International Telecommunication Union

ITU-T Z.163

TELECOMMUNICATION (11/2007)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Testing and Test
Control Notation (TTCN)

Testing and Test Control Notation version 3:
TTCN-3 graphical presentation format (GFT)

ITU-T Recommendation Z.163

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGESAND GENERAL SOFTWARE ASPECTSFOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)
Specification and Description Language (SDL)
Application of formal description techniques
Message Sequence Chart (MSC)

Extended Object Definition Language (eODL)
User Requirements Notation (URN)
Testing and Test Control Notation (TTCN)

PROGRAMMING LANGUAGES
CHILL: TheITU-T high level language

MAN-MACHINE LANGUAGE
General principles
Basic syntax and dial ogue procedures
Extended MML for visual display terminals
Specification of the man-machine interface
Data-oriented human-machine interfaces
Human-machine interfaces for the management of telecommunications networks

QUALITY
Quality of telecommunication software
Quality aspects of protocol-related Recommendations

METHODS
Methods for validation and testing

MIDDLEWARE
Processing environment architectures

Z.100-Z.109
Z.110-7.119
Z2.120-Z2.129
Z.130-Z.139
Z.150-Z.159
Z.160-Z2.199

Z.200-2.209

Z.300-2.309
Z.310-2.319
Z2.320-2.329
Z.330-2.349
Z.350-Z2.359
Z2.360-Z.379

Z.400-Z.409
Z2.450-Z.459

Z.500-Z2.519

Z.600-Z.609

For further details, please refer to thelist of ITU-T Recommendations.

| TU-T Recommendation Z.163

Testing and Test Control Notation version 3: TTCN-3 graphical
presentation format (GFT)

Summary

ITU-T Recommendation Z.163 defines the graphical presentation format for the TTCN-3 core
language as defined in ITU-T Recommendation Z.161. This presentation format uses a subset of
Message Sequence Charts as defined in ITU-T Recommendation Z.120 with test specific extensions.

This Recommendation is based on the core TTCN-3 language defined in ITU-T
Recommendation Z.161. It is particularly suited to display tests as GFTs. It is not limited to any
particular kind of test specification.

The specification of other formats is outside the scope of this Recommendation.

Source

ITU-T Recommendation Z.163 was approved on 13 November 2007 by ITU-T Study Group 17
(2005-2008) under the ITU-T Recommendation A.8 procedure.

ITU-T Rec. Z.163 (11/2007) [

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basiswith 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectua property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii ITU-T Rec. Z.163 (11/2007)

http://www.itu.int/ITU-T/ipr/

CONTENTS

Page

1 oo 0SSR PRPRROR 1
2 REFEIENCES.......oeeee ettt b e s aeeae e 1
3 F N oo 1= V= o] SO 1
4 (@< VT S SSPPPRR 2
5 GFT 1anQUagE CONCEPLSeeverueerieerieeiesteesiesseeseeessesseesseeseesseessessesseessesnsesseessesssesseessens 3
6 Mapping between GFT and TTCN-3 Corelanguage...........ccoeeveeeereecieseeniesieeseenn, 5
7 MOAUIE SEFUCKUE. ...ttt et ene e sre e s e enne e 5
8 LT IS Y0171 00 KOS 7
9 GFT IB0IraMS ...t ettt b e e b e ne e 9
9.1 COMIMON PrOPEITIESveeveeeeesieesieeeesee e e e s e sre e s et e e e sreesreese s e e sseeeeeneenrs 9

9.2 (@001 0] o[-0 [r=1 0 1SS 10

9.3 JLICES 0= S X0 (o = o S 11

94 FUNCEION QIaQram.....ceeeeee e e 12

9.5 LN LS 0 o Jo (=T =T o TR 13

10 INStaNCES IN GFT diagramS........coieeiecee et sneees 14
10.1 CONLrOl INSEANCE.....c.eeieereirtesiesieeieeee ettt sre b sreenenseeneas 14

10.2 Test COMPONENE INSANCES........eeruerieeee et eee et sae e s e 14

10.3 POIT INSLANCES. ... et et r e e 15

11 Elements of GFT diagrams........cocee e 15
111 General draWing FUIES........cc.eecuieieciese ettt ne e 15

11.2 INVOKING GFT IAQramMScoivieiiiiisiee et 17

11.3 (D o = = (0] SRR 19

114 BasiC program StAEMENTS........ccoueruerrerereresieeeeeee e et e e e e e 21

11.5 Behavioural program StatemMENtS..........ccceveereereeeieeseesieseeseesieeseeseesseensesneens 24

11.6 Default handling.........cccceceieeiesieseece e e 29

11.7 Configuration OPEratioNS..........ccceeiieiieieeie e see e 30

11.8 CommuNiCation OPEratiONS.........c.ccveiierieeieeiieeeeseesteeee s e sreeee e sreseesreenne e 33

11,9 TIMEr OPEIELIONS....cc.eiiuieiteeieeieesieesieeeesteesteseesreesbesseesaeesseeeesseesbeeneesaeesseenee e 52

1110 TesSt VErdiCt OPEraLiONSccveiuirierieeieeieee ettt s sre e 55

0 R (= 1 = = 1 1 S 56

1112 SpecCifying attribDULES.........coceeieeeceee e 56
ANNEX A — GFT BNF ...ttt st st nneenennean 57
Al Meta-1anguage fOr GFTooiiiiieiee e s 57

A2 Conventions for the syntax desCriptionccccooererenineneneseereeese e 57

A.3 LI LST Il e = 0 10 S 58
Annex B — Reference gUIde fOr GRT ..ot 81

ITU-T Rec. Z.163 (11/2007) iii

FN 010C Ol = 0 0] =SSO
Cl1l The Restaurant @Xample........cceoieeri e
C.2 The INRES @Xample.........coiiiiieeere e

iv ITU-T Rec. Z.163 (11/2007)

I ntroduction

The graphical presentation format of TTCN-3 (GFT) is based on [ITU-T Z.120] defining Message
Sequence Charts (MSC). GFT uses a subset of MSC with test specific extensions. The majority of
extensions are textual extensions only. Graphical extensions are defined to ease the readability of
GFT diagrams. Where possible, GFT is defined like MSC, so that established M SC tools with slight
modifications can be used for the graphical definition of TTCN-3 test casesin terms of GFT.

The core language of TTCN-3 is defined in [ITU-T Z.161] and provides a full text-based syntax,
static semantics and operational semantics as well as a definition for the use of the language with
ASN.1. The GFT presentation format provides an alternative way of displaying the core language
(see Figure 1).

TTCN-3 < >
Core
ASN.1 Types R Tabular
& Values » Language format < >
Other Types o Graphical
& Values 2 format
‘ TTCN-3 User
The shaded boxes are not
defined in this Recommendation
Other Types o Presentation
& Values , d format, —>

Figure 1 —User'sview of the corelanguage and the various presentation for mats

The core language may be used independently of GFT. However, GFT cannot be used without the
core language. Use and implementation of the GFT shall be done on the basis of the core language.

This Recommendation defines:

. the language concepts of GFT;

. the guidelines for the use of GFT;

. the grammar of GFT,;

. the mapping from and to the TTCN-3 core language.

Together, these characteristics form the graphical presentation format of TTCN-3.

ITU-T Rec. Z.163 (11/2007) v

| TU-T Recommendation Z.163

Testing and Test Control Notation version 3: TTCN-3 graphical
presentation format (GFT)

1 Scope

This Recommendation defines the graphical presentation format for the TTCN-3 core language as
defined in [ITU-T Z.161]. This presentation format uses a subset of Message Sequence Charts as
defined in [ITU-T Z.120] with test specific extensions.

This Recommendation is based on the core TTCN-3 language defined in [ITU-T Z.161]. It is
particularly suited to display tests as GFTs. It is not limited to any particular kind of test
specification.

The specification of other formatsis outside the scope of this Recommendation.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.292] ITU-T Recommendation X.292 (2002), OS conformance testing methodology and
framework for protocol Recommendations for ITU-T applications— The Tree and
Tabular Combined Notation (TTCN).

| SO/IEC 9646-3:1998, Information technology — Open Systems I nter connection —
Conformance testing methodol ogy and framework — Part 3: The Tree and Tabular
Combined Notation (TTCN).

[ITU-T Z.120] ITU-T Recommendation Z.120 (2004), Message sequence chart (MSC).

[ITU-T Z.161] ITU-T Recommendation Z.161 (2007), Testing and Test Control Notation
version 3: TTCN-3 core language.

[ITU-T Z.162] ITU-T Recommendation Z.162 (2007), Testing and Test Control Notation version
3: TTCN-3 tabular presentation format (TFT).

3 Abbreviations

This Recommendation uses the following abbreviations and acronyms:
BNF Backus-Naur Form

CATG Computer Aided Test Generation

GFT Graphical presentation Format of TTCN-3

MSC Message Sequence Chart

MTC Main Test Component

PTC Pardle Test Component

SUT System Under Test

ITU-T Rec. Z.163 (11/2007) 1

TFT Tabular presentation Format of TTCN-3
TTCN Testing and Test Control Notation

4 Overview

According to the OSI conformance testing methodology defined in [ITU-T X.292], testing normally
starts with the identification of test purposes. A test purpose is defined as:

"A prose description of a well-defined objective of testing, focusing on a single conformance
requirement or a set of related conformance requirements as specified in the appropriate OS
specification".

Having identified all test purposes an abstract test suite is developed that consists of one or more

abstract test cases. An abstract test case defines the actions of the tester processes necessary to
validate part (or al) of atest purpose.

Applying these terms to Message Sequence Charts (MSCs) we can define two categories for their

usage:

1) Using MSCs for the definition of test purposes — Typically, an MSC specification that is
developed as a use-case or as part of a system specification can be viewed as test purpose,
i.e., it describes a requirement for the SUT in the form of a behaviour description that can
be tested. For example, Figure 2 presents a simple M SC describing the interaction between
instances representing the SUT and its interfaces A, B and C. In a rea implementation of
such a system the interfaces A, B and C may map onto service access points or ports. The
MSC in Figure 2 only describes the interaction with the SUT and does not describe the
actions of the test components necessary to validate the SUT behaviour, i.e, it is a test
purpose description.

msc TestPurposeExample
A SuT B C
[] [] | | | |
a »
P b
P C
[[[[

Figure 2—-MSC describing theinteraction of an SUT with itsinterfaces

2) Using MSCs for the definition of abstract test cases — An MSC specification describing an
abstract test case specifies the behaviour of the test components necessary to validate a
corresponding test purpose. Figure 3 presents a simple MSC abstract test case description.
It shows one Main Test Component (M TC) that exchanges the messages a, b and ¢ with the
SUT via the ports PortA, PortB and PortC in order to reach the test purpose shown in
Figure 2. The messages a and ¢ are sent by the SUT via the ports A and B (Figure 2) and
received by the MTC (Figure 3) via the same ports. The message b is sent by the MTC and
received by the SUT.

NOTE — The examplesin Figures 2 and 3 are only simple examples to illustrate the different usages of MSC
for testing. The diagrams will be more complicated in case of a distributed SUT that consists of several
processes or a distributed test configuration with several test components.

2 ITU-T Rec. Z.163 (11/2007)

msc AbstractTestCaseExample
PortA MTC PortB PortC
e . a; i
| i |
1 1 1
| b ; R
! : g
. C i i
| > i i
[] [[(]

Figure 3—MSC describing theinteraction of an MTC with SUT interfaces

In identifying these two categories of MSC usage two distinct areas of work can be identified
(see Figure 4):

a) Generation of abstract test cases from MSC test purpose descriptions — TTCN-3 core
language or GFT may be used to represent the abstract test cases. However, it is perceived
that test case generation from test purposes is non-trivial and involves the usage and
development of Computer Aided Test Generation (CATG) techniques.

b) Development of a Graphical presentation format for TTCN-3 (GFT) and definition of the
mapping between GFT and TTCN-3.

MSC test purpose

generate generate

mappin
('\éSF(':F tdeiztg?:rsnei < sl > TTCN-3 test case

Figure 4 — Relations between M SC test pur pose description,
M SC test case descriptionsand TTCN-3

This Recommendation focuses on item b), i.e., it defines GFT and the mapping between GFT and
the TTCN-3 core language.

5 GFT language concepts

GFT represents graphically the behavioural aspects of TTCN-3 like the behaviour of atest case or a
function. It does not provide graphics for data aspects like declaration of types and templates.

GFT defines no graphica representation for the structure of a TTCN-3 module, but specifies the
requirements for such a graphical representation (see also clause 7).

NOTE — The order and the grouping of definitions and declarations in the module definitions part define the
structure of a TTCN-3 module.

ITU-T Rec. Z.163 (11/2007) 3

GFT defines no graphical representation for:

. module parameter definitions;

. import definitions;

. type definitions;

. signature declarations;

. template declarations;

. constant declarations;

. external constant declarations; and
. external function declarations.

TTCN-3 definitions and declarations without a corresponding GFT presentation may be presented
in the TTCN-3 core language or in the tabular presentation format for TTCN-3 (TFT)
([ITU-T 2.162)).

GFT provides graphics for TTCN-3 behaviour descriptions. This means a GFT diagram provides a
graphical presentation of either:

. the control part of a TTCN-3 module;
. aTTCN-3 test case;

. a TTCN-3 function; or

. a TTCN-3 altstep.

The relation between a TTCN-3 module and a corresponding GFT presentation is shown in
Figure 5.

TTCN-3 module GFT presentation
in core language

Cmmmmm > Requirements for the graphical

EELIE SUELTE presentation of the module

module parameter definitions,
import definitions,

type definitions,

signature declarations, LG > | No graphical representation
template declarations,
constant declarations,

external constant declarations,

Graphical representation

module control $mmmmmme > (Control diagram)

Graphical representation

testcase $mmmmmme > (Test case diagram)

Graphical Representation

function <mmmmmooe > | (Function diagram)

Graphical Representation

altstep Commmmmes > (Altstep diagram)

Figure 5— Relation between TTCN-3 core language and the corresponding GFT description

GFT is based on MSC ([ITU-T Z.120]) and, thus, a GFT diagram maps onto an MSC diagram.
Although GFT uses most of the graphical MSC symbols, the inscriptions of some MSC symbols
have been adapted to the needs of testing and, in addition, some new symbols have been defined in
order to emphasize test specific aspects. Though, the new symbols can be mapped onto valid MSC.

. the representation of port instances,

4 ITU-T Rec. Z.163 (11/2007)

. the creation of test components;

. the start of test components;

. the return from a function call;

. the repetition of aternatives,

. the time supervision of a procedure-based call;
. the execution of test cases;

. the activation and deactivation of defaults;

. the labelling and goto; and

. the timers within call statements.

A completelist of all symbolsused in GFT is presented in clause 8.

6 M apping between GFT and TTCN-3 Corelanguage

GFT provides graphical means for TTCN-3 behaviour definitions. The control part and each
function, atstep and test case of a TTCN-3 core language module can be mapped onto a
corresponding GFT diagram and vice versa. This means:

. the module control part can be mapped onto a control diagram (see clause 9.2) and vice
versa;

. atest case can be mapped onto atest case diagram (see clause 9.3) and vice versg;

. a function in core language can be mapped onto a function diagram (see clause 9.4) and
vice versa;

. an altstep can be mapped onto an atstep diagram (see clause 9.5) and vice versa.

NOTE 1 — GFT provides no graphical presentations for definitions of module parameters, types, constants,
signatures, templates, external constants and external functions in the module definitions part. These
definitions may be presented directly in core language or by using another presentation format, e.g., the
tabular presentation format.

Each declaration, operation and statement in the module control and each test case, altstep or
function can be mapped onto a corresponding GFT representation and vice versa.

The order of declarations, operations and statements within a module control, test case, altstep or
function definition is identical to the order of the corresponding GFT representations within the
related control, test case, altstep or function diagram.

NOTE 2 — The order of GFT constructsin a GFT diagram is defined by the order of the GFT constructsin

the diagram header (declarations only) and the order of the GFT constructs aong the control instance
(control diagram) or component instance (test case diagram, altstep diagram or function diagram).

7 Module structure

Asshown in Figure 6, a TTCN-3 module has atree structure. A TTCN-3 module is structured into a
module definitions part and a module control part. The module definitions part consists of
definitions and declarations that may be structured further by means of groups. The module control
part cannot be structured into sub-structures; it defines the execution order and the conditions for
the execution of the test cases.

ITU-T Rec. Z.163 (11/2007) 5

declaratlon/deflnmon(1)

declaratlon/deflnmon(n)

N\

deflnltlons part declaratlon/deflnltlon(11)

declaratlon/defmltlon(1n)
group(l)

group(ll) —

group(ll))
group(m) §

module

control part

Figure 6 — Structure of TTCN-3 modules

GFT provides diagramsfor all "behavioura” leaves of the module tree structure, i.e., for the module
control part, for functions, for altsteps and for test cases. GFT defines no concrete graphics for the
module tree-structure, however appropriate tool support for GFT requires a graphical presentation
of the structure of a TTCN-3 module. The TTCN-3 module structure may be provided in form of an
organizer view (Figure 7) or the MSC document-like presentation (Figure 8). An advanced tool may
even support different presentations of the same object, e.g., the organizer view in Figure 7
indicates that some definitions are provided within severa presentation formats, e.g., function
MySpecial Function is available in core language, in form of a TFT table and as GFT diagram.

MyModule
i Definitions
— = MyType
Ga
[J
[J
hd MyCompType
=]
TFT
[J
[J
[J . .
MySpecialFunction
&3,
TFT
l /7
Control ’
=
l /7
il

Figure 7 —Various presentation formatsin an organizer view of a TTCN-3 module structure

6 ITU-T Rec. Z.163 (11/2007)

module MyModule

types

{ datatype MyType] {component MyCompType

functions

N

function MySpecialFunction

J

altsteps

altstep MyAltStep

J

testcases

testcase MyTestCase]

control

[control]

Figure 8 — Graphical M SC document-like presentation of a TTCN-3 module structure

8 GFT symbols

This clause presents all graphical symbols used within GFT diagrams and comments their typical
usage within GFT.

Table1-GFT symbols

GFT element Symbol Description
Frame symbol Used to frame GFT diagrams
Reference symbol Used to represent the invocation of
functions and altsteps
Port instance symbol —— Used to represent port instances
——

ITU-T Rec. Z.163 (11/2007) 7

Table 1 - GFT symbols

GFT element Symbol Description
Component instance — Used to represent test components and
symbol the control instance

I

Action box symbol

Used for textual TTCN-3 declarations
and statements, to be attached to a
component symbol

Condition symbol

Used for textual TTCN-3 boolean
expressions, verdict setting, port
operations (start, stop and clear) and the
done statement, to be attached to a
component symbol

Labelling symbol

Used for TTCN-3 labelling and goto, to
be attached to a component symbol

Goto symbol

<>
O
O

Used for TTCN-3 labelling and goto, to
be attached to a component symbol

Inline expression Used for TTCN-3 if-else, for, while,

symbol do-while, alt, call and interleave
statement, to be attached to a component
symbol

Default symbol Used for TTCN-3 activate and deactivate

) statement, to be attached to a component

symbol

Stop symbol >< Used for TTCN-3 stop statement, to be
attached to a component symbol

Return symbol ® Used for TTCN-3 return statement, to be
attached to a component symbol

Repeat symbol @ Used for TTCN-3 repeat statement, to be
attached to a component symbol

Create symbol Used for TTCN-3 create statement, to be
attached to a component symbol

Start symbol Used for TTCN-3 start statement, to be
attached to a component symbol

Message symbol R Used for TTCN-3 send, call, reply, raise,

- receive, getcall, getreply, catch, trigger

and check statement, to be attached to a
component symbol and a port symbol

Found symbol Used for representing TTCN-3 receive,

getcall, getreply, catch, trigger and check
from any port, to be attached to a
component symbol

8 ITU-T Rec. Z.163 (11/2007)

Table 1 - GFT symbols

GFT element Symbol Description
Suspension region ; Used in combination with a blocking
symbol cal, to be within acall inline expression

and attached to a component symbol

Used for TTCN-3 start timer operation,
to be attached to a component symbol

Start timer symbol

be attached to a component symbol

Used for TTCN-3 stop timer operation,
to be attached to a component symbol

Start implicit timer N4 Used for TTCN-3 implicit timer start in

Stop timer symbol

Timeout timer symbol %’ Used for TTCN-3 timeout operation, to

symbol | N blocking call, to be within acall inline
expression and attached to a component
symbol
Timeout implicit timer Used for TTCN-3 timeout exception in
symbol VAN blocking call, to be within acall inline
expression and attached to a component
symbol
Execute symbol Used for TTCN-3 execute test case
[} statement, to be attached to a component
instance symbol
Text symbol Used for TTCN-3 with statement and
comments, to be placed within a GFT
diagram
Event comment Used for TTCN-3 comments associated
symbol |] to events, to be attached to events on
component instance or port instance
symbols
9 GFT diagrams
GFT provides the following diagram types:
a) control diagram for the graphical presentation of a TTCN-3 module control part;

b) test case diagram for the graphical presentation of a TTCN-3 test case;
C) altstep diagram for the graphical presentation of a TTCN-3 altstep; and
d) function diagram for the graphical presentation of a TTCN-3 function.

The different diagram types have some common properties.

9.1 Common properties
Common properties of GFT diagrams are related to the diagram area, diagram heading and paging.

9.1.1 Diagram area

Each GFT control, test case, altstep and function diagram shall have a frame symbol (also called
diagram frame) to define the diagram area. All symbols and text needed to define a complete and
syntactically correct GFT diagram shall be made inside the diagram area.

ITU-T Rec. Z.163 (11/2007) 9

NOTE — GFT has no language constructs like the MSC gates, which are placed outside of, but connected to
the diagram frame.

9.1.2 Diagram heading

Each GFT diagram shall have a diagram heading. The diagram heading shall be placed in the upper
left-hand corner of the diagram frame.

The diagram heading shall uniquely identify each GFT diagram type. The genera rule to achieve
thisisto construct the heading from the keywords testcase, altstep Or function followed by the
TTCN-3 signature of the test case, atstep or function that should be presented graphically. For a
GFT control diagram, the unique heading is constructed from the keyword module followed by the
module name.

NOTE — In MSC, the keyword msc. aways precedes the diagram name to identify MSC diagrams.
GFT diagrams do not have such a common keyword to identify GFT diagrams.

9.1.3 Paging

GFT diagrams may be organized in pages and alarge GFT diagram may be split into several pages.
Each page of a split diagram shall have a numbering in the upper right hand corner that identifies
the page uniquely. The numbering is optional if the diagram is not split.

