

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.169
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2008)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3:
TTCN-3 mapping from XML data definition

Recommendation ITU-T Z.169

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.169 (11/2008) i

Recommendation ITU-T Z.169

Testing and Test Control Notation version 3: TTCN-3
mapping from XML data definition

Summary
Recommendation ITU-T Z.169 defines the mapping rules for W3C Schema to TTCN-3 to enable
testing of XML-based systems, interfaces and protocols.

Source
Recommendation ITU-T Z.169 was approved on 29 November 2008 by ITU-T Study Group 17
(2009-2012) under Recommendation ITU-T A.8 procedures.

ii Rec. ITU-T Z.169 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.169 (11/2008) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1

3 Symbols and abbreviations ... 2
3.1 Symbols .. 2
3.2 Abbreviations ... 2

4 Introduction .. 2

5 Mapping XML Schemas... 3
5.1 Namespaces and document references ... 4
5.2 Name conversion .. 6
5.3 Unsupported features.. 10

6 Built-in data types... 11
6.1 Mapping of facets ... 11
6.2 String types... 18
6.3 Integer types ... 20
6.4 float types ... 22
6.5 time types.. 22
6.6 Sequence types ... 23
6.7 Boolean type... 24
6.8 anyType and anySimpleType types.. 24

7 Mapping XSD components .. 25
7.1 Attributes of XSD component declarations.. 25
7.2 Schema component... 28
7.3 Element component .. 28
7.4 Attribute components ... 29
7.5 simpleType components ... 30
7.6 complexType components.. 33
7.7 any and anyAttribute .. 43
7.8 Annotation .. 45

Annex A – XSD.ttcn3 .. 46

Appendix B – Examples .. 49
B.1 Example 1... 49
B.2 Example 2... 50
B.3 Example 3... 52
B.4 Example 4... 53

 Rec. ITU-T Z.169 (11/2008) 1

Recommendation ITU-T Z.169

Testing and Test Control Notation version 3: TTCN-3
mapping from XML data definition

1 Scope
This Recommendation defines the mapping rules for W3C Schema (as defined in
[W3C XMLSchema-1] and [W3C XMLSchema-2]) to TTCN-3 as defined in [ITU-T Z.161] to
enable testing of XML-based systems, interfaces and protocols.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.680] Recommendation ITU-T X.680 (2002) | ISO/IEC 8824-1:2002,
Information technology – Abstract Syntax Notation One (ASN.1):
Specification of basic notation.

[ITU-T X.694] Recommendation ITU-T X.694 (2004) | ISO/IEC 8825-5:2004,
Information technology – ASN.1 encoding rules: Mapping W3C XML
schema definitions into ASN.1.

[ITU-T Z.161] Recommendation ITU-T Z.161 (2007), Testing and Test Control
Notation version 3 (TTCN-3): Core language
Technically aligned with:
ETSI ES 201 873-1 (2008), Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 1:
TTCN-3 Core Language.

[ITU-T Z.167] Recommendation ITU-T Z.167 (2008), Testing and Test Control
Notation version 3 (TTCN-3): TTCN-3 mapping from ASN.1
Technically aligned with:
ETSI ES 201 873-7 (2008): Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 7:
Using ASN.1 with TTCN-3.

[W3C XML] W3C Recommendation (2004), Extensible Markup Language (XML)
1.1, World Wide Web Consortium. Available at:
http://www.w3.org/TR/xml11.

[W3C N-XML] W3C Recommendation (1999), Namespaces: Namespaces in XML,
World Wide Web Consortium. Available at:
http://www.w3.org/TR/1999/REC-xml-names-19990114, http://www.w3.org/XML/Schema.

[W3C XMLSchema-0] W3C Recommendation (2004), XML Schema Part 0: Primer, World
Wide Web Consortium. Available at:
http://www.w3.org/TR/xmlschema-0.

http://www.w3.org/TR/xml11
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0

2 Rec. ITU-T Z.169 (11/2008)

[W3C XMLSchema-1] W3C Recommendation (2004), XML Schema Part 1: Structures,
World Wide Web Consortium. Available at:
http://www.w3.org/TR/xmlschema-1.

[W3C XMLSchema-2] W3C Recommendation (2004), XML Schema Part 2: Datatypes,
World Wide Web Consortium. Available at:
http://www.w3.org/TR/xmlschema-2.

[W3C SOAP] W3C Recommendation, SOAP version 1.2, Part 1: Messaging
Framework, World Wide Web Consortium. Available at:
http://www.w3.org/TR/soap12.

3 Symbols and abbreviations

3.1 Symbols
This Recommendation uses the following symbol:

 The whitespace character

3.2 Abbreviations
This Recommendation uses the following abbreviations:

ASN.1 Abstract Syntax Notation One

DTD Document Type Description

SOAP Simple Object Access Protocol

TTCN-3 Testing and Test Control Notation version 3

URI IETF Uniform Resource Identifier

W3C World Wide Web Consortium

XML W3C eXtensible Markup Language

XSD W3C XML Schema Definition

4 Introduction

An increasing number of distributed applications use the XML format to exchange data for various
purposes, like database queries or updates or event telecommunications operations such as
provisioning. All of these data exchanges follow very precise rules for data format description in the
form of document type description (DTD) [W3C XML] and [W3C N-XML], or more recently the
proposed XML Schemas [W3C XMLSchema-0], [W3C XMLSchema-1] and
[W3C XMLSchema-2]. There are even some XML-based communication protocols like SOAP
[W3C SOAP] that are based on XML Schemas. Like any other communication-based systems,
components and protocols, XML-based systems, components and protocols are candidates for
testing using TTCN-3 [ITU-T Z.161]. Consequently, there is a need for establishing a mapping
between XML data description techniques like DTD or Schemas to TTCN-3 standard data types.

The core language of TTCN-3 is defined in [ITU-T Z.161] and provides a full text-based syntax,
static semantics and operational semantics, as well as a definition for the use of the language with
ASN.1 in [ITU-T Z.167] of this multi-part deliverable. The XML mapping provides a definition for
the use of the core language with XML Schema structures and types, enabling integration of XML
data with the language as shown in Figure 1.

http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/soap12

 Rec. ITU-T Z.169 (11/2008) 3

 TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

XSD Types

The shaded boxes are not
defined in this
Recommendation

Tabular
format

Figure 1 – User's view of the core language and the
various presentation formats

For compatibility reasons, the TTCN-3 code obtained from the XML Schema using this
Recommendation for an explicit mapping should be the same as the TTCN-3 code obtained from
first converting the XML Schema using [ITU-T X.694] into ASN.1 [ITU-T X.680] then converting
the resulting ASN.1 into TTCN-3 code using [ITU-T Z.167]. Moreover, the XML document
produced by the TTCN-3 code with encoding extensions obtained from the XML Schema based on
this Recommendation should be the same as the XML document produced by the ASN.1 with
E-XER encoding based on [ITU-T X.694] conversion of the same XML Schema.

5 Mapping XML Schemas
There are two approaches to the integration of XML Schema and TTCN-3, which will be referred to
as implicit and explicit mapping. The implicit mapping makes use of the import mechanism of
TTCN-3, denoted by the keywords language and import. It facilitates the immediate use of data
specified in other languages. Therefore, the definition of a specific data interface for each of these
languages is required. The explicit mapping translates XML Schema definitions directly into
appropriate TTCN-3 language artefacts.

In case of an implicit mapping an internal representation is produced from the XML Schema, which
representation should retain all the structural and encoding information. This internal representation
is not accessible by the user.

For explicit mapping, the information present in the XML Schema is mapped into accessible
TTCN-3 code and – the XML structural information which does not have its correspondent in
TTCN-3 code – into accessible encoding instructions. Built-in data types, described in detail in
clause 6, in case of an implicit conversion, are internal to the tool and can be referenced directly by
the user, while in case of an explicit conversion, the user will have to import the XSD.ttcn module
(see Annex A). When importing from an XSD Schema, the following language identifier strings
shall be used:

• "XML" or "XML1.0" for W3C XML 1.0; and
• "XML1.1" for W3C XML 1.1.

The examples of this Recommendation are written in the assumption of explicit mapping, although
the difference is mainly in accessibility and visibility of generated TTCN-3 code and encoding
instruction set.

4 Rec. ITU-T Z.169 (11/2008)

This Recommendation is structured in two distinct parts:

• Clause 6 "Built-in data types" defines the TTCN-3 mapping for all basic XSD data types
like strings (see clause 6.2), integers (see clause 6.3), floats (see clause 6.4), etc., and facets
(see clause 6.1) that allow for a simple modification of types by restriction of their
properties (e.g., restricting the length of a string or the range of an integer).

• Clause 7 "Mapping XSD components" covers the translation of more complex structures
that are formed using the components shown in Table 1 and a set of XSD attributes (see
clause 7.1) which allow for modification of constraints of the resulting types.

Table 1 – Overview of XSD constructs

Element Defines tags that can appear in a conforming XML document
attribute Defines attributes for element tags in a conforming XML document

simpleType Defines the simplest types. They may be a built-in type, a list or choice of
built-in types and they are not allowed to have attributes

complexType Defines types that are allowed to be composed, e.g., have attributes and an
internal structure

named model group Defines a named group of elements

attribute group Defines a group of attributes that can be used as a whole in definitions of
complexTypes

identity constraint Defines that a component has to exhibit certain properties in regard to
uniqueness and referencing

5.1 Namespaces and document references
A single XSD Schema will be translated to one or more TTCN-3 modules, corresponding to schema
components that have the same target namespace. Any XSD include/import statements are mapped
to equivalent TTCN-3 import statements. An XSD Schema including another XSD Schema will be
translated to two TTCN-3 modules, one importing from the other, both having the same target
namespace. The module names generated by the translation are not standardized.

As TTCN-3 does not offer a namespace concept, information about namespaces and prefixes (from
targetNamespace, elementFormDefault, attributeFormDefault, etc.) will be preserved not in the
TTCN-3 code but in the encoding extensions (internal or external). To allow this, an extension
permitting explicit specification of the namespaces and prefixes is introduced:

module MyModule
{
:
} with {
 encode "XML";
 variant "namespace all, all in all as 'http://www.example.org/' prefix 'ns0'"
}

All types declared in the module will inherit the namespace declaration of the module. This can be
overridden by namespace declarations qualifying fields of declared structures:

Example:

module MyModule
{
:
 type record MyRecordType {
 integer field1,
 charstring field2
 }
 with { variant (field1) "namespace as 'http://www.example.org/example1' prefix 'ns1'"
 };

 Rec. ITU-T Z.169 (11/2008) 5

:
} with {
 encode "XML";
 variant "namespace all, all in all as 'http://www.example.org/' prefix 'ns0'"
}

template MyRecordType MyTemplate:=
{
 field1:= 3,
 field2:= "four"
};

will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<ns0:MyRecordType xmlns:ns0="http://www.example.org"/>
 <ns1:field1 xmlns:ns1="http://www.example.org/example1">3</ns1:field1>
 <ns0:field2>four</ns0:field2>
</ns0:MyRecordType>

If a module has no namespace declaration, all types and fields of types declared within the module
are assumed to have no namespace, except when a qualifying statement refers to a declared type or
field directly.

The importation structure of the TTCN-3 modules will retain the importation structure of the
imported XML schemas. TTCN-3 'import' statements will import types declared in other modules,
and referenced in the current module.

The control namespace (the namespace of the type identification attributes and of the nil
identification attribute) will be specified globally, with an encoding extension attached to the
TTCN-3 module:

module MyModule
{
:
} with {
 encode "XML";
 variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'"
}

Qualifying declarations of the namespace prefixes can be used against templates, allowing re-
declaration of namespace prefixes inherited from the referred types:

template MyRecordType MyTemplate2:=
{
 field1:= 3,
 field2:= "four"
} with {
 encode "XML";
 variant (field1) "namespace prefix 'newns1'";
 variant (field2) "namespace prefix 'newns0'"
};

will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<newns0:MyRecordType xmlns:newns0="http://www.example.org"/>
 <newns1:field1 xmlns:newns1="http://www.example.org/example1">3</newns1:field1>
 <newns0:field2>four</newns0:field2>
</newns0:MyRecordType>

For reception templates, wildcards (*,?) are allowed to be used in the prefix declaration.

For the sake of clarity, wherever irrelevant, namespaces have been omitted from most of the
examples in this Recommendation.

