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Summary 

Radiology has been essential to accurately diagnosing diseases and assessing responses to 

treatment. The challenge however lies in the shortage of radiologists globally. As a response to this, 

a number of Artificial Intelligence solutions are being developed. The challenge artificial 

intelligence radiological solutions however face is the lack of a benchmarking and evaluation 

standard, and the difficulties of collecting diverse data to truly assess the ability of such systems to 

generalise and properly handle edge cases. 

This topic description document (TDD) specifies a standardized benchmarking for AI-based 

symptom assessment. It covers all scientific, technical and administrative aspects relevant for 

setting up this benchmarking and describes a radiograph-agnostic platform and framework that 

would allow any artificial intelligence radiological solution to be assessed on its ability to generalise 

across diverse geographical location, gender and age groups. 
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ITU-T FG-AI4H Deliverable 10.12 

FG-AI4H Topic Description Document for the Topic Group on AI for radiology 

(TG-Radiology) 

1 Introduction 

An estimated 3.6 billion diagnostic medical examinations, such as X-rays, are performed worldwide 

every year. Advances in radiology technology have improved illness and injury diagnosis and 

treatments. These radiological procedures include X-Rays, Mammograms, Ultrasound, PET 

(positron emission tomography) scans, MRI (magnetic resonance imaging) scans and CT (computed 

tomography) scans. They are used mainly in dealing with a broad range of non-communicable or 

chronic diseases. These are primarily cardiovascular diseases, cancer, chronic respiratory diseases 

and diabetes. Radiology has helped in the rapid non-invasive screening of conditions such as breast 

cancer, which reduces the mortality rate, especially with early detection. 33 million screening 

mammography exams are performed each year in the United States alone. Research led by 

Elizabeth Kagan Arleo, MD, of Weill Cornell Medicine found that recommendation of annual 

screening starting at age 40 would result in a nearly 40 percent reduction in deaths due to breast 

cancer (Arleo et al, 2017). Simple radiological procedures like ultrasound can reduce the need for 

surgical interventions. And though clinical judgement may be sufficient, radiological procedures are 

necessary in confirming and properly evaluating the causes of many conditions and responses to 

treatments. 

1.1 Document Structure 

Overview of the whole document. 

1.2 Status update for meeting [Meeting L] 

Between the Meeting K and L, the Topic Group on AI for Radiology onboarded three new 

members, Renam C. da Silva, Dominik Stosik and Bobby Bhartia. We also had a meeting on the 

16th of April 2021. During the meeting, we discussed status updates and welcomed new members. 

We discussed open work streams within the topic group that our members can then lead and 

collaborate towards contributing to. Vincent Appiah, minoHealth AI Labs took the "Existing work 

on benchmarking". In contributing to this work stream, he reviewed published papers on 

benchmarking from regulators, clinicians, and AI developers. He then contributed a summary of 

these papers under the chapter, "Existing work on benchmarking". Darlington Akogo, the Topic 

Driver, also wrote a summary on the work being done by the NHS AI Lab in benchmarking AI 

solutions for COVID-19. Edson Minstu, Renam C. da Silva, and Andrey O. O. dos Reis updated 

their experiments on assessing the effects of various compression techniques and ratio, and scaling 

on data validity during the AI model testing. They compared the performance of various JPEG 

compression ratios and PNG and contributed the results under "Image Compression 

Considerations". 

1.3 Status update for meeting [Meeting M] 

Towards Meeting M, Samori Issah, minoHealth AI Labs, contributed an overview for Ethical 

Considerations under AI for Radiology. Judy Wawira Gichoya, Emory University School of 

Medicine, contributed a section on a study conducted by her and her colleagues that demonstrated 

that AI models have unintended capacity to identify and differentiate between various races from 

the image data alone across various imaging modalities, even though there are no known imaging 

biomarker correlates for racial identity. They then highlight how this present biases and dangerous 

outcomes when such AI systems are deployed without oversight. They also share recommendations. 

Edson Minstu, Renam C. da Silva, and Andrey O. O. dos Reis, Universidade de Brasília, expanded 
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their experiments to cover a brain tumor image classification task as well. The results further 

demonstrate the influence of the compression artifacts in medical image classification. In order to 

evaluate image compression in the scenario, they developed a library that calculates a set of metrics, 

such as, accuracy, sensitivity, specificity, F-Score, etc. for testing different compression and 

downsizing in a dataset. Darlington Akogo, minoHealth AI Labs expanded the list of evaluation 

metrics to include 10 various metrics used for multi-label classification. This includes Exact Match 

Ratio (EMR), Hamming Loss, Example-Based Accuracy, Macro Averaged Accuracy, Micro 

Averaged Accuracy, Macro Averaged Precision, Micro Averaged Precision, Macro Averaged 

Recall, Micro Averaged Recall, and Alpha evaluation score. 

1.4 Status update for meeting [Meeting R] 

Darlington Akogo contributed the section "Audit Trial: minoHealth.ai: A Clinical Evaluation Of 

Deep Learning Systems For the Diagnosis of Pleural Effusion and Cardiomegaly In Ghana, 

Vietnam and the United States of America", which covers the first AI clinical study in Africa, 

benchmarking the performance of AI for radiology systems against radiologists. Dominick Romano 

contributed the section "Lossless Medical Image Compression for Radiology", which covers 

techniques to compress medical images of different modalities. The section also contains 

benchmark tests on these different techniques. 

1.5 Topic description 

Challenges Facing Radiology 

Though radiology is very important, there's a shortage of radiologists globally, especially in 

developing countries. Liberia, for example, only has about 2 radiologists (RAD-AID, 2017), whilst 

Ghana has 34 radiologists and Kenya has 200 radiologists (UCSF, 2015). And in the UK, only one-

in-five trusts and health boards has sufficient number of interventional radiologists to run a safe 

24/7 service to perform urgent procedures (Clinical Radiology UK Workforce Census Report, 

2018) whilst their workload of reading and interpreting medical images has increased by 30% 

between 2012 and 2017. There's a need for scalable and accurate automated radiological systems. 

Deep Learning, especially Convolutional Neural Networks, is gaining wide attention for its ability 

to accurately analyse medical images, with the potential to help solve the shortage of radiologists. 

Artificial Intelligence in Radiology 

The re-emergence of Artificial Intelligence (A.I) and Deep Learning, due to growth in computing 

power and data, has led to advancements in Deep Convolutional Neural Networks, which has 

allowed for breakthrough research and applications in Radiology. Artificial Intelligence and Deep 

Learning holds a lot of potential in Radiology. Artificial Intelligence can provide support to 

radiologists and alleviate radiologist fatigue. It can help in flagging patients who require urgent care 

to radiologists and physicians. Deep Learning could also help increase interrater reliability among 

radiologists throughout their years in clinical practice. A recent study found that the Fleiss' kappa 

measure of interrater reliability for detecting anterior cruciate ligament tear, meniscal tear, and 

abnormality were higher with model assistance than without it (Bien et al., 2018). Deep Learning 

has achieved performances comparable to humans and sometimes better. A recent study analysed 

14 research works done using Deep Learning to detect diseases via medical images, they found that 

on average, Deep Learning systems correctly detected a disease state 87% of the time – compared 

with 86% for healthcare professionals – and correctly gave the all-clear 93% of the time, compared 

with 91% for human experts (Liu et al., 2019). Deep Learning has performed as well as radiologists 

and sometimes better at detecting abnormalities like pneumonia, fibrosis, hernia, edema and 

pneumothorax in chest x-rays (Rajpurkar et. al, 2017). It has also been used to detect knee 

abnormalities via magnetic resonance (MR) imaging at near-human-level performance (Bien et. al, 

2018). Researchers have also trained Deep Learning models that outperformed dermatologists at 

detecting skin cancer (Esteva et. al, 2017, Haenssle et. al, 2018). 
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Research Data 

One key focus of deep learning radiological applications is breast cancer detection via 

mammograms. The CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for 

Screening Mammography) is one of the key repositories publicly available. It contains 10,239 

images and is grouped under the labels; Benign, Benign Without Callback and Malignant. Another 

set of focus is the detection of thoracic conditions via chest x-rays. One publicly available chest x-

Ray dataset is CheXpert by the Stanford University School of Medicine. CheXpert contains 

224,316 chest radiographs of 65,240 patients. It contains images for 12 different thoracic diseases 

including Atelectasis, Cardiomegaly, Enlarged Cardiomegaly, Consolidation, Edema, Lung Lesion, 

Lung Opacity, Pneumonia, Pneumothorax, Fracture, Pleural Effusion and Pleural Other. And it 

contains 2 other observations "No Finding" and "Support Devices", making 14 observations in total. 

The radiographs were collected from Stanford Hospital, between October 2002 and July 2017. 

Another publicly available chest radiograph dataset is MIMIC-CXR dataset by Massachusetts 

Institute of Technology (MIT). The dataset contains 371,920 chest x-rays associated with 227,943 

imaging studies. Each imaging study contains a frontal view and a lateral view. MIMIC-CXR 

dataset also contains 14 observations. There is also a chest x-ray dataset from the NIH Clinical 

Center that contains 100,000 x-rays from over 30,000 patients, including many with advanced lung 

disease. That leads to a total of 696,236 publicly available x-ray images for 12 thoracic conditions. 

Challenges Facing AI in Radiology 

The challenge however lasts in properly testing such systems and ensuring they work in all edge 

and diverse cases radiologists encounter. A study by Eric Oermann and colleagues found that, deep 

learning models that detected pneumonia on chest x-rays performed well on further data from sites 

they were trained on (AUC of 0.93–0.94) but significantly less on external data (AUC 0.75–0.89) 

(Zech et al., 2018). This demonstrates the challenge of assessing the generality and scalability of 

Deep Learning systems. Though the study by Liu and colleagues analysed 31,587 studies, only 69 

studies provided enough data to construct contingency tables, enabling calculation of test accuracy. 

And out of that 69 studies, only 25 studies did out-of-sample external validations. And further, only 

14 of such studies compared the models' performances to that of radiologists. They also realised the 

methodology and reporting of studies evaluating deep learning models is variable and often 

incomplete. This shows the need for standardization of evaluation frameworks and benchmarks for 

AI radiological systems. This is essential to assessing the quality of Artificial Intelligence solutions, 

their readiness to be deployed and the degree of autonomy they should be given. 

1.5.1 Impact of benchmarking 

There exists a large amount of publicly available medical image datasets online, and there have 

been a lot of research and development with such datasets. By developing frameworks that target 

these conditions first, we would make the standardized benchmarking platform immediately 

appealing to the A.I healthcare research and development community. This would also help 

speedup the deployment of AI solutions in Radiology globally. AI healthcare system developers and 

organisations usually have to go through the challenge of convincing health facilities to share their 

private data with them, such data unfortunately aren't always of high quality and they usually lack 

the broad demographic representations needed to truly assess how well an A.I system generalises. A 

radiograph-agnostic benchmarking platform with data from various facilities across the globe, 

reviewed by a panel of experts to ensure quality and diversity, would drastically simplify the 

evaluation stage of such AI systems. The 'Precision Evaluation' framework would help fight against 

demographically biased A.I systems by ensuring they are tested in great detail across various 

groups. It'd also help in the safe scaling of AI systems across different locations. The 'Location' sub-

categorization of evaluation allows for 'Geo-Precision Evaluation'. Developers can tell how well 

their systems can perform within their country or first-point of deployment, and should they intend 

to scale to neighbouring countries then eventually have it across the globe, they can tell how well 

their current version would perform at each point of such growth and scaling. 



 

DEL10.12 (15 September 2023)  9 

1.6 Ethical considerations 

1.6.1 Overview 

Artificial intelligence is the development of computer algorithms and models to perform tasks that 

require human-level intelligence [1]. The current trend of AI is based on machine learning 

techniques that make intelligent predictions based on data [2]. A subset of machine learning 

algorithms, known as deep learning algorithms, have powered most of the current advances in AI. 

Deep learning, as a subfield of machine learning, is the development of self-learning algorithms. 

These algorithms use artificial neural networks which have millions of tunable parameters. [3] 

The complexity of these algorithms makes understanding the reasoning behind an AI model's 

decision very difficult. Thus, making auditing and debugging an AI model's decision process almost 

impossible. The ethical challenge here is that the biases AI models inherit from their training data 

and developers are reflected in their decisions [4]. Because these models lack transparency, it 

becomes difficult to correct the process that led to the biased decision. When these biased models 

are deployed, they reinforce the existing biases, and this can be detrimental. Studies have shown 

that AI models deployed in other fields have expressed biases against groups that were 

underrepresented in the training dataset [5]. A likely solution to the problem of bias is to train 

transparent algorithms on well-balanced datasets. Utilizing transparent and easily debuggable 

algorithms could, however, decrease the performance of these AI models [4]. 