NOTE 1 — The concrete numbering scheme is considered to be a tools issue and is therefore outside the
scope of this Recommendation. A simple numbering scheme may only assign a page number, whereas an
advanced numbering scheme may support the reconstruction of a diagram only by using the numbering
information on the different pages.

NOTE 2 — Paging requirements beyond the general numbering are considered to be tools issues and are
therefore outside the scope of this Recommendation. For readability purposes, the diagram heading may be
shown on each page, the instance line of an instance that will be continued on another page may be attached
to the lower border of the page and the instance head of a continued instance may be repeated on the page
that describes the continuation.

9.2 Control diagram

A GFT control diagram provides a graphical presentation of the control part of a TTCN-3 module.
The heading of a control diagram shall be the keyword module followed by the module name. A
GFT control diagram shall only include one component instance (also called control instance) with
the instance name control without any type information. The control instance describes the
behaviour of the TTCN-3 module control part. Attributes associated to the TTCN-3 module control
part shall be specified within a text symbol in the control diagram. The principle shape of a
GFT control diagram and the corresponding TTCN-3 core description are sketched in Figure 9.

10 ITU-T Rec. Z.163 (11/2007)

module MyModule

control

I;I

var integer MyVar := 1

module MyModule {

control {
var integer MyVar := 1;
execute(MyTestcase());

I
-
[execute (MyTestcase ()) I

i end.control
} // end module

GFT Core

Figure 9 —Principle shape of a GFT control diagram and corresponding core language

Within the control part, test cases can be selected or deselected for the test case execution with the
use of Boolean expressions. Expressions, assignments, 1og statements, 1abel and goto Statements,
if-else Statements, for loop statements, while l0Op Statements, do while lOOp Statements, stop
execution statements, and timer statements can be used to control the execution of test cases.
Furthermore, functions can be used to group the test cases together with their preconditions for
execution, which are invoked by the module control part.

The GFT representation of those language features is as described in the respective clauses below
except that for the module control part the graphical symbols are attached to the control instance
and not to atest component instance.

Please refer to clause 11.4 for the GFT representation of expressions, assignments, log, label and
goto, if-else, for |00p, while 100p, do while lOOpP, and stop, to clause 11.9 for timer operations
and to clauses 9.4 and 11.2.2 for functions and their invocation.

9.3 Test case diagram

A GFT test case diagram provides a graphical presentation of a TTCN-3 test case. The heading of a
test case diagram shall be the keyword testcase followed by the complete signature of the test
case. Complete means that at least test case name and parameter list shall be present. The runs on
clause is mandatory and the system clause is optional in the core language. If the system clause is
specified in the corresponding core language, it shall also be present in the heading of the test case
diagram.

A GFT test case diagram shall include one test component instance describing the behaviour of the
mtc (also called mtc instance) and one port instance for each port owned by the mte. The name
associated with the mtc instance shall be mtc. The type associated with the mtc instance is optional,
but if the type information is present, it shall be identical to the component type referred to in the
runs on Clause of the test case signature. The names associated with the port instances shall be
identical to the port names defined in the component type definition of the mtc. The associated type
information for port instances is optional. If the type information is present, port names and port
types shall be consistent with the component type definition of the mtc. Themte and port types are
displayed in the component or port instance head symbol.

ITU-T Rec. Z.163 (11/2007) 11

Attributes associated to the test case presented in GFT shall be specified within a text symbol in the
test case diagram. The principle shape of a GFT test case diagram and the corresponding TTCN-3
core description are sketched in Figure 10.

testcase MyTestCase (inout integer MyPar)
runs on MyMICtype system SystemType
mte MyMTCport testcase MyTestCase (inout integer MyPar)
runs on MyMTCtype system SystemType
MyMICtype y ype sy y ype {
var integer MyVar := 1,
var integer MyVar := 1 MyMTCPort.send(MyTemplate);
MyTemplate }
. [
GFT Core

Figure 10 —Principle shape of a GFT test case diagram and corresponding cor e language

A test case represents the dynamic test behaviour and can create test components. A test case may
contain declarations, statements, communication and timer operations and invocation of functions
or altsteps.

94 Function diagram

GFT presents TTCN-3 functions by means of function diagrams. The heading of afunction diagram
shall be the keyword function followed by the complete signature of the function. Complete
means that at least function name and parameter list shall be present. The return clause and the
runs on Clause are optional in the core language. If these clauses are specified in the corresponding
core language, they shall also be present in the header of the function diagram.

A GFT function diagram shall include one test component instance describing the behaviour of the
function and one port instance for each port usable by the function.

NOTE — The names and types of the ports that are usable by afunction are passed in as parameters or are the
port names and types that are defined in the component type definition referenced in the runs on clause.

The name associated with the test component instance shall be se1£. The type associated with the
test component instance is optional, but if the type information is present, it shall be consistent with
the component type in the runs on Clause.

The names and types associated with the port instances shall be consistent with the port parameters
(if the usable ports are passed in as parameters) or to the port declarations in the component type
definition referenced in the runs on clause. The type information for port instancesis optional.

self and port names are displayed on top of the component and resp. port instance head symbol.
The component types and port types are displayed within the component and resp. port instance
head symbol.

Attributes associated to the function presented in GFT shall be specified within atext symbol in the
function diagram. The principle shape of a GFT function diagram and the corresponding TTCN-3
core description are sketched in Figure 11.

12 ITU-T Rec. Z.163 (11/2007)

function MyFunction (inout integer MyPar)
return integer runs on MyPTCtype
self MyPTCport function MyFunction (inout integer MyPar)
MyPTCtype return integer runs on MyPTCtype {
var integer MyVar := 1,
var integer MyVar := 1; :
MyPTCport.send(MyTemplate);
>
MyTemplate :
@ '
MyVar+MyPar return MyVar+MyPar
GFT Core

Figure 11 — Principle shape of a GFT function diagram and corresponding cor e language

A function is used to specify and structure test behaviour, define default behaviour or to structure
computation in a module. A function may contain declarations, statements, communication and
timer operations and invocation of function or altsteps and an optional return statement.

9.5 Altstep diagram

GFT presents TTCN-3 altsteps by means of altstep diagrams. The heading of an altstep diagram
shall be the keyword a1tstep followed by the complete signature of the atstep. Complete means
that at least altstep name and parameter list shall be present. The runs on clause is optional in the
core language. If the runs on clause is specified in the corresponding core language, it shall also be
present in the header of the altstep diagram.

A GFT dltstep diagram shall include one test component instance describing the behaviour of the
altstep and one port instance for each port usable by the altstep.

NOTE — The names and types of the ports that are usable by an altstep are passed in as parameters or are the
port names and types that are defined in the component type definition referenced in the runs on clause.

The name associated with the test component instance shall be se1£. The type associated with the
test component instance is optional, but if the type information is present, it shall be consistent with
the component type in the runs on clause.

The names and types associated with the port instances shall be consistent with the port parameters
(if the usable ports are passed in as parameters) or to the port declarations in the component type
definition referenced in the runs on clause. The type information for port instancesis optional.

self and port names are displayed on top of the component and resp. port instance head symbol.
The component types and port types are displayed within the component and resp. port instance
head symbol.

Attributes associated to the altstep shall be specified within a text symbol in the GFT altstep
diagram. The principle shape of a GFT atstep diagram and the corresponding TTCN-3 core
language are sketched in Figure 12.

ITU-T Rec. Z.163 (11/2007) 13

altstep MyAltstep ()

runs on MyMTCtype altstep MyAltstep () runs on MyMTCtype {

self MyMTCport alt{
MyMTCtype i
[] MyMTCport.receive(MyTemplate2) {
alt < setverdict(inconc)
MyTemplate2 }
inconc > [MyMTCport.receive(MyTemplate3) {
setverdict(fail)
MyTemplate3 }
< fail > }
Repeat
o —)
GFT Core

Figure 12 — Principle shape of a GFT altstep diagram and corresponding cor e language

An altstep is used to specify default behaviour or to structure the alternatives of an a1t statement.
An atstep may contain statements, communication and timer operations and invocation of function
or altsteps.

10 Instancesin GFT diagrams

GFT diagrams include the following kinds of instances:

. control instances describing the flow of control for the module control part;

. test component instances describing the flow of control for the test component that executes
atest case, function or atstep;

. port instances representing the ports used by the different test components.

10.1 Control instance

Only one control instance shall exist within a GFT control diagram (see clause 9.2). A control
instance describes the flow of control of a module control part. A GFT control instance shall
graphically be described by a component instance symbol with the mandatory name control
placed on top of the instance head symbol. No instance type information is associated with a control
instance. The principle shape of acontrol instance is shown in Figure 13 a).

10.2 Test component instances

Each GFT test case, function or altstep diagram includes one test component instance that describes
the flow of control of that instance. A GFT test component instance shall graphically be described
by an instance symbol with:

. the mandatory name mtc placed on top of the instance head symbol in the case of atest case
diagram;

. the mandatory name se1f placed on top of the instance head symbol in the case of a
function or altstep diagram.

14 ITU-T Rec. Z.163 (11/2007)

The optional test component type may be provided within the instance head symbol. It has to be
consistent with the test component type given after the runs on keyword in the heading of the
GFT diagram.

The principle shape of a test component instance in a test case diagram is shown in Figure 13 b).
The principle shape of a test component instance in a function or altstep diagram is shown in
Figure 13 ¢).

10.3 Port instances

GFT port instances may be used within test case, atstep and function diagrams. A port instance
represents a port that is usable by the test component that executes the specified test case, altstep or
function. A GFT port instance is graphically described by a component instance symbol with a
dashed instance line. The name of the represented port is mandatory information and shall be placed
on top of the instance head symbol. The port type (optional) may be provided within the instance
head symbol. The principle shape of a port instance is shown in Figure 13 d).

control mtc
MtcType
a) GFT control instance b) GFT test caseinstancein atest case diagram
self PortName
PtcType PortType

S —

¢) GFT test component instancein a function or altstep diagram d) GFT port instance

Figure 13 — Principle shape of instance kindsin GFT diagrams

11 Elements of GFT diagrams

This clause defines general drawing rules for the representation of specific TTCN-3 syntax
elements (semicolons, comments). It describes how to display the execution of GFT diagrams and
the graphical symbols associated with TTCN-3 language elements.

11.1 General drawingrules

Genera drawing rulesin GFT are related to the usage of semicolons, TTCN-3 statements in action
symbols and comments.

ITU-T Rec. Z.163 (11/2007) 15

11.1.1 Usage of semicolons

All GFT symbols with the exception of the action symbol shall include only one statement in
TTCN-3 core language. Only an action symbol may include a sequence of TTCN-3 statements
(seeclause 11.1.2).

The semicolon is optiona if a GFT symbol includes only one statement in TTCN-3 core language
(see Figure 14 a) and Figure 14 b)).

Semicolons shall separate the statements in a sequence of statements within an action symbol. The
semicolon is optional for the last statement in the sequence (Figure 14 c)).

A sequence of variable, constant and timer declarations may also be specified in plain TTCN-3 core
language following the heading of a GFT diagram. Semicolons shall also separate these
declarations. The semicolon is optional for the last declaration in this sequence.

11.1.2 Usage of action symbols

The following TTCN-3 declarations, statements and operations are specified within action symbols:
declarations (with the restrictions defined in clause 11.3), assignments, 1og, connect, disconnect,

map, unmap and action.

A sequence of declarations, statements and operations that shall be specified within action symbols
variable can be specified in a single action symbol. It is not necessary to use a separate action
symbol for each declaration, statement or operation.

11.1.3 Comments
GFT provide three possibilities to put comments into GFT diagrams:

. Comments may be put into GFT symbols following the symbol inscription and using the
syntax for comments of the TTCN-3 core language (Figure 14 d)).

. Comments in the syntax for comments of the TTCN-3 core language can be put into text
symbols and freely placed in the GFT diagram area (Figure 14 €)).

. The comment symbol can be used to associate comments to GFT symbols. A comment in a

comment symbol can be provided in form of free text, i.e., the comment delimiter "/*", "*/"
and "/" of the core language need not to be used (Figure 14 f)).

16 ITU-T Rec. Z.163 (11/2007)

T

MyComp :=

CompType.create;

s

I?I

activate (MyAltStep())

-

MyDef :=

a) Component creation with an optional

terminating semicolon

b) Default activation without a
terminating semicolon

action(redlight ()) ;

L 1
myFloatVar := 10.0 * 7.4;
localvVerdict := getverdict;

—

T

Initialization()
/* Preamble invocation */

i

¢) Sequence of statementsin an action symbol

d) Comment within a GFT reference symbol

// This is a
// comment in a
// text symbol

1

This comment is
associated with a
test execution
symbol

MyResult :=

execute (TC1())

i

€) Comment in a text symbol

f) Comment within a comment symbol associated with an

execution symbol

Figure 14 — Examplesfor the effects of the general drawing rules

11.2

Invoking GFT diagrams

This clause describes how the individual kinds of GFT diagrams are invoked. Since there is no
statement for executing the control part in TTCN-3 (as it is comparable to executing a program via
main and out of the scope of TTCN-3), the clause discusses the execution of test cases, functions,

and altsteps.

11.2.1 Execution of test cases

The execution of test cases is represented by use of the execute test case symbol (see Figure 15).
The syntax of the execute statement is placed within that symbol. The symbol may contain:

. an execute Statement for atest case with optional parameters and time supervision;
. optionally, the assignment of the returned verdict to averdicttype variable; and
. optionally, the inline declaration of the verdicttype variable.

1

MyVerdict:=
execute (MyTestCase (MyParameter) ,5.0)

]}

e

MyVerdict := execute(MyTestCase(MyParameter),5.0);

GFT

Core

Figure 15 — Test case execution

ITU-T Rec. Z.163 (11/2007)

17

11.2.2 Invocation of functions

The invocation of functions is represented by the reference symbol (Figure 16), except of externa
and predefined functions (Figure 17) and except where a function is caled insde a TTCN-3
language element that has a GFT representation (Figure 18).

The syntax of the function invocation is placed within the reference symbol. The symbol may
contain:

. the invocation of afunction with optional parameters;
. an optional assignment of the returned value to avariable; and
. an optional inline declaration of the variable.

The reference symbol is only used for user defined functions defined within the current module. It
shall not be used for external functions or predefined TTCN-3 functions, which shall be represented
in their text form within an action form (Figure 17) or other GFT symbols (see example in
Figure 18).

— 1
MyVar:=
MyFunction (MyParaml, MyParam2) MyVar:= MyFunction(MyParam1,MyParam2);
]
GFT Core

Figure 16 —Invocation of user defined function

I

MyStr:= int2str(MyInt)

—_

GFT Core

MyStr:= int2str(MyInt);

Figure 17 —Invocation of predefined/exter nal function

18 ITU-T Rec. Z.163 (11/2007)

Functions called inside a TTCN-3 construct with an associated GFT symbol are represented as text
within that symbol.

MyPort
|
for(j:=0; j<10; j:=next (j))) for(j:=0; j<10; j:=next(j)) {
| MyPort.send(Templatel)
Templatel :
|
; }
!
[I
GFT Core

Figure 18 — Invocation of user defined function within GFT symbol

11.2.3 Invocation of altsteps

The invocation of altstepsis represented by use of the reference symbol (see Figure 19). The syntax
of the altstep invocation is placed within that symbol. The symbol may contain the invocation of an
altstep with optional parameters. It shall be used within alternative behaviour only, where the altstep
invocation shall be one of the operands of the alternative statements (see also Figure 32 in
clause 11.5.2).

L 1
[MyAltstep (MyParaml, MyParam2) } MyAltstep(MyParam1,MyParam2);
GFT Core

Figure 19 — Altstep invocation

Another possibility is the implicit invocation of atsteps via activated defaults. Please refer to
clause 11.6.2 for further details.

11.3 Declarations

TTCN-3 allows the declaration and initialization of timers, constants and variables at the beginning
of statement blocks. GFT uses the syntax of the TTCN-3 core language for declarations in several
symbols. The type of a symbol depends on the specification of the initialization, e.g., a variable of
type default that is initiadlized by means of an activate operation shall be specified within a
default symbol (see clause 11.6).

11.3.1 Declaration of timers, constants and variablesin action symbols
The following declarations shall be made within action symbols:

. timer declarations;
. declarations of variables without initialization;
. declarations of variables and constants with initialization;

ITU-T Rec. Z.163 (11/2007) 19

— if the initidization is not made by means of functions that include communication
functions; or

— if adeclarationis:
« of acomponent type that is not initialized by means of acreate operation;
* of typedefault that isnot initialized by means of an activate operation;
* Of typeverdicttype that isnot initialized by means of an execute Statement;
» of asimple basic type;
« of abasic string type;
» of thetype anytype;
e of aport type;
» of thetype address; or

« of auser-defined structured type with fields that fulfil all restrictions mentioned in
this bullet for "declarations of variables and constants with initialization”.

NOTE — Pleaserefer to Table 3 of [ITU-T Z.161] for an overview on TTCN-3 types.

A sequence of declarations that shall be made within action symbols can be put into one action
symbol and need not to be made in separate action symbols. Examples for declarations within
action symbols can be found in Figures 20 a) and 20 b).

11.3.2 Declaration of constants and variableswithin inline expression symbols

Constants and variable declarations of a component type that are initialized within an if-else, for,
while, do-while, alt Of interleave Statement shall be presented within the same inline
expression symbol.

11.3.3 Declaration of constants and variableswithin create symbols

Constants and variable declarations of a component type that are initialized by means of create
operations shall be made within a create symbol. In contrast to declarations within action symbols,
each declaration that isinitialized by means of a create oOperation shall be presented in a separate
create symbol. An example for a variable declaration within a create symbol is shown in
Figure 20 c).

11.3.4 Declaration of constants and variables within default symbols

Constants and variable declarations of type default that are initialized by means of activate
operations shall be made within a default symbol. In contrast to declarations within action symbols,
each declaration that is initialized by means of an activate operation shall be presented in a
separate default symbol. An example for a variable declaration within a default symbol is shown in
Figure 20 d).

11.3.5 Declaration of constants and variables within reference symbols

Constants and variable declarations that are initialized by means of a function, which includes
communication operations, shall be made within reference symbols. In contrast to declarations
within action symbols, each declaration that is initialized by means of a function, which includes
communication functions, shall be presented in a separate reference symbol. An example for a
variable declaration within areference symbol is shown in Figure 20 €).

20 ITU-T Rec. Z.163 (11/2007)

11.3.6 Declaration of constants and variables within execute test case symbols

Constants and variable declarations of type verdicttype that areinitialized by means of execute
statements shall be made within execute test case symbols. In contrast to declarations within action
symbols, each declaration that isinitialized by means of an execute Statement shall be presented in
a separate execute test case symbol. An example for a variable declaration within an execute test

case symbol is shown in Figure 20).

|

var integer Myvar

F

1

var float MyFloatVar;
const integer MyConst := 6;
var default MyDefault := null

r

a) Variable declaration within an action symbol

b) Sequence of declarationswithin an action symbol

ﬂ

var CompType MyComp :=
CompType.create

r

1

var default MyDefault :=
activate (MyAltstep())

r

c) Variable declaration within a create symbol

d) Variable declaration within a default symbol

1

var integer MyVar :=
MyFunction ()

l

1

var verdicttype MyVerdict :=
execute (MyTestCase ())

}

€) Variable declaration within areference
symbol

f) Variable declaration within an execute test case symbol

Figure 20 — Examplesfor declarationsin GFT

11.4 Basic program statements

Basic program statements are expressions, assignments, operations, loop constructs, etc. All basic
program statements can be used within GFT diagrams for the control part, test cases, functions and

atsteps.

GFT does not provide any graphical representation for expressions and assignments. They are
textually denoted at the places of their use. Graphicsis provided for the 10g, 1abel, goto, if-else,

for, while and do-while Statement.

ITU-T Rec. Z.163 (11/2007)

21

11.4.1 ThelLog statement
The 10g statement shall be represented within an action symbol (see Figure 21).

I?I

log(“Message x sent

to MyPort”) log(‘Message x sent to MyPort');
GFT Core

Figure 21 — L og statement

11.4.2 TheLabd statement

The 1abe1 statement shall be represented with alabel symbol, which is connected to a component
instance. Figure 22 illustrates a ssmple example of a 1abel named MyLabel.

@ label MyLabel;

GFT Core

Figure 22 — L abel statement

11.4.3 The Goto statement

The goto statement shall be represented with a goto symbol. It shall be placed at the end of a
component instance or at the end of an operand in an inline expression symbol. Figure 23 illustrates
asimple example of agoto.

[]
goto MyLabel;
GFT Core

Figure 23 — Goto statement

11.4.4 Thelf-ese statement

The if-else statement shall be represented by an inline expression symbol labelled with the it
keyword and a Boolean expression as defined in clause 19.6 of [ITU-T Z.161]. The if-else inline
expression symbol may contain one or two operands, separated by a dashed line. Figure 24
illustrates an if statement with a single operand, which is executed when the Boolean expression

22 ITU-T Rec. Z.163 (11/2007)

x>1 evaluates to true. Figure 25 illustrates an if-else Statement in which the top operand is
executed when the Boolean expression x>1 evaluates to true, and the bottom operand is executed if
the Boolean expression evaluates to false.

MyPort
I I|:I
l .
if (x>1) : if (x>1){
Templatel ’i MyPort.send(Templatel)
[}
[}
i }
)
I []
GFT Core
Figure 24 — | f-statement
MyPort
1 if (x>1) {
:
if (x>1) ! MyPort.send(Templatel)
g
Templatel | }
|
[}
__________________________ I else {
>
Template2 ' MyPort.send(Template2)
[}
I — }
GFT Core

Figure 25 — If-else statement

11.45 TheFor statement

The for statement shall be represented by an inline expression symbol labelled with a for
definition as defined in clause 19.7 of [ITU-T Z.161]. The for body shall be represented as the
operand of the for inline expression symbol. Figure 26 represents a simple for loop in which the
loop variableis declared and initialized within the £or statement.

MyPort

I_—’_II:II

for (var integer j:=O;j<lO;j:=j+l»

for(var integer j:=0;j<10;j:=j+1) {

N: MyPort.send(Templatel)
[}

|

T }

|

I [

GFT Core

Templatel

Figure 26 — For statement

ITU-T Rec. Z.163 (11/2007) 23

11.4.6 TheWhile statement

The while symbol shall be represented by an inline expression symbol labelled with a while
definition as defined in clause 19.8 of [ITU-T Z.161]. The while body shall be represented as the
operand of the while inline expression symbol. Figure 27 represents an example of a while
statement.

MyPort

—

while(j<1oﬂ while(j<10) {

MyPort.send(Templatel)

}

Templatel

N

I .

