (by applying 7.13.8) from the local-
name component; the type of this component is IdentifyingStringOrIndex (see 7.13),
representing here a character string of the LOCAL NAME category.

NOTE – These actions may require an addition to the corresponding vocabulary tables, as specified in 7.13.8 b.

b) If, after possible additions as a result of processing the components of the literal-qualified-name,
vocabulary table indexes are available for all of the components that are present, then a name surrogate
consisting of those vocabulary indexes shall be added to the applicable name table (but see 7.16.9),
unless that vocabulary table already contains 220 name surrogates.

7.16.9 If a processor is unable (for any reason including implementation-specific limits) to add a name surrogate to a
vocabulary table containing less than 220 entries when such an addition is required by 7.16.8.2 b, it shall stop processing
the fast infoset document and shall issue an error.

7.17 The EncodedCharacterString type

7.17.1 The EncodedCharacterString type is:

EncodedCharacterString ::= SEQUENCE {
encoding-format CHOICE {
 utf-8 NULL,
 utf-16 NULL,
 restricted-alphabet INTEGER(1..256),
 encoding-algorithm INTEGER(1..256) },
octets NonEmptyOctetString }

7.17.2 The EncodedCharacterString type contains an encoding of a character string. It specifies an octet string
that is a reversible mapping of a character string into an octet string. A creator of a fast infoset document specifies in the
encoding-format the encoding that has been used, and the processor uses this information to decode the octets in the
octets component into a character string.

7.17.3 The component octets shall carry an octet string value which is an encoding of the character string specified
by the encoding-format component.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 21

NOTE – In general, there are multiple encodings that can be used for a given character string. A creator of a fast infoset
document may choose an encoding based on certain criteria (for example, it can try to optimize size or processing speed), but it
may also prefer the convenience and universal applicability of UTF-8 or UTF-16BE. It is also the case that some encodings will
only be able to encode character strings that contain only a subset of the ISO/IEC 10646 characters.

7.17.4 The utf-8 encoding format can be used for any character string. This encoding format shall be applied by
producing a UTF-8 encoding (see ISO/IEC 10646) of the character string and assigning that encoding to the octets
component.

NOTE – This encoding format is most suitable for character strings in which ISO/IEC 10646 characters in the early part of the
ISO/IEC 10646 Basic Multilingual Plane are the most common, and where none of the other encoding formats is applicable or
more useful.

7.17.5 The utf-16 encoding format can also be used for any character string. This encoding format shall be applied
by producing a UTF-16BE encoding (see Unicode, 2.6) of the character string and assigning that encoding to the
octets component.

NOTE 1 – This encoding format is most suitable for character strings in which a wide range of ISO/IEC 10646 characters are
present, and none of the other encoding formats is applicable or more useful.
NOTE 2 – The byte order of the UTF-16BE encoding specified in Unicode, 2.6 is most significant byte first (the earlier byte in
the octet string).

7.17.6 The restricted-alphabet encoding format is based on the use of a restricted alphabet, selected from those
present in the restricted alphabet table. The restricted-alphabet component shall contain the vocabulary table
index of the restricted alphabet. This encoding format can only be used for a character string that consists entirely of the
characters in the restricted alphabet in the restricted alphabet table entry indexed by the restricted-alphabet
component. A restricted-alphabet encoding format shall be applied as specified in 7.17.6.1 to 7.17.6.6.

7.17.6.1 An integer value (starting from zero) shall be assigned to each character of the restricted alphabet, in order.

7.17.6.2 Each character in the character string shall be converted to an integer, which is the integer assigned to the
character in the restricted alphabet.

7.17.6.3 Each integer shall be represented as an unsigned integer binary number in a bit field. The size of the bit-field
shall be determined by the integer value assigned to the last character of the restricted alphabet. That integer value shall
be incremented by 1 to produce an integer value (N, say). The bit-field size shall be the minimum number of bits to
encode N as an unsigned integer encoding.

NOTE 1 – The incrementing is necessary because a value of all ones in the bit-field is interpreted as the end of the character
string, and cannot be used to represent a character. This means that if the restricted alphabet contains a number of characters that
is an exact power of two, the bit-field will have one more bit than might otherwise be expected.
NOTE 2 – For example, if there are 24 characters in the restricted alphabet, then each character will encode into five bits, but if
there are 32 characters in the restricted alphabet, then each character will encode into six bits.

7.17.6.4 All these bit fields shall be concatenated (in order) into a bit string.

7.17.6.5 If the length of the resulting bit string is not an integral multiple of 8 bits, then '1' bits shall be appended to
make the length of the bit-string an integral multiple of 8 bits.

7.17.6.6 The resulting bit string (which is now an integral multiple of eight bits), reinterpreted as an octet string, shall
be assigned to the octets component.

7.17.7 The encoding-algorithm encoding format is specified by the encoding algorithm (see 8.3) that is the table
entry in the encoding algorithm table whose vocabulary table index is the value of the encoding-algorithm
component. The encoding algorithm vocabulary table index shall be assigned to the encoding-algorithm component,
and the octet string resulting from the encoding shall be placed in the octets component.

8 Construction and processing of a fast infoset document
A fast infoset document makes heavy use of vocabulary table indexes into a variety of tables that are built at various
stages in the construction and in the processing of that document. Subclause 8.1 specifies a conceptual ordering of the
components of an abstract value of the Document type to ensure that the creator and the processors of fast infoset
documents create identical vocabulary tables. Subsequent subclauses specify the vocabulary tables that are built and
used in the creation and processing of a fast infoset document. The representation of these tables in a computer system
is an implementation matter, and is not standardized. A vocabulary table provides a mapping from a vocabulary table
index to information in an XML infoset (possibly indirectly).

NOTE – The vocabulary tables for a fast infoset document are built dynamically during the construction of the fast infoset
document. They are built dynamically from the content of the fast infoset document during the processing of that fast infoset
document. They are never exchanged in any other form.

ISO/IEC 24824-1:2005 (E)

22 ITU-T Rec. X.891 (05/2005)

8.1 Conceptual ordering of components of an abstract value of the Document type

8.1.1 In order to ensure that different implementations assign vocabulary table indexes in the same way when
constructing and when processing a fast infoset document, a conceptual order is specified for the components of an
abstract value of the Document type. The construction and the processing of such abstract values shall use this
conceptual order when adding strings (see 7.13.7 and 7.14.6) and name surrogates (see 7.16.7) to the vocabulary tables.

NOTE – This order is the same as the order of the encodings of the components in a fast infoset document. It does not necessarily
imply that the semantics carried by the document are processed in this order. The order is defined solely for the purposes of
ensuring that the same vocabulary table index is assigned for any given vocabulary table entry by both the creator and the
processor of a fast infoset document.

8.1.2 The conceptual order for the construction and processing of a fast infoset document is specified as follows:
The components of an abstract value of the Document type shall be visited according to the algorithm specified in
8.1.2.1 to 8.1.2.5. The order in which the components are visited defines the conceptual order.

8.1.2.1 The top-level component of the abstract value (corresponding to the Document type) shall be visited first.

8.1.2.2 If the type of the component being visited is a sequence type, then the components of the sequence type that
are present in the abstract value shall be visited in the order of their textual definition, from the first component that is
present to the last component that is present, applying subclauses 8.1.2.1 to 8.1.2.5 recursively to each component being
visited.

8.1.2.3 If the type of the component being visited is a sequence-of type, then the occurrences of the component of the
sequence-of shall be visited in sequence-of order, from the first occurrence to the last occurrence of the component of
the sequence-of, applying subclauses 8.1.2.1 to 8.1.2.5 recursively to each component being visited.

8.1.2.4 If the type of the component being visited is a choice type, then the alternative that is present in the abstract
value shall be visited and subclauses 8.1.2.1 to 8.1.2.5 shall be applied recursively to that alternative.

8.1.2.5 If the type of the component being visited is any other ASN.1 type, then no further action is required for that
component.

8.2 The restricted alphabet table

8.2.1 Each fast infoset document has a restricted alphabet table associated with it. The restricted alphabet table
contains restricted alphabets that can be referenced through a vocabulary table index.

8.2.2 Each entry in the restricted alphabet table shall be an ordered set of distinct ISO/IEC 10646 characters of any
size between 2 and 220 characters.

NOTE – A restricted alphabet permits a compact encoding of any character string consisting entirely of characters from that set,
through the assignment of progressive integers to the characters in the set and the use of those integers to encode the characters of
the string (see 7.17.6).

8.3 The encoding algorithm table

8.3.1 Each fast infoset document has an encoding algorithm table associated with it. The encoding algorithm table
contains definitions of encoding algorithms that can be referenced through a vocabulary table index.

8.3.2 Each entry in this table specifies the encoding of a character string with some defined characteristics into an
octet string (see 7.17.7).

NOTE – The defined characteristics may refer to the length of the string, to the characters appearing in it, or to an arbitrarily
complex pattern of characters. In general, a given encoding algorithm applies only to a special and defined subset of the
ISO/IEC 10646 character strings.

8.3.3 Encoding algorithms are subject to the following restrictions:
a) the encoding algorithm shall have a URI associated with it, unless it is a built-in encoding algorithm, so

that it can be referenced for addition to the table;
b) the encoding algorithm shall specify precisely what kinds of character strings it can be applied to; that

specification shall include a restricted alphabet (if any), a length range (if any), and any additional
constraints upon the length and the content of the character strings (such as a pattern);

c) for any character string to which it can be applied, the encoding algorithm shall provide a reversible
mapping from that character string to an octet string.

NOTE 1 – The above implies that there cannot be any character string S for which an encoding step from S to E, followed by a
decoding step from E to S', results in S' ≠ S, even if the difference between S and S' is small (for example, an extra SPACE). On
the other hand, it is not required that any character string S be encodable, nor is it required that the encodings be canonical.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 23

NOTE 2 – An application that creates a fast infoset document from in-memory data, such as floating point numbers, is not
required to produce a lexical representation of that data and then to apply an encoding algorithm to that representation. The
application can instead create an octet string directly from that data, provided that the octet string is one that could have been
produced by applying that encoding algorithm to a character string that represents the in-memory data and is a character string to
which that encoding algorithm can be applied.
NOTE 3 – Encoding algorithms (other than the built-in ones) may be specified in other standards or be the subject of mutual
agreement between the creator and the processors of a fast infoset document.

8.4 The dynamic string tables

8.4.1 Each fast infoset document has eight dynamic string tables associated with it. Each dynamic string table
contains character strings that can be referenced through a vocabulary table index.

8.4.2 This Recommendation | International Standard classifies all the character strings that can occur in a fast
infoset document into the eight following categories, each of which has a dynamic string table:

a) PREFIX: This category comprises character strings that are the [prefix] property of an element, attribute, or
namespace information item.

b) NAMESPACE NAME: This category comprises character strings that are the [namespace name] property
of an element, attribute, or namespace information item.

c) LOCAL NAME: This category comprises character strings that are the [local name] property of an element
or attribute information item.

d) OTHER NCNAME: This category comprises character strings that are the [target] property of a
processing instruction information item; or the [name] property of an unexpanded entity reference, unparsed
entity, or notation information item; or the [notation name] property of an unparsed entity information item.

e) OTHER URI: This category comprises character strings that are the [system identifier] property or the
[public identifier] property of an unexpanded entity reference, document type declaration, unparsed entity, or
notation information item.

f) ATTRIBUTE VALUE: This category comprises character strings that are the [normalized value] property
of an attribute information item.

g) CONTENT CHARACTER CHUNK: This category comprises character strings that are the [character
code] property of a chunk of character information items that are consecutive children of a given element
information item.

h) OTHER STRING: This category comprises character strings that are the [version] property of a document
information item; or the [content] property of a processing instruction or comment information item.

8.5 The dynamic name tables and name surrogates

8.5.1 Each fast infoset document has two dynamic name tables associated with it. Each dynamic name table
contains name surrogates that can be referenced through a vocabulary table index and are used to identify a qualified
name, which may be either prefixed or unprefixed (and may or may not have a namespace name).

8.5.2 A name surrogate is a set of up to three ordered vocabulary table indexes:
a) (optionally) the index of a string in the PREFIX table;
b) (optionally) the index of a string in the NAMESPACE NAME table; and
c) the index of a string in the LOCAL NAME table.

The first vocabulary table index shall not be present unless the second is present.

8.5.3 Three cases can occur:
a) all three indexes are present, in which case the name surrogate represents a prefixed qualified name;
b) only the second and third indexes are present, in which case the name surrogate represents an unprefixed

qualified name that has a namespace name;
c) only the third index is present, in which case name surrogate represents an unprefixed qualified name

that has no namespace name.

8.5.4 This Recommendation | International Standard classifies all the qualified names that can occur in a fast infoset
document (and therefore also the name surrogates that represent them) into the two following categories, each of which
has a dynamic name table:

a) ELEMENT NAME: This category comprises name surrogates representing the qualified name of an
element information item.

ISO/IEC 24824-1:2005 (E)

24 ITU-T Rec. X.891 (05/2005)

b) ATTRIBUTE NAME: This category comprises name surrogates representing the qualified name of an
attribute information item.

8.5.5 The qualified name that is represented by a given name surrogate shall be determined as follows, given a
dynamic string table:

a) the first vocabulary table index (if present) shall be interpreted as the vocabulary table index of a
character string in the PREFIX table; and

b) the second vocabulary table index of the name surrogate (if present) shall be interpreted as the
vocabulary table index of a character string in the NAMESPACE NAME table; and

c) the third integer shall be interpreted as the vocabulary table index of a character string in the LOCAL
NAME table.

9 Built-in restricted alphabets

9.1 The "numeric" restricted alphabet

9.1.1 This restricted alphabet has a vocabulary table index of 1, and consists of the following fifteen ISO/IEC
10646 characters (in this order):

DIGIT ZERO to DIGIT NINE
HYPHEN-MINUS
PLUS SIGN
FULL STOP
LATIN SMALL LETTER E
SPACE

9.1.2 This restricted alphabet is suitable for encoding character strings representing several types of numbers,
including floating-point numbers in scientific notation. A single character string may contain multiple numbers
separated by spaces.

9.2 The "date and time" restricted alphabet

9.2.1 This restricted alphabet has a vocabulary table index of 2 and consists of the following fifteen ISO/IEC 10646
characters (in this order):

DIGIT ZERO to DIGIT NINE
HYPHEN-MINUS
COLON
LATIN CAPITAL LETTER T
LATIN CAPITAL LETTER Z
SPACE

9.2.2 This restricted alphabet is suitable for encoding character strings representing the most common expressions
of date and time based on ISO 8601. A single character string may contain multiple such expressions separated by
spaces.

10 Built-in encoding algorithms

10.1 General

10.1.1 This clause specifies the built-in encoding algorithms. Built-in encoding algorithms have no URI associated
with them.

NOTE – URIs are necessary for encoding algorithms that are to be explicitly identified in an initial vocabulary, but built-in
encoding algorithms are always added implicitly to the encoding algorithm table and therefore do not need URIs.

10.1.2 In this clause, the term "word" indicates any group of consecutive characters within a given character string,
which:

a) contains no SPACE; and

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 25

b) is either at the beginning of the character string or is preceded by a SPACE; and
c) is either at the end of the character string or is followed by a SPACE.

NOTE – A "word" is not restricted to alphabetic characters.

10.2 The "hexadecimal" encoding algorithm

10.2.1 This encoding algorithm has a vocabulary table index of 1, and can only be applied to a character string that
consists of the following sixteen ISO/IEC 10646 characters:

DIGIT ZERO to DIGIT NINE
LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER F

and contains an even number of characters (including zero).
NOTE – No embedded XML whitespace is allowed.

10.2.2 The character string shall be interpreted as the hexadecimal encoding of an octet string, with the first character
of the string corresponding to the most significant nibble of the first octet, and so on.

10.3 The "base64" encoding algorithm

10.3.1 This encoding algorithm has a vocabulary table index of 2, and can only be applied to a character string that:
a) consists entirely of the characters LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z,

LATIN SMALL LETTER A to LATIN SMALL LETTER Z, DIGIT ZERO to DIGIT NINE, PLUS
SIGN, SOLIDUS, and EQUALS SIGN; and

NOTE – This does not allow the presence of XML whitespace in the character string.

b) either is a valid instance of the Content Transfer Encoding specified in IETF RFC 2045, 6.8, or would
become a valid instance of that encoding through the insertion of XML whitespace wherever required by
IETF RFC 2045.

10.3.2 The character string shall be interpreted as the Base64 encoding (see IETF RFC 2045) of an octet string
(assuming that additional XML whitespace is present where required by IETF RFC 2045). The resulting octet string is
the octet string specified by that Base64 encoding.

10.3.3 This encoding algorithm is suitable for encoding character strings that contain no XML whitespace, and are
Base64 strings (of any length) or would become Base64 strings by the addition of XML whitespace.

10.4 The "short" encoding algorithm

10.4.1 This encoding algorithm has a vocabulary table index of 3, and can only be applied to a character string that
satisfies all of the following conditions:

a) the character string consists entirely of the characters DIGIT ZERO to DIGIT NINE, HYPHEN-MINUS,
and SPACE; and

b) neither the first nor the last character in the character string is a SPACE, and there is no pair of adjacent
SPACEs; and

c) the character string contains at least one word (see 10.1.2); and
d) each HYPHEN-MINUS that is present is the first character of a word; and
e) each HYPHEN-MINUS is followed by at least one character in the range DIGIT ONE to DIGIT NINE;

and
f) each DIGIT ZERO is either the only character in a word or is preceded by a character in the range DIGIT

ONE to DIGIT NINE; and
g) each word in the character string, if interpreted as a signed integer base-10 numeric character string,

yields a value in the range –32768 to 32767.

10.4.2 Each word (see 10.1.2) in the character string shall be interpreted as a signed integer base-10 numeric
character string and shall be represented as a 16-bit two's complement integer.

10.4.3 Each group of 8 bits in the 16-bit two's complement integer for a word shall produce an octet of the octet
string, beginning with the highest-order group of 8 bits. The highest-order bit in each group of 8 bits shall become the
most significant bit of the corresponding octet. If there are multiple words in the character string, they shall be encoded
in order, and the octets produced by the multiple 16-bit two's complement integers shall be concatenated in that order.

ISO/IEC 24824-1:2005 (E)

26 ITU-T Rec. X.891 (05/2005)

10.4.4 This encoding algorithm is suitable for encoding character strings representing a single integer in the range
 –32768 to 32767 (representable as a 16-bit two's complement integer) or a list of such integers.

10.5 The "int" encoding algorithm

10.5.1 This encoding algorithm has a vocabulary table index of 4, and can only be applied to a character string that
satisfies all of the following conditions:

a) the character string satisfies the conditions specified under 10.4.1 a to f; and
b) each word (see 10.1.2) in the character string, if interpreted as a signed integer base-10 numeric character

string, yields a value in the range –2147483648 to 2147483647.

10.5.2 Each word (see 10.1.2) in the character string shall be interpreted as a signed integer base-10 numeric
character string and shall be represented as a 32-bit two's complement integer.

10.5.3 Each group of 8 bits in the 32-bit two's complement integer for a word shall produce an octet of the octet
string, beginning with the highest-order group of 8 bits. The highest-order bit in each group of 8 bits shall become the
most significant bit of the corresponding octet. If there are multiple words in the character string, they shall be encoded
in order, and the octets produced by the multiple 32-bit two's complement integers shall be concatenated in that order.

10.5.4 This encoding algorithm is suitable for encoding character strings representing a single integer in the range
–2147483648 to 2147483647 (representable as a 32-bit two's complement integer) or a list of such integers.

10.6 The "long" encoding algorithm

10.6.1 This encoding algorithm has a vocabulary table index of 5, and can only be applied to a character string that
satisfies all of the following conditions:

a) the character string satisfies the conditions specified under 10.4.1 a to f; and
b) each word (see 10.1.2) in the character string, if interpreted as a signed integer base-10 numeric character

string, yields a value in the range –9223372036854775808 to 9223372036854775807.

10.6.2 Each word (see 10.1.2) in the character string shall be interpreted as a signed integer base-10 numeric
character string and shall be represented as a 64-bit two's complement integer.

10.6.3 Each group of 8 bits in the 64-bit two's complement integer for a word shall produce an octet of the octet
string, beginning with the highest-order group of 8 bits. The highest-order bit in each group of 8 bits shall become the
most significant bit of the corresponding octet. If there are multiple words in the character string, they shall be encoded
in order, and the octets produced by the multiple 64-bit two's complement integers shall be concatenated in that order.

10.6.4 This encoding algorithm is suitable for encoding character strings representing a single integer in the range
–9223372036854775808 to 9223372036854775807 (representable as a 64-bit two's complement integer) or a list of
such integers.

10.7 The "boolean" encoding algorithm

10.7.1 This encoding algorithm has a vocabulary table index of 6, and can only be applied to a character string that
satisfies all of the following conditions:

a) the character string consists entirely of one or more of the word "false" or the word "true", and the
character SPACE; and

b) neither the first nor the last character in the character string is a SPACE, and there is no pair of adjacent
SPACEs; and

c) the character string contains at least one word (see 10.1.2).

10.7.2 Each word "false" or "true" in the character string shall be encoded as a single bit (set to zero or one,
respectively) of the octet string being produced, starting from the fifth bit of the first octet proceeding to the eighth bit
of the first octet. Subsequent bits are placed in subsequent octets proceeding from the first bit of each octet to the eighth
bit of that octet, using only as many octets as required. Any unused bits in the last octet shall be set to zero.

10.7.3 The first four bits of the first octet shall contain the number of unused bits in the last octet, encoded as a 4-bit
unsigned integer.

NOTE – The first octet may also be the last octet and may contain up to three unused bits. If there is more than one octet, then the
last octet may contain up to seven unused bits.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 27

10.8 The "float" encoding algorithm

10.8.1 This encoding algorithm has a vocabulary table index of 7, and can only be applied to a character string that
satisfies all of the following conditions:

a) the character string consists entirely of the characters DIGIT ZERO to DIGIT NINE, HYPHEN-MINUS,
FULL STOP, LATIN CAPITAL LETTER E, and SPACE; and

NOTE – LATIN SMALL LETTER E is not allowed, as the encoding would then not be reversible.

b) neither the first nor the last character in the character string is a SPACE, and there is no pair of adjacent
SPACEs; and

c) the character string contains at least one word (see 10.1.2); and
d) each word in the character string matches the canonical lexical representation of a float as specified in

W3C XML Schema, Part 2, 3.2.4; and
e) each word in the character string, if interpreted as a floating-point base-10 numeric character string,

yields a value that is representable as a 32-bit IEEE 754 float.

10.8.2 Each word (see 10.1.2) in the character string shall be interpreted as a floating-point base-10 numeric
character string and shall be represented as a 32-bit IEEE 754 float.

10.8.3 Each group of 8 bits in the 32-bit IEEE 754 float for a word shall produce an octet of the octet string,
beginning with the leading group of 8 bits. The leading bit in each group of 8 bits shall become the most significant bit
of the corresponding octet. If there are multiple words in the character string, they shall be encoded in order, and the
octets produced by the multiple 32-bit IEEE 754 floats shall be concatenated in that order.

10.8.4 This encoding algorithm is suitable for encoding character strings representing a single floating-point number
representable as a 32-bit IEEE 754 float or a list of such floating-point numbers.

10.9 The "double" encoding algorithm

10.9.1 This encoding algorithm has a vocabulary table index of 8, and can only be applied to a character string that
satisfies all of the following conditions:

a) the character string satisfies the conditions specified under 10.8.1 a to c;
b) each word in the character string matches the canonical lexical representation of a double as specified in

W3C XML Schema, Part 2, 3.2.5; and
c) each word (see 10.1.2) in the character string, if interpreted as a floating-point base-10 numeric character

string, yields a value that is representable as a 64-bit IEEE 754 double.

10.9.2 Each word (see 10.1.2) in the character string shall be interpreted as a floating-point base-10 numeric
character string and shall be represented as a 64-bit IEEE 754 double.

10.9.3 Each group of 8 bits in the 64-bit IEEE 754 float for a word shall produce an octet of the octet string,
beginning with the leading group of 8 bits. The leading bit in each group of 8 bits shall become the most significant bit
of the corresponding octet. If there are multiple words in the character string, they shall be encoded in order, and the
octets produced by the multiple 64-bit IEEE 754 floats shall be concatenated.

10.9.4 This encoding algorithm is suitable for encoding character strings representing a single floating-point number
representable as a 64-bit IEEE 754 double or a list of such floating-point numbers.