Another ethical dilemma worth considering is data ethics and data ownership [4]. Training AI 

models require huge amounts of data, so AI developers use patients' data from healthcare 

institutions. A lot of discussions and concerns have sprung up around whether or not patients' 

consent is needed whenever their data is used in training an AI model. Some agree that the consent 

of patients is supposed to be requested while others argue that developing AI models for radiology 

is for the greater good and that no one's consent is needed to pursue the greater good. 

There are also a lot of unanswered questions around data ownership and how profits derived from 

using patients' data will be shared [4]. Whoever is identified as an owner or part of the owners of a 

dataset deserves a share in the profit the dataset generates. So, if it is agreed that the data is owned 

by patients then they deserve a share in the profit an AI developer will make from a model that was 

trained on the patients' dataset. 

Just like any technology, AI in its early stages might not be available to all people because of the 

uneven distribution of resources (including financial resources, computational resources, skillset, 

etc). This will further exacerbate the existing inequality in society as only those with the required 

resources can harness the power of AI. [6] 

With regards to liability, an AI model cannot be held liable for a mistake, as some standards view 

an AI model as a tool. It becomes crucial to identify who is responsible for the mistakes of an AI 

model. Will the developer who designed the AI model, or the radiologist who used the AI model, or 

the hospital that purchased it be responsible for any shortcomings on the path of the AI? Answering 

this question will force regulators to identify the key stakeholder in the AI pipeline and what their 

responsibilities are. [4], [6] 

In conclusion, AI can be a very powerful tool in the radiologist's toolbox but has a couple of ethical 

issues that have to be addressed first. These ethical issues have to be taken seriously (especially by 

regulators) in order to prepare the field of radiology for the fourth industrial revolution 

1.6.2 Reading race: AI recognises patient's racial identity in medical images 

(Banerjee, I, et al, 2021) There are no known imaging biomarker correlates for racial identity, 

however, medical imaging artificial intelligence (AI) models produce racial disparities (Pierson, 

2021;Seyyed-Kalantari, 2021). There is potential for discriminatory harm if we assume that AI 

models are agnostic to race – understanding the relationship between race and medical imaging AI 
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models is important (Tariq, 2020). We sought to answer how AI systems could produce disparities 

across racial groups and determine how AI could predict race from medical images. 

In this study, we investigate a large number of publicly and privately available large-scale medical 

imaging datasets and find that self-reported race is trivially predictable by AI models trained with 

medical image pixel data alone as model inputs. We use standard deep learning methods for each of 

the image analysis experiments, training a variety of common models appropriate to the tasks. First, 

we show that AI models can predict self-reported race across multiple imaging modalities, various 

datasets, and diverse clinical tasks (A). The high level of performance persists during the external 

validation of these models across a range of academic centers and patient populations in the United 

States, as well as when models are optimized to perform clinically motivated tasks. We also 

perform ablations that demonstrate this detection is not due to trivial proxies, such as body habitus, 

age, tissue density or other potential imaging confounders for race such as the underlying disease 

distribution in the population (B). Finally, we show that the features learned appear to involve all 

regions of the image and frequency spectrum, suggesting that mitigation efforts will be challenging 

(C). A brief description of these experiments is included in Table 1. 

Table 1 – Reading race – Experiments, methods, and results 

Experiment Description Results 

A.1 Detection of racial 

identity on chest XR 

Resnet34 one-vs-all predict Black, White, or 

Asian. 

Average AUC across 

races of 0.974 internal 

validation, 0.949 external. 

A.2 Detection of racial 

identity on hand XR, 

cervical spine XR, chest 

CT, and mammography 

images 

Binary classification one-vs-all, Black or 

White. For multi-slice, predictions at slice level 

aggregated at study level.  

Average AUC per study 

of 0.915 internal and 

0.885 external. 

A.3 Train models for 

pathology detection and 

patient re-identification, 

evaluate on ability to 

predict race 

Densenet121 models to detect pathology on 

CXR/re-identify unique patients. Removed 

final classifier and used model output as input 

on training to predict race. 

Average AUC across 

races of 0.85. 

B.1 Race detection using 

body habitus 

Models predicting based on body mass index 

(BMI), presence of BMI data, and stratification 

of image data by body habitus. 

AUC – BMI data 0.55, 

presence of BMI 0.52, 

and stratified by BMI 

[0.89, 0.98], [0.92, 0.99] 

B.2 Tissue density analysis 

on mammograms 

Multi-class logistic regression model to predict 

race Black or White based on breast density 

and age, using one-vs-all approach. 

AUC – density only 0.54, 

age and density 0.61. 

B.3 Race detection using 

disease labels 

2 models – predict only using disease labels 

and image classification only on images with 

'no finding' labels. 

AUC – disease labels 

0.561, no finding 0.937 

average across races. 

B.4 Race detection using 

bone density 

Remove bone density information by clipping 

bright pixels to 60% intensity, then train 

Densenet-121 model 

Average AUC of 0.95 

across races. 

B.5 Race detection using 

age and sex 

2 models trained on split data (A1 method) – 5 

age groups and male/female. 

No significant deviation 

from A1. 

C1 Frequency-domain 

imaging features 

4 new models created on modified datasets (A1 

method) –low-pass filtered (LPF), high-pass 

filtered (HPF), bandpass filtered (BPF), notch 

filtered (NF). 

AUC – LPF all results 

>0.5, >0.9 for LPF 50; 

HPF all results >0.5, >0.9 

for HPF 100; BPF [0.75, 

0.91]; NF [0.82, 0.91] 
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Experiment Description Results 

C2 Impact of image 

resolution and quality 

3 new models created on modified datasets (A1 

method) – various resolutions and 2 with 

image perturbations. 

AUC - >0/95 for 160x160 

resolution and 0.64 for 

4x4 images; Average of 

0.652 for perturbed. 

C3 Anatomical localization Produced saliency maps using grad-cam 

method, 5 radiologists perform qualitative 

evaluation. Mask regions of interest (ROI) 

from maps, then test performance of A1 model 

on masked images. Segment lungs and train 

new model on lung only and lung removed 

images. Analysis of CT slice by slice error 

distribution for anatomical regions of interest. 

No finding of specific 

anatomical segment from 

qualitative evaluation or 

slice by slice CT errors. 

average AUC across races 

- masking ROI 0.82; non-

lung 0.863; lung only 

0.717. 

C4 Patch-based training Train 2 new models (A1 methodology) on 

datasets – split images into 3x3 square cells of 

equal size remove 1 of 9 cells, only use 1 cell. 

Average AUC White vs 

others – cell removed 

0.909; only one cell 

0.796. 

 

The result that deep learning models can trivially predict the self-reported race of patients from 

medical images alone is surprising, particularly as this task is not possible for human experts. Our 

work confirms that model discriminatory performance for racial identity recognition generalizes 

across multiple different clinical environments, medical imaging modalities, and patient 

populations, suggesting that these models are not relying on hospital process variables or local 

idiosyncratic differences in how imaging studies are performed for patients with different racial 

identities. This capability is trivially learned and therefore likely to be present in many medical 

image analysis models, providing a direct vector for the reproduction or exacerbation of the racial 

disparities that already exist in medical practice. 

Human oversight of AI models is of limited use to recognize and mitigate this problem. If an 

AI model relied on its ability to detect racial identity to make medical decisions, but in doing so 

misclassified all Black patients, clinical radiologists (who do not typically have access to racial 

demographic information) would not be able to tell. 

We strongly recommend that all developers, regulators, and users who are involved with 

medical image analysis consider the use of deep learning models with extreme caution. In the 

setting of x-ray and CT imaging data, patient racial identity is readily learnable from the image data 

alone, generalizes to new settings, and may provide a direct mechanism to perpetuate or even 

worsen the racial disparities that exist in current medical practice. Our findings indicates that future 

medical imaging AI work should emphasize explicit model performance audits based on racial 

identity, sex and age, and that medical imaging datasets should include the self-reported race of 

patients where possible to allow for further investigation and research into the human-hidden but 

model-decipherable information that these images appear to contain related to racial identity. 

1.7 Existing AI solutions 

1.7.1 Use case descriptors 

To collect existing AI solutions and use cases, we identified the following 9 descriptors that would 

be useful: 

– Condition 

– Medical imaging modality 

– AI task/problem description (e.g. Image Classification, Image Segmentation) 
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– General algorithm description (if shareable) 

– Project goal and current stage (if shareable) 

– Input structure and format 

– Output structure and format 

– Evaluation metrics 

– Explainability and Interpretability framework 

1.7.2 Collected AI solutions and use cases 

minoHealth  

Descriptor Description 

Condition Pneumonia, Hernia, Fibrosis, Atelectasis, 

Cardiomegaly, Enlarged Cardiomegaly, 

Consolidation, Edema, Lung Lesion, Lung Opacity, 

Pneumothorax, Fracture, Pleural Effusion and 

Pleural Other (14 different systems) 

Medical imaging modality Chest XRay 

AI task/problem description Image Classification 

General algorithm description Convolutional Neural Networks, Transfer Learning 

Project goal and current stage Commercial, Testing and Piloting. 

Input structure and format 2D image, jpeg (converted from DICOM) 

 Output structure and format Sigmoid with range 0 - 1, 0 = Negative, 1 = 

Positive 

Evaluation metrics Accuracy Score, ROC curve & Area Under Curve 

Score 

Explainability and Interpretability framework Implementing LIME 

 

minoHealth  

Descriptor Description 

Condition  Breast Cancer 

Medical imaging modality Mammograms 

AI task/problem description Image Classification 

General algorithm description Convolutional Neural Networks, Transfer Learning 

Project goal and current stage Commercial, Testing and Piloting. 

Input structure and format 2D image, jpeg (converted from DICOM) 

 Output structure and format Softmax with 3 classes, Benign, Benign Without 

Callback and Malignant 

Evaluation metrics Accuracy Score, ROC curve & Area Under Curve 

Score 

Explainability and Interpretability framework Implementing LIME 

 

Braid.Health  

Descriptor Description 

Condition Atelectasis, Cardiomegaly, Consolidation, Edema, 

Effusion, Emphysema, Fibrosis, Hernia, Infiltration, 
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Mass, Nodule, Peural_Thickening, Pneumonia, 

Pneumothorax, Old Fracture, New Fracture, 

Scoliosis, Sternotomy, Enlarged Cardiomedistinum, 

Support Devices, Tuberculosis, Bronchiectasis, 

Foreign Body (22 conditions) 

Medical imaging modality Chest XRay 

AI task/problem description Image Classification 

General algorithm description Convolutional Neural Networks, DenseNet 121, 

Transfer Learning, Bayesian Optimization, Strong 

Augmentations 

Project goal and current stage Commercial, Testing and Piloting. 

Input structure and format 2D image, PNG (converted from DICOM) 

 Output structure and format Calibrated score from 0.0 to 1.0 representing 

Precision of data for the current distribution 

Evaluation metrics ROC curve, Area Under Curve ROC Score, 

Specificity at Sensitivity 

Explainability and Interpretability framework None currently 

 

Braid.Health  

Descriptor Description 

Condition Fracture, Dislocation, Edema, Arthritis, 

Osteoarthritis, Spur (6 conditions) 

Medical imaging modality Foot XRay 

AI task/problem description Image Classification 

General algorithm description Convolutional Neural Networks, DenseNet 121, 

Transfer Learning, Bayesian Optimization, Strong 

Augmentations 

Project goal and current stage Commercial, Testing and Piloting. 