GFT Core

Figure 27 —While statement

11.4.7 The Do-while statement

The do-while statement shall be represented by an inline expresson symbol labelled with a
do-while definition as defined in clause 19.9 of [ITU-T Z.161]. The do-while body shall be
represented as the operand of the do-while inline expression symbol. Figure 28 represents an
example of ado-while Statement.

MyPort
1
; do {
do while(j<1oﬂ |
NI MyPort.send(Templatel);
Templatel :
: } while(j<10);
|
|
| E—
GFT Core

Figure 28 — Do-while statement

11.5 Behavioural program statements

Behavioura statements may be used within test cases, functions and altsteps, the only exception
being the return statement, which can only be used within functions. Test behaviour can be
expressed sequentially, as a set of alternatives or using an interleaving statement. Return and repeat
are used to control the flow of behaviour.

11.5.1 Sequential behaviour

Sequential behaviour is represented by the order of events placed upon a test component instance.
The ordering of events is taken in a top-down manner, with events placed nearest the top of the
component instance symbol being evaluated first. Figure 29 illustrates a simple case in which the
test component firstly evaluates the expression contained within the action symbol and then sends a
message to a port Myport.

24 ITU-T Rec. Z.163 (11/2007)

MyPort

X:=X+1

X:=X+1;

MyPort.send(MyTemplate(x));

>

MyTemplate(x)

GFT Core

Figure 29 — Sequential behaviour

Sequencing can also be described using references to test cases, functions, and altsteps. In this case,
the order in which references are placed upon a component instance axis determines the order in
which they are evaluated. Figure 30 represents a ssimple GFT diagram in which MyFunctioni IS
called, followed by MyFunction?2.

1

{ MyFunctionl () }
l

i MyFunctionl();

[MyFunction2 () } MyFunction2();

GFT Core

Figure 30 — Sequencing using r eferences

11.5.2 Alternative behaviour

Alternative behaviour shall be represented using inline expression symbol with the a1t keyword
placed in the top left hand corner. Each operand of the aternative behaviour shall be separated
using a dashed line. Operands are evaluated top-down.

Note that an aternative inline expression should always cover all port instances, if communication
operators are involved. Figure 31 illustrates an alternative behaviour in which either a message
event is received with the value defined by Template1, Or a message event is received with the
value defined by Template2. The invocation of an altstep in an aternative inline expression is
shown in Figure 32.

ITU-T Rec. Z.163 (11/2007) 25

MyPort
[I
— ; alt {
Templatel i [] MyPort.receive(Templatel) {}
]
““““““““““ ‘E““ [] MyPort.receive(Template2) {}
]
Template2 i b
— —
GFT Core

Figure 31 — Alternative behaviour statement

In addition, it is possible to call an altstep as the only event within an alternative operand. This shall
be drawn using areference symbol (see clause 11.2.3).

alt {

[1 MyPort.receive(Templatel) {}

e [1 MyAltStep()
[MyAltStep ()] b

e

GFT Core

Figure 32 — Alternative behaviour with altstep invocation

11.5.2.1 Seecting/deselecting an alternative

It is possible to disable/enable an alternative operand by means of a Boolean expression contained
within a condition symbol placed upon the test component instance. Figure 33 illustrates a smple
alternative statement in which the first operand is guarded with the expression x > 1, and the second
with the expression x < 1.

26 ITU-T Rec. Z.163 (11/2007)

MyPort

L1 1
|
s i alt {
< x>1 > :
! [x>1] MyPort.receive(Templatel) {}
< Templatel :
|

___________________________ [x<=1] MyPort.receive(Template2) {}

X<:1> i |3

GFT Core

Figure 33 — Selecting/deselecting an alter native

11.5.2.2 Elsebranch in alternatives

The else branch shall be denoted using a condition symbol placed upon the test component
instance axis labelled with the e1se keyword. Figure 34 illustrates a simple alternative statement
where the second operand represents an e1se branch.

MyPort
1 L1
[}
alt :
< x>1 > i a”{
|
! .
< Templatel : [x>1] MyPort.receive(Templatel) {}
R I_—_—
1 [else]MyErrorHandler()
else :
| }7
[MyErrorHandler()]
| :
GFT Core

Figure 34 — Else within an alter native

Note that the reference symbol within an else branch should always cover al port instances, if
communication operations are involved.

The re-evaluation of an at statement can be specified using a repeat statement, which is represented
by the repeat symbol (see clause 11.5.3).

The invocation of altsteps within alternatives is represented using the reference symbol
(seeclause 11.2.3).

11.5.3 TheRepeat statement

The repeat Statement shall be represented by a repeat symbol. This symbol shall only be used as
last event of an alternative operand in an alt statement or as last event of an operand of the top
aternative in an altstep definition. Figure 35 illustrates an alternative statement in which the second

ITU-T Rec. Z.163 (11/2007) 27

operand, having successfully received a message with a value matching Template2, causes the
aternative to be repeated.

MyPort
I L1
[}
alt :
] alt {
}
Templatel :
____________________ S [] MyPort.receive(Templatel) {}
[}
> : [1 MyPort.receive(Template2) { repeat; }
Template2 :
I .
@ ! k
|
GFT Core

Figure 35— Repeat within an alternative

11.5.4 Interleaved behaviour

Interleave behaviour shall be represented using an inline expression symbol with the interleave
keyword placed in the top left hand corner (see Figure 36). Each operand shall be separated using a
dashed line. Operands are evaluated in atop-down order.

MyPort
1 I:I
I .
interleave) : interleave {
Templatel i [] MyPort.receive(Templatel) {}
[}
_________________________ i"""'"“ (1 MyPort.receive(Template2) {}
|
Template2 ! b
|
I I
GFT Core

Figure 36 — Interleave statement

11.5.5 TheReturn statement

The return Statement shall be represented by a return symbol. This may be optionally associated
with areturn value. A return symbol shall only be used in a GFT function diagram. It shall only be
used as last event of a component instance or as last event of an operand in an inline expression
symbol. Figure 37 illustrates a simple function using a return statement without a returning a value,
and Figure 38 illustrates afunction that returns avalue.

28 ITU-T Rec. Z.163 (11/2007)

return;

X

GFT Core

Figure 37 — Return symbol without areturn value

return ReturnValue;

X

ReturnValue

GFT Core

Figure 38 — Return symbol with areturn value

11.6 Default handling

GFT provides graphical representation for the activation and deactivation of defaults (see clause 21
of [ITU-T Z.161]).

11.6.1 Default references

Variables of type default can either be declared within an action symbol or within a default
symbol as part of an activate statement. Clauses 11.3.1 and 11.3.4 illustrate how a variable called
MyDefaultType IS declared within GFT.

11.6.2 Theactivate operation

The activation of defaults shall be represented by the placement of the activate Statement within a
default symbol (see Figure 39).

MyDefaultVar :=

activate(MyaltStep ()) MyDefaultVar:=activate(MyAltStep());

GFT Core

Figure 39 — Default activation

ITU-T Rec. Z.163 (11/2007) 29

11.6.3 Thedeactivate operation

The deactivation of defaults shall be represented by the placement of the deactivate Statement
within a default symbol (see Figure 40). If no operands are given to the deactivate Statement then
all defaults are deactivated.

I;I

deactivate(MyDefaultVar)
deactivate(MyDefaultVar);

——

GFT Core

Figure 40 — Deactivation of defaults

11.7 Configuration operations

Configuration operations are used to set up and control test components. These operations shall
only be used in GFT test case, function, and altstep diagrams.

Themtc, self, and system Operations have no graphical representation; they are textually denoted
at the places of their use.

GFT does not provide any graphical representation for the running operation (being a Boolean
expression). It istextually denoted at the place where it is used.

11.7.1 TheCreateoperation

The create Operation shall be represented within the create symbol, which is attached to the test
component instance which performs the create operation (see Figure 41). The create symbol
contains the create statement.

1

MyComp : =MyCType.create

—_

GFT Core

MyComp:=MyCType.create,

Figure 41 — Create operation

11.7.2 The Connect and Map oper ations

The connect and map operations shall be represented within an action box symbol, which is
attached to the test component instance which performs the connect OF map oOperation
(see Figure 42). The action box symbol contains the connect Of map Statement.

30 ITU-T Rec. Z.163 (11/2007)

/]

connect (MyComp: POrtA, mtc:PortM); connect(MyComp:PortA, mtc:PortM);
map (MyComp : PortB, system:PortC)

map(MyComp:PortB, system:PortC);

GFT Core

Figure 42 — Connect and map oper ation

11.7.3 The Disconnect and Unmap oper ations

The disconnect and unmap Operations shall be represented within an action box symbol, which is
attached to the test component instance which performs the disconnect Or unmap Operation
(see Figure 43). The action box symbol containsthe disconnect Of unmap Statement.

L 1

disconnect (MyComp:Porta, mtc:PortM); disconnect(MyComp:PortA, mtc:PortM);
unmap (MyComp : PortB, system:PortC)

unmap(MyComp:PortB, system:PortC);

GFT Core

Figure 43 — Disconnect and unmap oper ation

11.7.4 The Start test component operation

The start test component operation shall be represented within the start Symbol, which is
attached to the test component instance that performs the start operation (see Figure 44). The start
symbol containsthe start Statement.

I

MyComp . start (MyCompBehaviour ())

MyComp.start(MyCompBehaviour());

GFT Core

Figure 44 — Start operation

11.7.5 The Stop execution and Stop test component oper ations

TTCN-3 has two stop operations. The module control and test components may stop themselves by
using stop execution operations, or a test component can stop other test components by using stop

test component operations.

ITU-T Rec. Z.163 (11/2007) 31

The stop execution operation shall be represented by a stop symbol, which is attached to the test
component instance, which performs the stop execution operation (see Figure 45). It shall only be
used as last event of a component instance or as last event of an operand in an inline expression
symbol.

1
stop;
X
GFT Core

Figure 45 — Stop execution operation

The stop test component operation shall be represented by a stop symbol, which is attached to the
test component instance, which performs the stop test component operation. It shall have an
associated expression that identifies the component to be stopped (see Figure 46). The MTC may
stop al PTCs in one step by using the stop component operation with the keyword aii
(see Figure 47 a)). A PTC can stop the test execution by stopping the MTC (see Figure 47 b)). The
stop test component operation shall be used as last event of a component instance or as last event
of an operand in an inline expression symbol, if the component stops itself (e.g., self.stop) Or
stops the test execution (e.g., mtc . stop) (See Figures 47 ¢) and d)).

NOTE — The stop symbol has an associated expression. It is not always possible to determine statically, if a
stop component operation stops the instance that executes the stop operation or stops the test execution.

——

>< componentld Componentid.stop;

GFT Core

Figure 46 — Stop test component oper ation

32 ITU-T Rec. Z.163 (11/2007)

—— ——
all mtc
I I
a) Stopping all PTCs b) Stop test case execution
—— ——
self mtc
¢) Stop self execution d) Stop test case execution

Figure 47 — Special usages of the stop test component oper ation

11.7.6 The Done operation

The done oOperation shall be represented within a condition symbol, which is attached to the test
component instance, which performs the done oOperation (see Figure 48). The condition symbol
contains the done Statement.

I
<MyComp . done > MyComp.done;
I
GFT Core

Figure 48 — Done operation

The any and a11 keywords can be used for the running and done Operations but from the MTC
instance only. They have no graphical representation, but are textually denoted at the places of their

use.
11.8 Communication operations
Communication operations are structured into two groups:

a) Sending operations: a test component sends a message (send oOperation), calls a procedure
(cal1l operation), replies to an accepted call (reply operation) or raises an exception
(raise Operation).

b) Receiving operations. a component receives a message (receive Operation), accepts a
procedure call (getcall operation), receives a reply for a previously called procedure
(getreply Operation) or catches an exception (catch operation).

ITU-T Rec. Z.163 (11/2007) 33

11.8.1 General format of the sending oper ations

All sending operations use a message symbol that is drawn from the test component instance
performing the sending operation to the port instance to which the information is transmitted
(see Figure 49).

Sending operations consist of a send part and, in the case of a blocking procedure-based ca11
operation, aresponse and exception handling part.

The send part:

. specifies the port at which the specified operation shall take place;

. defines the optiona type and value of the information to be transmitted;

. gives an optional address expression that uniquely identifies the communication partner in

the case of a one-to-many connection.

The port shall be represented by a port instance. The operation name for the cal1, reply, and
raise operations shall be denoted on top of the message symbol in front of the optional type
information. The send operation is implicit, i.e., the send keyword shall not be denoted. The value
of the information to be transmitted shall be placed underneath the message symbol. The optional
address expression (denoted by the to keyword) shall be placed underneath the value of the
information to be transmitted.

test component instance port at which the specified
performing the sending operation _ sending operation shall take place
e
v MyPort
1 1
integer ; optional type information

value of information
to be transmitted

to MyPeer optional address expression

MyVariable + Your'{jariable B ——

Figure 49 — General format of sending operations

The structure of the ca11 operation is more specific. Please refer to clause 11.8.4.1 for further
details.

11.8.2 General format of thereceiving operations

All receiving operations use a message symbol drawn from the port instance to the test component
Instance receiving the information (see Figure 50).

A receiving operation consists of areceive part and an optional assignment part.

The receive part:

a) specifies the port at which the operation shall take place;

b) defines a matching part consisting of an optional type information and the matching value
which specifies the acceptable input which will match the statement;

C) gives an (optional) address expression that uniquely identifies the communication partner

(in case of one-to-many connections).

34 ITU-T Rec. Z.163 (11/2007)

The port shall be represented by a port instance. The operation name for the getcall, getreply,
and catch operations shall be denoted on top of the message symbol in front of (optional) type
information. The receive operation is given implicitly, i.e., the receive keyword shall not be
denoted. The matching value for the acceptable input shall be placed underneath the message
symbol. The (optional) address expression (denoted by the from keyword) shall be placed
undernesth the value of the information to be transmitted.

The (optional) assignment part (denoted by the '->1) shall be placed underneath the value of the
information to be transmitted or if present underneath the address expression. It may be split over
severd lines, for example to have the value, parameter and sender assignment each on individual
lines (see Figure 51).

test component instance port at which the specified

performing the receiving operation ~ receiving operation shall take place

; o

v MyPort

[1

integer ; optional matching type
MyTemplate (5,7) < matching value
from MyPeer i optional address expression
-> value MyVar < optiona value assignment

Figure 50 — General format of receiving operations with address and value assignment

test component instance port at which the specified
performing the receiving operation _ receiving operation shall take place
v MyPort
] []

getreply MyProc : optional matching type

{?} value 5 ; matching value

-> param (V1)sendér MyPeer <& optional param and sender assignment
] I

Figure 51 — General format of receiving operations with param and sender assignment

11.8.3 Message-based communication
11.8.3.1 The Send operation

The send operation shall be represented by an outgoing message symbol from the test component to
the port instance. The optional type information shall be placed above the message arrow. The
(inline) template shall be placed underneath the message arrow (see Figures 52 and 53).

ITU-T Rec. Z.163 (11/2007) 35

MyPort
] []

MyType »
MyTemplate (5,MyVat

MyPort.send(MyType — MyTemplate(5,MyVar));

] |
GFT Core

Figure 52 — Send oper ation with template reference

M%Port
integer N
- !
MyPort.send(integer:5);
I [
GFT Core

Figure 53 — Send operation with inline template

11.8.3.2 The Receive operation

The receive operation shall be represented by an incoming message arrow from the port instance to
the test component. The optiona type information shall be placed above the message arrow. The
(inline) template shall be placed underneath the message arrow (see Figures 54 and 55).

MyPort

1]

MyType
MyTemplate (5,MyVar) i
MyPort.receive(MyType — MyTemplate(5, MyVar));

]]
GFT Core

Figure 54 — Receive operation with template reference

MyPort

|

| integer
5

MyPort.receive(integer:5);

I]
GFT Core

Figure 55 — Receive operation with inline template

36 ITU-T Rec. Z.163 (11/2007)

11.8.3.2.1 Receive any message

The receive any message operation shall be represented by an incoming message arrow from the
port instance to the test component without any further information attached to it (see Figure 56).

M%Port

MyPort.receive;

GFT Core

Figure 56 — Recelve any message

11.8.3.2.2 Receiveon any port

The receive on any port operation shall be represented by a found symbol representing any port to
the test component (see Figure 57).

I
MyMessage :::
any port.receive(MyMessage);
I
GFT Core

Figure 57 — Receive on any port

11.8.3.3 TheTrigger operation

The trigger operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword trigger above the message arrow preceding the type
information if present. The optional type information is placed above the message arrow subsequent
to the keyword trigger. The (inline) template is placed underneath the message arrow

(see Figures 58 and 59).

MyPort

1]

_trigger MyType
MyTemplate

MyPort.trigger(MyType — MyTemplate);

]]
GFT Core

Figure 58 — Trigger operation with templatereference

ITU-T Rec. Z.163 (11/2007) 37

MyPort
] [

H
J trigger integeri

5

MyPort.trigger(integer:5);

GFT Core

Figure 59 —Trigger operation with inline template

11.8.3.3.1 Trigger on any message

The trigger on any message operation shall be represented by an incoming message arrow from the
port instance to the test component and the keyword trigger above the message arrow without any
further information attached to it (see Figure 60).

MyPort

L 1

trigger

MyPort.trigger;

I]
GFT Core

Figure 60 — Trigger on any message oper ation

11.8.3.3.2 Trigger on any port

The trigger on any port operation shall be represented by a found symbol representing any port to
the test component (see Figure 61).

L 1

trigger :::
MyMessage

any port.trigger(MyMessage);

GFT Core

Figure 61 —Trigger on any port operation

38 ITU-T Rec. Z.163 (11/2007)

11.8.4 Procedure-based communication
11.8.4.1 TheCall operation

11.8.4.1.1 Calling blocking procedures

The blocking cal1 operation is represented by an outgoing message symbol from the test
component to the port instance with a subsequent suspension region on the test component and the
keyword ca11 above the message arrow preceding the signature if present. The (inline) template is
placed underneath the message arrow (see Figures 62 and 63).

MyPort
L] 1
call MyPort.call(MyProc — MyProcTemplate) {
call MyProc H .
i MyProcTemplate
i1...
...
}

I |

GFT Core

Figure 62 — Blocking call operation with template reference

MyPort
L 1 L 1
call MyPort.call(MyProc:{ -, MyVar2}) {
call MyProc R []..
{ -, Myvar2}
0.
([
}
I |
GFT Core

Figure 63 — Blocking call operation with inline template

The call inline expression is introduced in order to facilitate the specification of the alternatives of
the possible responses to the blocking call operation. The call operation may be followed by
aternatives of getreply, catch and timeout. The responses to a call are specified within the call
inline expression following the call operation separated by dashed lines (see Figure 64).

ITU-T Rec. Z.163 (11/2007) 39

The call operation may optionally include a timeout. For that, the start implicit timer symbol is used
to start this timing period. The timeout implicit timer symbol is used to represent the timeout

exception (see Figure 65).
MyPort MyPort.call(MyProc:{ -, MyVar2},20E-3) {
I I
call “ e
20E-3% - call MyProc []..
LA { -, Myvar2}
[1 MyPort.catch(timeout) {
SR
}
I | }
GFT Core

11.8.4.1.2 Calling non-blocking procedures

The non-blocking call operation shall be represented by an outgoing message symbol from the test
component to the port and the keyword ca11 above the message arrow preceding the signature.
There shall be no suspension region symbol attached to the message symbol. The optional signature
is represented above the message arrow. The (inline) template is placed underneath the message

MyPort

I

call
call MyProc
{ -, MyVar2} MyPort.call(MyProc:{ -, MyVar2}) {
[1 MyPort.getreply(MyProc:{?, ?})
getreply MyProc
(2, 2) ->value MyResult { }
-> value MyResullt
[] MyPort.catch
(MyProc, MyExceptionType — MyException) { }
catch MyProc, MyExceptfionType
MyException }
[|
GFT Core

Figure 64 —Blocking call operation followed by alter natives of getreply and catch

arrow (see Figures 66 and 67).

40

ITU-T Rec. Z.163 (11/2007)

Figure 65— Blocking call operation followed by timeout exception

MyPort
I 1
call MyProc
MyProcTemplate
MyPort.call(MyProcTemplate, nowait);
I |
GFT Core

Figure 66 — Non-blocking call operation with template reference

call MyProc

MyPort

L——— 1 C—/—1

{ Myvarl, Myvar2}

MyPort.call(MyProc — {MyVar1,MyVar2}, nowait);

GFT

Core

Figure 67 — Non-blocking call operation with inline template

11.8.4.2 The Getcall operation

The getcall operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword getcal1l above the message arrow preceding the signature.
The signature is placed above the message arrow subsequent to the keyword getca11. The (inline)
template is placed underneath the message arrow (see Figures 68 and 69).

L 1

MyPort

I

|
|
_ getcall MyProc .

MyTemplateRef (2);

MyPort.getcall(MyProc — MyTemplateRef(2));

GFT

Core

Figure 68 — Getcall operation with template reference

ITU-T Rec. Z.163 (11/2007) 41

MyPort

l

|

_getcall MyProc

{5, Myvar2}

MyPort.getcall(MyProc — { 5, MyVar2});

GFT

Core

Figure 69 — Getcall operation with inlinetemplate

11.8.4.2.1 Accepting any call

The accepting any call operation shall be represented by an incoming message arrow from the port
instance to the test component and the keyword getca11 above the message arrow. No further

information shall be attached to the message symbol (see Figure 70).

]

getcall

MyPort

MyPort.getcall;

GFT

Core

Figure 70 — Getcall on any call operation

11.8.4.2.2 Getcall on any port

The getcall on any port operation is represented by a found symbol representing any port to the test
component and the keyword getcall above the message arrow followed by the signature if
present. The (inline) template if present shall be placed underneath the message arrow

(see Figure 71).
getcall MyProc
MyTemplateRef ()
any port.getcall(MyProc — MyTemplateRef);
]
GET Core

Figure 71 — Getcall on any port operation with template reference

42 ITU-T Rec. Z.163 (11/2007)

11.8.4.3 TheReply operation

The reply operation shall be represented by an outgoing message symbol from the test component
to the port instance and the keyword rep1y above the message arrow preceding the signature. The
signature shall be placed above the message arrow subsequent to the keyword reply. The (inline)
template shall be placed underneath the message arrow (see Figures 72 and 73).

M%Port

reply MyProc | MyPort.reply(MyProc — MyTemplateRef value 20);
MyTemplateRef
value 20

GFT Core

Figure 72 — Reply operation with template reference

MyPort
I
reply MyProc . MyPort.reply(MyProc — {5, MyVar2} value 20);
{5, Myvar2}
value 20
]]
GFT Core

Figure 73 — Reply operation with inlinetemplate

11.8.4.4 The Getreply operation

The getreply operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword getreply above the message arrow preceding the signature.
Within a call symbol, the message arrow head shall be attached to a preceding suspension region on
the test component (see Figures 74 and 75). Outside a call symbol, the message arrow head shall not
be attached to a preceding suspension region on the test component (see Figures 76 and 77).

