

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.163
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2007)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3:
TTCN-3 graphical presentation format (GFT)

ITU-T Recommendation Z.163

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.199

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.163 (11/2007) i

ITU-T Recommendation Z.163

Testing and Test Control Notation version 3: TTCN-3 graphical
presentation format (GFT)

Summary
ITU-T Recommendation Z.163 defines the graphical presentation format for the TTCN-3 core
language as defined in ITU-T Recommendation Z.161. This presentation format uses a subset of
Message Sequence Charts as defined in ITU-T Recommendation Z.120 with test specific extensions.

This Recommendation is based on the core TTCN-3 language defined in ITU-T
Recommendation Z.161. It is particularly suited to display tests as GFTs. It is not limited to any
particular kind of test specification.

The specification of other formats is outside the scope of this Recommendation.

Source
ITU-T Recommendation Z.163 was approved on 13 November 2007 by ITU-T Study Group 17
(2005-2008) under the ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. Z.163 (11/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. Z.163 (11/2007) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1

3 Abbreviations.. 1

4 Overview .. 2

5 GFT language concepts .. 3

6 Mapping between GFT and TTCN-3 Core language ... 5

7 Module structure... 5

8 GFT symbols .. 7

9 GFT diagrams ... 9
9.1 Common properties .. 9
9.2 Control diagram.. 10
9.3 Test case diagram ... 11
9.4 Function diagram.. 12
9.5 Altstep diagram .. 13

10 Instances in GFT diagrams ... 14
10.1 Control instance.. 14
10.2 Test component instances... 14
10.3 Port instances.. 15

11 Elements of GFT diagrams... 15
11.1 General drawing rules... 15
11.2 Invoking GFT diagrams ... 17
11.3 Declarations.. 19
11.4 Basic program statements... 21
11.5 Behavioural program statements .. 24
11.6 Default handling ... 29
11.7 Configuration operations .. 30
11.8 Communication operations... 33
11.9 Timer operations... 52
11.10 Test verdict operations ... 55
11.11 External actions .. 56
11.12 Specifying attributes... 56

Annex A – GFT BNF... 57
A.1 Meta-language for GFT.. 57
A.2 Conventions for the syntax description .. 57
A.3 The GFT grammar.. 58

Annex B – Reference guide for GFT... 81

iv ITU-T Rec. Z.163 (11/2007)

 Page
Annex C – Examples ... 110

C.1 The Restaurant example ... 110
C.2 The INRES example... 119

 ITU-T Rec. Z.163 (11/2007) v

Introduction
The graphical presentation format of TTCN-3 (GFT) is based on [ITU-T Z.120] defining Message
Sequence Charts (MSC). GFT uses a subset of MSC with test specific extensions. The majority of
extensions are textual extensions only. Graphical extensions are defined to ease the readability of
GFT diagrams. Where possible, GFT is defined like MSC, so that established MSC tools with slight
modifications can be used for the graphical definition of TTCN-3 test cases in terms of GFT.

The core language of TTCN-3 is defined in [ITU-T Z.161] and provides a full text-based syntax,
static semantics and operational semantics as well as a definition for the use of the language with
ASN.1. The GFT presentation format provides an alternative way of displaying the core language
(see Figure 1).

 TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

Other Types
& Values 2

The shaded boxes are not
defined in this Recommendation

Tabular
format

Figure 1 – User's view of the core language and the various presentation formats

The core language may be used independently of GFT. However, GFT cannot be used without the
core language. Use and implementation of the GFT shall be done on the basis of the core language.

This Recommendation defines:
• the language concepts of GFT;
• the guidelines for the use of GFT;
• the grammar of GFT;
• the mapping from and to the TTCN-3 core language.

Together, these characteristics form the graphical presentation format of TTCN-3.

 ITU-T Rec. Z.163 (11/2007) 1

ITU-T Recommendation Z.163

Testing and Test Control Notation version 3: TTCN-3 graphical
presentation format (GFT)

1 Scope
This Recommendation defines the graphical presentation format for the TTCN-3 core language as
defined in [ITU-T Z.161]. This presentation format uses a subset of Message Sequence Charts as
defined in [ITU-T Z.120] with test specific extensions.

This Recommendation is based on the core TTCN-3 language defined in [ITU-T Z.161]. It is
particularly suited to display tests as GFTs. It is not limited to any particular kind of test
specification.

The specification of other formats is outside the scope of this Recommendation.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.292] ITU-T Recommendation X.292 (2002), OSI conformance testing methodology and
framework for protocol Recommendations for ITU-T applications – The Tree and
Tabular Combined Notation (TTCN).

 ISO/IEC 9646-3:1998, Information technology – Open Systems Interconnection –
Conformance testing methodology and framework – Part 3: The Tree and Tabular
Combined Notation (TTCN).

[ITU-T Z.120] ITU-T Recommendation Z.120 (2004), Message sequence chart (MSC).

[ITU-T Z.161] ITU-T Recommendation Z.161 (2007), Testing and Test Control Notation
version 3: TTCN-3 core language.

[ITU-T Z.162] ITU-T Recommendation Z.162 (2007), Testing and Test Control Notation version
3: TTCN-3 tabular presentation format (TFT).

3 Abbreviations
This Recommendation uses the following abbreviations and acronyms:

BNF Backus-Naur Form

CATG Computer Aided Test Generation

GFT Graphical presentation Format of TTCN-3

MSC Message Sequence Chart

MTC Main Test Component

PTC Parallel Test Component

SUT System Under Test

2 ITU-T Rec. Z.163 (11/2007)

TFT Tabular presentation Format of TTCN-3

TTCN Testing and Test Control Notation

4 Overview
According to the OSI conformance testing methodology defined in [ITU-T X.292], testing normally
starts with the identification of test purposes. A test purpose is defined as:

"A prose description of a well-defined objective of testing, focusing on a single conformance
requirement or a set of related conformance requirements as specified in the appropriate OSI
specification".

Having identified all test purposes an abstract test suite is developed that consists of one or more
abstract test cases. An abstract test case defines the actions of the tester processes necessary to
validate part (or all) of a test purpose.

Applying these terms to Message Sequence Charts (MSCs) we can define two categories for their
usage:
1) Using MSCs for the definition of test purposes – Typically, an MSC specification that is

developed as a use-case or as part of a system specification can be viewed as test purpose,
i.e., it describes a requirement for the SUT in the form of a behaviour description that can
be tested. For example, Figure 2 presents a simple MSC describing the interaction between
instances representing the SUT and its interfaces A, B and C. In a real implementation of
such a system the interfaces A, B and C may map onto service access points or ports. The
MSC in Figure 2 only describes the interaction with the SUT and does not describe the
actions of the test components necessary to validate the SUT behaviour, i.e., it is a test
purpose description.

BSUT CA

a

b

c

msc TestPurposeExample

Figure 2 – MSC describing the interaction of an SUT with its interfaces

2) Using MSCs for the definition of abstract test cases – An MSC specification describing an
abstract test case specifies the behaviour of the test components necessary to validate a
corresponding test purpose. Figure 3 presents a simple MSC abstract test case description.
It shows one Main Test Component (MTC) that exchanges the messages a, b and c with the
SUT via the ports PortA, PortB and PortC in order to reach the test purpose shown in
Figure 2. The messages a and c are sent by the SUT via the ports A and B (Figure 2) and
received by the MTC (Figure 3) via the same ports. The message b is sent by the MTC and
received by the SUT.

NOTE – The examples in Figures 2 and 3 are only simple examples to illustrate the different usages of MSC
for testing. The diagrams will be more complicated in case of a distributed SUT that consists of several
processes or a distributed test configuration with several test components.

 ITU-T Rec. Z.163 (11/2007) 3

PortBMTC PortCPortA

a

b

c

msc AbstractTestCaseExample

Figure 3 – MSC describing the interaction of an MTC with SUT interfaces

In identifying these two categories of MSC usage two distinct areas of work can be identified
(see Figure 4):
a) Generation of abstract test cases from MSC test purpose descriptions – TTCN-3 core

language or GFT may be used to represent the abstract test cases. However, it is perceived
that test case generation from test purposes is non-trivial and involves the usage and
development of Computer Aided Test Generation (CATG) techniques.

b) Development of a Graphical presentation format for TTCN-3 (GFT) and definition of the
mapping between GFT and TTCN-3.

generategenerate

mapping

MSC test purpose

MSC test case
(GFT diagram)

TTCN-3 test case

Figure 4 – Relations between MSC test purpose description,
MSC test case descriptions and TTCN-3

This Recommendation focuses on item b), i.e., it defines GFT and the mapping between GFT and
the TTCN-3 core language.

5 GFT language concepts
GFT represents graphically the behavioural aspects of TTCN-3 like the behaviour of a test case or a
function. It does not provide graphics for data aspects like declaration of types and templates.

GFT defines no graphical representation for the structure of a TTCN-3 module, but specifies the
requirements for such a graphical representation (see also clause 7).
NOTE – The order and the grouping of definitions and declarations in the module definitions part define the
structure of a TTCN-3 module.

4 ITU-T Rec. Z.163 (11/2007)

GFT defines no graphical representation for:
• module parameter definitions;
• import definitions;
• type definitions;
• signature declarations;
• template declarations;
• constant declarations;
• external constant declarations; and
• external function declarations.

TTCN-3 definitions and declarations without a corresponding GFT presentation may be presented
in the TTCN-3 core language or in the tabular presentation format for TTCN-3 (TFT)
([ITU-T Z.162]).

GFT provides graphics for TTCN-3 behaviour descriptions. This means a GFT diagram provides a
graphical presentation of either:
• the control part of a TTCN-3 module;
• a TTCN-3 test case;
• a TTCN-3 function; or
• a TTCN-3 altstep.

The relation between a TTCN-3 module and a corresponding GFT presentation is shown in
Figure 5.

 TTCN-3 module
in core language

GFT presentation

module structure Requirements for the graphical
presentation of the module

structuremodule parameter definitions,
import definitions,
type definitions,
signature declarations,
template declarations,
constant declarations,
external constant declarations,

t l f ti d l ti

No graphical representation

module control Graphical representation
(Control diagram)

testcase

function

altstep

Graphical representation
(Test case diagram)

Graphical Representation
(Function diagram)

Graphical Representation
(Altstep diagram)

Figure 5 – Relation between TTCN-3 core language and the corresponding GFT description

GFT is based on MSC ([ITU-T Z.120]) and, thus, a GFT diagram maps onto an MSC diagram.
Although GFT uses most of the graphical MSC symbols, the inscriptions of some MSC symbols
have been adapted to the needs of testing and, in addition, some new symbols have been defined in
order to emphasize test specific aspects. Though, the new symbols can be mapped onto valid MSC.
• the representation of port instances;

 ITU-T Rec. Z.163 (11/2007) 5

• the creation of test components;
• the start of test components;
• the return from a function call;
• the repetition of alternatives;
• the time supervision of a procedure-based call;
• the execution of test cases;
• the activation and deactivation of defaults;
• the labelling and goto; and
• the timers within call statements.

A complete list of all symbols used in GFT is presented in clause 8.

6 Mapping between GFT and TTCN-3 Core language
GFT provides graphical means for TTCN-3 behaviour definitions. The control part and each
function, altstep and test case of a TTCN-3 core language module can be mapped onto a
corresponding GFT diagram and vice versa. This means:
• the module control part can be mapped onto a control diagram (see clause 9.2) and vice

versa;
• a test case can be mapped onto a test case diagram (see clause 9.3) and vice versa;
• a function in core language can be mapped onto a function diagram (see clause 9.4) and

vice versa;
• an altstep can be mapped onto an altstep diagram (see clause 9.5) and vice versa.
NOTE 1 – GFT provides no graphical presentations for definitions of module parameters, types, constants,
signatures, templates, external constants and external functions in the module definitions part. These
definitions may be presented directly in core language or by using another presentation format, e.g., the
tabular presentation format.

Each declaration, operation and statement in the module control and each test case, altstep or
function can be mapped onto a corresponding GFT representation and vice versa.

The order of declarations, operations and statements within a module control, test case, altstep or
function definition is identical to the order of the corresponding GFT representations within the
related control, test case, altstep or function diagram.
NOTE 2 – The order of GFT constructs in a GFT diagram is defined by the order of the GFT constructs in
the diagram header (declarations only) and the order of the GFT constructs along the control instance
(control diagram) or component instance (test case diagram, altstep diagram or function diagram).

7 Module structure
As shown in Figure 6, a TTCN-3 module has a tree structure. A TTCN-3 module is structured into a
module definitions part and a module control part. The module definitions part consists of
definitions and declarations that may be structured further by means of groups. The module control
part cannot be structured into sub-structures; it defines the execution order and the conditions for
the execution of the test cases.

6 ITU-T Rec. Z.163 (11/2007)

m odule

de finitions part

control part

declaration/definition (1)
:

declaration/definition (n)

group(1)
:
:
:

group(m)

declaration/definition (11)
:

declaration/definition (1n)

group(11)
:

group(1l)

:
:

:
:
 :

:

Figure 6 – Structure of TTCN-3 modules

GFT provides diagrams for all "behavioural" leaves of the module tree structure, i.e., for the module
control part, for functions, for altsteps and for test cases. GFT defines no concrete graphics for the
module tree-structure, however appropriate tool support for GFT requires a graphical presentation
of the structure of a TTCN-3 module. The TTCN-3 module structure may be provided in form of an
organizer view (Figure 7) or the MSC document-like presentation (Figure 8). An advanced tool may
even support different presentations of the same object, e.g., the organizer view in Figure 7
indicates that some definitions are provided within several presentation formats, e.g., function
MySpecialFunction is available in core language, in form of a TFT table and as GFT diagram.

MyModule

Definitions

MyType

Datatype

core

MyCompType

Component

core

TFT

core

GFT

MySpecialFunction

Function

GFT

core

TFT

Control

Figure 7 – Various presentation formats in an organizer view of a TTCN-3 module structure

 ITU-T Rec. Z.163 (11/2007) 7

 module MyModule

types
datatype MyType

control

component MyCompType

altstep MyAltStep

altsteps

control

function MySpecialFunction

functions

testcase MyTestCase

testcases

Figure 8 – Graphical MSC document-like presentation of a TTCN-3 module structure

8 GFT symbols

This clause presents all graphical symbols used within GFT diagrams and comments their typical
usage within GFT.

Table 1 – GFT symbols

GFT element Symbol Description

Frame symbol

Used to frame GFT diagrams

Reference symbol

Used to represent the invocation of
functions and altsteps

Port instance symbol

Used to represent port instances

8 ITU-T Rec. Z.163 (11/2007)

Table 1 – GFT symbols

GFT element Symbol Description

Component instance
symbol

Used to represent test components and
the control instance

Action box symbol

Used for textual TTCN-3 declarations
and statements, to be attached to a
component symbol

Condition symbol
Used for textual TTCN-3 boolean
expressions, verdict setting, port
operations (start, stop and clear) and the
done statement, to be attached to a
component symbol

Labelling symbol
Used for TTCN-3 labelling and goto, to
be attached to a component symbol

Goto symbol

Used for TTCN-3 labelling and goto, to
be attached to a component symbol

Inline expression
symbol

Used for TTCN-3 if-else, for, while,
do-while, alt, call and interleave
statement, to be attached to a component
symbol

Default symbol

Used for TTCN-3 activate and deactivate
statement, to be attached to a component
symbol

Stop symbol

Used for TTCN-3 stop statement, to be
attached to a component symbol

Return symbol

Used for TTCN-3 return statement, to be
attached to a component symbol

Repeat symbol

Used for TTCN-3 repeat statement, to be
attached to a component symbol

Create symbol

Used for TTCN-3 create statement, to be
attached to a component symbol

Start symbol

Used for TTCN-3 start statement, to be
attached to a component symbol

Message symbol Used for TTCN-3 send, call, reply, raise,
receive, getcall, getreply, catch, trigger
and check statement, to be attached to a
component symbol and a port symbol

Found symbol Used for representing TTCN-3 receive,
getcall, getreply, catch, trigger and check
from any port, to be attached to a
component symbol

 ITU-T Rec. Z.163 (11/2007) 9

Table 1 – GFT symbols

GFT element Symbol Description

Suspension region
symbol

Used in combination with a blocking
call, to be within a call inline expression
and attached to a component symbol

Start timer symbol

Used for TTCN-3 start timer operation,
to be attached to a component symbol

Timeout timer symbol

Used for TTCN-3 timeout operation, to
be attached to a component symbol

Stop timer symbol

Used for TTCN-3 stop timer operation,
to be attached to a component symbol

Start implicit timer
symbol

Used for TTCN-3 implicit timer start in
blocking call, to be within a call inline
expression and attached to a component
symbol

Timeout implicit timer
symbol

Used for TTCN-3 timeout exception in
blocking call, to be within a call inline
expression and attached to a component
symbol

Execute symbol

Used for TTCN-3 execute test case
statement, to be attached to a component
instance symbol

Text symbol

Used for TTCN-3 with statement and
comments, to be placed within a GFT
diagram

Event comment
symbol

Used for TTCN-3 comments associated
to events, to be attached to events on
component instance or port instance
symbols

9 GFT diagrams
GFT provides the following diagram types:
a) control diagram for the graphical presentation of a TTCN-3 module control part;
b) test case diagram for the graphical presentation of a TTCN-3 test case;
c) altstep diagram for the graphical presentation of a TTCN-3 altstep; and
d) function diagram for the graphical presentation of a TTCN-3 function.

The different diagram types have some common properties.

9.1 Common properties
Common properties of GFT diagrams are related to the diagram area, diagram heading and paging.

9.1.1 Diagram area
Each GFT control, test case, altstep and function diagram shall have a frame symbol (also called
diagram frame) to define the diagram area. All symbols and text needed to define a complete and
syntactically correct GFT diagram shall be made inside the diagram area.

10 ITU-T Rec. Z.163 (11/2007)

NOTE – GFT has no language constructs like the MSC gates, which are placed outside of, but connected to
the diagram frame.

9.1.2 Diagram heading
Each GFT diagram shall have a diagram heading. The diagram heading shall be placed in the upper
left-hand corner of the diagram frame.

The diagram heading shall uniquely identify each GFT diagram type. The general rule to achieve
this is to construct the heading from the keywords testcase, altstep or function followed by the
TTCN-3 signature of the test case, altstep or function that should be presented graphically. For a
GFT control diagram, the unique heading is constructed from the keyword module followed by the
module name.
NOTE – In MSC, the keyword msc. always precedes the diagram name to identify MSC diagrams.
GFT diagrams do not have such a common keyword to identify GFT diagrams.

9.1.3 Paging
GFT diagrams may be organized in pages and a large GFT diagram may be split into several pages.
Each page of a split diagram shall have a numbering in the upper right hand corner that identifies
the page uniquely. The numbering is optional if the diagram is not split.
NOTE 1 – The concrete numbering scheme is considered to be a tools issue and is therefore outside the
scope of this Recommendation. A simple numbering scheme may only assign a page number, whereas an
advanced numbering scheme may support the reconstruction of a diagram only by using the numbering
information on the different pages.
NOTE 2 – Paging requirements beyond the general numbering are considered to be tools issues and are
therefore outside the scope of this Recommendation. For readability purposes, the diagram heading may be
shown on each page, the instance line of an instance that will be continued on another page may be attached
to the lower border of the page and the instance head of a continued instance may be repeated on the page
that describes the continuation.

9.2 Control diagram
A GFT control diagram provides a graphical presentation of the control part of a TTCN-3 module.
The heading of a control diagram shall be the keyword module followed by the module name. A
GFT control diagram shall only include one component instance (also called control instance) with
the instance name control without any type information. The control instance describes the
behaviour of the TTCN-3 module control part. Attributes associated to the TTCN-3 module control
part shall be specified within a text symbol in the control diagram. The principle shape of a
GFT control diagram and the corresponding TTCN-3 core description are sketched in Figure 9.

 ITU-T Rec. Z.163 (11/2007) 11

 module MyModule

control

var integer MyVar := 1

execute(MyTestcase())

module MyModule {
:
:
:

control {
var integer MyVar := 1;
execute(MyTestcase());

:
:
:

} // end control
} // end module

GFT Core

Figure 9 – Principle shape of a GFT control diagram and corresponding core language

Within the control part, test cases can be selected or deselected for the test case execution with the
use of Boolean expressions. Expressions, assignments, log statements, label and goto statements,
if-else statements, for loop statements, while loop statements, do while loop statements, stop
execution statements, and timer statements can be used to control the execution of test cases.
Furthermore, functions can be used to group the test cases together with their preconditions for
execution, which are invoked by the module control part.

The GFT representation of those language features is as described in the respective clauses below
except that for the module control part the graphical symbols are attached to the control instance
and not to a test component instance.

Please refer to clause 11.4 for the GFT representation of expressions, assignments, log, label and
goto, if-else, for loop, while loop, do while loop, and stop, to clause 11.9 for timer operations
and to clauses 9.4 and 11.2.2 for functions and their invocation.

9.3 Test case diagram

A GFT test case diagram provides a graphical presentation of a TTCN-3 test case. The heading of a
test case diagram shall be the keyword testcase followed by the complete signature of the test
case. Complete means that at least test case name and parameter list shall be present. The runs on
clause is mandatory and the system clause is optional in the core language. If the system clause is
specified in the corresponding core language, it shall also be present in the heading of the test case
diagram.