Input structure and format 2D image, PNG (converted from DICOM) 

 Output structure and format Calibrated score from 0.0 to 1.0 representing 

Precision of data for the current distribution 

Evaluation metrics ROC curve, Area Under Curve ROC Score, 

Specificity at Sensitivity 

Explainability and Interpretability framework None Currently 

 

minoHealth  

Descriptor Description 

Condition Chest_AP, Chest_LAT, Chest_PA, Foot_AP, 

Foot_LAT, Foot_OBL, Ankle_AP, Ankle_LAT, 

Ankle_OBL, Hand_LAT, Hand_OBL, Hand_PA, 

Knee_AP, Knee_LAT, Knee_OBL, 

Knee_SUNRISE, Wrist_LAT, Wrist_OBL, 

Wrist_PA, Wrist_SCAPHOID, Abdomen_AP, 

Abdomen_SUPINE, Finger_LAT, Finger_OBL, 

Finger_PA, Toe_AP, Toe_LAT, Toe_OBL, 

Shoulder_AP, Shoulder_EXTERNAL, 

Shoulder_INTERNAL, Shoulder_Y-VIEW, 

Elbow_AP, Elbow_LAT, Elbow_OBL, 
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Forearm_AP, Forearm_LAT, Ribs_AP, 

Ribs_LOWER, Ribs_UPPER, Lumbar_Spine_AP, 

Lumbar_Spine_L5-S1, Lumbar_Spine_LAT, 

Cervical_Spine_AP, Cervical_Spine_LAT, 

Cervical_Spine_ODONTOID, Thoracic_Spine_AP, 

Thoracic_Spine_LAT, 

Thoracic_Spine_SWIMMERS, Clavicle_AP, 

Hip_AP, Hip_LAT, Pelvis_AP, Humerus_AP, 

Humerus_LAT, Unknown (56 classes) 

Medical imaging modality XRay 

AI task/problem description Image Classification 

General algorithm description Convolutional Neural Networks, DenseNet 121, 

Transfer Learning, Bayesian Optimization, Strong 

Augmentations 

Project goal and current stage Commercial, Testing and Piloting. 

Input structure and format 2D image, PNG (converted from DICOM) 

Output structure and format Calibrated score from 0.0 to 1.0 representing 

Precision of data for the current distribution 

Evaluation metrics ROC curve, Area Under Curve ROC Score, 

Specificity at Sensitivity 

Explainability and Interpretability framework None currently 

 

1.8 Imaging modalities 

Table 2 maps out the various medical imaging modalities. The goal of this work is to identify each 

imaging modality, address how AI can be used with such modality towards diagnosis, triage, 

forecasts, prognosis or treatment of certain conditions. 

Each modality would have paragraphs dedicated to covering details using the pointers below: 

– Description: Description of imaging modality 

– Conditions: Conditions modalities are applied to 

– Data structure: Data structure of images from modality  

This would cover some details on the type of images generated from each modality. These 

details would include whether it's a single/multiple 2D image or 3D image, DICOM or some 

other format 

– AI Applications: How AI is being used with modality 

Table 2 – Imaging modalities 

Conventional radiography 

(plain x-rays) 

 

Description  Radiography is the use of x-rays to visualize the internal structures of a 

patient. X-Rays are a form of ionizing electromagnetic radiation, produced 

by an x-ray tube using a high voltage to accelerate the electrons produced 

by its cathode. The produced electrons interact with the anode, thus 

producing x-rays. The x-rays are passed through the body and captured 

behind the patient by a detector; film sensitive to x-rays or a digital 

detector. Different soft tissues attenuate x-ray photons differently, 
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Conventional radiography 

(plain x-rays) 

 

depending on tissue density; the denser the tissue, the whiter (more 

radiopaque) the image. The range of densities, from most to least dense, is 

represented by metal (white, or radiopaque), bone cortex (less white), 

muscle and fluid (grey), fat (darker grey), and air or gas (black, or 

radiolucent). This variance produces contrast within the image to give a 

2D representation of all the structures within the patient [1,2]. 

Conditions Typically, conventional radiography is the first imaging method indicated 

to evaluate the extremities, chest, and sometimes the spine and abdomen. 

Chest: to assess lung pathology, e.g., atelectasis, pneumonia, pulmonary 

oedema, heart failure, solitary pulmonary nodule, lung masses, diffuse 

lung diseases, pleural diseases. 

Skeletal: to examine bone structure and diagnose fractures, dislocation or 

other bone pathology. 

Abdomen: can assess abdominal obstruction, free air or free fluid within 

the abdominal cavity [1,3]. 

Data structure Single/multiple 2D image. 

AI Applications – Different AI approaches have been proposed to segment chest 

anatomical structures such as lungs, heart, and clavicle bones, for 

diagnostic purposes [4]. 

– AI has also been developed to classify normal and abnormal results 

from chest radiographs with major thoracic diseases including 

cardiomegaly, pulmonary malignant neoplasm, active tuberculosis, 

interstitial lung diseases, pneumothorax, pulmonary edema, 

emphysema, pneumonia, and pediatric pneumonia [5–15]. 

– For COVID-19 patients, new AI approaches focusing on detection, 

classification, segmentation, stratification and prognostication are 

showing encouraging results [16–22]. AI has been proposed to allow 

for lung disease severity staging. Deep-learning convolutional neural 

network (CNN) accurately stages disease severity on portable chest x-

ray of COVID-19 lung infection [23]. It has also been proposed that 

deep learning can thus help support the diagnosis of heart failure using 

chest X-ray images [24]. 

– Bone suppression techniques based on artificial intelligence have been 

developed to avoid overlooking lung nodules because of bones 

overlapping the lung fields [25]. 

– AI has been used for analysis and features extraction of spine X-ray 

images, which may allow prediction of high-risk populations with 

abnormal bone mineral density [26]. Application prospects have also 

been described in bone age assessment [14,27]. 

– In the field of orthopaedics, an AI model can automatically measure 

Sharp's angle as observed on pelvic x-ray images to aid diagnosis of 

developmental dysplasia of the hip [28]. It has also been shown the 

utility of deep learning in detecting hip, pelvic and acetabular fractures 

with pelvic radiographs [29]. Collection, processing, and integration of 

pre-, intra-, and postoperative multimodal imaging data could be 

performed in a more efficient and accurate manner, which has been 

proposed could then be incorporated into robot-assisted orthopaedic 



 

DEL10.12 (15 September 2023)  16 

Conventional radiography 

(plain x-rays) 

 

surgery system [30], as well as for numerous X-ray-guided procedures 

[31]. 

Fluoroscopy 

Description Fluoroscopy is a technique, usable as a standalone technique or in concert 

with others, that utilizes a continuous X-ray beam throughout a target in a 

subject's body to study both its structure and movement and can be applied 

to single organs or a system of them [35-37] 

Conditions This modality is commonly applied to conditions that involve foreign 

bodies, obstruction or modification of fluid transport, or fractures[35-37] 

Data structure Images generated through fluoroscopy can be produced in single-plane 2D 

images as well as multi-plane 3D images [35-37] 

AI Applications AI is being used to simplify and optimize presentation of imaging, as well 

as reduce radiation exposure to patients [38-39] 

Angiography 

Description Angiography is a medical imaging modality that focuses on imaging the 

inside of blood vessels and organs. In angiography, a contrast medium is 

injected into the blood vessel and the path of the tracer or contrast medium 

is imaged using X-ray. [57][58] 

Conditions Some conditions angiography is applied to are: diagnosis of obstructive 

vascular disease, diagnosis of aneurysms, diagnosis of arterio-venous 

malformations, diagnosis of bleeding vessels, and assessment of 

vascularity of malignant tumors. [57] 

Data structure Angiograms can be 2D or 3D image files  

AI Applications AI is used in post processing tasks like segmentation. 

Also AI is used to perform certain calculations like calculating calcium 

score and fraction flow reserve (FFR). [59] 

Mammography  

Description Mammography is a medical imaging modality that uses low energy X-rays 

to image the human breast. Mammography is mostly used for early 

detection of breast cancer. Its mode of operation is very similar to that of 

the conventional X-ray machine, except that it employs low power 

radiations. [49][50] 

Conditions Mammography can be used as a screening tool or a diagnostic tool. 

– As a screening tool, mammography is used for the early detection of 

breast cancer. 
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Conventional radiography 

(plain x-rays) 

 

– As a diagnostic tool, mammography is used to investigate abnormal 

clinical findings in the breast, like breast lumps and nipple discharge. 

[50] 

Data structure Mammograms may be 2D or 3D image files. [50] 

AI Applications AI, in combination to radiologists, is used to improve the accuracy of 

breast cancer screening. [51] 

Computed Tomography (CT) 

Description Computed Tomography (CT) also called computed axial tomography, is a 

non-invasive imaging method that uses X-rays, combined with computing 

to produce cross-sections of subjects, allowing for highly detailed models 

of patients or areas of interest to study; patients are sometimes given a 

contrasting material to improve image quality [72-73]. 

Conditions CTs are used in multiple diagnostic works and therapies, and have 

additional value in that full body scans are possible [72-73]. Examples of 

uses include disease diagnosis and prognosis, guidance of medical 

procedures, and treatment monitoring across a wide spectrum of disorders 

from problems with vasculature, bone fractures, investigations in 

oncology, psychiatry and more [72-75]. It has even found use in 

investigating complications associated with Covid-19 within patients [76-

77]. 

Data structure CT scans take numerous 2D images, and these can be used to make 3D 

representations, thus allowing 2D and 3D formats [72,84]. 

AI Applications Current AI uses extend from use of CT-images, but is also expanding 

through investigation of AI-Assisted smart tools to guide and upgrade the 

use of Ct scans through improved diagnosis, measurements, and prognoses 

[78-82]. It is believed that future uses can entail more comprehensive 

reconstructions of scanned areas and less radiation use though less 

coregistration of CTs with other imaging means, helping to reduce patient 

fatigue and exposure; more may abound as this area of research, that is the 

combination of AI and CT scanning, is still new [83]. 

Single-photon emission computed tomography (SPECT) 

Description Single photon emission computed tomography (SPECT) is a technique 

which allows nuclear medicine studies, which would otherwise be 

represented in planar images, to be rendered in three dimensions. Photons 

emitted by injected radiopharmaceuticals are detected by gamma cameras 

which rotate around the patient to provide spatial information on tissue 

distribution. The data is then reconstructed into three-dimensional images. 

SPECT can also be combined with conventional CT (SPECT-CT) to allow 

accurate attenuation correction for the purposes of reconstruction, and to 

provide additional anatomical information. 
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Conventional radiography 

(plain x-rays) 

 

Conditions The technique can theoretically be applied to any nuclear medicine 

studies, but it is not required in every situation. SPECT is commonly used 

in the context of technetium-99m sestamibi scans when evaluating the 

perfusion of the cardiac myocardium or the function of parathyroid glands. 

It is also used in the context of technetium methylene diphosphonate 

(MDP) bone scans which provide information about bone perfusion and 

turnover.  

Data structure  

AI Applications  

Ultrasonography (US) and Doppler 

Description Ultrasonography is an imaging modality that uses ultrasound (sound 

waves with frequencies greater than frequencies that are audible to the 

human ear) to create images of internal body parts. The ultrasound is sent 

into the body by a transducer and echoes from tissue interference are 

recorded to create an image of the structure under examination. [40] 

Conditions Ultrasound imaging is used to examine an organ whenever there is a 

symptom of pain, swelling or infection in that organ. Ultrasonography can 

be used to image the liver, kidney, heart, pancreas, etc. [41][42] 

Another common use case for ultrasonography is real-time imaging of 

developing fetuses in pregnant mothers. 

Data structure Sonograms may be stored as a single layer 2D image. 

Multiple 2D sonograms may also be projected into a 3D image 

An additional time dimension can be added to a 3D sonogram to create a 

4D sonogram.[43] 

AI Applications AI is used to perform a wide range of tasks in ultrasonography. These 

tasks include image classification, segmentation, detection, registration, 

biometric measurements and quality assessment. [44] 

Magnetic resonance Imaging (MRI)  

Description Magnetic resonance imaging is an imaging modality that uses a strong 

magnetic field to create images of the internal structures of the body. The 

strong magnetic field forces protons of water molecules in the body to 

align with the field. When a radiofrequency current is passed through the 

patient, the alignment of the protons is disturbed. When the 

radiofrequency current is turned off, the protons return to equilibrium with 

the magnetic field and the MRI sensors detect the energy released by the 

protons as they return to equilibrium. Unlike the CT or conventional X-

ray, MRI does not employ any ionizable radiation, so it is safer and can be 

taken more frequently. [52][53]  

Conditions MRI is suitable for imaging soft tissues like muscles, tendons, ligaments, 

brain, joints, the abdomen, etc. 
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Conventional radiography 

(plain x-rays) 

 

MRI is also employed in image guided interventional procedures [52][54] 

Data structure MRI images can be 2D or 3D image files 

AI Applications AI is used to correct artifacts in MRI scans [55] 

AI is also used to classify MRI scans as healthy or diseased. [56] 

Nuclear Medicine Imaging 

Description Nuclear medicine imaging is an imaging modality that involves the 

injection or inhalation of small amounts of radioactive compounds (called 

radiotracers) into the body to visualize organs in the body. The 

radiotracers are organ specific and they emit gamma rays when they arrive 

at the target organ. The emitted gamma rays are captured and visualized 

using a gamma camera. Nuclear medicine imaging is considered as an 

"inside out" radiology, because it records radiations generated from the 

body rather than an external source like an X-ray. [45][46][47] 

Conditions This modality is applicable to conditions that require an assessment of the 

physiology of organs. Some organs that are commonly assessed using 

nuclear imaging are kidney, lungs, heart, thyroid gland, and bone. [45] 

Data structure Nuclear images could be 2D images (scintigraphy) or 3D images 

(SPECT). Some modern nuclear imaging equipment are hybrid and allow 

for a fusion between CT and nuclear imaging. [45][47] 

AI Applications In nuclear imaging, AI is commonly used for radiomics. 