The signature shall be placed above the message arrow subsequent to the keyword getreply. The
(inline) template shall be placed underneath the message arrow.

MyPort

|

MyPort.getreply(MyProc — MyTemplateRef value 20);
‘getreply MyProc

‘MyTemplateRef
value 20
|

GFT Core

Figure 74 — Getreply operation with template reference (within a call symbol)

ITU-T Rec. Z.163 (11/2007) 43

M%Port

i | getreply MyProc
w

{ -, 7} value ?) -> value MyResult;

value ?

-> value MyResult

MyPort.getreply(MyProc — {-, ?}

GFT Core

Figure 75 — Getreply oper ation with inline template (within a call symbol)

MyPort

[
MyPort.getreply(MyProc — MyTemplateRef
| getreply MyProc value 20);
b MyTemplateRef
value 20
I I
GFT Core

Figure 76 — Getreply operation with template reference (outside a call symbol)

M%Port

MyPort.getreply(MyProc — {-, ?)
P getreply MyProc
{ - .72} value ?) -> value MyResult;
value ?
-> value MyResult

GFT Core

Figure 77 — Getreply operation with inline template (outside a call symbol)

11.8.4.4.1 Get any reply from any call

The get any reply from any call operation shall be represented by an incoming message arrow from
the port instance to the test component and the keyword getreply above the message. No signature
shall follow the getrep1y keyword. Within a call symbol, the message arrow head shall be attached
to a preceding suspension region on the test component (see Figure 78). Outside a call symbol, the
message arrow head shall not be attached to a preceding suspension region on the test component
(see Figure 79).

44 ITU-T Rec. Z.163 (11/2007)

« getreply

from MyPeer

[] MyPort.getreply from MyPeer { ... }

GFT

Core

Figure 78 — Get any reply from any call (within a call symbol)

P getreply

MyPort

MyPort.getreply;

GFT

Core

Figure 79 — Getreply from any call (outside a call symbol)

11.8.4.4.2 Get areply on any port

The get areply on any port operation is represented by a found symbol representing any port to the
test component. The keyword getreply shall be placed above the message arrow followed by the
signature if present. Within a call symbol, the message arrow head shall be attached to a preceding
suspension region on the test component (see Figure 80). Outside a call symbol, the message arrow

head shall not be attached to a preceding suspension region on the test component (see Figure 81).

The signature if present shall be placed above the message arrow subsequent to the keyword
getreply. Theoptional (inline) template is placed underneath the message arrow.

H 5 getreply
MyTemplateRef :::
value MyResult

[] any port.getreply(MyProc — MyTemplateRef

value MyResult) { ... }

GFT

Core

Figure 80 — Get areply on any port (within a call symbol)

ITU-T Rec. Z.163 (11/2007)

45

any port.getreply(MyProc — MyTemplateRef
getreply MyProi:
MyTemplateRef value MyResuIt);
value Myresult

GFT Core

Figure 81 — Get areply on any port (outside a call symbol)

11.8.45 TheRaiseoperation

The raise operation shall be represented by an outgoing message symbol from the test component to
the port instance. The keyword raise shall be placed above the message arrow preceding the
signature and the exception type, which are separated by a comma. The (inline) template shall be
placed underneath the message arrow (see Figures 82 and 83).

MyPort

I

MyPort.raise(MyProc,
raise MyProc, MyExceptionType

MyTemplateRef MyExceptionType — MyTemplateRef);
I I
GFT Core

Figure 82 — Raise operation with template reference

MyPort

raise MyProc, integer MyPort.raise(MyProc, integer:5);
5

GFT Core

Figure 83 — Raise operation with inlinetemplate

11.8.4.6 The Catch operation

The catch operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword catch above the message arrow preceding the signature and
the exception type (if present). Within a call symbol, the message arrow head shall be attached to a
preceding suspension region on the test component (see Figures 84 and 85). Outside a call symboal,
the message arrow head shall not be attached to a preceding suspension region on the test
component (see Figures 86 and 87).

46 ITU-T Rec. Z.163 (11/2007)

The signature and optional exception type information are placed above the message arrow
subsequent to the keyword catch and are separated by a comma if the exception type is present.
The (inline) template is placed underneath the message arrow.

MyPort
l |
catch MyProc [] MyPort.catch(MyProc, MyTemplate(5)) { ... }
h MyTemplate (5)
L I
GFT Core

Figure 84 — Catch operation with template reference (within a call symbol)

MyPort
‘ l |
catch MyProc, MylType [1 MyPort.catch(MyProc, MyType — MyVar) { ... }
H .4—
MyVar
L I
GFT Core

Figure 85 — Catch operation with inline template (within a call symbol)

MyPort

catch MyProc MyPort.catch(MyProc, MyTemplate(5));

MyTemplate (5)

GFT Core

Figure 86 — Catch operation with template reference (outside a call symbal)

ITU-T Rec. Z.163 (11/2007) 47

MyPort

1 /]

catch MyProc, MylType MyPort.catch(MyProc, MyType — MyVar);

<

MyVar

GFT Core

Figure 87 — Catch operation with inline template (outside a call symbol)

11.8.4.6.1 The Timeout exception

The timeout exception operation shall be represented by a timeout symbol with the arrow connected
to the test component (see Figure 88). No further information shall be attached to the timeout
symbol. It shall be used within a call symbol only. The message arrow head shall be attached to a
preceding suspension region on the test component.

MyPort

l l

lv [1 MyPort.catch(timeout) { ... }

GFT Core

Figure 88 — Timeout exception (within a call symbol)

11.8.4.6.2 Catch any exception

The catch any exception operation shall be represented by an incoming message arrow from the
port instance to the test component and the keyword catch above the message arrow. Within a call
symbol, the message arrow head shall be attached to a preceding suspension region on the test
component (see Figure 89). Outside a call symbol, the message arrow head shall not be attached to
a preceding suspension region on the test component (see Figure 90). The catch any exception shall
have no template and no exception type.

M%Port

[l MyPort.catch { ... }

catch

<
<€

I]
GFT Core

Figure 89 — Catch any exception (within a call symbol)

48 ITU-T Rec. Z.163 (11/2007)

[

|, _catch

M%Port

MyPort.catch;

GFT

Core

Figure 90 — Catch any exception (outside a call symbol)

11.8.4.6.3 Catch on any port

The catch on any port operation is represented by a found symbol representing any port to the test
component and the keyword catch above the message arrow. Within a call symbol, the message
arow head shall be attached to a preceding suspension region on the test component
(see Figure 91). Outside a call symbol, the message arrow head shall not be attached to a preceding
suspension region on the test component (see Figure 92). The template if present is placed

undernesth the message arrow.

1]

catch MyProc <:>
<
<

MyTemplateRef

[] any port.catch(MyProc — MyTemplateRef) { ... }

GFT

Core

Figure 91 — Catch on any port (within a call symbol)

catch MyProc

MyTemplateRef

O

any port.catch(MyProc — MyTemplateRef);

GFT

Core

Figure 92 — Catch on any port (outside a call symbol)

ITU-T Rec. Z.163 (11/2007)

49

11.8.5 The Check operation

The check operation shall be represented by an incoming message arrow from the port instance to
the test component. The keyword check shall be placed above the message arrow. The attachment
of the information related to the receive (See Figure 93), getcall, getreply (See Figures 94
and 95) and catch follows the check keyword and is according to the rules for representing those
operations.

MyPort

l l

check integer
<

5
MyPort.check(receive(integer — 5));

GFT Core

Figure 93 — Check areceive with inline template

M%Port

. check getreply MyProc value ?) -> value MyResult)

[1 MyPort.check(getreply(MyProc1:{MyVar1, MyVar2}

“{ MyvVarl,MyVar2}
value ? { }
-> value MyResult T
| :
GFT Core

Figure 94 — Check a getreply (within a call symbol)

MyPort
l l

MyPort.check(getreply(MyProcl — MyTemplateRef)

check getreply MyProc value 20)
MyTemplateRef
value 20
] |
GFT Core

Figure 95 — Check a getreply (outside a call symbol)

11.85.1 The Check any operation

The check any operation shall be represented by an incoming message arrow from the port instance
to the test component and the keyword check above the message arrow (see Figure 96). It shall
have no receiving operation keyword, type and template attached to it. Optionally, an address
information and storing the sender can be attached.

50 ITU-T Rec. Z.163 (11/2007)

MyPort

check

MyPort.check;

GFT Core

Figure 96 — Check any operation

11.8.5.2 Check on any port

The check on any port operation is represented by a found symbol representing any port to the test
component and the keyword check above the message arrow (see Figure 97). The attachment of the
information related to the receive, getcall, getreply and catch follows the check keyword and
Is according to the rules for representing those operations.

I
check
MyTemplateRef :::
any port.check(receive(MyTemplateRef));
I
GFT Core

Figure 97 — Check areceive on any port

11.8.6 Controlling communication ports

11.8.6.1 TheClear port operation

The clear port operation shall be represented by a condition symbol with the keyword clear. It is
attached to the test component instance, which performs the clear port operation, and to the port that
is cleared (see Figure 98).

< clear > MyPort.clear;

GFT Core

Figure 98 — Clear port operation

ITU-T Rec. Z.163 (11/2007) 51

11.8.6.2 The Start port operation

The start port operation shall be represented by a condition symbol with the keyword start. It is
attached to the test component instance, which performs the start port operation, and to the port that
is started (see Figure 99).

MyPort

< start MyPort.start;

GFT Core

|

Figure 99 — Start port operation

11.8.6.3 The Stop port operation

The stop port operation shall be represented by a condition symbol with the keyword stop. It is
attached to the test component instance, which performs the stop port operation, and to the port that
is stopped (see Figure 100).

MyPort

< stop > MyPort.stop;

|
|
i
I
GFT Core

Figure 100 — Stop port operation

11.8.6.4 Useof any and all with ports

The GFT representation of the any keyword for ports together with the receive, trigger,
getcall, getreply, catch, and check operationsis explained in clauses 11.8.1to 11.8.6.3.

The a11 keyword for ports together with the clear, start and stop operation is represented by
attaching the condition symbol containing the clear, start Or stop operation to al port instances
represented in the GFT diagram for atestcase, function or altstep.

11.9 Timer operations

In GFT, there are two different timer symbols. one for identified timers and one for call timers
(see Figure 101). They differ in appearance as solid line timer symbols are used for identified timers
and dashed timer symbols for call timers. An identified timer shall have its name attached to its
symbol, whereas a call timer does not have a name. Identified timers are described in this clause.
The call timer is dealt with in clause 11.8.4.

52 ITU-T Rec. Z.163 (11/2007)

. AN
MyTimer X X
/
-\

Figure 101 — I dentified timer and call timers

GFT does not provide any graphical representation for the running timer operation (being a
Boolean expression). It istextually denoted at the places of its use.

11.9.1 The Start timer operation

For the start timer operation, the start timer symbol shall be attached to the component instance. A
timer name and an optional duration value (within parentheses) may be associated (see Figure 102).

MyTimer {10.0) MyTimer.start(10.0);

GFT Core

Figure 102 — The start timer operation

11.9.2 The Stop timer operation

For the stop timer operation, the stop timer symbol shall be attached to the component instance. An
optional timer name may be associated (see Figure 103).

MyTimer MyTimer.stop;

GFT Core

Figure 103 — The stop timer operation

The symbols for a start timer and a stop timer operation may be connected with a vertical line. In
this case, the timer identifier needs only be specified next to the start timer symbol (see Figure 104).

L1
MyTimer (10.0)
MyTimer.start(10.0);
MyTimer.stop;
I
GFT Core

Figure 104 — Connected start and stop timer symbols

ITU-T Rec. Z.163 (11/2007) 53

11.9.3 TheTimeout operation

For the timeout operation, the timeout symbol shall be attached to the component instance. An
optional timer name may be associated (see Figure 105).

MyTimer .
Y MyTimer.timeout;

GFT Core

Figure 105 — The timeout oper ation

The symbols for a start timer and a timeout operation may be connected with a vertical line. In this
case, the timer identifier needs only be specified next to the start timer symbol (see Figure 106).

) MyTimer.start(10.0);
MyTimer (10.0)

MyTimer.timeout;

GFT Core

Figure 106 — Connected start and timeout timer symbols

11.9.4 TheRead timer operation
The read timer operation shall be put into an action box (see Figure 107).

MyVar :=
MyTimer.read MyVar := MyTimer.read;
GFT Core

Figure 107 — Theread timer operation

54 ITU-T Rec. Z.163 (11/2007)

11.9.5 Useof any and all with timers
The stop timer operation can be applied to a11 timers (see Figure 108).

all timer.stop;

GFT Core

Figure 108 — Stopping all timers

The timeout operation can be applied to any timer (see Figure 109).

any timer.timeout;

GFT Core

Figure 109 — Timeout from any timer

11.10 Test verdict operations

The verdict set operation setverdict isrepresented in GFT with a condition symbol within which
thevaluespass, fail, inconc Of none are denoted (see Figure 110).
NOTE — Therules for setting a new verdict follow the normal TTCN-3 overwriting rules for test verdicts.

.
setverdict(pass);

GFT Core

Figure 110 — Set local verdict

GFT does not provide any graphical representation for the getverdict operation (being an
expression). It istextually denoted at the places of its use.

ITU-T Rec. Z.163 (11/2007) 55

11.11 External actions
External actions are represented within action box symbols (see Figure 111). The syntax of the
external action is placed within that symbol.

action (
;ierllgwglﬂ?gglf?e action("Send MyTemplate on lower PCO ");
——
GFT Core

Figure 111 — External actions

11.12 Specifying attributes
The attributes defined for the module control part, testcases, functions and altsteps are represented
within the text symbol. The syntax of the with statement is placed within that symbol. An example

iIsgivenin Figure 112.

testcase MyTestcase() {

testcase MyTestcase()

extension
“MySpecialLogging ()" }

with {

extension 'MySpecialLogging()"

}
GFT Core

Figure 112 — Specifying attributes

56 ITU-T Rec. Z.163 (11/2007)

Annex A

GFT BNF
(Thisannex forms an integral part of this Recommendation)

A.l Meta-language for GFT

The graphical syntax for GFT is defined on the basis of the graphical syntax of MSC
[ITU-T Z.120]. The graphica syntax definition uses a meta-language, which is explained in
clause 1.4 of [ITU-T Z.120]:

"The graphical syntax is not precise enough to describe the graphics such that there are no graphical
variations. Small variations on the actual shapes of the graphical terminal symbols are allowed.
These include, for instance, shading of the filled symbols, the shape of an arrow head and the
relative size of graphical elements. Whenever necessary the graphical syntax will be supplemented
with informal explanation of the appearance of the constructions. The meta-language consists of a
BNF-like notation with the special meta-constructions: contains, is followed by, is associated with,
Is attached to, above and set. These constructs behave like normal BNF production rules, but
additionally they imply some logica or geometrical relation between the arguments. The is
attached to construct behaves somewhat differently as explained below. The left-hand side of all
constructs except above must be a symbol. A symbol is a non-terminal that produces in every
production sequence exactly one graphical terminal. We will consider a symbol that is attached to
other areas or that is associated with atext string as a symbol too. The explanation is informal and
the meta-language does not precisely describe the geometrical dependencies.”

See [ITU-T Z.120] for more details.

A.2 Conventionsfor the syntax description

Table A.1 defines the meta-notation used to specify the grammar for GFT. It is identical to the
meta-notation used by TTCN-3, but different from the meta-notation used by MSC. In order to ease
the readability, the correspondence to the MSC meta-notation is given in addition and differences
are indicated.

Table A.1 - The syntactic meta-notation

M eaning TTCN-3 GFT MSC Differences
isdefined to be = = =
abc followed by xyz abc xyz abc xyz abc xyz
Alternative | | |
0 or 1 instances of abc [abc] [abc] [abc]

0 or more instances of abc {abc} {abc} {abc}* X

1 or more instances of abc {abc} + {abc} + {abc} +
Textual grouping () () {.} X
the non-terminal symbol abc abc abc <abc> X

(for a GFT non-terminal)
or abc
(for aTTCN non-
terminal)
aterminal symbol abc abc abc abc or X
<name> or
<character string>

ITU-T Rec. Z.163 (11/2007) 57

A.3 TheGFT grammar
A.3.1 Diagrams
A.3.1.1 Control diagram

ControlDiagram ::=
Frame contains (ControlHeading ControlBodyArea)

ControlHeading ::=
TTCN3ModuleKeyword TTCN3ModuleId
{ LocalDefinition [SemiColon] }
ControlBodyArea ::=

{ ControlInstanceArea TextLayer ControlEventLayer } set

TextLayer ::=
{ TextArea } set

ControlEventLayer: :=
ControlEventArea | ControlEventArea above ControlEventLayer

ControlEventArea ::=
(
InstanceTimerEventArea
| ControlActionArea
| InstanceInvocationArea
| ExecuteTestcaseArea
| ControlInlineExpressionArea)
[is associated with { CommentArea } set]

A.3.1.2 Testcasediagram

TestcaseDiagram ::=
Frame contains (TestcaseHeading TestcaseBodyArea)

TestcaseHeading ::=
TestcaseKeyword TestcaseIdentifier
'('[TestcaseFormalParList] ')'
ConfigSpec
{ LocalDefinition [SemiColon] }

TestcaseBodyArea ::=
{ Instancelayer TextLayer InstanceEventLayer PortEventLayer ConnectorLayer } set

Instancelayer ::=
{ InstanceArea } set

InstanceEventLayer ::=
InstanceEventArea | InstanceEventArea above InstanceEventLayer

InstanceEventArea ::=

(

InstanceSendEventArea

| InstanceReceiveEventArea
InstanceCallEventArea
InstanceGetcallEventArea
InstanceReplyEventArea
InstanceGetreplyWithinCallEventArea
InstanceGetreplyOutsideCallEventArea
InstanceRaiseEventArea
InstanceCatchWithinCallEventArea
InstanceCatchTimeoutWithinCallEventArea
InstanceCatchOutsideCallEventArea
InstanceTriggerEventArea
InstanceCheckEventArea
InstanceFoundEventArea
InstanceTimerEventArea
InstanceActionArea
InstancelLabellingArea
InstanceConditionArea
InstanceInvocationArea
InstanceDefaultHandlingArea
InstanceComponentCreateArea
InstanceComponentStartArea

58 ITU-T Rec. Z.163 (11/2007)

| InstanceComponentStopArea
| InstanceInlineExpressionArea)
[is associated with { CommentArea } set]

/* STATIC SEMANTICS - a condition area containing a boolean expression shall be used within alt inline expression, i.e. AltArea, and

call inline expression, i.e. CallArea, only */
InstanceCallEventArea ::=

InstanceBlockingCallEventArea
| InstanceNonBlockingCallEventArea

PortEventLayer ::=

PortEventArea | PortEventArea above PortEventlLayer

PortEventArea ::=
PortOutEventArea
| PortOtherEventArea

PortOutEventArea ::=
PortOutMsgEventArea
| PortGetcallOutEventArea
| PortGetreplyOutEventArea
| PortCatchOutEventArea
| PortTriggerOutEventArea
| PortCheckOutEventArea

PortOtherEventArea ::=

PortInMsgEventArea

| PortCallInEventArea

| PortReplyInEventArea

| PortRaiseInEventArea

| PortConditionArea

| PortInvocationArea

| PortInlineExpressionArea

ConnectorLayer ::=

{
SendArea
ReceiveArea
NonBlockingCallArea
GetcallArea
ReplyArea
GetreplyWithinCallArea
GetreplyOutsideCallArea
RaiseArea
CatchWithinCallArea
| CatchOutsideCallArea
TriggerArea
CheckArea
ConditionArea
InvocationArea
| InlineExpressionArea
} set

A.3.1.3 Function diagram

FunctionDiagram ::=
Frame contains (FunctionHeading FunctionBodyArea

FunctionHeading ::=
FunctionKeyword FunctionIdentifier
'"('[FunctionFormalParList] ')'
[RunsOnSpec] [ReturnType]
{ LocalDefinition [SemiColon 1 }

FunctionBodyArea ::=
TestcaseBodyArea

ITU-T Rec. Z.163 (11/2007)

59

A.3.14 Altstep diagram

AltstepDiagram ::=
Frame contains (AltstepHeading AltstepBodyArea)

AltstepHeading ::=
AltstepKeyword AltstepIdentifier
' (' [AltstepFormalParList] ')
[RunsOnSpec]
{ LocalDefinition [SemiColon] }

AltstepBodyArea ::=
TestcaseBodyArea

/* STATIC SEMANTICS - a altstep body area shall contain a single alt inline expression only */

A.3.1.5 Comments

TextArea ::=
TextSymbol
contains ({ TTCN3Comments } [MultiWithAttrib] { TTCN3Comments })

Note that there is no explicit rule for TTCN3 comments, they are explained in clause A.1.4 of [ITU-T Z.161]
/* STATIC SEMANTICS — within a diagram there shall be at most one text symbol defining a with statement */

TextSymbol ::=

CommentArea ::=
EventCommentSymbol contains TTCN3Comments
EventCommentSymbol ::=

/* STATIC SEMANTICS — a comment symbol can be attached to any graphical symbol in GFT */

A.3.1.6 Diagram

Frame ::=
LocalDefinition ::=
ConstDef
| VarInstance
| TimerInstance

/* STATIC SEMANTICS - declarations of constants and variables with create, activate, and execute statements as well as with functions
that include communication functions must not be made textually within LocalDefinition, but must be made graphically within create,
default, execute, and reference symbols, respectively */

A.3.2 Instances

A.3.21 Component instances

InstanceArea ::=
ComponentInstanceArea
| PortInstanceArea

ComponentInstanceArea ::=
ComponentHeadArea is followed by ComponentBodyArea

60 ITU-T Rec. Z.163 (11/2007)

ComponentHeadArea: : =
(MTCOp | SelfOp)
is followed by (InstanceHeadSymbol [contains ComponentType 1)

InstanceHeadSymbol ::=

I

ComponentBodyArea ::=
InstanceAxisSymbol
is attached to { InstanceEventArea } set
is followed by ComponentEndArea

InstanceAxisSymbol: :=

ComponentEndArea ::=
InstanceEndSymbol
| StopArea
| ReturnArea
| RepeatSymbol
| GotoArea

/* STATIC SEMANTICS - the return symbol shall be used within function diagrams only */
/* STATIC SEMANTICS - the repeat symbol shall end the component instance of a altstep diagram only */