A GFT test case diagram shall include one test component instance describing the behaviour of the
mtc (also called mtc instance) and one port instance for each port owned by the mtc. The name
associated with the mtc instance shall be mtc. The type associated with the mtc instance is optional,
but if the type information is present, it shall be identical to the component type referred to in the
runs on clause of the test case signature. The names associated with the port instances shall be
identical to the port names defined in the component type definition of the mtc. The associated type
information for port instances is optional. If the type information is present, port names and port
types shall be consistent with the component type definition of the mtc. The mtc and port types are
displayed in the component or port instance head symbol.

12 ITU-T Rec. Z.163 (11/2007)

Attributes associated to the test case presented in GFT shall be specified within a text symbol in the
test case diagram. The principle shape of a GFT test case diagram and the corresponding TTCN-3
core description are sketched in Figure 10.

 testcase MyTestCase (inout integer MyPar)
runs on MyMTCtype system SystemType

mtc

var integer MyVar := 1

MyMTCtype

MyMTCport

MyTemplate

testcase MyTestCase (inout integer MyPar)

runs on MyMTCtype system SystemType {

var integer MyVar := 1;

MyMTCPort.send(MyTemplate);

:
:
}

GFT Core

Figure 10 – Principle shape of a GFT test case diagram and corresponding core language

A test case represents the dynamic test behaviour and can create test components. A test case may
contain declarations, statements, communication and timer operations and invocation of functions
or altsteps.

9.4 Function diagram
GFT presents TTCN-3 functions by means of function diagrams. The heading of a function diagram
shall be the keyword function followed by the complete signature of the function. Complete
means that at least function name and parameter list shall be present. The return clause and the
runs on clause are optional in the core language. If these clauses are specified in the corresponding
core language, they shall also be present in the header of the function diagram.

A GFT function diagram shall include one test component instance describing the behaviour of the
function and one port instance for each port usable by the function.
NOTE – The names and types of the ports that are usable by a function are passed in as parameters or are the
port names and types that are defined in the component type definition referenced in the runs on clause.

The name associated with the test component instance shall be self. The type associated with the
test component instance is optional, but if the type information is present, it shall be consistent with
the component type in the runs on clause.

The names and types associated with the port instances shall be consistent with the port parameters
(if the usable ports are passed in as parameters) or to the port declarations in the component type
definition referenced in the runs on clause. The type information for port instances is optional.

self and port names are displayed on top of the component and resp. port instance head symbol.
The component types and port types are displayed within the component and resp. port instance
head symbol.

Attributes associated to the function presented in GFT shall be specified within a text symbol in the
function diagram. The principle shape of a GFT function diagram and the corresponding TTCN-3
core description are sketched in Figure 11.

 ITU-T Rec. Z.163 (11/2007) 13

 function MyFunction (inout integer MyPar)
return integer runs on MyPTCtype

self

var integer MyVar := 1;

MyPTCtype

MyPTCport

MyTemplate

MyVar+MyPar

function MyFunction (inout integer MyPar)

return integer runs on MyPTCtype {

var integer MyVar := 1;

MyPTCport.send(MyTemplate);

:
:

return MyVar+MyPar
}

GFT Core

Figure 11 – Principle shape of a GFT function diagram and corresponding core language

A function is used to specify and structure test behaviour, define default behaviour or to structure
computation in a module. A function may contain declarations, statements, communication and
timer operations and invocation of function or altsteps and an optional return statement.

9.5 Altstep diagram
GFT presents TTCN-3 altsteps by means of altstep diagrams. The heading of an altstep diagram
shall be the keyword altstep followed by the complete signature of the altstep. Complete means
that at least altstep name and parameter list shall be present. The runs on clause is optional in the
core language. If the runs on clause is specified in the corresponding core language, it shall also be
present in the header of the altstep diagram.

A GFT altstep diagram shall include one test component instance describing the behaviour of the
altstep and one port instance for each port usable by the altstep.
NOTE – The names and types of the ports that are usable by an altstep are passed in as parameters or are the
port names and types that are defined in the component type definition referenced in the runs on clause.

The name associated with the test component instance shall be self. The type associated with the
test component instance is optional, but if the type information is present, it shall be consistent with
the component type in the runs on clause.

The names and types associated with the port instances shall be consistent with the port parameters
(if the usable ports are passed in as parameters) or to the port declarations in the component type
definition referenced in the runs on clause. The type information for port instances is optional.

self and port names are displayed on top of the component and resp. port instance head symbol.
The component types and port types are displayed within the component and resp. port instance
head symbol.

Attributes associated to the altstep shall be specified within a text symbol in the GFT altstep
diagram. The principle shape of a GFT altstep diagram and the corresponding TTCN-3 core
language are sketched in Figure 12.

14 ITU-T Rec. Z.163 (11/2007)

 altstep MyAltstep ()
runs on MyMTCtype

self

MyMTCtype

MyMTCport

MyTemplate2

MyTemplate3

alt

inconc

fail

altstep MyAltstep () runs on MyMTCtype {

alt {

[] MyMTCport.receive(MyTemplate2) {

setverdict(inconc)

}

[] MyMTCport.receive(MyTemplate3) {

setverdict(fail)

}
}
:
:

Repeat

}

GFT Core

Figure 12 – Principle shape of a GFT altstep diagram and corresponding core language

An altstep is used to specify default behaviour or to structure the alternatives of an alt statement.
An altstep may contain statements, communication and timer operations and invocation of function
or altsteps.

10 Instances in GFT diagrams
GFT diagrams include the following kinds of instances:
• control instances describing the flow of control for the module control part;
• test component instances describing the flow of control for the test component that executes

a test case, function or altstep;
• port instances representing the ports used by the different test components.

10.1 Control instance

Only one control instance shall exist within a GFT control diagram (see clause 9.2). A control
instance describes the flow of control of a module control part. A GFT control instance shall
graphically be described by a component instance symbol with the mandatory name control
placed on top of the instance head symbol. No instance type information is associated with a control
instance. The principle shape of a control instance is shown in Figure 13 a).

10.2 Test component instances
Each GFT test case, function or altstep diagram includes one test component instance that describes
the flow of control of that instance. A GFT test component instance shall graphically be described
by an instance symbol with:
• the mandatory name mtc placed on top of the instance head symbol in the case of a test case

diagram;
• the mandatory name self placed on top of the instance head symbol in the case of a

function or altstep diagram.

 ITU-T Rec. Z.163 (11/2007) 15

The optional test component type may be provided within the instance head symbol. It has to be
consistent with the test component type given after the runs on keyword in the heading of the
GFT diagram.

The principle shape of a test component instance in a test case diagram is shown in Figure 13 b).
The principle shape of a test component instance in a function or altstep diagram is shown in
Figure 13 c).

10.3 Port instances
GFT port instances may be used within test case, altstep and function diagrams. A port instance
represents a port that is usable by the test component that executes the specified test case, altstep or
function. A GFT port instance is graphically described by a component instance symbol with a
dashed instance line. The name of the represented port is mandatory information and shall be placed
on top of the instance head symbol. The port type (optional) may be provided within the instance
head symbol. The principle shape of a port instance is shown in Figure 13 d).

 control

 mtc

MtcType

a) GFT control instance b) GFT test case instance in a test case diagram

 self

PtcType

PortName

PortType

c) GFT test component instance in a function or altstep diagram d) GFT port instance

Figure 13 – Principle shape of instance kinds in GFT diagrams

11 Elements of GFT diagrams
This clause defines general drawing rules for the representation of specific TTCN-3 syntax
elements (semicolons, comments). It describes how to display the execution of GFT diagrams and
the graphical symbols associated with TTCN-3 language elements.

11.1 General drawing rules

General drawing rules in GFT are related to the usage of semicolons, TTCN-3 statements in action
symbols and comments.

16 ITU-T Rec. Z.163 (11/2007)

11.1.1 Usage of semicolons
All GFT symbols with the exception of the action symbol shall include only one statement in
TTCN-3 core language. Only an action symbol may include a sequence of TTCN-3 statements
(see clause 11.1.2).

The semicolon is optional if a GFT symbol includes only one statement in TTCN-3 core language
(see Figure 14 a) and Figure 14 b)).

Semicolons shall separate the statements in a sequence of statements within an action symbol. The
semicolon is optional for the last statement in the sequence (Figure 14 c)).

A sequence of variable, constant and timer declarations may also be specified in plain TTCN-3 core
language following the heading of a GFT diagram. Semicolons shall also separate these
declarations. The semicolon is optional for the last declaration in this sequence.

11.1.2 Usage of action symbols
The following TTCN-3 declarations, statements and operations are specified within action symbols:
declarations (with the restrictions defined in clause 11.3), assignments, log, connect, disconnect,
map, unmap and action.

A sequence of declarations, statements and operations that shall be specified within action symbols
variable can be specified in a single action symbol. It is not necessary to use a separate action
symbol for each declaration, statement or operation.

11.1.3 Comments
GFT provide three possibilities to put comments into GFT diagrams:
• Comments may be put into GFT symbols following the symbol inscription and using the

syntax for comments of the TTCN-3 core language (Figure 14 d)).
• Comments in the syntax for comments of the TTCN-3 core language can be put into text

symbols and freely placed in the GFT diagram area (Figure 14 e)).
• The comment symbol can be used to associate comments to GFT symbols. A comment in a

comment symbol can be provided in form of free text, i.e., the comment delimiter "/*", "*/"
and "//" of the core language need not to be used (Figure 14 f)).

 ITU-T Rec. Z.163 (11/2007) 17

MyComp := CompType.create;

MyDef := activate(MyAltStep())

a) Component creation with an optional
terminating semicolon

b) Default activation without a
terminating semicolon

myFloatVar := 10.0 * 7.4;
localVerdict := getverdict;

action(redlight());

Initialization()
/* Preamble invocation */

c) Sequence of statements in an action symbol d) Comment within a GFT reference symbol

// This is a
// comment in a
// text symbol

MyResult :=
execute(TC1())

This comment is
associated with a
test execution
symbol

e) Comment in a text symbol f) Comment within a comment symbol associated with an
execution symbol

Figure 14 – Examples for the effects of the general drawing rules

11.2 Invoking GFT diagrams

This clause describes how the individual kinds of GFT diagrams are invoked. Since there is no
statement for executing the control part in TTCN-3 (as it is comparable to executing a program via
main and out of the scope of TTCN-3), the clause discusses the execution of test cases, functions,
and altsteps.

11.2.1 Execution of test cases
The execution of test cases is represented by use of the execute test case symbol (see Figure 15).
The syntax of the execute statement is placed within that symbol. The symbol may contain:
• an execute statement for a test case with optional parameters and time supervision;
• optionally, the assignment of the returned verdict to a verdicttype variable; and
• optionally, the inline declaration of the verdicttype variable.

MyVerdict:=
execute(MyTestCase(MyParameter),5.0)

MyVerdict := execute(MyTestCase(MyParameter),5.0);

GFT Core

Figure 15 – Test case execution

18 ITU-T Rec. Z.163 (11/2007)

11.2.2 Invocation of functions
The invocation of functions is represented by the reference symbol (Figure 16), except of external
and predefined functions (Figure 17) and except where a function is called inside a TTCN-3
language element that has a GFT representation (Figure 18).

The syntax of the function invocation is placed within the reference symbol. The symbol may
contain:
• the invocation of a function with optional parameters;
• an optional assignment of the returned value to a variable; and
• an optional inline declaration of the variable.

The reference symbol is only used for user defined functions defined within the current module. It
shall not be used for external functions or predefined TTCN-3 functions, which shall be represented
in their text form within an action form (Figure 17) or other GFT symbols (see example in
Figure 18).

MyVar:=
MyFunction(MyParam1,MyParam2)

MyVar:= MyFunction(MyParam1,MyParam2);

GFT Core

Figure 16 – Invocation of user defined function

MyStr:= int2str(MyInt)

MyStr:= int2str(MyInt);

GFT Core

Figure 17 – Invocation of predefined/external function

 ITU-T Rec. Z.163 (11/2007) 19

Functions called inside a TTCN-3 construct with an associated GFT symbol are represented as text
within that symbol.

Template1

for (var integer

MyPort

Template1

for(j:=0; j<10; j:=next(j))

for(j:=0; j<10; j:=next(j)) {

MyPort.send(Template1)

}

GFT Core

Figure 18 – Invocation of user defined function within GFT symbol

11.2.3 Invocation of altsteps
The invocation of altsteps is represented by use of the reference symbol (see Figure 19). The syntax
of the altstep invocation is placed within that symbol. The symbol may contain the invocation of an
altstep with optional parameters. It shall be used within alternative behaviour only, where the altstep
invocation shall be one of the operands of the alternative statements (see also Figure 32 in
clause 11.5.2).

MyAltstep(MyParam1,MyParam2)

MyAltstep(MyParam1,MyParam2);

GFT Core

Figure 19 – Altstep invocation

Another possibility is the implicit invocation of altsteps via activated defaults. Please refer to
clause 11.6.2 for further details.

11.3 Declarations
TTCN-3 allows the declaration and initialization of timers, constants and variables at the beginning
of statement blocks. GFT uses the syntax of the TTCN-3 core language for declarations in several
symbols. The type of a symbol depends on the specification of the initialization, e.g., a variable of
type default that is initialized by means of an activate operation shall be specified within a
default symbol (see clause 11.6).

11.3.1 Declaration of timers, constants and variables in action symbols
The following declarations shall be made within action symbols:
• timer declarations;
• declarations of variables without initialization;
• declarations of variables and constants with initialization;

20 ITU-T Rec. Z.163 (11/2007)

– if the initialization is not made by means of functions that include communication
functions; or

– if a declaration is:
• of a component type that is not initialized by means of a create operation;
• of type default that is not initialized by means of an activate operation;
• of type verdicttype that is not initialized by means of an execute statement;
• of a simple basic type;
• of a basic string type;
• of the type anytype;
• of a port type;
• of the type address; or
• of a user-defined structured type with fields that fulfil all restrictions mentioned in

this bullet for "declarations of variables and constants with initialization".
NOTE – Please refer to Table 3 of [ITU-T Z.161] for an overview on TTCN-3 types.

A sequence of declarations that shall be made within action symbols can be put into one action
symbol and need not to be made in separate action symbols. Examples for declarations within
action symbols can be found in Figures 20 a) and 20 b).

11.3.2 Declaration of constants and variables within inline expression symbols

Constants and variable declarations of a component type that are initialized within an if-else, for,
while, do-while, alt or interleave statement shall be presented within the same inline
expression symbol.

11.3.3 Declaration of constants and variables within create symbols

Constants and variable declarations of a component type that are initialized by means of create
operations shall be made within a create symbol. In contrast to declarations within action symbols,
each declaration that is initialized by means of a create operation shall be presented in a separate
create symbol. An example for a variable declaration within a create symbol is shown in
Figure 20 c).

11.3.4 Declaration of constants and variables within default symbols

Constants and variable declarations of type default that are initialized by means of activate
operations shall be made within a default symbol. In contrast to declarations within action symbols,
each declaration that is initialized by means of an activate operation shall be presented in a
separate default symbol. An example for a variable declaration within a default symbol is shown in
Figure 20 d).

11.3.5 Declaration of constants and variables within reference symbols
Constants and variable declarations that are initialized by means of a function, which includes
communication operations, shall be made within reference symbols. In contrast to declarations
within action symbols, each declaration that is initialized by means of a function, which includes
communication functions, shall be presented in a separate reference symbol. An example for a
variable declaration within a reference symbol is shown in Figure 20 e).

 ITU-T Rec. Z.163 (11/2007) 21

11.3.6 Declaration of constants and variables within execute test case symbols

Constants and variable declarations of type verdicttype that are initialized by means of execute
statements shall be made within execute test case symbols. In contrast to declarations within action
symbols, each declaration that is initialized by means of an execute statement shall be presented in
a separate execute test case symbol. An example for a variable declaration within an execute test
case symbol is shown in Figure 20 f).

var integer Myvar

var float MyFloatVar;
const integer MyConst := 6;
var default MyDefault := null

a) Variable declaration within an action symbol b) Sequence of declarations within an action symbol

var CompType MyComp :=
CompType.create

var default MyDefault :=
activate(MyAltstep())

c) Variable declaration within a create symbol d) Variable declaration within a default symbol

var integer MyVar :=
MyFunction()

var verdicttype MyVerdict :=
execute(MyTestCase())

e) Variable declaration within a reference
symbol f) Variable declaration within an execute test case symbol

Figure 20 – Examples for declarations in GFT

11.4 Basic program statements

Basic program statements are expressions, assignments, operations, loop constructs, etc. All basic
program statements can be used within GFT diagrams for the control part, test cases, functions and
altsteps.

GFT does not provide any graphical representation for expressions and assignments. They are
textually denoted at the places of their use. Graphics is provided for the log, label, goto, if-else,
for, while and do-while statement.

22 ITU-T Rec. Z.163 (11/2007)

11.4.1 The Log statement

The log statement shall be represented within an action symbol (see Figure 21).

Log(“ M essage x sent log(“ M essage x sent
to MyPort”)

log('Message x sent to MyPort');

GFT Core

Figure 21 – Log statement

11.4.2 The Label statement

The label statement shall be represented with a label symbol, which is connected to a component
instance. Figure 22 illustrates a simple example of a label named MyLabel.

MyLabel MyLabel

label MyLabel;

GFT Core

Figure 22 – Label statement

11.4.3 The Goto statement

The goto statement shall be represented with a goto symbol. It shall be placed at the end of a
component instance or at the end of an operand in an inline expression symbol. Figure 23 illustrates
a simple example of a goto.

MyLabel MyLabel

goto MyLabel;

GFT Core

Figure 23 – Goto statement

11.4.4 The If-else statement

The if-else statement shall be represented by an inline expression symbol labelled with the if
keyword and a Boolean expression as defined in clause 19.6 of [ITU-T Z.161]. The if-else inline
expression symbol may contain one or two operands, separated by a dashed line. Figure 24
illustrates an if statement with a single operand, which is executed when the Boolean expression

 ITU-T Rec. Z.163 (11/2007) 23

x>1 evaluates to true. Figure 25 illustrates an if-else statement in which the top operand is
executed when the Boolean expression x>1 evaluates to true, and the bottom operand is executed if
the Boolean expression evaluates to false.

Template1
if (x>1)

Template
if (x>1)

MyPort

if (x>1) {

MyPort.send(Template1)

}

GFT Core

Figure 24 – If-statement

Template1

Template2

if (x>1)
Template1

Template2

if (x>1)

MyPort

if (x>1) {

MyPort.send(Template1)

}

else {

MyPort.send(Template2)

}

GFT Core

Figure 25 – If-else statement

11.4.5 The For statement

The for statement shall be represented by an inline expression symbol labelled with a for
definition as defined in clause 19.7 of [ITU-T Z.161]. The for body shall be represented as the
operand of the for inline expression symbol. Figure 26 represents a simple for loop in which the
loop variable is declared and initialized within the for statement.

Template1

for (var integer j:=0;j<10;j:=j+1)

MyPort

Template1

for (var integer j:=0;j<10;j:=j+1)

for(var integer j:=0;j<10;j:=j+1) {

MyPort.send(Template1)

}

GFT Core

Figure 26 – For statement

24 ITU-T Rec. Z.163 (11/2007)

11.4.6 The While statement

The while symbol shall be represented by an inline expression symbol labelled with a while
definition as defined in clause 19.8 of [ITU-T Z.161]. The while body shall be represented as the
operand of the while inline expression symbol. Figure 27 represents an example of a while
statement.

Template1

while (j<10)

MyPort

Template1

while (j<10)

while(j<10) {

MyPort.send(Template1)

}

GFT Core

Figure 27 – While statement

11.4.7 The Do-while statement

The do-while statement shall be represented by an inline expression symbol labelled with a
do-while definition as defined in clause 19.9 of [ITU-T Z.161]. The do-while body shall be
represented as the operand of the do-while inline expression symbol. Figure 28 represents an
example of a do-while statement.

Template1

do while (j<10)

MyPort

Template1

do while (j<10)

do {

MyPort.send(Template1);

} while(j<10);

GFT Core

Figure 28 – Do-while statement

11.5 Behavioural program statements

Behavioural statements may be used within test cases, functions and altsteps, the only exception
being the return statement, which can only be used within functions. Test behaviour can be
expressed sequentially, as a set of alternatives or using an interleaving statement. Return and repeat
are used to control the flow of behaviour.

11.5.1 Sequential behaviour
Sequential behaviour is represented by the order of events placed upon a test component instance.
The ordering of events is taken in a top-down manner, with events placed nearest the top of the
component instance symbol being evaluated first. Figure 29 illustrates a simple case in which the
test component firstly evaluates the expression contained within the action symbol and then sends a
message to a port MyPort.

 ITU-T Rec. Z.163 (11/2007) 25

MyTemplate (x)

x:=x+1

MyPort

MyTemplate (x)

x:=x+1

x:=x+1;

MyPort.send(MyTemplate(x));

GFT Core

Figure 29 – Sequential behaviour

Sequencing can also be described using references to test cases, functions, and altsteps. In this case,
the order in which references are placed upon a component instance axis determines the order in
which they are evaluated. Figure 30 represents a simple GFT diagram in which MyFunction1 is
called, followed by MyFunction2.

MyFunction2()

MyFunction1()

MyFunction2()

MyFunction1()

MyFunction1();

MyFunction2();

GFT Core

Figure 30 – Sequencing using references

11.5.2 Alternative behaviour

Alternative behaviour shall be represented using inline expression symbol with the alt keyword
placed in the top left hand corner. Each operand of the alternative behaviour shall be separated
using a dashed line. Operands are evaluated top-down.