AI could potentially be used to detect artifacts and noise in nuclear images 

and correct them by applying the appropriate algorithm. 

Positron emission tomography (PET) 

Description Positron Emission Tomography (PET) is an imaging modality that uses a 

tracers, or radioactive drugs, to image the function of tissues of organs 

[32] 

Conditions PET is used for diagnosis and staging in oncology, in addition to 

observing specific neurological and cardiovascular issues[33]. 

Data structure Images can come in 2D or 3D modalities. [34]. 

AI Applications AI has been documented in use with PET for distinguishing between 

benign and malignant nodules, as well as detection and quantification of 

nodules[35,60].Future developments may improved correlation of image 

features with clinical end points, correction of images, reduction of doses 

needed for reliable scans, guided use, and improved reconstructions[83, 

85]. These together can result in savings and improved patient outcomes, 

with more to abound as research in this area is still new. 

Interventional Radiology 
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Conventional radiography 

(plain x-rays) 

 

Description Interventional Radiology (IR) is a means of radiology that uses current 

imaging methods, such as CTs,MRIs,,X-rays, PETs, and Ultrasound, led 

by teams of professionals to treat the source of diseases in a non-invasive 

or minimally invasive manner. A subset, interventional oncology [IC] is 

used to address cancer [61] 

Conditions (IR) is used for diagnosis and guiding of treatment across cardiology, 

neurology, nephrology, oncology, and more [61]. 

Data structure Image modalities from IR depend on the imaging methody combinations 

as described in the sections above. 

AI Applications AI has been used in IR to predict treatment outcomes for treatments like 

chemoembolization, incidents like a post-treatment stroke, or offer 

prognostic information on brain malformations [63-65]. Gesture capture, 

voice recognition, implement/tool guidance, and Augmented reality have 

been employed to assist efforts across various tasks [66-69]. A smart 

assistant has been trialed, but more details await [70,71]. Applications that 

improve features such as segmentation of subjects, improved lesion 

detection, prognostic information gathering, interpretation, reduction of 

waste, and improved cost-benefit analyses are imagined in the future of IR 

with AI. [62,70-71] 

 

1.9 Existing work on benchmarking 

– papers on existing attempts to benchmark solutions on the topic 

– clinical evaluation attempts, RCT, etc. 

– including existing numbers 

1.10 Benchmarking overview 

Artificial intelligence is considered to be one of the key driving forces of the 4th Industrial 

Revolution. This has led to the adoption of national AI strategies by many countries (Heumann & 

Zahn, 2021). However there is the lack of a consensus on how to measure the success of AI models. 

We therefore give a brief non-exhaustive list of activities that could be performed as part of 

benchmarking AI models. Benchmarking may include measurement of the predictive performance 

of AI models. Several performance metrics have been proposed and a few are listed; Area under the 

curve(AUC), Accuracy, F1 score, Sensitivity and specificity (Park & Han, 2018). Model 

performance should be measured for both validation and test data. Benchmarking should also take 

into account the annotation of data. Is the data labeled, unlabeled or semi-labeled? This will 

determine what AI models and performance metrics to use. Appropriate models should also be used 

in AI-based solutions. A lot of factors should be considered when applying AI models; type of data, 

sample size, computational cost, etc. (Tang et al,2018). It is also important to assess the 

documentation of data analysis pipelines in order to determine the level of reproducibility of the 

methods. 
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1.11 The NHS AI Lab - Call for AI driven COVID-19 models: Performance assessment using 

the national COVID-19 chest imaging database 

The NHS AI Lab created the National COVID-19 Chest Imaging Database (NCCID), currently with 

over 40,000 images. The majority of scans collected by the NCCID are chest X-rays and come from 

people with and without COVID-19. They are providing a platform that allows for AI solutions 

within the UK to be assessed based on NCCID dataset, in order to reduce the potential for bias and 

provide NHS commissioners and healthcare regulators with the evidence to judge the safety, 

efficacy, and generalisability of AI models before they are used in clinical practice. (NHSX. 

"Performance Assessment Call - National COVID-19 Chest Image Database documentation.") 

Before an AI system can be assessed on their platform, the AI developers would have to fill an 

application form. They ask technical and clinical questions within the application form in order to 

understand the processes used in training and evaluating the AI system. Independent assessors with 

expertise in AI, Technology and Medicine are used to assess responses provided with a focus on 

NHS importance, technical feasibility, and financial viability. These external assessors prepare 

analysis plans, covering performance criteria and tailored to each AI solution. The AI system is then 

validated on the unseen NCCID dataset via an AWS cloud-computing infrastructure provided by 

NHSX. The NCCID unseen dataset is then accessed in the form of an S3 bucket. The AI developers 

are never given access to the NCCID unseen dataset. 

The whole process takes 12-16 weeks to complete, and is done at no cost to the AI developers. To 

ensure Intellectual Property protections, all people involved in the AI model assessment, including 

external assessors will be bound to confidentiality by contractual agreements. Non-Disclosure 

Agreements (NDAs) are also used where need be. 

At the end, the AI developer will receive a written report with the assessment of the AI system 

against defined performance criteria. This covers model performance using metrics including 

sensitivity, specificity, as well as the clinical validity of the solution. The process is meant to be a 

validation study and does not qualify as a clinical investigation. However, this report can be used as 

evidence to support applications to the MHRA (Medicines and Healthcare products Regulatory 

Agency), the United Kingdom's healthcare products Regulatory Agency, for derogation of 

UKCA/CE marking or via standard conformance assessment processes. The UKCA (UK 

Conformity Assessed) marking is a new UK product marking that is used for goods being placed on 

the market in Great Britain (England, Wales and Scotland). It covers most goods which previously 

required the CE marking. 

2 AI4H Topic Group 

– Topic Group structure 

o Subtopic 1 

o Subtopic 2 

– Topic Group participation 

– Tools/process of TG cooperation: Slack, Zoom, Google Docs, Github 

– TG interaction with WG, FG: Work in DAISAM and DASH to test frameworks in Sandbox 

– Current topic group and topic status 

– Contributors so far 

– Next meetings 

– Next steps for the work on this document 
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3 Method 

– Overview of the benchmarking 

3.1 AI input data structure 

– possible inputs for benchmarking 

– ontologies, terminologies 

– data format 

3.1.1 Image conversion considerations 

Table 3 – Image conversion considerations 

Conversion Approach Advantages Disadvantages 

Integrating an automated 

conversion programme into AI 

Software. 

It is also possible to use python 

tools pydicom and opencv-python 

to automate the process of 

converting DICOM to jpeg within 

the software platform, in that 

case, the users wouldn't have to 

worry about the conversion. 

– Easier for users in clinical 

settings 

– Conversion cannot be easily 

interfered. 

– Leaves little room for error on 

the part of users 

– Requires further development 

of by manufacturers 

– Subjected to the quality of 

manufacturers' software 

development 

Using a separate software. 

There's MicroDicom, a free 

windows tool, and a number of 

other tools that are either free or 

must be paid for. 

– Easier for manufacturer since 

it requires no to little 

additional development 

– Can allow for reliance on 

already established and trusted 

high-quality tool 

– If offline, it can ensure data 

privacy better than an online 

tool. 

– Requires additional 

procedures from users to use 

AI software 

– Prone to errors and incorrect 

input data if misused 

– Creates avenue for third party 

interference 

Using an online tool. 

There are also online free tools, 

like: 

https://www.onlineconverter.com

/dicom-to-jpg  

– Easier for manufacturer since 

it requires no to little 

additional development 

– Can allow for reliance on 

already established and trusted 

high-quality tool 

– Requires additional 

procedures from users to use 

AI software 

– Prone to errors and incorrect 

input data if misused 

– Creates avenue for third party 

interference 

– Can allow online tool 

manufacturers to have 

unauthorised access to data. 

 

3.1.2 Image compression and other artifacts considerations 

For use cases that require image conversions like DICOM to other formats before being used as 

input for an AI system, manufacturers should ensure input data integrity and quality is maintained. 

https://www.onlineconverter.com/dicom-to-jpg
https://www.onlineconverter.com/dicom-to-jpg
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This is significant as DICOMs usually use 16-bit depth raw images and would be converted into 12-

bit or even 8-bit depth images in JPEG, JPEG 2000 or PNG format. 

This depth precision reduction may be negligible if we consider that: 

– the higher pixel depth cannot be perceived by the human eye 

– regular monitors don't use high-range depths 

– ground truths are usually made by physicians using regular monitors. 

Another issue is related to the JPEG and JPEG 2000 image codec formats, which are lossy 

compression algorithms. These codecs, respectively, introduce compression artifacts such as 

blocking and ringing. These artifacts may reduce an AI system's performance and should also be 

taken into consideration in the system design. 

In order to show the relevance of the compression in medical images in the performance of AI 

based classification, we run a set of tests. Our baseline is the COVID-Next 

https://github.com/velebit-ai/COVID-Next-Pytorch, a COVID-19 classifier, inspired by the 

COVID-Net proposed by Wang et. al. (2020), based on ResNext50. 

This model was trained using chest radiography with different resolutions, qualities and artifacts. 

The test accuracy of this model is 94.76%. However, if we compress the test dataset with different 

quality parameters simulating a scenario where the image is compressed to reduce bandwidth before 

transmission to a classifier in the cloud for inference. We observe that it is possible to achieve 

significant bandwidth reduction with a negligible accuracy reduction. 

Examining the cyan and red curves of Figure 1, one can see that the accuracy can be significantly 

reduced due to compression. In this case, the accuracy notably drops when the compression ratio 

goes lower than 0.10. 

Despite the visual quality reduction due to the compression, the effect of the compression artifacts 

(blocking or ringing) is quite reduced due to a resize of the compressed image before feeding the 

COVID-Net. 

In an extreme case, referring to the green (JPEG) and blue (JPEG 2000) curves in Figure 1, we 

resize the images in the dataset to 256x256 pixels using a Lanczos-4 filter before performing the 

compression. In this scenario, the bitstream is outstandingly reduced, but the accuracy is 

significantly reduced, showing that severe compression is detrimental to the COVID-Net as the 

image quality degrades. This image size was chosen due to the COVID-Net input architecture. 

We conducted a similar test with a brain tumour image classifier available at: 

https://www.kaggle.com/preetviradiya/brian-tumor-dataset, 2021. The results are shown in Figures 

2 and 3 where accuracy and F1 Score is calculated for different compression ratios and different 

curves are obtained for each codec configuration. 

 The results show that, in both cases, there is a combination (between scaling and compression 

quality) where it is possible to achieve a large reduction in the transmission rate without impairing 

accuracy. The difference observed in the behaviour of the models can be associated with the amount 

of pre-compressed images present in the data. 

These results cannot be extended to other cases, but can show the influence of the compression 

artifacts in medical image classification. 

In order to evaluate image compression in the scenario, we developed a library that calculates a set 

of metrics, such as, accuracy, sensitivity, specificity, F-Score, etc. for testing different compression 

and downsizing in a dataset. 

In Figure 4 we also show an example of the confusion matrix for a given compression 

configuration. The library saves different matrices for each configuration parameter tested. 

https://github.com/velebit-ai/COVID-Next-Pytorch


 

DEL10.12 (15 September 2023)  24 

 

Figure 1 – Impact of the compression in the test dataset accuracy of the COVID-Next 

classifier 

In blue (JPEG) and red (JPEG 2000) shows the case where dataset images were compressed with 

different compression rates. In green (Interpolative JPEG) and cyan (Interpolative JPEG 2000) the 

images were downsized to 256x256 pixels before compression. Without compressing the images 

(PNG) the accuracy is 94.76%, as shown in magenta. 
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Figure 2 – Impact of the compression in the test accuracy of the brain tumour classifier 

 

Figure 3 – Impact of the compression in the test accuracy of the brain tumour classifier 
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Figure 4 – Confusion matrix of the brain tumour classifier test accuracy of a JPEG 

compression scenario 

Another artifact that may also be taken into consideration is the Moiré pattern. This kind of artifact 

may occur when a picture is taken from a screen. In this case, the pattern of the pixels in the screen 

is overlayed with the capturing pattern of a camera. As developers we must have to consider that 

users may not use the AI solution properly and taking pictures may be a possible input of a 

proposed system. 