A.3.2.2 Portinstances

PortInstanceArea ::=
PortHeadArea is followed by PortBodyArea

PortHeadArea: :=
Port
is followed by (InstanceHeadSymbol [contains PortType])

PortBodyArea ::=
PortAxisSymbol
is attached to { PortEventArea } set
is followed by InstanceEndSymbol

PortAxisSymbol: :=

A.3.23 Control instances

ControlInstanceArea ::=
ControlInstanceHeadArea is followed by ControlInstanceBodyArea

ControlInstanceHeadArea ::=
ControlKeyword
is followed by InstanceHeadSymbol

ControlInstanceBodyArea: :=
InstanceAxisSymbol
is attached to { ControlEventArea } set
is followed by ControlInstanceEndArea

ControlInstanceEndArea ::=
InstanceEndSymbol

ITU-T Rec. Z.163 (11/2007)

61

A.3.24 Instanceend

InstanceEndSymbol ::=

StopArea: :=
StopSymbol
is associated with (Expression)

/* STATIC SEMANTICS - the expression shall refer to either the mtc or to self */

StopSymbol::=
ReturnArea: :=
ReturnSymbol
[is associated with Expression]
ReturnSymbol::=
RepeatSymbol::=
GotoArea: :=
GotoSymbol
contains LabelIdentifier
GotoSymbol::=
A.33 Timer
InstanceTimerEventArea: :=
InstanceTimerStartArea
| InstanceTimerStopArea
| InstanceTimeoutArea
InstanceTimerStartArea ::=
TimerStartSymbol
is associated with (TimerRef [" (" TimerValue ")"])

is attached to InstanceAxisSymbol
[is attached to { TimerStopSymbol2 | TimeoutSymbol3

TimerStartSymbol ::=
TimerStartSymboll | TimerStartSymbol2

TimerStartSymbol1 ::

X

TimerStartSymbol2 ::

—X

InstanceTimerStopArea ::=
TimerStopAreal | TimerStopArea2

62 ITU-T Rec. Z.163 (11/2007)

TimerStopAreal ::=
TimerStopSymboll
is associated with TimerRef
is attached to InstanceAxisSymbol

TimerStopAreal2 ::=
TimerStopSymbol2
is attached to InstanceAxisSymbol
is attached to TimerStartSymbol

TimerStopSymbol1 ::=

—X

TimerStopSymbol2 ::=

InstanceTimeoutArea ::=
TimeoutAreal | TimeoutArea?2

TimeoutAreal ::=
TimeoutSymbol
is associated with TimerRef
is attached to InstanceAxisSymbol

TimeoutArea2 ::=
TimeoutSymbol3
is attached to InstanceAxisSymbol
is attached to TimerStartSymbol

TimeoutSymbol ::=
TimeoutSymboll | TimeoutSymbol2

TimeoutSymbol1 ::=

<—
TimeoutSymbol2 ::=

<+

TimeoutSymbol3 ::=

A.3.4 Action

InstanceActionArea ::=
ActionSymbol
contains { ActionStatement [SemiColon] }+
is attached to InstanceAxisSymbol

ActionSymbol ::=

ITU-T Rec. Z.163 (11/2007)

63

ActionStatement ::=
SUTStatements
ConnectStatement
MapStatement
DisconnectStatement
UnmapStatement
ConstDef
VarInstance
TimerInstance
Assignment
LogStatement
LoopConstruct
ConditionalConstruct

/* STATIC SEMANTICS — declarations of constants and variables with create, activate, and execute statements as well as with function
invocations of user-defined functions must not be made textually within an action box, but must be made graphically within create,
default, execute, and reference symbols, respectively */

/* STATIC SEMANTICS - assignments with create, activate, and execute statements as well as with function invocations of user-
defined functions must not be made textually within an action box, but must be made graphically within create, default, execute, and
reference symbols, respectively */

[* STATIC SEMANTICS - only those loop and conditional constructs, which do not involve communication operations, i.e. those with
‘data functions' only, may be contained in action boxes */

ControlActionArea ::=
ActionSymbol
is attached to InstanceAxisSymbol
contains { ControlActionStatement [SemiColon] }+

ControlActionStatement ::=
SUTStatements
| ConstDef
| VarInstance
| TimerInstance
| Assignment
| LogStatement

/* STATIC SEMANTICS - declarations of constants and variables with create, activate, and execute statements as well as with function
invocations of user-defined functions must not be made textually within an action box, but must be made graphically within create,
default, execute, and reference symbols, respectively */

/* STATIC SEMANTICS - assignments with create, activate, and execute statements as well as with function invocations of user-
defined functions must not be made textually within an action box, but must be made graphically within create, default, execute, and
reference symbols, respectively */.

A.3.5 Invocation

InvocationArea ::=
ReferenceSymbol
contains Invocation
is attached to InstanceAxisSymbol
[is attached to { PortAxisSymbol } set]

/* STATIC SEMANTICS - all port instances have to be covered by the reference symbol for an invoked function if it has a runs on
specification, as well as for an invoked altstep */

/* STATIC SEMANTICS - only those port instances, which are passed into a function via port parameters, have to be covered by the
reference symbol for an invoked function without a runs on specification. Note that the reference symbol may be attached to port
instances which are not passed as port parameters into the function. */

Invocation ::=
FunctionInstance
| AltstepInstance
| CconstDef
| VarInstance
| Assignment

ReferenceSymbol ::=

[]

A.35.1 Function and altstep invocation on component/Contr ol instances

InstanceInvocationArea ::=
InstanceInvocationBeginSymbol

64 ITU-T Rec. Z.163 (11/2007)

is followed by InstanceInvocationEndSymbol
is attached to InstanceAxisSymbol
is attached to InvocationArea

InstanceInvocationBeginSymbol ::=
VoidSymbol

InstanceInvocationEndSymbol ::=
VoidSymbol

A.3.5.2 Function and altstep invocation on ports

PortInvocationArea ::=
PortInvocationBeginSymbol
is followed by PortInvocationEndSymbol
is attached to PortAxisSymbol
is attached to InvocationArea

/* STATIC SEMANTICS - only invocations with function instances and test step instances shall be attached to a port instance, in that

case all port instances have to be covered by the reference symbol for an invoked function if it has a runs on specification, as well as for

an invoked altstep */

PortInvocationBeginSymbol ::=
VoidSymbol

PortInvocationEndSymbol ::=
VoidSymbol

A.35.3 Testcase execution

ExecuteTestcaseArea ::=
ExecuteSymbol
contains TestCaseExecution
is attached to InstanceAxisSymbol

TestCaseExecution: :=
Testcaselnstance
| ConstDef
| VarInstance
| Assignment

/* STATIC SEMANTICS - declarations of constants and variables as well as assignments shall use as outermost right-hand expression

an execute statement */

ExecuteSymbol ::=

A.3.6 Activation/Deactivation of defaults

InstanceDefaultHandlingArea ::=
DefaultSymbol
contains DefaultHandling
is attached to InstanceAxisSymbol

DefaultHandling: :=
ActivateOp
| DeactivateStatement
| ConstDef
| VarInstance
| Assignment

/* STATIC SEMANTICS — declarations of constants and variables as well as assignments shall use as outermost right-hand expression

an activate statement */

DefaultSymbol ::=

ITU-T Rec. Z.163 (11/2007)

65

A.3.7 Test components

A.3.7.1 Creation of test components

InstanceComponentCreateArea ::=
CreateSymbol
contains Creation
is attached to InstanceAxisSymbol

Creation ::=
CreateOp
| ConstDef
| VarInstance
| Assignment

/* STATIC SEMANTICS - declarations of constants and variables as well as assignments shall use as outermost right-hand expression
a create statement */

CreateSymbol ::=

A.3.7.2 Startingtest components

InstanceComponentStartArea ::=
StartSymbol
contains StartTCStatement
is attached to InstanceAxisSymbol

StartSymbol ::=

A.3.7.3 Stopping test components

InstanceComponentStopArea ::=
StopSymbol
is associated with (Expression | AllKeyword)
is attached to InstanceAxisSymbol

[* STATIC SEMANTICS - the expression shall refer to a component identifier */
/* STATIC SEMANTICS - the instance component stop area shall be used as last event of an operand in an inline expression symbol, if
the component stops itself (e.g., self.stop) or stops the test execution (e.g. mtc.stop). */

A.3.8 Inlineexpressions

InlineExpressionArea ::=
IfArea
| ForArea
| WhileArea
| DowWhileArea
| AltArea
| InterleaveArea
| callArea

IfArea ::=

IfInlineExpressionArea

is attached to InstanceInlineExpressionBeginSymbol

[is attached to InstanceInlineExpressionSeparatorSymbol]

is attached to InstanceInlineExpressionEndSymbol

[is attached to { PortInlineExpressionBeginSymbol } set
[is attached to { PortInlineExpressionSeparatorSymbol } set]
is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS - if a SeparatorSymbol is contained in the inline expression symbol, then
InstancelnlineExpressionSeparatorSymbols on component and port instances are used to attach the SeparatorSymbol to the respective
instances. */

InstanceInlineExpressionBeginSymbol ::=
VoidSymbol

66 ITU-T Rec. Z.163 (11/2007)

InstanceInlineExpressionSeparatorSymbol: :=
VoidSymbol

InstanceInlineExpressionEndSymbol ::=
VoidSymbol

VoidSymbol ::=

IfInlineExpressionArea ::=
InlineExpressionSymbol
contains (IfKeyword ' (' BooleanExpression ')'
is followed by OperandArea
[is followed by SeparatorSymbol
is followed by OperandArea])

OperandArea ::=
ConnectorLayer
/* STATIC SEMANTICS - the event layer within an operand area shall not have a condition with a boolean expression */

ForArea ::=
ForInlineExpressionArea
is attached to InstanceInlineExpressionBeginSymbol
is attached to InstanceInlineExpressionEndSymbol
[is attached to { PortInlineExpressionBeginSymbol } set
is attached to { PortInlineExpressionEndSymbol } set]

ForInlineExpressionArea ::=
InlineExpressionSymbol
contains (ForKeyword '(' Initial [SemiColon] Final [SemiColon] Step ')'
is followed by OperandArea)

WhileArea ::=
WhileInlineExpressionArea
is attached to InstanceInlineExpressionBeginSymbol
is attached to InstanceInlineExpressionEndSymbol
[is attached to { PortInlineExpressionBeginSymbol } set
is attached to { PortInlineExpressionEndSymbol } set]

WhileInlineExpressionArea ::=
InlineExpressionSymbol
contains (WhileKeyword ' (' BooleanExpression ')'
is followed by OperandArea)

DoWhileArea ::=
DoWhileInlineExpressionArea
is attached to InstanceInlineExpressionBeginSymbol
is attached to InstanceInlineExpressionEndSymbol
[is attached to { PortInlineExpressionBeginSymbol } set
is attached to { PortInlineExpressionEndSymbol } set]

DoWhileInlineExpressionArea ::=
InlineExpressionSymbol
contains (DoKeyword WhileKeyword ' (' BooleanExpression ')'
is followed by OperandArea)

AltArea ::=

AltInlineExpressionArea

is attached to InstanceInlineExpressionBeginSymbol

{ is attached to InstanceInlineExpressionSeparatorSymbol }

is attached to InstanceInlineExpressionEndSymbol

[is attached to { PortInlineExpressionBeginSymbol } set
[is attached to { PortInlineExpressionSeparatorSymbol } set]
is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS — the number of InstancelnlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstancelnlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

AltInlineExpressionArea ::=
InlineExpressionSymbol
contains (AltKeyword
is followed by GuardedOperandArea
{ is followed by SeparatorSymbol
is followed by GuardedOperandArea }
[is followed by SeparatorSymbol
is followed by ElseOperandArea])

GuardedOperandArea ::=

GuardOpLayer is followed by
ConnectorLayer

ITU-T Rec. Z.163 (11/2007) 67

/* STATIC SEMANTICS - for the individual operands of an alt inline expression at first, either a InstanceTimeoutArea shall be given on
the component instance, or a GuardOpLayer has to be given */

GuardOpLayer ::=
DoneArea
| ReceiveArea
| TriggerArea
| GetcallArea
| catchOutsideCallArea
| CheckArea
| GetreplyOutsideCallArea

ElseOperandArea ::=
ElseConditionArea
is followed by ConnectorLayer

InterleaveArea ::=
InterleaveInlineExpressionArea
is attached to InstanceInlineExpressionBeginSymbol
{ is attached to InstanceInlineExpressionSeparatorSymbol }
is attached to InstanceInlineExpressionEndSymbol
[is attached to { PortInlineExpressionBeginSymbol } set
[is attached to { PortInlineExpressionSeparatorSymbol } set]
is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS - the number of InstancelnlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstancelnlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

InterleaveInlineExpressionArea ::=
InlineExpressionSymbol
contains (InterleavedKeyword
is followed by UnguardedOperandArea
{ is followed by SeparatorSymbol
is followed by UnguardedOperandArea })

UnguardedOperandArea ::=
UnguardedOplayer is followed by
ConnectorLayer

/* STATIC SEMANTICS - the connector layer within an interleave inline expression area may not contain loop statements, goto,
activate, deactivate, stop, return or calls to functions */

UnguardedOpLayer ::=
ReceiveArea
| TriggerArea
| GetcallArea
| CatchOutsideCallArea
| CheckArea
| GetreplyOutsideCallArea

CallArea ::=
CallInlineExpressionArea
is attached to InstanceInlineExpressionBeginSymbol
{ is attached to InstancelInlineExpressionSeparatorSymbol }
is attached to InstanceInlineExpressionEndSymbol
[is attached to { PortInlineExpressionBeginSymbol } set
[is attached to { PortInlineExpressionSeparatorSymbol } set]
is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS — the number of InstancelnlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstancelnlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

CallInlineExpressionArea ::=
InlineExpressionSymbol
contains (CallOpKeyword '(' TemplatelInstance ')' [ToClause]
is followed by InstanceCallEventArea
{ is followed by SeparatorSymbol
is followed by GuardedCallOperandArea })

GuardedCallOperandArea ::=
[GuardedConditionLayer is followed by]
CallBodyOpsLayer
is attached to SuspensionRegionSymbol
is followed by ConnectorLayer

/* STATIC SEMANTICS - for the individual operands in the GuardedCallOperandArea of a call inline expression at first, either a
InstanceCatchTimeoutWithinCallEventArea shall be given on the component instance, or a CallBodyOpsLayer has to be given */

68 ITU-T Rec. Z.163 (11/2007)

GuardedConditionLayer ::=
BooleanExpressionConditionArea
| DoneArea

CallBodyOpsLayer ::=

GetreplyWithinCallArea
| CatchWithinCallArea

InlineExpressionSymbol ::=

|/

SeparatorSymbol::=

A.3.8.1 Inlineexpressionson component instances

InstanceInlineExpressionArea ::=
InstancelIfArea
| InstanceForArea
| InstanceWhileArea
| InstanceDoWhileArea
| InstanceAltArea
| InstanceInterleaveArea
| InstanceCallArea

InstanceIfArea ::=

(InstanceInlineExpressionBeginSymbol

{ is followed by InstanceEventArea }

{ is followed by InstanceInlineExpressionSeparatorSymbol

{ is followed by InstanceEventArea |}]

is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to IfInlineExpressionArea

InstanceForArea ::=
(InstanceInlineExpressionBeginSymbol
{ is followed by InstanceEventArea }
is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to ForInlineExpressionArea

InstanceWhileArea ::=
(InstanceInlineExpressionBeginSymbol
{ is followed by InstanceEventArea }
is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to WhileInlineExpressionArea

InstanceDoWhileArea ::=
(InstanceInlineExpressionBeginSymbol
{ is followed by InstanceEventArea }
is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to DoWhileInlineExpressionArea

InstanceAltArea ::=
(InstanceInlineExpressionBeginSymbol
[is followed by InstanceBooleanExpressionConditionArea]
is followed by InstanceGuardArea
{ is followed by InstancelInlineExpressionSeparatorSymbol
is followed by InstanceGuardArea }
[is followed by InstanceInlineExpressionSeparatorSymbol
is followed by InstanceElseGuardArea |
is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to AltInlineExpressionArea

InstanceGuardArea ::=

(InstanceInvocationArea
| InstanceGuardOpArea)

ITU-T Rec. Z.163 (11/2007) 69

{ is followed by InstanceEventArea }
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - the instance invocation area shall contain an altstep instance only */

InstanceGuardOpArea ::=

(InstanceTimeoutArea

| InstanceReceiveEventArea

| InstanceTriggerEventArea

| InstanceGetcallEventArea

| InstanceGetreplyOutsideCallEventArea
| InstanceCatchOutsideCallEventArea
| InstanceCheckEventArea
| InstanceDoneArea)
is attached to InstanceAxisSymbol

InstanceElseGuardArea ::=
ElseConditionArea
{ is followed by InstanceEventArea }
is attached to InstanceAxisSymbol

InstancelnterleaveArea ::=

(InstanceInlineExpressionBeginSymbol

is followed by InstancelInterleaveGuardArea

{ is followed by InstancelInlineExpressionSeparatorSymbol

is followed by InstancelnterleaveGuardArea }

is followed by InstanceInlineExpressionEndSymbol)

is attached to InstanceAxisSymbol

is attached to InterleaveInlineExpressionArea

InstancelnterleaveGuardArea ::=
InstanceGuardOpArea
{ is followed by InstanceEventArea }
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - the instance event area may not contain loop statements, goto, activate, deactivate, stop, return or calls to
functions */

InstanceCallArea ::=
(InstanceInlineExpressionBeginSymbol
[is followed by InstanceBooleanExpressionConditionArea]
[is followed by InstanceCallOpArea]
{ is followed by InstancelInlineExpressionSeparatorSymbol
is followed by InstanceCallGuardArea}
is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to CallInlineExpressionArea

InstanceCallOpArea ::=
InstanceCallEventArea
is followed by SuspensionRegionSymbol
[is attached to InstanceCallTimerStartArea]
is attached to InstanceAxisSymbol
is attached to CallInlineExpressionArea

SuspensionRegionSymbol ::=

InstanceCallGuardArea ::=
SuspensionRegionSymbol
[is attached to InstanceGetreplyWithinCallEventArea
| InstanceCatchWithinCallEventArea
| InstanceCatchTimeoutWithinCallEventArea]
{ is followed by InstanceEventArea }
is attached to InstanceAxisSymbol
is attached to CallInlineExpressionArea

A.3.8.2 Inlineexpressionson ports

PortInlineExpressionArea ::=
PortIfArea
| PortForArea
| PortWhileArea
| PortDoWhileArea
| PortAltArea

70 ITU-T Rec. Z.163 (11/2007)

| PortInterleaveArea
| PortCallArea

PortIfArea ::=

(PortInlineExpressionBeginSymbol

{ is followed by PortEventArea }

[is followed by PortInlineExpressionSeparatorSymbol

{ is followed by PortEventArea }]

is followed by PortInlineExpressionEndSymbol)
is attached to PortAxisSymbol
is attached to IfInlineExpressionArea

PortInlineExpressionBeginSymbol ::=
VoidSymbol

PortInlineExpressionSeparatorSymbol: :=
VoidSymbol

PortInlineExpressionEndSymbol: :=
VoidSymbol

PortForArea ::=
(PortInlineExpressionBeginSymbol
{ is followed by PortEventArea }
is followed by PortInlineExpressionEndSymbol)
is attached to PortAxisSymbol
is attached to ForInlineExpressionArea

PortWhileArea ::=
(PortInlineExpressionBeginSymbol
{ is followed by PortEventArea }
is followed by PortInlineExpressionEndSymbol)
is attached to PortAxisSymbol
is attached to WhileInlineExpressionArea

PortDoWhileArea ::=
(PortInlineExpressionBeginSymbol
{ is followed by PortEventArea }
is followed by PortInlineExpressionEndSymbol)
is attached to PortAxisSymbol
is attached to DoWhilelInlineExpressionArea

PortAltArea ::=
(PortInlineExpressionBeginSymbol
[is followed by PortOutEventArea]
{ is followed by PortEventArea }
{ is followed by PortInlineExpressionSeparatorSymbol
[is followed by PortOutEventArea]
is followed by PortEventArea |} }
is followed by PortInlineExpressionEndSymbol)
is attached to PortAxisSymbol
is attached to AltInlineExpressionArea

PortInterleaveArea ::=
(PortInlineExpressionBeginSymbol
[is followed by PortOutEventArea]
{ is followed by PortEventArea }
{ is followed by PortInlineExpressionSeparatorSymbol
[is followed by PortOutEventArea]
{ is followed by PortEventArea } }
is followed by PortInlineExpressionEndSymbol)
is attached to PortAxisSymbol
is attached to InterleavelInlineExpressionArea

PortCallArea ::=
(PortInlineExpressionBeginSymbol
[is followed by PortCallInEventAreal
{ is followed by PortEventArea }
{ is followed by PortInlineExpressionSeparatorSymbol
[is followed by PortOutEventArea]
{ is followed by PortEventArea } }
is followed by PortInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to CallInlineExpressionArea

ITU-T Rec. Z.163 (11/2007)

71

A.383

ControlInlineExpressionArea

Inline expressions on control instances

ControlIfArea
ControlForArea
ControlWhileArea
ControlDoWhileArea
ControlAltArea
ControlInterleaveArea

ControlIfA
(

[

[

is

is

is

is

ControlForArea

(

ControlWhileArea

rea

InstanceInlineExpressionBeginSymbol

is followed
is followed
followed by
followed by
attached to
attached to

by ControlEventArea]

by InstanceInlineExpressionSeparatorSymbol
ControlEventArea]
InstanceInlineExpressionEndSymbol)
InstanceAxisSymbol

IfInlineExpressionArea

InstanceInlineExpressionBeginSymbol
[is followed by ControlEventArea]
is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to ForInlineExpressionArea

(InstanceInlineExpressionBeginSymbol

[is followed by ControlEventArea]

is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to WhileInlineExpressionArea

ControlDoWhileArea

(InstanceInlineExpressionBeginSymbol

[is followed by ControlEventArea]

is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to DoWhileInlineExpressionArea

ControlAltArea

(InstanceInlineExpressionBeginSymbol

f
is

[
is
is
is
is

ControlGuardArea

is followed
is followed
followed by
is followed
followed by
followed by
attached to
attached to

by ControlGuardArea]

by InstanceInlineExpressionSeparatorSymbol
ControlGuardArea }

by InstanceInlineExpressionSeparatorSymbol
ControlElseGuardArea]
InstanceInlineExpressionEndSymbol)
InstanceAxisSymbol

AltInlineExpressionArea

(InstanceInvocationArea

| InstanceTimeoutArea)

{ is followed by ControlEventArea }
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - the instance invocation area shall contain an altstep instance only */