6 Rec. ITU-T Z.169 (11/2008)

5.2 Name conversion

5.2.1 General
Translation of identifiers (e.g., type or field names) has a critical impact on the usability of
conversion results: primarily, it must guarantee TTCN-3 consistency, but, in order to support
migration of conversion results from code generated with tools based on [ITU-T X.694], it must
also generate identifiers compatible with that Recommendation. It must also support portability of
conversion results (the TTCN-3 code and the encoding instruction set) between TTCN-3 tools of
different manufacturers, which is only possible if identifier conversion is standardized.

For different reasons, a valid XSD identifier may not be valid in TTCN-3. For example, it would be
fine to specify both an attribute and an element of the same name in XSD. When mapped in a naïve
fashion, this would result in two different types with the same name in TTCN-3.

A name conversion algorithm has to guarantee that the translated identifier name:
– is unique within the scope it is to be used;
– contains only valid characters;
– is not a TTCN-3 keyword;
– is not a reserved word ("base" or "content").

This Recommendation specifies the generation of:
a) TTCN-3 type reference names corresponding to the names of model group definitions, top-

level element declarations, top-level attribute declarations, top-level complex type definitions, and
user-defined top-level simple type definitions;

b) TTCN-3 identifiers corresponding to the names of top-level element declarations, top-level
attribute declarations, local element declarations, and local attribute declarations;

c) TTCN-3 identifiers for the mapping of certain simple type definitions with an enumeration facet
(see clause 6.1.5);

d) TTCN-3 type reference names of special type assignments (Generating special ASN.1 type
assignments for element declarations, Generating special ASN.1 type assignments for type
definitions and Generating special ASN.1 type assignments for element substitution groups);
and

e) TTCN-3 identifiers of certain sequence components introduced by the mapping (see
clause 20 of [ITU-T X.694]).

All of these TTCN-3 names are generated by applying clause 5.2.2 either to the name of the
corresponding schema component, or to a member of the value of an enumeration facet, or to a
specified character string, as specified in the relevant clauses of this Recommendation.

5.2.2 Identifier name conversion rules
Names of attribute declarations, element declarations, model group definitions, user-defined top-level
simple type definitions, and top-level complex type definitions can be identical to TTCN-3 reserved
words or can contain characters not allowed in TTCN-3 identifiers or in TTCN-3 type reference
names. In addition, there are cases in which TTCN-3 names are required to be distinct where the
names of the corresponding XSD schema components (from which the TTCN-3 names are mapped)
are allowed to be identical.

The following transformations shall be applied, in order, to each character string being mapped to a
TTCN-3 name, where each transformation (except the first) is applied to the result of the previous
transformation:
• the characters " " (SPACE) and "." (FULL STOP) shall all be replaced by a "_" (LOW

LINE); and

 Rec. ITU-T Z.169 (11/2008) 7

• any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL
LETTER Z), "a" to "z" (LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0"
to "9" (DIGIT ZERO to DIGIT NINE), and "_" (LOW LINE) shall be removed; and

• a sequence of two or more "_" (LOW LINE) characters shall be replaced with a single "_"
(LOW LINE); and

• "_" (LOW LINE) characters occurring at the beginning or at the end of the name shall be
removed; and

• if a character string that is to be used as a type reference name starts with a lower-case
letter, the first letter shall be capitalized (converted to upper-case); if it starts with a digit
(DIGIT ZERO to DIGIT NINE), it shall be prefixed with an "X" (LATIN CAPITAL
LETTER X) character; and

• if a character string that is to be used as an identifier starts with an upper-case letter, the
first letter shall be uncapitalized (converted to lower-case); if it starts with a digit (DIGIT
ZERO to DIGIT NINE), it shall be prefixed with an "x" (LATIN SMALL LETTER X)
character; and

• if a character string that is to be used as a type reference name is empty, it shall be replaced
by "X" (LATIN CAPITAL LETTER X); and

• if a character string that is to be used as an identifier is empty, it shall be replaced by "x"
(LATIN SMALL LETTER X).

Depending on the kind of name being generated, one of the three following items shall apply.
a) If the name being generated is the type reference name of an TTCN-3 type assignment and

the character string generated by clause 10.3.3 of [ITU-T X.694] is identical to the type
reference name of another TTCN-3 type assignment previously generated in the same
TTCN-3 module or in another TTCN-3 module with the same namespace (including
absence of a namespace), or is one of the reserved words specified in Annex A of
[ITU-T Z.161], in clause 11.27 of [ITU-T X.680], then a suffix shall be appended to the
character string generated according to the above rules. The suffix shall consist of a "_"
(LOW LINE) followed by the canonical lexical representation (see [W3C XMLSchema-2],
clause 2.3.1) of an integer. This integer shall be the least positive integer such that the new
name is different from the type reference name of any other TTCN-3 type assignment
previously generated in any of those TTCN-3 modules.

b) If the name being generated is the identifier of a field of a record, a set or a union type, and
the character string generated by the above rules is identical to the identifier of a previously
generated field identifier of the same type, then a suffix shall be appended to the character
string generated by the above rules. The suffix shall consist of a "_" (LOW LINE) followed
by the canonical lexical representation (see [W3C XMLSchema-2], clause 2.3.1) of an
integer. This integer shall be the least positive integer such that the new identifier is
different from the identifier of any previously generated component of that sequence, set, or
choice type.

c) If the name being generated is the identifier of an enumeration item (see clause 6.2.4 of
[ITU-T Z.161]) of an enumerated type, and the character string generated by the above
rules is identical to the identifier of another enumeration item previously generated in the
same enumerated type, then a suffix shall be appended to the character string generated by
the above rules. The suffix shall consist of a "_" (LOW LINE) followed by the canonical
lexical representation (see [W3C XMLSchema-2], clause 2.3.1) of an integer. This integer
shall be the least positive integer such that the new identifier is different from the identifier
in any other enumeration item already present in that TTCN-3 enumerated type.

For a TTCN-3 type reference name (or identifier) that is generated by applying this clause to the
name of an element declaration, attribute declaration, top-level complex type definition or user-defined top-

8 Rec. ITU-T Z.169 (11/2008)

level simple type definition, if the type reference name (or identifier) generated is different from the
name, a final NAME variant attribute shall be assigned to the TTCN-3 type definition with that type
reference name (or to the field with that identifier) as specified in the items below:
a) If the only difference is the case of the first letter (which is upper case in the type reference

name and lower case in the name), then the variant attribute "name as uncapitalized"
shall be used.

b) If the only difference is the case of the first letter (which is lower case in the identifier and
upper case in the name), then the variant attribute "name as capitalized" shall be applied
to the field concerned or the "name all as capitalized" shall be applied to the related
type definition (in this case the attribute has effect on all identifiers of all fields but not on
the name of the type!).

Otherwise, the "name as 'name'" variant attribute shall be used.

EXAMPLE 1:

 //The top-level complex type definition:
 <xsd:complexType name="COMPONENTS">
 <xsd:sequence>
 <xsd:element name="Elem" type="xsd:boolean"/>
 <xsd:element name="elem" type="xsd:integer"/>
 <xsd:element name="Elem-1" type="xsd:boolean"/>
 <xsd:element name="elem-1" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 //is mapped to the TTCN-3 type assignment:
 type record COMPONENTS_1 {
 boolean elem,
 integer elem_1,
 boolean elem_1_1,
 integer elem_1_2
 }
 with {
 variant "name as 'COMPONENTS'";
 variant(elem) "name as capitalized";
 variant(elem_1) "name as 'elem'";
 variant(elem_1_1) "name as 'Elem-1'";
 variant(elem_1_2) "name as 'elem-1'"
 };

For a TTCN-3 identifier that is generated by this clause for the mapping of a simple type definition
with an enumeration facet where the identifier generated is different from the corresponding member
of the value of the enumeration facet, a variant attribute shall be assigned to the TTCN-3
enumerated type, with qualifying information specifying the identifier of the enumeration item of
the enumerated type. One of the two following items shall apply:
a) If the only difference is the case of the first letter (which is lower case in the identifier and

upper case in the member of the value of the enumeration facet), then the "text 'TTCN-3
enumeration identifier' as capitalized" variant attribute shall be used.

b) Otherwise, the "text 'TTCN-3 enumeration identifier' as 'member of the value of the
enumeration facet'" variant attribute shall be used.

EXAMPLE 2:

 //The XSD enumeration facet:
 <xsd:simpleType name="state">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Off"/>
 <xsd:enumeration value="off"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type assignment:
 type enumerated State { off, off_1 }
 with {
 variant "name as uncapitalized";
 variant "text off as capitalized";

 Rec. ITU-T Z.169 (11/2008) 9

 variant "text off_1 as 'off'"
 };

5.2.3 Order of the mapping
An order is imposed on the top-level schema components of the source XSD Schema on which the
mapping is performed. This applies to model group definitions, top-level complex type definitions, user-
defined top-level simple type definitions, top-level attribute declarations, and top-level element
declarations.
NOTE 1 – Other top-level schema components are not mapped to TTCN-3, and XSD built-in data types are
mapped in a special way.

The order is specified in the three following items:
a) Top-level schema components shall first be ordered by their target namespace, with the

absent namespace preceding all namespace names in ascending lexicographical order.
b) Within each target namespace, top-level schema components shall be divided into four sets

ordered as follows:
1) element declarations;
2) attribute declarations;
3) complex type definitions and simple type definitions;
4) model group definitions.

c) Within each set of item b), schema components shall be ordered by name in ascending
lexicographical order.

The mapping generates some TTCN-3 type definitions that do not correspond directly to any XSD
schema component. These are:
a) union types (with a final use_type variant attribute) corresponding to a type derivation

hierarchy; the type reference names of these types have a "_derivations" suffix;
b) union types (with a final use_type variant attribute on the type and a final use_nil variant

attribute on each alternative) corresponding to a type derivation hierarchy where the
user-defined top-level simple type definition or complex type definition that is the root of the
derivation hierarchy is used as the type definition of one or more element declarations that are
nillable; the type reference names of these types have a "_deriv_nillable" suffix;

c) union types (with a final use_type variant attribute on the type and a final
default_for_empty variant attribute on each alternative) corresponding to a type
derivation hierarchy where the user-defined top-level simple type definition or complex type
definition that is the root of the derivation hierarchy is used as the type definition of one or
more element declarations that are not nillable and have a value constraint that is a default
value; the type reference names of these types have a "_deriv_default_" suffix;

d) union types (with a final use_type variant attribute on the type and a final
default_for_empty variant attribute on each alternative) corresponding to a type
derivation hierarchy where the user-defined top-level simple type definition or complex type
definition that is the root of the derivation hierarchy is used as the type definition of one or
more element declarations that are not nillable and have a value constraint that is a fixed value;
the type reference names of these types have a "_deriv_fixed_" suffix;

e) union types (with a final use_type variant attribute on the type and final use_nil and
default_for_empty variant attribute on each alternative) corresponding to a type
derivation hierarchy where the user-defined top-level simple type definition or complex type
definition that is the root of the derivation hierarchy is used as the type definition of one or
more element declarations that are nillable and have a value constraint that is a default value;
the type reference names of these types have a "_deriv_nillable_default_" suffix;

10 Rec. ITU-T Z.169 (11/2008)

f) union types (with a final use_type variant attribute on the type and final use_nil and
default_for_empty encoding instructions on each alternative) corresponding to a type
derivation hierarchy where the user-defined top-level simple type definition or complex type
definition that is the root of the derivation hierarchy is used as the type definition of one or
more element declarations that are nillable and have a value constraint that is a fixed value; the
type reference names of these types have a "_deriv_nillable_fixed_" suffix;

g) union types (with a final untagged variant attribute) corresponding to an element
substitution group; the type reference names of these types have a "_group" suffix;

h) record types (with a final use_nil variant attribute) corresponding to the use of a user-
defined top-level simple type definition or complex type definition as the type definition of one or
more element declarations that are nillable; the type reference names of these types have a
"_nillable" suffix.

All TTCN-3 type assignments that correspond directly to the XSD schema components in the
source XSD Schema shall be generated before all TTCN-3 type assignments listed in clause 10.4.3
of [ITU-T X.694] (if any).

TTCN-3 type assignments that correspond directly to the XSD schema components shall be
generated in the order of the corresponding XSD schema components. TTCN-3 type definitions
listed in items a) to h) above (if any) shall be generated in the order of the XSD schema components
corresponding to the "associated type definition".

For items c) to f) above, if the simple type definition or complex type definition that is the root of the
derivation hierarchy is used as the type definition of multiple element declarations that have different
values in the value constraint, the TTCN-3 type definitions shall be generated in ascending
lexicographical order of the canonical lexical representation (see [W3C XMLSchema-2],
clause 2.3.1) of the value in the value constraint.