10.10 The "uuid" encoding algorithm

10.10.1 This encoding algorithm has a vocabulary table index of 9, and can only be applied to a character string that
satisfies all of the following conditions:

a) the character string consists entirely of the characters DIGIT ZERO to DIGIT NINE, LATIN SMALL
LETTER A to LATIN SMALL LETTER F, HYPHEN-MINUS, and SPACE; and

b) neither the first nor the last character in the character string is a SPACE, and there is no pair of adjacent
SPACEs; and

c) the character string contains at least one word (see 10.1.2);
d) each word contains exactly 36 characters; and
e) in each word, there are exactly four HYPHEN-MINUS characters, occupying the positions 9, 14, 19,

and 24 (counting from one).

ISO/IEC 24824-1:2005 (E)

28 ITU-T Rec. X.891 (05/2005)

10.10.2 Each word (see 10.1.2) in the character string shall be interpreted as the hexadecimal representation of a
UUID (see ITU-T Rec. X.667 | ISO/IEC 9834-8, 6.4), and shall be represented as a 16-octet unsigned integer as
specified in ITU-T Rec. X.667 | ISO/IEC 9834-8, 6.3. If there are multiple words, then the multiple 16-octet unsigned
integers shall be concatenated.

10.10.3 This encoding algorithm is suitable for encoding character strings representing a single UUID or a list
of UUIDs.

10.11 The "cdata" encoding algorithm

10.11.1 This encoding algorithm has a vocabulary table index of 10, and can be applied to any character string.

10.11.2 The octet string produced shall be the UTF-8 encoding (see ISO/IEC 10646) of the character string.

10.11.3 This algorithm shall be used only with XML infosets created by parsing an XML document and where
additional information identifies that the character string corresponds to an entire CDATA section (see W3C XML 1.0
and W3C XML 1.1). If this encoding algorithm is used within a fast infoset document, then all character strings that
correspond to CDATA sections shall have this encoding algorithm applied.

11 Restrictions on the supported XML infosets and other simplifications
11.1 This Recommendation | International Standard supports most XML infosets that are likely to be encountered
in practice, but does not support some XML infosets that are in theory possible, but do not normally arise.

11.2 The term "XML-self-consistent" is used in this clause with the following meaning: a set properties of one or
more information items is "XML-self-consistent" if that set of properties could have been obtained by parsing a suitable
namespace-well-formed XML document.

11.3 XML infosets that are supported meet all of the following conditions:
a) the [all declarations processed] property of the document information item has the value true;
b) the [in-scope namespaces] property of each element information item together with the [namespace

attributes] property of all element information items form an XML-self-consistent set;
c) the [namespace name] property of each element information item together with the [namespace attributes]

property of all element information items and the [prefix] property of that element information item form
an XML-self-consistent set;

d) the [namespace name] property of each attribute information item together with the [namespace attributes]
property of all element information items and the [prefix] property of that attribute information item form
an XML-self-consistent set;

e) the [references] property of each attribute information item together with the [normalized value] property of
the attribute information item form an XML-self-consistent set;

f) the [notation] property of each processing instruction information item together with the [target] property of
the processing instruction information item together with the [notations] property of the document
information item form an XML-self-consistent set;

g) the [notation] property of each unparsed entity information item together with the [notation name] property
of the unparsed entity information item and the [notations] property of the document information item form
an XML-self-consistent set;

h) the [element content whitespace] property of all character information items that do not represent
whitespace has the value false;

i) the [element content whitespace] property of each character information item together with the [character
code] property of the character information item form an XML-self-consistent set;

j) the [normalized value] property of all attribute information and the [content] property of all comment and
processing instruction information items contain at most 232 characters.

11.4 The following properties of information items of the XML Information Set are not included in the ASN.1
types representing those information items:

a) the [document element], [base URI], and [all declarations processed] properties of the document information
item (see 7.2.30, 7.2.31, and 7.2.32);

b) the [in-scope namespaces], [base URI], and [parent] properties of the element information item (see 7.3.8,
7.3.9, and 7.3.10);

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 29

c) the [specified], [attribute type], [references], and [owner element] properties of the attribute information item
(see 7.4.7, 7.4.8, 7.4.9, and 7.4.10);

d) the [notation] and [parent] properties of the processing instruction information item (see 7.5.7 and 7.5.8);
e) the [declaration base URI] and [parent] properties of the unexpanded entity reference information item

(see 7.6.7 and 7.6.8);
f) the [element content whitespace] property of the character information item (see 7.7.7);
g) the [parent] property of the character information item (see 7.7.8);
h) the [parent] property of the comment information item (see 7.8.6);
i) the [parent] property of the document type declaration information item (see 7.9.7);
j) the [declaration base URI] and [notation] properties of the unparsed entity information item (see 7.10.8

and 7.10.9);
k) the [declaration base URI] property of the notation information item (see 7.11.7).

12 Bit-level encoding of the Document type
12.1 This clause specifies special encodings of the Document type to form a fast infoset document.

NOTE – These special encodings are designed to optimize speed of processing and compactness, which are considered critical in
many expected uses of this Recommendation | International Standard.

12.2 Encodings are specified in terms of actions to be performed by an encoder, resulting in bits being appended to
a bit stream. The initial bit stream is either empty or consists of an XML declaration (see 12.3).

12.3 An XML declaration (see W3C XML 1.1, 2.8) may (as a creator's option) be included at the beginning of the
bit stream. The XML declaration (if present) shall be one of the following character strings, encoded in UTF-8:

1) <?xml encoding='finf'?>
2) <?xml encoding='finf' standalone='yes'?>
3) <?xml encoding='finf' standalone='no'?>
4) <?xml version='1.0' encoding='finf'?>
5) <?xml version='1.0' encoding='finf' standalone='yes'?>
6) <?xml version='1.0' encoding='finf' standalone='no'?>
7) <?xml version='1.1' encoding='finf'?>
8) <?xml version='1.1' encoding='finf' standalone='yes'?>
9) <?xml version='1.1' encoding='finf' standalone='no'?>

12.4 The version number (if present) in the XML declaration shall be set to the corresponding [version] property of
the document information item. The XML declaration shall not include a version number if the [version] property has no
value.

12.5 The standalone declaration (if present) in the XML declaration shall be set to the corresponding [standalone]
property of the document information item. The XML declaration shall not include a standalone declaration if the
[standalone] property has no value.

12.6 The sixteen bits '1110000000000000' shall then be appended to the bit stream.
NOTE – These bits will either occur at the beginning of the fast infoset document or will follow the XML declaration. In the
absence of an XML declaration, a parser can distinguish, by looking at the first 16 bits of an encoding, a potential fast infoset
document from any well-formed W3C XML 1.0 or W3C XML 1.1 document, because those 16 bits can never occur at the
beginning of a well-formed XML document.

12.7 A bit field of sixteen bits containing the version number of this Recommendation | International Standard
(see 12.9) encoded as a 16-bit unsigned integer shall then be appended to the bit stream.

12.8 The bit '0' (padding) shall then be appended to the bit stream.
NOTE – This is done to ensure byte alignment in later parts of the encoding.

12.9 The version number of this edition of this Recommendation | International Standard is 1.
NOTE – Further editions of this Recommendation | International Standard are expected to increment the version number if
interworking problems between the new edition and previous editions are likely to occur.

ISO/IEC 24824-1:2005 (E)

30 ITU-T Rec. X.891 (05/2005)

12.10 The ECN encoding (see ITU-T Rec. X.692 | ISO/IEC 8825-3) of the abstract value of the Document type,
specified by the Encoding Link Module in A.2, shall be appended to the bit stream.

NOTE – Annex C provides an informal description of the encodings specified in A.2.

12.11 If the encoding of the abstract value of the Document type does not end on the last bit of an octet, then the
four bits '0000' (padding) shall be appended to the bit stream, completing the last octet.

12.12 Once the steps above have been performed, the content of the bit stream is a fast infoset document.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 31

Annex A

ASN.1 module and ECN modules for fast infoset documents
(This annex forms an integral part of this Recommendation | International Standard)

A.1 ASN.1 module definition
FastInfoset {joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0)
modules(0) fast-infoset(0)}

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

finf-doc-opt-decl OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) asn1(1)
 generic-applications(10) fast-infoset(0) encodings(1)
 optional-xml-declaration(0)}

finf-doc-no-decl OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) asn1(1)
 generic-applications(10) fast-infoset(0) encodings(1)
 no-xml-declaration(1)}

Document ::= SEQUENCE {
additional-data SEQUENCE (SIZE(1..one-meg)) OF
 additional-datum SEQUENCE {
 id URI,
 data NonEmptyOctetString } OPTIONAL,
initial-vocabulary SEQUENCE {
 external-vocabulary URI OPTIONAL,
 restricted-alphabets SEQUENCE (SIZE(1..256)) OF
 NonEmptyOctetString OPTIONAL,
 encoding-algorithms SEQUENCE (SIZE(1..256)) OF
 NonEmptyOctetString OPTIONAL,
 prefixes SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 namespace-names SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 local-names SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 other-ncnames SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 other-uris SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 attribute-values SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 content-character-chunks SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 other-strings SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 element-name-surrogates SEQUENCE (SIZE(1..one-meg)) OF
 NameSurrogate OPTIONAL,
 attribute-name-surrogates SEQUENCE (SIZE(1..one-meg)) OF
 NameSurrogate OPTIONAL }
 (CONSTRAINED BY {
 -- If the initial-vocabulary component is present, at least
 -- one of its components shall be present -- }) OPTIONAL,
notations SEQUENCE (SIZE(1..MAX)) OF
 Notation OPTIONAL,
unparsed-entities SEQUENCE (SIZE(1..MAX)) OF
 UnparsedEntity OPTIONAL,
character-encoding-scheme NonEmptyOctetString OPTIONAL,
standalone BOOLEAN OPTIONAL,
version NonIdentifyingStringOrIndex OPTIONAL
 -- OTHER STRING category --,
children SEQUENCE (SIZE(0..MAX)) OF
 CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 comment Comment,
 document-type-declaration DocumentTypeDeclaration }}

ISO/IEC 24824-1:2005 (E)

32 ITU-T Rec. X.891 (05/2005)

one-meg INTEGER ::= 1048576 -- Two to the power 20

four-gig INTEGER ::= 4294967296 -- Two to the power 32

NonEmptyOctetString ::= OCTET STRING (SIZE(1..four-gig))

URI ::= NonEmptyOctetString

Element ::= SEQUENCE {
namespace-attributes SEQUENCE (SIZE(1..MAX)) OF
 NamespaceAttribute OPTIONAL,
qualified-name QualifiedNameOrIndex
 -- ELEMENT NAME category --,
attributes SEQUENCE (SIZE(1..MAX)) OF
 Attribute OPTIONAL,
children SEQUENCE (SIZE(0..MAX)) OF
 CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 unexpanded-entity-reference UnexpandedEntityReference,
 character-chunk CharacterChunk,
 comment Comment }}

Attribute ::= SEQUENCE {
qualified-name QualifiedNameOrIndex
 -- ATTRIBUTE NAME category --,
normalized-value NonIdentifyingStringOrIndex
 -- ATTRIBUTE VALUE category -- }

ProcessingInstruction ::= SEQUENCE {
target IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
content NonIdentifyingStringOrIndex
 -- OTHER STRING category -- }

UnexpandedEntityReference ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category -- }

CharacterChunk ::= SEQUENCE {
character-codes NonIdentifyingStringOrIndex
 -- CONTENT CHARACTER CHUNK category -- }

Comment ::= SEQUENCE {
content NonIdentifyingStringOrIndex -- OTHER STRING category --}

DocumentTypeDeclaration ::= SEQUENCE {
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
children SEQUENCE (SIZE(0..MAX)) OF
 ProcessingInstruction }

UnparsedEntity ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
notation-name IdentifyingStringOrIndex
 -- OTHER NCNAME category -- }

Notation ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category -- }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 33

NamespaceAttribute ::= SEQUENCE {
prefix IdentifyingStringOrIndex OPTIONAL
 -- PREFIX category --,
namespace-name IdentifyingStringOrIndex OPTIONAL
 -- NAMESPACE NAME category -- }

IdentifyingStringOrIndex ::= CHOICE {
literal-character-string NonEmptyOctetString,
string-index INTEGER (1..one-meg) }

NonIdentifyingStringOrIndex ::= CHOICE {
literal-character-string SEQUENCE {
 add-to-table BOOLEAN,
 character-string EncodedCharacterString },
string-index INTEGER (0..one-meg) }

NameSurrogate ::= SEQUENCE {
prefix-string-index INTEGER(1..one-meg) OPTIONAL,
namespace-name-string-index INTEGER(1..one-meg) OPTIONAL,
local-name-string-index INTEGER(1..one-meg) }
(CONSTRAINED BY {-- prefix-string-index shall only be present if
 -- namespace-name-string-index is present --})

QualifiedNameOrIndex ::= CHOICE {
literal-qualified-name SEQUENCE {
 prefix IdentifyingStringOrIndex OPTIONAL
 -- PREFIX category --,
 namespace-name IdentifyingStringOrIndex OPTIONAL
 -- NAMESPACE NAME category --,
 local-name IdentifyingStringOrIndex
 -- LOCAL NAME category -- },
name-surrogate-index INTEGER (1..one-meg) }

EncodedCharacterString ::= SEQUENCE {
encoding-format CHOICE {
 utf-8 NULL,
 utf-16 NULL,
 restricted-alphabet INTEGER(1..256),
 encoding-algorithm INTEGER(1..256) },
octets NonEmptyOctetString }

END

A.2 ECN module definitions
FastInfosetEDM {joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0)
modules(0) fast-infoset-edm(1)}

ENCODING-DEFINITIONS ::= BEGIN
EXPORTS FastInfosetEncodingSet;
RENAMES
 #INTEGER AS #PositiveOrNonNegativeInteger
 IN #IdentifyingStringOrIndex.string-index,
 #NonIdentifyingStringOrIndex.string-index,
 #QualifiedNameOrIndex.name-surrogate-index,
 #NameSurrogate.namespace-name-string-index,
 #NameSurrogate.prefix-string-index,
 #NameSurrogate.local-name-string-index
 FROM FastInfoset;

/* RENAMES automatically imports:
#Document, #NonEmptyOctetString, #NameSurrogate, #ProcessingInstruction,
#UnexpandedEntityReference, #Comment, #DocumentTypeDeclaration,
#UnparsedEntity, #Notation, #Element, #Attribute, #CharacterChunk,
#NamespaceAttribute, #IdentifyingStringOrIndex, #NonIdentifyingStringOrIndex,
#QualifiedNameOrIndex, #EncodedCharacterString FROM FastInfoset;
*/

ISO/IEC 24824-1:2005 (E)

34 ITU-T Rec. X.891 (05/2005)

-- Useful encoding classes
#PositiveOrNonNegativeInteger ::= #INTEGER

#NonEmptySequenceOfLength ::= #INT(1..1048576)

#NonEmptyOctetStringLength ::= #INT(1..4294967296)

#TwoAlternativeDiscriminant ::= #INT(0..1)

#ThreeAlternativeDiscriminant ::= #INT(0..2)

#FourAlternativeDiscriminant ::= #INT(0..3)

#FiveAlternativeDiscriminant ::= #INT(0..4)

-- Used when encoding the length of a SEQUENCE OF (see C.21)

#NonEmptySequenceOfLengthAlternatives1 ::= #ALTERNATIVES {
small #INT(1..128),
large #INT(129..1048576) }

-- Used when encoding the length of a NonEmptyOctetString (see C.22)

#NonEmptyOctetStringLengthAlternatives2 ::= #ALTERNATIVES {
small #INT(1..64),
medium #INT(65..320),
large #INT(321..4294967296) }

-- Used when encoding the length of a NonEmptyOctetString (see C.23)

#NonEmptyOctetStringLengthAlternatives5 ::= #ALTERNATIVES {
small #INT(1..8),
medium #INT(9..264),
large #INT(265..4294967296) }

-- Used when encoding the length of a NonEmptyOctetString (see C.24)

#NonEmptyOctetStringLengthAlternatives7 ::= #ALTERNATIVES {
small #INT(1..2),
medium #INT(3..258),
large #INT(259..4294967296) }

-- Used when encoding a positive integer (see C.25)

#PositiveIntegerAlternatives2 ::= #ALTERNATIVES {
small #INT(1..64),
medium #INT(65..8256),
large #INT(8257..1048576) }

-- Used when encoding a positive integer (see C.27)

#PositiveIntegerAlternatives3 ::= #ALTERNATIVES {
small #INT(1..32),
medium #INT(33..2080),
medium-large #INT(2081..526368),
large #INT(526369..1048576) }

-- Used when encoding a positive integer (see C.28)

#PositiveIntegerAlternatives4 ::= #ALTERNATIVES {
small #INT(1..16),
medium #INT(17..1040),
medium-large #INT(1041..263184),
large #INT(263185..1048576) }

-- Used when encoding a non-negative integer (see C.26)

#NonNegativeIntegerAlternatives2 ::= #ALTERNATIVES {
zero #INT(0),
small #INT(1..64),
medium #INT(65..8256),
large #INT(8257..1048576) }

-- Used to insert pre-padding before an encoding in many cases

#PrecededByPrepadding{<#C>} ::= #CONCATENATION {
prepadding #PAD,
original #C }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 35

-- Used to insert a two-alternative discriminant before an encoding

#PrecededByTwoAlternativeDiscriminant{<#C>} ::= #CONCATENATION {
discriminant #TwoAlternativeDiscriminant,
original #C }

-- Used to insert a three-alternative discriminant before an encoding

#PrecededByThreeAlternativeDiscriminant{<#C>} ::= #CONCATENATION {
discriminant #ThreeAlternativeDiscriminant,
original #C }

-- Used to insert a four-alternative discriminant before an encoding

#PrecededByFourAlternativeDiscriminant{<#C>} ::= #CONCATENATION {
prepadding #PAD,
discriminant #FourAlternativeDiscriminant,
original #C }

-- Used to insert a five-alternative discriminant before an encoding

#PrecededByFiveAlternativeDiscriminant{<#C>} ::= #CONCATENATION {
prepadding #PAD,
discriminant #FiveAlternativeDiscriminant,
original #C }

-- Used to insert a length field before the encoding of a SEQUENCE OF

#PrecededByNonEmptySequenceOfLength{<#C>} ::= #CONCATENATION {
length #NonEmptySequenceOfLength,
original #C }

-- Used to insert a length field before the encoding of a NonEmptyOctetString

#PrecededByNonEmptyOctetStringLength{<#C>} ::= #CONCATENATION {
length #NonEmptyOctetStringLength,
original #C }

-- Encodes an item of the notations component of the Document
-- type (see C.2.6.1)

eNotationDriver1 #Notation ::= {
ENCODE STRUCTURE {
 STRUCTURED WITH eNotationPrepaddingAdder1 }
WITH FastInfosetEncodingSet }

-- Encodes an item of the unparsed-entities component of the Document
-- type (see C.2.7.1)

eUnparsedEntityDriver1 #UnparsedEntity ::= {
ENCODE STRUCTURE {
 STRUCTURED WITH eUnparsedEntityPrepaddingAdder1 }
WITH FastInfosetEncodingSet }

-- Encodes an item of the namespace-attributes component of the Element
-- type (see C.3.4.2)

eNamespaceAttributeDriver1 #NamespaceAttribute ::= {
ENCODE STRUCTURE {
 STRUCTURED WITH eNamespaceAttributePrepaddingAdder1 }
WITH FastInfosetEncodingSet }

-- Encodes an item of the attributes component of the Element
-- type (see C.3.6.1)

eAttributeDriver1 #Attribute ::= {
ENCODE STRUCTURE {
 STRUCTURED WITH eAttributePrepaddingAdder1 }
WITH FastInfosetEncodingSet }

-- Encodes an item of the components attribute-values,
-- content-character-chunks, and other-strings of the Document
-- type (see C.2.5.4)

eEncodedCharacterStringDriver1 #EncodedCharacterString ::= {
ENCODE STRUCTURE {
 STRUCTURED WITH eEncodedCharacterStringPrepaddingAdder1 }
WITH FastInfosetEncodingSet }

ISO/IEC 24824-1:2005 (E)

36 ITU-T Rec. X.891 (05/2005)

-- Encodes an item of the components element-name-surrogates and
-- attribute-name-surrogates of the Document type (see C.2.5.5)

eNameSurrogateDriver1 #NameSurrogate ::= {
ENCODE STRUCTURE {
 STRUCTURED WITH eNameSurrogatePrepaddingAdder1 }
WITH FastInfosetEncodingSet }

-- Encodes the initial-vocabulary component of the Document
-- type (see C.2.5)

eInitialVocabularyPrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eInitialVocabularyWithPrepadding1 }

-- Inserts pre-padding before the encoding of an item of the
-- notations component of the Document type (see C.2.6.1)

eNotationPrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eNotationWithPrepadding1 }

-- Inserts pre-padding before the encoding of an item of the
-- unparsed-entities component of the Document type (see C.2.7.1)

eUnparsedEntityPrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eUnparsedEntityWithPrepadding1 }

-- Inserts pre-padding before the encoding of the standalone
-- component of the Document type (see C.2.9)

eStandalonePrepaddingAdder1 #BOOL ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eStandaloneWithPrepadding1 }

-- Inserts pre-padding before the encoding of an item of the
-- children component of the DocumentTypeDeclaration type (see C.9.6)

eDocTypeDeclChildPrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eDocTypeDeclChildWithPrepadding1 }

-- Inserts pre-padding before the encoding of an item of the
-- namespace-attributes component of the Element type (see C.3.4.2)

eNamespaceAttributePrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eNamespaceAttributeWithPrepadding1 }

-- Inserts pre-padding before the encoding of an item of the
-- attributes component of the Element type (see C.3.6.1)

eAttributePrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eAttributeWithPrepadding1 }

-- Inserts pre-padding before the encoding of the literal-qualified-name
-- component of the QualifiedNameOrIndex type. Used when the encoding
-- starts on the second bit of an octet (see C.17.3)

eLiteralQualifiedNamePrepaddingAdder2 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eLiteralQualifiedNameWithPrepadding2 }

-- Inserts pre-padding before the encoding of the literal-qualified-name
-- component of the QualifiedNameOrIndex type. Used when the encoding
-- starts on the third bit of an octet (see C.18.3)

eLiteralQualifiedNamePrepaddingAdder3 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eLiteralQualifiedNameWithPrepadding3 }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 37

-- Inserts pre-padding before the encoding of an item of the components
-- restricted-alphabets, encoding-algorithms, prefixes, namespace-names,
-- local-names, other-ncnames, and other-uris of the Document
-- type (see C.2.5.3)

eNonEmptyOctetStringPrepaddingAdder1 #OCTET-STRING ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByPrepadding
 ENCODED BY eNonEmptyOctetStringWithPrepadding1 }}

-- Inserts pre-padding before the encoding of an item of the components
-- attribute-values, content-character-chunks, and other-strings of the
-- Document type (see C.2.5.4)

eEncodedCharacterStringPrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eEncodedCharacterStringWithPrepadding1 }

-- Inserts pre-padding before the encoding of an item of the components
-- element-name-surrogates and attribute-name-surrogates of the Document
-- type (see C.2.5.5)

eNameSurrogatePrepaddingAdder1 #SEQUENCE ::= {
REPLACE STRUCTURE WITH #PrecededByPrepadding
ENCODED BY eNameSurrogateWithPrepadding1 }

-- Inserts a discriminant before the encoding of an item of the
-- children component of the Document type (see C.2.11.2 to C.2.11.5)

eDocumentChildDiscriminantAdder1or5 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByFourAlternativeDiscriminant
ENCODED BY eDocumentChildWithDiscriminant1or5 }

-- Inserts a discriminant before the encoding of an item of the
-- children component of the Element type (see C.3.7.2 to C.3.7.6)

eElementChildDiscriminantAdder1or5 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByFiveAlternativeDiscriminant
ENCODED BY eElementChildWithDiscriminant1or5 }

-- Inserts a discriminant before the encoding of the length of a SEQUENCE OF,
-- identifying one of the two ways of encoding the length (see C.21)

eNonEmptySequenceOfLengthDiscriminantAdder1 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByTwoAlternativeDiscriminant
ENCODED BY eNonEmptySequenceOfLengthWithDiscriminant1 }

-- Inserts a discriminant before the encoding of the length of a
-- NonEmptyOctetString, identifying one of the three ways of encoding the
-- length. Used when the encoding starts on the second bit of an octet (see C.22)

eNonEmptyOctetStringLengthDiscriminantAdder2 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByThreeAlternativeDiscriminant
ENCODED BY eNonEmptyOctetStringLengthWithDiscriminant2 }