ControlElseGuardArea
ElseConditionArea
{ is followed by ControlEventArea }
is attached to InstanceAxisSymbol

ControlInterleaveArea
(InstanceInlineExpressionBeginSymbol
[is followed by ControllInterleaveGuardArea]
{ is followed by InstanceInlineExpressionSeparatorSymbol

is followed by ControllInterleaveGuardArea }

is followed by InstanceInlineExpressionEndSymbol)
is attached to InstanceAxisSymbol
is attached to InterleavelInlineExpressionArea

ControlInterleaveGuardArea

InstanceTimeoutArea
{ is followed by ControlEventArea }
is attached to InstanceAxisSymbol

72

ITU-T Rec. Z.163 (11/2007)

/* STATIC SEMANTICS - the instance event area may not contain loop statements, goto, activate, deactivate, stop, return or calls to

functions */

A.3.9 Condition

ConditionArea ::=

PortOperationArea

BooleanExpressionConditionArea ::=
ConditionSymbol
contains BooleanExpression

is attached to InstanceConditionBeginSymbol
is attached to InstanceConditionEndSymbol

/* STATIC SEMANTICS - boolean expressions within conditions shall be used as guards within alt and call inline expressions only.
They shall be attached to a single test component or control instance only.*/

InstanceConditionBeginSymbol ::=

VoidSymbol

InstanceConditionEndSymbol ::=

VoidSymbol

DoneArea ::=

ConditionSymbol

contains DoneStatement

is attached to InstanceConditionBeginSymbol
is attached to InstanceConditionEndSymbol

SetVerdictArea ::=

ConditionSymbol
contains SetVerdictText

is attached
is attached

SetVerdictText ::=

to InstanceConditionBeginSymbol
to InstanceConditionEndSymbol

(SetVerdictKeyword " (" SingleExpression ")")

|
| fail
|
|

/* STATIC SEMANTICS - SingleExpression must resolve to a value of type verdict */
/* STATIC SEMANTICS - the SetLocalVerdict shall not be used to assign the value error */
/* STATIC SEMANTICS - if the keywords pass, fail, inconc, and fail are used, the form with the setverdict keyword shall not be used */

PortOperationArea

ConditionSymbol
contains PortOperationText

is attached
is attached
is attached
is attached to
is attached
is attached

to InstanceConditionBeginSymbol

to InstanceConditionEndSymbol

to { PortInlineExpressionBeginSymbol }+ set
{ PortInlineExpressionEndSymbol }+ set]

to InstancePortOperationArea

to PortConditionArea

/* STATIC SEMANTICS - the condition symbol shall be attached to either to all ports or to just one port */

If the condition symbol crosses a port axis symbol of a port which is not involved in this port operation, the port axis symbol is drawn

through:

PortOperationText

ClearOpKeyword
| StartKeyword
| StopKeyword

ElseConditionArea

ConditionSymbol
contains ElseKeyword

is attached

to InstanceAxisSymbol

ITU-T Rec. Z.163 (11/2007)

73

ConditionSymbol ::=

<)

A.3.9.1 Condition on component instances

InstanceConditionArea ::=
InstanceDoneArea
| InstanceSetVerdictArea
| InstancePortOperationArea

InstanceBooleanExpressionConditionArea ::=
InstanceConditionBeginSymbol
is followed by InstanceConditionEndSymbol
is attached to InstanceAxisSymbol
is attached to BooleanExpressionConditionArea

InstanceDoneArea ::=
InstanceConditionBeginSymbol
is followed by InstanceConditionEndSymbol
is attached to InstanceAxisSymbol
is attached to DoneArea

InstanceSetVerdictArea ::=
InstanceConditionBeginSymbol
is followed by InstanceConditionEndSymbol
is attached to InstanceAxisSymbol
is attached to SetVerdictArea

InstancePortOperationArea ::=
InstanceConditionBeginSymbol
is followed by InstanceConditionEndSymbol
is attached to InstanceAxisSymbol
is attached to PortOperationArea

A.3.9.2 Condition on ports

PortConditionArea ::=
PortConditionBeginSymbol
is followed by PortConditionEndSymbol
is attached to PortAxisSymbol
is attached to PortOperationArea

PortConditionBeginSymbol ::=
VoidSymbol

PortConditionEndSymbol ::=
VoidSymbol

A.3.10 Message-based communication

SendArea ::=
MessageSymbol
[is associated with Type]
is associated with ([DerivedDef AssignmentChar] TemplateBody

[ToClause])
is attached to InstanceSendEventArea
is attached to PortInMsgEventArea

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS — a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

ReceiveArea ::=
MessageSymbol
[is associated with Type]
is associated with ([[DerivedDef AssignmentChar] TemplateBody 1]

[FromClause] [PortRedirect 1)
is attached to InstanceReceiveEventArea
is attached to PortOutMsgEventArea

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS — a template, if existent, shall be put underneath the message symbol */

74 ITU-T Rec. Z.163 (11/2007)

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS — a port redirect, if existent, shall be put underneath the message symbol */

MessageSymbol ::=

A.3.10.1 Message-based communication on component instances

InstanceSendEventArea ::=
MessageOutSymbol
is attached to InstanceAxisSymbol
is attached to MessageSymbol

MessageOutSymbol ::=
VoidSymbol

The VoidSymbol is a geometric point without spatial extension.

InstanceReceiveEventArea ::=
MessageInSymbol
is attached to InstanceAxisSymbol
is attached to MessageSymbol

MessageInSymbol ::=
VoidSymbol

A.3.10.2 Message-based communication on port instances

PortInMsgEventArea ::=
MessageInSymbol
is attached to PortAxisSymbol
is attached to MessageSymbol

PortOutMsgEventArea ::=
MessageOutSymbol
is attached to PortAxisSymbol
is attached to MessageSymbol

A.3.11 Signature-based communication

NonBlockingCallArea ::=
MessageSymbol
is associated with CallKeyword [Signature]
is associated with ([DerivedDef AssignmentChar] TemplateBody

[ToClause])
is attached to InstanceCallEventArea
is attached to PortCallInEventArea

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS — a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

GetcallArea ::=
MessageSymbol
is associated with GetcallKeyword [Signature]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]

[FromClause] [PortRedirectWithParam])
is attached to InstanceGetcallEventArea
is attached to PortGetcallOutEventArea

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS — a port redirect, if existent, shall be put underneath the message symbol */

ReplyArea ::=
MessageSymbol
is associated with ReplyKeyword [Signature]
is associated with ([DerivedDef AssignmentChar] TemplateBody

[ReplyValue] [ToClause])

ITU-T Rec. Z.163 (11/2007)

75

is attached to InstanceReplyEventArea
is attached to PortReplyInEventArea

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a reply value, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

GetreplyWithinCallArea ::=
MessageSymbol
is attached to SuspensionRegionSymbol
is associated with GetreplyKeyword [Signature]

is associated with ([[DerivedDef AssignmentChar] TemplateBody]
[ValueMatchSpec 1]
[FromClause] [PortRedirectWithParam])

is attached to InstanceGetreplyEventArea
is attached to PortGetreplyOutEventArea

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS — a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

GetreplyOutsideCallArea ::=

MessageSymbol

is associated with GetreplyKeyword [Signature]

is associated with ([[DerivedDef AssignmentChar] TemplateBody]
[VvalueMatchSpec]
[FromClause] [PortRedirectWithParam])

is attached to InstanceGetreplyEventArea
is attached to PortGetreplyOutEventArea

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS — a derived definition, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

RaiseArea ::=
MessageSymbol
is associated with RaiseKeyword Signature [',' Type]
is associated with ([DerivedDef AssignmentChar] TemplateBody

[ToClause])
is attached to InstanceRaiseEventArea
is attached to PortRaiseInEventArea

/* STATIC SEMANTICS - a signature shall be put on top of the message symbol */

/* STATIC SEMANTICS — an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS — a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

CatchWithinCallArea ::=
MessageSymbol
is attached to SuspensionRegionSymbol
is associated with CatchKeyword Signature [',' Type]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]

[FromClause] [PortRedirect])
is attached to InstanceCatchEventArea
is attached to PortCatchOutEventArea

/* STATIC SEMANTICS - a signature shall be put on top of the message symbol */

/* STATIC SEMANTICS — an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS — a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

CatchOutsideCallArea ::=
MessageSymbol
is associated with CatchKeyword Signature [',' Type]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]

[FromClause] [PortRedirect 1)
is attached to InstanceCatchEventArea
is attached to PortCatchOutEventArea

76 ITU-T Rec. Z.163 (11/2007)

/* STATIC SEMANTICS - a signature shall be put on top of the message symbol */
/* STATIC SEMANTICS — an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

A.3.11.1 Signature-based communication on component instances

InstanceBlockingCallEventArea ::=
InstanceSendEventArea
[is attached to InstanceCallTimerStartArea]
is attached to SuspensionRegionSymbol

InstanceCallTimerStartArea ::=
CallTimerStartSymbol
is associated with TimerValue
is attached to InstanceAxisSymbol
is attached to SuspensionRegionSymbol
[is attached to CallTimeoutSymbol3]

CaIITimerStart_Sy_mboI =

InstanceNonBlockingCallEventArea ::=
InstanceSendEventArea

InstanceGetcallEventArea ::=
InstanceReceiveEventArea

InstanceReplyEventArea ::=
InstanceSendEventArea

InstanceGetreplyWithinCallEventArea ::=
InstanceReceiveEventArea
is attached to SuspensionRegionSymbol

InstanceGetreplyOutsideCallEventArea ::=
InstanceReceiveEventArea

InstanceRaiseEventArea ::=
InstanceSendEventArea

InstanceCatchWithinCallEventArea ::=
InstanceReceiveEventArea
is attached to SuspensionRegionSymbol

InstanceCatchTimeoutWithinCallEventArea ::=
CallTimeoutSymbol

is attached to SuspensionRegionSymbol
is attached to InstanceAxisSymbol

CallTimeoutSymbol ::=

InstanceCatchOutsideCallEventArea ::=
InstanceReceiveEventArea

A.3.11.2 Signature-based communication on ports

PortGetcallOutEventArea: :=
PortOutMsgEventArea

PortGetreplyOutEventArea: :=
PortOutMsgEventArea

PortCatchOutEventArea: : =
PortOutMsgEventArea

PortCallInEventArea: :=
PortInMsgEventArea

ITU-T Rec. Z.163 (11/2007)

77

PortReplyInEventArea: :=
PortInMsgEventArea

PortRaiseInEventArea: :=
PortInMsgEventArea

A.3.12 Trigger and check

A.3.12.1 Trigger and check on component instances

TriggerArea ::=
MessageSymbol
is associated with (TriggerOpKeyword [Type]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]

[FromClause] [PortRedirect 1)
is attached to ReceiveEventArea
is attached to PortOutMsgEventArea

[* STATIC SEMANTICS - the trigger keyword shall be put on top of the message symbol */

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS — a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

CheckArea ::=
MessageSymbol
is associated with (CheckOpKeyword [CheckOpInformation])
is associated with CheckData
is attached to ReceiveEventArea
is attached to PortOutMsgEventArea

/* STATIC SEMANTICS - the check keyword shall be put on top of the message symbol */
/* STATIC SEMANTICS - the check op information, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS - the check data, if existent, shall be put underneath the message symbol */

CheckOpInformation ::=
Type
| (GetCallOpKeyword [Signature])
| (GetReplyOpKeyword [Signature])
| (catchOpKeyword Signature [Type 1)

CheckData ::=
([[DerivedDef AssignmentChar] TemplateBody [ValueMatchSpec] 1
[FromClause] [PortRedirect | PortRedirectWithParam])
| ([FromClause] [PortRedirectSymbol SenderSpec])

/* STATIC SEMANTICS - a value matching specification shall be used in combination with getreply only */
/* STATIC SEMANTICS — a port redirect with parameters shall be used in combination with getcall and getreply only */

InstanceTriggerEventArea ::=
InstanceReceiveEventArea

InstanceCheckEventArea ::=
InstanceReceiveEventArea

A.3.12.2 Trigger and check on port instances

PortTriggerOutEventArea ::=
PortOutMsgEventArea

PortCheckOutEventArea ::=
PortOutMsgEventArea

A.3.13 Handling of communication from any port

InstanceFoundEventArea ::=
FoundSymbol
contains FoundEvent
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - the label identifier shall be placed inside the circle of the labelling symbol */

78 ITU-T Rec. Z.163 (11/2007)

FoundEvent ::=
FoundMessage
| FoundTrigger
| FoundGetCall
| FoundGetReply
| FoundCatch
| FoundCheck

FoundMessage ::=
FoundSymbol
[is associated with Type]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]
[FromClause] [PortRedirect])
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

[* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

FoundTrigger ::=
FoundSymbol
is associated with (TriggerOpKeyword [Type]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]

[FromClause] [PortRedirect 1)
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - the trigger keyword shall be put on top of the message symbol */

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS — a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

[* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

FoundGetCall ::=
FoundSymbol
is associated with GetcallKeyword [Signature]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]

[FromClause] [PortRedirectWithParam])
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS — a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

FoundGetReply ::=
FoundSymbol
is associated with GetreplyKeyword [Signature]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]
[ValueMatchSpec 1]
[FromClause] [PortRedirectWithParam])

is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS — a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS — a port redirect, if existent, shall be put underneath the message symbol */

FoundCatch ::=
FoundSymbol
is associated with CatchKeyword Signature [',' Type]
is associated with ([[DerivedDef AssignmentChar] TemplateBody]

[FromClause] [PortRedirect])
is attached to InstanceAxisSymbol

[* STATIC SEMANTICS - a signature shall be put on top of the message symbol */

/* STATIC SEMANTICS — an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

ITU-T Rec. Z.163 (11/2007)

79

FoundCheck ::=
FoundSymbol
is associated with (CheckOpKeyword [CheckOpInformation])
is associated with CheckData
is attached to ReceiveEventArea
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - the check keyword shall be put on top of the message symbol */
/* STATIC SEMANTICS - the check op information, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS - the check data, if existent, shall be put underneath the message symbol */

FoundSymbol ::=
O >

A.3.14 Labdling

InstancelabellingArea ::=
LabellingSymbol
contains LabelIdentifier
is attached to InstanceAxisSymbol

/* STATIC SEMANTICS - the label identifier shall be placed inside the circle of the labelling symbol */

LabellingSymbol ::=

80 ITU-T Rec. Z.163 (11/2007)

Annex B

Reference guidefor GFT

(Thisannex forms an integral part of this Recommendation)

This annex lists the main TTCN-3 language elements and their representation in GFT. For a
complete description of the GFT symbols and their use please refer to the main text.

Language Associated GFT symboals, if existent, Explanation
element keyword and typical usage P
M odule definitions
TTCN-3 module module No special GFT symbol,
definition i.e., the core language or
another presentation
format may be used.
Import of import No special GFT symbol,
definitions from i.e., the core language or
other module another presentation
format may be used.
Grouping of group No special GFT symbol,
definitions i.e., the core language or
another presentation
format may be used.
Datatype type No special GFT symboal,
definitions i.e., the core language or
another presentation
format may be used.
Communication port No special GFT symbol,
port definitions i.e., the core language or
another presentation
format may be used.
Test component component No special GFT symbol,
definitions i.e., the core language or
another presentation
format may be used.
Signature signature No special GFT symbol,
definitions i.e., the core language or
another presentation
format may be used.
Externa external No special GFT symbol,
function/constant i.e., the core language or
definitions another presentation
format may be used.
Constant const const integer MyConst := 5; Textual constant
definitions declaration in the header of

acontrol, test case, test
step or function diagram.

ITU-T Rec. Z.163 (11/2007) 81

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
;l Local constant declaration
in an action box.
const integer
MyConst := 5;
Data/signature template No special GFT symbol,
template i.e., the core language or
definitions another presentation
format may be used.
Control control control GFT control diagram
definitions control represents the control part
of a TTCN-3 module.
[execute(TestCasel()XM
l
[MyHelperFunction () J
Function function function MyFunction () GFT function diagrams are
definitions used to represent functions.

self MyPortl

MyPort2

CType ‘ ‘ PTypel ‘ ‘PType2 ‘

®——

self

function MyHelperFunction ()

Urexecute(TestCase2())I

-

GFT function diagrams
may be defined to structure
the behaviour of the
control part of a TTCN-3
module.

82 ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
AIt_st_ep altstep altstep MyTeststep() GFT altstep diagrams are
definitions used to represent altsteps.
self MyPortl MyPort2
CType ‘ PTypel ‘ ‘ PType2 ‘
alt i
@ I S
Tes_t Case testcase testcase MyTestCase GFT test case di agramsare
definitions - used to represent test
self MyPort1l MyPort2 cases.
CType ‘ ‘ PTypel ‘ ‘ PType2 ‘
pass
I
Usage of component instances and ports
Port instance A Port in atest case, test

MyPort

step and function diagram
is represented by an
instance with a dashed
instance line. The port
name is specified above
and the (optional) port type
is described within the
instance header.

Test component
instance

mtc self

MtcType “ CompType ‘

control

Anmtc instance represents
the main test component in
atest case diagram.

A self instance
represents a test
component in atest step or
function diagram.

A control instance
represents the instance that
executes the module
control part in a control
diagram.

ITU-T Rec. Z.163 (11/2007) 83

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Declarations
Variable var var integer MyVar := 5 Textual variable
declarations declaration in the header of
acontrol, test case, test
step or function diagram.
? Variable declaration in an
action box.
var integer
MyVar := 5
? Variable declaration within
atest case execution
var verdicttype SanbOL
v:=execute (MyTC())
F Variable declaration within
atest component creation
var MyCType SanbOL
c:= MyCType.create
I Variable declaration within
adefault activation
var default d:= SanbOL
activate (TStep())
? Variable declaration within
areference symbol.
var integer
v := MyFunction/()
Timer timer timer MyTimer Textual timer declaration
declarations in the header of a control,

test case, test step or
function diagram.

{

timer MyTimer

F

Timer declaration in an
action box.

84 ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Basic program statements
Expressions (..) No special GFT symbol,
i.e., the core language or
another presentation
format may be used.
Assignments = ‘—'—‘ Assignment in an action
box.
MyVar := 5
? Assignment within atest
case execution symbol.
Hﬁv:=execute(MyTC()):M
F Assignment within atest
component creation
c:= MyCType.create SanbOL
L — 1 Assignment within a
default activation symbol.
activate (TStep())
? Assignment within a
reference symbol.
[v := MyFunction() }
Logging log ‘—'—‘ The log statement is put

log (“MyLog”)

F

into an action box.

ITU-T Rec. Z.163 (11/2007)

85

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Label and Goto label] Definition of alabel.
goto] Go to label.
If-else if () {.} —/—
else {} if (j<10)
|
For loop for (..) {..} ——
for(j:=1; j<=9 j:=j+¥LJ
|
While loop while (..) —
{} while (j<10)
]
Do whileloop do {..} —
while (..) do while (j<10)J
|
Behavioural program statements
Alternative alt {..} I
behaviour alt
x==1
[MyTestStep ()]
< else >
]

86 ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Repeat repeat To be used within
aternative behaviour and
test steps.
Interleaved interleave —
behaviour {} interleave
|
Activate a activate The activate statement is
default put into a default symbol.
MyDefault :=
activate (TStep())
Deactivate a deactivate The deactivate statement is
default put into a default symbol.
deactivate (MyDefault)
I
Returning return [I— The optional return value
control is attached to the return
symbol.
MyValue
Configuration operations
Create parallel create F The create statement is put
test component into atest component
c:= MyCType.create creation SymbOI .
Connect connect ? The connect statement is
component to put into an action box.
Component connect (,)

F

ITU-T Rec. Z.163 (11/2007) 87

Language Associated GFT symbals, if existent, Explanation
element keyword and typical usage P

Disconnect two | disconnect ‘—'—‘ The disconnect statement

components is put into an action box.

disconnect (...,..)

Map port to test map ? The map statement is put

system interface into an action box.

map (..., ...)

Unmap port unmap F The unmap statement is

from test system put into an action box.

Get MTC mtc No special GFT symbol,

address used within statements,
expressions or as test
component identifier.

Get test system system No specia GFT symbol,

interface address used within statements or
expressions.

Get own address self No special GFT symboal,
used within statements,
expressions or as test
component identifier.

Start execution start F The start statement is put

of test into a start symbol.

component MyComp . start (MyFunc ())

Stop execution stop The termination of mtc

of atest
component by
itself

terminates also all the
other test components.

Port instances cannot be
stopped.

88 ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent, L ,
element keyword and typical usage xplanation
eyw yp g
Of another test ——1 The component identifier
component is put near to the stop
symbol.
>< componentId
|
Check running No special GFT symbol,
termination of used within expressions.
aPTC
Wait for done The done statement is put
termination of into a condition symbol.
orre
Communication operations
Send message send [] [] Send a message defined by
atemplate reference but
> without type information.
MyTemplateRef i L. .
to MyPeer Thereceiver isidentified
uniquely by the (optional)
to-directive.
] I
; [Send a message defined by
MyType atemplate reference and
> with type information.
MyTemplateRef .
An (optional)
to-directive may be
present to identify the peer
[] I entity uniquely.
] [Send a message defined by
MyType an inline template
> definition.

(-] An (optional)
to-directive may be
present to identify the peer

I I entity uniquely.

ITU-T Rec. Z.163 (11/2007)

89

MyTemplateRef
from MyPeer
-> value MyVar
sender ASender

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Receive message receive ; [Receive a message with a

value defined by a
template reference but
without type information.
The (optional)
from-directive denotes
that the sender of the
message shall be identified
by variable MmypPeer.

The (optional)
value-directive assigns
received message to
variable Myvar.

The (optional)
sender-directive retrieves
the identifier of the sender
and storesit in variable
ASender.

| l
MyType

&

MyTemplateRef

Receive a message with a
value defined by a
template reference and
with type information.

Optional from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer
entity.

90

ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

Receive a message with a
value defined by an inline
template definition.

Optiona from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer
entity.

Receive any message

(no value and no typeis
specified).

Optional from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer
entity.

Receive any message
(no value and no typeis
specified) from any port.

The message value to be
received from any port
may be restricted by means
referring to templates or by
using inline templ ates.
Optiona from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer

entity.

ITU-T Rec. Z.163 (11/2007) 91

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Trigger message trigger ; [Trigger on a message with

trigger
MyTemplateRef
from MyPeer
-> value MyVar
sender ASender

avalue defined by a
template reference but
without type information.
The (optional)
from-directive denotes
that the sender of the
message shall be identified
by variable MmypPeer.

The (optional)
value-directive assigns
received message to
variable Myvar.

The (optional)
sender-directive retrieves
the identifier of the sender
and storesit in variable
ASender.