NOTE 2 – In some cases, alignment to [ITU-T X.694] will force an order of elements in the mapped code
(for instance using record instead of set) that is not originated neither in XML Schema nor in TTCN-3
requirements, but in ASN.1 specific considerations. In other cases, ASN.1-friendly identifiers will be
generated for compatibility.

5.3 Unsupported features
XSD and TTCN-3 are very distinct languages. Therefore some features of XSD have no equivalent
in TTCN-3 or make no sense when translated to the TTCN-3 language. Whenever possible, these
features are translated into encoding instructions completing the TTCN-3 code. The following list
contains a compilation of these unsupported features:
– Numeric types are not allowed to be restricted by patterns.
– List types are not allowed to be restricted by enumerations or patterns.
– Specifying the number of fractional digits for float types is not supported.
– Mixed content is not supported.
– Translation of the form attribute is not supported.
– Translation of the abstract attribute is not supported.
– Translation of the block attribute is not supported.
– Translation of the final attribute is not supported.
– All time types (see clause 6.5) restrict year to 4 digits.

 Rec. ITU-T Z.169 (11/2008) 11

6 Built-in data types
Built-in data types may be primitive or derived types. The latter are gained from primitive types by
means of a restriction mechanism called facets. For the mapping of primitive types, a specific
TTCN-3 module XSD is provided which defines the relation of XSD primitive types to TTCN-3
types. Whenever a new simpleType is defined, with the base type a built-in one, it will be mapped
directly from types defined in the module XSD:

EXAMPLE:
 <simpleType name="e1">
 <restriction base="integer"/>
 </simpleType>

 //Becomes
 type XSD.Integer E1
 with { variant "name as uncapitalized"};

In the following clauses, both the principle mappings of facets and the translation of primitive types
are given. The complete content of the XSD module is given in Annex A.

6.1 Mapping of facets
Table 2 summarizes the facets for the built-in types that are supported in TTCN-3. Some of them
may be supported in XML Schema but have no counterpart in TTCN-3 and therefore no mark in
Table 2.

Table 2 – Mapping support for facets of built-in types

facet

type
length min

Length
max

Length pattern enum. min
Incl.

max
Incl.

min
Excl.

max
Excl.

total
Digits

white
Space

string 9
(Note 1)

9
(Note 2)

9
(Note 2)

9
(Note 2)

9 9
(Note 3)

integer 9 9 9 9 9 9

float 9 9 9 9 9
(Note 4)

time 9 9
list 9 9 9
boolean
NOTE 1 – With the exception of QName which does not support length restriction.
NOTE 2 – With the exception of hexBinary which does not support patterns.
NOTE 3 – With the exception of some types (see clause 6.1.6, whiteSpace).
NOTE 4 – With the exception of decimal which does support totalDigits.

6.1.1 Length

The facet length describes how many units of length a value of the given simple type must have.
For string and data types derived from string, length is measured in units of characters. For
hexBinary and base64Binary and data types derived from them, length is measured in octets (8 bits)
of binary data. For data types derived by list, length is measured in number of list items. A length-
restricted XSD type is mapped to a corresponding length restricted type in TTCN-3.

12 Rec. ITU-T Z.169 (11/2008)

EXAMPLE 1:

<simpleType name="e2">
 <restriction base="string">
 <length value="10"/>
 </restriction>
</simpleType>

Is translated to the following TTCN-3 type:

type XSD.String E2 length(10)
with { variant "name as uncapitalized"};

For built-in list types (see clause 6.6), the number of elements of the resulting structure will be
restricted.

EXAMPLE 2:

<simpleType name="e3">
 <restriction base="NMTOKENS">
 <length value="10"/>
 </restriction>
</simpleType>

Mapped to TTCN-3:

type XSD.NMTOKENS E3 length(10)
with { variant "name as uncapitalized"};

6.1.2 minLength
The facet minLength describes, how many units of length a value of the given simple type at least
must have. It is mapped to a length restriction in TTCN-3 with a set lower boundary and an open
upper boundary. Usage of the attribute fixed (see clause 7.1.5) has to be ignored.

EXAMPLE:

<simpleType name="e4">
 <restriction base="string">
 <minLength value="3"/>
 </restriction>
</simpleType>

Is translated to:

type XSD.String E4 length(3 .. infinity)
with { variant "name as uncapitalized"};

6.1.3 maxLength
The facet maxLength describes how many units of length a value of the given simple type at most
must have. It is mapped to a length restriction in TTCN-3 with a set upper boundary and a lower
boundary of zero. Usage of the attribute fixed (see clause 7.1.5) has to be ignored.

EXAMPLE:

<simpleType name="e5">
 <restriction base="string">
 <maxLength value="5"/>
 </restriction>
</simpleType>

Is mapped to:

type XSD.String E5 length(0 .. 5)
with { variant "name as uncapitalized"};

 Rec. ITU-T Z.169 (11/2008) 13

6.1.4 pattern
The facet pattern describes a constraint in terms of a regular expression applied on a value space of
a data type. For string-based types, this can be directly translated using the support in TTCN-3 for
defining regular expression patterns on character sequences. It is not supported for numerical or
boolean types. As the syntax of XSD regular patterns differs from the syntax of the TTCN-3 regular
expressions, a mapping of the pattern expression has to be applied. The symbols (,), |, [,], ^, -
do not change and are translated directly. For the mapping of all other symbols, refer to Tables 3
and 4.

Table 3 – Translation of special characters

XSD TTCN-3

. ?
\s [�\t\n\r]
\S [^�\t\n\t]
\d \d
\D [^\d]
\w \w
\W [^\w]
\i [\w\d:]
\I [^\w\d:]
\c [\w\d.\-_:]
\C [^\w\d.\-_:]

Table 4 – Translation of quantifiers

XSD TTCN-3

? #(0,1)

+ #(1,)

* #(0,)

{n,m} #(n,m)

{n} #(n)

{n,} #(n,)

Unicode characters in XSD patterns are directly translated but the syntax changes from &#xgprc; in
XSD to \q{g, p, r, c} in TTCN-3, where g, p, r, and c each represent a single character.

Escaped characters in XSD are mapped to an escaped character in TTCN-3 or directly to the
character (e.g., '.', and '+'). The double quote character must be mapped to an escaped double quote
character. Character categories and blocks (like \p{Lu} or \p{IsBasicLatin}) are not supported.
The correctness of the regular expression mappings themselves should be checked according to
clause B.1.5 of [ITU-T Z.161].

EXAMPLE:

<simpleType name="e6">
 <restriction base="string">
 <pattern value="(ahi|eho|cre|dve)@(f|F)okus"/>
 </restriction>
</simpleType>

14 Rec. ITU-T Z.169 (11/2008)

Will be mapped to the following TTCN-3 expression:

type XSD.String E6 (pattern "(ahi|eho|cre|dve)@(f|F)okus")
with { variant "name as uncapitalized"};

6.1.5 enumeration
The facet enumeration constraints the value space to a specified set of values for a type.

An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by
restriction (directly or indirectly) from xsd:string shall be mapped to enumeration values of a
TTCN-3 enumerated type (see clause 6.2.4 of [ITU-T Z.161]) as specified in the three items below:
a) For each member of the value of the enumeration facet, an enumeration item that is an

identifier (i.e., without associated integer value) shall be added to the enumerated type,
except for members not satisfying a relevant length, minLength, maxLength, pattern facet or a
whiteSpace facet with a value of replace or collapse and the member name containing any of
the characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE RETURN, or
(in the case of collapse) containing leading, trailing, or multiple consecutive SPACE
characters.

b) Each enumeration identifier shall be generated by applying the rules defined in clause 5.2.2
to the corresponding member of the value of the enumeration facet.

c) The members of the value of the enumeration facet shall be mapped in ascending
lexicographical order and any duplicate members shall be discarded.

An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by
restriction (directly or indirectly) from xsd:integer shall be mapped to enumeration values of a
TTCN-3 enumerated type (see clause 6.2.4 of [ITU-T Z.161]) as specified in the three items below:
a) For each member of the value of the enumeration facet, an enumeration item that is an

enumeration identifier plus the associated integer value shall be added to the enumeration
type, except for members not satisfying a relevant length, minLength, maxLength, pattern facet
or a whiteSpace facet with a value of replace or collapse and the member name containing any
of the characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE RETURN,
or (in the case of collapse) containing leading, trailing, or multiple consecutive SPACE
characters.

b) The identifier of each enumeration item shall be generated by concatenating the character
string "int" with the canonical lexical representation (see [W3C XMLSchema-2],
clause 2.3.1) of the corresponding member of the value of the enumeration facet. The
assigned integer value shall be the TTCN-3 integer value notation for the member.

c) The members of the value of the enumeration facet shall be mapped in ascending numerical
order and any duplicate members shall be discarded.

Any other enumeration facet shall be mapped to value list subtyping, if this is allowed by
[ITU-T Z.161], that is either a single value or a union of single values corresponding to the
members of the value of the enumeration. If a corresponding value list subtyping is not allowed by
[ITU-T Z.161], the enumeration facet shall be ignored.
NOTE – The enumeration facet applies to the value space of the base type definition. Therefore, for an
enumeration of the XSD built-in datatypes QName, the value of the uri component of the use_qname
record (see clause 6.6.4) is determined, in the XML representation of an XSD Schema, by the namespace
declarations whose scope includes the QName, and by the prefix (if any) of the QName.

EXAMPLE 1: The following represents a user-defined top-level simple type definition that is a
restriction of xsd:string with an enumeration facet.

 <xsd:simpleType name="state">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="off"/>

 Rec. ITU-T Z.169 (11/2008) 15

 <xsd:enumeration value="on"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type enumerated State {off, on}
 with { variant "name as uncapitalized"};

EXAMPLE 2: The following represents a user-defined top-level simple type definition that is a
restriction of xsd:integer with an enumeration facet.

 <xsd:simpleType name="integer-0-5-10">
 <xsd:restriction base="xsd:integer">
 <xsd:enumeration value="0"/>
 <xsd:enumeration value="5"/>
 <xsd:enumeration value="10"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type enumerated Integer_0_5_10 {int0(0), int5(5), int10(10)}
 with { variant "name as uncapitalized"};

EXAMPLE 3: The following represents a user-defined top-level simple type definition that is a
restriction of xsd:integer with a minInclusive and a maxInclusive facet.

 <xsd:simpleType name="integer-1-10">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="10"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type integer Integer_1_10 (1..10)
 with { variant "name as uncapitalized"};

EXAMPLE 4: The following represents a user-defined top-level simple type definition that is a
restriction (with a minExclusive facet) of another simple type definition, derived by restriction from
xsd:integer with the addition of a minInclusive and a maxInclusive facet.

 <xsd:simpleType name="multiple-of-4">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:minExclusive value="5"/>
 </xsd:restriction>
 </xsd:simpleType>

 //Is mapped to the TTCN-3 type definition:
 type integer Multiple_of_4 (1..4,6..10)
 with { variant "name as uncapitalized"};

EXAMPLE 5: The following represents a user-defined top-level simple type definition that is a
restriction (with a minLength and a maxLength facet) of another simple type definition, derived by
restriction from xsd:string with the addition of an enumeration facet.

 <xsd:simpleType name="color">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="white"/>
 <xsd:enumeration value="black"/>
 <xsd:enumeration value="red"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:minLength value="2"/>
 <xsd:maxLength value="4"/>
 xsd:restriction>
 </xsd:simpleType>

16 Rec. ITU-T Z.169 (11/2008)

 //Is mapped to the TTCN-3 type definition:
 type enumerated Color { red }
 with { variant "name as uncapitalized"};

6.1.6 whiteSpace
The whiteSpace facet has no corresponding feature in TTCN-3 but is preserved for the codec using
appropriate encoding instructions.

EXAMPLE:

<simpleType name="e8">
 <restriction base="string">
 <whiteSpace value="replace"/>
 </restriction>
</simpleType>

This can be mapped into a charstring, sending information about the whiteSpace facet to the codec.

type XSD.String E8
with {
 variant "whiteSpace replace";
 variant "name as uncapitalized"
};

For most built-in types, the value of the whiteSpace facet is set to "collapse", only the string type
normalizedString (see clause 6.2.2, Normalized string), token (see clause 6.2.3, Token), language
(see clause 6.2.13, language), Name (see clause 6.2.4) and NCName (see clause 6.2.6, NCName) are
allowed to specify this facet.