Another artifact that may also be taken into consideration is the Moiré pattern. This kind of artifact 

may occur when a picture is taken from a screen. In this case, the pattern of the pixels in the screen 

is overlayed with the capturing pattern of a camera. As developers we must have to consider that 

users may not use the AI solution properly and taking pictures may be a possible input of a 

proposed system. 

3.1.3 Lossless medical image compression for radiology 

Background: 

Loading, storing, and visualizing large Neuro Informatics files (NII) commonly used in CT and 

MRI is costly and time consuming. To load the media, and store it for the long term is extremely 

costly. To process the files, and transfer across systems is extremely time consuming. As more 

medical samples are accumulated and used to train AI Models, we must rethink how we store and 

process these files. We introduce a form of lossless Hilbert compression using neuro-symbolics to 

increase processing time, transfer, and training times for Medical Artificial Intelligence Models 

through pre-vectorization. 

Representation Phases: 

In working with multimedia, it is important to follow steps of standardization in which all new data 

which enters a system will be bound. This process diverges data by collecting the data points, 

converges the data, and allows for novel trends to emerge. 



 

DEL10.12 (15 September 2023)  27 

 

Figure 4-bis – Multimedia representation phases for radiology images 

1. Diverse types of raw data and medical records enter a system. 

2. The representation of diverse data is unified in representation by answering common 

questions of it. What is it? Where did it come from? When did it happen? 

3. The data is then aggregated by following the same processing protocols. 

4. The aggregation of this data enables situational localization in which converged points begin 

to emerge as trends. 

Vectorizing medical imagery: 

In building Databanks of Medical samples and records, it's important to efficiently store the 

multimedia which is usually large in size, and sometimes sparse in situation. For training artificial 

intelligence models, this data must be vectorized in order to train ontologies of disease and 

diagnosis. In Figure 4-ter, we show early research found from the NIST Medical Databank which 

used MRI records as a basis for the example and diagram. This same process of vectorizing 

multimedia is still relevant to leading research across a range of disciplines today. 
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Figure 4-ter – Early example of vectorizing medical imagery [86] 

Hilbert Symbolics: 

We introduce a method of Lossless Hilbert compression using neuro-symbolics as an effective 

strategy for parallel computation of medical imagery, as illustrated in Figures 4-5(a) and (b). An 

image, or slice, is broken down recursively across threads and systems into Hilbert spaces which 

form the bounds for hash symbolics as unique floating point signals. 

Where each space can be simultaneously processed as its representation is uniformly computed 

across multiple threads, nodes, or systems to form a hierarchy of which each space originates. Each 

segment is processed down to individual pixel, forming a high resolution hash table of features 

within a slide or sequence of slides which is calculated concurrently. 

The computed features are bound to a vector index, using buckets which scale up or down with a 

given system's memory footprint. If a system is large and can handle a large memory footprint then 

the bucket size may be larger, however not required as when buckets are full they simultaneously 

write to file, regardless of order, as the file can be read back and the contained features and 

positions are retained. Therefore preserving the sanity of the data being ingested. 

 

Figure 4-5(a) – Illustration of Lossless Hilbert compression 
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Figure 4-5(b) – Illustration of Lossless Hilbert compression 
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NIST Medical Databank 

  

Figure 4-6 – Example of interconnection network topologies [87] 

We reference early network topology as validation of such interconnected systems computing 

features in parallel. These early network topologies utilize computation formulas also found in 

Neural Network models. This was the basis for industrial supercomputers used in early iterations of 

the NIST Medical Databank for storing large quantities of medical samples. 

Performance Benchmarks: 

In testing benchmarks we show the standard file size of an .NII file containing a Chest CT Scan of a 

covid positive patient and 512 Slices. We compress this to .NII.GZ and .NII.BZ2 respectively and 

the results shown below indicate a compression of 24.9% for GZIP and 51.5% for BZ2. The 

processing time for GZIP taking 3.811 seconds, and BZ2 taking 10.578 seconds. 

We compare this with the process for compressing the same .NII file with Hilbert Symbolics which 

indicates an 87.4% compression rate taking 664.062 Milliseconds to process. The performance 

benefit being in ability to distribute the computation of each slice across 256 threads where each 

thread computes 2 slides. The total results of the benchmark is as shown in Table 4. 
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Table 4 – Compression performance comparison for various compression methods 

 Standard GZIP BZ2 Hilbert Symbolics 

Size (MB) 134.2 100.7 65 16.8 

Time 

(seconds) 

 3.811621189 10.57886028 0.6640625 

 

 

We provide further analysis of the processing time, and of the storage requirements of resulting 

files, as illustrated in Figure 4-7. 

 

Figure 4-7 – Processing time and storage requirement for various compression methods 

3.2 AI output data structure 

– outputs to benchmark 

– ontologies, terminologies 

– data format 
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3.3 Test data labels 

– label types 

– ontologies, terminologies 

– data format 

3.4 Scores & metrics 

The taxonomy used in grouping these evaluation metrics is that which was proposed by Cesar Ferri, 

et al. in their 2008 paper titled "An Experimental Comparison Of Performance Measures For 

Classification." 

– Threshold Metrics 

– Ranking Metrics 

– Probability Metrics. 

3.4.1 Threshold metrics 

3.4.1.1 Accuracy metrics 

Classification Accuracy 

This is the fraction of correct predictions of a model. It is however not suitable for imbalanced 

classification because a poorly fitted model that simply predicts the majority class would end up 

having a misleading high score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Classification Error 

This measure is the inverse of classification accuracy. It is the fraction of incorrect predictions of a 

model. It is also not suitable for imbalance classification. 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Patient Level Accuracy & Image Level Accuracy 

The patient level accuracy metric is defined as follows. For each patient, let Nt be the total number 

of images and Nc the number of images correctly classified, then patient score S can be defined as: 

𝑆 =
𝑁𝑐

𝑁𝑡
 

Therefore, the patient level accuracy can be calculated as 

𝑷𝒂𝒕𝒊𝒆𝒏𝒕 𝒍𝒆𝒗𝒆𝒍 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝛴𝑖=1

𝑇  𝑆𝑖

𝑇
 

Where T is the total number of patients. 

The image level accuracy measures the rate of correctly classified images to the total number of 

images in the dataset. Let N be the total number of images in testing data and C the number of 

correctly classified images. 

𝐼𝑚𝑎𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶

𝑁
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Pixel Accuracy 

In instance segmentation, pixel accuracy is used to evaluate the percent of pixels in an image which 

were correctly classified. This is usually reported for each class separately and then across all 

classes. This metric can be misleading in scenarios where the class representations are small within 

the image, as the measure will be biased in mainly reporting how well you identify negative cases. 

Exact Match Ratio (EMR) 

The Exact Ratio metric extends the accuracy metric from single-label classification tasks to multi-

label classification tasks. One of the drawbacks of EMR is that it does not account for partially 

correct labels. 

 

Example-Based Accuracy 

This extends the Accuracy metrics to multilabel classification. The overall accuracy is the average 

of accuracy across training instances. 

Macro Averaged Accuracy 

This extends the Accuracy metric to multilabel classification. This metric computes the Accuracy of 

individual class labels and then averages over all classes. 
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Micro Averaged Accuracy 

This extends the Accuracy metric to multilabel classification. This Label based metric computes the 

Accuracy globally over all instances and all class labels. 

 

3.4.1.2 Sensitivity-specificity metrics 

Sensitivity 

This is the true positive rate. It measures the proportion of positive samples correctly predicted by a 

model. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Specificity 

This is the true negative rate. It measures the proportion of negative samples correctly predicted by 

a model. 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Geometric mean (G-Mean) 

The geometric mean metric is the square root of the product of the sensitivity (true positive rate) 

and specificity (true negative rate) scores of a model. 

𝐺 − 𝑀𝑒𝑎𝑛 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

3.4.1.3 Precision-recall metrics 

Precision 

Precision is a metric that computes the fraction of true positive predictions among the outcomes that 

the model classified as positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall 

Recall, also known as sensitivity, is the fraction of examples classified as positive, among all total 

numbers of positive examples. In other words, the number of true positives divided by the number 

of true positives plus false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

F-Measure 

F-measure provides a way to combine precision and recall into a single score. It is the harmonic 

mean of two fractions. It is sometimes called the F score or F1 score. It is the most popular metric 

for working with imbalanced datasets. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

Fbeta-Measure 

Fbeta measure is an abstraction of f-measure score. A coefficient called beta is used to control the 

calculation of the harmonic mean of the precision and recall. 

𝐹𝑏𝑒𝑡𝑎 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
((1 + 𝑏𝑒𝑡𝑎2)  ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑏𝑒𝑡𝑎2  ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

Matthews Correlation Coefficient (MCC) 

The Matthews correlation coefficient (MCC) or phi coefficient is a measure of the quality of 

binary (two-class) classifications. MCC according to Chicco [6] is more informative than F1 score 

and accuracy score in evaluating binary classification problems, because it produces a high score 

only if the prediction obtained good results in all of the four confusion matrix categories (true 

positives, false negatives, true negatives, and false positives), proportionally both to the size of 

positive elements and the size of negative elements in the dataset. 
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𝑀𝐶𝐶 =  √
𝑥2

𝑛
 

where 𝑛is the total number of observations. 

MCC could also be calculated directly from the confusion matrix as; 

𝑀𝐶𝐶 =  
𝑇𝑃 ∗  𝑇𝑁 −  𝐹𝑃 ∗  𝐹𝑁

√(𝑇𝑃 +  𝐹𝑃)(𝑇𝑃 +  𝐹𝑁)(𝑇𝑁 +  𝐹𝑁)
 

Where 𝑇𝑃 is the number of True Positives, 𝑇𝑁is the number of True Negatives, 𝐹𝑃is the number of 

False Positives𝐹𝑁is the number of False Negatives 

Macro Averaged Precision 

This extends the Precision metric to multilabel classification. This metric computes the Precision of 

individual class labels and then averages over all classes. 

 

Micro Averaged Precision 

This extends the Precision metric to multilabel classification. This Label based metric computes the 

Precision globally over all instances and all class labels. 
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Macro Averaged Recall 

This extends the Precision metric to multilabel classification. This metric computes the Precision of 

individual class labels and then averages over all classes. 

 

Micro Averaged Recall 

This extends the Precision metric to multilabel classification. This Label based metric computes the 

Precision globally over all instances and all class labels. 
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Negative Predictive Value (NPV) 

The negative predictive value is a metric that computes the fraction of true negative predictions 

among the outcomes that the model classified as negative. 

This is useful for use cases where the false negative predictions are costly. 

𝑁𝑃𝑉 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

3.4.2 Ranking metrics 

Receiver Operating Characteristic (ROC) Curve 

The ROC curve is a graphical plot used to summarise the diagnostic ability of a classification 

model. It is created by plotting the true positive rate (sensitivity) against the false positive rate (1 − 

specificity). It was created primarily for binary classification, but it can be generalised for 

multiclass classification. The area under the curve (AUC) can be calculated and used as a single 

score to summarise the performance of a model. 

Precision-Recall Curve 

Precision-Recall curve is also a graphical plot used to summarise the diagnostic ability of a 

classification model. ROC curves can be misleading with an imbalanced dataset, especially when 

the 'negative' samples are small. A poorly fitted model that simply predicts positive can end with a 

high AUC score, which would be misleading. In such a scenario, the precision-recall curve and area 

under the curve could be used. It is created by plotting the precision score against the recall score 

(sensitivity). 