] [
trigger MyType

&

MyTemplateRef

Trigger on a message with
avalue defined by a
template reference and
with type information.

Optional £rom-,

value- and sender-
directives may be present
to identify the sender of
the message, to assign the
message to a variable or to
retrieve the identifier of
the peer entity.

l l
trigger MyType

) !

Trigger on amessage with
avalue defined by an
inline template definition.

Optional f£rom-,

value- and sender-
directives may be present
to identify the sender of
the message, to assign the
message to a variable or to
retrieve the identifier of
the peer entity.

92 ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent,

element keyword and typical usage Explanation

; [Trigger on any message
trigger (no value and no typeis
< specified).
Optiona from-,
value- and sender-
directives may be present
] [] to identify the sender of
the message, to assign the
message to a variable (of
type anytype) and to
retrieve the identifier of
the peer entity.

— Trigger on any message
(no value and no typeis
trigger specified) from any port.

The value of the message
that shall cause the trigger
from any port may be
[restricted by means
referring to templates or by
using inline templates.
Optional £rom-,

value- and
sender-directives may be
present to identify the
sender of the message, to
assign the messageto a
variable (of type
anytype) and to retrieve
the identifier of the peer

entity.
Invoke blocking call 1] Invoking a blocking
procedure call call procedure by using a
call signature templ ate.
MyTemplateRef The receiver isidentified
to peer uniquely by the (optional)
""""" to-directive.
_getreply ...
L= Thecall body, i.e.,
J< catch ... possible getreply and
’ ‘ catch operations, is
-~ — shown schematically only.

ITU-T Rec. Z.163 (11/2007) 93

Language Associated GFT symbals, if existent, ,
: Explanation
element keyword and typical usage
—] Invoking a blocking
call p_rocedure by using a
call MyProc signature template and
MyTemplateRer signature information.
An (optional)
to-directive may be
lgetreply ... present to identify the peer
1 L catch ... entlty uniquely.
! The call body,
L—L— i.e, possible getreply
E— I and catch operations, is
shown schematically only.
1] Invoking a blocking
call procedure by using an
call MyProc inline template.
{..} An (optional) to-directive
may be present to identify
""""" the peer entity uniquely.
_getreply
L= Thecall body, i.e.,
u< catch ... possible getreply and
’ ‘ catch operations, is
< — shown schematically only.
— —
Invoke non- call | [Call aremote procedure,
blocking call the call isdefined by a
procedure call > template reference but
MyTemplateRef without signature
to MyPeer . .
information.
Thereceiver isidentified
I I uniquely by the (optional)
to-directive.

| l

call MyProc

MyTemplateRef'

Call the remote procedure
MyProc. Thecall is
defined by atemplate
reference.

An (optional)

to-directive may be
present to identify the peer
entity uniquely.

l l

call MyProc

()

»

Call the remote procedure
MyProc. Thecal is
defined by aninline
template.

An (optional)

to-directive may be
present to identify the peer
entity unigquely.

94 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

Reply to
procedure call
from remote

entity

reply

] l
reply

MyTemplateRef
value 20
to MyPeer

Reply to aremote
procedure call. The reply
is defined by atemplate
reference and the possible
return value
(value-directive).

NOTE 1 — The signature
information is part of the
template definition.

Thereceiver isidentified
uniquely by the (optional)
to-directive.

] l
reply MyProc

MyTemplateRef
value 20

Reply to aremote
procedure call of MyProc.
Thereply isdefined by a
template reference and the
possible return value
(value-directive).

An (optional)

to-directive may be
present to identify the peer
entity uniquely.

] l
reply MyProc

S

value 20

Reply to aremote
procedure call of MyProc.
Thereply is defined by an
inline template and the
possible return value
(value-directive).

An (optional)

to-directive may be
present to identify the peer
entity uniguely.

Raise exception
(to an accepted
call)

raise

l l

raise MyProc

»

MyTemplateRef
to MyPeer

Raise an exception to an
accepted call of MyProc.
The exception is defined
by atemplate reference.

NOTE 2 — Thetype of the
exception is defined within
the template definition.
Thereceiver isidentified
uniquely by the (optional)
to-directive.

ITU-T Rec. Z.163 (11/2007) 95

Language Associated GFT symboals, if existent, ,
. Explanation
element keyword and typical usage
] [Raise an exception to an
accepted call of MyProc.
raise MyP : : :
Eroepti o};Tr;pce The exception is defined
R by its (optiona) type and a
MyTemplateRef template reference.
An (optional)

I I to-directive may be
present to identify the peer
entity uniquely.

] [Raise an exception to an
accepted call of MyProc.
raise MyP . . .
Eroepti o};Tr;pce The exception is defined
R by itstype and an inline
{.} template.
An (optional)

I I to-directive may be
present to identify the peer
entity uniquely.

Accept getcall] [Accept a procedure call
procedure call getcall from aremote entity. The
from remote call signature hasto match
entity MyTemp lateRet the conditions defined by
rom MyPeer
-> param (..) the template reference.
sender ASender NOTE 3 — The signature

information is part of the
template definition.

The (optional)
from-directive denotes
that the sender of the call
shall be identified by
variable MyPpeer.

The (optional)
param-directive assigns
in-parameter valuesto
Variables.

The (optional)
sender-directive retrieves
the identifier of the sender
and storesit in variable
ASender.

96 ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
] [Accept a procedure call

getcall MyProc from aremote entity. The
call signature has to match

MyTemplateRet the conditions defined by
signature reference and the
template reference.

I I Optional from-,

param- and sender-
directives may be present
to identify the sender of
the call, to assign the
in-parameters to variables
or to retrieve the identifier
of the peer entity.

l l

getcall MyProc

< !

Accept a procedure call
from aremote entity. The
call signature hasto match
the conditions defined by
signature reference and the
inline template definition.

Optional from-, param-
and sender-directives
may be present to identify
the sender of the call, to
assign the in-parameters to
variables or to retrieve the
identifier of the peer
entity.

| l

getcall

Accept any procedure call
from any remote entity.

Optional f£rom- and
sender-directives may be
present to identify the
sender of the call or to
retrieve the identifier of
the peer entity.

ITU-T Rec. Z.163 (11/2007) 97

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

[

getcall

Accept any procedure call
from any remote entity at
any port.

The call to be received
from any port may be
restricted by means
referring to templates or by
using inline templ ates.
Optional from-, param-
and sender-directives
may be present to identify
the sender of the call, to
assign the in-parameters to
variables or to retrieve the
identifier of the peer
entity.

Handle response
from a previous
blocking call

getreply

call ..

getreply

&

MyTemplateRef
from MyPeer
-> value MyVal
param (..)
sender ASender

catch ..

I
i

Receive aresponse from a
blocking call. The reply
has to match the conditions
defined by the template
reference.

NOTE 4 — The signature
information is part of the
template definition.

The (optional)
from-directive denotes
that the sender of the call
shall beidentified by
variable MyPeer.

The (optional)
value-directive assigns
the possible return value of
the procedure to variable
MyVal.

The (optional) param-
directive assigns
out-parameter values to
Variables.

The (optional) sender-
directiveretrieves the
identifier of the sender and
storesit in variable
ASender.

98

ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent,

element keyword and typical usage Explanation

]] Receive aresponse from a
blocking call. The reply

call) call .. R has to match the conditions
defined by signature
reference and the template

getreply reference.
MyProc

Optional from-, value-,
MyTemplateRef param- and sender-
___ directives may be present
catch .. to identify the sender of
;L the reply, to retrieve the

e mmmmmmm | return value of the
procedure, to assign the in-

parameters to variables or
to retrieve the identifier of
the peer entity.

]] Receive aresponse from a
blocking call. The reply

call) call .. has to match the conditions
defined by signature
reference and theinline

getreply templ ate definition.
MyProc

Optiona from-, value-,
{ .} param- and
___ sender-directives may be
catch .. present to identify the
sender of the reply, to
- EEEmmmmm | 'ctrieve the return value of
the procedure, to assign
the in-parameters to
variables or to retrieve the
identifier of the peer
entity.

]] Accept any response from

ablocking call.
cal%J call ..

getreply

LFJ catch ..

ITU-T Rec. Z.163 (11/2007) 99

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

Handle response
from a previous
non-blocking
cal or
independent
from acal

getreply

] l
getreply

MyTemplateRef
from MyPeer
-> value MyVal
param (..)
sender ASender

Receive aresponse from a
previous call. The reply
has to match the conditions
defined by the template
reference.

NOTE 5 — The signature
information is part of the
template definition.

The (optional)
from-directive denotes
that the sender of the call
shall be identified by
variable MyPpeer.

The (optional)
value-directive assigns
the possible return value of
the procedure to variable
MyVal.

The (optional) param-
directive assigns out-
parameter valuesto
Variables.

The (optional) sender-
directive retrieves the
identifier of the sender and
storesit in variable
ASender.

l l

getreply
MyProc

MyTemplateRef

Receive aresponse from a
previous call. The reply
has to match the conditions
defined by signature
reference and the template
reference.

Optional from-, value-,
param- and sender-
directives may be present
to identify the sender of
thereply, to retrieve the
return value of the
procedure, to assign the in-
parametersto variables or
to retrieve the identifier of
the peer entity.

100

ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

| l

getreply
MyProc

()

Receive aresponse from a
previous call. The reply
has to match the conditions
defined by signature
reference and the inline
template definition.

Optional from-, value-,
param- and sender-
directives may be present
to identify the sender of
the reply, to retrieve the
return value of the
procedure, to assign the in-
parameters to variables or
to retrieve the identifier of
the peer entity.

l l

getreply

Accept any response from
any previous call.

Optional f£rom- and
sender-directives may be
present to identify the
sender of the reply or to
retrieve the identifier of
the peer entity.

[

getreply

Accept any response from
any previous call at any
port.

The reply to be received
from any port may be
restricted by means
referring to templates or by
using inline templ ates.

Optional from-, value-,
param- and sender-
directives may be present
to identify the sender of
thereply, to retrieve the
return value of the
procedure, to assign the in-
parameters to variables or
to retrieve the identifier of
the peer entity.

ITU-T Rec. Z.163 (11/2007) 101

Language Associated GFT symbals, if existent, L ,
. xplanation
element keyword and typical usage
Catch exception catch]] Catch an exception from a
from a previous previous call. The
blocking call call) call - R exception has to match the

catch MyProc

MyTemplateRef
from MyPeer
-> value MyVal
sender ASender

getreply ..

*

conditions defined by the
template reference.

NOTE 6 — Thetype
information is part of the
template definition.

The (optional)
from-directive denotes
that the sender of the
exception shall be
identified by variable
MyPeer.

The (optional) value-
directive assigns the value

of the exception to variable
MyVal.

The (optional) sender-
directive retrieves the
identifier of the sender and
storesit in variable
ASender.

cal%J call ..

catch MyProc

ExceptionType
MyTemplateRef
LTJ getreply ..
*_

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
template reference.

Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

102 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbals, if existent,

and typical usage

Explanation

L 1

call ..

»!

catch MyProc
ExceptionType

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
inline template definition.

Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

call ..

catch

LTJ getreply ..

E—

Accept any exception from
ablocking call.

Optional from-, value-
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value (and
assign it to avariable of
type anytype) Or to
retrieve the identifier of
the peer entity.

Catch exception
from a previous
non-blocking
cal or
independent
from acall

catch

| l

catch MyProc

MyTemplateRef
from MyPeer
-> value MyVal
sender ASender

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
template reference.

NOTE 7 — The type
information is part of the
template definition.

The (optional)
from-directive denotes
that the sender of the
exception shall be
identified by variable
MyPeer.

The (optional)
value-directive assigns
the value of the exception
to variable Myval.

The (optional)
sender-directive retrieves
the identifier of the sender
and storesit in variable
ASender.

ITU-T Rec. Z.163 (11/2007)

103

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

| l

catch MyProc
ExceptionType

MyTemplateRef

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
template reference.

Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

l

catch MyProc
ExceptionType

()

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
inline template definition.

Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

catch

Catch any exception from
any previous call.

Optional from-, value-
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value (and
assign it to avariable of
type anytype) Or to
retrieve the identifier of
the peer entity.

104

ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

[

catch

Catch any exception from
any previous call at any
port.

The exception to be
received from any port
may be restricted by means
referring to templates or by
using inline templates.
Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

Check (current)

message/cal
received

check

|

check
MyTemplateRef

[I
] l]

check MyType

MyTemplateRef
I]
check
[I
I

check
MyTemplateRef C

Can be used also in combination with getcall,
getreply, and catch

with template, without
type.

with template, with type.

without template, without

type (any message from
that port).

with template, without
type, without port (this
message from that port).

ITU-T Rec. Z.163 (11/2007)

105

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Check current check] [Check if a message with a
message, call, check value defined by a
reply or template reference has
exception MyTemplateRet been received.

from MyPeer
-> value MyVar
sender ASender

The syntax follows the
syntax for the reception of
messages.

NOTE 8 — Check may also
be used in combination
with getcall, getreply
and catch.

| l

check MyType

MyTemplateRef

Check if a message with a
value defined by a
template reference has
been received.

The syntax follows the
syntax for the reception of
messages.

NOTE 9 — Check may also
be used in combination
with getcall, getreply
and catch.

| l

check MyType

()

Check if a message with a
value defined by an inline
template definition has
been received.

The syntax follows the
syntax for the reception of
messages.

NOTE 10 — Check may
asobeusedin
combination with
getcall, getreply and
catch.

check

Check if any message (no
value and no typeis
specified) has been
received.

The syntax follows the
syntax for the reception of
messages.

NOTE 11 — Check may
also be used in
combination with
getcall, getreply and
catch.

106 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbals, if existent,
and typical usage

Explanation

[
check

— ()

Check if any message (no
value and no typeis
specified) has been
received at any port.

The syntax follows the
syntax for the reception of
messages.

NOTE 12 — Check may
also be used in
combination with
getcall, getreply and
catch.

Clear port

clear

clear

The clear port statement is
put into a condition
symbol. The condition
shall cover the instance of
the port to be cleared only.

Clear and give
access to port

start

start

The start port statement
IS put into a condition
symbol. The condition
shall cover the instance of
the port to be started only.

Stop access
(receiving and
sending) at port

stop

stop

The stop Sstatement is put
into a condition symbol.
The condition shall cover
the instance of the port to
be stopped only.

Timer operations

Start timer

start

[

MyTimer
(20E-3) %

Stop timer

stop

|

[
MyTimer >e

|

ITU-T Rec. Z.163 (11/2007)

107

Language Associated GFT symbals, if existent, ,
. Explanation
element keyword and typical usage
Read elapsed read No special GFT symbol,
time used within statements or
expressions.
Check if timer running No special GFT symbol,
running used within statements or
expressions.
Timeout timeout I
operation
MyTimerX}
I
Set local verdict | verdict.set The verdict is put into a
condition symbol.
Get local verdict | verdict.get No special GFT symbol,

used within statements or
expressions.

SUT operations

Remote action to
be done by the
SUT

sut.action

{

sut.action
(“MyAction”)

F

The action Statement is
put into an action box.

Execution of test cases

Execute test case execute ? The execute Statement is
put into atestcase
[J execution symbol.
execute (MyTC ())
Attributes
Definition of with Thewith statement is put
attributes for with { into atext symbol.
control, display ".”
extension “..”

testcases, }
teststeps and
functions

108 ITU-T Rec. Z.163 (11/2007)

Language Associated GFT symbals, if existent, Explanation
element keyword and typical usage P
Comments

Comments /* My several lines comment */ Can be used wherever text
within text /I My single line comment can be placed.

Comments for Shall be attached to events
instance events /* My instance on acontrol, test

““““““““ event comment */ component or port
instance.
Comments Shall be attached to events

control, test case,
function or test
step diagrams

/* My Comment
explains a
little bit
more */

on acontrol, test
component or port
instance.

ITU-T Rec. Z.163 (11/2007)

109

Cl

110

The Restaurant example

Annex C

Examples
(Thisannex forms an integral part of this Recommendation)

testcase MyTestCase testcase MyTestCase (
(in boolean internetService, in boolean phoneService, in boolean internetService, // SERVICES
in boolean restaurantService, inm integer totalNrCreatedPTCs, in boolean phoneService,
in integer maxNrActivePTCs, inout integer nrPass, in boolean restaurantService,
inout integer nrFail, inout integer nrinc) in integer totalNrCreatedPTCs, // TERMINATION
runs on MtcType system TestSystemType in integer maxNrActivePTCs, // CONTROL
mte p1 cp inout integer nrpass, // RETURN
inout integer nrrail,
[mccrype] [[mrcocyre | [mcreype] inout integer nrinc
I H 1)
var reportType report; | ! ! runs on MteType
V | system TestSystemType
var default def ' ' (
:= activate (StandardDefault () ! H var ReportType report
) '
map(self:P1l, System:mPCO) | : : var default def := activate (StandardDefault());
if (internetservice) P H] map(self:P1l, system:mPCO) ;
)
(pewlnternetPTC()] if (internetService) {
i T newInternet®TC();
if (totalNrCreatedPTCs createdPTCs and phoneService)] H }
if (maxnwactivertcs -- 1) J ! if (totalNrCreatedPTCs createdrTCs
211 component.done : : and phoneService) {
mewPhonePTC () if (maxNrActivePTCs == 1) {
all component.done;
)
I newPhonePTC () ;
while (totalNrCreatedPTCs !- createdPTCs)J 1 }
alt R 1
J e ReportType ') while (totalNrCreatedPTCs != createdPTCs) {
| 7 -> value reporct |)
V H ale {
Teport.lverdict ! 1 [] crp.receive(ReportType:?) -» value report ({
1
= ' '
if (report.lverdict pass) ') setverdict (report.lverdict);
{nrpass := nrpass + 1;)) !
'
if (report.lverdict fail) | ! if (report.lverdict pass) { nrPass nreass +
{nrFail := nrFail + 1;) !
X ' ' if (report.lverdict == fail) { nrFail := nrFail +
if (report.lverdict inconc) | H . H 3
ISP S S ! ! if (report.lverdict incone) { nrinc nrinc +
(nx ; ' activePTCs := activePTCs - 1;
activePTCs activePTCs - 1; |
if (maxNrActivePTCs 1) if (maxNrActivePTCs LRI
all component.done;
Z11 component.done)
if (report.kind internet) {
if (report.kind == internet) J newInternetPTC () ;
newInternetPTC () if (report.kind phone) {
newPhonePTC();
if (report.kind)
1 1 if (report.kind guest) {
newPhonePTC() newGuest (1200.0);
if (report.kind) !
T h L
newGuest (1200.0)]
——————————————— T————————————————F-————————————— felsel {
1
! '
' | if (maxNrActivePTCs < activePTCs
T | newGuest (1200.0);
(newGuest (1200.0) | }
}
— —)
}
all component.done;
stop;
}

Figure C.1 — Restaurant example—MyTestCasetest case

ITU-T Rec. Z.163 (11/2007)

111

ITU-T

function newInternetPTC()
runs on MtcType

self P1
MtcType mPCOtype

var InternetType newPTC :=
InternetType.create;

I
connect (self:CP, newPTC:CP);
map (newPTC:P1, system:iPCO)

I
newPTC.start

(internetUser())
I
activePTCs := activePTCs + 1;
createdPTCs := createdPTCs + 1;

Cp

mCPtype

function newInternetPTC ()
runs on MtcType {

var InternetType newPTC := InternetType.create;

connect (self:CP, newPTC:CP) ;
map (newPTC:P1, system:1PCO) ;

newPTC.start (internetUser()) ;

activePTCs := activePTCs + 1;
createdPTCs := createdPTCs + 1;
return;

function aGuest (in float eatingDur)
runs on GuestType

self Pl Cp
| GuestType | gPCOtype pCPtype
i i
| |
|
i i
var default def :
:= activate (GuestDefault (! '
I
i |
Tvisit % : :
]
i |
]]
. % | |
N ! |
(waitPizzaDur) standardPizzaOrder |
| |
4 PizzaType ! '
T1 >e ? H |
1 |
:: :: 1 |
pass 1 !
i |
»! !
T1 % standardpayment | '
(eatingDur) ! 1
1 |
T1 % | i
ReportType i !
T P
{guest, getverdict) | !

function aGuest (in float eatingDur) runs on GuestType
timer T1;

var default def := activate (GuestDefault());
Tvisit.start; // component timer

T1l.start (waitPizzaDur) ;

Pl.send (standardPizzaOrder) ;

Pl.receive (PizzaType : ?);

T1l.stop;

setverdict (pass) ;

Pl.send (standardPayment) ;

Tl.start (eatingDur); // eating

T1.timeout;
CP.send (ReportType
stop;

} // end function aGuest

{guest, getverdict});

Figure C.2 — Restaurant example —newlnternetPTC and aGuest functions

Rec. Z.163 (11/2007)

112

function newGuest (float eatingTime)
runs on MtcType
self Pl

mPCOtype [

I

var SeatAssignmentType aSeat;
var GuestType newPTC := null;
timer Tl := maxWaitingTime;

var default def
:= activate (StandardDefault ())

standardSeatRequest
n <]

\ 4

? -> value aSeat

newPTC := GuestType.create;

connect (self:CP,
map (newPTC:P1,
system:gPCO [aSeat.number]) ;

newPTC.start
(aGuest (1200.0))

activePTCs :=
createdPTCs :=

newPTC:CP) ;

activePTCs + 1;
createdPTCs + 1;

alt < SeatAssignmentType

e atan Dttt e et B e e EE L LT

function newGuest (float eatingTime) runs on MtcType {
var SeatAssignmentType aSeat;

var GuestType newPTC := null;

timer Tl := maxWaitingTime;

var default def := activate (StandardDefault()) ;
// Request for a seat
P1l.send(standardSeatRequest) ;

Tl.start;

alt {
[] Pl.receive (SeatAssignmentType:?
newPTC := GuestType.create;

-> value aSeat {
connect (self :CP, newPTC:CP) ;

map (newPTC:P1, system:gPCO [aSeat.number]) ;
newPTC.start (aGuest (1200.0)) ;

activePTCs+1;
createdPTCs+1;

activePTCs :=
createdPTCs :=

[1 Pl.receive (SeatRejectType:?) { // No seat

setverdict (inconc) ;

assigned

Tl.timeout { // No answer on seat request
setverdict (inconc) ;

return;

Figure C.3 — Restaurant example — newGuest function

ITU-T Rec. Z.163 (11/2007)

// Update MTC variables

113

function internetUser ()
runs on InternetType

{internet, getverdict }

self Pl CP P2
[InternetType | dRPCOLype [pCptype] [_ipcotype
I | i |
timer Tvisit; H ' '
var integer orderNr; 1 i i
var PizzaDeliveryType thePizza; | '

I | i |
var default defl : | :
:= activate (StandardDefault ()) | | |

1 1)