Note that an alternative inline expression should always cover all port instances, if communication
operators are involved. Figure 31 illustrates an alternative behaviour in which either a message
event is received with the value defined by Template1, or a message event is received with the
value defined by Template2. The invocation of an altstep in an alternative inline expression is
shown in Figure 32.

26 ITU-T Rec. Z.163 (11/2007)

Template1

Template2

alt
Template1

Template2

alt

MyPort

alt {

[] MyPort.receive(Template1) {}

[] MyPort.receive(Template2) {}

};

GFT Core

Figure 31 – Alternative behaviour statement

In addition, it is possible to call an altstep as the only event within an alternative operand. This shall
be drawn using a reference symbol (see clause 11.2.3).

Template1
alt

MyTestStep ()

Template1
alt

MyTestStep ()

Template1
alt

MyAltStep ()

MyPort

alt {

[] MyPort.receive(Template1) {}

[] MyAltStep()

};

GFT Core

Figure 32 – Alternative behaviour with altstep invocation

11.5.2.1 Selecting/deselecting an alternative

It is possible to disable/enable an alternative operand by means of a Boolean expression contained
within a condition symbol placed upon the test component instance. Figure 33 illustrates a simple
alternative statement in which the first operand is guarded with the expression x > 1, and the second
with the expression x ≤ 1.

 ITU-T Rec. Z.163 (11/2007) 27

Template1

Template2

alt
x>1

x<=1

Template1

Template2

alt
x>1

x<=1

MyPort

alt {

[x>1] MyPort.receive(Template1) {}

[x<=1] MyPort.receive(Template2) {}

};

GFT Core

Figure 33 – Selecting/deselecting an alternative

11.5.2.2 Else branch in alternatives

The else branch shall be denoted using a condition symbol placed upon the test component
instance axis labelled with the else keyword. Figure 34 illustrates a simple alternative statement
where the second operand represents an else branch.

Template1

alt
x>1

else

MyErrorHandler ()

Template1

alt
x>1

else

MyErrorHandler ()

Template1

alt
x>1

else

MyErrorHandler ()

MyPort

alt {

[x>1] MyPort.receive(Template1) {}

[else]MyErrorHandler()

};

GFT Core

Figure 34 – Else within an alternative

Note that the reference symbol within an else branch should always cover all port instances, if
communication operations are involved.

The re-evaluation of an alt statement can be specified using a repeat statement, which is represented
by the repeat symbol (see clause 11.5.3).

The invocation of altsteps within alternatives is represented using the reference symbol
(see clause 11.2.3).

11.5.3 The Repeat statement

The repeat statement shall be represented by a repeat symbol. This symbol shall only be used as
last event of an alternative operand in an alt statement or as last event of an operand of the top
alternative in an altstep definition. Figure 35 illustrates an alternative statement in which the second

28 ITU-T Rec. Z.163 (11/2007)

operand, having successfully received a message with a value matching Template2, causes the
alternative to be repeated.

Template1

Template2

alt
Template1

Template2

alt

MyPort

alt {

[] MyPort.receive(Template1) {}

[] MyPort.receive(Template2) { repeat; }

};

GFT Core

Figure 35 – Repeat within an alternative

11.5.4 Interleaved behaviour

Interleave behaviour shall be represented using an inline expression symbol with the interleave
keyword placed in the top left hand corner (see Figure 36). Each operand shall be separated using a
dashed line. Operands are evaluated in a top-down order.

Template1

Template2

interleave
Template1

Template2

interleave

MyPort

interleave {

[] MyPort.receive(Template1) {}

[] MyPort.receive(Template2) {}

};

GFT Core

Figure 36 – Interleave statement

11.5.5 The Return statement

The return statement shall be represented by a return symbol. This may be optionally associated
with a return value. A return symbol shall only be used in a GFT function diagram. It shall only be
used as last event of a component instance or as last event of an operand in an inline expression
symbol. Figure 37 illustrates a simple function using a return statement without a returning a value,
and Figure 38 illustrates a function that returns a value.

 ITU-T Rec. Z.163 (11/2007) 29

return;

GFT Core

Figure 37 – Return symbol without a return value

ReturnValue

return ReturnValue;

GFT Core

Figure 38 – Return symbol with a return value

11.6 Default handling
GFT provides graphical representation for the activation and deactivation of defaults (see clause 21
of [ITU-T Z.161]).

11.6.1 Default references

Variables of type default can either be declared within an action symbol or within a default
symbol as part of an activate statement. Clauses 11.3.1 and 11.3.4 illustrate how a variable called
MyDefaultType is declared within GFT.

11.6.2 The activate operation

The activation of defaults shall be represented by the placement of the activate statement within a
default symbol (see Figure 39).

 MyDefaultVar := activate(MyTestStep ())

 MyDefaultVar := activate(MyAltStep ())

MyDefaultVar:=activate(MyAltStep());

GFT Core

Figure 39 – Default activation

30 ITU-T Rec. Z.163 (11/2007)

11.6.3 The deactivate operation

The deactivation of defaults shall be represented by the placement of the deactivate statement
within a default symbol (see Figure 40). If no operands are given to the deactivate statement then
all defaults are deactivated.

 deactivate (MyDefaultVar)
 deactivate (MyDefaultVar)

deactivate(MyDefaultVar);

GFT Core

Figure 40 – Deactivation of defaults

11.7 Configuration operations
Configuration operations are used to set up and control test components. These operations shall
only be used in GFT test case, function, and altstep diagrams.

The mtc, self, and system operations have no graphical representation; they are textually denoted
at the places of their use.

GFT does not provide any graphical representation for the running operation (being a Boolean
expression). It is textually denoted at the place where it is used.

11.7.1 The Create operation

The create operation shall be represented within the create symbol, which is attached to the test
component instance which performs the create operation (see Figure 41). The create symbol
contains the create statement.

 MyComp:=MyCType.create

MyComp:=MyCType.create;

GFT Core

Figure 41 – Create operation

11.7.2 The Connect and Map operations

The connect and map operations shall be represented within an action box symbol, which is
attached to the test component instance which performs the connect or map operation
(see Figure 42). The action box symbol contains the connect or map statement.

 ITU-T Rec. Z.163 (11/2007) 31

 connect(MyComp:PortA, mtc:PortM);
map(MyComp:PortB, system:PortC)

connect(MyComp:PortA, mtc:PortM);

map(MyComp:PortB, system:PortC);

GFT Core

Figure 42 – Connect and map operation

11.7.3 The Disconnect and Unmap operations

The disconnect and unmap operations shall be represented within an action box symbol, which is
attached to the test component instance which performs the disconnect or unmap operation
(see Figure 43). The action box symbol contains the disconnect or unmap statement.

 disconnect(MyComp:PortA, mtc:PortM);
unmap(MyComp:PortB, system:PortC)

disconnect(MyComp:PortA, mtc:PortM);

unmap(MyComp:PortB, system:PortC);

GFT Core

Figure 43 – Disconnect and unmap operation

11.7.4 The Start test component operation

The start test component operation shall be represented within the start symbol, which is
attached to the test component instance that performs the start operation (see Figure 44). The start
symbol contains the start statement.

 MyComp.start(MyCompBehaviour())

MyComp.start(MyCompBehaviour());

GFT Core

Figure 44 – Start operation

11.7.5 The Stop execution and Stop test component operations
TTCN-3 has two stop operations: The module control and test components may stop themselves by
using stop execution operations, or a test component can stop other test components by using stop
test component operations.

32 ITU-T Rec. Z.163 (11/2007)

The stop execution operation shall be represented by a stop symbol, which is attached to the test
component instance, which performs the stop execution operation (see Figure 45). It shall only be
used as last event of a component instance or as last event of an operand in an inline expression
symbol.

stop;

GFT Core

Figure 45 – Stop execution operation

The stop test component operation shall be represented by a stop symbol, which is attached to the
test component instance, which performs the stop test component operation. It shall have an
associated expression that identifies the component to be stopped (see Figure 46). The MTC may
stop all PTCs in one step by using the stop component operation with the keyword all
(see Figure 47 a)). A PTC can stop the test execution by stopping the MTC (see Figure 47 b)). The
stop test component operation shall be used as last event of a component instance or as last event
of an operand in an inline expression symbol, if the component stops itself (e.g., self.stop) or
stops the test execution (e.g., mtc.stop) (see Figures 47 c) and d)).
NOTE – The stop symbol has an associated expression. It is not always possible to determine statically, if a
stop component operation stops the instance that executes the stop operation or stops the test execution.

componentId

ComponentId.stop;

GFT Core

Figure 46 – Stop test component operation

 ITU-T Rec. Z.163 (11/2007) 33

all

mtc

a) Stopping all PTCs b) Stop test case execution

self

mtc

c) Stop self execution d) Stop test case execution

Figure 47 – Special usages of the stop test component operation

11.7.6 The Done operation

The done operation shall be represented within a condition symbol, which is attached to the test
component instance, which performs the done operation (see Figure 48). The condition symbol
contains the done statement.

MyComp.done

MyComp.done;

GFT Core

Figure 48 – Done operation

The any and all keywords can be used for the running and done operations but from the MTC
instance only. They have no graphical representation, but are textually denoted at the places of their
use.

11.8 Communication operations
Communication operations are structured into two groups:
a) Sending operations: a test component sends a message (send operation), calls a procedure

(call operation), replies to an accepted call (reply operation) or raises an exception
(raise operation).

b) Receiving operations: a component receives a message (receive operation), accepts a
procedure call (getcall operation), receives a reply for a previously called procedure
(getreply operation) or catches an exception (catch operation).

34 ITU-T Rec. Z.163 (11/2007)

11.8.1 General format of the sending operations
All sending operations use a message symbol that is drawn from the test component instance
performing the sending operation to the port instance to which the information is transmitted
(see Figure 49).

Sending operations consist of a send part and, in the case of a blocking procedure-based call
operation, a response and exception handling part.

The send part:
• specifies the port at which the specified operation shall take place;
• defines the optional type and value of the information to be transmitted;
• gives an optional address expression that uniquely identifies the communication partner in

the case of a one-to-many connection.

The port shall be represented by a port instance. The operation name for the call, reply, and
raise operations shall be denoted on top of the message symbol in front of the optional type
information. The send operation is implicit, i.e., the send keyword shall not be denoted. The value
of the information to be transmitted shall be placed underneath the message symbol. The optional
address expression (denoted by the to keyword) shall be placed underneath the value of the
information to be transmitted.

MyVariable + YourVariable – 2

MyPort

integer

port at which the specified
sending operation shall take place

test component instance
performing the sending operation

optional type information
value of information
to be transmitted
optional address expression to MyPeer

Figure 49 – General format of sending operations

The structure of the call operation is more specific. Please refer to clause 11.8.4.1 for further
details.

11.8.2 General format of the receiving operations
All receiving operations use a message symbol drawn from the port instance to the test component
instance receiving the information (see Figure 50).

A receiving operation consists of a receive part and an optional assignment part.

The receive part:
a) specifies the port at which the operation shall take place;
b) defines a matching part consisting of an optional type information and the matching value

which specifies the acceptable input which will match the statement;
c) gives an (optional) address expression that uniquely identifies the communication partner

(in case of one-to-many connections).

 ITU-T Rec. Z.163 (11/2007) 35

The port shall be represented by a port instance. The operation name for the getcall, getreply,
and catch operations shall be denoted on top of the message symbol in front of (optional) type
information. The receive operation is given implicitly, i.e., the receive keyword shall not be
denoted. The matching value for the acceptable input shall be placed underneath the message
symbol. The (optional) address expression (denoted by the from keyword) shall be placed
underneath the value of the information to be transmitted.

The (optional) assignment part (denoted by the '->') shall be placed underneath the value of the
information to be transmitted or if present underneath the address expression. It may be split over
several lines, for example to have the value, parameter and sender assignment each on individual
lines (see Figure 51).

MyTemplate(5,7)

MyPort

integer

port at which the specified
receiving operation shall take place

test component instance
performing the receiving operation

optional matching type

matching value

optional address expression from MyPeer

-> value MyVar

optional value assignment

Figure 50 – General format of receiving operations with address and value assignment

{?} value 5

MyPort

getreply MyProc

port at which the specified
receiving operation shall take place

test component instance
performing the receiving operation

optional matching type

matching value
-> param (V1)sender MyPeer

optional param and sender assignment

Figure 51 – General format of receiving operations with param and sender assignment

11.8.3 Message-based communication

11.8.3.1 The Send operation
The send operation shall be represented by an outgoing message symbol from the test component to
the port instance. The optional type information shall be placed above the message arrow. The
(inline) template shall be placed underneath the message arrow (see Figures 52 and 53).

36 ITU-T Rec. Z.163 (11/2007)

MyTemplate(5,MyVar)

MyType

MyPort

MyPort.send(MyType – MyTemplate(5,MyVar));

GFT Core

Figure 52 – Send operation with template reference

5

integer

MyPort

MyPort.send(integer:5);

GFT Core

Figure 53 – Send operation with inline template

11.8.3.2 The Receive operation
The receive operation shall be represented by an incoming message arrow from the port instance to
the test component. The optional type information shall be placed above the message arrow. The
(inline) template shall be placed underneath the message arrow (see Figures 54 and 55).

MyPort

MyTemplate(5,MyVar)

MyType

MyPort.receive(MyType – MyTemplate(5, MyVar));

GFT Core

Figure 54 – Receive operation with template reference

 MyPort

5

integer

MyPort.receive(integer:5);

GFT Core

Figure 55 – Receive operation with inline template

 ITU-T Rec. Z.163 (11/2007) 37

11.8.3.2.1 Receive any message
The receive any message operation shall be represented by an incoming message arrow from the
port instance to the test component without any further information attached to it (see Figure 56).

 MyPort

MyPort.receive;

GFT Core

Figure 56 – Receive any message

11.8.3.2.2 Receive on any port
The receive on any port operation shall be represented by a found symbol representing any port to
the test component (see Figure 57).

MyMessage

any port.receive(MyMessage);

GFT Core

Figure 57 – Receive on any port

11.8.3.3 The Trigger operation
The trigger operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword trigger above the message arrow preceding the type
information if present. The optional type information is placed above the message arrow subsequent
to the keyword trigger. The (inline) template is placed underneath the message arrow
(see Figures 58 and 59).

MyTemplate

trigger MyType

MyPort

MyPort.trigger(MyType – MyTemplate);

GFT Core

Figure 58 – Trigger operation with template reference

38 ITU-T Rec. Z.163 (11/2007)

5

trigger integer

MyPort

MyPort.trigger(integer:5);

GFT Core

Figure 59 – Trigger operation with inline template

11.8.3.3.1 Trigger on any message
The trigger on any message operation shall be represented by an incoming message arrow from the
port instance to the test component and the keyword trigger above the message arrow without any
further information attached to it (see Figure 60).

trigger

MyPort

MyPort.trigger;

GFT Core

Figure 60 – Trigger on any message operation

11.8.3.3.2 Trigger on any port
The trigger on any port operation shall be represented by a found symbol representing any port to
the test component (see Figure 61).

MyMessage

trigger

any port.trigger(MyMessage);

GFT Core

Figure 61 – Trigger on any port operation

 ITU-T Rec. Z.163 (11/2007) 39

11.8.4 Procedure-based communication

11.8.4.1 The Call operation

11.8.4.1.1 Calling blocking procedures

The blocking call operation is represented by an outgoing message symbol from the test
component to the port instance with a subsequent suspension region on the test component and the
keyword call above the message arrow preceding the signature if present. The (inline) template is
placed underneath the message arrow (see Figures 62 and 63).

call MyProc

MyProcTemplate

call

MyPort

MyPort.call(MyProc – MyProcTemplate) {

[] …

[] …

[] …

}

GFT Core

Figure 62 – Blocking call operation with template reference

call MyProc

{ -, MyVar2}

call

MyPort

MyPort.call(MyProc:{ -, MyVar2}) {

[] …

[] …

[] …

}

GFT Core

Figure 63 – Blocking call operation with inline template

The call inline expression is introduced in order to facilitate the specification of the alternatives of
the possible responses to the blocking call operation. The call operation may be followed by
alternatives of getreply, catch and timeout. The responses to a call are specified within the call
inline expression following the call operation separated by dashed lines (see Figure 64).

40 ITU-T Rec. Z.163 (11/2007)

call MyProc

{ -, MyVar2}

call

getreply MyProc

{?, ?}
-> value MyResult

MyException

catch MyProc, MyExceptionType

MyPort

MyPort.call(MyProc:{ -, MyVar2}) {

[] MyPort.getreply(MyProc:{?, ?})

-> value MyResult { }

[] MyPort.catch

(MyProc, MyExceptionType – MyException) { }

}

GFT Core

Figure 64 – Blocking call operation followed by alternatives of getreply and catch

The call operation may optionally include a timeout. For that, the start implicit timer symbol is used
to start this timing period. The timeout implicit timer symbol is used to represent the timeout
exception (see Figure 65).

call MyProc

{ -, MyVar2}

call

MyPort

20E-3

MyPort.call(MyProc:{ -, MyVar2},20E-3) {

[] …

[] …

[] MyPort.catch(timeout) {

…

}

}

GFT Core

Figure 65 – Blocking call operation followed by timeout exception

11.8.4.1.2 Calling non-blocking procedures

The non-blocking call operation shall be represented by an outgoing message symbol from the test
component to the port and the keyword call above the message arrow preceding the signature.
There shall be no suspension region symbol attached to the message symbol. The optional signature
is represented above the message arrow. The (inline) template is placed underneath the message
arrow (see Figures 66 and 67).

 ITU-T Rec. Z.163 (11/2007) 41

 MyPort

call MyProc

MyProcTemplate

MyPort.call(MyProcTemplate, nowait);

GFT Core

Figure 66 – Non-blocking call operation with template reference

 MyPort

call MyProc

{ MyVar1, MyVar2}

MyPort.call(MyProc – {MyVar1,MyVar2}, nowait);

GFT Core

Figure 67 – Non-blocking call operation with inline template

11.8.4.2 The Getcall operation

The getcall operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword getcall above the message arrow preceding the signature.
The signature is placed above the message arrow subsequent to the keyword getcall. The (inline)
template is placed underneath the message arrow (see Figures 68 and 69).

getcall MyProc
MyTemplateRef(2)

MyPort

MyPort.getcall(MyProc – MyTemplateRef(2));

GFT Core

Figure 68 – Getcall operation with template reference

42 ITU-T Rec. Z.163 (11/2007)

getcall MyProc

{5, MyVar2}

MyPort

MyPort.getcall(MyProc – { 5, MyVar2});

GFT Core

Figure 69 – Getcall operation with inline template

11.8.4.2.1 Accepting any call
The accepting any call operation shall be represented by an incoming message arrow from the port
instance to the test component and the keyword getcall above the message arrow. No further
information shall be attached to the message symbol (see Figure 70).

getcall

MyPort

MyPort.getcall;

GFT Core

Figure 70 – Getcall on any call operation

11.8.4.2.2 Getcall on any port
The getcall on any port operation is represented by a found symbol representing any port to the test
component and the keyword getcall above the message arrow followed by the signature if
present. The (inline) template if present shall be placed underneath the message arrow
(see Figure 71).

getcall MyProc

MyTemplateRef

any port.getcall(MyProc – MyTemplateRef);

GFT Core

Figure 71 – Getcall on any port operation with template reference

 ITU-T Rec. Z.163 (11/2007) 43

11.8.4.3 The Reply operation
The reply operation shall be represented by an outgoing message symbol from the test component
to the port instance and the keyword reply above the message arrow preceding the signature. The
signature shall be placed above the message arrow subsequent to the keyword reply. The (inline)
template shall be placed underneath the message arrow (see Figures 72 and 73).

reply MyProc

MyTemplateRef

 value 20

MyPort

MyPort.reply(MyProc – MyTemplateRef value 20);

GFT Core

Figure 72 – Reply operation with template reference

reply MyProc

{5, MyVar2}
 value 20

MyPort

MyPort.reply(MyProc – {5, MyVar2} value 20);

GFT Core

Figure 73 – Reply operation with inline template

11.8.4.4 The Getreply operation
The getreply operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword getreply above the message arrow preceding the signature.
Within a call symbol, the message arrow head shall be attached to a preceding suspension region on
the test component (see Figures 74 and 75). Outside a call symbol, the message arrow head shall not
be attached to a preceding suspension region on the test component (see Figures 76 and 77).

The signature shall be placed above the message arrow subsequent to the keyword getreply. The
(inline) template shall be placed underneath the message arrow.

getreply MyProc

MyTemplateRef
value 20

MyPort

:

MyPort.getreply(MyProc – MyTemplateRef value 20);

:

GFT Core

Figure 74 – Getreply operation with template reference (within a call symbol)

44 ITU-T Rec. Z.163 (11/2007)

getreply MyProc

{ - , ?}
value ?

MyPort

-> value MyResult

:

MyPort.getreply(MyProc – {-, ?}

value ?) -> value MyResult;

:

GFT Core

Figure 75 – Getreply operation with inline template (within a call symbol)

getreply MyProc

MyTemplateRef
value 20

MyPort

MyPort.getreply(MyProc – MyTemplateRef

value 20);

GFT Core

Figure 76 – Getreply operation with template reference (outside a call symbol)

getreply MyProc

{ - , ?}
value ?