Average Precision (AP) 

It is the Area Under the Precision-Recall curve (AUC-PR). Precision Recall curves are not 

monotonically decreasing curves, so they are often made so using interpolation methods. Some of 

the interpolation methods used include 11-point interpolation method and all-point interpolation 

method. 
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Mean Average Precision (mAP) 

Average Precision is calculated individually for each class. In an objection task with many classes, 

mAP is the average of all the AP values over all the classes. mAP is defined as; 

mAP = 
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1  

where N is the number of classes 

3.4.3 Probability Metrics 

Logarithmic loss or Cross-entropy 

Cross-entropy is a measure of the difference between two probability distributions. A lower score 

implies a better model, with 0.0 being the best. Log-loss is defined as; 

Cross Entropy = − ∑ 𝑡𝑖𝑙𝑜𝑔(𝑠𝑖)𝐶
𝑖  

where 𝑡𝑖  and𝑠𝑖are the groundtruth and the model's score for each class𝑖in𝐶 

Brier Score 

The Brier score is calculated as the mean squared error between the expected probabilities for the 

positive class (e.g. 1.0) and the predicted probabilities. Src It ranges between 0.0 and 1.0. 

BrierScore = 
1

𝑁
∑ (𝑔𝑖  −  𝑝𝑖)2𝑁

𝑖  

where expected values are 𝑝𝑖 and the predicted values are 𝑔𝑖 

Brier Skill Score 

In order to more appropriately compare the brier score of different models, the brier score can be 

scaled against a reference, such as the score of no skill model. 

BrierSkillScore = 1 − (
𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒

𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 

Intersection Over Union (IoU) 

IoU evaluates the intersection between the predicted bounding box of an object detection model, 

and the ground truth bounding box. It is calculated as the area of overlap between the ground truth 

bounding box (gt) and the predicted bounding box (pb), divided by the area of the union of gt and 

pb. IoU metric ranges from 0 and 1 with 0 meaning no overlap and 1 implying a perfect 

overlap between gt and pb. 

IoU = 
𝑎𝑟𝑒𝑎(𝑔𝑡 ∩ 𝑝𝑏)

𝑎𝑟𝑒𝑎(𝑔𝑡 ∪ 𝑝𝑏)
 

Hamming Loss 

Hamming Loss is used to calculate the proportion of incorrectly predicted labels to the total number 

of labels. When applied to multilabel classification, it is used to calculate the number of False 

Positives and False Negative per instance and then average it over the total number of training 

samples. 

https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
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α- Evaluation Score 

Alpha evaluation score is a generalized form of the Jaccard Similarity for evaluating each multi-

label prediction. The α-evaluation score provides a flexible way to evaluate multi-label 

classification results for both aggressive as well as conservation tasks. 

 

3.5 Undisclosed test data set collection 

Undisclosed test data was provided by Vasantha Kumar Venugopal. The use case was the diagnosis 

of COVID-19 via Chest X-Ray. The dataset contained 917 cases, with 436 RTPCR confirmed 

positive cases, and 481 COVID negative cases. The dataset was collected from Mahajan Imaging in 

India. 

– raw data acquisition / acceptance 

– test data source(s): availability, reliability, 

– labelling process / acceptance 

– bias documentation process 

– quality control mechanisms 

– discussion of the necessary size of the test data set for relevant benchmarking results 

– specific data governance derived by general data governance document (currently C-004) 
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3.6 Benchmarking methodology and architecture 

– technical architecture 

– hosting (IIC, etc.) 

– possibility of an online benchmarking on a public test dataset 

– protocol for performing the benchmarking (who does what when etc.) 

– AI submission procedure including contracts, rights, IP etc. considerations 

3.6.1 Audit trial 

We conducted an audit trial using the undisclosed test data for the diagnosis of COVID-19 via 

Chest X-Ray. We used the machine learning auditing platform from the Open Code Initiative; 

health.aiaudit.org. This platform will automate the assessment of AI systems. 

 

 

Figure 5 – Model Results after trial audits using the benchmarking platform, health.aiaudit.org 

3.6.2 Audit trial checklist 

An audit checklist was adapted from the Focus Group, as part of the audit trial. 

The checklist is below. 
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Working Draft: 

Table 1.0 consists of a minimum viable set of audit verification checklist items. This checklist is 

basically derived from the FG-AI4H standardized model survey questionnaire: Reference document 

J-038 on FG-AI4H server (2020). URL https://extranet.itu.int/sites/itu-t/focusgroups/ai4h. You can 

see from the table that the checklist items are categorized on the basis of their respective ML4H 

lifecycle stage, the applicable assessment criteria, the assessment type they signify.  

NOTE – Each audit team is free to expand, extend and modify the existing set of checklist items based on 

their TG / use-case specific considerations and relevance. 

Task Description: 

1. Please perform an expert review of the given checklist items and may try to provide your 

expert assessment feedback based on the following questions: 

Note: All your expert responses can be marked directly on to the editable working document 

in the 'Remarks' column of the table 

a) Is the given set of checklist items comprehensive enough and whether it covers all the 

relevant ML4H lifecycle requirements (ML technology, Clinical, Regulatory and Ethical 

requirements). If 'NO', please indicate the missing aspects 

b) From the given set, are there any checklist items that you find conflicting or ambiguous to 

the defining context and hence needs further clarification, correction, modification or 

substitution? If 'Yes', please indicate them 

c) From the given set, are there any checklist items that you identify as not applicable or not 

valid to your particular TG / Use case? If 'Yes', please indicate them along with the respective 

exclusion criteria. 

d) Would you like to propose any additional checklist items? If 'Yes', please indicate them 

along with the respective inclusion criteria 

2. Based on your expert assessment, please assign a 'significance level' / 'conformance priority' 

to each of the checklist items listed under column-6 titled 'Significance Level'. A first level 

criteria could be to assess the EXPECTED CONFORMANCE SIGNIFICANCE of a 

particular checklist item with respect to the applicable ML4H regulations, laws, standards, 

guidelines and best practices. 

The 'significance level' may be assigned a categorical label from among the following 4 types: 

'mandatory', 'preferred', 'conditional' or 'optional' based on its TG / use-case specific 

significance 

Purpose: This set of verification checklists are reviewed, finalized, vetted and approved by 

the audit experts. Then this approved set of checklists is served as a 'questionnaire' to the TG 

Use Case developers to fill in their response. The response / results are verified( with the help 

of quantitative and qualitative records / proofs/ evidence) and validated ( by applicable test 

cases) for conformity assessment to generate an audit report finally. 

Note: Since this set of checklists serves as a common interface to both use case developers 

and the audit experts , for the process of designing the checklist / questionnaire, we truly 

encourage both parties ( audit experts and TG / domain experts) to collaboratively work on 

this so that there is consensus and less confusion at the real audit time. 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h
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Table 5 – Draft audit verification checklist 

ML4H 

process 

lifecycle 

stage 

Assessment 

criteria 

Assessment 

type 

Audit verification checklist item  Assessment 

attribute / 

metric 

Significance 

level 

Remarks Verification 

& 

validation 

record / 

proof 

Planning Regulatory 

assessment 

Qualitative Product name and version Intended use / 

product 

specification 

Mandatory   

Planning Regulatory 

assessment 

Qualitative Target clinical intervention area of 

the product 

e.g. 

– Prevention 

– Screening 

– Diagnosis 

– Treatment 

– Triage 

– Prognosis 

– Other.... 

Intended use / 

Product 

specification 

Mandatory Clinical 

validation 

setting 

should fit 

to the 

intended 

use of the 

model 

 

Planning Regulatory 

assessment 

Qualitative Primary product function 

− Primary function 

− Secondary function (if applicable) 

e.g. 

– Classification 

– Prognosis 

– Matching 

– Labeling 

– Detection 

– Segmentation 

– Recommendation 

– Data Modeling 

– Other 

Intended use / 

Product 

specification 

 

Mandatory   

Planning Regulatory 

assessment 

Qualitative Product category 

− Software-as-a-Medical Device 

(SaMD) 

− Software-as-a-Medical Service 

(SaMS) 

− Software-in-a-Medical Device 

(SiMD) 

− Mobile Medical Applications 

(MMA) 

− Medical Device Data Systems 

(MDDS) 

− Other……. 

Intended use / 

Product 

specification 

 

Preferred   

Planning Regulatory 

assessment 

Qualitative Primary product user group 

− Primary user group 

− Secondary user group ( if 

applicable) 

 

Intended use / 

Product 

specification 

 

Mandatory   

Planning Regulatory 

assessment 

Qualitative Product operational mode 

− fully automatic 

− semi-automatic 

Intended use / 

Product 

specification 

Mandatory   
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ML4H 

process 

lifecycle 

stage 

Assessment 

criteria 

Assessment 

type 

Audit verification checklist item  Assessment 

attribute / 

metric 

Significance 

level 

Remarks Verification 

& 

validation 

record / 

proof 

Planning Regulatory 

assessment 

Qualitative Product autonomy level ( based on 

IMDRF - risk acceptance criteria & 

criticality of the clinical use case or 

any other standard control baselines 

for clinical system level risk 

assessment) 

Intended use / 

Product 

specification 

Mandatory Saul: 

Mandatory 

Preferred 

 

Data 

collection 

Technical 

validation 

Qualitative Where and when was the training 

dataset collected from? 

Place: 

Time Period: 

− Social 

representation 

bias 

− Historical 

data bias 

Preferred Saul: 

Mandatory 

Vasanth: 

Preferred, 

should not 

be 

mandatory  

 

Data 

collection 

Technical 

validation 

Quantitative How many total data samples does 

the source dataset contain?  

Sampling bias Preferred Saul: 

Which is 

the 

"original" 

dataset? 

Would not 

be better to 

refer to it 

as "source" 

dataset? 

Please 

clarify 

 

Data 

collection 

Technical 

validation 

Quantitative Did you encounter any missing data 

in the source dataset? If yes, please 

specify affected variables, missing 

fraction relative to all entries. 

Sampling Bias 

 

Preferred Saul: idem. 

Vasanth : 

Preferred 

 

Data 

collection 

Technical 

validation 

Quantitative Whether the data acquisition 

modality, the data inclusion and the 

data exclusion criteria were properly 

validated to find if there is any 

mismatch between 'reported' sample 

size and 'actual 'reproduced' sample 

size? 

Data 

reproducibility 

 Saul: 

Whats the 

"reproduce

d" sample? 

Is it the 

target 

dataset? 

 

Data 

collection 

Regulatory 

assessment 

Qualitative Does the data identify any 

subpopulations Or Does the dataset 

contain confidential/personal 

information? (age-group, gender, 

ethnicity, religion, etc.)? If yes, 

specify the type 

 

Data privacy 

 

Mandatory Saul: 

Mandatory 

 

Data 

collection 

Regulatory 

assessment 

Qualitative Did you obtain consent from 

individuals who are represented in 

this data to use their information for 

this purpose? If 'yes', were they 

provided with any mechanism to 

revoke their consent in the future or 

for specific uses? 

 

Data privacy 

& protection 

Patient safety 

Mandatory Saul: 

Mandatory 

 

Data 

collection 

Regulatory 

assessment 

Qualitative Whether any due diligence and 

processes were followed in 

Data privacy 

& protection 

Mandatory Saul: 

Preferred 
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ML4H 

process 

lifecycle 

stage 

Assessment 

criteria 

Assessment 

type 

Audit verification checklist item  Assessment 

attribute / 

metric 

Significance 

level 

Remarks Verification 

& 

validation 

record / 

proof 

conformance to institutional review 

and ethical review policies when 

input datasets were de-identified / 

anonymised? Or were any 

exemptions obtained under special 

conditions?  

 

Data 

preparation 

Technical 

validation 

Quantitative How many instances of each label 

class were present in the training 

dataset?(e.g. proportionate sample 

size of different classes) 

Sampling Bias 

 

Preferred Saul: 

Preferred 

Vasanth: 

Preferred/

Mandatory 

 

Data 

preparation 

Technical 

validation 

Quantitative If ground truth annotation was used 

as the basis for data labeling quality 

control, how did you evaluate the 

quality of ground truth annotation? 

Data labeling 

bias 

Mandatory Saul: 

Mandatory 

 

Data 

preparation 

Technical 

validation 

Quantitative For data labeling, how were the 

perceptual errors and biases 

accounted for? Was inter-annotator 

reliability measured as part of a 

quality check and what is its 

specification? 

Data labeling 

bias 

Preferred Saul: 

Preferred, 

a little bit 

overlappin

g with the 

previous 

point. 

 

Data 

preparation 

Technical 

validation 

Quantitative By which proportion did you split the 

preprocessed data samples into a 

training set, the validation(tuning) set 

and the test set? 