-- Inserts a discriminant before the encoding of the length of a
-- NonEmptyOctetString, identifying one of the three ways of encoding the
-- length. Used when the encoding starts on the fifth bit of an octet (see C.23)

eNonEmptyOctetStringLengthDiscriminantAdder5 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByThreeAlternativeDiscriminant
ENCODED BY eNonEmptyOctetStringLengthWithDiscriminant5 }

-- Inserts a discriminant before the encoding of the length of a
-- NonEmptyOctetString, identifying one of the three ways of encoding the
-- length. Used when the encoding starts on the seventh bit of an octet
-- (see C.24)

eNonEmptyOctetStringLengthDiscriminantAdder7 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByThreeAlternativeDiscriminant
ENCODED BY eNonEmptyOctetStringLengthWithDiscriminant7 }

ISO/IEC 24824-1:2005 (E)

38 ITU-T Rec. X.891 (05/2005)

-- Inserts a discriminant before the encoding of a positive integer,
-- identifying one of the three ways of encoding it. Used when the encoding
-- starts on the second bit of an octet (see C.25)

ePositiveIntegerDiscriminantAdder2 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByThreeAlternativeDiscriminant
ENCODED BY ePositiveIntegerWithDiscriminant2 }

-- Inserts a discriminant before the encoding of a positive integer,
-- identifying one of the four ways of encoding it. Used when the encoding
-- starts on the third bit of an octet (see C.27)

ePositiveIntegerDiscriminantAdder3 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByFourAlternativeDiscriminant
ENCODED BY ePositiveIntegerWithDiscriminant3 }

-- Inserts a discriminant before the encoding of a positive integer,
-- identifying one of the four ways of encoding it. Used when the encoding
-- starts on the fourth bit of an octet (see C.28)

ePositiveIntegerDiscriminantAdder4 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByFourAlternativeDiscriminant
ENCODED BY ePositiveIntegerWithDiscriminant4 }

-- Inserts a discriminant before the encoding of a non-negative integer,
-- identifying one of the three ways of encoding it (see C.26)

eNonNegativeIntegerDiscriminantAdder2 #CHOICE ::= {
REPLACE STRUCTURE WITH #PrecededByFourAlternativeDiscriminant
ENCODED BY eNonNegativeIntegerWithDiscriminant2 }

-- Sets the prepadding that has been added before the initial-vocabulary
-- component of the Document type and encodes the component (see C.2.5)

eInitialVocabularyWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 3
 PAD-PATTERN bits:'000'B },
 original {
 ENCODE STRUCTURE {
 restricted-alphabets {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNonEmptyOctetString1
}
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 encoding-algorithms {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNonEmptyOctetString1
}
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 prefixes {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNonEmptyOctetString1
}
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 namespace-names {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNonEmptyOctetString1
}
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 local-names {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNonEmptyOctetString1
}
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 other-ncnames {
 ENCODE STRUCTURE {

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 39

 STRUCTURED WITH eRepetitionWithLengthNonEmptyOctetString1
}
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 other-uris {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNonEmptyOctetString1
}
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 attribute-values {
 ENCODE STRUCTURE {
 STRUCTURED WITH
 eRepetitionWithLengthEncodedCharacterString1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 content-character-chunks {
 ENCODE STRUCTURE {
 STRUCTURED WITH
 eRepetitionWithLengthEncodedCharacterString1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 other-strings {
 ENCODE STRUCTURE {
 STRUCTURED WITH
 eRepetitionWithLengthEncodedCharacterString1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 element-name-surrogates {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNameSurrogate1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 attribute-name-surrogates {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthNameSurrogate1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET }
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before each item of the notations
-- component of the Document type and encodes the item (see C.2.6.1)

eNotationWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 6
 PAD-PATTERN bits:'110000'B },
 original eNotation7 }
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before each item of the
-- unparsed-entities component of the Document type and encodes the item
-- (see C.2.7.1)

eUnparsedEntityWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 7
 PAD-PATTERN bits:'1101000'B },
 original eUnparsedEntity8 }
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before the standalone component of
-- the Document type and encodes the component (see C.2.9)

eStandaloneWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 7
 PAD-PATTERN bits:'0000000'B },
 original USE-SET }

ISO/IEC 24824-1:2005 (E)

40 ITU-T Rec. X.891 (05/2005)

WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before each item of the
-- namespace-attributes component of the Element type and encodes the item
-- (see C.3.4.2)

eNamespaceAttributeWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 6
 PAD-PATTERN bits:'110011'B
 EXHIBITS HANDLE "nsa" AT { 0 | 1 | 2 | 3 | 4 | 5}
 AS bits:'110011'B },
 original eNamespaceAttribute7
 STRUCTURED WITH {
 ENCODING-SPACE
 EXHIBITS HANDLE "nsa" AT { 0 | 1 | 2 | 3 | 4 | 5} AS bits:'110011'B
}}
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before each item of the attributes
-- component of the Element type and encodes the item (see C.3.6.1)

eAttributeWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 1
 PAD-PATTERN bits:'0'B },
 original eAttribute2 }
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before each item of the
-- children component of the DocumentTypeDeclaration type and encodes the
-- item (see C.9.6)

eDocTypeDeclChildWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 8
 PAD-PATTERN bits:'11100001'B },
 original eProcessingInstruction1 }
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before each item of the components
-- restricted-alphabets, encoding-algorithms, prefixes, namespace-names,
-- local-names, other-ncnames, and other-uris of the Document type and encodes
-- the item (see C.2.5.3)

eNonEmptyOctetStringWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 1
 PAD-PATTERN bits:'0'B },
 original USE-SET }
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before each item of the components
-- attribute-values, content-character-chunks, and other-strings of the
-- Document type and encodes the item (see C.2.5.4)

eEncodedCharacterStringWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 2
 PAD-PATTERN bits:'00'B },
 original USE-SET }
WITH FastInfosetEncodingSet }

eNameSurrogateWithPrepadding1{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 6
 PAD-PATTERN bits:'000000'B },
 original eNameSurrogate7 }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 41

WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before the literal-qualified-name
-- component of the QualifiedNameOrIndex type and encodes the component.
-- Used when the encoding starts on the second bit of an octet (see C.17.3)

eLiteralQualifiedNameWithPrepadding2{<#C>} #PrecededByPrepadding{<#C>} ::= {
ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 5
 PAD-PATTERN bits:'11110'B },
 original {
 ENCODE STRUCTURE {
 prefix eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 namespace-name eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 local-name eIdentifyingStringOrIndex1 }
 WITH FastInfosetEncodingSet }
 STRUCTURED WITH {
 ENCODING-SPACE
 EXHIBITS HANDLE "qn" AT { 0 | 1 | 2 | 3 } AS bits:'1111'B }}
WITH FastInfosetEncodingSet }

-- Sets the prepadding that has been added before the literal-qualified-name
-- component of the QualifiedNameOrIndex type and encodes the component. Used
-- when the encoding starts on the third bit of an octet (see C.18.3)

eLiteralQualifiedNameWithPrepadding3{<#C>}
#PrecededByPrepadding{<#C>} ::= {

ENCODE STRUCTURE {
 prepadding {
 ENCODING-SPACE SIZE 4
 PAD-PATTERN bits:'1111'B
 EXHIBITS HANDLE "qn" AT { 0 | 1 | 2 | 3 } AS bits:'1111'B },
 original {
 ENCODE STRUCTURE {
 prefix eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 namespace-name eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 local-name eIdentifyingStringOrIndex1 }
 WITH FastInfosetEncodingSet }
 STRUCTURED WITH {
 ENCODING-SPACE
 EXHIBITS HANDLE "qn" AT { 0 | 1 | 2 | 3 } AS bits:'1111'B }}
WITH FastInfosetEncodingSet }

-- Encodes the length field that has been added before a SEQUENCE OF and encodes
-- the SEQUENCE OF NonEmptyOctetString (see C.21)

eNonEmptySequenceOfWithLengthNonEmptyOctetString1{<#C>}
#PrecededByNonEmptySequenceOfLength{<#C>} ::= {

ENCODE STRUCTURE {
 length eNonEmptySequenceOfLength1,
 original {
 ENCODE STRUCTURE {
 eNonEmptyOctetStringPrepaddingAdder1
 STRUCTURED WITH eRepetitionItems1{<length>}
 } WITH PER-BASIC-UNALIGNED }}
WITH FastInfosetEncodingSet }

-- Encodes the length field that has been added before a SEQUENCE OF and encodes
-- the SEQUENCE OF EncodedCharacterString (see C.21)

eNonEmptySequenceOfWithLengthEncodedCharacterString1{<#C>}
#PrecededByNonEmptySequenceOfLength{<#C>} ::= {

ENCODE STRUCTURE {
 length eNonEmptySequenceOfLength1,
 original {
 ENCODE STRUCTURE {
 eEncodedCharacterStringDriver1
 STRUCTURED WITH eRepetitionItems1{<length>}
 } WITH PER-BASIC-UNALIGNED }}

ISO/IEC 24824-1:2005 (E)

42 ITU-T Rec. X.891 (05/2005)

WITH FastInfosetEncodingSet }

-- Encodes the length field that has been added before a SEQUENCE OF and encodes
-- the SEQUENCE OF NameSurrogate (see C.21)

eNonEmptySequenceOfWithLengthNameSurrogate1{<#C>}
#PrecededByNonEmptySequenceOfLength{<#C>} ::= {

ENCODE STRUCTURE {
 length eNonEmptySequenceOfLength1,
 original {
 ENCODE STRUCTURE {
 eNameSurrogateDriver1
 STRUCTURED WITH eRepetitionItems1{<length>}
 } WITH PER-BASIC-UNALIGNED }}
WITH FastInfosetEncodingSet }

-- Encodes the length field that has been added before a SEQUENCE OF and encodes
-- the SEQUENCE OF additional-datum (see C.21)

eNonEmptySequenceOfWithLengthAdditionalDatum1{<#C>}
#PrecededByNonEmptySequenceOfLength{<#C>} ::= {

ENCODE STRUCTURE {
 length eNonEmptySequenceOfLength1,
 original {
 ENCODE STRUCTURE {
 additional-datum {
 ENCODE STRUCTURE {
 id eNonEmptyOctetStringPrepaddingAdder1,
 data eNonEmptyOctetStringPrepaddingAdder1 }
 WITH FastInfosetEncodingSet}
 STRUCTURED WITH eRepetitionItems1{<length>}
 } WITH PER-BASIC-UNALIGNED }}
WITH FastInfosetEncodingSet }

-- Encodes the length field that has been added before a NonEmptyOctetString
-- and encodes the NonEmptyOctetString. Used when the encoding starts on the
-- second bit of an octet (see C.22)

eNonEmptyOctetStringWithLength2{<#C>}
#PrecededByNonEmptyOctetStringLength{<#C>} ::= {

ENCODE STRUCTURE {
 length eNonEmptyOctetStringLength2,
 original eOctetStringOctets1{<length>} }
WITH FastInfosetEncodingSet }

-- Encodes the length field that has been added before a NonEmptyOctetString
-- and encodes the NonEmptyOctetString. Used when the encoding starts on the
-- fifth bit of an octet (see C.23)

 eNonEmptyOctetStringWithLength5{<#C>}
#PrecededByNonEmptyOctetStringLength{<#C>} ::= {
ENCODE STRUCTURE {
 length eNonEmptyOctetStringLength5,
 original eOctetStringOctets1{<length>} }
WITH FastInfosetEncodingSet }

-- Encodes the length field that has been added before a NonEmptyOctetString
-- and encodes the NonEmptyOctetString. Used when the encoding starts on the
-- seventh bit of an octet (see C.24)

eNonEmptyOctetStringWithLength7{<#C>}
#PrecededByNonEmptyOctetStringLength{<#C>} ::= {

ENCODE STRUCTURE {
 length eNonEmptyOctetStringLength7,
 original eOctetStringOctets1{<length>} }
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before an item of the children
-- component of the Document type and encodes the item (see C.2.11.2 to C.2.11.5)

eDocumentChildWithDiscriminant1or5{<#C>}
#PrecededByFourAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 prepadding {
 ALIGNED TO NEXT octet

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 43

 ENCODING-SPACE SIZE 0 },
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '11100001'B,
 2 TO '11100010'B,
 3 TO '110001'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 element eElement2,
 processing-instruction eProcessingInstruction1,
 comment eComment1,
 document-type-declaration eDocumentTypeDeclaration7
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before an item of the children
-- component of the Element type and encodes the item (see C.3.7.2 to C.3.7.6)

eElementChildWithDiscriminant1or5{<#C>}
#PrecededByFiveAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 prepadding {
 ALIGNED TO NEXT octet
 ENCODING-SPACE SIZE 0 },
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '11100001'B,
 2 TO '110010'B,
 3 TO '10'B,
 4 TO '11100010'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 element eElement2,
 processing-instruction eProcessingInstruction1,
 unexpanded-entity-reference eUnexpandedEntityReference7,
 character-chunk eCharacterChunk3,
 comment eComment1
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before the length of a
-- SEQUENCE OF (identifying one of the two ways of encoding the length)
-- and encodes the length (see C.21)

eNonEmptySequenceOfLengthWithDiscriminant1{<#C>}
#PrecededByTwoAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '1000'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

ISO/IEC 24824-1:2005 (E)

44 ITU-T Rec. X.891 (05/2005)

-- Encodes the discriminant that has been added before the length of a
-- NonEmptyOctetString (identifying one of the three ways of encoding the
-- length) and encodes the length. Used when the encoding starts on the
-- second bit of an octet (see C.22)

eNonEmptyOctetStringLengthWithDiscriminant2{<#C>}
#PrecededByThreeAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '1000000'B,
 2 TO '1100000'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before the length of a
-- NonEmptyOctetString (identifying one of the three ways of encoding the
-- length) and encodes the length. Used when the encoding starts on the fifth
-- bit of an octet (see C.23)

eNonEmptyOctetStringLengthWithDiscriminant5{<#C>}
#PrecededByThreeAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '1000'B,
 2 TO '1100'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before the length of
-- a NonEmptyOctetString (identifying one of the three ways of encoding
-- the length) and encodes the length. Used when the encoding starts on
-- the seventh bit of an octet (see C.24)

eNonEmptyOctetStringLengthWithDiscriminant7{<#C>}
#PrecededByThreeAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '10'B,
 2 TO '11'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 45

-- Encodes the discriminant that has been added before a positive integer
-- (identifying one of the three ways of encoding the integer) and encodes
-- the integer. Used when the encoding starts on the second bit of an octet
-- (see C.25)

ePositiveIntegerWithDiscriminant2{<#C>}
#PrecededByThreeAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '10'B,
 2 TO '110'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }
 STRUCTURED WITH {
 ENCODING-SPACE SIZE self-delimiting-values
 EXHIBITS HANDLE "qn" AT { 0 | 1 | 2 | 3 }
 AS range:{low 0, high 12}}} -- Less than '1110'B
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before a positive integer
-- (identifying one of the four ways of encoding the integer) and encodes
-- the integer. Used when the encoding starts on the third bit of an octet
-- (see C.27)

ePositiveIntegerWithDiscriminant3{<#C>}
#PrecededByFourAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '100'B,
 2 TO '101'B,
 3 TO '110000000'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }
 STRUCTURED WITH {
 ENCODING-SPACE SIZE self-delimiting-values
 EXHIBITS HANDLE "qn" AT { 0 | 1 | 2 | 3 }
 AS range:{low 0, high 14}}} -- Less than '1111'B
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before a positive integer
-- (identifying one of the four ways of encoding the integer) and encodes
-- the integer. Used when the encoding starts on the fourth bit of an octet
-- (see C.28)

ePositiveIntegerWithDiscriminant4{<#C>}
#PrecededByFourAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '0'B,
 1 TO '100'B,
 2 TO '101'B,
 3 TO '110000000'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {

ISO/IEC 24824-1:2005 (E)

46 ITU-T Rec. X.891 (05/2005)

 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the discriminant that has been added before a non-negative integer
-- (identifying one of the three ways of encoding the integer) and encodes
-- the integer (see C.26)

eNonNegativeIntegerWithDiscriminant2{<#C>}
#PrecededByFourAlternativeDiscriminant{<#C>} ::= {

ENCODE STRUCTURE {
 discriminant {
 USE #BIT-STRING
 MAPPING TO BITS {
 0 TO '1111111'B,
 1 TO '0'B,
 2 TO '10'B,
 3 TO '110'B }
 WITH FastInfosetEncodingSet },
 original {
 ENCODE STRUCTURE {
 STRUCTURED WITH {
 ALTERNATIVE DETERMINED BY field-to-be-set
 USING discriminant }}
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the Document type (see C.2)

eDocument2 #Document ::= {
ENCODE STRUCTURE {
 additional-data {
 ENCODE STRUCTURE {
 STRUCTURED WITH eRepetitionWithLengthAdditionalDatum1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 initial-vocabulary {
 ENCODE STRUCTURE {
 STRUCTURED WITH eInitialVocabularyPrepaddingAdder1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 notations {
 ENCODE STRUCTURE {
 eNotationDriver1
 STRUCTURED WITH eRepetitionWithTerminator8bit1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 unparsed-entities {
 ENCODE STRUCTURE {
 eUnparsedEntityDriver1
 STRUCTURED WITH eRepetitionWithTerminator8bit1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 character-encoding-scheme eNonEmptyOctetStringPrepaddingAdder1
 OPTIONAL-ENCODING USE-SET,
 standalone eStandalonePrepaddingAdder1
 OPTIONAL-ENCODING USE-SET,
 version eNonIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 children {
 ENCODE STRUCTURE {
 {
 ENCODE STRUCTURE {
 STRUCTURED WITH eDocumentChildDiscriminantAdder1or5 }
 WITH FastInfosetEncodingSet }
 STRUCTURED WITH eRepetitionWithTerminator4bit1 }
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 47

-- Encodes the Element type (see C.3)

eElement2 #Element ::= {
ENCODE STRUCTURE {
 namespace-attributes {
 ENCODE STRUCTURE {
 eNamespaceAttributeDriver1
 STRUCTURED WITH eRepetitionWithTerminator10bit1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING eNamespaceAttributesOptionality3,
 qualified-name eQualifiedNameOrIndex3,
 attributes {
 ENCODE STRUCTURE {
 eAttributeDriver1
 STRUCTURED WITH eRepetitionWithTerminator4bit1 }
 WITH FastInfosetEncodingSet }
 OPTIONAL-ENCODING USE-SET,
 children {
 ENCODE STRUCTURE {
 {
 ENCODE STRUCTURE {
 STRUCTURED WITH eElementChildDiscriminantAdder1or5 }
 WITH FastInfosetEncodingSet }
 STRUCTURED WITH eRepetitionWithTerminator4bit1 }
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the Attribute type (see C.4)

eAttribute2 #Attribute ::= {
ENCODE STRUCTURE {
 qualified-name eQualifiedNameOrIndex2,
 normalized-value eNonIdentifyingStringOrIndex1 }
WITH FastInfosetEncodingSet }

-- Encodes the ProcessingInstruction type (see C.5)

eProcessingInstruction1 #ProcessingInstruction ::= {
ENCODE STRUCTURE {
 target eIdentifyingStringOrIndex1,
 content eNonIdentifyingStringOrIndex1 }
WITH FastInfosetEncodingSet }

-- Encodes the UnexpandedEntityReference type (see C.6)

eUnexpandedEntityReference7 #UnexpandedEntityReference ::= {
ENCODE STRUCTURE {
 name eIdentifyingStringOrIndex1,
 system-identifier eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 public-identifier eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET }
WITH FastInfosetEncodingSet }

-- Encodes the CharacterChunk type (see C.7)

eCharacterChunk3 #CharacterChunk ::= {
ENCODE STRUCTURE {
 character-codes eNonIdentifyingStringOrIndex3 }
WITH FastInfosetEncodingSet }

-- Encodes the Comment type (see C.8)

eComment1 #Comment ::= {
ENCODE STRUCTURE {
 content eNonIdentifyingStringOrIndex1 }
WITH FastInfosetEncodingSet }

-- Encodes the DocumentTypeDeclaration type (see C.9)

eDocumentTypeDeclaration7 #DocumentTypeDeclaration ::= {
ENCODE STRUCTURE {
 system-identifier eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 public-identifier eIdentifyingStringOrIndex1

ISO/IEC 24824-1:2005 (E)

48 ITU-T Rec. X.891 (05/2005)

 OPTIONAL-ENCODING USE-SET,
 children {
 ENCODE STRUCTURE {
 {
 ENCODE STRUCTURE {
 STRUCTURED WITH eDocTypeDeclChildPrepaddingAdder1 }
 WITH FastInfosetEncodingSet }
 STRUCTURED WITH eRepetitionWithTerminator4bit1 }
 WITH FastInfosetEncodingSet }}
WITH FastInfosetEncodingSet }

-- Encodes the UnparsedEntity type (see C.10)

eUnparsedEntity8 #UnparsedEntity ::= {
ENCODE STRUCTURE {
 name eIdentifyingStringOrIndex1,
 system-identifier eIdentifyingStringOrIndex1,
 public-identifier eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 notation-name eIdentifyingStringOrIndex1 }
WITH FastInfosetEncodingSet }

-- Encodes the Notation type (see C.11)

eNotation7 #Notation ::= {
ENCODE STRUCTURE {
 name eIdentifyingStringOrIndex1,
 system-identifier eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 public-identifier eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET }
WITH FastInfosetEncodingSet }

-- Encodes the NamespaceAttribute type (see C.12)

eNamespaceAttribute7 #NamespaceAttribute ::= {
ENCODE STRUCTURE {
 prefix eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET,
 namespace-name eIdentifyingStringOrIndex1
 OPTIONAL-ENCODING USE-SET }
WITH FastInfosetEncodingSet }

-- Encodes the IdentifyingStringOrIndex type (see C.13)

eIdentifyingStringOrIndex1 #IdentifyingStringOrIndex ::= {
ENCODE STRUCTURE {
 literal-character-string eNonEmptyOctetString2,
 string-index ePositiveInteger2 }
WITH FastInfosetEncodingSet }

-- Encodes the NonIdentifyingStringOrIndex type. Used when the encoding starts
-- on the first bit of an octet (see C.14)

eNonIdentifyingStringOrIndex1 #NonIdentifyingStringOrIndex ::= {
ENCODE STRUCTURE {
 literal-character-string {
 ENCODE STRUCTURE {
 add-to-table USE-SET,
 character-string eEncodedCharacterString3 }
 WITH FastInfosetEncodingSet },
 string-index eNonNegativeInteger2 }
WITH FastInfosetEncodingSet }

-- Encodes the NonIdentifyingStringOrIndex type. Used when the encoding starts
-- on the third bit of an octet (see C.15)

eNonIdentifyingStringOrIndex3 #NonIdentifyingStringOrIndex ::= {
ENCODE STRUCTURE {
 literal-character-string {
 ENCODE STRUCTURE {
 add-to-table USE-SET,
 character-string eEncodedCharacterString5 }
 WITH FastInfosetEncodingSet },
 string-index ePositiveInteger4 }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 49

WITH FastInfosetEncodingSet }

-- Encodes the NameSurrogate type (see C.16)

eNameSurrogate7 #NameSurrogate ::= {
ENCODE STRUCTURE {
 prefix-string-index ePositiveInteger2
 OPTIONAL-ENCODING USE-SET,
 namespace-name-string-index ePositiveInteger2
 OPTIONAL-ENCODING USE-SET,
 local-name-string-index ePositiveInteger2 }
WITH FastInfosetEncodingSet }

-- Encodes the QualifiedNameOrIndex type. Used when the encoding starts
-- on the second bit of an octet (see C.17)

eQualifiedNameOrIndex2 #QualifiedNameOrIndex ::= {
ENCODE STRUCTURE {
 literal-qualified-name {
 ENCODE STRUCTURE {
 STRUCTURED WITH eLiteralQualifiedNamePrepaddingAdder2 }
 WITH FastInfosetEncodingSet },
 name-surrogate-index ePositiveInteger2
 STRUCTURED WITH eQualifiedNameAlternatives3 }
WITH FastInfosetEncodingSet }