MyPort

-> value MyResult

MyPort.getreply(MyProc – {-, ?)

value ?) -> value MyResult;

GFT Core

Figure 77 – Getreply operation with inline template (outside a call symbol)

11.8.4.4.1 Get any reply from any call
The get any reply from any call operation shall be represented by an incoming message arrow from
the port instance to the test component and the keyword getreply above the message. No signature
shall follow the getreply keyword. Within a call symbol, the message arrow head shall be attached
to a preceding suspension region on the test component (see Figure 78). Outside a call symbol, the
message arrow head shall not be attached to a preceding suspension region on the test component
(see Figure 79).

 ITU-T Rec. Z.163 (11/2007) 45

getreply

MyPort

from MyPeer

:

[] MyPort.getreply from MyPeer { … }

:

GFT Core

Figure 78 – Get any reply from any call (within a call symbol)

getreply

MyPort

MyPort.getreply;

GFT Core

Figure 79 – Getreply from any call (outside a call symbol)

11.8.4.4.2 Get a reply on any port
The get a reply on any port operation is represented by a found symbol representing any port to the
test component. The keyword getreply shall be placed above the message arrow followed by the
signature if present. Within a call symbol, the message arrow head shall be attached to a preceding
suspension region on the test component (see Figure 80). Outside a call symbol, the message arrow
head shall not be attached to a preceding suspension region on the test component (see Figure 81).

The signature if present shall be placed above the message arrow subsequent to the keyword
getreply. The optional (inline) template is placed underneath the message arrow.

MyTemplateRef

getreply

value MyResult

:

[] any port.getreply(MyProc – MyTemplateRef

value MyResult) { … }

:

GFT Core

Figure 80 – Get a reply on any port (within a call symbol)

46 ITU-T Rec. Z.163 (11/2007)

MyTemplateRef

getreply MyProc

value Myresult

any port.getreply(MyProc – MyTemplateRef

value MyResult);

GFT Core

Figure 81 – Get a reply on any port (outside a call symbol)

11.8.4.5 The Raise operation
The raise operation shall be represented by an outgoing message symbol from the test component to
the port instance. The keyword raise shall be placed above the message arrow preceding the
signature and the exception type, which are separated by a comma. The (inline) template shall be
placed underneath the message arrow (see Figures 82 and 83).

raise MyProc, MyExceptionType

MyTemplateRef

MyPort

MyPort.raise(MyProc,

MyExceptionType – MyTemplateRef);

GFT Core

Figure 82 – Raise operation with template reference

raise MyProc, integer

5

MyPort

MyPort.raise(MyProc, integer:5);

GFT Core

Figure 83 – Raise operation with inline template

11.8.4.6 The Catch operation
The catch operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword catch above the message arrow preceding the signature and
the exception type (if present). Within a call symbol, the message arrow head shall be attached to a
preceding suspension region on the test component (see Figures 84 and 85). Outside a call symbol,
the message arrow head shall not be attached to a preceding suspension region on the test
component (see Figures 86 and 87).

 ITU-T Rec. Z.163 (11/2007) 47

The signature and optional exception type information are placed above the message arrow
subsequent to the keyword catch and are separated by a comma if the exception type is present.
The (inline) template is placed underneath the message arrow.

MyTemplate(5)

catch MyProc

MyPort

:

[] MyPort.catch(MyProc, MyTemplate(5)) { … }

:

GFT Core

Figure 84 – Catch operation with template reference (within a call symbol)

MyVar

catch MyProc, MyType

MyPort

:

[] MyPort.catch(MyProc, MyType – MyVar) { … }

:

GFT Core

Figure 85 – Catch operation with inline template (within a call symbol)

MyTemplate(5)

catch MyProc

MyPort

MyPort.catch(MyProc, MyTemplate(5));

GFT Core

Figure 86 – Catch operation with template reference (outside a call symbol)

48 ITU-T Rec. Z.163 (11/2007)

MyVar

catch MyProc, MyType

MyPort

MyPort.catch(MyProc, MyType – MyVar);

GFT Core

Figure 87 – Catch operation with inline template (outside a call symbol)

11.8.4.6.1 The Timeout exception
The timeout exception operation shall be represented by a timeout symbol with the arrow connected
to the test component (see Figure 88). No further information shall be attached to the timeout
symbol. It shall be used within a call symbol only. The message arrow head shall be attached to a
preceding suspension region on the test component.

 MyPort

:

[] MyPort.catch(timeout) { … }

:

GFT Core

Figure 88 – Timeout exception (within a call symbol)

11.8.4.6.2 Catch any exception
The catch any exception operation shall be represented by an incoming message arrow from the
port instance to the test component and the keyword catch above the message arrow. Within a call
symbol, the message arrow head shall be attached to a preceding suspension region on the test
component (see Figure 89). Outside a call symbol, the message arrow head shall not be attached to
a preceding suspension region on the test component (see Figure 90). The catch any exception shall
have no template and no exception type.

catch

MyPort

:

[] MyPort.catch { … }

:

GFT Core

Figure 89 – Catch any exception (within a call symbol)

 ITU-T Rec. Z.163 (11/2007) 49

catch

MyPort

MyPort.catch;

GFT Core

Figure 90 – Catch any exception (outside a call symbol)

11.8.4.6.3 Catch on any port
The catch on any port operation is represented by a found symbol representing any port to the test
component and the keyword catch above the message arrow. Within a call symbol, the message
arrow head shall be attached to a preceding suspension region on the test component
(see Figure 91). Outside a call symbol, the message arrow head shall not be attached to a preceding
suspension region on the test component (see Figure 92). The template if present is placed
underneath the message arrow.

MyTemplateRef

catch MyProc

:

[] any port.catch(MyProc – MyTemplateRef) { … }

:

GFT Core

Figure 91 – Catch on any port (within a call symbol)

MyTemplateRef

catch MyProc

any port.catch(MyProc – MyTemplateRef);

GFT Core

Figure 92 – Catch on any port (outside a call symbol)

50 ITU-T Rec. Z.163 (11/2007)

11.8.5 The Check operation
The check operation shall be represented by an incoming message arrow from the port instance to
the test component. The keyword check shall be placed above the message arrow. The attachment
of the information related to the receive (see Figure 93), getcall, getreply (see Figures 94
and 95) and catch follows the check keyword and is according to the rules for representing those
operations.

5

check integer

MyPort

MyPort.check(receive(integer – 5));

GFT Core

Figure 93 – Check a receive with inline template

check getreply MyProc

{ MyVar1,MyVar2}
value ?

MyPort

-> value MyResult

:

[] MyPort.check(getreply(MyProc1:{MyVar1, MyVar2}

value ?) -> value MyResult)

{ … }

:

GFT Core

Figure 94 – Check a getreply (within a call symbol)

check getreply MyProc

MyTemplateRef
value 20

MyPort

MyPort.check(getreply(MyProc1 – MyTemplateRef)

value 20);

GFT Core

Figure 95 – Check a getreply (outside a call symbol)

11.8.5.1 The Check any operation
The check any operation shall be represented by an incoming message arrow from the port instance
to the test component and the keyword check above the message arrow (see Figure 96). It shall
have no receiving operation keyword, type and template attached to it. Optionally, an address
information and storing the sender can be attached.

 ITU-T Rec. Z.163 (11/2007) 51

check

MyPort

MyPort.check;

GFT Core

Figure 96 – Check any operation

11.8.5.2 Check on any port
The check on any port operation is represented by a found symbol representing any port to the test
component and the keyword check above the message arrow (see Figure 97). The attachment of the
information related to the receive, getcall, getreply and catch follows the check keyword and
is according to the rules for representing those operations.

MyTemplateRef

check

any port.check(receive(MyTemplateRef));

GFT Core

Figure 97 – Check a receive on any port

11.8.6 Controlling communication ports

11.8.6.1 The Clear port operation

The clear port operation shall be represented by a condition symbol with the keyword clear. It is
attached to the test component instance, which performs the clear port operation, and to the port that
is cleared (see Figure 98).

clear

MyPort

MyPort.clear;

GFT Core

Figure 98 – Clear port operation

52 ITU-T Rec. Z.163 (11/2007)

11.8.6.2 The Start port operation

The start port operation shall be represented by a condition symbol with the keyword start. It is
attached to the test component instance, which performs the start port operation, and to the port that
is started (see Figure 99).

start

MyPort

MyPort.start;

GFT Core

Figure 99 – Start port operation

11.8.6.3 The Stop port operation

The stop port operation shall be represented by a condition symbol with the keyword stop. It is
attached to the test component instance, which performs the stop port operation, and to the port that
is stopped (see Figure 100).

stop

MyPort

MyPort.stop;

GFT Core

Figure 100 – Stop port operation

11.8.6.4 Use of any and all with ports

The GFT representation of the any keyword for ports together with the receive, trigger,
getcall, getreply, catch, and check operations is explained in clauses 11.8.1 to 11.8.6.3.

The all keyword for ports together with the clear, start and stop operation is represented by
attaching the condition symbol containing the clear, start or stop operation to all port instances
represented in the GFT diagram for a testcase, function or altstep.

11.9 Timer operations
In GFT, there are two different timer symbols: one for identified timers and one for call timers
(see Figure 101). They differ in appearance as solid line timer symbols are used for identified timers
and dashed timer symbols for call timers. An identified timer shall have its name attached to its
symbol, whereas a call timer does not have a name. Identified timers are described in this clause.
The call timer is dealt with in clause 11.8.4.

 ITU-T Rec. Z.163 (11/2007) 53

MyTimer

Figure 101 – Identified timer and call timers

GFT does not provide any graphical representation for the running timer operation (being a
Boolean expression). It is textually denoted at the places of its use.

11.9.1 The Start timer operation
For the start timer operation, the start timer symbol shall be attached to the component instance. A
timer name and an optional duration value (within parentheses) may be associated (see Figure 102).

MyTimer(10.0)

MyTimer.start(10.0);

GFT Core

Figure 102 – The start timer operation

11.9.2 The Stop timer operation

For the stop timer operation, the stop timer symbol shall be attached to the component instance. An
optional timer name may be associated (see Figure 103).

MyTimer

MyTimer.stop;

GFT Core

Figure 103 – The stop timer operation

The symbols for a start timer and a stop timer operation may be connected with a vertical line. In
this case, the timer identifier needs only be specified next to the start timer symbol (see Figure 104).

MyTimer(10.0)

MyTimer.start(10.0);

MyTimer.stop;

GFT Core

Figure 104 – Connected start and stop timer symbols

54 ITU-T Rec. Z.163 (11/2007)

11.9.3 The Timeout operation
For the timeout operation, the timeout symbol shall be attached to the component instance. An
optional timer name may be associated (see Figure 105).

MyTimer

MyTimer.timeout;

GFT Core

Figure 105 – The timeout operation

The symbols for a start timer and a timeout operation may be connected with a vertical line. In this
case, the timer identifier needs only be specified next to the start timer symbol (see Figure 106).

MyTimer(10.0)

MyTimer.start(10.0);

MyTimer.timeout;

GFT Core

Figure 106 – Connected start and timeout timer symbols

11.9.4 The Read timer operation
The read timer operation shall be put into an action box (see Figure 107).

MyVar :=
MyTimer.read

MyVar := MyTimer.read;

GFT Core

Figure 107 – The read timer operation

 ITU-T Rec. Z.163 (11/2007) 55

11.9.5 Use of any and all with timers

The stop timer operation can be applied to all timers (see Figure 108).

all timer.stop;

GFT Core

Figure 108 – Stopping all timers

The timeout operation can be applied to any timer (see Figure 109).

any timer.timeout;

GFT Core

Figure 109 – Timeout from any timer

11.10 Test verdict operations

The verdict set operation setverdict is represented in GFT with a condition symbol within which
the values pass, fail, inconc or none are denoted (see Figure 110).
NOTE – The rules for setting a new verdict follow the normal TTCN-3 overwriting rules for test verdicts.

pass

setverdict(pass);

GFT Core

Figure 110 – Set local verdict

GFT does not provide any graphical representation for the getverdict operation (being an
expression). It is textually denoted at the places of its use.

56 ITU-T Rec. Z.163 (11/2007)

11.11 External actions
External actions are represented within action box symbols (see Figure 111). The syntax of the
external action is placed within that symbol.

action(
"Send MyTemplate
on lower PCO ")

action("Send MyTemplate on lower PCO ");

GFT Core

Figure 111 – External actions

11.12 Specifying attributes
The attributes defined for the module control part, testcases, functions and altsteps are represented
within the text symbol. The syntax of the with statement is placed within that symbol. An example
is given in Figure 112.

 testcase MyTestcase()

extension
“MySpecialLogging()"

testcase MyTestcase() {

:

}

with {

extension 'MySpecialLogging()"

}

GFT Core

Figure 112 – Specifying attributes

 ITU-T Rec. Z.163 (11/2007) 57

Annex A

GFT BNF
(This annex forms an integral part of this Recommendation)

A.1 Meta-language for GFT
The graphical syntax for GFT is defined on the basis of the graphical syntax of MSC
[ITU-T Z.120]. The graphical syntax definition uses a meta-language, which is explained in
clause 1.4 of [ITU-T Z.120]:

"The graphical syntax is not precise enough to describe the graphics such that there are no graphical
variations. Small variations on the actual shapes of the graphical terminal symbols are allowed.
These include, for instance, shading of the filled symbols, the shape of an arrow head and the
relative size of graphical elements. Whenever necessary the graphical syntax will be supplemented
with informal explanation of the appearance of the constructions. The meta-language consists of a
BNF-like notation with the special meta-constructions: contains, is followed by, is associated with,
is attached to, above and set. These constructs behave like normal BNF production rules, but
additionally they imply some logical or geometrical relation between the arguments. The is
attached to construct behaves somewhat differently as explained below. The left-hand side of all
constructs except above must be a symbol. A symbol is a non-terminal that produces in every
production sequence exactly one graphical terminal. We will consider a symbol that is attached to
other areas or that is associated with a text string as a symbol too. The explanation is informal and
the meta-language does not precisely describe the geometrical dependencies."

See [ITU-T Z.120] for more details.

A.2 Conventions for the syntax description
Table A.1 defines the meta-notation used to specify the grammar for GFT. It is identical to the
meta-notation used by TTCN-3, but different from the meta-notation used by MSC. In order to ease
the readability, the correspondence to the MSC meta-notation is given in addition and differences
are indicated.

Table A.1 – The syntactic meta-notation

Meaning TTCN-3 GFT MSC Differences

is defined to be ::= ::= ::=

abc followed by xyz abc xyz abc xyz abc xyz
Alternative | | |

0 or 1 instances of abc [abc] [abc] [abc]
0 or more instances of abc {abc} {abc} {abc}* X
1 or more instances of abc {abc} + {abc} + {abc} +

Textual grouping (...) (...) {...} X
the non-terminal symbol abc abc abc

(for a GFT non-terminal)
or abc

(for a TTCN non-
terminal)

<abc> X

a terminal symbol abc abc abc abc or
<name> or

<character string>

X

58 ITU-T Rec. Z.163 (11/2007)

A.3 The GFT grammar

A.3.1 Diagrams

A.3.1.1 Control diagram

ControlDiagram ::=
 Frame contains (ControlHeading ControlBodyArea)

ControlHeading ::=
 TTCN3ModuleKeyword TTCN3ModuleId
 { LocalDefinition [SemiColon] }

ControlBodyArea ::=
 { ControlInstanceArea TextLayer ControlEventLayer } set

TextLayer ::=
 { TextArea } set

ControlEventLayer::=
 ControlEventArea | ControlEventArea above ControlEventLayer

ControlEventArea ::=
 (
 InstanceTimerEventArea
 | ControlActionArea
 | InstanceInvocationArea
 | ExecuteTestcaseArea
 | ControlInlineExpressionArea)
 [is associated with { CommentArea } set]

A.3.1.2 Testcase diagram

TestcaseDiagram ::=
 Frame contains (TestcaseHeading TestcaseBodyArea)

TestcaseHeading ::=
 TestcaseKeyword TestcaseIdentifier
 '('[TestcaseFormalParList] ')'
 ConfigSpec
 { LocalDefinition [SemiColon] }

TestcaseBodyArea ::=
 { InstanceLayer TextLayer InstanceEventLayer PortEventLayer ConnectorLayer } set

InstanceLayer ::=
 { InstanceArea } set

InstanceEventLayer ::=
 InstanceEventArea | InstanceEventArea above InstanceEventLayer

InstanceEventArea ::=
 (
 InstanceSendEventArea
 | InstanceReceiveEventArea
 | InstanceCallEventArea
 | InstanceGetcallEventArea
 | InstanceReplyEventArea
 | InstanceGetreplyWithinCallEventArea
 | InstanceGetreplyOutsideCallEventArea
 | InstanceRaiseEventArea
 | InstanceCatchWithinCallEventArea
 | InstanceCatchTimeoutWithinCallEventArea
 | InstanceCatchOutsideCallEventArea
 | InstanceTriggerEventArea
 | InstanceCheckEventArea
 | InstanceFoundEventArea
 | InstanceTimerEventArea
 | InstanceActionArea
 | InstanceLabellingArea
 | InstanceConditionArea
 | InstanceInvocationArea
 | InstanceDefaultHandlingArea
 | InstanceComponentCreateArea
 | InstanceComponentStartArea

 ITU-T Rec. Z.163 (11/2007) 59

 | InstanceComponentStopArea
 | InstanceInlineExpressionArea)
 [is associated with { CommentArea } set]

/* STATIC SEMANTICS – a condition area containing a boolean expression shall be used within alt inline expression, i.e. AltArea, and
call inline expression, i.e. CallArea, only */

InstanceCallEventArea ::=
 InstanceBlockingCallEventArea
 | InstanceNonBlockingCallEventArea

PortEventLayer ::=
 PortEventArea | PortEventArea above PortEventLayer

PortEventArea ::=
 PortOutEventArea
 | PortOtherEventArea

PortOutEventArea ::=
 PortOutMsgEventArea
 | PortGetcallOutEventArea
 | PortGetreplyOutEventArea
 | PortCatchOutEventArea
 | PortTriggerOutEventArea
 | PortCheckOutEventArea

PortOtherEventArea ::=
 PortInMsgEventArea
 | PortCallInEventArea
 | PortReplyInEventArea
 | PortRaiseInEventArea
 | PortConditionArea
 | PortInvocationArea
 | PortInlineExpressionArea

ConnectorLayer ::=
 {
 SendArea
 | ReceiveArea
 | NonBlockingCallArea
 | GetcallArea
 | ReplyArea
 | GetreplyWithinCallArea
 | GetreplyOutsideCallArea
 | RaiseArea
 | CatchWithinCallArea
 | CatchOutsideCallArea
 | TriggerArea
 | CheckArea
 | ConditionArea
 | InvocationArea
 | InlineExpressionArea
 } set

A.3.1.3 Function diagram

FunctionDiagram ::=
 Frame contains (FunctionHeading FunctionBodyArea)

FunctionHeading ::=
 FunctionKeyword FunctionIdentifier
 '('[FunctionFormalParList] ')'
 [RunsOnSpec] [ReturnType]
 { LocalDefinition [SemiColon] }

FunctionBodyArea ::=
 TestcaseBodyArea

60 ITU-T Rec. Z.163 (11/2007)

A.3.1.4 Altstep diagram

AltstepDiagram ::=
 Frame contains (AltstepHeading AltstepBodyArea)

AltstepHeading ::=
 AltstepKeyword AltstepIdentifier
 '('[AltstepFormalParList] ')'
 [RunsOnSpec]
 { LocalDefinition [SemiColon] }

AltstepBodyArea ::=
 TestcaseBodyArea

/* STATIC SEMANTICS – a altstep body area shall contain a single alt inline expression only */

A.3.1.5 Comments

TextArea ::=
 TextSymbol
 contains ({ TTCN3Comments } [MultiWithAttrib] { TTCN3Comments })

Note that there is no explicit rule for TTCN3 comments, they are explained in clause A.1.4 of [ITU-T Z.161]

/* STATIC SEMANTICS – within a diagram there shall be at most one text symbol defining a with statement */

TextSymbol ::=

CommentArea ::=
 EventCommentSymbol contains TTCN3Comments
EventCommentSymbol ::=

/* STATIC SEMANTICS – a comment symbol can be attached to any graphical symbol in GFT */

A.3.1.6 Diagram

Frame ::=

LocalDefinition ::=
 ConstDef
 | VarInstance
 | TimerInstance

/* STATIC SEMANTICS - declarations of constants and variables with create, activate, and execute statements as well as with functions
that include communication functions must not be made textually within LocalDefinition, but must be made graphically within create,
default, execute, and reference symbols, respectively */

A.3.2 Instances

A.3.2.1 Component instances

InstanceArea ::=
 ComponentInstanceArea
 | PortInstanceArea

ComponentInstanceArea ::=
 ComponentHeadArea is followed by ComponentBodyArea

 ITU-T Rec. Z.163 (11/2007) 61

ComponentHeadArea::=
 (MTCOp | SelfOp)
 is followed by (InstanceHeadSymbol [contains ComponentType])

InstanceHeadSymbol ::=

ComponentBodyArea ::=
 InstanceAxisSymbol
 is attached to { InstanceEventArea } set
 is followed by ComponentEndArea

InstanceAxisSymbol::=

ComponentEndArea ::=
 InstanceEndSymbol
 | StopArea
 | ReturnArea
 | RepeatSymbol
 | GotoArea

/* STATIC SEMANTICS – the return symbol shall be used within function diagrams only */
/* STATIC SEMANTICS – the repeat symbol shall end the component instance of a altstep diagram only */