6.1.7 minInclusive
The minInclusive facet is only valid for numerical types. It specifies the lowest bound for a number,
including the boundary. This is mapped to a range restriction in TTCN-3 with a given lower
boundary and the upper boundary of the base type (or infinity if not set).

EXAMPLE:

Mapping of elements of type integer with minInclusive facet:

<simpleType name="e9">
 <restriction base="integer">
 <minInclusive value="-5"/>
 </restriction>
</simpleType>

Is mapped to:

type XSD.Integer E9 (-5 .. infinity)
with { variant "name as uncapitalized"};

6.1.8 maxInclusive
The maxInclusive facet is only valid for numerical types. It specifies the upmost bound for a
number, including the boundary. This is mapped to a range restriction in TTCN-3 with a given
upper boundary and the lower boundary of the base type (-infinity if not set).

EXAMPLE:

Mapping of elements of type integer with maxInclusive facet:

<simpleType name="e10">
 <restriction base="positiveInteger">
 <maxInclusive value="100"/>
 </restriction>
</simpleType>

 Rec. ITU-T Z.169 (11/2008) 17

Is mapped to:

type XSD.PositiveInteger E10 (1 .. 100)
with { variant "name as uncapitalized"};

6.1.9 minExclusive
The mapping of minExclusive is very similar to minInclusive (see clause 6.1.7) only the given
bound is not part of the range. A direct mapping of this is not possible in TTCN-3, as ranges are
always including the given boundaries. To get around this, a value delta needs to be defined which
is the smallest possible number handled by the TTCN-3 compiler for a given type (e.g., 1 for
integer types and something very small for a double). The boundary is then modified by adding the
delta.

EXAMPLE: Considering the mapping result of the example in clause 6.1.7, a translation with
minExclusive facet would look like:

<simpleType name="e9a">
 <restriction base="integer">
 <minExclusive value="-5"/>
 </restriction>
</simpleType>

type XSD.Integer E9a (-4 .. infinity)
with { variant "name as uncapitalized"};

(The original boundary of -5 has been modified by the addition of a delta of 1).

6.1.10 maxExclusive
The mapping of maxExclusive is very similar to maxInclusive (see clause 6.1.8) only the given
bound is not part of the range. A direct mapping of this is not possible in TTCN-3, as ranges are
always including the given boundaries. To get around this, a value delta needs to be defined which
is the smallest possible number handled by the TTCN-3 compiler for a given type (e.g., 1 for
integer types and something very small for a double). The boundary is then modified by subtracting
the delta.

EXAMPLE: Considering the mapping result of the example in clause 6.2.6, NCName, a
translation with maxExclusive facet would look like:

<simpleType name="e10a">
 <restriction base="positiveInteger">
 <maxExclusive value="100"/>
 </restriction>
</simpleType>

Is mapped to:

type XSD.PositiveInteger E10a (1 .. 99)
with { variant "name as uncapitalized"};

(The original boundary of 100 has been modified by the subtraction of a delta of 1.)

6.1.11 Total digits
This facet defines the total number of digits a numeric value is allowed to have. It is mapped to
TTCN-3 using ranges by converting the value of totalDigits to the proper boundaries of the numeric
type in question.

EXAMPLE:

<simpleType name="e13">
 <restriction base="negativeInteger">
 <totalDigits value="3"/>
 </restriction>
</simpleType>

18 Rec. ITU-T Z.169 (11/2008)

Will be translated to:

type XSD.NegativeInteger E13 (-999 .. -1)
with { variant "name as uncapitalized"};

6.2 String types
XSD string types are generally converted to TTCN-3 as subtypes of universal charstring or
octetstring. For an overview of the allowed facets, refer to Table 2. Following are details on the
mapping of all string types of XSD.
NOTE – To support mapping, the following type definitions are added to the built-in data types (utf8string is
declared as a UTF-8 encoded subtype of universal charstring in clause D.2.2.0 of [ITU-T Z.161]):

type utf8string XMLCompatibleString
(
 char(0,0,0,9).. char(0,0,0,9),
 char(0,0,0,10)..char(0,0,0,10),
 char(0,0,0,12)..char(0,0,0,12),
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

type utf8string XMLStringWithNoWhitespace
(
 char(0,0,0,33)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

type utf8string XMLStringWithNoCRLFHT
(
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

6.2.1 String
The string type is translated to TTCN-3 as an XML compatible restriction of the universal
charstring:

type XSD.XMLCompatibleString String
with { variant "XSD:string"};

6.2.2 Normalized string
The normalizedString type is translated to TTCN-3 using the following XML compatible restricted
subtype of the universal charstring:

type XSD.XMLStringWithNoCRLFHT NormalizedString
with { variant "XSD:normalizedString"};

6.2.3 Token
The token type is translated to TTCN-3 using the built-in data type NormalizedString:

type XSD.NormalizedString Token
with { variant "XSD:token"};

6.2.4 Name
The Name type is translated to TTCN-3 using the following XML compatible restricted subtype of
the universal charstring:

type XSD.XMLStringWithNoWhitespace Name
with {variant "XSD:Name"};

 Rec. ITU-T Z.169 (11/2008) 19

6.2.5 NMTOKEN
The NMTOKEN type is translated to TTCN-3 using the following XML compatible restricted
subtype of the universal charstring:

type XSD.XMLStringWithNoWhitespace NMTOKEN
with { variant "XSD:NMTOKEN"};

6.2.6 NCName
The NCName type is translated to TTCN-3 using the built-in data type Name:

type XSD.Name NCName
with { variant "XSD:NCName"};

6.2.7 ID
The ID type is translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName ID
with { variant "XSD:ID"};

6.2.8 IDREF
The IDREF type is translated to TTCN-3 using the built-in data type NCName:

type XSD.NcName IDREF
with { variant "XSD:IDREF"};

6.2.9 ENTITY
The ENTITY type is translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName ENTITY
with { variant "XSD:ENTITY"};

6.2.10 Hexadecimal binary
The hexBinary type is translated to TTCN-3 using a plain octetstring:

type octetstring HexBinary
with { variant "XSD:hexBinary"};

A translation has to be aware of the fact that XSD hexBinary allows for the usage of lowercase
letters (a, b, c, d, e, and f) for the specification of values. These need to be converted to upper case
for TTCN-3.

It is not legal to specify patterns for hexBinary types.

6.2.11 Base 64 binary
The XSD base64Binary type is translated to an octetstring in TTCN-3. When encoding elements of
this type, the XML codec will invoke automatically an appropriate base64 encoder; when decoding
XML instance content, the base64 decoder will be called.

The base64Binary type mapped into TTCN-3 is:

type octetstring Base64Binary
with { variant "XSD:base64Binary"};

EXAMPLE:

<simpleType name="E14">
 <restriction base="base64Binary"/>
</simpleType>

20 Rec. ITU-T Z.169 (11/2008)

will be translated as:

type XSD.Base64Binary E14;

and a value:

template E14 MyBase64BinaryTemplate:= '546974616E52756C6573'O

will be encoded as:

<E14>VGl0YW5SdWxlcw==\r\n</E14>

6.2.12 Any URI
The anyURI type is translated to TTCN-3 as an XML compatible restricted subtype of the universal
charstring:

type XSD.XMLStringWithNoCRLFHT AnyURI
with { variant "XSD:anyURI"};

6.2.13 language
The language type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Language (pattern "[a-zA-Z]#(1,8)(-[\w]#(1,8))#(0,)")
with { variant "XSD:language"};

6.2.14 NOTATION
The XSD NOTATION type is not translated to TTCN-3.

6.3 Integer types
XSD integer types are generally converted to TTCN-3 as subtypes of integer-based types. For an
overview of the allowed facets, refer to Table 2. Following are details on the mapping of all integer
types of XSD.

6.3.1 Integer
The integer type is not range-restricted in XSD and translated to TTCN-3 as a plain integer.

type integer Integer
with { variant "XSD:integer"};

6.3.2 Positive integer
The positiveInteger type is translated to TTCN-3 as a range-restricted integer.

EXAMPLE:

type integer PositiveInteger (1 .. infinity)
with { variant "XSD:positiveInteger"};

6.3.3 Non-positive integer
The nonPositiveInteger type is translated to TTCN-3 as a range-restricted integer.

EXAMPLE:

type integer NonPositiveInteger (-infinity .. 0)
with { variant "XSD:nonPositiveInteger"};

6.3.4 Negative integer
The negativeInteger type is translated to TTCN-3 as a range-restricted integer.

EXAMPLE:

type integer NegativeInteger (-infinity .. -1)
with { variant "XSD:negativeInteger"};

 Rec. ITU-T Z.169 (11/2008) 21

6.3.5 Non-negative integer
The nonNegativeInteger type is translated to TTCN-3 as a range-restricted integer.

EXAMPLE:

type integer NonNegativeInteger (0 .. infinity)
with { variant "XSD:nonNegativeInteger"};

6.3.6 long
The long type is 64-bit based and translated to TTCN-3 as a plain longlong as defined in clause
D.2.1.3 of [ITU-T Z.161]:

type longlong Long
with { variant "XSD:long"};

6.3.7 Unsigned long
The unsignedLong type is 64-bit based and translated to TTCN-3 as a plain unsignedlonglong as
defined in clause D.2.1.3 of [ITU-T Z.161]:

type unsignedlonglong UnsignedLong
with { variant "XSD:unsignedLong"};

6.3.8 int
The int type is 32-bit based and translated to TTCN-3 as a plain long as defined in clause D.2.1.2 of
[ITU-T Z.161]:

type long Int
with { variant "XSD:int"};

6.3.9 Unsigned int
The unsignedInt type is 32-bit based and translated to TTCN-3 as a plain unsignedlong as defined in
clause D.2.1.2 of [ITU-T Z.161]:

type unsignedlong UnsignedInt
with { variant "XSD:unsignedInt"};

6.3.10 Short
The short type is 16-bit based and translated to TTCN-3 as a plain short as defined in clause D.2.1.1
of [ITU-T Z.161]:

type short Short
with { variant "XSD:short"};

6.3.11 Unsigned short
The unsignedShort type is 16-bit based and translated to TTCN-3 as a plain unsignedshort as
defined in clause D.2.1.1 of [ITU-T Z.161]:

type unsignedshort UnsignedShort
with { variant "XSD:unsignedShort"};

6.3.12 Byte
The byte type is 8-bit based and translated to TTCN-3 as a plain byte as defined in clause D.2.1.0 of
[ITU-T Z.161]:

type byte Byte
with { variant "XSD:byte"};

22 Rec. ITU-T Z.169 (11/2008)

6.3.13 Unsigned byte
The unsignedByte type is 8-bit based and translated to TTCN-3 as a plain unsignedbyte as defined
in clause D.2.1.0 of [ITU-T Z.161]:

type unsignedbyte UnsignedByte
with { variant "XSD:unsignedByte"};

6.4 float types
XSD float types are generally converted to TTCN-3 as subtypes of float. For an overview of the
allowed facets, refer to Table 2. Following are details on the mapping of all float types of XSD.

6.4.1 decimal
The decimal type is translated to TTCN-3 as a plain float:

type float Decimal
with { variant "XSD:decimal"};

6.4.2 float
The float type is translated to TTCN-3 as an IEEE754float as defined in clause D.2.1.4 of
[ITU-T Z.161]:

type IEEE754float _ Float
with { variant "XSD:float"};

6.4.3 double
The double type is translated to TTCN-3 as an IEEE754double as defined in clause D.2.1.4 of
[ITU-T Z.161]:

type IEEE754double Double
with { variant "XSD:double"};

6.5 time types
XSD time types are generally converted to TTCN-3 as pattern restricted subtypes of charstring. For
an overview of the allowed facets, refer to Table 2. Following are details on the mapping of all time
types of XSD.

6.5.1 duration
The duration type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Duration (pattern ")
with { variant "XSD:duration"};

6.5.2 Date and time
The dateTime type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring DateTime (pattern ")
with { variant "XSD:dateTime"};

6.5.3 Time
The time type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Time (pattern ")
with { variant "XSD:time"};

6.5.4 Date
The date type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Date (")
with { variant "XSD:date"};

 Rec. ITU-T Z.169 (11/2008) 23

6.5.5 Gregorian year and month
The gYearMonth type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GYearMonth (pattern ")
with { variant "XSD:gYearMonth"};

6.5.6 Gregorian year
The gYear type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GYear (pattern "")
with { variant "XSD:gYear"};

6.5.7 Gregorian month and day
The gMonthDay type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GMonthDay (pattern ")
with { variant "XSD:gMonthDay"};

6.5.8 Gregorian day
The gDay type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GDay (pattern "---((")
with { variant "XSD:gDay"};

6.5.9 Gregorian month
The gMonth type is translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GMonth (pattern "")
with { variant "XSD:gMonth"};

6.6 Sequence types
XSD sequence types are generally converted to TTCN-3 as a record of their respective base types.
For an overview of the allowed facets, refer to Table 2. Following are details on the mapping of all
sequence types of XSD.