-- Encodes the QualifiedNameOrIndex type. Used when the encoding starts
-- on the third bit of an octet (see C.18)

eQualifiedNameOrIndex3 #QualifiedNameOrIndex ::= {
ENCODE STRUCTURE {
 literal-qualified-name {
 ENCODE STRUCTURE {
 STRUCTURED WITH eLiteralQualifiedNamePrepaddingAdder3 }
 WITH FastInfosetEncodingSet },
 name-surrogate-index ePositiveInteger3
 STRUCTURED WITH eQualifiedNameAlternatives3 }
WITH FastInfosetEncodingSet }

-- Encodes the EncodedCharacterString type. Used when the encoding starts
-- on the third bit of an octet (see C.19)

eEncodedCharacterString3 #EncodedCharacterString ::= {
ENCODE STRUCTURE {
 encoding-format USE-SET,
 octets eNonEmptyOctetString5 }
WITH FastInfosetEncodingSet }

-- Encodes the EncodedCharacterString type. Used when the encoding starts
-- on the fifth bit of an octet (see C.20)

eEncodedCharacterString5 #EncodedCharacterString ::= {
ENCODE STRUCTURE {
 encoding-format USE-SET,
 octets eNonEmptyOctetString7 }
WITH FastInfosetEncodingSet }

-- Encodes a repetition (SEQUENCE OF NonEmptyOctetString) by inserting a length
-- field before it (see C.2.5.3 to C.2.5.5)

eRepetitionWithLengthNonEmptyOctetString1 #REPETITION ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByNonEmptySequenceOfLength
 ENCODED BY eNonEmptySequenceOfWithLengthNonEmptyOctetString1 }}

-- Encodes a repetition (SEQUENCE OF EncodedCharacterString) by inserting a length
-- field before it (see C.2.5.3 to C.2.5.5)

eRepetitionWithLengthEncodedCharacterString1 #REPETITION ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByNonEmptySequenceOfLength
 ENCODED BY eNonEmptySequenceOfWithLengthEncodedCharacterString1 }}

ISO/IEC 24824-1:2005 (E)

50 ITU-T Rec. X.891 (05/2005)

-- Encodes a repetition (SEQUENCE OF NameSurrogate) by inserting a length
-- field before it (see C.2.5.3 to C.2.5.5)

eRepetitionWithLengthNameSurrogate1 #REPETITION ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByNonEmptySequenceOfLength
 ENCODED BY eNonEmptySequenceOfWithLengthNameSurrogate1 }}

-- Encodes a repetition (SEQUENCE OF additional-datum) by inserting a length
-- field before it (see C.2.5.3 to C.2.5.5)

eRepetitionWithLengthAdditionalDatum1 #REPETITION ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByNonEmptySequenceOfLength
 ENCODED BY eNonEmptySequenceOfWithLengthAdditionalDatum1 }}

-- Encodes the NonEmptyOctetString type. Used when the encoding starts
-- on the second bit of an octet (see C.22)

eNonEmptyOctetString2 #NonEmptyOctetString ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByNonEmptyOctetStringLength
 ENCODED BY eNonEmptyOctetStringWithLength2 }}

-- Encodes the NonEmptyOctetString type. Used when the encoding starts
-- on the fifth bit of an octet (see C.23)

eNonEmptyOctetString5 #NonEmptyOctetString ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByNonEmptyOctetStringLength
 ENCODED BY eNonEmptyOctetStringWithLength5 }}

-- Encodes the NonEmptyOctetString type. Used when the encoding starts
-- on the seventh bit of an octet (see C.24)

eNonEmptyOctetString7 #NonEmptyOctetString ::= {
REPETITION-ENCODING {
 REPLACE STRUCTURE WITH #PrecededByNonEmptyOctetStringLength
 ENCODED BY eNonEmptyOctetStringWithLength7 }}

-- Encodes the length field that has been inserted before the encoding of
-- a SEQUENCE OF (see C.21)

eNonEmptySequenceOfLength1 #NonEmptySequenceOfLength ::= {
USE #NonEmptySequenceOfLengthAlternatives1
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH eNonEmptySequenceOfLengthDiscriminantAdder1 }
 WITH FastInfosetEncodingSet }}

-- Encodes the length field that has been inserted before the encoding of
-- a NonEmptyOctetString. Used when the encoding starts on the second bit
-- of an octet (see C.22)

eNonEmptyOctetStringLength2 #NonEmptyOctetStringLength ::= {
USE #NonEmptyOctetStringLengthAlternatives2
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH eNonEmptyOctetStringLengthDiscriminantAdder2 }
 WITH FastInfosetEncodingSet }}

-- Encodes the length field that has been inserted before the encoding of a
-- NonEmptyOctetString. Used when the encoding starts on the fifth bit of
-- an octet (see C.23)

eNonEmptyOctetStringLength5 #NonEmptyOctetStringLength ::= {
USE #NonEmptyOctetStringLengthAlternatives5
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH eNonEmptyOctetStringLengthDiscriminantAdder5 }
 WITH FastInfosetEncodingSet }}

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 51

-- Encodes the length field that has been inserted before the encoding of
-- a NonEmptyOctetString. Used when the encoding starts on the seventh bit
-- of an octet (see C.24)

eNonEmptyOctetStringLength7 #NonEmptyOctetStringLength ::= {
USE #NonEmptyOctetStringLengthAlternatives7
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH eNonEmptyOctetStringLengthDiscriminantAdder7 }
 WITH FastInfosetEncodingSet }}

-- Encodes a positive integer. Used when the encoding starts on the second bit
-- of an octet (see C.25)

ePositiveInteger2 #PositiveOrNonNegativeInteger ::= {
USE #PositiveIntegerAlternatives2
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH ePositiveIntegerDiscriminantAdder2 }
 WITH FastInfosetEncodingSet }}

-- Encodes a positive integer. Used when the encoding starts on the third bit
-- of an octet (see C.27)

ePositiveInteger3 #PositiveOrNonNegativeInteger ::= {
USE #PositiveIntegerAlternatives3
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH ePositiveIntegerDiscriminantAdder3 }
 WITH FastInfosetEncodingSet }}

-- Encodes a positive integer. Used when the encoding starts on the fourth bit
-- of an octet (see C.28)

ePositiveInteger4 #PositiveOrNonNegativeInteger ::= {
USE #PositiveIntegerAlternatives4
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH ePositiveIntegerDiscriminantAdder4 }
 WITH FastInfosetEncodingSet }}

-- Encodes a non-negative integer (see C.26)

eNonNegativeInteger2 #PositiveOrNonNegativeInteger ::= {
USE #NonNegativeIntegerAlternatives2
MAPPING ORDERED VALUES
WITH {
 ENCODE STRUCTURE {
 STRUCTURED WITH eNonNegativeIntegerDiscriminantAdder2 }
 WITH FastInfosetEncodingSet }}

-- Specifies how to determine the presence of the namespace-attributes component
-- of the Element type (see C.3.4.2)

eNamespaceAttributesOptionality3 #OPTIONAL ::= {
PRESENCE DETERMINED BY handle
HANDLE "nsa" }

-- Specifies how to determine the alternative of the QualifiedNameOrIndex type
-- (see C.17.3 and C.18.3)

eQualifiedNameAlternatives3 #ALTERNATIVES ::= {
ALTERNATIVE DETERMINED BY handle
HANDLE "qn"
EXHIBITS HANDLE "nsa" AT { 0 | 1 | 2 | 3 | 4 | 5}
AS range:{low 0, high 50}} -- Less than '110011'B

-- Specifies how to determine the termination of a repetition using a 4-bit
-- terminator '1111'(see C.2.12, C.3.6.2, C.3.8, and C.9.7)

ISO/IEC 24824-1:2005 (E)

52 ITU-T Rec. X.891 (05/2005)

eRepetitionWithTerminator4bit1 #REPETITION ::= {
REPETITION-ENCODING {
 REPETITION-SPACE SIZE variable-with-determinant
 DETERMINED BY pattern PATTERN bits:'1111'B }}

-- Specifies how to determine the termination of a repetition using an 8-bit
-- terminator '11110000'(see C.2.6.2 and C.2.7.2)

eRepetitionWithTerminator8bit1 #REPETITION ::= {
REPETITION-ENCODING {
 REPETITION-SPACE SIZE variable-with-determinant
 DETERMINED BY pattern PATTERN bits:'11110000'B }}

-- Specifies how to determine the termination of a repetition using a 10-bit
-- terminator '1111000000'(see C.3.4.3)

eRepetitionWithTerminator10bit1 #REPETITION ::= {
REPETITION-ENCODING {
 REPETITION-SPACE SIZE variable-with-determinant
 DETERMINED BY pattern PATTERN bits:'1111000000'B
 EXHIBITS HANDLE "nsa" AT { 0 | 1 | 2 | 3 | 4 | 5} AS bits:'110011'B }}

-- Encodes the items of a SEQUENCE OF, following the length field that has been
-- added (see C.2.5.3 to C.2.5.5)

eRepetitionItems1{<REFERENCE:len>} #REPETITION ::= {
REPETITION-ENCODING {
 REPETITION-SPACE SIZE variable-with-determinant MULTIPLE OF bit
 DETERMINED BY field-to-be-set USING len }}

-- Encodes the octets of a NonEmptyOctetString, following the length field that
-- has been added (see C.22, C.23, and C.24)

eOctetStringOctets1{<REFERENCE:len>} #OCTETS ::= {
REPETITION-ENCODING {
 REPETITION-SPACE SIZE variable-with-determinant MULTIPLE OF bit
 DETERMINED BY field-to-be-set USING len }}

empty-padding #PAD ::= {
 ENCODING-SPACE SIZE 0
}

FastInfosetEncodingSet #ENCODINGS::= { eDocument2 | empty-padding }
COMPLETED BY PER-BASIC-UNALIGNED

END

FastInfosetELM
{joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0)
modules(0) fast-infoset-elm(2)}
LINK-DEFINITIONS ::= BEGIN
IMPORTS FastInfosetEncodingSet, Document FROM FastInfosetEDM;
ENCODE #Document WITH FastInfosetEncodingSet

END

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 53

Annex B

The MIME media type for fast infoset documents
(This annex forms an integral part of this Recommendation | International Standard)

This annex defines the "application/fastinfoset" media type that describes fast infoset documents.

The MIME media type is specified below using the IETF MIME registration template, and has been registered in
accordance with IETF procedures.

MIME media type name:

application

MIME subtype name:

fastinfoset

Required parameters:

None.

Optional parameters:

None.

Encoding considerations:

XML infosets encoded as fast infoset documents will result in the production of
binary data. This MIME media type may require further encoding on transports not
capable of handling binary data.

Security considerations:
Because XML infosets encoded as fast infoset documents can carry application
defined data whose semantics is independent from that of any MIME wrapper (or
context within which the MIME wrapper is used), one should not expect to be able
to understand the semantics of the fast infoset document based on the semantics of
the MIME wrapper alone. Therefore, whenever using the
"application/fastinfoset" media type, it is strongly recommended that the security
implications of the context within which the fast infoset document is used is
fully understood.

Interoperability considerations:

There are no known interoperability issues.

Published specification:
ITU-T Rec. X.891 | ISO/IEC 24824-1

Applications which use this media type:

No known applications currently use this media type.

Additional information:

Magic number(s):
A fast infoset document can begin with an optional XML declaration that
shall be one of the following strings encoded in UTF-8:

<?xml encoding='finf'?>
<?xml encoding='finf' standalone='yes'?>
<?xml encoding='finf' standalone='no'?>
<?xml version='1.0' encoding='finf'?>
<?xml version='1.0' encoding='finf' standalone='yes'?>
<?xml version='1.0' encoding='finf' standalone='no'?>
<?xml version='1.1' encoding='finf'?>
<?xml version='1.1' encoding='finf' standalone='yes'?>
<?xml version='1.1' encoding='finf' standalone='no'?>

The first five octets of the XML declaration encoded in UTF-8 are
hexadecimal 3C 3F 78 6D 6C. The four octets identifying a fast infoset
document corresponding to the substring "finf" encoded in UTF-8 are
hexadecimal 66 69 6E 66.

A fast infoset document shall begin with an octet sequence of hexadecimal E0
00 00 01 if the optional XML declaration is absent.

File extension(s):

*.finf

ISO/IEC 24824-1:2005 (E)

54 ITU-T Rec. X.891 (05/2005)

Person & email address to contact for further information:
ITU-T ASN.1 Rapporteur (contact via tsbmail@itu.int)
ISO/IEC JTC1/SC6 ASN.1 Rapporteur (contact via ittf@iso.org)

Intended usage:

COMMON

Author/Change controller:

Joint ITU-T | ISO/IEC balloting procedures in accordance with ITU-T Rec. A.23
Collaboration with the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC) on information technology,
Annex A and ISO/IEC JTC1 Directives, Annex K.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 55

Annex C

Description of the encoding of a fast infoset document
(This annex does not form an integral part of this Recommendation | International Standard)

C.1 Fast infoset document

C.1.1 This annex informally (but precisely and fully) describes the encodings that are specified in clause 12 and
Annex A. For the convenience of implementers, all ASN.1 type definitions in the normative text are copied into this
annex rather than simply being referenced.

C.1.2 Encodings are described in terms of actions to be performed by an encoder, resulting in bits being appended
to a bit stream. The actions to be performed by a decoder are not described explicitly in this annex, but can be inferred
from the encoder's actions described in this annex.

C.1.3 A fast infoset document may begin either with an XML declaration (see 12.3) followed by:
a) the sixteen bits '1110000000000000' (identification); followed by
b) the sixteen bits '0000000000000001' (version number); followed by
c) the bit '0' (padding),

or with the same thirty-three bits with no preceding XML declaration. The thirty-three bits are immediately followed by
the encoding of an abstract value of the Document type, as described in C.2. This encoding ends either on the eighth or
on the fourth bit of an octet, depending on the content of the fast infoset document. In the latter case, the four bits '0000'
(padding) are appended to the bit stream.

C.2 Encoding of the Document type

C.2.1 The Document type is defined in 7.2 as follows:

Document ::= SEQUENCE {
additional-data SEQUENCE (SIZE(1..one-meg)) OF
 additional-datum SEQUENCE {
 id URI,
 data NonEmptyOctetString } OPTIONAL,
initial-vocabulary SEQUENCE {
 external-vocabulary URI OPTIONAL,
 restricted-alphabets SEQUENCE (SIZE(1..256)) OF
 NonEmptyOctetString OPTIONAL,
 encoding-algorithms SEQUENCE (SIZE(1..256)) OF
 NonEmptyOctetString OPTIONAL,
 prefixes SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 namespace-names SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 local-names SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 other-ncnames SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 other-uris SEQUENCE (SIZE(1..one-meg)) OF
 NonEmptyOctetString OPTIONAL,
 attribute-values SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 content-character-chunks SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 other-strings SEQUENCE (SIZE(1..one-meg)) OF
 EncodedCharacterString OPTIONAL,
 element-name-surrogates SEQUENCE (SIZE(1..one-meg)) OF
 NameSurrogate OPTIONAL,
 attribute-name-surrogates SEQUENCE (SIZE(1..one-meg)) OF
 NameSurrogate OPTIONAL }
 (CONSTRAINED BY {
 -- If the initial-vocabulary component is present, at least
 -- one of its components shall be present -- }) OPTIONAL,
notations SEQUENCE (SIZE(1..MAX)) OF
 Notation OPTIONAL,
unparsed-entities SEQUENCE (SIZE(1..MAX)) OF
 UnparsedEntity OPTIONAL,

ISO/IEC 24824-1:2005 (E)

56 ITU-T Rec. X.891 (05/2005)

character-encoding-scheme NonEmptyOctetString OPTIONAL,
standalone BOOLEAN OPTIONAL,
version NonIdentifyingStringOrIndex OPTIONAL
 -- OTHER STRING category --,
children SEQUENCE (SIZE(0..MAX)) OF
 CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 comment Comment,
 document-type-declaration DocumentTypeDeclaration }}

C.2.2 A value of the Document type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the second bit of an octet and ends on either the fourth or the eighth bit of
another octet (which is the last bit of the terminator '1111' described in C.2.12).

C.2.3 For each of the seven optional components additional-data, initial-vocabulary, notations,
unparsed-entities, character-encoding-scheme, standalone, and version (in this order), if the component
is present, then the bit '1' (presence) is appended to the bit stream; otherwise, the bit '0' (absence) is appended.

C.2.4 If the optional component additional-data is present, then the number of additional-datum
components is encoded as described in C.21, and each of the additional-datum components is encoded as described
in the two following subclauses.

C.2.4.1 The bit '0' (padding) is appended to the bit stream and the id component is encoded as described in C.22.

C.2.4.2 The bit '0' (padding) is appended to the bit stream and the data component is encoded as described in C.22.

C.2.5 If the optional component initial-vocabulary is present, then the three bits '000' (padding) are appended
to the bit stream, and the component is encoded as described in the five following subclauses.

C.2.5.1 For each of the thirteen optional components of initial-vocabulary (in textual order), if the component is
present, then the bit '1' (presence) is appended to the bit stream; otherwise, the bit '0' (absence) is appended.

C.2.5.2 If the optional component external-vocabulary of initial-vocabulary is present, then the bit '0'
(padding) is appended to the bit stream and the component is encoded as described in C.22.

C.2.5.3 For each of the components restricted-alphabets, encoding-algorithms, prefixes, namespace-
names, local-names, other-ncnames, and other-uris (in this order) which is present, the number of
NonEmptyOctetString items in the component is encoded as described in C.21, and then each item is encoded (in
order) as follows: The bit '0' (padding) is appended to the bit stream, and the NonEmptyOctetString is encoded as
described in C.22.

C.2.5.4 For each of the components attribute-values, content-character-chunks, and other-strings (in
this order) which is present, the number of EncodedCharacterString items in the component is encoded as described
in C.21, and then each item is encoded (in order) as follows: The two bits '00' (padding) are appended to the bit stream,
and the EncodedCharacterString is encoded as described in C.19.

C.2.5.5 For each of the components element-name-surrogates and attribute-name-surrogates (in this
order) which is present, the number of NameSurrogate items in the component is encoded as described in C.21, and
then each item is encoded (in order) as follows: The six bits '000000' (padding) are appended to the bit stream, and the
NameSurrogate is encoded as described in C.16.

C.2.6 If the optional component notations is present, it is encoded as described in the two following subclauses.

C.2.6.1 Each item of notations (in order) is encoded as follows: The six bits '110000' (identification) are appended
to the bit stream, and the Notation is encoded as described in C.11.

C.2.6.2 The four bits '1111' (termination) and the four bits '0000' (padding) are appended to the bit stream.
NOTE – These bits are not appended if the component notations is absent.

C.2.7 If the optional component unparsed-entities is present, it is encoded as described in the two following
subclauses.

C.2.7.1 Each item of unparsed-entities (in order) is encoded as follows: The seven bits '1101000' (identification)
are appended to the bit stream, and the UnparsedEntity is encoded as described in C.10.

C.2.7.2 The four bits '1111' (termination) and the four bits '0000' (padding) are appended to the bit stream.
NOTE – These bits are not appended if the component unparsed-entities is absent.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 57

C.2.8 If the optional component character-encoding-scheme is present, then the bit '0' (padding) is appended
to the bit stream, and the NonEmptyOctetString is encoded as described in C.22.

C.2.9 If the optional component standalone is present, it is encoded as follows: The seven bits '0000000'
(padding) are appended to the bit stream. If the value of standalone is TRUE, then the bit '1' is appended to the bit
stream, otherwise the bit '0' is appended.

C.2.10 If the optional component version is present, then its value is encoded as described in C.14.

C.2.11 If the component children has one or more items, then each item is encoded (in order) as described in the
five following subclauses.

C.2.11.1 The encoding of each item is required to start on the first bit of an octet. However, the latest bit appended
may have been either the eight or the fourth bit of an octet. If it was the fourth bit of an octet, the bits '0000' (padding)
are appended to the bit stream so that the encoding of the item starts on the first bit of the next octet.

C.2.11.2 If the alternative element is present, then the bit '0' (identification) is appended to the bit stream, then the
element is encoded as described in C.3.

C.2.11.3 If the alternative processing-instruction is present, then the eight bits '11100001' (identification) are
appended to the bit stream, and the processing-instruction is encoded as described in C.5.

C.2.11.4 If the alternative comment is present, then the eight bits '11100010' (identification) are appended to the bit
stream, and the comment is encoded as described in C.8.

C.2.11.5 If the alternative document-type-declaration is present, then the six bits '110001' (identification) are
appended to the bit stream, and the document-type-declaration is encoded as described in C.9.

C.2.12 The four bits '1111' (termination) are appended.
NOTE – These bits are appended even if the component children has no items.

C.3 Encoding of the Element type

C.3.1 The Element type is defined in 7.3 as follows:

Element ::= SEQUENCE {
namespace-attributes SEQUENCE (SIZE(1..MAX)) OF
 NamespaceAttribute OPTIONAL,
qualified-name QualifiedNameOrIndex
 -- ELEMENT NAME category --,
attributes SEQUENCE (SIZE(1..MAX)) OF
 Attribute OPTIONAL,
children SEQUENCE (SIZE(0..MAX)) OF
 CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 unexpanded-entity-reference UnexpandedEntityReference,
 character-chunk CharacterChunk,
 comment Comment }}

C.3.2 A value of the Element type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the second bit of an octet and ends on either the fourth or the eighth bit of
another octet (which is the last bit of the terminator '1111' described in C.3.8).

C.3.3 If the optional component attributes is present, then the bit '1' (presence) is appended to the bit stream;
otherwise, the bit '0' (absence) is appended.

C.3.4 If the optional component namespace-attributes is present, it is encoded as described in the three
following subclauses.

C.3.4.1 The four bits '1110' (presence) and the two bits '00' (padding) are appended to the bit stream.

C.3.4.2 Each item of namespace-attributes (in order) is encoded as follows: The six bits '110011' (identification)
are appended to the bit stream, and the NamespaceAttribute is encoded as described in C.12.

C.3.4.3 The four bits '1111' (termination) and the six bits '000000' (padding) are appended.
NOTE – These bits are not appended if the component namespace-attributes is absent.

C.3.5 The value of the component qualified-name is encoded as described in C.18.

ISO/IEC 24824-1:2005 (E)

58 ITU-T Rec. X.891 (05/2005)

C.3.6 If the optional component attributes is present, it is encoded as described in the two following subclauses.

C.3.6.1 Each item of attributes (in order) is encoded as follows: The bit '0' (identification) is appended to the bit
stream, and the Attribute is encoded as described in C.4.

C.3.6.2 The four bits '1111' (termination) are appended.
NOTE – These bits are not appended if the component attributes is absent.

C.3.7 If the component children has one or more items, then each item is encoded (in order) as described in the
six following subclauses.

C.3.7.1 The encoding of each item is required to start on the first bit of an octet. However, the latest bit appended
may have been either the eighth or the fourth bit of an octet. If it was the fourth bit of an octet, the bits '0000' (padding)
are appended so that the encoding of the item starts on the first bit of the next octet.

C.3.7.2 If the alternative element is present, then the bit '0' (identification) is appended to the bit stream, and the
element is encoded as described in this subclause C.3.

C.3.7.3 If the alternative processing-instruction is present, then the eight bits '11100001' (identification) are
appended to the bit stream, and the processing-instruction is encoded as described in C.5.

C.3.7.4 If the alternative unexpanded-entity-reference is present, then the six bits '110010' (identification) are
appended to the bit stream, and the unexpanded-entity-reference is encoded as described in C.6.

C.3.7.5 If the alternative character-chunk is present, then the two bits '10' (identification) are appended to the bit
stream, and the character-chunk is encoded as described in C.7.

C.3.7.6 If the alternative comment is present, then the eight bits '11100010' (identification) are appended to the bit
stream, and the comment is encoded as described in C.8.

C.3.8 The four bits '1111' (termination) are appended.
NOTE – These bits are appended even if the component children has no items.

C.4 Encoding of the Attribute type

C.4.1 The Attribute type is defined in 7.4 as follows:

Attribute ::= SEQUENCE {
qualified-name QualifiedNameOrIndex
 -- ATTRIBUTE NAME category --,
normalized-value NonIdentifyingStringOrIndex
 -- ATTRIBUTE VALUE category -- }

C.4.2 A value of the Attribute type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the second bit of an octet and ends on the eighth bit of another octet.

C.4.3 The value of qualified-name is encoded as described in C.17.

C.4.4 The value of normalized-value is encoded as described in C.14.

C.5 Encoding of the ProcessingInstruction type

C.5.1 The ProcessingInstruction type is defined in 7.5 as follows:

ProcessingInstruction ::= SEQUENCE {
target IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
content NonIdentifyingStringOrIndex
 -- OTHER STRING category -- }

C.5.2 A value of the ProcessingInstruction type is encoded by performing the following actions (in order).
NOTE - An encoding of this type always starts on the first bit of an octet and ends on the eighth bit of another octet.