A.3.2.2 Port instances

PortInstanceArea ::=
 PortHeadArea is followed by PortBodyArea

PortHeadArea::=
 Port
 is followed by (InstanceHeadSymbol [contains PortType])

PortBodyArea ::=
 PortAxisSymbol
 is attached to { PortEventArea } set
 is followed by InstanceEndSymbol

PortAxisSymbol::=

A.3.2.3 Control instances

ControlInstanceArea ::=
 ControlInstanceHeadArea is followed by ControlInstanceBodyArea

ControlInstanceHeadArea ::=
 ControlKeyword
 is followed by InstanceHeadSymbol

ControlInstanceBodyArea::=
 InstanceAxisSymbol
 is attached to { ControlEventArea } set
 is followed by ControlInstanceEndArea

ControlInstanceEndArea ::=
 InstanceEndSymbol

62 ITU-T Rec. Z.163 (11/2007)

A.3.2.4 Instance end

InstanceEndSymbol ::=

StopArea::=
 StopSymbol
 is associated with (Expression)

/* STATIC SEMANTICS – the expression shall refer to either the mtc or to self */

StopSymbol::=

ReturnArea::=
 ReturnSymbol
 [is associated with Expression]

ReturnSymbol::=

RepeatSymbol::=

GotoArea::=
 GotoSymbol
 contains LabelIdentifier

GotoSymbol::=

A.3.3 Timer

InstanceTimerEventArea::=
 InstanceTimerStartArea
 | InstanceTimerStopArea
 | InstanceTimeoutArea

InstanceTimerStartArea ::=
 TimerStartSymbol
 is associated with (TimerRef ["(" TimerValue ")"])
 is attached to InstanceAxisSymbol
 [is attached to { TimerStopSymbol2 | TimeoutSymbol3 }]

TimerStartSymbol ::=
 TimerStartSymbol1 | TimerStartSymbol2

InstanceTimerStopArea ::=
 TimerStopArea1 | TimerStopArea2

 ITU-T Rec. Z.163 (11/2007) 63

TimerStopArea1 ::=
 TimerStopSymbol1
 is associated with TimerRef
 is attached to InstanceAxisSymbol

TimerStopArea2 ::=
 TimerStopSymbol2
 is attached to InstanceAxisSymbol
 is attached to TimerStartSymbol

InstanceTimeoutArea ::=
 TimeoutArea1 | TimeoutArea2

TimeoutArea1 ::=
 TimeoutSymbol
 is associated with TimerRef
 is attached to InstanceAxisSymbol

TimeoutArea2 ::=
 TimeoutSymbol3
 is attached to InstanceAxisSymbol
 is attached to TimerStartSymbol

TimeoutSymbol ::=
 TimeoutSymbol1 | TimeoutSymbol2

A.3.4 Action

InstanceActionArea ::=
 ActionSymbol
 contains { ActionStatement [SemiColon] }+
 is attached to InstanceAxisSymbol

64 ITU-T Rec. Z.163 (11/2007)

ActionStatement ::=
 SUTStatements
 | ConnectStatement
 | MapStatement
 | DisconnectStatement
 | UnmapStatement
 | ConstDef
 | VarInstance
 | TimerInstance
 | Assignment
 | LogStatement
 | LoopConstruct
 | ConditionalConstruct

/* STATIC SEMANTICS – declarations of constants and variables with create, activate, and execute statements as well as with function
invocations of user-defined functions must not be made textually within an action box, but must be made graphically within create,
default, execute, and reference symbols, respectively */
/* STATIC SEMANTICS – assignments with create, activate, and execute statements as well as with function invocations of user-
defined functions must not be made textually within an action box, but must be made graphically within create, default, execute, and
reference symbols, respectively */
/* STATIC SEMANTICS – only those loop and conditional constructs, which do not involve communication operations, i.e. those with
'data functions' only, may be contained in action boxes */

ControlActionArea ::=
 ActionSymbol
 is attached to InstanceAxisSymbol
 contains { ControlActionStatement [SemiColon] }+

ControlActionStatement ::=
 SUTStatements
 | ConstDef
 | VarInstance
 | TimerInstance
 | Assignment
 | LogStatement

/* STATIC SEMANTICS – declarations of constants and variables with create, activate, and execute statements as well as with function
invocations of user-defined functions must not be made textually within an action box, but must be made graphically within create,
default, execute, and reference symbols, respectively */

/* STATIC SEMANTICS – assignments with create, activate, and execute statements as well as with function invocations of user-
defined functions must not be made textually within an action box, but must be made graphically within create, default, execute, and
reference symbols, respectively */.

A.3.5 Invocation

InvocationArea ::=
 ReferenceSymbol
 contains Invocation
 is attached to InstanceAxisSymbol
 [is attached to { PortAxisSymbol } set]

/* STATIC SEMANTICS – all port instances have to be covered by the reference symbol for an invoked function if it has a runs on
specification, as well as for an invoked altstep */
/* STATIC SEMANTICS – only those port instances, which are passed into a function via port parameters, have to be covered by the
reference symbol for an invoked function without a runs on specification. Note that the reference symbol may be attached to port
instances which are not passed as port parameters into the function. */

Invocation ::=
 FunctionInstance
 | AltstepInstance
 | ConstDef
 | VarInstance
 | Assignment

A.3.5.1 Function and altstep invocation on component/Control instances

InstanceInvocationArea ::=
 InstanceInvocationBeginSymbol

 ITU-T Rec. Z.163 (11/2007) 65

 is followed by InstanceInvocationEndSymbol
 is attached to InstanceAxisSymbol
 is attached to InvocationArea

InstanceInvocationBeginSymbol ::=
 VoidSymbol

InstanceInvocationEndSymbol ::=
 VoidSymbol

A.3.5.2 Function and altstep invocation on ports

PortInvocationArea ::=
 PortInvocationBeginSymbol
 is followed by PortInvocationEndSymbol
 is attached to PortAxisSymbol
 is attached to InvocationArea

/* STATIC SEMANTICS – only invocations with function instances and test step instances shall be attached to a port instance, in that
case all port instances have to be covered by the reference symbol for an invoked function if it has a runs on specification, as well as for
an invoked altstep */

PortInvocationBeginSymbol ::=
 VoidSymbol

PortInvocationEndSymbol ::=
 VoidSymbol

A.3.5.3 Testcase execution

ExecuteTestcaseArea ::=
 ExecuteSymbol
 contains TestCaseExecution
 is attached to InstanceAxisSymbol

TestCaseExecution::=
 TestcaseInstance
 | ConstDef
 | VarInstance
 | Assignment

/* STATIC SEMANTICS – declarations of constants and variables as well as assignments shall use as outermost right-hand expression
an execute statement */

A.3.6 Activation/Deactivation of defaults

InstanceDefaultHandlingArea ::=
 DefaultSymbol
 contains DefaultHandling
 is attached to InstanceAxisSymbol

DefaultHandling::=
 ActivateOp
 | DeactivateStatement
 | ConstDef
 | VarInstance
 | Assignment

/* STATIC SEMANTICS – declarations of constants and variables as well as assignments shall use as outermost right-hand expression
an activate statement */

66 ITU-T Rec. Z.163 (11/2007)

A.3.7 Test components

A.3.7.1 Creation of test components

InstanceComponentCreateArea ::=
 CreateSymbol
 contains Creation
 is attached to InstanceAxisSymbol

Creation ::=
 CreateOp
 | ConstDef
 | VarInstance
 | Assignment

/* STATIC SEMANTICS – declarations of constants and variables as well as assignments shall use as outermost right-hand expression
a create statement */

A.3.7.2 Starting test components

InstanceComponentStartArea ::=
 StartSymbol
 contains StartTCStatement
 is attached to InstanceAxisSymbol

A.3.7.3 Stopping test components

InstanceComponentStopArea ::=
 StopSymbol
 is associated with (Expression | AllKeyword)
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the expression shall refer to a component identifier */
/* STATIC SEMANTICS – the instance component stop area shall be used as last event of an operand in an inline expression symbol, if
the component stops itself (e.g., self.stop) or stops the test execution (e.g. mtc.stop). */

A.3.8 Inline expressions

InlineExpressionArea ::=
 IfArea
 | ForArea
 | WhileArea
 | DoWhileArea
 | AltArea
 | InterleaveArea
 | CallArea

IfArea ::=
 IfInlineExpressionArea
 is attached to InstanceInlineExpressionBeginSymbol
 [is attached to InstanceInlineExpressionSeparatorSymbol]
 is attached to InstanceInlineExpressionEndSymbol
 [is attached to { PortInlineExpressionBeginSymbol } set
 [is attached to { PortInlineExpressionSeparatorSymbol } set]
 is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS – if a SeparatorSymbol is contained in the inline expression symbol, then
InstanceInlineExpressionSeparatorSymbols on component and port instances are used to attach the SeparatorSymbol to the respective
instances. */

InstanceInlineExpressionBeginSymbol ::=
 VoidSymbol

 ITU-T Rec. Z.163 (11/2007) 67

InstanceInlineExpressionSeparatorSymbol::=
 VoidSymbol

InstanceInlineExpressionEndSymbol ::=
 VoidSymbol

VoidSymbol ::= .

IfInlineExpressionArea ::=
 InlineExpressionSymbol
 contains (IfKeyword '(' BooleanExpression ')'
 is followed by OperandArea
 [is followed by SeparatorSymbol
 is followed by OperandArea])
OperandArea ::=
 ConnectorLayer
/* STATIC SEMANTICS – the event layer within an operand area shall not have a condition with a boolean expression */

ForArea ::=
 ForInlineExpressionArea
 is attached to InstanceInlineExpressionBeginSymbol
 is attached to InstanceInlineExpressionEndSymbol
 [is attached to { PortInlineExpressionBeginSymbol } set
 is attached to { PortInlineExpressionEndSymbol } set]

ForInlineExpressionArea ::=
 InlineExpressionSymbol
 contains (ForKeyword '(' Initial [SemiColon] Final [SemiColon] Step ')'
 is followed by OperandArea)

WhileArea ::=
 WhileInlineExpressionArea
 is attached to InstanceInlineExpressionBeginSymbol
 is attached to InstanceInlineExpressionEndSymbol
 [is attached to { PortInlineExpressionBeginSymbol } set
 is attached to { PortInlineExpressionEndSymbol } set]

WhileInlineExpressionArea ::=
 InlineExpressionSymbol
 contains (WhileKeyword '(' BooleanExpression ')'
 is followed by OperandArea)

DoWhileArea ::=
 DoWhileInlineExpressionArea
 is attached to InstanceInlineExpressionBeginSymbol
 is attached to InstanceInlineExpressionEndSymbol
 [is attached to { PortInlineExpressionBeginSymbol } set
 is attached to { PortInlineExpressionEndSymbol } set]

DoWhileInlineExpressionArea ::=
 InlineExpressionSymbol
 contains (DoKeyword WhileKeyword '(' BooleanExpression ')'
 is followed by OperandArea)

AltArea ::=
 AltInlineExpressionArea
 is attached to InstanceInlineExpressionBeginSymbol
 { is attached to InstanceInlineExpressionSeparatorSymbol }
 is attached to InstanceInlineExpressionEndSymbol
 [is attached to { PortInlineExpressionBeginSymbol } set
 [is attached to { PortInlineExpressionSeparatorSymbol } set]
 is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS – the number of InstanceInlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstanceInlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

AltInlineExpressionArea ::=
 InlineExpressionSymbol
 contains (AltKeyword
 is followed by GuardedOperandArea
 { is followed by SeparatorSymbol
 is followed by GuardedOperandArea }
 [is followed by SeparatorSymbol
 is followed by ElseOperandArea])

GuardedOperandArea ::=
 GuardOpLayer is followed by
 ConnectorLayer

68 ITU-T Rec. Z.163 (11/2007)

/* STATIC SEMANTICS – for the individual operands of an alt inline expression at first, either a InstanceTimeoutArea shall be given on
the component instance, or a GuardOpLayer has to be given */

GuardOpLayer ::=
 DoneArea
 | ReceiveArea
 | TriggerArea
 | GetcallArea
 | CatchOutsideCallArea
 | CheckArea
 | GetreplyOutsideCallArea

ElseOperandArea ::=
 ElseConditionArea
 is followed by ConnectorLayer

InterleaveArea ::=
 InterleaveInlineExpressionArea
 is attached to InstanceInlineExpressionBeginSymbol
 { is attached to InstanceInlineExpressionSeparatorSymbol }
 is attached to InstanceInlineExpressionEndSymbol
 [is attached to { PortInlineExpressionBeginSymbol } set
 [is attached to { PortInlineExpressionSeparatorSymbol } set]
 is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS – the number of InstanceInlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstanceInlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

InterleaveInlineExpressionArea ::=
 InlineExpressionSymbol
 contains (InterleavedKeyword
 is followed by UnguardedOperandArea
 { is followed by SeparatorSymbol
 is followed by UnguardedOperandArea })

UnguardedOperandArea ::=
 UnguardedOpLayer is followed by
 ConnectorLayer

/* STATIC SEMANTICS – the connector layer within an interleave inline expression area may not contain loop statements, goto,
activate, deactivate, stop, return or calls to functions */

UnguardedOpLayer ::=
 ReceiveArea
 | TriggerArea
 | GetcallArea
 | CatchOutsideCallArea
 | CheckArea
 | GetreplyOutsideCallArea

CallArea ::=
 CallInlineExpressionArea
 is attached to InstanceInlineExpressionBeginSymbol
 { is attached to InstanceInlineExpressionSeparatorSymbol }
 is attached to InstanceInlineExpressionEndSymbol
 [is attached to { PortInlineExpressionBeginSymbol } set
 [is attached to { PortInlineExpressionSeparatorSymbol } set]
 is attached to { PortInlineExpressionEndSymbol } set]

/* STATIC SEMANTICS – the number of InstanceInlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstanceInlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

CallInlineExpressionArea ::=
 InlineExpressionSymbol
 contains (CallOpKeyword '(' TemplateInstance ')' [ToClause]
 is followed by InstanceCallEventArea
 { is followed by SeparatorSymbol
 is followed by GuardedCallOperandArea })

GuardedCallOperandArea ::=
 [GuardedConditionLayer is followed by]
 CallBodyOpsLayer
 is attached to SuspensionRegionSymbol
 is followed by ConnectorLayer

/* STATIC SEMANTICS – for the individual operands in the GuardedCallOperandArea of a call inline expression at first, either a
InstanceCatchTimeoutWithinCallEventArea shall be given on the component instance, or a CallBodyOpsLayer has to be given */

 ITU-T Rec. Z.163 (11/2007) 69

GuardedConditionLayer ::=
 BooleanExpressionConditionArea
 | DoneArea

CallBodyOpsLayer ::=
 GetreplyWithinCallArea
 | CatchWithinCallArea

A.3.8.1 Inline expressions on component instances

InstanceInlineExpressionArea ::=
 InstanceIfArea
 | InstanceForArea
 | InstanceWhileArea
 | InstanceDoWhileArea
 | InstanceAltArea
 | InstanceInterleaveArea
 | InstanceCallArea

InstanceIfArea ::=
 (InstanceInlineExpressionBeginSymbol
 { is followed by InstanceEventArea }
 { is followed by InstanceInlineExpressionSeparatorSymbol
 { is followed by InstanceEventArea }]
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to IfInlineExpressionArea

InstanceForArea ::=
 (InstanceInlineExpressionBeginSymbol
 { is followed by InstanceEventArea }
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to ForInlineExpressionArea

InstanceWhileArea ::=
 (InstanceInlineExpressionBeginSymbol
 { is followed by InstanceEventArea }
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to WhileInlineExpressionArea

InstanceDoWhileArea ::=
 (InstanceInlineExpressionBeginSymbol
 { is followed by InstanceEventArea }
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to DoWhileInlineExpressionArea

InstanceAltArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by InstanceBooleanExpressionConditionArea]
 is followed by InstanceGuardArea
 { is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by InstanceGuardArea }
 [is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by InstanceElseGuardArea]
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to AltInlineExpressionArea

InstanceGuardArea ::=
 (InstanceInvocationArea
 | InstanceGuardOpArea)

70 ITU-T Rec. Z.163 (11/2007)

 { is followed by InstanceEventArea }
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the instance invocation area shall contain an altstep instance only */

InstanceGuardOpArea ::=
 (InstanceTimeoutArea
 | InstanceReceiveEventArea
 | InstanceTriggerEventArea
 | InstanceGetcallEventArea
 | InstanceGetreplyOutsideCallEventArea
 | InstanceCatchOutsideCallEventArea
 | InstanceCheckEventArea
 | InstanceDoneArea)
 is attached to InstanceAxisSymbol

InstanceElseGuardArea ::=
 ElseConditionArea
 { is followed by InstanceEventArea }
 is attached to InstanceAxisSymbol

InstanceInterleaveArea ::=
 (InstanceInlineExpressionBeginSymbol
 is followed by InstanceInterleaveGuardArea
 { is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by InstanceInterleaveGuardArea }
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to InterleaveInlineExpressionArea

InstanceInterleaveGuardArea ::=
 InstanceGuardOpArea
 { is followed by InstanceEventArea }
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the instance event area may not contain loop statements, goto, activate, deactivate, stop, return or calls to
functions */

InstanceCallArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by InstanceBooleanExpressionConditionArea]
 [is followed by InstanceCallOpArea]
 { is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by InstanceCallGuardArea}
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to CallInlineExpressionArea

InstanceCallOpArea ::=
 InstanceCallEventArea
 is followed by SuspensionRegionSymbol
 [is attached to InstanceCallTimerStartArea]
 is attached to InstanceAxisSymbol
 is attached to CallInlineExpressionArea

InstanceCallGuardArea ::=
 SuspensionRegionSymbol
 [is attached to InstanceGetreplyWithinCallEventArea
 | InstanceCatchWithinCallEventArea
 | InstanceCatchTimeoutWithinCallEventArea]
 { is followed by InstanceEventArea }
 is attached to InstanceAxisSymbol
 is attached to CallInlineExpressionArea

A.3.8.2 Inline expressions on ports

PortInlineExpressionArea ::=
 PortIfArea
 | PortForArea
 | PortWhileArea
 | PortDoWhileArea
 | PortAltArea

 ITU-T Rec. Z.163 (11/2007) 71

 | PortInterleaveArea
 | PortCallArea

PortIfArea ::=
 (PortInlineExpressionBeginSymbol
 { is followed by PortEventArea }
 [is followed by PortInlineExpressionSeparatorSymbol
 { is followed by PortEventArea }]
 is followed by PortInlineExpressionEndSymbol)
 is attached to PortAxisSymbol
 is attached to IfInlineExpressionArea

PortInlineExpressionBeginSymbol ::=
 VoidSymbol

PortInlineExpressionSeparatorSymbol::=
 VoidSymbol

PortInlineExpressionEndSymbol::=
 VoidSymbol

PortForArea ::=
 (PortInlineExpressionBeginSymbol
 { is followed by PortEventArea }
 is followed by PortInlineExpressionEndSymbol)
 is attached to PortAxisSymbol
 is attached to ForInlineExpressionArea

PortWhileArea ::=
 (PortInlineExpressionBeginSymbol
 { is followed by PortEventArea }
 is followed by PortInlineExpressionEndSymbol)
 is attached to PortAxisSymbol
 is attached to WhileInlineExpressionArea

PortDoWhileArea ::=
 (PortInlineExpressionBeginSymbol
 { is followed by PortEventArea }
 is followed by PortInlineExpressionEndSymbol)
 is attached to PortAxisSymbol
 is attached to DoWhileInlineExpressionArea

PortAltArea ::=
 (PortInlineExpressionBeginSymbol
 [is followed by PortOutEventArea]
 { is followed by PortEventArea }
 { is followed by PortInlineExpressionSeparatorSymbol
 [is followed by PortOutEventArea]
 { is followed by PortEventArea } }
 is followed by PortInlineExpressionEndSymbol)
 is attached to PortAxisSymbol
 is attached to AltInlineExpressionArea

PortInterleaveArea ::=
 (PortInlineExpressionBeginSymbol
 [is followed by PortOutEventArea]
 { is followed by PortEventArea }
 { is followed by PortInlineExpressionSeparatorSymbol
 [is followed by PortOutEventArea]
 { is followed by PortEventArea } }
 is followed by PortInlineExpressionEndSymbol)
 is attached to PortAxisSymbol
 is attached to InterleaveInlineExpressionArea

PortCallArea ::=
 (PortInlineExpressionBeginSymbol
 [is followed by PortCallInEventArea]
 { is followed by PortEventArea }
 { is followed by PortInlineExpressionSeparatorSymbol
 [is followed by PortOutEventArea]
 { is followed by PortEventArea } }
 is followed by PortInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to CallInlineExpressionArea

72 ITU-T Rec. Z.163 (11/2007)

A.3.8.3 Inline expressions on control instances

ControlInlineExpressionArea ::=
 ControlIfArea
 | ControlForArea
 | ControlWhileArea
 | ControlDoWhileArea
 | ControlAltArea
 | ControlInterleaveArea

ControlIfArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by ControlEventArea]
 [is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by ControlEventArea]
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to IfInlineExpressionArea

ControlForArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by ControlEventArea]
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to ForInlineExpressionArea

ControlWhileArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by ControlEventArea]
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to WhileInlineExpressionArea

ControlDoWhileArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by ControlEventArea]
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to DoWhileInlineExpressionArea

ControlAltArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by ControlGuardArea]
 { is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by ControlGuardArea }
 [is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by ControlElseGuardArea]
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to AltInlineExpressionArea