6.6.1 NMTOKENS
The NMTOKENS type is mapped to TTCN-3 using a record of construct of type NMTOKEN:

type record of XSD.NMTOKEN NMTOKENS
with { variant "XSD:NMTOKENS"};

6.6.2 IDREFS
The IDREFS type is mapped to TTCN-3 using a record of construct of type IDREF:

type record of IDREF IDREFS
with { variant "XSD:IDREFS"};

6.6.3 ENTITIES
The ENTITIES type is mapped to TTCN-3 using a record construct of type ENTITY:

type record of ENTITY ENTITIES
with { variant "XSD:ENTITIES"};

6.6.4 QName
The QName type is translated to the TTCN-3 type QName as given below:

type record QName
{

24 Rec. ITU-T Z.169 (11/2008)

 AnyURI uri optional,
 NCName name
}
with { variant "XSD:QName"};

When encoding an element of type QName (or derived from QName), if the encoder detects the
presence of an URI and this is different from the target namespace, the following encoding results
(the assumed target namespace is http://www.organization.org/).

EXAMPLE:

type record E14a
{
 QName name,
 integer refId
};

template E14a t_E14a:=
 {
 name:={
 uri:="http://www.otherorganization.org/",
 name:="someName"
 },
 refId:=10
};

<?xml version="1.0" encoding="UTF-8"?>
<E14a xmlns="http://www.organization.org/">
 <name xmlns:ns="http://www.otherorganization.org/">ns:someName</name>
 <refId>10</refId>
</E14a>

6.7 Boolean type
The boolean type is mapped to TTCN-3 using as a boolean:

type boolean Boolean
with { variant "XSD:boolean"};

During translation of XSD boolean values, it is necessary to handle all four encodings that XSD
allows for booleans ("true", "false", "0", and "1"). This will be realized using the "text" encoding
instruction:

type XSD.Boolean MyBooleanType
with {
 variant "text 'true' as '1'";
 variant "text 'false' as '0'"
};

6.8 anyType and anySimpleType types
The XSD anySimpleType can be considered as the base type of all primitive data types, while
anyType is the base type of all complex definitions and the anySimpleType.

The anySimpleType is translated as an XML compatible restricted subtype of the universal
charstring.

EXAMPLE:

type XSD.XMLCompatibleString AnySimpleType
with { variant "XSD:anySimpleType"};

while anyType is translated into XML content opaque to the codec:

type record AnyType
{
 record of String attr,
 record of String elem_list
}

http://www.organization.org/)

 Rec. ITU-T Z.169 (11/2008) 25

with {
 variant "XSD:anyType";
 variant "anyAttributes 'attr'";
 variant "anyElement 'elem_list'"
};

Without support for mixed content. See also clause 7.7 (anyAttributes, anyElement).

7 Mapping XSD components
After mapping the basic layer of XML Schema (i.e., the built-in types), a mapping of the structures
has to follow. Every structure that may appear, globally or not, needs to have a corresponding
mapping to TTCN-3.

7.1 Attributes of XSD component declarations
Tables 5 and 6 contain an overview about the major attributes that are encountered during mapping.
It is not complete: special attributes that are only used by a single XSD component are described in
the corresponding subclauses. Tables 5 and 6 show which attributes are needed to be evaluated
when converting to TTCN-3, depending on the XSD component to be translated.

Table 5 – Attributes of XSD component declaration #1

Components

Attributes
Element Attribute Simple

type
Complex

type
Simple
content

Complex
content Group

id 9 9 9 9 9 9 9
final 9 9 9
name 9 9 9 9 9
maxOccurs 9 9
minOccurs 9 9
ref 9 9 9
abstract 9 9
block 9 9
default 9 9
fixed 9 9
form 9 9
type 9 9
mixed 9 9

Table 6 – Attributes of XSD component declaration #2

Components

 Attributes
All Choice Sequence Attribute

group Annotation Restriction List Union Extension

id 9 9 9 9 9 9 9 9 9
name 9
maxOccurs 9 9 9
minOccurs 9 9 9
ref 9

26 Rec. ITU-T Z.169 (11/2008)

It is also necessary to consider default values for attributes coming from the original definitions of
the XSD components (e.g., minOccurs is set to 1 for element components by default) when
translating.

7.1.1 Id
The attribute id enables a unique identification of an XSD component. It is mapped to TTCN-3 as
simple type references, e.g., any component mapping to a type with name typeName and an
attribute id="ID" should result in an additional TTCN-3 type declaration:

type Typename ID;

7.1.2 Ref
The ref attribute may reference an id or any global type (see clause 7.2).

If the attribute is referring to an id, it is directly mapped as a simple type, e.g., a component with an
attribute ref="MyREF" is translated to:

type MyREF Typename;

In the case that REF references a global type, the name of the global type has to be substituted, e.g.:

type GlobalType Typename;

7.1.3 name
The attribute name holds the specified name for an XSD component. A component without this
attribute is either defined anonymously or given by a reference (see clause 7.1.2). Names are
directly mapped to TTCN-3 identifiers; refer to clause 5.2 on constraints and properties of this
conversion.

7.1.4 minOccurs and maxOccurs
The minOccurs and maxOccurs attributes provide for the number of times a XSD component can
appear in a context. It is translated to a length restricted record of in TTCN-3.

EXAMPLE:

For example, a XSD component with minOccurs and maxOccurs attributes would be translated as:

<complexType name="e15">
 <sequence minOccurs="5" maxOccurs="10">
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 </sequence>
</complexType>

Is translated to a length-restricted record of record:

type record E15
{
 record length(5 .. 10) of record
 {
 XSD.Integer foo,
 XSD.Float bar
 } sequence_list
}
with { variant "name as uncapitalized"};

If only one boundary is given, the other boundary is established by the type or default value of the
XSD structure. If a boundary value is unbounded, the TTCN-3 keyword infinity has to be used.
Also if minOccurs has a value of 0, and maxOccurs has a value of 1, or is not present (defaulting to
1), a translator has to make sure that the resulting field 'sequence' is optional.

 Rec. ITU-T Z.169 (11/2008) 27

EXAMPLE:

<complexType name="e15a">
 <sequence minOccurs="0">
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 </sequence>
</complexType>

results in:

type record E15a
{
 record
 {
 XSD.Integer foo,
 XSD.Float bar
 } sequence optional
}
with { variant "name as uncapitalized"};

7.1.5 default and fixed
The default attribute assigns a default value to a component in cases where it is missing in the XML
data.

The fixed attribute gives a fixed constant value to a component according to the given type, so in
some XML data the value of the component may be omitted.

As 'default' and 'fixed' have no equivalent in TTCN-3 space, they will be mapped into codec
instructions.

EXAMPLE:

<element name="elementDefault" type="string" default="defaultValue"/>
<element name="elementFixed" type="string" fixed="fixedValue"/>

will be translated as:

type XSD.String ElementDefault
with {
 variant "element";
 variant "defaultForEmpty as 'defaultValue'";
 variant "name as uncapitalized"
};

type XSD.String ElementFixed ("fixedValue")
with {
 variant "element";
 variant "defaultForEmpty as 'fixedValue'";
 variant "name as uncapitalized"
};

7.1.6 Form
Mapping of the form attribute is not supported by this Recommendation.

7.1.7 Type
The type attribute holds the type information of the XSD component. The value is a reference to the
global definition of simpleType, complexType or built-in type. If type is not given, the component
must define either an anonymous (inner) type, or contain a reference attribute (see clause 7.1.2), or
use the XSD ur-type definition.

7.1.8 Mixed
Mixed content is not supported. All content has to be described by a schema.

28 Rec. ITU-T Z.169 (11/2008)

7.1.9 Abstract
Mapping of the abstract attribute is not supported by this Recommendation.

7.1.10 Block and final
Mapping of the block and final attributes are not supported by this Recommendation.

7.2 Schema component
This is the root component of a XSD declaration. It is translated to the general structure of a
TTCN-3 module containing all mapped types of the XSD schema. All direct children of schema are
treated globally and therefore need to be identifiable by id or name.

7.3 Element component
An XSD element component defines a new XML element. Elements may be global (as a child of
either schema or redefine), in which case they are obliged to contain a name attribute or may be
defined locally (as a child of all, choice or sequence) using a name or ref attribute.

EXAMPLE:

An example of a globally defined element:

<element name="e16" type="typename"/>

is translated to:

type typename E16
with {
 variant "element";
 variant "name as uncapitalized"
};

Locally defined elements will be mapped to fields, refer to clause 7.6 for examples on this kind of
mapping.

Among the possible attributes an element may possess are the special attributes nillable and
substitutionGroup.

The nillable attribute, when set to true, gives the possibility of an element having the special value
"xsi:nil" value in any XML data. This will be implemented using an appropriate encoding
extension:

<complexType name="e16a">
 <sequence>
 <element name="foo" type="integer"/>
 <element name="bar" type="string" nillable="true"/>
 </sequence>
</complexType>

Is translated into:

type record E16a
{
 XSD.Integer foo,
 record {
 XSD.String content optional
 } bar
}
with {
 variant "useNil 'bar'";
 variant "name as uncapitalized"
};

 Rec. ITU-T Z.169 (11/2008) 29

Which allows, e.g., the following encoding:

template t_E16a:=
{
 foo:=3,
 bar:= {
 content:=omit
 }
};

<?xml version="1.0" encoding="UTF-8"?>
<e16a>
 <foo>3<foo/>
 <bar xsi:nil="true"/>
</e16a>

Mapping of the substitutionGroup attribute is not supported by this Recommendation.

For conversion of the other attributes, refer to clause 7.1.

7.4 Attribute components
Attributes define valid qualifiers for XML data and are used when defining complex types. Just like
elements, attributes can be defined globally (as a child of schema or redefine) and then be
referenced from other definitions or defined locally (as a child of complexType, restriction,
extension or attributeGroup) without the possibility of being used outside of their context.
Attributes are basically mapped in the same way as elements (see clause 7.3), an appended with-
clause marking them as attributes.

EXAMPLE 1: For example, a globally defined attribute:

<attribute name="e17" type="typename"/>

is mapped to:

type typename E17 with {
 variant "attribute";
 variant "name as uncapitalized"
};

Locally defined attributes will be mapped to a TTCN-3 record containing a reference to the type
definition they are belonging to or their assigned name. The generated structures are also appended
with a with-clause marking the fields in question as attributes.

EXAMPLE 2: Take, for an example, a generated with-clause for a type with two attributes foo and
bar:

<complexType name="e17a">
 <attribute name="foo" type="integer"/>
 <attribute name="bar" type="float"/>
</complexType>

type record E17a
{
 XSD.Float bar optional,
 XSD.Integer foo optional
}
with {
 variant "attribute 'foo', 'bar'";
 variant "name as uncapitalized "
};

While:

<attribute name="foo" type="string"/>

<complexType name="e17b">
 <sequence>
 <element name="e" type="string"/>
 </sequence>
 <attribute ref="foo"/>

30 Rec. ITU-T Z.169 (11/2008)

 <attribute name="bar" type="string"/>
</complexType>

type XSD.String Foo with {
 variant "attribute";
 variant "name as uncapitalized"
};

type record E17b
{
 Foo foo,
 XSD.String bar,
 XSD.String e
}
with {
 variant "attribute 'foo', 'bar'";
 variant "name as uncapitalized ";
};

Refer to the appropriate subclauses of 7.6, complexType components, for examples on this kind of
mapping.

Besides the general attributes (as laid out in clause 7.1, Attributes of XSD component declarations)
attribute declarations may contain the special attribute use. The use attribute specifies whether an
attribute (declared inside a structured type) is mandatory or not. The values of this attribute are:
optional, prohibited and required. The value required does not have to be translated as the
existence of values is mandatory in TTCN-3. The value prohibited is used only in case of restricting
complexTypes (see clauses 7.6.1.1 or 7.6.2.1 on restricting content of complex types). The value
optional is translated by using the TTCN-3 keyword optional with the appropriate fields.

7.5 simpleType components

Simple types may be defined globally (as a child of schema and using a mandatory name attribute)
or locally (as a child of element, attribute, restriction, list or union) in a named or
anonymous fashion. The simpleType components are used to define new simple types by three
means:
• Restricting a built-in type (with the exception of anyType, anySimpleType) by applying a

facet to it.
• Building lists.
• Building unions of other simple types.