C.5.3 The value of target is encoded as described in C.13.

C.5.4 The value of content is encoded as described in C.14.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 59

C.6 Encoding of the UnexpandedEntityReference type

C.6.1 The UnexpandedEntityReference type is defined in 7.6 as follows:

UnexpandedEntityReference ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category -- }

C.6.2 A value of the UnexpandedEntityReference type is encoded by performing the following actions (in
order).

NOTE – An encoding of this type always starts on the seventh bit of an octet and ends on the eighth bit of another octet.

C.6.3 For each of the optional components system-identifier and public-identifier (in this order), if the
component is present, then the bit '1' (presence) is appended to the bit stream, otherwise the bit '0' (absence) is
appended.

C.6.4 The value of name is encoded as described in C.13.

C.6.5 If the optional component system-identifier is present, it is encoded as described in C.13.

C.6.6 If the optional component public-identifier is present, it is encoded as described in C.13.

C.7 Encoding of the CharacterChunk type

C.7.1 The CharacterChunk type is defined in 7.7 as follows:

CharacterChunk ::= SEQUENCE {
character-codes NonIdentifyingStringOrIndex
 -- CONTENT CHARACTER CHUNK category -- }

C.7.2 A value of the CharacterChunk type is encoded by performing the following action.
NOTE – An encoding of this type always starts on the third bit of an octet and ends on the eighth bit of the same or another octet.

C.7.3 The value of character-codes is encoded as described in C.15.

C.8 Encoding of the Comment type

C.8.1 The Comment type is defined in 7.8 as follows:

Comment ::= SEQUENCE {
content NonIdentifyingStringOrIndex -- OTHER STRING category --}

C.8.2 A value of the Comment type is encoded by performing the following action.
NOTE – An encoding of this type always starts on the first bit of an octet and ends on the eighth bit of the same or another octet.

C.8.3 The value of content is encoded as described in C.14.

C.9 Encoding of the DocumentTypeDeclaration type

C.9.1 The DocumentTypeDeclaration type is defined in 7.9 as follows:

DocumentTypeDeclaration ::= SEQUENCE {
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
children SEQUENCE (SIZE(0..MAX)) OF
 ProcessingInstruction }

C.9.2 A value of the DocumentTypeDeclaration type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the seventh bit of an octet and ends on the fourth bit of another octet (which is
the last bit of the terminator '1111' described in C.9.7).

C.9.3 For each of the optional components system-identifier and public-identifier (in this order), if the
component is present, then the bit '1' (presence) is appended to the bit stream; otherwise, the bit '0' (absence) is
appended.

ISO/IEC 24824-1:2005 (E)

60 ITU-T Rec. X.891 (05/2005)

C.9.4 If the optional component system-identifier is present, it is encoded as described in C.13.

C.9.5 If the optional component public-identifier is present, it is encoded as described in C.13.

C.9.6 If the component children has one or more items, then each item is encoded as follows: The eight bits
'11100001' (identification) are appended to the bit stream, and the ProcessingInstruction is encoded as described
in C.5.

C.9.7 The four bits '1111' (termination) are appended.
NOTE – These bits are appended even if the component children has no items.

C.10 Encoding of the UnparsedEntity type

C.10.1 The UnparsedEntity type is defined in 7.10 as follows:

UnparsedEntity ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
notation-name IdentifyingStringOrIndex
 -- OTHER NCNAME category -- }

C.10.2 A value of the UnparsedEntity type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the eighth bit of an octet and ends on the eighth bit of another octet.

C.10.3 If the optional component public-identifier is present, then the bit '1' (presence) is appended to the bit
stream; otherwise, the bit '0' (absence) is appended.

C.10.4 The value of name is encoded as described in C.13.

C.10.5 The value of system-identifier is encoded as described in C.13.

C.10.6 If the optional component public-identifier is present, it is encoded as described in C.13.

C.10.7 The value of name is encoded as described in C.13.

C.11 Encoding of the Notation type

C.11.1 The Notation type is defined in 7.11 as follows:

Notation ::= SEQUENCE {
name IdentifyingStringOrIndex
 -- OTHER NCNAME category --,
system-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category --,
public-identifier IdentifyingStringOrIndex OPTIONAL
 -- OTHER URI category -- }

C.11.2 A value of the Notation type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the seventh bit of an octet and ends on the eighth bit of another octet.

C.11.3 For each of the optional components system-identifier and public-identifier (in this order), if the
component is present, then the bit '1' (presence) is appended to the bit stream; otherwise, the bit '0' (absence) is
appended.

C.11.4 The value of name is encoded as described in C.13.

C.11.5 If the optional component system-identifier is present, it is encoded as described in C.13.

C.11.6 If the optional component public-identifier is present, it is encoded as described in C.13.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 61

C.12 Encoding of the NamespaceAttribute type

C.12.1 The NamespaceAttribute type is defined in 7.12 as follows:

NamespaceAttribute ::= SEQUENCE {
prefix IdentifyingStringOrIndex OPTIONAL
 -- PREFIX category --,
namespace-name IdentifyingStringOrIndex OPTIONAL
 -- NAMESPACE NAME category -- }

C.12.2 A value of the NamespaceAttribute type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the eighth bit of an octet and ends on the eighth bit of another octet.

C.12.3 If the optional component prefix is present, then the bit '1' (presence) is appended to the bit stream;
otherwise, the bit '0' (absence) is appended.

C.12.4 If the optional component namespace-name is present, then the bit '1' (presence) is appended to the bit
stream; otherwise, the bit '0' (absence) is appended.

C.12.5 If the optional component prefix is present, it is encoded as described in C.13.

C.12.6 If the optional component namespace-name is present, it is encoded as described in C.13.

C.13 Encoding of the IdentifyingStringOrIndex type

C.13.1 The IdentifyingStringOrIndex type is defined in 7.13 as follows:

IdentifyingStringOrIndex ::= CHOICE {
literal-character-string NonEmptyOctetString,
string-index INTEGER (1..one-meg) }

C.13.2 A value of the IdentifyingStringOrIndex type is encoded by performing the following actions.
NOTE – An encoding of this type always starts on the first bit of an octet and ends on the eighth bit of the same or another octet.

C.13.3 If the alternative literal-character-string is present, then the bit '0' (discriminant) is appended to the
bit stream, and the literal-character-string is encoded as described in C.22.

C.13.4 If the alternative string-index is present, then the bit '1' (discriminant) is appended to the bit stream, and
the string-index is encoded as described in C.25

C.14 Encoding of the NonIdentifyingStringOrIndex type starting on the first bit of an octet

C.14.1 The NonIdentifyingStringOrIndex type is defined in 7.14 as follows:

NonIdentifyingStringOrIndex ::= CHOICE {
literal-character-string SEQUENCE {
 add-to-table BOOLEAN,
 character-string EncodedCharacterString },
string-index INTEGER (0..one-meg) }

C.14.2 This subclause C.14 is invoked to encode a value of the NonIdentifyingStringOrIndex type when the
encoding is to start on the first bit of an octet (see also C.15). The value is encoded by performing the following actions
(in order).

NOTE – An encoding of this type always ends on the eighth bit of the same or another octet.

C.14.3 If the alternative literal-character-string is present, then the bit '0' (discriminant) is appended to the
bit stream, and the literal-character-string is encoded as described in the two following subclauses.

C.14.3.1 If the value of the component add-to-table is TRUE, then the bit '1' is appended to the bit stream;
otherwise, the bit '0' is appended.

C.14.3.2 The value of the component character-string is encoded as described in C.19.

C.14.4 If the alternative string-index is present, then the bit '1' (discriminant) is appended to the bit stream, and
the string-index is encoded as described in C.26.

ISO/IEC 24824-1:2005 (E)

62 ITU-T Rec. X.891 (05/2005)

C.15 Encoding of the NonIdentifyingStringOrIndex type starting on the third bit of an octet

C.15.1 The NonIdentifyingStringOrIndex type is defined in 7.14 as follows:

NonIdentifyingStringOrIndex ::= CHOICE {
literal-character-string SEQUENCE {
 add-to-table BOOLEAN,
 character-string EncodedCharacterString },
string-index INTEGER (0..one-meg) }

C.15.2 This subclause C.15 is invoked to encode a value of the NonIdentifyingStringOrIndex type when the
encoding is to start on the third bit of an octet (see also C.14). The value is encoded by performing the following actions
(in order).

NOTE – An encoding of this type always ends on the eighth bit of the same or another octet.

C.15.3 If the alternative literal-character-string is present, then the bit '0' (discriminant) is appended to the
bit stream, and the literal-character-string is encoded as described in the two following subclauses.

C.15.3.1 If the value of the component add-to-table is TRUE, then the bit '1' is appended to the bit stream, otherwise
the bit '0' is appended.

C.15.3.2 The value of the component character-string is encoded as described in C.20.

C.15.4 If the alternative string-index is present, then the bit '1' (discriminant) is appended to the bit stream, and
the string-index is encoded as described in C.28.

C.16 Encoding of the NameSurrogate type

C.16.1 The NameSurrogate type is defined in 7.15 as follows:

NameSurrogate ::= SEQUENCE {
prefix-string-index INTEGER(1..one-meg) OPTIONAL,
namespace-name-string-index INTEGER(1..one-meg) OPTIONAL,
local-name-string-index INTEGER(1..one-meg) }
(CONSTRAINED BY {-- prefix-string-index shall only be present if
 -- namespace-name-string-index is present --})

C.16.2 A value of the NameSurrogate type is encoded by performing the following actions (in order).
NOTE – An encoding of this type always starts on the seventh bit of an octet and ends on the eighth bit of another octet.

C.16.3 If the optional component prefix-string-index is present, then the bit '1' (presence) is appended to the bit
stream; otherwise, the bit '0' (absence) is appended.

C.16.4 If the optional component namespace-name-string-index is present, then the bit '1' (presence) is
appended to the bit stream; otherwise, the bit '0' (absence) is appended.

C.16.5 If the optional component prefix-string-index is present, then the bit '0' (padding) is appended to the bit
stream, and the component is encoded as described in C.25.

C.16.6 If the optional component namespace-name-string-index is present, then the bit '0' (padding) is appended
to the bit stream, and the component is encoded as described in C.25.

C.16.7 The bit '0' (padding) is appended to the bit stream, and the component local-name-string-index is
encoded as described in C.25.

C.17 Encoding of the QualifiedNameOrIndex type starting on the second bit of an octet

C.17.1 The QualifiedNameOrIndex type is defined in 7.16 as follows:

QualifiedNameOrIndex ::= CHOICE {
literal-qualified-name SEQUENCE {
 prefix IdentifyingStringOrIndex OPTIONAL
 -- PREFIX category --,
 namespace-name IdentifyingStringOrIndex OPTIONAL
 -- NAMESPACE NAME category --,
 local-name IdentifyingStringOrIndex
 -- LOCAL NAME category -- },
name-surrogate-index INTEGER (1..one-meg) }

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 63

C.17.2 This subclause C.17 is invoked to encode a value of the QualifiedNameOrIndex type when the encoding is
to start on the second bit of an octet (see also C.18). The value is encoded by performing the following actions (in
order).

NOTE – An encoding of this type always ends on the eighth bit of the same or another octet.

C.17.3 If the alternative literal-qualified-name is present, then the four bits '1111' (identification) and the bit
'0' (padding) are appended to the bit stream, and the literal-qualified-name is encoded as described in the four
following subclauses.

C.17.3.1 For each of the optional components prefix and namespace-name (in this order), if the component is
present, then the bit '1' (presence) is appended to the bit stream; otherwise, the bit '0' (absence) is appended.

C.17.3.2 If the optional component prefix is present, it is encoded as described in C.13.

C.17.3.3 If the optional component namespace-name is present, it is encoded as described in C.13.

C.17.3.4 The component local-name is encoded as described in C.13.

C.17.4 If the alternative name-surrogate-index is present, it is encoded as described in C.25.

C.18 Encoding of the QualifiedNameOrIndex type starting on the third bit of an octet

C.18.1 The QualifiedNameOrIndex type is defined in 7.16 as follows:

QualifiedNameOrIndex ::= CHOICE {
literal-qualified-name SEQUENCE {
 prefix IdentifyingStringOrIndex OPTIONAL
 -- PREFIX category --,
 namespace-name IdentifyingStringOrIndex OPTIONAL
 -- NAMESPACE NAME category --,
 local-name IdentifyingStringOrIndex
 -- LOCAL NAME category -- },
name-surrogate-index INTEGER (1..one-meg) }

C.18.2 This subclause C.18 is invoked to encode a value of the QualifiedNameOrIndex type when the encoding is
to start on the third bit of an octet (see also C.17). The value is encoded by performing the following actions (in order).

NOTE – An encoding of this type always ends on the eighth bit of the same or another octet.

C.18.3 If the alternative literal-qualified-name is present, then the four bits '1111' (identification) are
appended to the bit stream, and the literal-qualified-name is encoded as described in the four following
subclauses.

C.18.3.1 For each of the optional components prefix and namespace-name (in this order), if the component is
present, then the bit '1' (presence) is appended to the bit stream; otherwise, the bit '0' (absence) is appended.

C.18.3.2 If the optional component prefix is present, it is encoded as described in C.13.

C.18.3.3 If the optional component namespace-name is present, it is encoded as described in C.13.

C.18.3.4 The component local-name is encoded as described in C.13.

C.18.4 If the alternative name-surrogate-index is present, it is encoded as described in C.27.

C.19 Encoding of the EncodedCharacterString type starting on the third bit of an octet

C.19.1 The EncodedCharacterString type is defined in 7.17 as follows:

EncodedCharacterString ::= SEQUENCE {
encoding-format CHOICE {
 utf-8 NULL,
 utf-16 NULL,
 restricted-alphabet INTEGER(1..256),
 encoding-algorithm INTEGER(1..256) },
octets NonEmptyOctetString }

C.19.2 This subclause C.19 is invoked to encode a value of the EncodedCharacterString type when the encoding
is to start on the third bit of an octet (see also C.20). The value is encoded by performing the following actions (in
order).

NOTE – An encoding of this type always ends on the eighth bit of another octet.

ISO/IEC 24824-1:2005 (E)

64 ITU-T Rec. X.891 (05/2005)

C.19.3 The value of the component encoding-format is encoded as described in the four following subclauses.

C.19.3.1 If the alternative utf-8 is present, then the two bits '00' (discriminant) are appended to the bit stream.

C.19.3.2 If the alternative utf-16 is present, then the two bits '01' (discriminant) are appended to the bit stream.

C.19.3.3 If the alternative restricted-alphabet is present, then the two bits '10' (discriminant) are appended to the
bit stream, and the restricted-alphabet is encoded as described in C.29.

C.19.3.4 If the alternative encoding-algorithm is present, then the two bits '11' (discriminant) are appended to the
bit stream, and the encoding-algorithm is encoded as described in C.29.

C.19.4 The component octets is encoded as described in C.23.

C.20 Encoding of the EncodedCharacterString type starting on the fifth bit of an octet

C.20.1 The EncodedCharacterString type is defined in 7.17 as follows:

EncodedCharacterString ::= SEQUENCE {
encoding-format CHOICE {
 utf-8 NULL,
 utf-16 NULL,
 restricted-alphabet INTEGER(1..256),
 encoding-algorithm INTEGER(1..256) },
octets NonEmptyOctetString }

C.20.2 This subclause C.20 is invoked to encode a value of the EncodedCharacterString type when the encoding
is to start on the fifth bit of an octet (see also C.19). The value is encoded by performing the following actions (in
order).

NOTE – An encoding of this type always ends on the eighth bit of another octet.

C.20.3 The value of the component encoding-format is encoded as described in the four following subclauses.

C.20.3.1 If the alternative utf-8 is present, then the two bits '00' (discriminant) are appended to the bit stream.

C.20.3.2 If the alternative utf-16 is present, then the two bits '01' (discriminant) are appended to the bit stream.

C.20.3.3 If the alternative restricted-alphabet is present, then the two bits '10' (discriminant) are appended to the
bit stream, and the restricted-alphabet is encoded as described in C.29.

C.20.3.4 If the alternative encoding-algorithm is present, then the two bits '11' (discriminant) are appended to the
bit stream, and the encoding-algorithm is encoded as described in C.29.

C.20.4 The component octets is encoded as described in C.24.

C.21 Encoding of the length of a sequence-of type

C.21.1 This subclause is invoked to encode the length of a sequence-of type that is encoded with a length field
preceding the items of the sequence-of type.

NOTE – This encoding always starts on the first bit of an octet and ends on the eighth bit of the same or another octet.

C.21.2 If the value is in the range 1 to 128, then the bit '0' is appended to the bit stream, and the value, minus the
lower bound of the range, is encoded as an unsigned integer in a field of seven bits and appended.

C.21.3 If the value is in the range 129 to 220, the bit '1' and the three bits '000' (padding) are appended to the bit
stream, and the value, minus the lower bound of the range, is encoded as an unsigned integer in a field of twenty bits
and appended.

C.22 Encoding of the NonEmptyOctetString type starting on the second bit of an octet

C.22.1 The NonEmptyOctetString type is defined in 7.2 as follows:

NonEmptyOctetString ::= OCTET STRING (SIZE(1..four-gig))

C.22.2 This subclause C.22 is invoked to encode a value of the NonEmptyOctetString type when the encoding is
to start on the second bit of an octet (see also C.23 and C.24). The value is encoded by performing the following actions
(in order).

NOTE – An encoding of this type always ends on the eighth bit of another octet.

C.22.3 The length of the octet string is encoded as described in the three following subclauses.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 65

C.22.3.1 If the length is in the range 1 to 64, then the bit '0' is appended to the bit stream, and the length, minus the
lower bound of the range, is encoded as an unsigned integer in a field of six bits and appended.

C.22.3.2 If the length is in the range 65 to 320, the two bits '10' and the five bits '00000' (padding) are appended to the
bit stream, and the length, minus the lower bound of the range, is encoded as an unsigned integer in a field of eight bits
and appended.

C.22.3.3 If the length is in the range 321 to 232, the two bits '11' and the five bits '00000' (padding) are appended to the
bit stream, and the length, minus the lower bound of the range, is encoded as an unsigned integer in a field of thirty-two
bits and appended.

C.22.4 The bits forming the octets of the octet string are appended to the bit stream (in order).

C.23 Encoding of the NonEmptyOctetString starting on the fifth bit of an octet

C.23.1 The NonEmptyOctetString type is defined in 7.2 as follows:

NonEmptyOctetString ::= OCTET STRING (SIZE(1..four-gig))

C.23.2 This subclause C.23 is invoked to encode a value of the NonEmptyOctetString type when the encoding is
to start on the fifth bit of an octet (see also C.22 and C.24). The value is encoded by performing the following actions
(in order).

NOTE – An encoding of this type always ends on the eighth bit of another octet.

C.23.3 The length of the octet string is encoded as described in the three following subclauses.

C.23.3.1 If the length is in the range 1 to 8, then the bit '0' is appended to the bit stream, and the length, minus the
lower bound of the range, is encoded as an unsigned integer in a field of three bits and appended.

C.23.3.2 If the length is in the range 9 to 264, the two bits '10' and the two bits '00' (padding) are appended to the bit
stream, and the length, minus the lower bound of the range, is encoded as an unsigned integer in a field of eight bits and
appended.

C.23.3.3 If the length is in the range 265 to 232, the two bits '11' and the two bits '00' (padding) are appended to the bit
stream, and the length, minus the lower bound of the range, is encoded as an unsigned integer in a field of thirty-two
bits and appended.

C.23.4 The bits forming the octets of the octet string are appended to the bit stream (in order).

C.24 Encoding of the NonEmptyOctetString type starting on the seventh bit of an octet

C.24.1 The NonEmptyOctetString is defined in 7.2 as follows:

NonEmptyOctetString ::= OCTET STRING (SIZE(1..four-gig))

C.24.2 This subclause C.24 is invoked to encode a value of the NonEmptyOctetString type when the encoding is
to start on the seventh bit of an octet (see also C.22 and C.23). The value is encoded by performing the following
actions (in order).

NOTE – An encoding of this type always ends on the eighth bit of another octet.

C.24.3 The length of the octet string is encoded as described in the three following subclauses.

C.24.3.1 If the length is in the range 1 to 2, then the bit '0' is appended to the bit stream, and the length, minus the
lower bound of the range, is encoded as an unsigned integer in a field of one bit and appended.

C.24.3.2 If the length is in the range 3 to 258, the two bits '10' are appended to the bit stream, and the length, minus the
lower bound of the range, is encoded as an unsigned integer in a field of eight bits and appended.

C.24.3.3 If the length is in the range 259 to 232, the two bits '11' are appended to the bit stream, and the length, minus
the lower bound of the range, is encoded as an unsigned integer in a field of thirty-two bits and appended.

C.24.4 The bits forming the octets of the octet string are appended to the bit stream (in order).

C.25 Encoding of integers in the range 1 to 220 starting on the second bit of an octet

C.25.1 This subclause C.25 is invoked to encode an integer value in the range 1 to 220 when the encoding is to start
on the second bit of an octet (see also C.26, C.27, and C.28). The value is encoded by performing the following actions
(in order).

NOTE – An encoding of this type always ends on the eighth bit of either the same or another octet.

ISO/IEC 24824-1:2005 (E)

66 ITU-T Rec. X.891 (05/2005)

C.25.2 If the value is in the range 1 to 64, then the bit '0' is appended to the bit stream, and the value, minus the lower
bound of the range, is encoded as an unsigned integer in a field of six bits and appended.

C.25.3 If the value is in the range 65 to 8256, the two bits '10' are appended to the bit stream, and the value, minus
the lower bound of the range, is encoded as an unsigned integer in a field of thirteen bits and appended.

C.25.4 If the value is in the range 8257 to 220, the two bits '11' and the bit '0' (padding) are appended to the bit stream,
and the value, minus the lower bound of the range, is encoded as an unsigned integer in a field of twenty bits and
appended.

C.26 Encoding of integers in the range 0 to 220 starting on the second bit of an octet

C.26.1 This subclause C.26 is invoked to encode an integer value in the range 0 to 220 when the encoding is to start
on the second bit of an octet (see also C.25, C.27, and C.28). The value is encoded by performing the following actions
(in order).

NOTE – An encoding of this type always ends on the eighth bit of either the same or another octet.

C.26.2 If the value is zero, then the seven bits '1111111' are appended to the bit stream. Otherwise, the value is
encoded as described in C.25.

C.27 Encoding of integers in the range 1 to 220 starting on the third bit of an octet

C.27.1 This subclause C.27 is invoked to encode an integer value in the range 1 to 220 when the encoding is to start
on the third bit of an octet (see also C.25, C.26, and C.28). The value is encoded by performing the following actions (in
order).

NOTE – An encoding of this type always ends on the eighth bit of either the same or another octet.

C.27.2 If the value is in the range 1 to 32, then the bit '0' is appended to the bit stream, and the value, minus the lower
bound of the range, is encoded as an unsigned integer in a field of five bits and appended.

C.27.3 If the value is in the range 33 to 2080, the three bits '100' are appended to the bit stream, and the value, minus
the lower bound of the range, is encoded as an unsigned integer in a field of eleven bits and appended.

C.27.4 If the value is in the range 2081 to 526368, the three bits '101' are appended to the bit stream, and the value,
minus the lower bound of the range, is encoded as an unsigned integer in a field of nineteen bits and appended.

C.27.5 If the value is in the range 526369 to 220, the three bits '110' and the seven bits '0000000' (padding) are
appended to the bit stream, and the value, minus the lower bound of the range, is encoded as an unsigned integer in a
field of twenty bits and appended.

C.28 Encoding of integers in the range 1 to 220 starting on the fourth bit of an octet

C.28.1 This subclause C.28 is invoked to encode an integer value in the range 1 to 220 when the encoding is to start
on the fourth bit of an octet (see also C.25, C.26, and C.27). The value is encoded by performing the following actions
(in order).

NOTE – An encoding of this type always ends on the eighth bit of either the same or another octet.

C.28.2 If the value is in the range 1 to 16, then the bit '0' is appended to the bit stream, and the value, minus the lower
bound of the range, is encoded as an unsigned integer in a field of four bits and appended.

C.28.3 If the value is in the range 17 to 1040, the three bits '100' are appended to the bit stream, and the value, minus
the lower bound of the range, is encoded as an unsigned integer in a field of ten bits and appended.