Data bias 

leading to ML 

model under-

fitting / over-

fitting 

Mandatory Saul: 

Mandatory 

 

Data 

preparation 

Technical 

validation 

Qualitative Do you ensure that there is no patient 

sample overlap among the training, 

the validation (tuning) and the test 

datasets 

Sampling bias Mandatory Saul: 

Preferred 

 

Data 

preparation 

Regulatory 

assessment 

Qualitative Is it possible to identify individuals 

from the dataset? Were the datasets 

de-identified / anonymised ? (Yes / 

No) 

Data privacy  Mandatory Saul: 

Mandatory 

 

Data 

preparation 

Regulatory 

assessment 

Qualitative Type and level of de identification 

used like HIPAA complaint removal 

of private DICOM elements, image 

cropping to avoid identification from 

reconstructed images etc 

data privacy Mandatory Preferred  

Data 

preparation 

Regulatory 

assessment 

Qualitative How do you justify the selection of 

ground truth? 

Data labeling 

quality 

Preferred Saul: 

Preferred 

 

Data 

preparation 

Technical 

validation 

Qualitative Is the prevalence of the real world 

disease types/conditions reflected in 

the configuration of train datasets? ( 

e.g. relative frequency of disease and 

non-disease types in the dataset)  

Data bias Preferred Saul: 

Preferred 

 

 

Model 

training 

Technical 

validation 

Qualitative Have you evaluated the influence of 

particular input data features that 

positively affects the model 

performance scores?  

Model 

performance 

Mandatory Saul: 

Preferred 
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ML4H 

process 

lifecycle 

stage 

Assessment 

criteria 

Assessment 

type 

Audit verification checklist item  Assessment 

attribute / 

metric 

Significance 

level 

Remarks Verification 

& 

validation 

record / 

proof 

Model 

tuning 

Clinical 

evaluation 

Quantitative Are decision thresholds being used 

for classification? If yes, specify the 

thresholds and the 'thresholding rule'. 

Can you also state the clinical 

significance of the selected operating 

threshold, if any? 

 

'Technical 

accuracy' Vs 

'Clinical 

accuracy' 

equivalence 

Mandatory Saul: 

Preferred 

Vasanth: 

Mandatory 

 

Model 

tuning 

Regulatory 

assessment 

Qualitative Is your ML model optimized for a 

specific local or clinical setting (e.g. a 

specific clinical department, country, 

etc.)? 

 

Model 

generalizabilit

y 

Mandatory Saul: 

Preferred. 

Instead of 

optimized, 

I would 

use "fine-

tuned" 

 

Model 

tuning 

Technical 

validation 

Qualitative Does your use case give high 

importance to the most prevalent 

output class types and thus optimize 

the model performance? Or does your 

use case give equal prominence to 

each output class type? 

Model 

optimization 

Preferred Saul: 

Preferred 

 

Model 

evaluation 

Clinical 

evaluation 

Qualitative Were patients and clinicians involved 

or consulted during the ML algorithm 

selection stage, algorithm 

development stage or algorithm 

acceptance and adoption stage? 

 

Model 

explainability 

Mandatory Saul: 

Mandatory 

 

Model 

evaluation 

Technical 

validation 

Quantitative Are there output classes or disease 

types for which the ML model 

performed worse than others? Provide 

the confusion matrix results. 

 

Model 

performance 

Mandatory Saul: 

Mandatory 

 

Model 

evaluation 

Technical 

validation 

Quantitative Is there an interpretability-

performance trade-off observed. If 

yes, provide the comparative analysis 

results. 

Model 

interpretability 

&Model 

performance 

tradeoff 

Preferred Saul: 

Preferred 

 

Model 

evaluation 

Technical 

validation 

Quantitative Specify the guarantees and limits of 

the performance metrics used for 

model evaluation 

Model 

performance 

Preferred Saul: 

Preferred 

Vasanth: 

Mandatory 

 

Model 

evaluation 

Technical 

validation 

Quantitative Specify the guarantees and limits of 

the 'gold standard' or 'reference 

standard' against which the 

performance metrics are evaluated 

Model 

performance 

Preferred Saul: 

Preferred 

Vasanth: 

Mandatory 

 

Model 

evaluation 

Clinical 

evaluation 

Qualitative Specify the selection criteria of the 

performance metrics used for model 

evaluation. 

– clinical significance 

– optimization 

– specialization 

– generalization 

– other… 

'Technical 

accuracy' Vs 

'Clinical 

effectiveness' 

equivalence 

Mandatory Saul: 

Preferred 
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ML4H 

process 

lifecycle 

stage 

Assessment 

criteria 

Assessment 

type 

Audit verification checklist item  Assessment 

attribute / 

metric 

Significance 

level 

Remarks Verification 

& 

validation 

record / 

proof 

Model 

evaluation 

Clinical 

evaluation 

Quantitative Whether any comparative analysis 

was done over the model safety risks 

with that of the alternative 

technologies (both ML based and 

Non-ML based) 

Patient safety Preferred Saul: 

Mandatory 

 

Model 

evaluation 

Clinical 

evaluation 

Qualitative Have you used any model-specific or 

model agnostic methods for model 

interpretability? 

Model 

interpretability 

Mandatory Saul: 

preferred 

 

Model 

evaluation 

Technical 

validation 

Quantitative Have you estimated the risk 

probabilities associated with model 

performance variability when tested 

against the following conditions: 

– non-specified use environment 

– non-specified hardware and 

software configurations 

– patients of different age, sex, race, 

co-morbidities 

– patients with different severity of 

disease type 

– other... 

Model 

uncertainty 

and robustness 

 

Mandatory Saul: 

Mandatory 

 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Quantitative Specify the computational efficiency 

of the model in terms of the response 

time 

Clinical 

efficiency 

Preferred Saul: 

Preferred 

 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Qualitative How does the ML model adoption 

reduce the overall clinical practice 

cost (or enhance the clinical practice 

savings)? 

– faster patient diagnosis / treatment 

– percentage reduction in clinician 

cognitive workload 

– degree of automation / semi-

automation introduced 

– degree of smartness/intelligence 

augmentation 

– new knowledge discovery 

– enabling replacement or 

redefinition of existing gold standard 

– other...... 

Clinical 

integration 

 

Mandatory Saul: 

Mandatory 

 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Qualitative What is the care quality impact 

delivered by the ML model? 

– early detection and lowering of 

disease severity levels 

– increased coverage under screening 

programs 

– workflow efficiency 

– reliability and reproducibility of 

outcomes 

– increased accessibility 

– increased patient and clinician 

satisfaction 

Clinical 

effectiveness 

Mandatory Saul: 

Preferred 
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ML4H 

process 

lifecycle 

stage 

Assessment 

criteria 

Assessment 

type 

Audit verification checklist item  Assessment 

attribute / 

metric 

Significance 

level 

Remarks Verification 

& 

validation 

record / 

proof 

– other…… 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Qualitative How does the model fit into the 

intended health intervention 

workflow? 

– autonomous tool 

– assistive tool 

– augmentative tool 

– add-on unit to existing 

system/workflow 

– replacement unit for existing – 

system/workflow component 

– new stand alone application 

– other… 

Clinical 

integration 

Mandatory Saul: 

Mandatory 

 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Qualitative Have you estimated the risk 

probabilities associated with the 

potential hazards and harms as a 

consequence of a model not meeting 

the expected or desired performance 

specification? And have you specified 

the values or ranges for performance 

metrics in order to avoid 

unacceptable risks?  

Patient safety Mandatory Saul: 

Mandatory 

 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Qualitative Was 'input data feature 'importance 

validated for its significance in the 

clinical setting by the clinician/ 

specialist? Which of the features were 

ranked as the most important ones? 

Model 

interpretability 

Preferred Saul: 

Preferred 

 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Qualitative Did the model fail to address any 

relevant clinically important 

findings?  

Clinical 

effectiveness 

Preferred Saul: 

Preferred 

 

Model 

usage 

/deployme

nt 

Clinical 

evaluation 

Quantitative Is there a comparative analysis done 

on the patient outcomes for (1) 

patients on whom the ML model is 

applied versus (2) patients on whom 

the ML model is not applied ? 

Clinical 

effectiveness 

Mandatory Saul: 

Mandatory 

 

Model 

usage 

/deployme

nt 

Regulatory 

assessment 

Qualitative Whether any safety control measures 

were incorporated to deal with 

unintended consequences (if any) of 

ML model intervention in the clinical 

setting? 

Operating 

environment 

risks / Patient 

safety 

Mandatory Saul: 

Mandatory 

 

Model 

maintenanc

e & 

versioning 

Regulatory 

assessment 

Qualitative s the ML model maintained as (a) a 

static system or (b) a continuously 

learning system? I 

Model 

maintainabilit

y 

Mandatory Saul: 

Mandatory 

 

Model 

maintenanc

e & 

versioning 

Regulatory 

assessment 

Quantitative If the ML model is attributed to a 

continuous learning system , specify 

the algorithm change / update cycle 

 

Model 

maintainabilit

y 

Mandatory Saul: 

Preferred 

 

Saul: 

Model 

maintenanc

Regulatory 

assessment 

Quantitative Has there been a proper plan for test 

data quality and correctness 

assessment after model deployment 

Model 

maintainabilit

y 

Mandatory Saul: 

Mandatory 
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ML4H 

process 

lifecycle 

stage 

Assessment 

criteria 

Assessment 

type 

Audit verification checklist item  Assessment 

attribute / 

metric 

Significance 

level 

Remarks Verification 

& 

validation 

record / 

proof 

e & 

versioning 

(i.e., concept drift, training/test data 

distribution mismatch, etc.)? 

 

3.6.3 Audit trial: minoHealth.ai: A clinical evaluation of deep learning systems for the 

diagnosis of pleural effusion and cardiomegaly in Ghana, Vietnam and the United 

States of America. 

Background: A rapid and accurate diagnosis of cardiomegaly and pleural effusion is of the utmost 

importance to reduce mortality and medical costs. Artificial Intelligence has shown promise in 

diagnosing medical conditions. With this study, we seek to evaluate how well Artificial Intelligence 

(AI) systems, developed my minoHealth AI Labs, will perform at diagnosing cardiomegaly and 

pleural effusion, using chest x-rays from Ghana, Vietnam and the USA, and how well AI systems 

will perform when compared with radiologists working in Ghana. 

Method: The evaluation dataset used in this study contained 100 images randomly selected from 

three datasets. Twenty (20) images were selected from the VinBig Data Chest X-ray dataset, 

another twenty-one (21) images were selected from the Chexpert dataset, and fifty nine (59) images 

were selected from the Euracare dataset, an in-house dataset collected by minoHealth AI Labs from 

Euracare Advanced Diagnostics and Heart Centre, a top-tier health institution in Accra, Ghana. The 

Deep Learning models were further tested on a larger Ghanaian dataset containing five hundred and 

sixty one (561) samples. Two AI systems were then evaluated on the evaluation dataset, whilst we 

also gave the same chest x-ray images within the evaluation dataset to 4 radiologists, with 5 - 20 

years experience, to diagnose independently. 

Results: For cardiomegaly, minoHealth.ai systems scored Area under the Receiver operating 

characteristic Curve (AUC-ROC) of 0.9 and 0.97 while the AUC-ROC of individual radiologists 

ranged from 0.77 to 0.87. For pleural effusion, the minoHealth.ai systems scored 0.97 and 0.91 

whereas individual radiologists scored between 0.75 and 0.86. On both conditions, the best 

performing AI model outperforms the best performing radiologist by about 10%. We also evaluate 

the specificity, sensitivity, negative predictive value (NPV), and positive predictive value (PPV) 

between the minoHealth.ai systems and radiologists. 

Conclusion: In regions like Sub Saharan Africa, where radiologists are scarce and are also 

overloaded with other clinical responsibilities, solutions like the minoHealth.ai systems will be of 

great utility. These solutions can achieve the performance of multiple radiologists working together 

to complement the efforts of radiologists and ease the burden on them. 

3.6.4 Benchmarking solution 

We are proposing a radiograph-agnostic benchmarking platform and framework that would allow 

for the evaluation of AI radiological systems for various conditions and serve as a standard. This 

would require registered developers and organisations seeking to evaluate their A.I system to 

download the test images and a csv file with two columns; 'ID', containing the unique Identification 

of each test image and 'Class' which would be left blank in order to be populated by the outputs of 

an A.I system. Developers are then to submit the fully populated csv file, which would then provide 

the model's outputs to be evaluated with the true labels. Tutorial scripts in popular Machine 

Learning libraries and frameworks would be provided to developers on how to correctly get your 

model's outputs to be populated in the CSV file. 
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Figure 6 – A prototype of the radiograph-agnostic precision evaluation platform 

 

Figure 6-bis – The 'Location' category with its sub-categories and the metrics used 
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3.6.5 Evaluation metrics 

All our supported condition tests on the platform would be image classification tasks and therefore 

we would be using evaluation metrics for classification. Some of the conditions and tests would be 

binary classification tasks while others would be multi-class classification, therefore we would be 

using metrics that can be used for both types of classification. As shown in Figure 1 and Figure 2, 

the evaluation metrics to be used would be the Receiver Operating Characteristic (ROC) curve, its 

Area Under the Curve (AUC) score and the Accuracy Score. The ROC curve and AUC score would 

help us identify the model's true positive rate (TPR) (Sensitivity) and its false positive rate (FPR) (1 

- Specificity). Though originally for binary classification, the ROC curve and AUC score can be 

generalised to multi-class classification. 