These means are quite different in their translation to TTCN-3 and are explained in the following
subclauses. For the translation of attributes for simple types, refer to the general mappings defined
in clause 7.1, Attributes of XSD component declarations. Note that a simpleType is not allowed to
contain elements or attributes, redefinition of these is done by using complexType (see clause 7.6,
complexType components).

7.5.1 Derivation by restriction
For information about restricting built-in types, refer to clause 6, Built-in data types, which contains
an extensive description on the translation of restricted simpleType using facets to TTCN-3.

It is also possible to restrict an anonymous simple type. The translation follows the mapping for
built-in data types, but instead of using the base attribute to identify the type to apply the facet to,
the base attribute type is omitted and the type of the inner, anonymous simpleType is used.

EXAMPLE: Consider the following example restricting an anonymous simpleType using a pattern
facet (the bold part marks the inner simpleType):

<simpleType name="e18">
 <restriction>
 <simpleType>
 <restriction base="string"/>

 Rec. ITU-T Z.169 (11/2008) 31

 </simpleType>
 <pattern value="(ahi|eho|cre|dve)@(f|F)okus"/>
 </restriction>
</simpleType>

This will generate a mapping for the inner type and a restriction thereof:

type XSD.String E18 (pattern "((ahi|eho|cre|dve)@(f|F)okus)#(1)")
with {
 variant "name as uncapitalized"
};

7.5.2 Derivation by list
XSD list components are mapped to the TTCN-3 record of type. In their simplest form, lists are
mapped by directly using the listItem attribute as the resulting type.

EXAMPLE 1:

<simpleType name="e19">
 <list itemType="float"/>
</simpleType>

Will translate to:

type record of XSD.Float E19
with {
 variant "list";
 variant "name 'E19' as uncapitalized"
};

When using any of the supported facets (length, maxLength, minLength), the translation is more
complex and follows the mapping for built-in list types, with the difference that the base type is
determined by an anonymous inner list item type.

EXAMPLE 2: Consider this example:

<simpleType name="e20">
 <restriction>
 <simpleType>
 <list itemType="float"/>
 </simpleType>
 <length value="3"/>
 </restriction>
</simpleType>

Will map to:

type record length(3) of XSD.Float E20
with {
 variant "list";
 variant "name as uncapitalized"
};

For instance, the template:

template E20 t_E20:={1.0,2.0,3.0}

will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<e20>
 1.0 2.0 3.0
</e20>

The other facets are mapped accordingly (refer to the respective clause 6.1, Mapping of facets,
subclauses). If no itemType is given, the mapping has to be implemented using the given inner type
(for an example, refer to clause 7.5.3, Derivation by union).

32 Rec. ITU-T Z.169 (11/2008)

7.5.3 Derivation by union
A union is considered as a set of mutually exclusive alternative types for a simpleType. As this is
compatible with the union concept of TTCN-3, a simpleType union in XSD is mapped to a union
structure in TTCN-3.

EXAMPLE 1:

<simpleType name="e21">
 <union>
 <simpleType>
 <restriction base="string"/>
 </simpleType>
 <simpleType>
 <restriction base="float"/>
 </simpleType>
 </union>
</simpleType>

Results in the following mapping:

type union E21
{
 XSD.String alt_0,
 XSD.Float alt_1
}
with {
 variant "name 'alt_0' as ''";
 variant "name 'alt_1' as ''";
 variant "useUnion";
 variant "name as uncapitalized"
};

EXAMPLE 2:

For instance, the below structure:

type record E21 e21a
{
 E21 e21,
 XSD.String foo
};

template t_E21a:={
 e21:={
 alt_0:="ding"
 },
 foo:="foostring"
};

will result in the following encoding:

<?xml version="1.0" encoding="UTF-8"?>
<e21a xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <e21 xsi:type="string">ding</e21>
 <foo>foostring</foo>
</e21a>

Using the attribute memberTypes, a union allows for a direct specification of member types as a
whitespace separated list of type identifiers. The mapping to TTCN-3 is done in the same way as for
the attribute listItem of the list derivation component (see clause 7.5.2, Derivation by list).

The only supported facet is enumeration, allowing mixing enumerations of different kinds.

EXAMPLE 3: Consider this example:

<simpleType name="e22">
 <restriction base="e21">
 <enumeration value="20"/>
 <enumeration value="50"/>
 <enumeration value="small"/>
 </restriction>
</simpleType>

 Rec. ITU-T Z.169 (11/2008) 33

Translates to:

type E21 E22 ({alt_1:=20.0},{alt_1:=50.0},{alt_0:="small"})
with {
 variant "name as uncapitalized"
};

7.6 complexType components
The complexType is used for creating new types that contain other elements and attributes. Just like
simpleType, complexType may be defined globally (as a child of schema or redefine). In this case,
the name attribute is mandatory and the resulting TTCN-3 type will be mapped to the value of this
attribute. A complexType may also be defined locally (as a child of element) in an anonymous
fashion (without the name attribute), therefore prohibiting to be referenced from other type
definitions.

The mapping of a complexType is done by translating every child that this complexType may have
and subsequently combining them by using a TTCN-3 record type or direct reference. A record type
has to be used when the complexType contains attributes and a direct reference is used when no
additional attributes are declared. The content of a complexType consists of either a simpleContent
or complexContent component or a valid combination of group, all, choice, sequence, attribute,
attributeGroup or anyAttribute components (see clause 3.4.2 in [W3C XMLSchema-1]). Following
is a description of the mapping for the different possible content components.

7.6.1 complexType containing simple content
A simpleContent component is translated to types that may only have a simpleType as base. It is
possible to extend or restrict the base type and to add attributes, but not elements.

7.6.1.1 Extending simple content
When extending simpleContent further attributes may be added to the original type. The example
below extends a built-in type by adding an attribute. The mapping result of an extended
simpleContent type with added attributes is always a record containing the base type as a field
referenced by the reserved name base.

EXAMPLE:

<complexType name="e23">
 <simpleContent>
 <extension base="string">
 <attribute name="foo" type="float"/>
 </extension>
 </simpleContent>
</complexType>

Will be mapped as:

type record E23
{
 XSD.Float foo optional,
 XSD.String base
}
with {
 variant "untagged 'base'";
 variant "attribute 'foo'";
 variant "name as uncapitalized"
};

34 Rec. ITU-T Z.169 (11/2008)

7.6.1.2 Restricting simple content
To restrict simpleContent, additional, more restrictive, facets are applied to the base type or to
attributes of the base type. The whole type needs to be redefined in the restricted version, translating
to a completely new type definition in TTCN-3.

EXAMPLE: Consider the following example for the restriction of a base type:

<complexType name="e24">
 <simpleContent>
 <restriction base="e23">
 <length value="4"/>
 </restriction>
 </simpleContent>
</complexType>

Is translated to:

type record E24
{
 XSD.Float foo optional,
 XSD.String base length(4)
} with {
 variant "untagged 'base'";
 variant "attribute 'foo'";
 variant "name as uncapitalized"
};

Other base types are dealt with accordingly, see clause 6.

7.6.2 ComplexType containing complex content
In contrast to simpleContent, complexContent is allowed to have elements. It is possible to extend a
base type by adding attributes or elements, it is also possible to restrict a base type to certain
elements or attributes.

7.6.2.1 Extending complex content
By using extension for a complexContent, it is possible to add attributes, elements or groups of
those (group, attributeGroup) to the complex base type. This is translated to TTCN-3 by creating a
record containing the referenced structure and the extension components.

EXAMPLE 1: For an example, consider the following complexType:

<complexType name="e25">
 <sequence>
 <element name="title" type="string"/>
 <element name="forename" type="string"/>
 <element name="surname" type="string"/>
 </sequence>
</complexType>

The resulting mapping (according to clause 7.6.6, Sequence content) of the above complexType is:

type record E25
{
 XSD.String title,
 XSD.String forename,
 XSD.String surname
}
with {
 variant "name as uncapitalized"
};

Now a type is defined that extends e25 by adding a new element:

<complexType name="e26">
 <complexContent>
 <extension base="e25">
 <sequence>

 Rec. ITU-T Z.169 (11/2008) 35

 <element name="age" type="integer"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

This is translated to the TTCN-3 structure:

type record E26
{
 XSD.String title,
 XSD.String forename,
 XSD.String surname,
 XSD.Integer age
}
with { variant "name as uncapitalized"};

As the base content and extension content are of the same structure (sequence), the extension
content is directly mapped to the result structure. In the case of different structures, a nested
structure would be generated.

EXAMPLE 2: Consider an extension with a different structure:

<complexType name="e27">
 <complexContent>
 <extension base="e25">
 <choice>
 <element name="age" type="integer"/>
 <element name="birthday" type="date"/>
 </choice>
 </extension>
 </complexContent>
</complexType>

This is translated to the following TTCN-3 structure:

type record E27
{
 XSD.String title,
 XSD.String forename,
 XSD.String surname,
 union {
 XSD.Integer age,
 XSD.Date birthday
 } choice
}
with {
 variant "name 'E27' as uncapitalized";
 variant "untagged 'choice'"
};

7.6.2.2 Restricting complex content
The restriction uses a base type and restricts some of its components. This is mapped to a new type
containing only the components of the restriction. In the example below, anyType (any possible
type) is used as the base type and it is restricted to only two elements. As the resulting type is a
sequence without additional attributes, a TTCN-3 record is used (see clause 7.6.6, Sequence
content, on mapping of sequences); otherwise, a set would be constructed containing base type and
attributes.

EXAMPLE:

<complexType name="e28">
 <complexContent>
 <restriction base="anyType">
 <sequence>
 <element name="size" type="nonPositiveInteger"/>
 <element name="unit" type="NMTOKEN"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

36 Rec. ITU-T Z.169 (11/2008)

Is translated to:

type record E28
{
 XSD.NonPositiveInteger size,
 XSD.NMTOKEN unit
}
with
{ variant "name as uncapitalized"};

7.6.3 Group components
A group component defines an atomic group of elements for inclusion in other definitions. Groups
can be local (anonymous) or global (with a mandatory name or id) and may consist of a single
choice, sequence or all component. This translates to a single TTCN-3 type definition which is
identified by the name (resp. id) of the group. Refer to the appropriate parts of clause 7.6,
complexType components, for more detailed information on the mapping of choice, sequence or all
structures.

7.6.4 All content
An all content structure defines an unordered collection of optional elements. This is translated in
TTCN-3 as a record with elements mapped to optional fields and a first field named 'order'
reflecting the order and presence of fields within the record.

EXAMPLE:

<complexType name="e29">
 <all>
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 <element name="ding" type="string"/>
 </all>
</complexType>

Is mapped to the following TTCN-3 structure:

type record E29
{
 record of enumerated {foo,bar,ding} order,
 XSD.Integer foo optional,
 XSD.Float bar optional,
 XSD.String ding optional
}
with
{
 variant "name 'E29' as uncapitalized ";
 variant "useOrder"
};

NOTE – When encoding, the presence and order of elements in the encoded XML instance will be controlled
by the 'order' field. When decoding, the presence and order of elements in the XML instance will control the
value of the 'order' field that appears in the decoded structure. This mapping is required by the alignment to
[ITU-T X.694], originating in the PER encoders' possibility to reorder elements in a set.

7.6.5 Choice content
A choice content defines a collection of mutually exclusive alternatives for a type. It is thus mapped
to the union type in TTCN-3, as it allows only one of the components to appear in the instance. The
content for a choice component may be any combination of element, group, choice, sequence or
any.

The following clauses give examples of the mapping for various contents nested in a choice
component.

 Rec. ITU-T Z.169 (11/2008) 37

7.6.5.1 Choice with nested element
Nested elements are mapped to a union containing the choice's content.

EXAMPLE:

<complexType name="e30">
 <choice>
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>

 </choice>
</complexType>

Will be translated to:

type record E30
{
 union {
 XSD.Integer foo,
 XSD.Float bar
 } choice
}
with {
 variant "name as uncapitalized";
 variant "untagged 'choice'"
};

7.6.5.2 Choice with nested group
Nested group components will be mapped along other content as a field in the union.

EXAMPLE: The following example shows this with a sequence group and an element.