C.28.4 If the value is in the range 1041 to 263184, the three bits '101' are appended to the bit stream, and the value,
minus the lower bound of the range, is encoded as an unsigned integer in a field of eighteen bits and appended.

C.28.5 If the value is in the range 263185 to 220, the three bits '110' and the six bits '000000' (padding) are appended
to the bit stream, and the value, minus the lower bound of the range, is encoded as an unsigned integer in a field of
twenty bits and appended.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 67

C.29 Encoding of integers in the range 1 to 256

C.29.1 This subclause C.29 is invoked to encode an integer value in the range 1 to 256.
NOTE – An encoding of this type always starts on either the fifth bit or the seventh bit of an octet and ends on the fourth bit or
the sixth bit (respectively) of the following octet.

C.29.2 The value, minus the lower bound of the range, is encoded as an unsigned integer in a field of eight bits and
appended to the bit stream.

ISO/IEC 24824-1:2005 (E)

68 ITU-T Rec. X.891 (05/2005)

Annex D

Examples of encoding XML infosets as fast infoset documents
(This annex does not form an integral part of this Recommendation | International Standard)

D.1 Introduction of examples

D.1.1 This annex uses the following typographical conventions for numbers:
a) for a number represented in base ten bold Courier is used for the digits of the number, followed by the

subscript "10" (for example, 1110); and
b) for a number represented in base sixteen (a hexadecimal number) bold Courier is used for the digits of

the number, followed by the subscript "16" (for example, 0b1f16); and
c) if the base of a number is explicitly stated, then the subscript is omitted.

D.1.2 This annex presents two examples of possible encodings of a Universal Business Language (UBL) [1] order
into a fast infoset document. UBL is designed to provide a universally understood and recognized commercial syntax
for legally binding business documents.

D.1.3 The XML infoset for the example UBL order is presented in D.3.

D.1.4 The first fast infoset document has an initial vocabulary that references an external vocabulary. Subclause D.4
describes the content of the external vocabulary, the octets of the fast infoset document, and explanations of some octet
sequences.

D.1.5 The second fast infoset has no initial vocabulary. Subclause D.5 describes the octets of that fast infoset
document, and explanations of some octet sequences.

NOTE – The final vocabulary of this fast infoset document is the same as the final vocabulary of the fast infoset document
described in D.4.

D.1.6 The octets of D.4 and D.5 are presented in a series of tables each with two columns. The first column lists the
starting position in hexadecimal of 32 consecutive octets of the fast infoset document, and the second column lists the
octets in hexadecimal notation. Those hexadecimal characters containing bits that correspond to the identification and
termination of information items are underlined.

D.1.7 The explanations of some octet sequences of the fast infoset documents (in D.4 and D.5) are presented in
tables with the following columns:

a) Column 1 presents the position, in hexadecimal, of the octet(s) listed in column 2.
b) Column 2 presents the octet(s) of the fast infoset document associated with a relevant information item

and the item's properties. An octet is represented in base two followed by the same octet represented in
base sixteen (hexadecimal) in brackets, for example, 11110000 (f0).

c) Column 3 presents, in detail, a description of the octets in column 2, and references subclauses in
Annex C for further explanation and clarification.

d) Column 4 presents a portion of the XML infoset or a portion of the XML 1.0 document (if applicable)
corresponding to the octet(s) in column 2.

D.1.8 In these examples, all chunks of character information items containing less than 6 characters are added to the
CONTENT CHARACTER CHUNK table, and the [normalized value] property of all attribute information items
containing less than 6 characters are added to the ATTRIBUTE VALUE table.

D.1.9 The sizes of the XML 1.0 document and of the fast infoset documents, and the compressed sizes (using GZIP)
of those documents are listed in D.2

D.2 Size of example documents (including redundancy-based compression)

D.2.1 Table D.1 presents the sizes of all documents. Column 1 lists the UBL documents, column 2 lists the
document sizes, and column 3 lists the GZIP (with default options) [2] compressed sizes of documents.

NOTE 1 – The UBL Order XML 1.0 document contains no white spaces (see D.3.1.2).
NOTE 2 – For each document all characters are encoded using the UTF-8 character encoding.
NOTE 3 – No XML declaration (see 12.3) is serialized for the fast infoset documents.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 69

Table D.1 – Initial sizes and GZIP compressed sizes of documents

UBL document Size GZIP compressed size

XML 1.0 document 3311 893

Fast infoset document with an external vocabulary 684 546

Fast infoset document with no initial vocabulary 1322 860

D.2.2 The size of the fast infoset document with a reference to an external vocabulary is the smallest in size, and
also the smallest in GZIP compressed size. The ratio of GZIP compressed size over the size of the fast infoset document
implies that this fast infoset document has little redundant information.

D.2.3 In all cases the GZIP compressed sizes of the fast infoset documents are smaller than the GZIP compressed
size of the XML 1.0 document. Furthermore, the size of the fast infoset document with a reference to an external
vocabulary is smaller than the GZIP compressed size of the XML 1.0 document.

D.3 UBL order example

D.3.1 Joinery Order example

D.3.1.1 The UBL order example is taken from [1]. Specifically, the Joinery Order example has been chosen
(see xml/joinery/UBL-Order-1.0-Joinery-Example.xml) for the following reasons:

a) it is a real world example developed independently of this Recommendation | International Standard with
no particular bias towards Fast Infoset;

b) it is freely available; and
c) it makes extensive use of XML namespaces and thus is a good example to present how Fast Infoset

supports XML namespaces.

D.3.1.2 The Joinery Order example has been modified with the following:
a) the last three OrderLine elements have been removed; and

NOTE 1 – This reduces the XML 1.0 document to reasonable size for presentation in this Recommendation |
International Standard.

b) all white spaces have been removed.
NOTE 2 – This represents a more realistic use case for XML infosets that may be serialized, transmitted over a
network, and parsed.

D.3.2 Joinery Order XML 1.0 document

The Joinery Order XML 1.0 document with the modifications as stated in D.3.1.2 a, but with white spaces retained for
readability, is presented as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Order xmlns:res="urn:oasis:names:tc:ubl:codelist:AcknowledgementResponseCode:1:0"
xmlns:cbc="urn:oasis:names:tc:ubl:CommonBasicComponents:1:0"
xmlns:cac="urn:oasis:names:tc:ubl:CommonAggregateComponents:1:0"
xmlns:cur="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:oasis:names:tc:ubl:Order:1:0"
xsi:schemaLocation="urn:oasis:names:tc:ubl:Order:1:0 ../../xsd/maindoc/UBL-Order-1.0.xsd">
 <BuyersID>S03-034257</BuyersID>
 <cbc:IssueDate>2003-02-03</cbc:IssueDate>
 <cac:BuyerParty>
 <cac:Party>
 <cac:PartyName>
 <cbc:Name>Jerry Builder plc</cbc:Name>
 </cac:PartyName>
 <cac:Address>
 <cbc:StreetName>Marsh Lane</cbc:StreetName>
 <cbc:CityName>Nowhere</cbc:CityName>
 <cbc:PostalZone>NR18 4XX</cbc:PostalZone>
 <cbc:CountrySubentity>Norfolk</cbc:CountrySubentity>
 </cac:Address>
 <cac:Contact>
 <cbc:Name>Eva Brick</cbc:Name>
 </cac:Contact>
 </cac:Party>
 </cac:BuyerParty>
 <cac:SellerParty>

ISO/IEC 24824-1:2005 (E)

70 ITU-T Rec. X.891 (05/2005)

 <cac:Party>
 <cac:PartyName>
 <cbc:Name>Specialist Windows plc</cbc:Name>
 </cac:PartyName>
 <cac:Address>
 <cbc:BuildingName>Snowhill Works</cbc:BuildingName>
 <cbc:CityName>Little Snoring</cbc:CityName>
 <cbc:PostalZone>SM2 3NW</cbc:PostalZone>
 <cbc:CountrySubentity>Whereshire</cbc:CountrySubentity>
 </cac:Address>
 </cac:Party>
 </cac:SellerParty>
 <cac:Delivery>
 <cbc:RequestedDeliveryDateTime>2003-02-24T00:00:00</cbc:RequestedDeliveryDateTime>
 <cac:DeliveryAddress>
 <cbc:StreetName>Riverside Rd.</cbc:StreetName>
 <cbc:BuildingName>Plot 17, Whitewater Estate</cbc:BuildingName>
 <cbc:CityName>Whetstone</cbc:CityName>
 <cbc:CountrySubentity>Middlesex</cbc:CountrySubentity>
 </cac:DeliveryAddress>
 </cac:Delivery>
 <cac:OrderLine>
 <cac:LineItem>
 <cac:BuyersID>A</cac:BuyersID>
 <cbc:Quantity quantityUnitCode="unit">2</cbc:Quantity>
 <cac:Item>
 <cac:SellersItemIdentification>
 <cac:ID>236WV</cac:ID>
 <cac:PhysicalAttribute>
 <cac:AttributeID>wood</cac:AttributeID>
 <cbc:Description>soft</cbc:Description>
 </cac:PhysicalAttribute>
 <cac:PhysicalAttribute>
 <cac:AttributeID>finish</cac:AttributeID>
 <cbc:Description>primed</cbc:Description>
 </cac:PhysicalAttribute>
 <cac:PhysicalAttribute>
 <cac:AttributeID>fittings</cac:AttributeID>
 <cbc:Description>satin</cbc:Description>
 </cac:PhysicalAttribute>
 <cac:PhysicalAttribute>
 <cac:AttributeID>glazing</cac:AttributeID>
 <cbc:Description>single</cbc:Description>
 </cac:PhysicalAttribute>
 </cac:SellersItemIdentification>
 </cac:Item>
 </cac:LineItem>
 </cac:OrderLine>
 <cac:OrderLine>
 <cac:LineItem>
 <cac:BuyersID>B</cac:BuyersID>
 <cbc:Quantity quantityUnitCode="unit">3</cbc:Quantity>
 <cac:Item>
 <cac:SellersItemIdentification>
 <cac:ID>340TW</cac:ID>
 <cac:PhysicalAttribute>
 <cac:AttributeID>hand</cac:AttributeID>
 <cbc:Description>RH</cbc:Description>
 </cac:PhysicalAttribute>
 <cac:PhysicalAttribute>
 <cac:AttributeID>wood</cac:AttributeID>
 <cbc:Description>hard</cbc:Description>
 </cac:PhysicalAttribute>
 <cac:PhysicalAttribute>
 <cac:AttributeID>finish</cac:AttributeID>
 <cbc:Description>stain</cbc:Description>
 </cac:PhysicalAttribute>
 <cac:PhysicalAttribute>
 <cac:AttributeID>fittings</cac:AttributeID>
 <cbc:Description>brass</cbc:Description>
 </cac:PhysicalAttribute>
 <cac:PhysicalAttribute>
 <cac:AttributeID>glazing</cac:AttributeID>
 <cbc:Description>double</cbc:Description>
 </cac:PhysicalAttribute>

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 71

 </cac:SellersItemIdentification>
 </cac:Item>
 </cac:LineItem>
 </cac:OrderLine>
</Order>

D.4 UBL Order fast infoset document with an external vocabulary

The external vocabulary of the fast infoset document is presented in D.4.1. The octets (as hexadecimal characters) of the
fast infoset document are presented in D.4.2. Detailed explanations of some octet sequences in D.4.2 are presented
in D.4.3. The fast infoset document cannot be considered self-describing because external information is required (the
external vocabulary) to produce complete XML infoset.

NOTE – The fast infoset document can still be processed by a fast infoset parser that cannot obtain the vocabulary tables given
the URI but vocabulary table indexes cannot be de-referenced to obtain the necessary information to generate properties of
information items.

D.4.1 The UBL Order external vocabulary

D.4.1.1 The external vocabulary of the fast infoset document is specified to be the final vocabulary obtained from the
example UBL order XML infoset (see D.3.1.2) that is further modified to contain:

a) no character information items; and
b) empty [normalized value] properties of the attribute information items.

NOTE 1 – This represents a realistic scenario where it is not known in advance what the application-defined content (character
information items and or [normalized value] properties of the attribute information items) of an XML infoset will be.
NOTE 2 – In practice it is not expected that the document to be serialized will be used to generate the external vocabulary. It is
anticipated that tools will make use of schema, and potentially XML infoset instances of the schema for frequency analysis of
strings and qualified names such that smaller index values will be assigned to more frequently occurring information (for
example, the frequency of [local name] properties in XML infosets may obey a power law series).

D.4.1.2 The URI of the external vocabulary is urn:oasis:names:tc:ubl:Order:1.0:joinery:example.

D.4.1.3 Table D.2 presents the vocabulary of the UBL Order XML infoset (the vocabulary tables). Column 1 lists the
vocabulary table indexes of the vocabulary tables (index), column 2 lists the vocabulary table entries of the PREFIX
table (prefix entry), column 3 lists the vocabulary table entries of the NAMESPACE NAME table (namespace name
entry), column 4 lists the vocabulary table entries of the LOCAL NAME table (local name entry), column 5 lists the
vocabulary table entries of the ELEMENT NAME table (element name entry), column 6 lists the vocabulary table
entries of the ATTRIBUTE NAME table (attribute name entry). The index values for the name surrogate entries, of the
ELEMENT NAME and ATTRIBUTE NAME tables, are presented in the order as specified for the components of the
NameSurrogate type (prefix-name-string-index, namespace-name-string-index and local-name-

string-index). A character of "_" specifies that the value is absent (which only occurs for values of the prefix-
name-string-index and namespace-name-string-index components).

NOTE 1 – The first entry (index 1) for the prefix and namespace name corresponding to the XML prefix, "xml", and the XML
namespace name, "http://www.w3.org/XML/1998/namespace", are built-in (see 7.2.21 and 7.2.22).
NOTE 2 – Long namespaces name entries (URIs) have been truncated.
NOTE 3 – For the first element name entry (index 1) there is no reference to a prefix (since the value is absent, represented by
"_"), there is a reference to the seventh namespace name entry (index 7) for the [namespace name] property
("urn:oasis:names:tc:ubl:Order:1:0"), and there is a reference to the first local name entry (index 1) for the [local name] property
("Order").

ISO/IEC 24824-1:2005 (E)

72 ITU-T Rec. X.891 (05/2005)

Table D.2 – Vocabulary of the UBL Order XML infoset

Index Prefix
entry Namespace name entry Local name entry Element

name entry
Attribute

name entry

1 xml http://www.w3.org/XML/1998/namespace Order _ 7 1 6 6 2

2 res ….AcknowledgementResponseCode:1:0 schemaLocation _ 7 3 _ _ 23

3 cbc ….CommonBasicComponents:1:0 BuyersID 3 3 4

4 cac ….CommonAggregateComponents:1:0 IssueDate 4 4 5

5 cur ….CurrencyCode:1:0 BuyerParty 4 4 6

6 xsi ….XMLSchema-instance Party 4 4 7

7 ….Order:1:0 PartyName 3 3 8

8 Name 4 4 9

9 Address 3 3 10

10 StreetName 3 3 11

11 CityName 3 3 12

12 PostalZone 3 3 13

13 CountrySubentity 4 4 14

14 Contact 4 4 15

15 SellerParty 3 3 16

16 BuildingName 4 4 17

17 Delivery 3 3 18

18 RequestedDeliveryDateTime 4 4 19

19 DeliveryAddress 4 4 20

20 OrderLine 4 4 21

21 LineItem 4 4 3

22 Quantity 3 3 22

23 quantityUnitCode 4 4 24

24 Item 4 4 25

25 SellersItemIdentification 4 4 26

26 ID 4 4 27

27 PhysicalAttribute 4 4 28

28 AttributeID 3 3 29

29 Description

D.4.2 Octets (as hexadecimal characters) of the fast infoset document

Table D.3 presents the octets of the fast infoset document for the UBL order example presented in D.3.
NOTE – Hexadecimal characters containing bits that correspond to the identification and termination of information items are
underlined.

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 73

Table D.3 – Octets (as hexadecimal characters) of fast infoset document

 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

000000 e00100002010002f75726e3a6f617369733a6e616d65733a74633a75626c3a4f

000020 726465723a313a303a6a6f696e6572793a6578616d706c6578cf8181cf8282cf

000040 8383cf8484cf8585cd86f00000083b75726e3a6f617369733a6e616d65733a74

000060 633a75626c3a4f726465723a313a30202e2e2f2e2e2f7873642f6d61696e646f

000080 632f55424c2d4f726465722d312e302e787364f00182075330332d3033343235

0000a0 37f0028207323030332d30322d3033f003040506820e4a65727279204275696c

0000c0 64657220706c63ff070882074d61727368204c616e65f00982044e6f77686572

0000e0 65f00a82054e52313820345858f00b82044e6f72666f6c6bff0c068206457661

000100 20427269636bffff0d04050682135370656369616c6973742057696e646f7773

000120 20706c63ff070e820b536e6f7768696c6c20576f726b73f009820b4c6974746c

000140 6520536e6f72696e67f00a8204534d3220334e57f00b82075768657265736869

000160 7265ffff0f108210323030332d30322d32345430303a30303a3030f01108820a

000180 5269766572736964652052642ef00e8217506c6f742031372c20576869746577

0001a0 6174657220457374617465f00982065768657473746f6e65f00b82064d696464

0001c0 6c65736578fff01213149041f0550143756e6974f09032f01617189202323336

0001e0 5756f0191a9201776f6f64f01b9201736f6674ff191a820366696e697368f01b

000200 82037072696d6564ff191a820566697474696e6773f01b9202736174696eff19

000220 1a8204676c617a696e67f01b820373696e676c65ffffff1213149042f0550180

000240 f09033f016171892023334305457f0191a920168616e64f01b915248ff191aa3

000260 f01b920168617264ff191a820366696e697368f01b9202737461696eff191a82

000280 0566697474696e6773f01b92026272617373ff191a8204676c617a696e67f01b

0002a0 8203646f75626c65ffffffff

0002ac

D.4.3 Explanation of encoding

D.4.3.1 Encoding of the document information item and the Order element information item

The following explanation details the initial encoding of the fast infoset document (including the URI of the external
vocabulary) and the root element information item. In particular, the encoding of a document information item, a
sequence of namespace information items, an element information item, and an attribute information item are explained.
Table D.4 presents the fragment of the fast infoset document for encoding of the document information item and the
Order element information item of D.3.2. Table D.5 details this encoding. The fragment in XML 1.0 is presented as
follows:

<Order xmlns:res="urn:oasis:names:tc:ubl:codelist:AcknowledgementResponseCode:1:0"
xmlns:cbc="urn:oasis:names:tc:ubl:CommonBasicComponents:1:0"
xmlns:cac="urn:oasis:names:tc:ubl:CommonAggregateComponents:1:0"
xmlns:cur="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:oasis:names:tc:ubl:Order:1:0"
xsi:schemaLocation="urn:oasis:names:tc:ubl:Order:1:0 ../../xsd/maindoc/UBL-Order-1.0.xsd">

Table D.4 – Octets (as hexadecimal characters) of fragment

 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

000000 e00100002010002f75726e3a6f617369733a6e616d65733a74633a75626c3a4f

000020 726465723a313a303a6a6f696e6572793a6578616d706c6578cf8181cf8282cf

000040 8383cf8484cf8585cd86f00000083b75726e3a6f617369733a6e616d65733a74

000060 633a75626c3a4f726465723a313a30202e2e2f2e2e2f7873642f6d61696e646f

000080 632f55424c2d4f726465722d312e302e787364f0

ISO/IEC 24824-1:2005 (E)

74 ITU-T Rec. X.891 (05/2005)

Table D.5 – Encoding details

 Octet(s) Description XML infoset or XML

00

01

11100000 (e0)

00000000 (00)

The octets are present at the beginning of every fast infoset
document (see 12.6).

document information item

02

03

00000000 (00)

00000001 (01)

The octets are the encoding of the version number (see 12.9).

04

05

06

00100000 (20)

00010000 (10)

00000000 (00)

The octets are the encoding of the presence of an initial vocabulary
and a reference to an external vocabulary of the initial vocabulary.
The octet at position 0416, value 2016, has a '0' (padding) for the first
bit (see 12.8). The third bit is '1' denoting that the initial-
vocabulary component is present, and the other six optional
components are absent (see C.2.3).
The octet at position 0516, value 1016, has three '0' (padding) for the
first three bits (see C.2.5). The fourth bit is '1' denoting that the
external-vocabulary of the initial-vocabulary is present.
The last four bits are '0' (fifth to eighth bits) denoting that the four of
the twelve other optional components are absent (see C.2.5.1).
The octet at position 0616, value 0016, has '0' for all bits denoting
that the last eight of the twelve optional components are absent
(see C.2.5.1).

07

08

....

37

00101111 (2f)

01110101 (75)

....

01100101 (65)

The octets are the encoding of the URI of the external vocabulary.
The octet at position 0716, value 2f16, has a '0' (padding) for the first
bit (see C.2.5.2). The URI is encoded as UTF-8 characters
(see C.22). The second bit is '0' denoting that the length of the URI
is greater than or equal 110 octet and less than or equal to 6410 octets,
and that the length, minus the lower bound, is encoded in bits three
to eight as an unsigned integer (see C.22.3.1). The unsigned integer
is 4710 and the length is 4810 (the lower bound is 1).
The 4810 octets of the encoded UTF-8 characters (of the URI) are
encoded from the octet at position 0816 to the octet at position 3716.

38 01111000 (78) The octet is the initial encoding of a child of the document
information item.
The octet at position 3816, value 7816, has a '0' (identification) for
the first bit denoting that there is a child of the document information
item, and the child is an element information item (see C.2.11.2).
The second bit is '1' denoting that the element information item has
attributes (see C.3.3). The third to sixth bits are '1110' followed
by '00' (padding) on the seventh and eighth bits, denoting that
namespace attribute information items are present (see C.3.4.1).

element information item
with [namespace attribute]
property

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 75

Table D.5 – Encoding details

 Octet(s) Description XML infoset or XML

39

3a

3b

11001111 (cf)

10000001 (81)

10000001 (81)

The octets are the encoding of namespace attribute information item
with indexed [prefix] and [normalized value] properties.
The octet at position 3916, value cf16, has '110011' (identification)
for the first to sixth bits (the first to the fifth bit) denoting that a
namespace attribute information item is present (see C.3.4.2). The
seventh bit is '1' denoting that the [prefix] property is present. The
eighth bit is '1' denoting that the [normalized value] property is
present.
The octet at position 3a16, value 8116, has '1' for the first bit denoting
that an index is encoded, and the index into the PREFIX table will
identify the [prefix] property (see C.13.4). The second bit is '0'
denoting that the index is greater than or equal to 110 and less than
or equal to 6410, and the index is encoded in bits three to eight as an
unsigned integer (see C.25.2). The unsigned integer is 110 and the
index is 210 (the lower bound is 110), which results in the [prefix]
property "res" when de-referenced from the PREFIX table.
The octet at position 3b16, value 8116, has '1' for the first bit denoting
that an index is encoded, and the index into the NAMESPACE
NAME table will identify the [normalized value] property
(see C.13.4). The second bit is '0' denoting that the index is greater
than or equal to 110 and less than or equal to 6410, and the index is
encoded in bits three to eight as an unsigned integer (see C.25.2).
The unsigned integer is 110 and the index is 210 (the lower bound
is 110), which results in the [normalized value] property
".ResponseCode:1.0" when de-referenced from the NAMESPACE
NAME table.

xmlns:res=
"….ResponseCode:1:0"

3c

3d

3e

11001111 (cf)

10000010 (82)

10000010 (82)

The octets are the encoding of namespace attribute information item
with indexed [prefix] and [normalized value] properties.
The index of [prefix] property is 310, which results in a value of "cbc"
when de-referenced from the PREFIX table.
The index of [normalized value] property is 310, which results in a
value of "….sicComponents:1.0" when de-referenced from the
NAMESPACE NAME table.

xmlns:cbc=
"….sicComponents:1:0"

3f

40

41

11001111 (cf)

10000011 (83)

10000011 (83)

The octets are the encoding of namespace attribute information item
with indexed [prefix] and [normalized value] properties.

xmlns:cac=
"….ateComponents:1:0"

42

43

44

11001111 (cf)

10000100 (84)

10000100 (84)

The octets are the encoding of namespace attribute information item
with indexed [prefix] and [normalized value] properties.

xmlns:cur=
"….CurrencyCode:1:0"

45

46

47

11001111 (cf)

10000101 (85)

10000101 (85)

The octets are the encoding of namespace attribute information item
with indexed [prefix] and [normalized value] properties.

xmlns:xsi=
"….Schema-instance"

48

49

11001101 (cd)

10000110 (86)

The octets are the encoding of namespace attribute information item
with an indexed [normalized value] property.
The octet at position 4816, value cd16, has a seventh bit of '0'
denoting that the [prefix] property is absent, and an eighth bit of '1'
denoting that the [normalized value] property is present.

xmlns="….Order:1:0"

4a 11110000 (f0) The octet is the encoding of the terminator for the sequence of
namespace attribute information items.
The octet at position 4a16, value f016, has '1111' (terminator) for the
first four bits (the first to the fourth bit) and is the terminator for the
sequence. Four out of the six '0' (padding) are present on the fifth to
eighth bits (see C.3.4.3).