The performance of an A.I system would be compared with radiologists using the various metrics. 

This would help developers see how well their models perform compared to the current popular 

approach, standalone radiologists. Benchmarking vis-à-vis radiologists would also help in assessing 

the level of autonomy that should be given each A.I system. 

 

Figure 7 – Each sub-category would feature demographics intersection performances too 
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3.6.6 Benchmark categorizations 

The evaluation results would be divided into Location, Gender and Age, as shown in Figure 1. 

Under Location, the performance of the AI model would be shown under the sub-categories; 

Country, Continent, Region and Global. The 'Country' sub-category shows the performance of the 

A.I system within the very nation it was developed. The 'Continent' sub-category would show how 

well the model performs on data from the continent it was developed in, this would help the 

developers know how well they can scale the current version of their A.I system. 'Region' 

specifically focuses on the performance of the AI system within the sub-continental region it was 

developed (e.g. West Africa, South East Asia, Northern Europe). This would help the developers 

see how ready their AI system is to be deployed in neighbouring countries. And finally, 'Global' 

shows how well the model performs on data from across the world, showing its ability to truly 

generalise. Each of the subcategories under location would also feature an AUC score for each 

Gender and Age group, as shown in Figures 1 and 3. This would allow developers to tell 

specifically within each geographical area, how well their AI system generalises across gender and 

age. 

Under 'Gender', there would be two main sub-categories, Male and Female, as shown in Figure 1 

and 4. This would show how well the AI system performs on radiographs of male and female 

patients. Each of the two sub-categories would also feature AUC scores for various Age groups. 

This would show how well the AI system performs on male and female patients of different age 

groups. Conditions that however only affect one gender would not feature the 'Gender' category. 

The 'Age' category would feature various age groups as sub-categories. Age groups that are not 

featured within certain datasets and conditions would not be shown for those specific conditions. 

Similar to the other categories, an AI system's performance on each of the age groups would be 

shown and it'd also feature 'Male' and 'Female' AUC score under each age group. 

This concept of 'Precision Evaluation' is to precisely assess how well an AI system generalises 

across demographics. 

 

Figure 8 – The 'Gender' category 

3.6.7 Evaluation data 

The goal is to ensure a proportional amount of the diverse demographics and their intersections. 

With diverse evaluation data, the generality of an AI system can truly be assessed. The platform 

would be open to facilities to register, and submit images and demographical data. Facilities with 

approved images would be credited with contributing to the set up of such dataset. This would 

hopefully serve as incentive to facilities to contribute more data to the platform. Submitted 
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radiographs should be accompanied by a csv file with information about the patient's gender, age 

and imaging facility's location. This would allow for the proposed Precision Evaluation framework. 

3.6.8 The panel of expert radiologists 

To ensure quality, submitted images and data would be reviewed by a panel of expert radiologists. 

This panel of expert radiologists would also ensure edge cases and diversity are represented in each 

evaluation set. The panel would be open to qualified radiologists to join and participate in. Each 

evaluation set and condition would have its own panel of expert radiologists. Radiologists who are 

part of the panel would be credited on the platform for the evaluation sets they contribute to. This 

would also hopefully serve as an incentive for more radiologists to join 'The Panel of Expert 

Radiologists'. 

3.6.9 Test radiologists 

Beyond the panel of expert radiologists, we would ideally have radiologists from different parts of 

the world who would be asked to classify the test images without access to their true labels. The 

goal would be to get as many testing radiologists as possible from each continent, region or possibly 

country. These radiologists would also be ideally given test images from within their region. This 

would allow us to compare an A.I system's performance on test images within each of the 'Location' 

sub-category with radiologists also within such geographical regions. This would more 

appropriately help us estimate how well an AI system performs when compared with the level of 

performance of standalone radiologists within each specific region. 

3.7 Evaluation data availability 

minoHealth AI Labs is currently working with institutions in Ghana, including Christian Health 

Association of Ghana (CHAG), National Catholic Health Service (NCHS), Euracare Advanced 

Diagnostic Center and Paradise Diagnostic Center in order to collect mammograms and chest 

radiographs. Some of that data can be made available to the benchmarking platform. With the 

collaboration of various members and organisations affiliated with FG-AI4H, we can collect more 

radiographs from around the world. Also as explained earlier, the platform would be open to 

registered facilities to contribute data. 

3.8 Feasibility 

Though the proposed radiograph-agnostic framework and platform has several moving parts and 

complexities, it's possible to modularise it and build with different levels of complexities. It is also 

possible for the categories and subcategories to adjust based on the number and diversity of samples 

as well as radiologists available. If the evaluation data for a particular condition isn't large enough 

to support all four subcategories of 'Location', it can be limited to just 'Region' or 'Continent' and 

'Global'. If there weren't enough test radiologists within a specific country where an AI system was 

developed, the regional, continental or global average performance of radiologists would be used 

across. The same can apply to the sub-categories of Gender and Age. We would also start 

implementing the platform with chest x-rays for 12 different thoracic diseases supported in MIMIC-

CXR, CheXpert and NIH Chest XRay datasets. 

3.9 Privacy and security 

Anonymised data can be de-anonymised using techniques like linkage attacks. Linkage attacks 

involve combining data from multiple sources in order to form a whole picture about targets. It is 

then possible to use the demographics data (Date of Birth, Gender and Location) of an anonymised 

patient whose medical image is available and cross-reference with public voter lists in order to 

identify who the patient is. This is because there are very few individuals likely to have the same 

data of birth and gender, and live in the same location. To prevent linkage attacks, the developers 

and testing radiologists are only given access to test images without demographics data. To further 
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defend against this attack, we are abstracting 'Date of Birth' to just the Age (in years) of the patient 

when they were imaged, and we can abstract the location to just 'Country'. To add additional 

security measures as far as the panel of expert radiologists has access to such demographics data, 

we can explore variations of Differential Privacy. 

Also, we are ensuring a secure system by demanding that developers and organisations that require 

a standardised evaluation of their A.I systems register before they'd be allowed to. The registration 

process can include an in-person assessment by their local World Health Organisation (W.H.O) or 

ITU branch office, just to ensure they are a valid institution, startup or developer. A moderate fee 

can be charged for the registration, which could then serve as funds to support the maintenance of 

the platform. Equally, health facilities seeking to donate medical images and data must register and 

be assessed. And even the images and data they submit to the platform would be evaluated before 

being added to the system. All radiologists, both in the 'panel of expert radiologists' and the 'testing 

radiologists' would have to register and be verified before being allowed to contribute to the 

platform. 

In order to not infringe upon the Intellectual Properties (IP) rights of AI developers and 

organisations, they would not be required to submit their A.I system itself. They are only supposed 

to submit the outputs (csv file) of their AI system, which would then be used for the evaluation of 

their system. 

3.10 Impact 

There exists a large amount of publicly available medical image datasets online, and there have 

been a lot of research and development with such datasets. By developing frameworks that target 

these conditions first, we would make the standardized benchmarking platform immediately 

appealing to the A.I healthcare research and development community. This would also help 

speedup the deployment of AI solutions in Radiology globally. AI healthcare system developers and 

organisations usually have to go through the challenge of convincing health facilities to share their 

private data with them, such data unfortunately aren't always of high quality and they usually lack 

the broad demographic representations needed to truly assess how well an A.I system generalises. A 

radiograph-agnostic benchmarking platform with data from various facilities across the globe, 

reviewed by a panel of experts to ensure quality and diversity, would drastically simplify the 

evaluation stage of such AI systems. The 'Precision Evaluation' framework would help fight against 

demographically biased A.I systems by ensuring they are tested in great detail across various 

groups. It'd also help in the safe scaling of AI systems across different locations. The 'Location' sub-

categorization of evaluation allows for 'Geo-Precision Evaluation'. Developers can tell how well 

their systems can perform within their country or first-point of deployment, and should they intend 

to scale to neighbouring countries then eventually have it across the globe, they can tell how well 

their current version would perform at each point of such growth and scaling. 

3.11 Reporting methodology 

– Report publication in papers or as part of ITU documents 

– Online reporting 

– public leaderboards vs. private leaderboards 

– Credit-Check like on approved sharing with selected stakeholders 

– Report structure including an example 

– Frequency of benchmarking 

4 Results 

– insert here the reports of the different benchmarking runs 
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5 Discussion 

– Discussion of the insights from executing the benchmarking on 

o external feedback on the whole topic and its benchmarking 

o technical architecture 

o data acquisition 

o benchmarking process 

o benchmarking results 

o field implementation success stories 
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Annex A: 

Glossary 

This section lists all the relevant abbreviations, acronyms and uncommon terms used in the 

document. 

Acronym/Term Expansion Comment 

AI Artificial intelligence  

AI4H  Artificial intelligence for health  

AI-MD AI based medical device  

API Application programming interface  

CfTGP Call for topic group participation  

DEL Deliverable   

FDA Food and Drug administration  

FGAI4H Focus Group on AI for Health  

GDP Gross domestic product  

GDPR General Data Protection Regulation  

IMDRF International Medical Device Regulators 

Forum 

 

IP Intellectual property  

ISO International Standardization Organization  

ITU International Telecommunication Union  

LMIC Low-and middle-income countries  

MDR Medical Device Regulation  

PII Personal identifiable information  

SaMD Software as a medical device  

TDD Topic Description Document Document specifying the standardized 

benchmarking for a topic on which the 

FG AI4H Topic Group works. This 

document is the TDD for the Topic 

Group MCH 

TG Topic Group  

WG Working Group  

WHO World Health Organization  

 

  



 

DEL10.12 (15 September 2023)  65 

Annex B: 

Declaration of conflict of interest 

No declarations made by the contributors to this document 

 

____________________________ 

 


	1 Introduction
	1.1 Document Structure
	1.2 Status update for meeting [Meeting L]
	1.3 Status update for meeting [Meeting M]
	1.4 Status update for meeting [Meeting R]
	1.5 Topic description
	1.5.1 Impact of benchmarking

	1.6 Ethical considerations
	1.6.1 Overview
	1.6.2 Reading race: AI recognises patient's racial identity in medical images

	1.7 Existing AI solutions
	1.7.1 Use case descriptors
	1.7.2 Collected AI solutions and use cases

	1.8 Imaging modalities
	1.9 Existing work on benchmarking
	1.10 Benchmarking overview
	1.11 The NHS AI Lab - Call for AI driven COVID-19 models: Performance assessment using the national COVID-19 chest imaging database

	2 AI4H Topic Group
	3 Method
	3.1 AI input data structure
	3.1.1 Image conversion considerations
	3.1.2 Image compression and other artifacts considerations
	3.1.3 Lossless medical image compression for radiology

	3.2 AI output data structure
	3.3 Test data labels
	3.4 Scores & metrics
	3.4.1 Threshold metrics
	3.4.1.1 Accuracy metrics
	3.4.1.2 Sensitivity-specificity metrics
	3.4.1.3 Precision-recall metrics

	3.4.2 Ranking metrics
	3.4.3 Probability Metrics

	3.5 Undisclosed test data set collection
	3.6 Benchmarking methodology and architecture
	3.6.1 Audit trial
	3.6.2 Audit trial checklist
	3.6.3 Audit trial: minoHealth.ai: A clinical evaluation of deep learning systems for the diagnosis of pleural effusion and cardiomegaly in Ghana, Vietnam and the United States of America.
	3.6.4 Benchmarking solution
	3.6.5 Evaluation metrics
	3.6.6 Benchmark categorizations
	3.6.7 Evaluation data
	3.6.8 The panel of expert radiologists
	3.6.9 Test radiologists

	3.7 Evaluation data availability
	3.8 Feasibility
	3.9 Privacy and security
	3.10 Impact
	3.11 Reporting methodology

	4 Results
	5 Discussion
	References
	Annex A: Glossary
	Annex B: Declaration of conflict of interest