<group name="e31">
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
</group>

<complexType name="e32">
 <choice>
 <group ref="e31"/>
 <element name="ding" type="string"/>
 </choice>
</complexType>

The group is mapped to a record (it is a sequence, see clause 7.6.6, Sequence content) and then the
choice is translated to a TTCN-3 union:

type record E31
{
 XSD.String foo,
 XSD.String bar
}
with { variant "name as uncapitalized"};

type record E32
{
 union {
 E31 e31,
 XSD.String ding
 } choice
}
with {
 variant "name as uncapitalized";
 variant "untagged 'choice'"
};

38 Rec. ITU-T Z.169 (11/2008)

7.6.5.3 Choice with nested choice
A choice with a nested choice is translated as nested unions in TTCN-3.

EXAMPLE:
<complexType name="e33">
 <choice>
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
 <element name="ding" type="string"/>
 </choice>
</complexType>

Will be mapped as:

type record E33
{
 union
 {
 union
 {
 XSD.String foo,
 XSD.String bar
 } choice,
 XSD.String ding
 } choice
}
with {
 variant "name as uncapitalized";
 variant "untagged 'choice', 'choice.choice'"
};

7.6.5.4 Choice with nested sequence
A choice with a nested sequence will be mapped to a union containing a record.

EXAMPLE:
<complexType name="e34">
 <choice>
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <element name="ding" type="string"/>
 </choice>
</complexType>

Is translated to:

type record E34
{
 union
 {
 record
 {
 XSD.String foo,
 XSD.String bar
 } sequence,
 XSD.String ding
 } choice
}
with {
 variant "name as uncapitalized";
 variant "untagged 'choice','choice.sequence'"
};

 Rec. ITU-T Z.169 (11/2008) 39

7.6.5.5 Choice with nested any
A choice containing XSD any types.

EXAMPLE:

<complexType name="e35">
 <choice>
 <element name="foo" type="string"/>
 <any namespace="other"/>
 </choice>
</complexType>

Will translate to:

type record E35
{
 union
 {
 XSD.String foo,
 XSD.String elem
 } choice
}
with {
 variant "name as uncapitalized";
 variant "anyElement 'elem' from "other" ";
 variant "untagged 'choice'"
};

See also clause 7.7 for details.

7.6.6 Sequence content
A sequence defines an ordered collection of components and is mapped to a record in TTCN-3. The
content of a sequence may be any combination of element, group, choice, sequence or any.

The following subclauses give examples of the mapping for various contents nested in a sequence
component.

7.6.6.1 Sequence with nested element content
Sequences that contain only elements are mapped as a plain record in TTCN-3.

EXAMPLE 1: Mapping a sequence content:

<complexType name="e36">
 <sequence>
 <element name="foo" type="integer"/>
 <element name="bar" type="float"/>
 </sequence>
</complexType>

Is mapped to:

type record E36
{
 XSD.Integer foo,
 XSD.Float bar
}
with {
 variant "name as uncapitalized"
};

EXAMPLE 2: Mapping a recursive inner type:

<xs:complexType name="X">
 <xs:sequence>
 <xs:element name="x" type="xs:string"/>
 <xs:element name="y" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="X">

40 Rec. ITU-T Z.169 (11/2008)

 <xs:element name="z" type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Is mapped to:

type record X {
 XSD.String x,
 record {
 X y optional,
 XSD.String z
 } y optional
}

7.6.6.2 Sequence with nested group content
Nested group components will be mapped along other content as a field in the record.

EXAMPLE: The following example shows this translation with a choice group and an element:

<group name="e37">
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
</group>

<complexType name="e38">
 <sequence>
 <group ref="e37"/>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

The group is mapped to a union (it is a choice, see clause 7.6.5, Choice content) and then the
sequence is translated to a record:

type union E37
{
 XSD.String foo,
 XSD.String bar
}
with {
 variant "name as uncapitalized";
 variant "untagged"
};

type record E38
{
 E37 e37,
 XSD.String ding
}
with {
 variant "name as uncapitalized"
};

7.6.6.3 Sequence with nested choice content
A sequence with a nested choice will be mapped to a record containing a union.

EXAMPLE:

<complexType name="e39">
 <sequence>
 <choice>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </choice>
 <element name="ding" type="string"/>

 Rec. ITU-T Z.169 (11/2008) 41

 </sequence>
</complexType>

Is translated to:

type record E39
{
 union
 {
 XSD.String foo,
 XSD.String bar
 } choice,
 XSD.String ding
}
with {
 variant "name as uncapitalized";
 variant "untagged 'choice'"
};

7.6.6.4 Sequence with nested sequence content
A sequence with a nested sequence.

EXAMPLE:
<complexType name="e40">
 <sequence>
 <sequence>
 <element name="foo" type="string"/>
 <element name="bar" type="string"/>
 </sequence>
 <element name="ding" type="string"/>
 </sequence>
</complexType>

Will be mapped as:

type record E40
{
 XSD.String foo,
 XSD.String bar,
 XSD.String ding
}
with {
 variant "name as uncapitalized"
};

7.6.6.5 Sequence with nested any content
A sequence with nested any.

EXAMPLE:
<complexType name="e41">
 <sequence>
 <element name="foo" type="string"/>
 <any/>
 </sequence>
</complexType>

Will translate to:

type record E41
{
 XSD.String foo,
 XSD.String elem
}
with {

42 Rec. ITU-T Z.169 (11/2008)

 variant "name as uncapitalized";
 variant "anyElement 'elem'"
};

See also clause 7.7 for details.

7.6.7 AttributeGroup Components
An attributeGroup defines a group of attributes that can be included together inside other
definitions. Attribute groups map to a set in TTCN-3 with all optional fields and a mandatory with-
extension marking them as an attributeGroup. They are globally defined (as direct child of schema
or redefine and requiring a name attribute) and locally referenced (requiring a ref attribute). If an
attributeGroup is referenced within another attributeGroup, all attributes referenced need to be
merged in a single set.

EXAMPLE 1: Consider the following example:

<attributeGroup name="e42">
 <attribute name="foo" type="float"/>
 <attribute name="bar" type="float"/>
</attributeGroup>

<attributeGroup name="e43">
 <attributeGroup ref="e42"/>
 <attribute name="ding" type="string"/>
</attributeGroup>

Translates to TTCN-3 as:

type set E42
{
 XSD.Float foo optional,
 XSD.Float bar optional
}
with {
 variant "name 'E42' as uncapitalized";
 variant "attributeGroup"
};

type set E43
{
 XSD.Float foo optional,
 XSD.Float bar optional,
 XSD.String ding optional
}
with {
 variant "name as uncapitalized";
 variant "attributeGroup"
};

If attributeGroup components are referenced from a complexType, restriction or extension, a
reference to the attributeGroup is generated and resolved by insertion in the mapped construct.

EXAMPLE 2:

<complexType name="e44">
 <sequence>
 <element name="ding" type="string"/>
 </sequence>
 <attributeGroup ref="e42"/>
</complexType>

type record E44
{
 XSD.String ding,
 XSD.Float foo optional,
 XSD.Float bar optional
}

 Rec. ITU-T Z.169 (11/2008) 43

with {
 variant "name as uncapitalized";
 variant "attribute 'foo','bar'"
};

7.7 any and anyAttribute
An any element specifies that any well-formed XML is permissible in a type's content model. The
content of this XML will not be parsed and interpreted by the encoder and decoder. In addition to
the any element which enables element content according to namespaces, there is a corresponding
anyAttribute element which enables transparent (from the codec's point of view) attributes to appear
in elements.

The codec will be controlled by an 'anyAttribute' and 'anyElement' instruction, complemented with
'from' and 'except' clauses specifying the comma-separated list of namespaces which are allowed or
restricted to qualify the given attribute or element. An 'unqualified' clause in the list of allowed
namespaces allows unqualified attributes or elements, respectively, while an 'unqualified' clause in
the list of restricted namespaces forbids such attributes or elements.

For the following examples, the target namespace is assumed to be the following URI:
http://www.organization.org/ttcn/wildcard.

EXAMPLE 1:

The below are vcomplexType definitions:

<xs:complexType name="e45">
 <xs:anyAttribute namespace="##any"/>
</xs:complexType>

<xs:complexType name="e45a">
 <xs:anyAttribute namespace="##other"/>
</xs:complexType>

<xs:complexType name="e45b">
 <xs:anyAttribute namespace="##targetNamespace"/>
</xs:complexType>

<xs:complexType name="e45c">
 <xs:anyAttribute namespace="##local http://www.organization.org/ttcn/attribute"/>
</xs:complexType>

<xs:complexType name="e45d">
 <xs:complexContent>
 <xs:extension base="e45c">
 <xs:anyAttribute namespace="##targetNamespace"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

will be mapped as follows:

type record E45
{
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant "anyAttributes 'attr'"
};

type record E45a
{
 record of XSD.String attr
}
with {

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/#elementany#elementany
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/#elementany#elementany
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/#elementanyAttribute#elementanyAttribute

44 Rec. ITU-T Z.169 (11/2008)

 variant "name as uncapitalized";
 variant "anyAttributes 'attr' except 'http://www.organization.org/ttcn/wildcard'"
};

type record E45b
{
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant "anyAttributes 'attr from 'http://www.organization.org/ttcn/wildcard'"
};

type record E45c
{
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant "anyAttributes 'attr' from
 unqualified,'http://www.organization.org/ttcn/attribute'"
};

type record E45d
{
 record of XSD.String attr
}
with {
 variant "name as uncapitalized";
 variant "anyAttributes 'attr'
 from unqualified, 'http://www.organization.org/ttcn/attribute',
 'http://www.organization.org/ttcn/wildcard'"
};

EXAMPLE 2:

The below are examples of a content model wildcard:

<xs:complexType name="e46">
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="e46b">
 <xs:sequence>
 <xs:any minOccurs="0" namespace="##other"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="e46c">
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
 </xs:sequence>
</xs:complexType>

They are mapped to the following TTCN-3 code and encoding extensions:

type record E46
{
 XSD.String elem
}
with {
 variant "name 'E46' as uncapitalized";
 variant "anyElement 'elem'"
};

type record E46a
{
 XSD.String elem
}
with {
 variant "name as uncapitalized";
 variant "anyElement 'elem' except unqualified,'http://www.organization.org/ttcn/wildcard'"
};

type record E46b

http://www.ericsson.com/ttcn/wildcard

 Rec. ITU-T Z.169 (11/2008) 45

{
 record of XSD.String elem_list
}
with {
 variant "name as uncapitalized";
 variant "anyElement 'elem_list' except unqualified"
};

7.8 Annotation
An annotation is used to include additional information in the XSD data. Annotations may appear
in every component and will be mapped to a corresponding comment in TTCN-3. The comment
should appear in the TTCN-3 code just before the mapped structure it belongs to. This
Recommendation does not describe a format in which the comment is to be inserted into the
TTCN-3 code.

EXAMPLE:

<annotation>
 <appinfo>Note</appinfo>
 <documentation xml:lang="en">This is a helping note!</documentation>
</annotation>

Could be translated to:

// Note: This is a helping note !