I | i i
var default def2 | H
:= activate (InternetDefault () 1 1 |

i i i
1 1]
| 1 1]
Tvisit % i i i
(OverallDuration) ! H !
i 1 |
call 1 | |
~=> i [!
225770 StandardInetord | »
maxConnectTime _____ 2o A . A R
]
getreply !iNetOrder !
2] [} [}
valug ? i
-> vhalue orderNr | !
————————————— e e e e e e e e e e e]
H catch iNetorder, ReasohType :
1 P T T
] < 1 I
] 1 I
1 1 I
1])
____________________ s e
1 [}]
1 [}]
1 1]
1 1]
1 [}]
1 1]
1 1 1
1 1]
1 1 1
i 1 |
if (getverdict == pass) J | |
|
PizzaDeliveryType | i i
{?, orderNr, 2} ' !
' T T
ReportType ! k: :
H L]]
1]
1]
1]
1]
| |

function internetUser () runs on InternetType {
/] *x*
// *** Purpose: Specifies the behaviour of an
// *** internet guest

/] *x*

timer Tvisit;
var integer orderNr;
var PizzaDeliveryType thePizza;

var default defl := activate (StandardDefault());
var default def2 := activate (InternetDefault());
Tvisit.start (OverallDuration) ;

P2.call (StandardINetOrder, maxConnectTime) {
[1 P2.getreply (iNetOrder:? value ?)
-> value orderNr
setverdict (pass) ;

}

[1 P2.catch (iNetOrder, ReasonType ?) |

setverdict (fail) ;
}
[l P2.catch (timeout) {
setverdict (inconc) ;

}
}i
if (getverdict == pass) {
Pl.receive (PizzaDeliveryType
{ ?, orderNr, ?});
1

CP.send (ReportType
stop;

{internet, getverdict});

Figure C.4 — Restaurant example —internetUser function

ITU-T Rec. Z.163 (11/2007)

114

altstep GuestDefault ()

runs on GuestType
self Pl CP

GuestTiﬁe gPCOtvype

alt . |
P charstring 1
? i
»!
EE standardConversation’ |
< fail >

e S -

I
I
L
I
I
I
|
|
|
|
|

______________________________________ Sy
|
|
|
|
|
I
I
I
1
I
|

altstep GuestDefault () runs on GuestType {
// * Kk
// *** Purpose: Default behaviour for
// *** message based ports

// * kK

[l Pl.receive(charstring : ?) {
P1l.send(standardConversation) ;
repeat;

[l any timer.timeout {
setverdict (fail) ;

[1 any port.receive ({
setverdict (inconc) ;

altstep StandardDefault ()
runs on MtcType

MtcT?Ee

Wl
-
o

2
E

1
1t i |

a P charstring :
“ : : :
3 »n' 1
standardConversation’ | i
() 1

_______________________________________ N RO
1
<> !
|
1
fail
< ai =

ey S
|
|
|
|
|
|
|
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
L
|
|
|
|
|
1
1
1
1
1

altstep StandardDefault() runs on MtcType
// * ok k
// *** Purpose: Default behaviour for
// **** message based ports

// * kK

[] Pl.receive(charstring : ?) ({
P1l.send(standardConversation) ;
repeat;

[] any timer.timeout {
setverdict (fail) ;

[1 any port.receive ({
setverdict (inconc) ;

Figure C.5 — Restaurant example — GuestDefaut and Standar dDefault functions

ITU-T Rec. Z.163 (11/2007)

115

altstep InternetDefault ()
runs on InternetType

self Pl CP P2

| MtcType] [dpCOtype | | pCPtype | | 1PCOtype |
T T
1

alt getrepl¥i::
]
]
inconc |
i
___ U NI

Q
o
[ag
Q
=3
S gy S

g Sy g

altstep InternetDefault ()
runs on InternetType {
/] *x*
// *** Purpose: Default behaviour for
S
// **** the procedure based port
b p

/] *x*

[1 any port.getreply {
setverdict (inconc) ;

[1 any port.catch {
setverdict (inconc) ;

function basicCapabilityTests ()

return verdicttype

self
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;
p I
localVerdict := execute (MyTestCase (true, false,
false, 1, 1, nrP, nrF, nrI), 1800.0
;i_JlQgalMerd1%L____pasaL___________J)
localVerdict := execute (MyTestCase (false, true,
false, 1, 1, nrP, nrF, nrI), 1800.0
T
1
localvVerdict := execute (MyTestCase (false, false
true, 1, 1, nrP, nrF, nrI), 1800.0)
T

localVerdict

function basicCapabilityTests ()
return verdicttype
var verdicttype localVerdict :=
var integer nrP := 0, nrF := 0,

pass;
nrl := 05

// *** INTERNET ORDER **%*
localVerdict := execute(MyTestCase (true,false,
false,1,1,nrP,nrF,nrI),1800.0) ;

// *** PHONE ORDER
if (localVerdict == pass) {
localVerdict := execute (MyTestCase
(false, true, false,1,1,nrP,nrF,nrI),1800.0) ;

}

// *** RESTAURANT ORDER ***

if (localVerdict == pass) {
localVerdict := execute (MyTestCase
(false,false,true,1,1,nrP,nrF,nrI),1800.0) ;

}

return (localVerdict) ;

Figure C.6 — Restaurant example —inter netDefault altstep and basicCapabilityTests functions

ITU-T Rec. Z.163 (11/2007)

116

function loadTests () return verdicttype

—

var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;
I

localVerdict := execute (MyTestCase(true, true,
true, 100, 100, nrP, nrF, nrI)

localVerdict := execute (MyTestCase (true,
true, 400, 30, nrP, nrF, nrI)

if (ocalverdict == pass) J

localVerdict := execute (MyTestCase (true,
true, 1000, 60, nrP, nrF, nrI)

localVerdict

function loadTests () return verdicttype {
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

// *** Minimal load ***
localVerdict := execute (MyTestCase (
true, true, true,100,10,nrP,nrF,nrI)) ;

// *** Medium load ***
if (localVerdict == pass) {
localVerdict := execute (MyTestCase (
true, true, true,400,30,nrP,nrF,nrI)) ;
}

// *** Maximal load ***
if (localVerdict == pass) {
localVerdict := execute (MyTestCase (
true, false,true,1000,60,nrP,nrF,nrI)) ;
}

return (localVerdict);

function serviceInterworkingTests() return verdicttype

self
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;
I
localVerdict := execute (MyTestCase (true, true,

false, 2, 2, nrP, nrF, nrI), 3000.0)

if (]an]ygrdj$; -- pass) J

localVerdict := execute (MyTestCase (false,
true, 2, 2, nrP, nrF, nrI), 3000.0)

if (1ooa1V9rdiTt == passg) /
localVerdict := execute (MyTestCase (true,
true, 2, 2, nrP, nrF, nrI), 3000.0)

localVerdict

function servicelInterworkingTests ()
return verdicttype {
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 05

// *** INTERNET ORDER & PHONE ORDER ***
localVerdict := execute (MyTestCase (
true, true, false,2,2,nrP,nrF,nrI),3000.0) ;

// *** PHONE ORDER & RESTAURANT ORDER

if (localVerdict == pass) ({
localVerdict := execute (MyTestCase (
false, true,true,2,2,nrP,nrF,nrI),3000.0) ;

}

// *** RESTAURANT ORDER & INTERNET ORDER%***
if (localVerdict == pass) ({
localVerdict := execute (MyTestCase (
true,false,true,2,2,nrP,nrF,nrI),3000.0);

return (localVerdict) ;

Figure C.7 — Restaurant example —loadTests and servicel nterwor kingT ests functions

ITU-T Rec. Z.163 (11/2007)

function qualityAssuranceTests () return verdicttype

self
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrl

execute
(MyTestCase (true, true, true,
100, 10, nrP, nrF, nrI)

if (nrF+nrl 5)I
localVerdict := fail
T
1
execute

(MyTestCase (true, true, true,
400, 30, nrP, nrF, nrI)

if (nrF+nrl > 25%

localvVerdict := fail

execute
(MyTestCase (true, false, true,
1000, 60, nrP, nrF, nrI)

if (nrF+nrT 75%

localVerdict := fail
T

localverdict

function qualityAssuranceTests ()

return verdicttype {

var verdicttype localVerdict := pass;
var integer nrP := 0,

nrF := 0,

nrl := 0;

// *** Quality under Minimal load ***
execute (MyTestCase (true, true, true, 100,10,
nrP,nrF,nrl)) ;

if (nrF + nrlI > 5) {
localVerdict := fail;
}

// *** Quality under Medium load ***
execute (MyTestCase (true, true, true, 400,30,
nrP,nrF,nrl));

if (nrF + nrlI > 25) ({

localVerdict := fail;
}

// *** Quality under Maximal load **x*
execute (MyTestCase (true, false, true,1000,60,
nrP,nrF,nrI));

if (nrF + nrlI > 75) {
localVerdict := fail;

return (localVerdict) ;

} // end function qualityAssuranceTests

Figure C.8 — Restaurant example — qualityAssuranceT ests

ITU-T Rec. Z.163 (11/2007)

118

module PizzaHutTest

control
I
var verdicttype overallVerdict := pass;
if (capabilityTesting J
and overallVerdict == pass)
1
[overallVerdict := basicCapabilityTests/()
T
|
if (interworkingTesting)
and overallVerdict == pass)
[overallVerdict := servicelInterworkingTests ()
T
I
if (loadTesting
and overallVerdict == pass)
T
[overallVerdict := loadTests()
T
|
if (qualityTesting)
and overallVerdict == pass)
1
[overallVerdict := qualityAssuranceTests ()

module PizzaHutTest (
boolean capabilityTesting,
boolean interworkingTesting,
boolean loadTesting,
boolean qualityTesting) {

control {
var verdicttype overallVerdict := pass;

// Basic Capability Tests
if (capabilityTesting and overallVerdict == pass) {
overallVerdict := basicCapabilityTests() ;

// Interworking Tests
if (interworkingTesting and overallVerdict == pass)
overallVerdict := servicelInterworkingTests() ;

// Load Tests
if (loadTesting and overallVerdict == pass) ({
overallVerdict := loadTests();

// Quality Assurance Tests
if (qualityTesting and overallVerdict == pass) {
overallVerdict := qualityAssuranceTests() ;

{

Figure C.9 — Restaurant example — PizzaHutTest module

ITU-T Rec. Z.163 (11/2007)

C.2

119

The INRES example

. Page 1(2)
testcase mi_synchl () runs on MTCType
mte ISAP1 MSAP2
[MTCType | [[PCO_Typel PCO_Type2
T
I 1
var default de ! !
:=activate ! 1
(OtherwiseFail()) ; | i
ICONreq >: !
{1 | i
alt < _ ! _ !
Medlum_Conn?ct1on_Request !
I 1
MDATreq |
Medium Connection Confirmation |
- I - 1
1 1
alt P ICONconf ! |
< 0 ! !
I 1
#I i 1
Data_ Request (TestSpiitePar) H
| |
I]
alt P |]
-~ MediumiDaFaiTransfer i
MDATre(g
.-
cmi_synchl g
I 1
IDISreq !
{1 =i
I 1
are 1] IDISind i |
il {} | |
I 1
d 1 1
- Medium Disconnection_Request |
pass ' H
| i
I 1
I 1
I 1
___________________________ R MO
d ! 1
b Medium Discohnection Request
.] |
P IDISind ! i
1
pass & i i
| i
I 1
1 1
___________________________ S SR
> , 1 !
h Medium Data Transfer !
<{nconc> | |
I 1
I 1
I 1
1 1
1 1
_____________________________ e]

testcase mi_synchl () runs on MTCType {

/* Default activation */
var default def := activate(OtherwiseFail()) ;

/* Inline template definition */
ISAPl.send(ICONreq:{});

alt { /* altl */
[] MSAP2.receive(Medium Connection Request) {
/* use of a template */
MSAP2.send (MDATreq:Medium_Connection_ Confirmation);
/*optional template type*/

alt { /* alt2 */
[] ISAPl.receive (ICONconf:{}) {
ISAPl.send (Data_Request (TestSuitePar));

alt { /* alt3 */
[] MSAP2.receive(Medium Data Transfer) {
MSAP2.send (MDATreq:cmi_synchl());
ISAPl.send (IDISreq:{});

alt { /* alt4a */
[]1 ISAPl.receive (IDISind:{}) ({
MSAP2.receive(
Medium Disconnection_ Request) ;
setverdict (pass) ;
stop;

[1 MSAP2.receive(

Medium Disconnection Request) {
ISAPl.receive(IDISind:{});
setverdict (pass) ;
stop;

[1 MSAP2.receive (Medium_Data_Transfer) {
setverdict (inconclusive) ;
stop;

}

} /* end alt4 */

ITU-T Rec. Z.163 (11/2007)

Figure C.10 - INRES example—mi_synchl 1(2) test case

120

testcase mi_synchl ()

Page 2(2)

runs on MTCType

—

B -1 ISAPL ____. —--MSAPZ ____
L_MICType ___; L PCO_Typel | L BCO_Type2 |
i |
|]
altjaltifalt) ! :
T T TTipisind T LTt f“'
. {} : |
inconc | I
<:;§;t£;:::> : :
|]
| I
|]
L e F ____________________ é____
P MDATHnd !
B Medium_Conhection_Request |
inconc i |
i |
|]
] 1
|]
] Y I
| :
P IDISind | !
<]
, 0 | !
inconc !
: :
] 1
| I
1 1
|]
____________________________________ e
P IDISind [:
|
{} | |
inconc !
| :
| I
| 1
| |
T T
|]
|]
|

/* testcase mi_synchl () continuation */

[] ISAPl.receive(IDISind:{}) {
setverdict (inconclusive) ;
stop;

}

} /* end alt3 */

}

[] MSAP2.receive(
MDATind:Medium_ Connection Request)
setverdict (inconclusive) ;
stop;

}

[] ISAPl.receive(IDISind:{}) {
setverdict (inconclusive) ;
stop;
}
}

} /* end alt2 */

[] ISAPl.receive(IDISind:{}) {
setverdict (inconclusive) ;
stop;

}
} /* end altl */
} /* End testcase mi_synchl */

{

Figure C.11 — INRES example —mi_synchl 2(2) test case

ITU-T Rec. Z.163 (11/2007)

121

testcase mi_synch2 ()

mtc
MTCType

var default def
:=activate
(OtherwiseFail()) ;

ICONreq

runs on MTCType

MSAP2

PCO_Type2

ISAP1

PCO_Typel

1
1
1
1
1
1
1
= > !
pass it '
|
alt < - t i
Medium_Connectjon_ Request
| 1
MDATreq n!
Medium_Connection_Confirmation 'i
alt < ICONconf ! :
| 1
0 Y |
Data_Request (TestSuit PFr)
= T T
alt ~ Medium Data|Transfer
| 1
MDATreq | o
cmi_syn¢hl =
IDISreq - '
>
{ L |
a1t J P IDISind ! '
1
B 8] i i
- |]
b Medium Disconnecfion Request
———----[g-—-——---—--T-------- to— T ———-————-————-—— H====
bl Medium Disconnection_Request |
) | 1
P IDISind ! !
N {1 | |
e S ittt Rttt ————
N Medium_Data_Tranffer
< inconc ! !
1 1

inconc

P IDISind

— {}
inconc

P IDISind

— {1

ITU-T Rec. Z.163 (11/2007)

testcase mi_synch2 () runs on MTCType {

var default def := activate (OtherwiseFail());
/* Default activation */

ISAPl.send(ICONreq:{});
setverdict (pass) ;

alt {
[l MSAP2.receive(Medium Connection Request) {
MSAP2.send (MDATreq:Medium Connection Confirmation) ;
alt {
[1 ISAPl.receive (ICONconf:{}) {
ISAPl.send (Data_Request (TestSuitePar));
alt {
[1 MSAP2.receive (Medium Data_ Transfer) {
MSAP2.send (MDATreq:cmi_synchl);
ISAPl.send (IDISreq:{});
alt {
[1 ISAPl.receive (IDISind:{}) { /* PASS */
MSAP2.receive (
Medium Disconnection_Request) ;
}
[1] MSAP2.receive (
Medium Disconnection Request) {
ISAPl.receive(IDISind:{}); /* PASS */
}
[1 MSAP2.receive (Medium Data Transfer) {
setverdict (inconclusive) ;
}
}
}
[1 ISAPl.receive(IDISind:{}) ({
setverdict (inconclusive) ;
}
}
}
[1 MSAP2.receive(MDATind:Medium Connection Request) {
setverdict (inconclusive) ;
}
[1 ISAPl.receive(IDISind:{}) {
setverdict (inconclusive) ;
}
}
[l ISAPl.receive(IDISind:{}) {
setverdict (inconclusive) ;
}

stop; } /* End testcase mi_synch2 */

Figure C.12 — INRES example — mi_synch2 test case

122

testcase mi_synch5 () runs on MTCType
mtc ISAP1
[MTCType] [PCO_Type]]
1

var default
def :=activate
(DefaultWithInconclusives ()) ;

ICONreqgq
ﬂ‘Medium_Conneqtion_Request
MDATreq
Medium_Connectién_Confirmatio

N A

Sy

ICONconf

{} .

I
Datal Request (TestSyitePar)
I

d

d [}
Medium Data_ Transfer
I

MDATré&q

MSAP2

PCO_ Type?2

>
cmi_synichl !
- I
IDISreq |
{1 T
interleave IDISind
dl

S [Pt Y SO R,

CONN

testcase mi_synchS5 () runs on MTCType {

var default
def := activate (DefaultWithInconclusives) ;
/* Default activation */
/* message ONE and response to ONE */
ISAPl.send(ICONreg:{});
MSAP2.receive (Medium_ Connection Request) ;

/* message TWO and response to TWO */
MSAP2 . send (

MDATreq:Medium Connection Confirmation) ;
ISAPl.receive (ICONconf:{});

/* message THREE and response to THREE */
ISAPl.send (Data_Request (TestSuitePar));
MSAP2.receive (Medium Data Transfer);

/* messages FOUR and FIVE */
MSAP2.send (MDATreqg:cmi_synchl);
ISAPl.send (IDISreqg:{});

interleave ({
/* the two responses to messages FOUR and
FIVE can arrive in any order */
[1 ISAPl.receive(IDISind:{}) {};
[] MSAP2.receive(
Medium Disconnection Request) {};

}

setverdict (pass) ;
stop;

} /* End testcase mi_synch5 */

Figure C.13 - INRES example—mi_synch5 test case

ITU-T Rec. Z.163 (11/2007)

123

altstep DefaultWithInconclusives()

O~

self ISAP1 MSAP2
MTCType [PCO_Typel PCO_Type2
T
! |
aie | P MDATihd [
Medium Connection Request ' w?th {
- ' - 1 display “default”;
inconc !
| !
! 1
! 1
! |
! |
' |
inieiniateieiiutals (it | I i 1=
W IDISind ' |
< 1 1
0 ! .
! 1
! 1
inconc ' 1
:::::::::: ! i
! 1
! 1
! 1
! |
! |
! !
! |
___________________________ Tommmmmmm oo
P ! 1
i MediumﬁData*Transfer
1
! 1
< incéE€:> ' !
l |
! 1
! 1
! 1
! |
! |
' !
___________________________ Jommmm e
< 1 H
! 1
! 1
! 1
fail ' !
! 1
! 1
! 1
! 1
! 1
! 1
! |
! |
! |
__________________________ mm e
P ! 1
l | :
! 1
fail i :
| |
! 1
! 1
! 1
! 1
! 1
! |
! !
| :

altstep DefaultWithInconclusives()

/* INCONCLUSIVE CASES */

[1 MSAP2.receive(MDATind:Medium_ Connection_ Request)

setverdict (inconclusive) ;
stop;

[] ISAPl.receive (IDISind:{}) {

setverdict (inconclusive) ;
stop;

[] MSAP2.receive (Medium Data_ Transfer)

setverdict (inconclusive) ;
stop;

/* FAIL CASES */
[] ISAPl.receive {

setverdict (fail) ;
stop;

[1 MSAP2.receive {

setverdict (fail) ;
stop;

} with { display "default"; }

{

Figure C.14 — INRES example — DefaultWithl nconclusives altstep

ITU-T Rec. Z.163 (11/2007)

altstep OtherwiseFail ()

self 1SAP1 MSAP2 altstep OtherwiseFail() ({
[mrcType | [PCO_Type1 PCO Type2 |
alt4) i >~ [1 ISAPl.receive {
d |
< ' || with {
<:EE}1 > ! || aisplay “default”; setverdict (fail) ;
|
|
: stop;
i
I

[] MSAP2.receive {

setverdict (fail) ;

stop;

I
|
1
[}
I
I
I
I
I
I
I
I
I
___________________________ e =
| T
t
|
I
I
I
[}
[}
I
I
I
I
I
I
T

}

} with { display "default"; }

module InresExamplel
module InresExamplel {

control

[::::F:::] control InresExample {

execute (mi_synchl(), 5.0);

-

execute (mi_synchl (), 5.0); .
— execute (mi_synch2(), 5.0);

& - execute (mi_synch5(), 5.0);

7)

} // end control part
execute (mi_synch2(), 5.0);

> Y,

~

execute (mi_synch5(), 5.0);

Figure C.15 - INRES example — OtherwiseFail altstep and I nresExamplel module definitions

124 ITU-T Rec. Z.163 (11/2007)

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

L anguages and general softwar e aspects for telecommunication systems

Printed in Switzerland
Geneva, 2008

	ITU-T Rec. Z.163 (11/2007) – Testing and Test Control Notation version 3: TTCN-3 graphical presentation format (GFT)
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Abbreviations
	4 Overview
	5 GFT language concepts
	6 Mapping between GFT and TTCN-3 Core language
	7 Module structure
	8 GFT symbols
	9 GFT diagrams
	9.1 Common properties
	9.2 Control diagram
	9.3 Test case diagram
	9.4 Function diagram
	9.5 Altstep diagram

	10 Instances in GFT diagrams
	10.1 Control instance
	10.2 Test component instances
	10.3 Port instances

	11 Elements of GFT diagrams
	11.1 General drawing rules
	11.2 Invoking GFT diagrams
	11.3 Declarations
	11.4 Basic program statements
	11.5 Behavioural program statements
	11.6 Default handling
	11.7 Configuration operations
	11.8 Communication operations
	11.9 Timer operations
	11.10 Test verdict operations
	11.11 External actions
	11.12 Specifying attributes

	Annex A – GFT BNF
	A.1 Meta-language for GFT
	A.2 Conventions for the syntax description
	A.3 The GFT grammar
	Annex B – Reference guide for GFT
	Annex C – Examples
	C.1 The Restaurant example
	C.2 The INRES example