ControlGuardArea ::=
 (InstanceInvocationArea
 | InstanceTimeoutArea)
 { is followed by ControlEventArea }
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the instance invocation area shall contain an altstep instance only */

ControlElseGuardArea ::=
 ElseConditionArea
 { is followed by ControlEventArea }
 is attached to InstanceAxisSymbol

ControlInterleaveArea ::=
 (InstanceInlineExpressionBeginSymbol
 [is followed by ControlInterleaveGuardArea]
 { is followed by InstanceInlineExpressionSeparatorSymbol
 is followed by ControlInterleaveGuardArea }
 is followed by InstanceInlineExpressionEndSymbol)
 is attached to InstanceAxisSymbol
 is attached to InterleaveInlineExpressionArea

ControlInterleaveGuardArea ::=
 InstanceTimeoutArea
 { is followed by ControlEventArea }
 is attached to InstanceAxisSymbol

 ITU-T Rec. Z.163 (11/2007) 73

/* STATIC SEMANTICS – the instance event area may not contain loop statements, goto, activate, deactivate, stop, return or calls to
functions */

A.3.9 Condition

ConditionArea ::=
 PortOperationArea

BooleanExpressionConditionArea ::=
 ConditionSymbol
 contains BooleanExpression
 is attached to InstanceConditionBeginSymbol
 is attached to InstanceConditionEndSymbol

/* STATIC SEMANTICS – boolean expressions within conditions shall be used as guards within alt and call inline expressions only.
They shall be attached to a single test component or control instance only.*/

InstanceConditionBeginSymbol ::=
 VoidSymbol

InstanceConditionEndSymbol ::=
 VoidSymbol

DoneArea ::=
 ConditionSymbol
 contains DoneStatement
 is attached to InstanceConditionBeginSymbol
 is attached to InstanceConditionEndSymbol

SetVerdictArea ::=
 ConditionSymbol
 contains SetVerdictText
 is attached to InstanceConditionBeginSymbol
 is attached to InstanceConditionEndSymbol

SetVerdictText ::=
 (SetVerdictKeyword "(" SingleExpression ")")
 | pass
 | fail
 | inconc
 | none

/* STATIC SEMANTICS - SingleExpression must resolve to a value of type verdict */
/* STATIC SEMANTICS - the SetLocalVerdict shall not be used to assign the value error */
/* STATIC SEMANTICS - if the keywords pass, fail, inconc, and fail are used, the form with the setverdict keyword shall not be used */
PortOperationArea ::=
 ConditionSymbol
 contains PortOperationText
 is attached to InstanceConditionBeginSymbol
 is attached to InstanceConditionEndSymbol
 is attached to { PortInlineExpressionBeginSymbol }+ set
 is attached to { PortInlineExpressionEndSymbol }+ set]
 is attached to InstancePortOperationArea
 is attached to PortConditionArea

/* STATIC SEMANTICS – the condition symbol shall be attached to either to all ports or to just one port */

If the condition symbol crosses a port axis symbol of a port which is not involved in this port operation, the port axis symbol is drawn
through:

PortOperationText ::=
 ClearOpKeyword
 | StartKeyword
 | StopKeyword

ElseConditionArea ::=
 ConditionSymbol
 contains ElseKeyword
 is attached to InstanceAxisSymbol

74 ITU-T Rec. Z.163 (11/2007)

A.3.9.1 Condition on component instances

InstanceConditionArea ::=
 InstanceDoneArea
 | InstanceSetVerdictArea
 | InstancePortOperationArea

InstanceBooleanExpressionConditionArea ::=
 InstanceConditionBeginSymbol
 is followed by InstanceConditionEndSymbol
 is attached to InstanceAxisSymbol
 is attached to BooleanExpressionConditionArea

InstanceDoneArea ::=
 InstanceConditionBeginSymbol
 is followed by InstanceConditionEndSymbol
 is attached to InstanceAxisSymbol
 is attached to DoneArea

InstanceSetVerdictArea ::=
 InstanceConditionBeginSymbol
 is followed by InstanceConditionEndSymbol
 is attached to InstanceAxisSymbol
 is attached to SetVerdictArea

InstancePortOperationArea ::=
 InstanceConditionBeginSymbol
 is followed by InstanceConditionEndSymbol
 is attached to InstanceAxisSymbol
 is attached to PortOperationArea

A.3.9.2 Condition on ports

PortConditionArea ::=
 PortConditionBeginSymbol
 is followed by PortConditionEndSymbol
 is attached to PortAxisSymbol
 is attached to PortOperationArea

PortConditionBeginSymbol ::=
 VoidSymbol

PortConditionEndSymbol ::=
 VoidSymbol

A.3.10 Message-based communication

SendArea ::=
 MessageSymbol
 [is associated with Type]
 is associated with ([DerivedDef AssignmentChar] TemplateBody
 [ToClause])
 is attached to InstanceSendEventArea
 is attached to PortInMsgEventArea

/* STATIC SEMANTICS – a type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template shall be put underneath the message symbol */
/* STATIC SEMANTICS – a to clause, if existent, shall be put underneath the message symbol */

ReceiveArea ::=
 MessageSymbol
 [is associated with Type]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirect])
 is attached to InstanceReceiveEventArea
 is attached to PortOutMsgEventArea

/* STATIC SEMANTICS – a type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */

 ITU-T Rec. Z.163 (11/2007) 75

/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

A.3.10.1 Message-based communication on component instances

InstanceSendEventArea ::=
 MessageOutSymbol
 is attached to InstanceAxisSymbol
 is attached to MessageSymbol

MessageOutSymbol ::=
 VoidSymbol

The VoidSymbol is a geometric point without spatial extension.

InstanceReceiveEventArea ::=
 MessageInSymbol
 is attached to InstanceAxisSymbol
 is attached to MessageSymbol

MessageInSymbol ::=
 VoidSymbol

A.3.10.2 Message-based communication on port instances

PortInMsgEventArea ::=
 MessageInSymbol
 is attached to PortAxisSymbol
 is attached to MessageSymbol

PortOutMsgEventArea ::=
 MessageOutSymbol
 is attached to PortAxisSymbol
 is attached to MessageSymbol

A.3.11 Signature-based communication

NonBlockingCallArea ::=
 MessageSymbol
 is associated with CallKeyword [Signature]
 is associated with ([DerivedDef AssignmentChar] TemplateBody
 [ToClause])
 is attached to InstanceCallEventArea
 is attached to PortCallInEventArea

/* STATIC SEMANTICS – a signature, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template shall be put underneath the message symbol */
/* STATIC SEMANTICS – a to clause, if existent, shall be put underneath the message symbol */

GetcallArea ::=
 MessageSymbol
 is associated with GetcallKeyword [Signature]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirectWithParam])
 is attached to InstanceGetcallEventArea
 is attached to PortGetcallOutEventArea

/* STATIC SEMANTICS – a signature, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

ReplyArea ::=
 MessageSymbol
 is associated with ReplyKeyword [Signature]
 is associated with ([DerivedDef AssignmentChar] TemplateBody
 [ReplyValue] [ToClause])

76 ITU-T Rec. Z.163 (11/2007)

 is attached to InstanceReplyEventArea
 is attached to PortReplyInEventArea

/* STATIC SEMANTICS – a signature, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template shall be put underneath the message symbol */
/* STATIC SEMANTICS – a reply value, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a to clause, if existent, shall be put underneath the message symbol */

GetreplyWithinCallArea ::=
 MessageSymbol
 is attached to SuspensionRegionSymbol
 is associated with GetreplyKeyword [Signature]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [ValueMatchSpec]
 [FromClause] [PortRedirectWithParam])
 is attached to InstanceGetreplyEventArea
 is attached to PortGetreplyOutEventArea

/* STATIC SEMANTICS – a signature, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

GetreplyOutsideCallArea ::=
 MessageSymbol
 is associated with GetreplyKeyword [Signature]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [ValueMatchSpec]
 [FromClause] [PortRedirectWithParam])
 is attached to InstanceGetreplyEventArea
 is attached to PortGetreplyOutEventArea

/* STATIC SEMANTICS – a signature, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

RaiseArea ::=
 MessageSymbol
 is associated with RaiseKeyword Signature [',' Type]
 is associated with ([DerivedDef AssignmentChar] TemplateBody
 [ToClause])
 is attached to InstanceRaiseEventArea
 is attached to PortRaiseInEventArea

/* STATIC SEMANTICS – a signature shall be put on top of the message symbol */
/* STATIC SEMANTICS – an exception type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template shall be put underneath the message symbol */
/* STATIC SEMANTICS – a to clause, if existent, shall be put underneath the message symbol */

CatchWithinCallArea ::=
 MessageSymbol
 is attached to SuspensionRegionSymbol
 is associated with CatchKeyword Signature [',' Type]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirect])
 is attached to InstanceCatchEventArea
 is attached to PortCatchOutEventArea

/* STATIC SEMANTICS – a signature shall be put on top of the message symbol */
/* STATIC SEMANTICS – an exception type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

CatchOutsideCallArea ::=
 MessageSymbol
 is associated with CatchKeyword Signature [',' Type]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirect])
 is attached to InstanceCatchEventArea
 is attached to PortCatchOutEventArea

 ITU-T Rec. Z.163 (11/2007) 77

/* STATIC SEMANTICS – a signature shall be put on top of the message symbol */
/* STATIC SEMANTICS – an exception type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

A.3.11.1 Signature-based communication on component instances

InstanceBlockingCallEventArea ::=
 InstanceSendEventArea
 [is attached to InstanceCallTimerStartArea]
 is attached to SuspensionRegionSymbol

InstanceCallTimerStartArea ::=
 CallTimerStartSymbol
 is associated with TimerValue
 is attached to InstanceAxisSymbol
 is attached to SuspensionRegionSymbol
 [is attached to CallTimeoutSymbol3]

InstanceNonBlockingCallEventArea ::=
 InstanceSendEventArea

InstanceGetcallEventArea ::=
 InstanceReceiveEventArea

InstanceReplyEventArea ::=
 InstanceSendEventArea

InstanceGetreplyWithinCallEventArea ::=
 InstanceReceiveEventArea
 is attached to SuspensionRegionSymbol

InstanceGetreplyOutsideCallEventArea ::=
 InstanceReceiveEventArea

InstanceRaiseEventArea ::=
 InstanceSendEventArea

InstanceCatchWithinCallEventArea ::=
 InstanceReceiveEventArea
 is attached to SuspensionRegionSymbol

InstanceCatchTimeoutWithinCallEventArea ::=
 CallTimeoutSymbol
 is attached to SuspensionRegionSymbol
 is attached to InstanceAxisSymbol

InstanceCatchOutsideCallEventArea ::=
 InstanceReceiveEventArea

A.3.11.2 Signature-based communication on ports

PortGetcallOutEventArea::=
 PortOutMsgEventArea

PortGetreplyOutEventArea::=
 PortOutMsgEventArea

PortCatchOutEventArea::=
 PortOutMsgEventArea

PortCallInEventArea::=
 PortInMsgEventArea

78 ITU-T Rec. Z.163 (11/2007)

PortReplyInEventArea::=
 PortInMsgEventArea

PortRaiseInEventArea::=
 PortInMsgEventArea

A.3.12 Trigger and check

A.3.12.1 Trigger and check on component instances

TriggerArea ::=
 MessageSymbol
 is associated with (TriggerOpKeyword [Type])
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirect])
 is attached to ReceiveEventArea
 is attached to PortOutMsgEventArea

/* STATIC SEMANTICS – the trigger keyword shall be put on top of the message symbol */
/* STATIC SEMANTICS – a type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

CheckArea ::=
 MessageSymbol
 is associated with (CheckOpKeyword [CheckOpInformation])
 is associated with CheckData
 is attached to ReceiveEventArea
 is attached to PortOutMsgEventArea

/* STATIC SEMANTICS – the check keyword shall be put on top of the message symbol */
/* STATIC SEMANTICS – the check op information, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – the check data, if existent, shall be put underneath the message symbol */

CheckOpInformation ::=
 Type
 | (GetCallOpKeyword [Signature])
 | (GetReplyOpKeyword [Signature])
 | (CatchOpKeyword Signature [Type])

CheckData ::=
 ([[DerivedDef AssignmentChar] TemplateBody [ValueMatchSpec]]
 [FromClause] [PortRedirect | PortRedirectWithParam])
 | ([FromClause] [PortRedirectSymbol SenderSpec])

/* STATIC SEMANTICS – a value matching specification shall be used in combination with getreply only */
/* STATIC SEMANTICS – a port redirect with parameters shall be used in combination with getcall and getreply only */

InstanceTriggerEventArea ::=
 InstanceReceiveEventArea

InstanceCheckEventArea ::=
 InstanceReceiveEventArea

A.3.12.2 Trigger and check on port instances

PortTriggerOutEventArea ::=
 PortOutMsgEventArea

PortCheckOutEventArea ::=
 PortOutMsgEventArea

A.3.13 Handling of communication from any port

InstanceFoundEventArea ::=
 FoundSymbol
 contains FoundEvent
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the label identifier shall be placed inside the circle of the labelling symbol */

 ITU-T Rec. Z.163 (11/2007) 79

FoundEvent ::=
 FoundMessage
 | FoundTrigger
 | FoundGetCall
 | FoundGetReply
 | FoundCatch
 | FoundCheck

FoundMessage ::=
 FoundSymbol
 [is associated with Type]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirect])
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – a type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

FoundTrigger ::=
 FoundSymbol
 is associated with (TriggerOpKeyword [Type])
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirect])
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the trigger keyword shall be put on top of the message symbol */
/* STATIC SEMANTICS – a type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

FoundGetCall ::=
 FoundSymbol
 is associated with GetcallKeyword [Signature]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirectWithParam])
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – a signature, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

FoundGetReply ::=
 FoundSymbol
 is associated with GetreplyKeyword [Signature]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [ValueMatchSpec]
 [FromClause] [PortRedirectWithParam])
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – a signature, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

FoundCatch ::=
 FoundSymbol
 is associated with CatchKeyword Signature [',' Type]
 is associated with ([[DerivedDef AssignmentChar] TemplateBody]
 [FromClause] [PortRedirect])
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – a signature shall be put on top of the message symbol */
/* STATIC SEMANTICS – an exception type, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a template, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a from clause, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS – a port redirect, if existent, shall be put underneath the message symbol */

80 ITU-T Rec. Z.163 (11/2007)

FoundCheck ::=
 FoundSymbol
 is associated with (CheckOpKeyword [CheckOpInformation])
 is associated with CheckData
 is attached to ReceiveEventArea
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the check keyword shall be put on top of the message symbol */
/* STATIC SEMANTICS – the check op information, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS – the check data, if existent, shall be put underneath the message symbol */

A.3.14 Labelling

InstanceLabellingArea ::=
 LabellingSymbol
 contains LabelIdentifier
 is attached to InstanceAxisSymbol

/* STATIC SEMANTICS – the label identifier shall be placed inside the circle of the labelling symbol */

 ITU-T Rec. Z.163 (11/2007) 81

Annex B

Reference guide for GFT

(This annex forms an integral part of this Recommendation)

This annex lists the main TTCN-3 language elements and their representation in GFT. For a
complete description of the GFT symbols and their use please refer to the main text.

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Module definitions
TTCN-3 module
definition

module No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Import of
definitions from
other module

import No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Grouping of
definitions

group No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Data type
definitions

type No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Communication
port definitions

port No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Test component
definitions

component No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Signature
definitions

signature No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

External
function/constant
definitions

external No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Constant
definitions

const const integer MyConst := 5;

Textual constant
declaration in the header of
a control, test case, test
step or function diagram.

82 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Local constant declaration
in an action box.

Data/signature
template
definitions

template No special GFT symbol,
i.e., the core language or
another presentation
format may be used.

Control
definitions

control
control

control

execute(TestCase1())

MyHelperFunction()

GFT control diagram
represents the control part
of a TTCN-3 module.

Function
definitions

function
function MyFunction()

MyPort1

PType1

MyPort2

PType2CType

self

GFT function diagrams are
used to represent functions.

function MyHelperFunction()

self

execute(TestCase2())

GFT function diagrams
may be defined to structure
the behaviour of the
control part of a TTCN-3
module.

 ITU-T Rec. Z.163 (11/2007) 83

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Altstep
definitions

altstep
altstep MyTestStep()

alt

MyPort1 MyPort2
PType2

self

CType PType1

GFT altstep diagrams are
used to represent altsteps.

Test case
definitions

testcase
testcase MyTestCase
()

MyPort1

PType1

MyPort2

PType2CType

self

pass

GFT test case diagrams are
used to represent test
cases.

Usage of component instances and ports
Port instance

MyPort

MyPortType

A Port in a test case, test
step and function diagram
is represented by an
instance with a dashed
instance line. The port
name is specified above
and the (optional) port type
is described within the
instance header.

Test component
instance

mtc

MtcType

self

CompType

control

An mtc instance represents
the main test component in
a test case diagram.
A self instance
represents a test
component in a test step or
function diagram.
A control instance
represents the instance that
executes the module
control part in a control
diagram.

84 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Declarations
Variable
declarations

var var integer MyVar := 5 Textual variable
declaration in the header of
a control, test case, test
step or function diagram.

var integer
MyVar := 5

Variable declaration in an
action box.

 var verdicttype
v:=execute(MyTC())

Variable declaration within
a test case execution
symbol.

var MyCType
c:= MyCType.create

Variable declaration within
a test component creation
symbol.

var default d:=
activate(TStep())

Variable declaration within
a default activation
symbol.

 var integer
v := MyFunction()

Variable declaration within
a reference symbol.

Timer
declarations

timer timer MyTimer Textual timer declaration
in the header of a control,
test case, test step or
function diagram.

timer MyTimer

Timer declaration in an
action box.

 ITU-T Rec. Z.163 (11/2007) 85

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Basic program statements
Expressions (…) No special GFT symbol,

i.e., the core language or
another presentation
format may be used.

Assignments :=

MyVar := 5

Assignment in an action
box.

 v:=execute(MyTC())

Assignment within a test
case execution symbol.

c:= MyCType.create

Assignment within a test
component creation
symbol.

d:=
activate(TStep())

Assignment within a
default activation symbol.

v := MyFunction()

Assignment within a
reference symbol.

Logging log

log(“MyLog”)

The log statement is put
into an action box.

86 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Label and Goto label

MyLabel

Definition of a label.

 goto

MyLabel

Go to label.

If-else if (…) {…}
else {…}

if (j<10)

For loop for (…) {…}

for(j:=1; j<=9; j:=j+1)

While loop while (…)
{…}

while (j<10)

Do while loop do {…}
while (…)

do while (j<10)

Behavioural program statements
Alternative
behaviour

alt {…}

alt

[expand] MyNamedAlternative MyTestStep()

x==1

else

 ITU-T Rec. Z.163 (11/2007) 87

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Repeat repeat

To be used within
alternative behaviour and
test steps.

Interleaved
behaviour

interleave
{…}

interleave

Activate a
default

activate

MyDefault :=
activate(TStep())

The activate statement is
put into a default symbol.

Deactivate a
default

deactivate

deactivate(MyDefault)

The deactivate statement is
put into a default symbol.

Returning
control

return

MyValue

The optional return value
is attached to the return
symbol.

Configuration operations
Create parallel
test component

create

c:= MyCType.create

The create statement is put
into a test component
creation symbol.

Connect
component to
component

connect

connect(…,…)

The connect statement is
put into an action box.

88 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Disconnect two
components

disconnect

disconnect(…,…)

The disconnect statement
is put into an action box.

Map port to test
system interface

map

map(…,…)

The map statement is put
into an action box.

Unmap port
from test system
interface

unmap

unmap(…,…)

The unmap statement is
put into an action box.

Get MTC
address

mtc No special GFT symbol,
used within statements,
expressions or as test
component identifier.

Get test system
interface address

system No special GFT symbol,
used within statements or
expressions.

Get own address self No special GFT symbol,
used within statements,
expressions or as test
component identifier.

Start execution
of test
component

start

MyComp.start(MyFunc())

The start statement is put
into a start symbol.

Stop execution
of a test
component by
itself

stop

The termination of mtc
terminates also all the
other test components.
Port instances cannot be
stopped.

 ITU-T Rec. Z.163 (11/2007) 89

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Of another test
component

componentId

The component identifier
is put near to the stop
symbol.

Check
termination of
a PTC

running No special GFT symbol,
used within expressions.

Wait for
termination of
a PTC

done

MyPTC.done

The done statement is put
into a condition symbol.

Communication operations
Send message send

MyTemplateRef
to MyPeer

Send a message defined by
a template reference but
without type information.
The receiver is identified
uniquely by the (optional)
to-directive.

MyTemplateRef

MyType

Send a message defined by
a template reference and
with type information.
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

{…}

MyType

Send a message defined by
an inline template
definition.
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

90 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Receive message receive

MyTemplateRef
from MyPeer

-> value MyVar
sender ASender

Receive a message with a
value defined by a
template reference but
without type information.
The (optional)
from-directive denotes
that the sender of the
message shall be identified
by variable MyPeer.
The (optional)
value-directive assigns
received message to
variable MyVar.
The (optional)
sender-directive retrieves
the identifier of the sender
and stores it in variable
ASender.

MyTemplateRef

MyType

Receive a message with a
value defined by a
template reference and
with type information.
Optional from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer
entity.

 ITU-T Rec. Z.163 (11/2007) 91

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

{…}

MyType

Receive a message with a
value defined by an inline
template definition.
Optional from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer
entity.