ISO/IEC 24824-1:2005 (E)

76 ITU-T Rec. X.891 (05/2005)

Table D.5 – Encoding details

 Octet(s) Description XML infoset or XML

4b 00000000 (00) The octet is the encoding of an indexed qualified name of the
element information item.
The octet at position 4b16, value, 0016, has the last two out of the six
'0' (padding) on the first and second bits (see C.3.4.3). The third bit
is '0' denoting that the qualified name is not a literal qualified name
(see C.18.3) and is indexed. The index is greater than or equal to 110
and less than or equal to 3210, and the index is encoded in bits four
to eight as an unsigned integer (C.27.2). The unsigned integer is 010
and the index is 110 (the lower bound is 110), which results in
qualified name with a [namespace name] property of "….Order:1.0"
and a [local name] property of "Order" (there is no [prefix] property
for this qualified name) when de-referenced from the ELEMENT
NAME table.

<Order ….

4c

4d

4e

4f

....

92

00000000 (00)

00001000 (08)

01111011 (3b)

01110101 (75)

01101000 (64)

The octets are the encoding of an attribute information item with an
indexed qualified name and a [normalized value] property. The
presence of attribute information items was denoted in the octet at
position 3816 (second bit is '1').
The octet at position 4c16, value 0016, has a first bit of '0'
(identification) denoting that an attribute information item is present
(see C.3.6.1). The second bit is '0' denoting that the qualified name
is not a literal qualified name (see C.17.3) and is indexed. The index
is greater than or equal to 110 and less than or equal to 6410, and the
index is encoded in bits three to eight as an unsigned integer
(see C.25.2). The unsigned integer is 010 and the index is 110 (the
lower bound is 110), which results in qualified name with a [prefix]
property of "xsi", a [namespace name] property of "….Schema-
instance" and a [local name] property of "schemaLocation" when de-
referenced from the ATTRIBUTE NAME table.
The octet at position 4d16, value 0816, is the initial encoding of a non
identifying string or index (see C.14) for the [normalized value]
property. The first bit is '0' denoting that a literal character string is
present (see C.14.3). The second bit is '0' denoting that the literal
character string should not be added to ATTRIBUTE VALUE table.
The third and fourth bits, both '0', denote that the encoding format of
the string is UTF-8 (see C.19.3.1). The fifth and sixth bits are '1' and
'0' respectively denoting that length of the octets of the encoded
UTF-8 characters (the [normalized value] property) is greater than or
equal to 910 octets and less than or equal to 26410 octets, and that the
length, minus the lower bound, is encoded in eight bits on the next
octet as an unsigned integer (see C.23.3.2). The seventh to eighth
bits are '0' (padding) (see C.23.3.2).
The octet at position 4e16, value 3b16, is the encoding of the
unsigned integer. The length of octets of the encoded UTF-8
characters is 6810 (the lower bound is 910).
The 6810 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position 4f16 to the
octet at position 9216.

xsi:schemaLocation="…."

93 11110000 (f0) The octet is the encoding of the terminator for the sequence of
attribute information items.
The octet at position 9316, value f016, has '1111' for the first four
bits (the first to the fourth bit) and is the terminator for the sequence.
Four '0' (padding) are present (the fifth to the eighth bit) since the
Order element information item has children (see D.3.2).

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 77

D.4.3.2 Encoding of the Address element information item of the BuyerParty element information item

The following explanation details the encoding of the Address element information item of the BuyerParty element
information item of the fast infoset document. In particular, the encoding of element information items and character
information items are explained. Table D.6 presents the fragment of the fast infoset document for encoding of the
Address element information item of the BuyerParty element information item of D.3.2. Table D.7 details this encoding.
The fragment in XML 1.0 is presented as follows:

<cac:Address>
 <cbc:StreetName>Marsh Lane</cbc:StreetName>
 <cbc:CityName>Nowhere</cbc:CityName>
 <cbc:PostalZone>NR18 4XX</cbc:PostalZone>
 <cbc:CountrySubentity>Norfolk</cbc:CountrySubentity>
</cac:Address>

Table D.6 – Octets (as hexadecimal characters) of fragment

 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

0000c0 070882074d61727368204c616e65f00982044e6f77686572

0000e0 65f00a82054e52313820345858f00b82044e6f72666f6c6bff

Table D.7 – Encoding details

 Octet(s) Description XML infoset or XML

c8 00000111 (07) The octet is the encoding of the Address element information item.
The octet at position c816, value 0716, has a '0' (identification) for
the first bit denoting that there is a child of an element information
item (child of the Party element information item), and the child is an
element information item (see C.3.7.2). The second bit is '0' denoting
that the element information item does not have attributes
(see C.3.3). The third bit is '0' denoting that the qualified name is
not a literal qualified name (see C.18.3) and is indexed. The index is
greater than or equal to 110 and less than or equal to 3210, and the
index is encoded in bits four to eight as an unsigned integer
(see C.27.2). The unsigned integer is 710 and the index is 810 (the
lower bound is 110), which results in qualified name with a [prefix] of
"cac", a [namespace name] property of "….gateComponents:1.0" and
a [local name] property of "Address" when de-referenced from the
ELEMENT NAME table.

<cac:Address>

c9 00001000 (08) The octet is the encoding of the StreetName element information item.
The element information item has an index of 910, which results in
qualified name with a [prefix] of "cbc", a [namespace name] property
of "….BasicComponents:1:0" and a [local name] property of
"StreetName" when de-referenced from the ELEMENT NAME
table.

<cbc:StreetName>

ISO/IEC 24824-1:2005 (E)

78 ITU-T Rec. X.891 (05/2005)

Table D.7 – Encoding details

 Octet(s) Description XML infoset or XML

ca

cb

cc

....

d5

10000010 (82)

00000111 (07)

01001101 (4d)

01100101 (65)

The octets are the encoding of the character information items of the
StreetName element information item.
The octet at position ca16, value 8216, has '10' (identification) for the
first two bits (the first to second bit) denoting that there is a child of
element information item (child of the StreetName element information
item), and the child is a chunk of character information items
(see C.3.7.5). The third bit is '0' denoting that a literal character
string is present (see C.15.3). The fourth bit is '0' denoting that the
literal character string should not be added to CONTENT
CHARACTER CHUNK table. The fifth and sixth bits, both '0',
denote that the encoding format of the chunk is UTF-8
(see C.20.3.1). The seventh and eighth bits are '1' and '0'
respectively denoting that length of the octets of the encoded UTF-8
characters (the chunk of character information items) is greater than
or equal to 310 octets and less than or equal to 25810 octets, and that
the length, minus the lower bound, is encoded in eight bits on the
next octet as an unsigned integer (see C.24.3.2).
The octet at position cb16, value 0716, is the unsigned integer. The
length of octets of the encoded UTF-8 characters is 1010 (the lower
bound is 310).
The 1010 octets of the encoded UTF-8 characters are encoded from
the octet at position cc10 to the octet at position d510.

character information items
"Marsh Lane"

d6 11110000 (f0) The octet is the terminator for the StreetName element information
item.
The octet at position d616, value f016, has '1111' (terminator) for the
first four bits (the first to the fourth bit) and is the terminator for the
StreetName element information item (see C.3.8). The fifth to eighth
bits are '0' (padding) since a further child (peer) occurs (CityName
element information item) (see C.3.7.1).

</cbc:StreetName>

d7 00001001 (09) The octet is the encoding of the CityName element information item.
The element information item has an index of 1010, which results in
qualified name with a [prefix] of "cbc", a [namespace name] property
of "….BasicComponents:1:0" and a [local name] property of
"CityName" when de-referenced from the ELEMENT NAME table.

<cbc:CityName>

d8

d9

da

....

e0

10000010 (82)

00000100 (04)

01001110 (4e)

01100101 (65)

The octets are the encoding of the character information items of the
CityName element information item.
The 710 octets of the encoded UTF-8 characters are encoded from
the octet at position da16 to the octet at position e016.

character information items
"Nowhere"

e1 11110000 (f0) The octet is the terminator for the CityName element information
item.

</cbc:CityName>

e2 00001010 (0a) The octet is the encoding of the PostalZone element information item.
The element information item has an index of 1110, which results in
qualified name with a [prefix] of "cbc", a [namespace name] property
of "….BasicComponents:1:0" and a [local name] property of
"PostalZone" when de-referenced from the ELEMENT NAME
table.

<cbc:PostalZone>

e3

e4

e5

....

ec

10000010 (82)

00000101 (05)

01001110 (4e)

01011000 (58)

The octets are the encoding of the character information items of the
PostalZone element information item.
The 810 octets of the encoded UTF-8 characters are encoded from
the octet at position e516 to the octet at position ec16.

character information items
"NR18 4XX"

ed 11110000 (f0) The octet is the terminator for the PostalZone element information
item.

</cbc:PostalZone>

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 79

Table D.7 – Encoding details

 Octet(s) Description XML infoset or XML

ee 00001011 (0b) The octet is the encoding of the CountrySubentity element information
item.
The element information item has an index of 1210, which results in
qualified name with a [prefix] of "cbc", a [namespace name] property
of "….BasicComponents:1:0" and a [local name] property of
"CountrySubentity" when de-referenced from the ELEMENT
NAME table.

<cbc:CountrySubentity>

ef

f0

f1

....

f7

10000010 (82)

00000100 (04)

01001110 (4e)

01101011 (6b)

The octets are the encoding of the character information items of the
CountrySubentity element information item.
The 710 octets of the encoded UTF-8 characters are encoded from
the octet at position f116 to the octet at position f716.

character information items
"Norfolk"

f8 11111111 (ff) The octet is the terminator for the CountrySubentity element
information item and the Address element information item.
The octet at position f816, value ff16, has '1111' (terminator) for the
first four bits (the first to the fourth bit) and is the terminator for the
CountrySubentity element information item (see C.3.8). The last four
bits (the fifth to eighth bit) are '1111' and is the terminator for the
Address element information item (see C.3.8).

</cbc:CountrySubentity>

</cac:Address>

D.5 UBL order fast infoset document without an initial vocabulary

The octets (as hexadecimal characters) of the fast infoset document are presented in D.5.1. Detailed explanations of
some octet sequences in D.5.1 are presented in D.5.2. The final vocabulary of this fast infoset document and the former
fast infoset document will be the same since the vocabulary table indexes of the tables in the external vocabulary are
generated in the same order. Since the strings are embedded in the fast infoset document, this will result in a larger size.
The cost of including the strings is 63510 bytes (the size of this fast infoset document minus the size of the former fast
infoset document), which makes up for approximately half the document size (for larger documents this difference
should be less as the vocabulary will tend to be a fixed cost). Unlike the former fast infoset document, this document
can be considered self-describing because the XML infoset can be produced without any external information (an
external vocabulary).

D.5.1 Octets (as hexadecimal characters) of the fast infoset document

Table D.8 presents the octets of the fast infoset document for the UBL order example presented in D.3.
NOTE – Hexadecimal characters containing bits that correspond to the identification and termination of information items are
underlined.

ISO/IEC 24824-1:2005 (E)

80 ITU-T Rec. X.891 (05/2005)

Table D.8 – Octets (as hexadecimal characters) of fast infoset document

 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

000000 e00100000078cf027265733e75726e3a6f617369733a6e616d65733a74633a75

000020 626c3a636f64656c6973743a41636b6e6f776c656467656d656e74526573706f

000040 6e7365436f64653a313a30cf026362632f75726e3a6f617369733a6e616d6573

000060 3a74633a75626c3a436f6d6d6f6e4261736963436f6d706f6e656e74733a313a

000080 30cf026361633375726e3a6f617369733a6e616d65733a74633a75626c3a436f

0000a0 6d6d6f6e416767726567617465436f6d706f6e656e74733a313a30cf02637572

0000c0 2f75726e3a6f617369733a6e616d65733a74633a75626c3a636f64656c697374

0000e0 3a43757272656e6379436f64653a313a30cf0278736928687474703a2f2f7777

000100 772e77332e6f72672f323030312f584d4c536368656d612d696e7374616e6365

000120 cd1f75726e3a6f617369733a6e616d65733a74633a75626c3a4f726465723a31

000140 3a30f03d86044f726465727b85850d736368656d614c6f636174696f6e083b75

000160 726e3a6f617369733a6e616d65733a74633a75626c3a4f726465723a313a3020

000180 2e2e2f2e2e2f7873642f6d61696e646f632f55424c2d4f726465722d312e302e

0001a0 787364f03d8607427579657273494482075330332d303334323537f03f828208

0001c0 4973737565446174658207323030332d30322d3033f03f838309427579657250

0001e0 617274793f83830450617274793f83830850617274794e616d653f8282034e61

000200 6d65820e4a65727279204275696c64657220706c63ff3f838306416464726573

000220 733f8282095374726565744e616d6582074d61727368204c616e65f03f828207

000240 436974794e616d6582044e6f7768657265f03f828209506f7374616c5a6f6e65

000260 82054e52313820345858f03f82820f436f756e747279537562656e7469747982

000280 044e6f72666f6c6bff3f838306436f6e7461637406820645766120427269636b

0002a0 ffff3f83830a53656c6c6572506172747904050682135370656369616c697374

0002c0 2057696e646f777320706c63ff073f82820b4275696c64696e674e616d65820b

0002e0 536e6f7768696c6c20576f726b73f009820b4c6974746c6520536e6f72696e67

000300 f00a8204534d3220334e57f00b820757686572657368697265ffff3f83830744

000320 656c69766572793f82821852657175657374656444656c697665727944617465

000340 54696d658210323030332d30322d32345430303a30303a3030f03f83830e4465

000360 6c69766572794164647265737308820a5269766572736964652052642ef00e82

000380 17506c6f742031372c205768697465776174657220457374617465f009820657

0003a0 68657473746f6e65f00b82064d6964646c65736578fff03f8383084f72646572

0003c0 4c696e653f8383074c696e654974656d3f8383829041f07f8282075175616e74

0003e0 697479780f7175616e74697479556e6974436f646543756e6974f09032f03f83

000400 83034974656d3f83831853656c6c6572734974656d4964656e74696669636174

000420 696f6e3f838301494492023233365756f03f838310506879736963616c417474

000440 7269627574653f83830a41747472696275746549449201776f6f64f03f82820a

000460 4465736372697074696f6e9201736f6674ff191a820366696e697368f01b8203

000480 7072696d6564ff191a820566697474696e6773f01b9202736174696eff191a82

0004a0 04676c617a696e67f01b820373696e676c65ffffff1213149042f0550180f090

0004c0 33f016171892023334305457f0191a920168616e64f01b915248ff191aa3f01b

0004e0 920168617264ff191a820366696e697368f01b9202737461696eff191a820566

000500 697474696e6773f01b92026272617373ff191a8204676c617a696e67f01b8203

000520 646f75626c65ffffffff

00052a

D.5.2 Explanation of encoding

D.5.2.1 Encoding of the document information item and the Order element information item

The following explanation details the initial encoding of the fast infoset document and the root element information
item. In particular, the encoding of a document information item, a sequence of namespace information items, an element
information item, and an attribute information item are explained. Table D.9 presents the fragment of the fast infoset

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 81

document for encoding of the document information item and the Order element information item of D.3.2. Table D.10
details this encoding. The fragment in XML 1.0 is presented as follows:

<Order xmlns:res="urn:oasis:names:tc:ubl:codelist:AcknowledgementResponseCode:1:0"
xmlns:cbc="urn:oasis:names:tc:ubl:CommonBasicComponents:1:0"
xmlns:cac="urn:oasis:names:tc:ubl:CommonAggregateComponents:1:0"
xmlns:cur="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:oasis:names:tc:ubl:Order:1:0"
xsi:schemaLocation="urn:oasis:names:tc:ubl:Order:1:0 ../../xsd/maindoc/UBL-Order-1.0.xsd">

Table D.9 – Octets (as hexadecimal characters) of fragment

 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

000000 e00100000078cf027265733e75726e3a6f617369733a6e616d65733a74633a75

000020 626c3a636f64656c6973743a41636b6e6f776c656467656d656e74526573706f

000040 6e7365436f64653a313a30cf026362632f75726e3a6f617369733a6e616d6573

000060 3a74633a75626c3a436f6d6d6f6e4261736963436f6d706f6e656e74733a313a

000080 30cf026361633375726e3a6f617369733a6e616d65733a74633a75626c3a436f

0000a0 6d6d6f6e416767726567617465436f6d706f6e656e74733a313a30cf02637572

0000c0 2f75726e3a6f617369733a6e616d65733a74633a75626c3a636f64656c697374

0000e0 3a43757272656e6379436f64653a313a30cf0278736928687474703a2f2f7777

000100 772e77332e6f72672f323030312f584d4c536368656d612d696e7374616e6365

000120 cd1f75726e3a6f617369733a6e616d65733a74633a75626c3a4f726465723a31

000140 3a30f03d86044f726465727b85850d736368656d614c6f636174696f6e083b75

000160 726e3a6f617369733a6e616d65733a74633a75626c3a4f726465723a313a3020

000180 2e2e2f2e2e2f7873642f6d61696e646f632f55424c2d4f726465722d312e302e

0001a0 787364f0

Table D.10 – Encoding details

 Octet(s) Description XML infoset or XML

00

01

11100000 (e0)

00000000 (00)

The octets are present at the beginning of every fast infoset
document (see 12.6).

document information item

02

03

00000000 (00)

00000001 (01)

The octets are the encoding of the version number (see 12.9).

04 00000000 (00) The octets are encoding of the presence of an initial vocabulary and
other components of the Document type.
The octet at position 0416, value 0016, has a '0' (padding) for the first
bit (see 12.8). The second to eighth bits are '0000000' denoting that
all optional components of the Document type are absent (including
the initial-vocabulary component whose absence is denoted on
the third bit, see C.2.3).

05 01111000 (78) The octet is the initial encoding of a child of the document
information item.
The octet at position 0516, value 7816, has a '0' (identification) for
the first bit denoting that there is a child of the document information
item, and the child is an element information item (see C.2.11.2).
The second bit is '1' denoting that the element information item has
attributes (see C.3.3). The third to sixth bits are '1110' followed
by '00' (padding) on the seventh and eighth bits, denoting that
namespace attribute information items are present (see C.3.4.1).

element information item
with [namespace attribute]
property.

ISO/IEC 24824-1:2005 (E)

82 ITU-T Rec. X.891 (05/2005)

Table D.10 – Encoding details

 Octet(s) Description XML infoset or XML

06

07

08

....

0a

0b

0c

....

4a

11001111 (cf)

00000010 (02)

01110010 (72)

....

01110010 (73)

00111110 (3e)

01110101 (75)

....

01110000 (30)

The octets are the encoding of namespace attribute information item
with literal [prefix] and [normalized value] properties.
The octet at position 0616, value cf16, has '110011' (identification)
for the first to sixth bits denoting that a namespace attribute
information item is present (see C.3.4.2). The seventh bit is '1'
denoting that the [prefix] property is present. The eighth bit is '1'
denoting that the [normalized value] property is present.
The octet at position 0716, value 0216, has '0' for the first bit denoting
that a literal character string is encoded for the [prefix] property (see
C.13.3). The second bit is '0' denoting that the length of encoded
UTF-8 characters is greater than or equal to 110 and less than or
equal to 6410, and the length is encoded in bits three to eight as an
unsigned integer (see C.22.3.1). The unsigned integer is 210 and the
length is 310 (the lower bound is 110).
The 310 octets of the encoded UTF-8 characters (of the [prefix]
property) are encoded from the octet at position 0816 to the octet at
position 0a10. The string "res" will be added to the PREFIX table
(with an index of 210).
The octet at position 0b16, value 3e16, has '0' for the first bit denoting
that a literal character string is encoded for the [normalized value]
property (see C.13.3). The second bit is '0' denoting that the length
of encoded UTF-8 characters is greater than or equal to 110 and less
than or equal to 6410, and the length is encoded in bits three to eight
as an unsigned integer (see C.22.3.1). The unsigned integer is 6210
and the length is 6310 (the lower bound is 110).
The 6310 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position 0c16 to the
octet at position 4a16. The string "….ResponseCode:1:0" will be
added to the NAMESPACE NAME table (with an index of 210).

xmlns:res=

"….ResponseCode:1:0"

4b

4c

4d

....

4f

50

51

....

80

11001111 (cf)

00000010 (02)

01100011 (63)

....

01100011 (63)

00101111 (2f)

01110101 (75)

....

01110000 (30)

The octets are the encoding of namespace attribute information item
with literal [prefix] and [normalized value] properties.
The 310 octets of the encoded UTF-8 characters (of the [prefix]
property) are encoded from the octet at position 4c16 to the octet at
position 4f16. The string "cbc" will be added to the PREFIX table
(with an index of 310).
The 4810 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position 5116 to the
octet at position 8016. The string "….sicComponents:1:0" will be
added to the NAMESPACE NAME table (with an index of 310).

xmlns:cbc=

"….sicComponents:1:0"

81

82

83

....

85

86

87

....

ba

11001111 (cf)

00000010 (02)

01100011 (63)

....

01100011 (63)

00110011 (33)

01110101 (75)

....

01110000 (30)

The octets are the encoding of namespace attribute information item
with literal [prefix] and [normalized value] properties.
The 310 octets of the encoded UTF-8 characters (of the [prefix]
property) are encoded from the octet at position 8316 to the octet at
position 8516. The string "cac" will be added to the PREFIX table
(with an index of 410).
The 5210 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position 8716 to the
octet at position ba16. The string "….ateComponents:1:0" will be
added to the NAMESPACE NAME table (with an index of 410).

xmlns:cac=

"….ateComponents:1:0"

bb

bc

bd

....

bf

c0

c1

....

f0

11001111 (cf)

00000010 (02)

01100011 (63)

....

01100011 (63)

00101111 (2f)

01110101 (75)

....

01110000 (30)

The octets are the encoding of namespace attribute information item
with literal [prefix] and [normalized value] properties.
The 310 octets of the encoded UTF-8 characters (of the [prefix]
property) are encoded from the octet at position bd16 to the octet at
position bf16. The string "cur" will be added to the PREFIX table
(with an index of 510).
The 4810 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position c116 to the
octet at position f016. The string "….CurrencyCode:1:0" will be
added to the NAMESPACE NAME table (with an index of 510).

xmlns:cur=

"….CurrencyCode:1:0"

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 83

Table D.10 – Encoding details

 Octet(s) Description XML infoset or XML

f1

f2

f3

....

f5

f6

f7

....

11f

11001111 (cf)

00000010 (02)

01111000 (78)

....

01101001 (69)

00101000 (28)

01101000 (68)

....

01110111 (77)

The octets are the encoding of namespace attribute information item
with literal [prefix] and [normalized value] properties.
The 310 octets of the encoded UTF-8 characters (of the [prefix]
property) are encoded from the octet at position f316 to the octet at
position f516. The string "xsi" will be added to the PREFIX table
(with an index of 610).
The 4110 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position f716 to the
octet at position 11f16. The string "….Schema-instance" will be
added to the NAMESPACE NAME table (with an index of 610).

xmlns:xsi=

"….Schema-instance"

120

121

122

....

141

11001101 (cd)

00011111 (1f)

01110101 (75)

....

00110000 (30)

The octets are the encoding of namespace attribute information item
with an indexed [normalized value] property.
The 3210 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position 12216 to the
octet at position 14116. The string "….Order:1:0" will be added to
the NAMESPACE NAME table (with an index of 710).

xmlns="….Order:1:0"

142 11110000 (f0) The octet is the encoding of the terminator for the sequence of
namespace attribute information items.
The octet at position 14216, value f016, has '1111' (terminator) for
the first four bits (the first to the fourth bit) and is the terminator for
the sequence. Four out of the six '0' (padding) are present on the
fifth to eighth bits (see C.3.4.3).

143

144

145

146

....

14a

00111101 (3d)

10000110 (86)

00000100 (04)

01001111 (4f)

....