46 Rec. ITU-T Z.169 (11/2008)

Annex A

XSD.ttcn3
(This annex forms an integral part of this Recommendation)

This annex defines a TTCN-3 module containing type definitions equivalent to XSD built-in types.
NOTE – The capitalized type names used in Annex A of [ITU-T X.694] have been retained for
compatibility. All translated structures are the result of two subsequent transformations applied to the XSD
Schema: first, transformations described in [ITU-T X.694], then transformations described in [ITU-T Z.167].
In addition, specific extensions are used that allow codecs to keep track of the original XSD nature of a given
TTCN-3 type.

module XSD {

 //anySimpleType
 type XMLCompatibleString AnySimpleType
 with { variant "XSD:anySimpleType"};

 //anyType
 type record AnyType
 {
 record of String attr,
 record of String elem_list
 }
 with {
 variant "XSD:anyType";
 variant "anyAttributes 'attr'";
 variant "anyElement 'elem_list'"
 };

 // String types
 type XMLCompatibleString String
 with { variant "XSD:string"};

 type XMLStringWithNoCRLFHT NormalizedString
 with { variant "XSD:normalizedString"};

 type NormalizedString Token
 with { variant "XSD:token" };

 type XMLStringWithNoWhitespace Name
 with { variant "XSD:Name"};

 type XMLStringWithNoWhitespace NMTOKEN
 with { variant "XSD:NMTOKEN"};

 type Name NCName
 with { variant "XSD:NCName"};

 type NCName ID
 with { variant "XSD:ID"};

 type NCName IDREF
 with { variant "XSD:IDREF"};

 type NCName ENTITY
 with { variant "XSD:ENTITY"};

 type octetstring HexBinary
 with { variant "XSD:hexBinary"};

 type octetstring Base64Binary
 with { variant "XSD:base64Binary"};

 type XMLStringWithNoCRLFHT AnyURI
 with { variant "XSD:anyURI"};

 type charstring Language (pattern "[a-zA-Z]#(1,8)(-[\w]#(1,8))#(0,)")
 with { variant "XSD:language"};

 // Integer types
 type integer Integer

 Rec. ITU-T Z.169 (11/2008) 47

 with { variant "XSD:integer"};

 type integer PositiveInteger (1 .. infinity)
 with { variant "XSD:positiveInteger"};

 type integer NonPositiveInteger (-infinity .. 0)
 with { variant "XSD:nonPositiveInteger"};

 type integer NegativeInteger (-infinity .. -1)
 with { variant "XSD:negativeInteger"};

 type integer NonNegativeInteger (0 .. infinity)
 with { variant "XSD:nonNegativeInteger"};

 type longlong Long
 with { variant "XSD:long"};

 type unsignedlonglong UnsignedLong
 with { variant "XSD:unsignedLong"};

 type long Int
 with { variant "XSD:int"};

 type unsignedlong UnsignedInt
 with { variant "XSD:unsignedInt"};

 type short Short
 with { variant "XSD:short"};

 type unsignedshort UnsignedShort
 with { variant "XSD:unsignedShort"};

 type byte Byte
 with { variant "XSD:byte"};

 type unsignedbyte UnsignedByte
 with { variant "XSD:unsignedByte"};

 // Float types
 type float Decimal
 with { variant "XSD:decimal"};

 type IEEE754float Float
 with { variant "XSD:float"};

 type IEEE754double Double
 with { variant "XSD:double"};

 // Time types
 type charstring Duration (pattern ")
 with { variant "XSD:duration"};

 type charstring DateTime (pattern ")
 with { variant "XSD:dateTime"};

 type charstring Time (pattern ")
 with { variant "XSD:time"};

 type charstring Date (pattern ")
 with { variant "XSD:date"};

 type charstring GYearMonth (pattern ")
 with { variant "XSD:gYearMonth"};

 type charstring GYear (pattern ")
 with { variant "XSD:gYear"};

type charstring GMonthDay (pattern "--((0[1-9])|[10-12])-((0[1-9])|[10-31])([+-
]?[\d:Z]+)#(0,1)")

 with { variant "XSD:gMonthDay"};

 type charstring GDay (pattern ")
 with { variant "XSD:gDay"};

 type charstring GMonth (pattern "--((")
 with { variant "XSD:gMonth"};

 // Sequence types
 type record of NMTOKEN NMTOKENS
 with { variant "XSD:NMTOKENS"};

48 Rec. ITU-T Z.169 (11/2008)

 type record of IDREF IDREFS
 with { variant "XSD:IDREFS"};

 type record of ENTITY ENTITIES
 with { variant "XSD:ENTITIES"};

 type record QName
 {
 AnyURI uri optional,
 NCName name
 }
 with { variant "XSD:QName"};

 // Boolean type

 type boolean Boolean
 with { variant "XSD:boolean"};

 //TTCN-3 type definitions supporting the mapping of W3C XML Schema built-in datatypes
 type utf8string XMLCompatibleString
 (
 char(0,0,0,9).. char(0,0,0,9),
 char(0,0,0,10)..char(0,0,0,10),
 char(0,0,0,12)..char(0,0,0,12),
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

 type utf8string XMLStringWithNoWhitespace
 (
 char(0,0,0,33)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

 type utf8string XMLStringWithNoCRLFHT
 (
 char(0,0,0,32)..char(0,0,215,255),
 char(0,0,224,0)..char(0,0,255,253),
 char(0,1,0,0)..char(0,16,255,253)
);

}//end module

 Rec. ITU-T Z.169 (11/2008) 49

Appendix B

Examples
(This appendix does not form an integral part of this Recommendation)

The following examples show how a mapping would look like for example XML Schemas. It is
only intended to give an impression of how the different elements have to be mapped and used in
TTCN-3.

B.1 Example 1
XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- This is an embedded example. An element with a sequence body and an attribute.
 The sequence body is formed of elements, two of them are also complexTypes.-->

 <xs:element name="shiporder">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="orderperson" type="xs:string"/>

 <xs:element name="shipto">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="item">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="note" type="xs:string" minOccurs="0"/>
 <xs:element name="quantity" type="xs:positiveInteger"/>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 <xs:attribute name="orderid" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

50 Rec. ITU-T Z.169 (11/2008)

TTCN-3 Module:

module Example1 {

 import from XSD language "XML" all;

 type record Shiporder {
 XSD.String orderid,
 XSD.String orderperson,
 record
 {
 XSD.String name,
 XSD.String addressField,
 XSD.String city,
 XSD.String country
 } shipto,
 record
 {
 XSD.String title,
 XSD.String note optional,
 XSD.PositiveInteger quantity,
 XSD.Decimal price
 } item
 } with
 {
 variant "name as uncapitalized";
 variant "attribute 'orderid'";
 };
} with { encode "XML"}

module Example1Template {

 import from XSD language "XML" all;
 import from Example1 all;

 template Shiporder t_Shiporder:={
 orderid:="18920320_17",
 orderperson:="Dr. Watson",
 shipto:=
 {
 name:="Sherlock Holmes",
 addressField:="Baker Street 221B",
 city:="London",
 country:="England"
 },
 item:=
 {
 title:="Memoirs",
 note:= omit,
 quantity:=2,
 price:=3.5
 }
 };
}//end module

<?xml version="1.0" encoding="UTF-8"?>
<shiporder orderid="18920320_17">
 <orderperson>Dr.Watson</orderperson>
 <shipto>
 <name>Sherlock Holmes</name>
 <address>Baker Street 221B</address>
 <city>London</city>
 <country>England</country>
 </shipto>
 <item>
 <title>Memoirs</title>
 <quantity>2</quantity>
 <price>3.5</price>
 </item>
</shiporder>

B.2 Example 2
XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="S1">

 Rec. ITU-T Z.169 (11/2008) 51

 <xs:restriction base="xs:integer">
 <xs:maxInclusive value="2"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="S2">
 <xs:restriction base="S1">
 <xs:minInclusive value="-23"/>
 <xs:maxInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="S3">
 <xs:restriction base="S2">
 <xs:minInclusive value="-3"/>
 <xs:maxExclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="C1">
 <xs:simpleContent>
 <xs:extension base="S3">
 <xs:attribute name="A1" type="xs:integer"/>
 <xs:attribute name="A2" type="xs:float"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

</xs:schema>

TTCN-3 Module:

module Example2 {

 import from XSD language "XML" all;

 type XSD.Integer S1 (-infinity .. 2);

 type S1 S2 (-23 .. 1);

 type S2 S3 (-3 .. 0);

 type record C1 {
 S3 base,
 XSD.Integer a1 optional,
 XSD.Float a2 optional
 }
 with {
 variant(a1) "name as capitalized, attribute";
 variant(a2) "name as capitalized, attribute";
 variant "untagged 'base'"
 };
}
with { encode "XML"}

module Example2Templates {

 import from XSD language "XML" all;
 import from Example2 all;

 template t_C1:= {
 base :=-1,
 a1 :=1,
 a2 :=2.0
 };
}

<?xml version="1.0" encoding="UTF-8"?>
<C1 A1="1" A2="2.0">-1</C1>

52 Rec. ITU-T Z.169 (11/2008)

B.3 Example 3
XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="nsA" targetNamespace="nsA">

 <xs:complexType name="C1">
 <xs:simpleContent>
 <xs:extension base="xs:integer">
 <xs:attribute name="A1" type="xs:integer"/>
 <xs:attribute name="A2" type="xs:integer"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="C2">
 <xs:simpleContent>
 <xs:restriction base="C1">
 <xs:minInclusive value="23"/>
 <xs:maxInclusive value="26"/>
 <xs:attribute name="A1" type="xs:byte" use="required"/>
 <xs:attribute name="A2" type="xs:negativeInteger"/>
 </xs:restriction>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="C3">
 <xs:simpleContent>
 <xs:restriction base="C2">
 <xs:minInclusive value="25"/>
 <xs:maxInclusive value="26"/>
 </xs:restriction>
 </xs:simpleContent>
 </xs:complexType>

</xs:schema>

TTCN-3 Module:

module Example3 {

 import from XSD language "XML" all;

 type record C1 {
 XSD.Integer base,
 XSD.Integer a1 optional,
 XSD.Integer a2 optional
 }
 with {
 variant(a1) "attribute";
 variant(a2) "attribute";
 variant "untagged 'base'"
 };

 type record C2 {
 XSD.Integer (23 .. 26) base,
 XSD.Byte a1,
 XSD.NegativeInteger a2 optional
 }
 with {
 variant(a1) "attribute";
 variant(a2) "attribute";
 variant "untagged 'base'"
 };

 type record C3 {
 XSD.Integer (25 .. 26) base,
 XSD.Byte a1,
 XSD.NegativeInteger a2 optional
 }
 with {
 variant(a1) "attribute";
 variant(a2) "attribute";
 variant "untagged 'base'"
 };
}

 Rec. ITU-T Z.169 (11/2008) 53

with {
 encode "XML";
 variant "name all as capitalized, name all in all as capitalized";
 variant "namespace all as 'nsA'"
}

module Example3Templates {

 import from XSD language "XML" all;
 import from Example3 all;

 template t_C1:= {
 base :=-1000,
 a1 :=1,
 a2 :=2
 };

 template t_C2:= {
 base :=24,
 a1 :=1,
 a2 :=-2
 };

 template t_C3:= {
 base :=25,
 a1 :=1,
 a2 :=-1000
 };
}

<?xml version="1.0" encoding="UTF-8"?>
<C1 xmlns="nsA" A1="1" A2="2">-1000</C1>

<?xml version="1.0" encoding="UTF-8"?>
<C2 xmlns="nsA" A1="1" A2="-2">24</C2>

<?xml version="1.0" encoding="UTF-8"?>
<C3 xmlns="nsA" A1="1" A2="-1000">25</C3>

B.4 Example 4
XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:NA="nsA" targetNamespace="nsA">

 <xs:include schemaLocation="Example3.xsd"/>
 <xs:import schemaLocation="Example2.xsd"/>

 <xs:complexType name="newC1">
 <xs:complexContent>
 <xs:extension base="NA:C1"/>
 </xs:complexContent>
 </xs:complexType>

 <xs:simpleType name="newS1">
 <xs:restriction base="S1"/>
 </xs:simpleType>

</xs:schema>

TTCN-3 Module:

module Example4 {

 import from XSD language "XML" all;
 import from Example2 language "XML" all;
 import from Example3 language "XML" all;

 type Example3.C1 NewC1;

 type Example2.S1;

}

54 Rec. ITU-T Z.169 (11/2008)

with {
 encode "XML";
 variant "name all as uncapitalized";
 variant "namespace all as 'nsA' prefix 'NA'"
}

module Example4Templates {

 import from XSD language "XML" all;
 import from Example2 language "XML" all;
 import from Example3 language "XML" all;
 import from Example4 all;

 template t_NewC1:= {
 base :=-1000,
 a1 :=1,
 a2 :=2
 };

 template NewS1:=1;
}

<?xml version="1.0" encoding="UTF-8"?>
<NA:newC1 xmlns:NA="nsA" A1="1" A2="2">-1000</NA:newC1>

<?xml version="1.0" encoding="UTF-8"?>
<NA:newS1 xmlns:NA="nsA">1</NA:newS1>

Printed in Switzerland
Geneva, 2010

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.169 (11/2008) Testing and Test Control Notation version 3: TTCN-3 mapping from XML data definition
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Symbols and abbreviations
	3.1 Symbols
	3.2 Abbreviations

	4 Introduction
	5 Mapping XML Schemas
	5.1 Namespaces and document references
	5.2 Name conversion
	5.3 Unsupported features

	6 Built-in data types
	6.1 Mapping of facets
	6.2 String types
	6.3 Integer types
	6.4 float types
	6.5 time types
	6.6 Sequence types
	6.7 Boolean type
	6.8 anyType and anySimpleType types

	7 Mapping XSD components
	7.1 Attributes of XSD component declarations
	7.2 Schema component
	7.3 Element component
	7.4 Attribute components
	7.5 simpleType components
	7.6 complexType components
	7.7 any and anyAttribute
	7.8 Annotation

	Annex A – XSD.ttcn3
	Appendix B – Examples
	B.1 Example 1
	B.2 Example 2
	B.3 Example 3
	B.4 Example 4