Receive any message
(no value and no type is
specified).
Optional from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer
entity.

Receive any message
(no value and no type is
specified) from any port.
The message value to be
received from any port
may be restricted by means
referring to templates or by
using inline templates.
Optional from-, value-
and sender-directives
may be present to identify
the sender of the message,
to assign the message to a
variable or to retrieve the
identifier of the peer
entity.

92 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Trigger message trigger

MyTemplateRef
from MyPeer

-> value MyVar
sender ASender

trigger

Trigger on a message with
a value defined by a
template reference but
without type information.
The (optional)
from-directive denotes
that the sender of the
message shall be identified
by variable MyPeer.
The (optional)
value-directive assigns
received message to
variable MyVar.
The (optional)
sender-directive retrieves
the identifier of the sender
and stores it in variable
ASender.

MyTemplateRef

trigger MyType

Trigger on a message with
a value defined by a
template reference and
with type information.
Optional from-,
value- and sender-
directives may be present
to identify the sender of
the message, to assign the
message to a variable or to
retrieve the identifier of
the peer entity.

{…}

trigger MyType

Trigger on a message with
a value defined by an
inline template definition.
Optional from-,
value- and sender-
directives may be present
to identify the sender of
the message, to assign the
message to a variable or to
retrieve the identifier of
the peer entity.

 ITU-T Rec. Z.163 (11/2007) 93

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

trigger

Trigger on any message
(no value and no type is
specified).
Optional from-,
value- and sender-
directives may be present
to identify the sender of
the message, to assign the
message to a variable (of
type anytype) and to
retrieve the identifier of
the peer entity.

trigger

Trigger on any message
(no value and no type is
specified) from any port.
The value of the message
that shall cause the trigger
from any port may be
restricted by means
referring to templates or by
using inline templates.
Optional from-,
value- and
sender-directives may be
present to identify the
sender of the message, to
assign the message to a
variable (of type
anytype) and to retrieve
the identifier of the peer
entity.

Invoke blocking
procedure call

call

MyTemplateRef
to peer

call
call

getreply ...

catch ...

...

Invoking a blocking
procedure by using a
signature template.
The receiver is identified
uniquely by the (optional)
to-directive.
The call body, i.e.,
possible getreply and
catch operations, is
shown schematically only.

94 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

MyTemplateRef

call MyProc
call

getreply ...

catch ...

...

Invoking a blocking
procedure by using a
signature template and
signature information.
An (optional)
to-directive may be
present to identify the peer
entity uniquely.
The call body,
i.e., possible getreply
and catch operations, is
shown schematically only.

{…}

call MyProc
call

getreply ...

catch ...

...

Invoking a blocking
procedure by using an
inline template.
An (optional) to-directive
may be present to identify
the peer entity uniquely.
The call body, i.e.,
possible getreply and
catch operations, is
shown schematically only.

Invoke non-
blocking
procedure call

call

MyTemplateRef
to MyPeer

call

Call a remote procedure,
the call is defined by a
template reference but
without signature
information.
The receiver is identified
uniquely by the (optional)
to-directive.

MyTemplateRef

call MyProc

Call the remote procedure
MyProc. The call is
defined by a template
reference.
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

{…}

call MyProc

Call the remote procedure
MyProc. The call is
defined by an inline
template.
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

 ITU-T Rec. Z.163 (11/2007) 95

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Reply to
procedure call
from remote
entity

reply

MyTemplateRef
value 20
to MyPeer

reply

Reply to a remote
procedure call. The reply
is defined by a template
reference and the possible
return value
(value-directive).
NOTE 1 – The signature
information is part of the
template definition.
The receiver is identified
uniquely by the (optional)
to-directive.

MyTemplateRef
value 20

reply MyProc

Reply to a remote
procedure call of MyProc.
The reply is defined by a
template reference and the
possible return value
(value-directive).
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

{…}
value 20

reply MyProc

Reply to a remote
procedure call of MyProc.
The reply is defined by an
inline template and the
possible return value
(value-directive).
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

Raise exception
(to an accepted
call)

raise

MyTemplateRef
to MyPeer

raise MyProc

Raise an exception to an
accepted call of MyProc.
The exception is defined
by a template reference.
NOTE 2 – The type of the
exception is defined within
the template definition.
The receiver is identified
uniquely by the (optional)
to-directive.

96 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

MyTemplateRef

raise MyProc
ExceptionType

Raise an exception to an
accepted call of MyProc.
The exception is defined
by its (optional) type and a
template reference.
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

{…}

raise MyProc
ExceptionType

Raise an exception to an
accepted call of MyProc.
The exception is defined
by its type and an inline
template.
An (optional)
to-directive may be
present to identify the peer
entity uniquely.

Accept
procedure call
from remote
entity

getcall

MyTemplateRef
from MyPeer
-> param (…)
sender ASender

getcall

Accept a procedure call
from a remote entity. The
call signature has to match
the conditions defined by
the template reference.
NOTE 3 – The signature
information is part of the
template definition.
The (optional)
from-directive denotes
that the sender of the call
shall be identified by
variable MyPeer.
The (optional)
param-directive assigns
in-parameter values to
Variables.
The (optional)
sender-directive retrieves
the identifier of the sender
and stores it in variable
ASender.

 ITU-T Rec. Z.163 (11/2007) 97

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

MyTemplateRef

getcall MyProc

Accept a procedure call
from a remote entity. The
call signature has to match
the conditions defined by
signature reference and the
template reference.
Optional from-,
param- and sender-
directives may be present
to identify the sender of
the call, to assign the
in-parameters to variables
or to retrieve the identifier
of the peer entity.

{…}

getcall MyProc

Accept a procedure call
from a remote entity. The
call signature has to match
the conditions defined by
signature reference and the
inline template definition.
Optional from-, param-
and sender-directives
may be present to identify
the sender of the call, to
assign the in-parameters to
variables or to retrieve the
identifier of the peer
entity.

getcall

Accept any procedure call
from any remote entity.
Optional from- and
sender-directives may be
present to identify the
sender of the call or to
retrieve the identifier of
the peer entity.

98 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

getcall

Accept any procedure call
from any remote entity at
any port.
The call to be received
from any port may be
restricted by means
referring to templates or by
using inline templates.
Optional from-, param-
and sender-directives
may be present to identify
the sender of the call, to
assign the in-parameters to
variables or to retrieve the
identifier of the peer
entity.

Handle response
from a previous
blocking call

getreply

MyTemplateRef
from MyPeer

-> value MyVal
 param (…)

sender ASender

getreply

call call …

catch …

Receive a response from a
blocking call. The reply
has to match the conditions
defined by the template
reference.
NOTE 4 – The signature
information is part of the
template definition.
The (optional)
from-directive denotes
that the sender of the call
shall be identified by
variable MyPeer.
The (optional)
value-directive assigns
the possible return value of
the procedure to variable
MyVal.
The (optional) param-
directive assigns
out-parameter values to
Variables.
The (optional) sender-
directive retrieves the
identifier of the sender and
stores it in variable
ASender.

 ITU-T Rec. Z.163 (11/2007) 99

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

MyTemplateRef

getreply
MyProc

call call …

catch …

Receive a response from a
blocking call. The reply
has to match the conditions
defined by signature
reference and the template
reference.
Optional from-, value-,
param- and sender-
directives may be present
to identify the sender of
the reply, to retrieve the
return value of the
procedure, to assign the in-
parameters to variables or
to retrieve the identifier of
the peer entity.

{ … }

getreply
MyProc

call call …

catch …

Receive a response from a
blocking call. The reply
has to match the conditions
defined by signature
reference and the inline
template definition.
Optional from-, value-,
param- and
sender-directives may be
present to identify the
sender of the reply, to
retrieve the return value of
the procedure, to assign
the in-parameters to
variables or to retrieve the
identifier of the peer
entity.

getreply

call call …

catch …

Accept any response from
a blocking call.

100 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Handle response
from a previous
non-blocking
call or
independent
from a call

getreply

MyTemplateRef
from MyPeer

-> value MyVal
 param (…)

sender ASender

getreply

Receive a response from a
previous call. The reply
has to match the conditions
defined by the template
reference.
NOTE 5 – The signature
information is part of the
template definition.
The (optional)
from-directive denotes
that the sender of the call
shall be identified by
variable MyPeer.
The (optional)
value-directive assigns
the possible return value of
the procedure to variable
MyVal.
The (optional) param-
directive assigns out-
parameter values to
Variables.
The (optional) sender-
directive retrieves the
identifier of the sender and
stores it in variable
ASender.

MyTemplateRef

getreply
MyProc

Receive a response from a
previous call. The reply
has to match the conditions
defined by signature
reference and the template
reference.
Optional from-, value-,
param- and sender-
directives may be present
to identify the sender of
the reply, to retrieve the
return value of the
procedure, to assign the in-
parameters to variables or
to retrieve the identifier of
the peer entity.

 ITU-T Rec. Z.163 (11/2007) 101

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

{…}

getreply
MyProc

Receive a response from a
previous call. The reply
has to match the conditions
defined by signature
reference and the inline
template definition.
Optional from-, value-,
param- and sender-
directives may be present
to identify the sender of
the reply, to retrieve the
return value of the
procedure, to assign the in-
parameters to variables or
to retrieve the identifier of
the peer entity.

getreply

Accept any response from
any previous call.
Optional from- and
sender-directives may be
present to identify the
sender of the reply or to
retrieve the identifier of
the peer entity.

getreply

Accept any response from
any previous call at any
port.
The reply to be received
from any port may be
restricted by means
referring to templates or by
using inline templates.
Optional from-, value-,
param- and sender-
directives may be present
to identify the sender of
the reply, to retrieve the
return value of the
procedure, to assign the in-
parameters to variables or
to retrieve the identifier of
the peer entity.

102 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Catch exception
from a previous
blocking call

catch

MyTemplateRef
from MyPeer

-> value MyVal
sender ASender

catch MyProc

call call …

getreply …

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
template reference.
NOTE 6 – The type
information is part of the
template definition.
The (optional)
from-directive denotes
that the sender of the
exception shall be
identified by variable
MyPeer.
The (optional) value-
directive assigns the value
of the exception to variable
MyVal.
The (optional) sender-
directive retrieves the
identifier of the sender and
stores it in variable
ASender.

MyTemplateRef

catch MyProc
ExceptionType

call call …

getreply …

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
template reference.
Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

 ITU-T Rec. Z.163 (11/2007) 103

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

{ … }

catch MyProc
ExceptionType

call call …

getreply …

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
inline template definition.
Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

catch

call call …

getreply …

Accept any exception from
a blocking call.
Optional from-, value-
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value (and
assign it to a variable of
type anytype) or to
retrieve the identifier of
the peer entity.

Catch exception
from a previous
non-blocking
call or
independent
from a call

catch

MyTemplateRef
from MyPeer

-> value MyVal
sender ASender

catch MyProc

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
template reference.
NOTE 7 – The type
information is part of the
template definition.
The (optional)
from-directive denotes
that the sender of the
exception shall be
identified by variable
MyPeer.
The (optional)
value-directive assigns
the value of the exception
to variable MyVal.
The (optional)
sender-directive retrieves
the identifier of the sender
and stores it in variable
ASender.

104 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

MyTemplateRef

catch MyProc
ExceptionType

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
template reference.
Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

{…}

catch MyProc
ExceptionType

Catch an exception from a
previous call. The
exception has to match the
conditions defined by the
exception type and the
inline template definition.
Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

catch

Catch any exception from
any previous call.
Optional from-, value-
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value (and
assign it to a variable of
type anytype) or to
retrieve the identifier of
the peer entity.

 ITU-T Rec. Z.163 (11/2007) 105

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

catch

Catch any exception from
any previous call at any
port.
The exception to be
received from any port
may be restricted by means
referring to templates or by
using inline templates.
Optional from-, value-,
and sender-directives
may be present to identify
the sender of the
exception, to retrieve the
exception value or to
retrieve the identifier of
the peer entity.

Check (current)
message/call
received

check

MyTemplateRef

MyTemplateRef

check MyType

check

check

MyTemplateRef

check

Can be used also in combination with getcall,

getreply, and catch

with template, without
type.

with template, with type.

without template, without
type (any message from
that port).

with template, without
type, without port (this
message from that port).

106 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Check current
message, call,
reply or
exception

check

MyTemplateRef
from MyPeer

-> value MyVar
sender ASender

check

Check if a message with a
value defined by a
template reference has
been received.
The syntax follows the
syntax for the reception of
messages.
NOTE 8 – Check may also
be used in combination
with getcall, getreply
and catch.

MyTemplateRef

check MyType

Check if a message with a
value defined by a
template reference has
been received.
The syntax follows the
syntax for the reception of
messages.
NOTE 9 – Check may also
be used in combination
with getcall, getreply
and catch.

{…}

check MyType

Check if a message with a
value defined by an inline
template definition has
been received.
The syntax follows the
syntax for the reception of
messages.
NOTE 10 – Check may
also be used in
combination with
getcall, getreply and
catch.

check

Check if any message (no
value and no type is
specified) has been
received.
The syntax follows the
syntax for the reception of
messages.
NOTE 11 – Check may
also be used in
combination with
getcall, getreply and
catch.

 ITU-T Rec. Z.163 (11/2007) 107

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

check

Check if any message (no
value and no type is
specified) has been
received at any port.
The syntax follows the
syntax for the reception of
messages.
NOTE 12 – Check may
also be used in
combination with
getcall, getreply and
catch.

Clear port clear

clear

The clear port statement is
put into a condition
symbol. The condition
shall cover the instance of
the port to be cleared only.

Clear and give
access to port

start

start

The start port statement
is put into a condition
symbol. The condition
shall cover the instance of
the port to be started only.

Stop access
(receiving and
sending) at port

stop

stop

The stop statement is put
into a condition symbol.
The condition shall cover
the instance of the port to
be stopped only.

Timer operations
Start timer start

MyTimer
(20E-3)

Stop timer stop

MyTimer

108 ITU-T Rec. Z.163 (11/2007)

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Read elapsed
time

read No special GFT symbol,
used within statements or
expressions.

Check if timer
running

running No special GFT symbol,
used within statements or
expressions.

Timeout
operation

timeout

MyTimer

Set local verdict verdict.set

pass

The verdict is put into a
condition symbol.

Get local verdict verdict.get No special GFT symbol,
used within statements or
expressions.

SUT operations
Remote action to
be done by the
SUT

sut.action

sut.action
(“MyAction”)

The action statement is
put into an action box.

Execution of test cases
Execute test case execute

execute(MyTC())

The execute statement is
put into a testcase
execution symbol.

Attributes
Definition of
attributes for
control,
testcases,
teststeps and
functions

with

with {
 display “…”;
 extension “…”
}

The with statement is put
into a text symbol.

 ITU-T Rec. Z.163 (11/2007) 109

Language
element

Associated
keyword

GFT symbols, if existent,
and typical usage Explanation

Comments
Comments
within text

 /* My several lines comment */
// My single line comment

Can be used wherever text
can be placed.

Comments for
instance events

/* My instance
event comment */

Shall be attached to events
on a control, test
component or port
instance.

Comments
control, test case,
function or test
step diagrams

/* My Comment
explains a
little bit
more */

Shall be attached to events
on a control, test
component or port
instance.

110 ITU-T Rec. Z.163 (11/2007)

Annex C

Examples
(This annex forms an integral part of this Recommendation)

C.1 The Restaurant example

t e s t c a s e M y T e s t C a s e
(i n b o o l e a n i n t e r n e t S e r v i c e , i n b o o l e a n p h o n e S e r v i c e ,
i n b o o l e a n r e s t a u r a n t S e r v i c e , i n i n t e g e r t o t a l N r C r e a t e d P T C s ,
i n i n t e g e r m a x N r A c t i v e P T C s , i n o u t i n t e g e r n r P a s s ,
i n o u t i n t e g e r n r F a i l , i n o u t i n t e g e r n r I n c)

r u n s o n M t c T y p e s y s t e m T e s t S y s t e m T y p e

M t c T y p e

m t c

m P C O t y p e

P 1

m C P t y p e

C P

m a p (s e l f : P 1 , S y s t e m : m P C O)

i f (i n t e r n e t s e r v i c e)

i f (t o t a l N r C r e a t e d P T C s ! = c r e a t e d P T C s a n d p h o n e S e r v i c e)

i f (m a x N r A c t i v e P T C s = = 1)

v a r d e f a u l t d e f
: = a c t i v a t e (S t a n d a r d D e f a u l t ())

a l l c o m p o n e n t . d o n e

v a r r e p o r t T y p e r e p o r t ;

w h i l e (t o t a l N r C r e a t e d P T C s ! = c r e a t e d P T C s)

a l t

? - > v a l u e r e p o r t

i f (m a x A c t i v e P T C s < a c t i v e P T C s a n d r e s t a u r a n t S e r v i c e)

n e w G u e s t (1 2 0 0 . 0)

e l s e

R e p o r t T y p e

i f (m a x N r A c t i v e P T C s = = 1)

a l l c o m p o n e n t . d o n e

i f (r e p o r t . k i n d = = i n t e r n e t)

n e w P h o n e P T C ()

n e w I n t e r n e t P T C ()

i f (r e p o r t . k i n d = = p h o n e)

n e w P h o n e P T C ()

i f (r e p o r t . k i n d = = g u e s t)

n e w G u e s t (1 2 0 0 . 0)

n e w I n t e r n e t P T C ()

i f (r e p o r t . l v e r d i c t = = p a s s)
{ n r P a s s : = n r P a s s + 1 ; }

i f (r e p o r t . l v e r d i c t = = f a i l)
{ n r F a i l : = n r F a i l + 1 ; }

i f (r e p o r t . l v e r d i c t = = i n c o n c)
{ n r P a s s : = n r P a s s + 1 ; }

a c t i v e P T C s : = a c t i v e P T C s – 1 ;

r e p o r t . l v e r d i c t

a l l c o m p o n e n t . d o n e

t e s t c a s e M y T e s t C a s e (
i n b o o l e a n i n t e r n e t S e r v i c e , / / S E R V I C E S
i n b o o l e a n p h o n e S e r v i c e ,
i n b o o l e a n r e s t a u r a n t S e r v i c e ,
i n i n t e g e r t o t a l N r C r e a t e d P T C s , / / T E R M I N A T I O N
i n i n t e g e r m a x N r A c t i v e P T C s , / / C O N T R O L
i n o u t i n t e g e r n r P a s s , / / R E T U R N
i n o u t i n t e g e r n r F a i l ,
i n o u t i n t e g e r n r I n c
)

r u n s o n M t c T y p e
s y s t e m T e s t S y s t e m T y p e

{
v a r R e p o r t T y p e r e p o r t ;

v a r d e f a u l t d e f : = a c t i v a t e (S t a n d a r d D e f a u l t ()) ;

m a p (s e l f : P 1 , s y s t e m : m P C O) ;

i f (i n t e r n e t S e r v i c e) {
n e w I n t e r n e t P T C () ;

}

i f (t o t a l N r C r e a t e d P T C s ! = c r e a t e d P T C s
a n d p h o n e S e r v i c e) {

i f (m a x N r A c t i v e P T C s = = 1) {
a l l c o m p o n e n t . d o n e ;

}
n e w P h o n e P T C () ;

}

w h i l e (t o t a l N r C r e a t e d P T C s ! = c r e a t e d P T C s) {

a l t {
[] C P . r e c e i v e (R e p o r t T y p e : ?) - > v a l u e r e p o r t {

s e t v e r d i c t (r e p o r t . l v e r d i c t) ;

i f (r e p o r t . l v e r d i c t = = p a s s) { n r P a s s : = n r P a s s + 1 ; }
i f (r e p o r t . l v e r d i c t = = f a i l) { n r F a i l : = n r F a i l + 1 ; }
i f (r e p o r t . l v e r d i c t = = i n c o n c) { n r I n c : = n r I n c + 1 ; }
a c t i v e P T C s : = a c t i v e P T C s - 1 ;

i f (m a x N r A c t i v e P T C s = = 1) {
a l l c o m p o n e n t . d o n e ;

}
i f (r e p o r t . k i n d = = i n t e r n e t) {

n e w I n t e r n e t P T C () ;
}
i f (r e p o r t . k i n d = = p h o n e) {

n e w P h o n e P T C () ;
}
i f (r e p o r t . k i n d = = g u e s t) {

n e w G u e s t (1 2 0 0 . 0) ;
}

}

[e l s e] {

i f (m a x N r A c t i v e P T C s < a c t i v e P T C s
a n d r e s t a u r a n t S e r v i c e) {

n e w G u e s t (1 2 0 0 . 0) ;
}

}
}

}

a l l c o m p o n e n t . d o n e ;
s t o p ;

}

Figure C.1 – Restaurant example – MyTestCase test case

111 ITU-T Rec. Z.163 (11/2007)

function newInternetPTC()
runs on MtcType

MtcType

self

mPCOtype

P1

mCPtype

CP

connect(self:CP, newPTC:CP);
map(newPTC:P1, system:iPCO)

var InternetType newPTC :=
InternetType.create;

activePTCs := activePTCs + 1;
createdPTCs := createdPTCs + 1;

newPTC.start
(internetUser())

function newInternetPTC ()
runs on MtcType {

var InternetType newPTC := InternetType.create;

connect(self:CP, newPTC:CP);
map(newPTC:P1, system:iPCO);

newPTC.start(internetUser());

activePTCs := activePTCs + 1;
createdPTCs := createdPTCs + 1;

return;

}

function aGuest(in float eatingDur)
runs on GuestType

GuestType

self

gPCOtype

P1

pCPtype

CP

timer T1

var default def
:= activate (GuestDefault())

Tvisit

T1
(waitPizzaDur) standardPizzaOrder

PizzaType
?T1

pass

standardPaymentT1
(eatingDur)

{guest, getverdict)

ReportType

function aGuest (in float eatingDur) runs on GuestType {

timer T1;

var default def := activate(GuestDefault());
Tvisit.start; // component timer
T1.start(waitPizzaDur);
P1.send(standardPizzaOrder);
P1.receive(PizzaType : ?);
T1.stop;
setverdict(pass);
P1.send(standardPayment);
T1.start(eatingDur); // eating
T1.timeout;
CP.send(ReportType : {guest, getverdict});
stop;
} // end function aGuest

T1

Figure C.2 – Restaurant example – newInternetPTC and aGuest functions

112 ITU-T Rec. Z.163 (11/2007)

function newGuest(float eatingTime)
runs on MtcType

MtcType
self

mPCOtype
P1

mCPtype
CP

var SeatAssignmentType aSeat;
var GuestType newPTC := null;
timer T1 := maxWaitingTime;

var default def
:= activate (StandardDefault())

standardSeatRequest

T1

alt

? -> value aSeat

newPTC := GuestType.create;

connect(self:CP, newPTC:CP);
map(newPTC:P1,

system:gPCO[aSeat.number]);

SeatRejectType
?

inconc

T1

inconc

SeatAssignmentType

activePTCs := activePTCs + 1;
createdPTCs := createdPTCs + 1;

newPTC.start
(aGuest(1200.0))

function newGuest (float eatingTime) runs on MtcType {

var SeatAssignmentType aSeat;
var GuestType newPTC := null;
timer T1 := maxWaitingTime;

var default def := activate(StandardDefault());

// Request for a seat
P1.send(standardSeatRequest);
T1.start;

alt {
[] P1.receive(SeatAssignmentType:?) -> value aSeat {

newPTC := GuestType.create;

connect(self:CP, newPTC:CP);
map(newPTC:P1, system:gPCO[aSeat.number]);

newPTC.start(aGuest(1200.0));

activePTCs := activePTCs+1; // Update MTC variables
createdPTCs := createdPTCs+1;

}

[] P1.receive(SeatRejectType:?) { // No seat assigned
setverdict(inconc);

}

[] T1.timeout { // No answer on seat request
setverdict(inconc);

}
}
return;

}

Figure C.3 – Restaurant example – newGuest function

113 ITU-T Rec. Z.163 (11/2007)

function internetUser () runs on InternetType {
// ***
// *** Purpose: Specifies the behaviour of an
// *** internet guest
// ***

timer Tvisit;
var integer orderNr;
var PizzaDeliveryType thePizza;

var default def1 := activate(StandardDefault());
var default def2 := activate(InternetDefault());
Tvisit.start(OverallDuration);

P2.call(StandardINetOrder, maxConnectTime) {
[] P2.getreply (iNetOrder:? value ?)