01110010 (72)

The octets are the encoding of a literal qualified name of the element
information item.
The octet at position 14316, value 3d16, has the last two out of the six
'0' (padding) on the first and second bits (see C.3.4.3). The third to
fifth bits are '1111' denoting that the qualified name is a literal
qualified name (see C.18.3). The seventh bit is '0' denoting that the
qualified name does not have a [prefix] property. The eighth bit is '1'
denoting that the qualified name has a [namespace name] property.
The octet at position 14416, value 8616, has '1' for the first bit
denoting that the [namespace name] property is not a literal string and
is indexed (see C.13.4). The second bit is '0' denoting that the index
is greater than or equal to 110 and less than or equal to 6410, and the
index is encoded in bits three to eight as an unsigned integer
(see C.25.2). The unsigned integer is 610 and the index is 710 (the
lower bound is 110), which results in a [namespace name] property of
"….Order:1:0" when de-referenced from the NAMESPACE NAME
table.
The octet at position 14516, value 0416, has '0' for the first bit
denoting that that a literal character string is encoded for the [local
name] property (see C.13.3). The second bit is '0' denoting that the
length of encoded UTF-8 characters is greater than or equal to 110
and less than or equal to 6410, and the length is encoded in bits three
to eight as an unsigned integer (see C.22.3.1). The unsigned integer
is 410 and the length is 510 (the lower bound is 110).
The 510 octets of the encoded UTF-8 characters (of the [local name]
property) are encoded from the octet at position 14616 to the octet at
position 14a16. The string "Order" will be added to the LOCAL
NAME table (with an index of 110).
The qualified name with no [prefix] property, a [namespace name]
property of "….Order:1:0" (index 710), and a [local name] property of
"Order" (index 110) will be added to the ELEMENT NAME table
(with an index of 110).

<Order ….

ISO/IEC 24824-1:2005 (E)

84 ITU-T Rec. X.891 (05/2005)

Table D.10 – Encoding details

 Octet(s) Description XML infoset or XML

14b

14c

14d

14e

14f

....

15c

15d

15e

15f

....

1a2

01111011 (7b)

10000101 (85)

10000101 (85)

00001101 (0d)

01110011 (73)

....

01101110 (6e)

00001000 (08)

00111011 (3b)

01110101 (75)

....

01100100 (64)

The octets are the encoding of an attribute information item with a
literal qualified name and a [normalized value] property. The presence
of attribute information items was denoted in the octet at
position 0516 (second bit is '1').
The octet at position 14b16, value 7b16, has a first bit of '0'
(identification) denoting that an attribute information item is present
(see C.3.6.1). The second to fifth bits are '1111' denoting that the
qualified name is a literal qualified name (see C.17.3). The sixth bit
is '0' (padding) (see C.17.3). The seventh bit is '1' denoting that the
qualified name has a [prefix] property. The eighth bit is '1' denoting
that the qualified name has a [namespace name] property.
The octet at position 14c16, value 8516, has '1' for the first bit
denoting that the [prefix] property is not a literal string and is indexed
(see C.13.4). The second bit is '0' denoting that the index is greater
than or equal to 110 and less than or equal to 6410, and the index is
encoded in bits three to eight as an unsigned integer (see C.25.2).
The unsigned integer is 510 and the index is 610 (the lower bound
is 110), which results in a [prefix] property of "xsi" when de-
referenced from the NAMESPACE NAME table.
The octet at position 14d16, value 8516, has '1' for the first bit
denoting that the [namespace name] property is not a literal string and
is indexed (see C.13.4). The second bit is '0' denoting that the index
is greater than or equal to 110 and less than or equal to 6410, and the
index is encoded in bits three to eight as an unsigned integer
(see C.25.2). The unsigned integer is 510 and the index is 610 (the
lower bound is 110), which results in a [namespace name] property of
"….Schema-instance" when de-referenced from the NAMESPACE
NAME table.
The octet at position 14e16, value 0d16, has '0' for the first bit
denoting that a literal character string is encoded for the [local name]
property (see C.13.3). The second bit is '0' denoting that the length
of encoded UTF-8 characters is greater than or equal to 110 and less
than or equal to 6410, and the length is encoded in bits three to eight
as an unsigned integer (see C.22.3.1). The unsigned integer is 1310
and the length is 1410 (the lower bound is 110).
The 1410 octets of the encoded UTF-8 characters (of the [local name]
property) are encoded from the octet at position 14f10 to the octet at
position 15c10. The string "SchemaLocation" will be added to the
LOCAL NAME table (with an index of 210).
The qualified name with a [prefix] property of "xsi" (with index 610),
a [namespace name] property of "….Schema-instance" (index 610),
and a [local name] property of "schemaLocation" (index 210) will be
added to the ATTRIBUTE NAME table (with an index of 110).
The octet at position 15d16, value 0816, is the initial encoding of a
non identifying string or index (see C.14) for the [normalized value]
property. The first bit is '0' denoting that a literal character string is
present (see C.14.3). The second bit is '0' denoting that the literal
character string should not be added to ATTRIBUTE VALUE table.
The third and fourth bits, both '0', denote that the encoding format of
the string is UTF-8 (see C.19.3.1). The fifth and sixth bits are '1' and
'0' respectively denoting that length of the octets of the
UTF-8 characters (the [normalized value] property) is greater than or
equal to 910 octets and less than or equal to 26410 octets, and that the
length, minus the lower bound, is encoded in eight bits on the next
octet as an unsigned integer (see C.22.3.2). The seventh to eighth
bits are '0' (padding) (see C.22.3.2).
The octet at position 15e16, value 3b16, is the encoding of the
unsigned integer. The length of octets of the encoded UTF-8
characters is 6810 (the lower bound is 910).
The 6810 octets of the encoded UTF-8 characters (of the [normalized
value] property) are encoded from the octet at position 15f16 to the
octet at position 1a216.

xsi:schemaLocation="…."

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 85

Table D.10 – Encoding details

 Octet(s) Description XML infoset or XML

1a3 11110000 (f0) The octet is the encoding of the terminator for the sequence of
attribute information items.
The octet at position 1a316, value f016, has '1111' for the first four
bits (the first to the fourth bit) and is the terminator for the
sequence. Four '0' (padding) are present (the fifth to the eighth bit)
since the Order element information item has children (see D.3.2).

D.5.2.2 Encoding of the Address element information item of the BuyerParty element information item

The following explanation details the encoding of the Address element information item of the BuyerParty element
information item of the fast infoset document. In particular, the encoding of element information items and character
information items are explained. Table D.11 presents the fragment of the fast infoset document for encoding of the
Address element information item of the BuyerParty element information item of D.3.2. Table D.12 details this encoding.
The fragment in XML 1.0 is presented as follows:

<cac:Address>
 <cbc:StreetName>Marsh Lane</cbc:StreetName>
 <cbc:CityName>Nowhere</cbc:CityName>
 <cbc:PostalZone>NR18 4XX</cbc:PostalZone>
 <cbc:CountrySubentity>Norfolk</cbc:CountrySubentity>
</cac:Address>

Table D.11 – Octets (as hexadecimal characters) of fragment

 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

000200 3f838306416464726573

000220 733f8282095374726565744e616d6582074d61727368204c616e65f03f828207

000240 436974794e616d6582044e6f7768657265f03f828209506f7374616c5a6f6e65

000260 82054e52313820345858f03f82820f436f756e747279537562656e7469747982

000280 044e6f72666f6c6bff

ISO/IEC 24824-1:2005 (E)

86 ITU-T Rec. X.891 (05/2005)

Table D.12 – Encoding details

 Octet(s) Description XML infoset or XML

216

217

218

219

21a

....

220

00111111 (3f)

10000011 (83)

10000011 (83)

00000110 (06)

01000001 (41)

....

01110011 (73)

The octets are the encoding of the Address element information item.
The octet at position 21616, value 3f16, has a '0' (identification) for
the first bit denoting that there is a child of an element information
item (child of the Party element information item), and the child is
an element information item (see C.3.7.2). The second bit is '0'
denoting that the element information item does not have attributes
(see C.3.3). The third to fifth bits are '1111' denoting that the
qualified name is a literal qualified name (see C.18.3). The seventh
bit is '1' denoting that the qualified name has a [prefix] property. The
eighth bit is '1' denoting that the qualified name has a [namespace
name] property.
The octet at position 21716, value 8316, has '1' for the first bit
denoting that the [prefix] property is not a literal string and is
indexed (see C.13.4). The second bit is '0' denoting that the index is
greater than or equal to 110 and less than or equal to 6410, and the
index is encoded in bits three to eight as an unsigned integer
(see C.25.2). The unsigned integer is 310 and the index is 410 (the
lower bound is 110), which results in a [prefix] property of "cac"
when de-referenced from the PREFIX table.
The octet at position 21816, value 8316, has '1' for the first bit
denoting that the [namespace name] property is not a literal string
and is indexed (see C.13.4). The second bit is '0' denoting that the
index is greater than or equal to 110 and less than or equal to 6410,
and the index is encoded in bits three to eight as an unsigned
integer (see C.25.2). The unsigned integer is 310 and the index is 410
(the lower bound is 110), which results in a [namespace name]
property of "….ateComponents:1:0" when de-referenced from the
NAMESPACE NAME table.
The octet at position 21916, value 0616, has '0' for the first bit
denoting that a literal character string is encoded for the [local name]
property (see C.13.3). The second bit is '0' denoting that the length
of encoded UTF-8 characters is greater than or equal to 110 and less
than or equal to 6410, and the length is encoded in bits three to eight
as an unsigned integer (see C.22.3.1). The unsigned integer is 610
and the length is 710 (the lower bound is 110).
The 710 octets of the encoded UTF-8 characters (of the [local name]
property) are encoded from the octet at position 21a16 to the octet
at position 22016. The string "Address" will be added to the
LOCAL NAME table (with an index of 910).
The qualified name with a [prefix] property of "cac" (index 410), a
[namespace name] property of "….….ateComponents:1:0"
(index 410), and a [local name] property of "Order" (index 110) will
be added to the ELEMENT NAME table (with an index of 110).

<cac:Address>

221

222

223

224

225

....

22e

00111111 (3f)

10000010 (82)

10000010 (82)

00001001 (09)

01000001 (53)

....

01100101 (65)

The octets are the encoding of the StreetName element information
item.
The [local name] property "StreetName" will be added to the
LOCAL NAME table (with an index of 1010).
The qualified name with a [prefix] property of "cbc" (index 310), a
[namespace name] property of "….….BasicComponents:1:0"
(index 310), and a [local name] property of "StreetName"
(index 1010) will be added to the ELEMENT NAME table (with an
index of 910).

<cbc:StreetName>

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 87

Table D.12 – Encoding details

 Octet(s) Description XML infoset or XML

22f

230

231

....

23a

10000010 (82)

00000111 (07)

01001101 (4d)

01100101 (65)

The octets are the encoding of the character information items of the
StreetName element information item.
The octet at position 22f16, value 8216, has '10' (identification) for
the first two bits (the first to second bit) denoting that there is a
child of an element information item (child of the StreetName element
information item), and the child is a chunk of character information
items (see C.3.7.5). The third bit is '0' denoting that a literal
character string is present (see C.15.3). The fourth bit is '0'
denoting that the literal character string should not be added to
CONTENT CHARACTER CHUNK table. The fifth and sixth bits,
both '0', denote that the encoding format of the chunk is UTF-8
(see C.20.3.1). The seventh and eighth bits are '1' and '0'
respectively denoting that length of the octets of the encoded
UTF-8 characters (the chunk of character information items) is
greater than or equal to 310 octets and less than or equal to 25810
octets, and that the length, minus the lower bound, is encoded in
eight bits on the next octet as an unsigned integer (see C.24.3.2).
The octet at position 23016, value 0716, is the unsigned integer. The
length of octets of the encoded UTF-8 characters is 1010 (the lower
bound is 310).
The 1010 octets of the encoded UTF-8 characters are encoded from
the octet at position 23116 to the octet at position 23a16.

character information items
"Marsh Lane"

23b 11110000 (f0) The octet is the terminator for the StreetName element information
item.

</cbc:StreetName>

23c

23d

23e

23f

240

....

247

00111111 (3f)

10000010 (82)

10000010 (82)

00000111 (07)

01000011 (43)

....

01100101 (65)

The octets are the encoding of the CityName element information
item.
The [local name] property "CityName" will be added to the LOCAL
NAME table (with an index of 1010).
The qualified name with a [prefix] property of "cbc" (index 310), a
[namespace name] property of "….BasicComponents:1:0"
(index 310), and a [local name] property of "CityName" (index 1110)
will be added to the ELEMENT NAME table (with an index
of 1010).

<cbc:CityName>

248

249

24a

....

250

10000010 (82)

00000100 (04)

01001110 (4e)

01100101 (65)

The octets are the encoding of the character information items of the
information item.
The 710 octets of the encoded UTF-8 characters are encoded from
the octet at position 24a16 to the octet at position 25016.

character information items
"Nowhere"

251 11110000 (f0) The octet is the terminator for the CityName element information
item.

</cbc:CityName>

252

253

254

255

256

....

25f

00111111 (3f)

10000010 (82)

10000010 (82)

00001001 (09)

01000011 (50)

....

01100101 (65)

The octets are the encoding of the PostalZone element information
item.
The [local name] property "PostalZone" will be added to the LOCAL
NAME table (with an index of 1210).
The qualified name with a [prefix] property of "cbc" (index 310), a
[namespace name] property of "….BasicComponents:1:0"
(index 310), and a [local name] property of "PostalZone" (index 1210)
will be added to the ELEMENT NAME table (with an index
of 1110).

<cbc:PostalZone>

260

261

262

....

269

10000010 (82)

00000101 (05)

01001110 (4e)

01011000 (58)

The octets are the encoding of the character information items of the
PostalZone element information item.
The 810 octets of the encoded UTF-8 characters are encoded from
the octet at position 26216 to the octet at position 26916.

character information items
"NR18 4XX"

26a 11110000 (f0) The octet is the terminator for the PostalZone element information
item.

</cbc:PostalZone>

ISO/IEC 24824-1:2005 (E)

88 ITU-T Rec. X.891 (05/2005)

Table D.12 – Encoding details

 Octet(s) Description XML infoset or XML

26b

26c

26d

26e

26f

....

27e

00111111 (3f)

10000010 (82)

10000010 (82)

00001111 (0f)

01000011 (43)

....

01111001 (79)

The octets are the encoding of the CountrySubentity element
information item.
The [local name] property "CountrySubentity" will be added to the
LOCAL NAME table (with an index of 1310).
The qualified name with a [prefix] property of "cbc" (index 310), a
[namespace name] property of "….BasicComponents:1:0"
(index 310), and a [local name] property of "CountrySubentity"
(index 1310) will be added to the ELEMENT NAME table (with an
index of 1210).

<cbc:CountrySubentity>

27f

280

281

....

287

10000010 (82)

00000100 (04)

01001110 (4e)

01101011 (6b)

The octets are the encoding of the character information items of the
CountrySubentity element information item.
The 710 octets of the encoded UTF-8 characters are encoded from
the octet at position 28116 to the octet at position 28716.

character information items
"Norfolk"

288 11111111 (ff) The octet is the terminator for the CountrySubentity element
information item and the Address element information item.
The octet at position 28816, value ff16, has '1111' (terminator) for
the first four bits (the first to the fourth bit) and is the terminator for
the CountrySubentity element information item (see C.3.8). The last
four bits (the fifth to eighth bit) are '1111' and is the terminator for
the Address element information item (see C.3.8).

</cbc:CountrySubentity>

</cac:Address>

D.5.2.3 Encoding of the BuyersID element information item of the first LineItem element information item

The following explanation details the encoding of the BuyersID element information item of the first LineItem element
information item of the fast infoset document. In particular, the encoding of an element information item whose [local
name] property has been indexed prior to this information item is explained. Table D.13 presents the fragment of the fast
infoset document for encoding of the BuyersID element information item of the first LineItem element information item
of D.3.2. Table D.14 details this encoding. The fragment in XML 1.0 is presented as follows:

<cac:LineItem>
 <cac:BuyersID>A</cac:BuyersID>

Table D.13 – Octets (as hexadecimal characters) of fragment

 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

0003c0 3f8383074c696e654974656d3f8383829041f0

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 89

Table D.14 – Encoding details

 Octet(s) Description XML infoset or XML

3c4

3c5

3c6

3c7

3c8

3cf

00111111 (3f)

10000011 (83)

10000011 (83)

00001111 (07)

01001010 (4c)

....

01101101 (6d)

The octet is the encoding of the LineItem element information item.
The [local name] property "LineItem" will be added to the LOCAL
NAME table (with an index of 2110).
The qualified name with a [prefix] property of "cac" (index 410), a
[namespace name] property of "….….ateComponents:1:0"
(index 410), and a [local name] property of "LineItem" (index 2110)
will be added to the ELEMENT NAME table (with an index
of 2010).

<cac:LineItem>

3d0

3d1

3d2

3d3

00111111 (3f)

10000011 (83)

10000011 (83)

10000010 (82)

The octet is the encoding of the BuyersID element information item.
The [prefix] property, [namespace name] property and [local name]
property have all been indexed as the associated strings have all
occurred before this information item. The [local name] property was
indexed by processing the first child of the Order element information
item, namely the BuyersID element information item with the
[namespace name] property "….Order:1:0".
The qualified name with a [prefix] property of "cac" (index 410), a
[namespace name] property of "….….ateComponents:1:0"
(index 410), and a [local name] property of "BuyersID" (index 310)
will be added to the ELEMENT NAME table (with an index
of 2110).

<cac:BuyersID>

3d4

3d5

10010000 (90)

01000001 (41)

The octets are the encoding of the character information items of the
BuyersID element information item.
The octet at position 3d416, value 9016, has '10' (identification) for
the first two bits (the first to second bit) denoting that there is a
child of element information item (child of the BuyersID element
information item), and the child is a chunk of character information
items (see C.3.7.5). The third bit is '0' denoting that a literal
character string is present (see C.15.3). The fourth bit is '1' denoting
that the literal character string should be added to CONTENT
CHARACTER CHUNK table (in this example strings less than 610
characters are added to the CONTENT CHARACTER CHUNK
table or the ATTRIBUTE VALUE table). The fifth and sixth bits,
both '0', denote that the encoding format of the chunk is UTF-8
(see C.20.3.1). The seventh bit is '0' denoting that length of the
octets of the encoded UTF-8 characters (the chunk of character
information items) is greater than or equal to 110 octet and less than
or equal to 210 octets, and that the length, minus the lower bound, is
encoded in the eighth bit as an unsigned integer (see C.24.3.1). The
unsigned integer is 010 and the length is 110.
The octet of the encoded UTF-8 character is encoded by the octet at
position 4116.

character information
item "A"

3d6 11110000 (f0) The octet is the terminator for the BuyersID element information item. </cac:BuyersID>

ISO/IEC 24824-1:2005 (E)

90 ITU-T Rec. X.891 (05/2005)

Annex E

Assignment of object identifier values
(This annex does not form an integral part of this Recommendation | International Standard)

The following object identifiers and object descriptors are assigned in this Recommendation | International Standard:

{ joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0) modules(0)
fast-infoset(0)}

"Fast Infoset ASN.1 Module"

{joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0) modules(0)
fast-infoset-edm(1)}

"Fast Infoset Encoding Definition Module"

{joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0) modules(0)
fast-infoset-elm(2)}

"Fast Infoset Encoding Link Module"

{joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0) encodings(1)
optional-xml-declaration(0)} -- Defined as finf-doc-opt-decl in A.1

"A fast infoset document containing an XML declaration"

{joint-iso-itu-t(2) asn1(1) generic-applications(10) fast-infoset(0) encodings(1)
no-xml-declaration(1)} -- Defined as finf-doc-no-decl in A.1

"A fast infoset document without an XML declaration"

 ISO/IEC 24824-1:2005 (E)

 ITU-T Rec. X.891 (05/2005) 91

BIBLIOGRAPHY

[1] OASIS Universal Business Language (UBL) 1.0.

[2] IETF RFC 1952 (1996), GZIP file format specification version 4.3.

Printed in Switzerland

Geneva, 2007

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.891 (05/2005) Information technology - Generic applications of ASN.1: Fast infoset
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 ASN.1 terms
	3.2 ECN terms
	3.3 ISO/IEC 10646 terms
	3.4 Additional definitions

	4 Abbreviations
	5 Notation
	6 Principles of vocabulary table construction and use
	7 ASN.1 type definitions
	7.1 General
	7.2 The Document type
	7.3 The Element type
	7.4 The Attribute type
	7.5 The ProcessingInstruction type
	7.6 The UnexpandedEntityReference type
	7.7 The CharacterChunk type
	7.8 The Comment type
	7.9 The DocumentTypeDeclaration type
	7.10 The UnparsedEntity type
	7.11 The Notation type
	7.12 The NamespaceAttribute type
	7.13 The IdentifyingStringOrIndex type
	7.14 The NonIdentifyingStringOrIndex type
	7.15 The NameSurrogate type
	7.16 The QualifiedNameOrIndex type
	7.17 The EncodedCharacterString type

	8 Construction and processing of a fast infoset document
	8.1 Conceptual ordering of components of an abstract value of the Document type
	8.2 The restricted alphabet table
	8.3 The encoding algorithm table
	8.4 The dynamic string tables
	8.5 The dynamic name tables and name surrogates

	9 Built-in restricted alphabets
	9.1 The "numeric" restricted alphabet
	9.2 The "date and time" restricted alphabet

	10 Built-in encoding algorithms
	10.1 General
	10.2 The "hexadecimal" encoding algorithm
	10.3 The "base64" encoding algorithm
	10.4 The "short" encoding algorithm
	10.5 The "int" encoding algorithm
	10.6 The "long" encoding algorithm
	10.7 The "boolean" encoding algorithm
	10.8 The "float" encoding algorithm
	10.9 The "double" encoding algorithm
	10.10 The "uuid" encoding algorithm
	10.11 The "cdata" encoding algorithm

	11 Restrictions on the supported XML infosets and other simplifications
	12 Bit-level encoding of the Document type
	Annex A – ASN.1 module and ECN modules for fast infoset documents
	A.1 ASN.1 module definition
	A.2 ECN module definitions
	Annex B – The MIME media type for fast infoset documents
	Annex C – Description of the encoding of a fast infoset document
	C.1 Fast infoset document
	C.2 Encoding of the Document type
	C.3 Encoding of the Element type
	C.4 Encoding of the Attribute type
	C.5 Encoding of the ProcessingInstruction type
	C.6 Encoding of the UnexpandedEntityReference type
	C.7 Encoding of the CharacterChunk type
	C.8 Encoding of the Comment type
	C.9 Encoding of the DocumentTypeDeclaration type
	C.10 Encoding of the UnparsedEntity type
	C.11 Encoding of the Notation type
	C.12 Encoding of the NamespaceAttribute type
	C.13 Encoding of the IdentifyingStringOrIndex type
	C.14 Encoding of the NonIdentifyingStringOrIndex type starting on the first bit of an octet
	C.15 Encoding of the NonIdentifyingStringOrIndex type starting on the third bit of an octet
	C.16 Encoding of the NameSurrogate type
	C.17 Encoding of the QualifiedNameOrIndex type starting on the second bit of an octet
	C.18 Encoding of the QualifiedNameOrIndex type starting on the third bit of an octet
	C.19 Encoding of the EncodedCharacterString type starting on the third bit of an octet
	C.20 Encoding of the EncodedCharacterString type starting on the fifth bit of an octet
	C.21 Encoding of the length of a sequence-of type
	C.22 Encoding of the NonEmptyOctetString type starting on the second bit of an octet
	C.23 Encoding of the NonEmptyOctetString starting on the fifth bit of an octet
	C.24 Encoding of the NonEmptyOctetString type starting on the seventh bit of an octet
	C.25 Encoding of integers in the range 1 to 220 starting on the second bit of an octet
	C.26 Encoding of integers in the range 0 to 220 starting on the second bit of an octet
	C.27 Encoding of integers in the range 1 to 220 starting on the third bit of an octet
	C.28 Encoding of integers in the range 1 to 220 starting on the fourth bit of an octet
	C.29 Encoding of integers in the range 1 to 256
	Annex D – Examples of encoding XML infosets as fast infoset documents
	D.1 Introduction of examples
	D.2 Size of example documents (including redundancy-based compression)
	D.3 UBL order example
	D.4 UBL Order fast infoset document with an external vocabulary
	D.5 UBL order fast infoset document without an initial vocabulary
	Annex E – Assignment of object identifier values
	BIBLIOGRAPHY