-> value orderNr {
setverdict(pass);

}
[] P2.catch (iNetOrder, ReasonType : ?) {

setverdict(fail);
}

[] P2.catch (timeout) {
setverdict(inconc);

}
};
if (getverdict == pass) {
P1.receive(PizzaDeliveryType

: { ?, orderNr, ?});
}
CP.send(ReportType : {internet, getverdict});
stop;

}

function internetUser()
runs on InternetType

InternetType
self

dPCOtype
P1

pCPtype
CP

timer Tvisit;
var integer orderNr;
var PizzaDeliveryType thePizza;

var default def1
:= activate (StandardDefault())

call

fail

iPCOtype
P2

Tvisit
(OverallDuration)

StandardInetOrder

call

getreply iNetOrder

pass

catch iNetorder, ReasonType
?

inconc

if (getverdict == pass)

PizzaDeliveryType
{?, orderNr, ?}

ReportType
{internet, getverdict }

var default def2
:= activate (InternetDefault())

maxConnectTime

?
value ?
-> value orderNr

Figure C.4 – Restaurant example – internetUser function

114 ITU-T Rec. Z.163 (11/2007)

altstep GuestDefault()
runs on GuestType

GuestType
self

gPCOtype
P1

pCPtype
CP

alt
charstring

?

standardConversation

fail

inconc

altstep GuestDefault() runs on GuestType {
// ***
// *** Purpose: Default behaviour for
// *** message based ports
// ***

[] P1.receive(charstring : ?) {
P1.send(standardConversation);
repeat;

}

[] any timer.timeout {
setverdict(fail);

}

[] any port.receive {
setverdict(inconc);

}
}

altstep StandardDefault() runs on MtcType {
// ***
// *** Purpose: Default behaviour for
// **** message based ports
// ***

[] P1.receive(charstring : ?) {
P1.send(standardConversation);
repeat;

}

[] any timer.timeout {
setverdict(fail);

}

[] any port.receive {
setverdict(inconc);

}
}

altstep StandardDefault()
runs on MtcType

MtcType
self

mPCOtype
P1

mCPtype
CP

alt

standardConversation

fail

inconc

charstring
?

Figure C.5 – Restaurant example – GuestDefaut and StandardDefault functions

115 ITU-T Rec. Z.163 (11/2007)

altstep InternetDefault()
runs on InternetType {
// ***
// *** Purpose: Default behaviour for
// **** the procedure based port
// ***

[] any port.getreply {
setverdict(inconc);

}

[] any port.catch {
setverdict(inconc);

}
}

function basicCapabilityTests ()
return verdicttype {
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

// *** INTERNET ORDER ***
localVerdict := execute(MyTestCase (true,false,

false,1,1,nrP,nrF,nrI),1800.0);

// *** PHONE ORDER
if (localVerdict == pass) {

localVerdict := execute(MyTestCase
(false,true,false,1,1,nrP,nrF,nrI),1800.0);

}

// *** RESTAURANT ORDER ***
if (localVerdict == pass) {

localVerdict := execute(MyTestCase
(false,false,true,1,1,nrP,nrF,nrI),1800.0);

}
return (localVerdict);

}

altstep InternetDefault()
runs on InternetType

MtcType
self

dPCOtype
P1

pCPtype
CP

alt

iPCOtype
P2

inconc

inconc

catch

self

var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

localVerdict := execute (MyTestCase (true, false,
false, 1, 1, nrP, nrF, nrI), 1800.0)

if (localVerdict == pass)

localVerdict := execute (MyTestCase (false, true,
false, 1, 1, nrP, nrF, nrI), 1800.0)

if (localVerdict == pass)

localVerdict := execute (MyTestCase (false, false,
true, 1, 1, nrP, nrF, nrI), 1800.0)

localVerdict

function basicCapabilityTests() return verdicttype

getreply

Figure C.6 – Restaurant example – internetDefault altstep and basicCapabilityTests functions

116 ITU-T Rec. Z.163 (11/2007)

function loadTests () return verdicttype {
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

// *** Minimal load ***
localVerdict := execute(MyTestCase(

true,true,true,100,10,nrP,nrF,nrI));

// *** Medium load ***
if (localVerdict == pass) {

localVerdict := execute(MyTestCase(
true,true,true,400,30,nrP,nrF,nrI));

}

// *** Maximal load ***
if (localVerdict == pass) {

localVerdict := execute(MyTestCase(
true,false,true,1000,60,nrP,nrF,nrI));

}
return (localVerdict);

}

function serviceInterworkingTests ()
return verdicttype {
var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

// *** INTERNET ORDER & PHONE ORDER ***
localVerdict := execute(MyTestCase(

true,true,false,2,2,nrP,nrF,nrI),3000.0);

// *** PHONE ORDER & RESTAURANT ORDER
if (localVerdict == pass) {

localVerdict := execute(MyTestCase(
false,true,true,2,2,nrP,nrF,nrI),3000.0);

}

// *** RESTAURANT ORDER & INTERNET ORDER***
if (localVerdict == pass) {

localVerdict := execute(MyTestCase(
true,false,true,2,2,nrP,nrF,nrI),3000.0);

}

return (localVerdict);
}

self

var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

localVerdict := execute (MyTestCase(true, true,
false, 2, 2, nrP, nrF, nrI), 3000.0)

if (localVerdict == pass)

localVerdict := execute (MyTestCase (false, true,
true, 2, 2, nrP, nrF, nrI), 3000.0)

if (localVerdict == pass)

localVerdict := execute (MyTestCase (true, false,
true, 2, 2, nrP, nrF, nrI), 3000.0)

localVerdict

function serviceInterworkingTests() return verdicttype

self

var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

localVerdict := execute (MyTestCase(true, true,
true, 100, 100, nrP, nrF, nrI))

if (localVerdict == pass)

localVerdict := execute (MyTestCase (true, true,
true, 400, 30, nrP, nrF, nrI))

if (localVerdict == pass)

localVerdict := execute (MyTestCase (true, false,
true, 1000, 60, nrP, nrF, nrI))

localVerdict

function loadTests() return verdicttype

Figure C.7 – Restaurant example – loadTests and serviceInterworkingTests functions

117 ITU-T Rec. Z.163 (11/2007)

function qualityAssuranceTests() return verdicttype

self

var verdicttype localVerdict := pass;
var integer nrP := 0, nrF := 0, nrI := 0;

execute
(MyTestCase (true, true, true,

100, 10, nrP, nrF, nrI))

if (nrF+nrI > 5)

execute
(MyTestCase (true, true, true,

400, 30, nrP, nrF, nrI))

localVerdict

localVerdict := fail

if (nrF+nrI > 25)

execute
(MyTestCase (true, false, true,

1000, 60, nrP, nrF, nrI))

if (nrF+nrI > 75)

function qualityAssuranceTests ()
return verdicttype {

var verdicttype localVerdict := pass;
var integer nrP := 0,

nrF := 0,
nrI := 0;

// *** Quality under Minimal load ***
execute(MyTestCase(true,true,true,100,10,

nrP,nrF,nrI));

if (nrF + nrI > 5) {
localVerdict := fail;

}

// *** Quality under Medium load ***
execute(MyTestCase(true,true,true,400,30,

nrP,nrF,nrI));

if (nrF + nrI > 25) {
localVerdict := fail;

}

// *** Quality under Maximal load ***
execute(MyTestCase(true,false,true,1000,60,

nrP,nrF,nrI));

if (nrF + nrI > 75) {
localVerdict := fail;

}

return (localVerdict);

} // end function qualityAssuranceTests

localVerdict := fail

localVerdict := fail

Figure C.8 – Restaurant example – qualityAssuranceTests

118 ITU-T Rec. Z.163 (11/2007)

module PizzaHutTest

control

var verdicttype overallVerdict := pass;

if (capabilityTesting
and overallVerdict == pass)

overallVerdict := basicCapabilityTests()

if (interworkingTesting
and overallVerdict == pass)

overallVerdict := serviceInterworkingTests()

if (loadTesting
and overallVerdict == pass)

overallVerdict := loadTests()

if (qualityTesting
and overallVerdict == pass)

overallVerdict := qualityAssuranceTests()

module PizzaHutTest (
boolean capabilityTesting,
boolean interworkingTesting,
boolean loadTesting,
boolean qualityTesting) {

control {

var verdicttype overallVerdict := pass;

// Basic Capability Tests
if (capabilityTesting and overallVerdict == pass) {

overallVerdict := basicCapabilityTests();
}

// Interworking Tests
if (interworkingTesting and overallVerdict == pass) {

overallVerdict := serviceInterworkingTests();
}

// Load Tests
if (loadTesting and overallVerdict == pass) {

overallVerdict := loadTests();
}

// Quality Assurance Tests
if (qualityTesting and overallVerdict == pass) {

overallVerdict := qualityAssuranceTests();
}

}

Figure C.9 – Restaurant example – PizzaHutTest module

119 ITU-T Rec. Z.163 (11/2007)

C.2 The INRES example

testcase mi_synch1 () runs on MTCType

MTCType
mtc

PCO_Type1
ISAP1 MSAP2

alt

PCO_Type2

Medium_Connection_Request

MDATreq
Medium_Connection_Confirmation

alt

Data_Request(TestSuitePar)

alt
Medium_Data_Transfer

alt IDISind
{}

Medium_Disconnection_Request
pass

Medium_Disconnection_Request
IDISind
{}

Medium_Data_Transfer

ICONreq
{}

ICONconf
{}

MDATreq
cmi_synch1

IDISreq
{}

Page 1(2)

var default def
:=activate

(OtherwiseFail());

testcase mi_synch1 () runs on MTCType {

/* Default activation */
var default def := activate(OtherwiseFail());

/* Inline template definition */
ISAP1.send(ICONreq:{});

alt { /* alt1 */
[] MSAP2.receive(Medium_Connection_Request) {

/* use of a template */
MSAP2.send(MDATreq:Medium_Connection_Confirmation);

/*optional template type*/

alt { /* alt2 */
[] ISAP1.receive (ICONconf:{}) {

ISAP1.send (Data_Request(TestSuitePar));

alt { /* alt3 */
[] MSAP2.receive(Medium_Data_Transfer) {

MSAP2.send (MDATreq:cmi_synch1());
ISAP1.send (IDISreq:{});

alt { /* alt4 */
[] ISAP1.receive (IDISind:{}) {

MSAP2.receive(
Medium_Disconnection_Request);

setverdict(pass);
stop;

}

[] MSAP2.receive(
Medium_Disconnection_Request){

ISAP1.receive(IDISind:{});
setverdict(pass);
stop;

}

[] MSAP2.receive(Medium_Data_Transfer) {
setverdict(inconclusive);
stop;

}
} /* end alt4 */

}

pass

inconc

Figure C.10 – INRES example – mi_synch1 1(2) test case

120 ITU-T Rec. Z.163 (11/2007)

/* testcase mi_synch1 () continuation */

[] ISAP1.receive(IDISind:{}) {
setverdict(inconclusive);
stop;

}
} /* end alt3 */

}

[] MSAP2.receive(
MDATind:Medium_Connection_Request) {

setverdict(inconclusive);
stop;
}

[] ISAP1.receive(IDISind:{}) {
setverdict(inconclusive);
stop;
}

}
} /* end alt2 */

[] ISAP1.receive(IDISind:{}) {
setverdict(inconclusive);
stop;

}
} /* end alt1 */

} /* End testcase mi_synch1 */

testcase mi_synch1 () runs on MTCType

MTCType
mtc

PCO_Type1
ISAP1 MSAP2

PCO_Type2

MDATind
Medium_Connection_Request

IDISind
{}

alt alt alt

inconc

inconc

inconc

IDISind
{}

inconc

IDISind
{}

Page 2(2)

Figure C.11 – INRES example – mi_synch1 2(2) test case

121 ITU-T Rec. Z.163 (11/2007)

testcase mi_synch2 () runs on MTCType {

var default def := activate(OtherwiseFail());
/* Default activation */

ISAP1.send(ICONreq:{});
setverdict(pass);

alt {
[] MSAP2.receive(Medium_Connection_Request) {

MSAP2.send (MDATreq:Medium_Connection_Confirmation);
alt {

[] ISAP1.receive (ICONconf:{}) {
ISAP1.send (Data_Request(TestSuitePar));
alt {

[] MSAP2.receive (Medium_Data_Transfer) {
MSAP2.send (MDATreq:cmi_synch1);
ISAP1.send (IDISreq:{});
alt {

[] ISAP1.receive (IDISind:{}) { /* PASS */
MSAP2.receive(

Medium_Disconnection_Request);
}
[] MSAP2.receive(

Medium_Disconnection_Request){
ISAP1.receive(IDISind:{}); /* PASS */

}

[] MSAP2.receive (Medium_Data_Transfer) {
setverdict(inconclusive);

}
}

}
[] ISAP1.receive(IDISind:{}) {

setverdict(inconclusive);
}

}
}
[] MSAP2.receive(MDATind:Medium_Connection_Request) {

setverdict(inconclusive);
}
[] ISAP1.receive(IDISind:{}) {

setverdict(inconclusive);
}

}
}
[] ISAP1.receive(IDISind:{}) {

setverdict(inconclusive);
}

}
stop; } /* End testcase mi_synch2 */

testcase mi_synch2 () runs on MTCType

MTCType
mtc

PCO_Type1
ISAP1 MSAP2

alt

PCO_Type2

Medium_Connection_Request

MDATreq
Medium_Connection_Confirmation

alt

Data_Request(TestSuitePar)

alt Medium_Data_Transfer

alt IDISind
{}

Medium_Disconnection_Request

Medium_Data_Transfer

MDATind
Medium_Connection_Request

ICONreq
{}

ICONconf
{}

MDATreq
cmi_synch1

IDISreq
{}

var default def
:=activate

(OtherwiseFail());

inconc

pass

IDISind
{}

Medium_Disconnection_Request

IDISind
{}

inconc

inconc

IDISind
{}

inconc

IDISind
{}

inconc

Figure C.12 – INRES example – mi_synch2 test case

122 ITU-T Rec. Z.163 (11/2007)

testcase mi_synch5 () runs on MTCType

MTCType
mtc

PCO_Type1
ISAP1 MSAP2

PCO_Type2

{}

Medium_Connection_Request

Medium_Connection_Confirmation

{}

Data_Request(TestSuitePar)

Medium_Data_Transfer

cmi_synch1

{}

interleave IDISind

{}

Medium_Disconnection_Request

ICONreq

MDATreq

ICONconf

MDATreq

IDISreq

pass

var default
def:=activate

(DefaultWithInconclusives());

testcase mi_synch5 () runs on MTCType {

var default
def := activate(DefaultWithInconclusives);

/* Default activation */
/* message ONE and response to ONE */
ISAP1.send(ICONreq:{});
MSAP2.receive(Medium_Connection_Request);

/* message TWO and response to TWO */
MSAP2.send(

MDATreq:Medium_Connection_Confirmation);
ISAP1.receive (ICONconf:{});

/* message THREE and response to THREE */
ISAP1.send (Data_Request(TestSuitePar));
MSAP2.receive (Medium_Data_Transfer);

/* messages FOUR and FIVE */
MSAP2.send (MDATreq:cmi_synch1);
ISAP1.send (IDISreq:{});

interleave {
/* the two responses to messages FOUR and

FIVE can arrive in any order */
[] ISAP1.receive(IDISind:{}) {};
[] MSAP2.receive(

Medium_Disconnection_Request) {};
}

setverdict(pass);

stop;

} /* End testcase mi_synch5 */

Figure C.13 – INRES example – mi_synch5 test case

123 ITU-T Rec. Z.163 (11/2007)

altstep DefaultWithInconclusives()

MTCType

self
PCO_Type1

ISAP1 MSAP2
PCO_Type2

inconc

alt

with {
display “default”; }

Medium_Connection_Request

Medium_Data_Transfer

MDATind

{}

IDISind

inconc

inconc

fail

fail

altstep DefaultWithInconclusives() {

/* INCONCLUSIVE CASES */

[] MSAP2.receive(MDATind:Medium_Connection_Request) {

setverdict(inconclusive);
stop;

}

[] ISAP1.receive (IDISind:{}) {

setverdict(inconclusive);
stop;

}

[] MSAP2.receive (Medium_Data_Transfer) {

setverdict(inconclusive);
stop;

}

/* FAIL CASES */

[] ISAP1.receive {

setverdict(fail);
stop;

}

[] MSAP2.receive {

setverdict(fail);
stop;

}

} with { display "default"; }

Figure C.14 – INRES example – DefaultWithInconclusives altstep

124 ITU-T Rec. Z.163 (11/2007)

altstep OtherwiseFail() {

[] ISAP1.receive {

setverdict(fail);

stop;
}

[] MSAP2.receive {

setverdict(fail);

stop;
}

} with { display "default"; }

altstep OtherwiseFail()

MTCType

self
PCO_Type1

ISAP1 MSAP2
PCO_Type2

fail
with {
display “default”; }

alt

fail

module InresExample1

control

execute(mi_synch1(), 5.0);

execute(mi_synch2(), 5.0);

execute(mi_synch5(), 5.0);

module InresExample1 {
...

control InresExample {

execute (mi_synch1(), 5.0);

execute (mi_synch2(), 5.0);

execute (mi_synch5(), 5.0);

} // end control part

}

Figure C.15 – INRES example – OtherwiseFail altstep and InresExample1 module definitions

Printed in Switzerland
Geneva, 2008

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.163 (11/2007) – Testing and Test Control Notation version 3: TTCN-3 graphical presentation format (GFT)
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Abbreviations
	4 Overview
	5 GFT language concepts
	6 Mapping between GFT and TTCN-3 Core language
	7 Module structure
	8 GFT symbols
	9 GFT diagrams
	9.1 Common properties
	9.2 Control diagram
	9.3 Test case diagram
	9.4 Function diagram
	9.5 Altstep diagram

	10 Instances in GFT diagrams
	10.1 Control instance
	10.2 Test component instances
	10.3 Port instances

	11 Elements of GFT diagrams
	11.1 General drawing rules
	11.2 Invoking GFT diagrams
	11.3 Declarations
	11.4 Basic program statements
	11.5 Behavioural program statements
	11.6 Default handling
	11.7 Configuration operations
	11.8 Communication operations
	11.9 Timer operations
	11.10 Test verdict operations
	11.11 External actions
	11.12 Specifying attributes

	Annex A – GFT BNF
	A.1 Meta-language for GFT
	A.2 Conventions for the syntax description
	A.3 The GFT grammar
	Annex B – Reference guide for GFT
	Annex C – Examples
	C.1 The Restaurant example
	C.2 The INRES example

